diff --git a/docs/9999-appendix.html b/docs/9999-appendix.html
index 9088e0e..5641351 100644
--- a/docs/9999-appendix.html
+++ b/docs/9999-appendix.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 附录 C — 其他合集</title>
+<title>附录 A — 其他合集 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -30,23 +30,29 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./data-split.html" rel="prev">
+<link href="./mice多重插补.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -55,8 +61,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -69,13 +77,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./data-preprocess.html">附录</a></li><li class="breadcrumb-item"><a href="./9999-appendix.html"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./9999-appendix.html">附录</a></li><li class="breadcrumb-item"><a href="./9999-appendix.html"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -84,18 +92,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -108,171 +116,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -280,195 +299,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -476,28 +458,29 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#r语言rtoolsrstudio的安装" id="toc-r语言rtoolsrstudio的安装" class="nav-link active" data-scroll-target="#r语言rtoolsrstudio的安装"><span class="header-section-number">C.1</span> R语言、Rtools、Rstudio的安装</a></li>
-  <li><a href="#r包安装" id="toc-r包安装" class="nav-link" data-scroll-target="#r包安装"><span class="header-section-number">C.2</span> R包安装</a></li>
-  <li><a href="#医学统计" id="toc-医学统计" class="nav-link" data-scroll-target="#医学统计"><span class="header-section-number">C.3</span> 医学统计</a></li>
-  <li><a href="#机器学习" id="toc-机器学习" class="nav-link" data-scroll-target="#机器学习"><span class="header-section-number">C.4</span> 机器学习</a></li>
-  <li><a href="#生信数据挖掘" id="toc-生信数据挖掘" class="nav-link" data-scroll-target="#生信数据挖掘"><span class="header-section-number">C.5</span> 生信数据挖掘</a></li>
-  <li><a href="#扫码关注" id="toc-扫码关注" class="nav-link" data-scroll-target="#扫码关注"><span class="header-section-number">C.6</span> 扫码关注</a></li>
+  <li><a href="#r语言零基础入门" id="toc-r语言零基础入门" class="nav-link active" data-scroll-target="#r语言零基础入门"><span class="header-section-number">A.1</span> R语言零基础入门</a></li>
+  <li><a href="#医学统计" id="toc-医学统计" class="nav-link" data-scroll-target="#医学统计"><span class="header-section-number">A.2</span> 医学统计</a></li>
+  <li><a href="#临床预测模型" id="toc-临床预测模型" class="nav-link" data-scroll-target="#临床预测模型"><span class="header-section-number">A.3</span> 临床预测模型</a></li>
+  <li><a href="#机器学习" id="toc-机器学习" class="nav-link" data-scroll-target="#机器学习"><span class="header-section-number">A.4</span> 机器学习</a></li>
+  <li><a href="#模型解释" id="toc-模型解释" class="nav-link" data-scroll-target="#模型解释"><span class="header-section-number">A.5</span> 模型解释</a></li>
+  <li><a href="#生信数据挖掘" id="toc-生信数据挖掘" class="nav-link" data-scroll-target="#生信数据挖掘"><span class="header-section-number">A.6</span> 生信数据挖掘</a></li>
+  <li><a href="#扫码关注" id="toc-扫码关注" class="nav-link" data-scroll-target="#扫码关注"><span class="header-section-number">A.7</span> 扫码关注</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./9999-appendix.html">附录</a></li><li class="breadcrumb-item"><a href="./9999-appendix.html"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title">附录 C — 其他合集</h1>
+<h1 class="title">附录 A — 其他合集</h1>
 </div>
 
 
@@ -510,46 +493,69 @@ <h1 class="title">附录 C — 其他合集</h1>
   </div>
   
 
+
 </header>
 
-<section id="r语言rtoolsrstudio的安装" class="level2" data-number="C.1">
-<h2 data-number="C.1" class="anchored" data-anchor-id="r语言rtoolsrstudio的安装"><span class="header-section-number">C.1</span> R语言、Rtools、Rstudio的安装</h2>
+
 <ul>
-<li>公众号推文:<a href="https://mp.weixin.qq.com/s/T_THmO1J94mj88pwHoqi2Q">可能是最适合小白的R语言和R包安装教程</a></li>
-<li>b站播放量超7w的视频教程:<a href="https://www.bilibili.com/video/BV1jY411w7zq/">适合小白的R语言和Rstudio安装教程</a></li>
+<li>作者:阿越就是我</li>
+<li>公众号:医学和生信笔记</li>
+<li>哔哩哔哩:<a href="https://space.bilibili.com/42460432">阿越就是我</a></li>
+<li>Github:<a href="https://github.com/ayueme">ayueme</a></li>
 </ul>
-</section>
-<section id="r包安装" class="level2" data-number="C.2">
-<h2 data-number="C.2" class="anchored" data-anchor-id="r包安装"><span class="header-section-number">C.2</span> R包安装</h2>
+<section id="r语言零基础入门" class="level2" data-number="A.1">
+<h2 data-number="A.1" class="anchored" data-anchor-id="r语言零基础入门"><span class="header-section-number">A.1</span> R语言零基础入门</h2>
 <ul>
-<li>公众号推文:<a href="https://mp.weixin.qq.com/s/7kW8wlDyRRTahy8XtCeX1w">可能是最好的R包安装教程</a></li>
-<li>b站播放量超7w的视频教程:<a href="https://www.bilibili.com/video/BV11g411o7be/?spm_id_from=333.788&amp;vd_source=2a81c5384000daae61949f58079f1cfd">可能是最好用的R包安装教程</a></li>
+<li>R语言实战医学统计合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3635563493526208514&amp;scene=173&amp;subscene=227&amp;sessionid=1730964798&amp;enterid=1730964801&amp;from_msgid=2247503608&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">R语言零基础入门</a></li>
+<li>在线版电子书:<a href="https://ayueme.github.io/R_beginners/">R语言零基础入门</a></li>
+<li>github地址:<a href="https://github.com/ayueme/R_beginners">R语言零基础入门</a></li>
+<li>视频版教程:<a href="https://space.bilibili.com/42460432/channel/collectiondetail?sid=3740949&amp;ctype=0">R语言零基础入门</a></li>
 </ul>
 </section>
-<section id="医学统计" class="level2" data-number="C.3">
-<h2 data-number="C.3" class="anchored" data-anchor-id="医学统计"><span class="header-section-number">C.3</span> 医学统计</h2>
+<section id="医学统计" class="level2" data-number="A.2">
+<h2 data-number="A.2" class="anchored" data-anchor-id="医学统计"><span class="header-section-number">A.2</span> 医学统计</h2>
 <ul>
 <li>R语言实战医学统计合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2231476971388059661&amp;scene=126#wechat_redirect">R语言实战医学统计</a></li>
 <li>在线版电子书:<a href="https://ayueme.github.io/R_medical_stat/">R语言实战医学统计</a></li>
+<li>PDF版电子书:<a href="https://mp.weixin.qq.com/s/uzL8Y2nZ3W4efA4q8xJ5UA">R语言实战医学统计</a></li>
 <li>github地址:<a href="https://github.com/ayueme/R_medical_stat">R语言实战医学统计</a></li>
+<li>视频版教程:<a href="https://space.bilibili.com/42460432/channel/collectiondetail?sid=3977492&amp;ctype=0">R语言实战医学统计</a></li>
 </ul>
 </section>
-<section id="机器学习" class="level2" data-number="C.4">
-<h2 data-number="C.4" class="anchored" data-anchor-id="机器学习"><span class="header-section-number">C.4</span> 机器学习</h2>
-<p>临床预测模型和机器学习的联系越来越紧密,没有明确的界限,目前来看各种机器学习方法已经充斥在预测建模类文章中,所以大家有必要学习一些机器学习的相关知识了。</p>
+<section id="临床预测模型" class="level2" data-number="A.3">
+<h2 data-number="A.3" class="anchored" data-anchor-id="临床预测模型"><span class="header-section-number">A.3</span> 临床预测模型</h2>
+<ul>
+<li>临床预测模型合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2393825487539191816&amp;scene=21#wechat_redirect">临床预测模型</a></li>
+<li>在线版电子书:<a href="https://ayueme.github.io/R_clinical_model/">R语言实战临床预测模型</a></li>
+<li>PDF版电子书:<a href="https://mp.weixin.qq.com/s/Sx7onA339TYSxIF6Bi6JTw">R语言实战临床预测模型</a></li>
+<li>github地址:<a href="https://github.com/ayueme/R_clinical_model">R语言实战临床预测模型</a></li>
+</ul>
+</section>
+<section id="机器学习" class="level2" data-number="A.4">
+<h2 data-number="A.4" class="anchored" data-anchor-id="机器学习"><span class="header-section-number">A.4</span> 机器学习</h2>
 <p><strong>医学和生信笔记</strong>后台回复<strong>caret</strong>即可获取caret包的合集教程;回复<strong>tidymodels</strong>即可获取tidymodels的合集教程;回复<strong>mlr3</strong>即可获取mlr3合集教程,回复<strong>机器学习</strong>即可获取机器学习推文合集。</p>
-<p>R语言机器学习合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">R语言机器学习</a></p>
-<p>在线版电子书敬请期待,即将上线!</p>
-<p>本号很少涉及理论知识,主要还是R语言实战,所以理论部分大家需要自己多多学习。</p>
+<ul>
+<li>R语言机器学习合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">R语言机器学习</a></li>
+<li>在线版电子书:<a href="https://ayueme.github.io/machine_learning_base_r/">R语言实战机器学习</a></li>
+<li>PDF版电子书:<a href="https://mp.weixin.qq.com/s/cHgFDCCqZ2bvlEyaWSrNVQ">R语言实战机器学习</a></li>
+<li>github地址:<a href="https://github.com/ayueme/machine_learning_base_r">R语言实战机器学习</a></li>
+</ul>
 </section>
-<section id="生信数据挖掘" class="level2" data-number="C.5">
-<h2 data-number="C.5" class="anchored" data-anchor-id="生信数据挖掘"><span class="header-section-number">C.5</span> 生信数据挖掘</h2>
+<section id="模型解释" class="level2" data-number="A.5">
+<h2 data-number="A.5" class="anchored" data-anchor-id="模型解释"><span class="header-section-number">A.5</span> 模型解释</h2>
+<p>包括各种黑盒模型的解释方法,如SHAP、局部代理法、分解解释等:</p>
+<ul>
+<li>模型解释合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3302133732023369734&amp;scene=173&amp;subscene=&amp;sessionid=svr_1933cba7cdc&amp;enterid=1714570504&amp;from_msgid=2247501825&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">模型解释合集</a></li>
+</ul>
+</section>
+<section id="生信数据挖掘" class="level2" data-number="A.6">
+<h2 data-number="A.6" class="anchored" data-anchor-id="生信数据挖掘"><span class="header-section-number">A.6</span> 生信数据挖掘</h2>
 <p>生信数据挖掘合集:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2255945345983627264&amp;scene=173&amp;from_msgid=2247499322&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">生信数据挖掘</a></p>
 <p><strong>医学和生信笔记</strong>公众号所有关于<strong>生信数据挖掘</strong>的推文都可以免费下载使用,请看:<a href="https://mp.weixin.qq.com/s/T3rSmj68Y41w2qIDWRr9Xg">“灌水”生信类文章会用到哪些生信下游分析?(附下载地址)</a></p>
 <p>github地址:<a href="https://github.com/ayueme/R_bioinformatics">R语言生信数据挖掘</a></p>
 </section>
-<section id="扫码关注" class="level2" data-number="C.6">
-<h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class="header-section-number">C.6</span> 扫码关注</h2>
+<section id="扫码关注" class="level2" data-number="A.7">
+<h2 data-number="A.7" class="anchored" data-anchor-id="扫码关注"><span class="header-section-number">A.7</span> 扫码关注</h2>
 <p>欢迎扫码关注:医学和生信笔记</p>
 <p><img src="figs/46346465dfgdfgd.jpg" class="img-fluid"></p>
 
@@ -592,18 +598,7 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -635,11 +630,50 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -649,8 +683,17 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -662,7 +705,130 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -706,6 +872,7 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -731,6 +898,32 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -792,8 +985,8 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./data-split.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span>
+      <a href="./mice多重插补.html" class="pagination-link" aria-label="mice多重插补">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
@@ -802,14 +995,19 @@ <h2 data-number="C.6" class="anchored" data-anchor-id="扫码关注"><span class
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git "a/docs/BMJ\351\242\204\346\265\213\346\250\241\345\236\213\346\240\267\346\234\254\351\207\217\350\256\241\347\256\227.html" "b/docs/BMJ\351\242\204\346\265\213\346\250\241\345\236\213\346\240\267\346\234\254\351\207\217\350\256\241\347\256\227.html"
new file mode 100644
index 0000000..e1bbb2c
--- /dev/null
+++ "b/docs/BMJ\351\242\204\346\265\213\346\250\241\345\236\213\346\240\267\346\234\254\351\207\217\350\256\241\347\256\227.html"
@@ -0,0 +1,1175 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>42&nbsp; 开发预测模型样本量计算 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+/* CSS for syntax highlighting */
+pre > code.sourceCode { white-space: pre; position: relative; }
+pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span:empty { height: 1.2em; }
+.sourceCode { overflow: visible; }
+code.sourceCode > span { color: inherit; text-decoration: inherit; }
+div.sourceCode { margin: 1em 0; }
+pre.sourceCode { margin: 0; }
+@media screen {
+div.sourceCode { overflow: auto; }
+}
+@media print {
+pre > code.sourceCode { white-space: pre-wrap; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+}
+pre.numberSource code
+  { counter-reset: source-line 0; }
+pre.numberSource code > span
+  { position: relative; left: -4em; counter-increment: source-line; }
+pre.numberSource code > span > a:first-child::before
+  { content: counter(source-line);
+    position: relative; left: -1em; text-align: right; vertical-align: baseline;
+    border: none; display: inline-block;
+    -webkit-touch-callout: none; -webkit-user-select: none;
+    -khtml-user-select: none; -moz-user-select: none;
+    -ms-user-select: none; user-select: none;
+    padding: 0 4px; width: 4em;
+  }
+pre.numberSource { margin-left: 3em;  padding-left: 4px; }
+div.sourceCode
+  {   }
+@media screen {
+pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./mice多重插补.html" rel="next">
+<link href="./model-compare_caret.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html">其他内容</a></li><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#经典方法" id="toc-经典方法" class="nav-link active" data-scroll-target="#经典方法"><span class="header-section-number">42.1</span> 经典方法</a></li>
+  <li><a href="#步法" id="toc-步法" class="nav-link" data-scroll-target="#步法"><span class="header-section-number">42.2</span> 4步法</a>
+  <ul class="collapse">
+  <li><a href="#第一步" id="toc-第一步" class="nav-link" data-scroll-target="#第一步"><span class="header-section-number">42.2.1</span> 第一步</a></li>
+  <li><a href="#第二步" id="toc-第二步" class="nav-link" data-scroll-target="#第二步"><span class="header-section-number">42.2.2</span> 第二步</a></li>
+  <li><a href="#第三步" id="toc-第三步" class="nav-link" data-scroll-target="#第三步"><span class="header-section-number">42.2.3</span> 第三步</a></li>
+  <li><a href="#第四步" id="toc-第四步" class="nav-link" data-scroll-target="#第四步"><span class="header-section-number">42.2.4</span> 第四步</a></li>
+  </ul></li>
+  <li><a href="#总结" id="toc-总结" class="nav-link" data-scroll-target="#总结"><span class="header-section-number">42.3</span> 总结</a></li>
+  <li><a href="#r包使用方法" id="toc-r包使用方法" class="nav-link" data-scroll-target="#r包使用方法"><span class="header-section-number">42.4</span> R包使用方法</a>
+  <ul class="collapse">
+  <li><a href="#二分类数据" id="toc-二分类数据" class="nav-link" data-scroll-target="#二分类数据"><span class="header-section-number">42.4.1</span> 二分类数据</a></li>
+  <li><a href="#生存数据" id="toc-生存数据" class="nav-link" data-scroll-target="#生存数据"><span class="header-section-number">42.4.2</span> 生存数据</a></li>
+  <li><a href="#连续型数据" id="toc-连续型数据" class="nav-link" data-scroll-target="#连续型数据"><span class="header-section-number">42.4.3</span> 连续型数据</a></li>
+  </ul></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html">其他内容</a></li><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>BMJ在2020年发表了一篇关于预测模型样本量计算的文章(10.1136/bmj.m441,这篇文章是免费下载的,记得把补充文件也下载下来),算是目前样本量计算的指南性文件。</p>
+<p>并且作者还提供了一个R包(<code>pmsampsize</code>)用于计算样本量,使用起来也非常方便,有点类似于<a href="https://mp.weixin.qq.com/s/Ee2raA6NV0Cb_e5n1yiH0Q">pwr包计算样本量</a></p>
+<p><img src="figs/PixPin_2024-06-08_13-07-06.png" class="img-fluid"></p>
+<p>但是要注意该文献的样本量计算是针对<strong>开发临床预测模型需要的样本量</strong>,也就是训练集的样本量,<strong>不是外部验证集的样本量</strong>。如果是验证集的样本量,作者专门又写了3篇文章,分别针对回归、二分类、生存数据:</p>
+<ul>
+<li>Riley R D, Collins G S, Ensor J, et al.&nbsp;Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome[J]. Statistics in Medicine, 2022, 41(7): 1280–1295. DOI:10.1002/sim.9275.</li>
+<li>Riley R D, Debray T P A, Collins G S, et al.&nbsp;Minimum sample size for external validation of a clinical prediction model with a binary outcome[J]. Statistics in Medicine, 2021, 40(19): 4230–4251. DOI:10.1002/sim.9025.</li>
+<li>Archer L, Snell K I E, Ensor J, et al.&nbsp;Minimum sample size for external validation of a clinical prediction model with a continuous outcome[J]. Statistics in Medicine, 2021, 40(1): 133–146. DOI:10.1002/sim.8766.</li>
+</ul>
+<p>另外,该文献的样本量计算方法是针对3大回归模型的:线性回归、逻辑回归、cox回归。如果是一些机器学习方法(比如随机森林、支持向量机等)则需要更多的样本。</p>
+<section id="经典方法" class="level2" data-number="42.1">
+<h2 data-number="42.1" class="anchored" data-anchor-id="经典方法"><span class="header-section-number">42.1</span> 经典方法</h2>
+<p>Harrell老爷子在他的书《Regression Modeling Strategies》中介绍的开发模型的样本量计算方法是:</p>
+<p>在开发数据集(也就是训练集)中,连续型结果的有效样本量由研究参与者的总数决定(有多少用多少)。对于二分类结果,有效样本量通常被认为大约等于事件(有结果的事件)和非事件(没有结果的事件)的最小值; time-to-event数据中,样本量可以粗略等于阳性事件的数量。</p>
+<p><img src="figs/PixPin_2024-06-08_20-28-40.png" class="img-fluid"></p>
+<p>在为二分类或time-to-event数据开发预测模型时,所需要的样本量常用的计算方法是<strong>10EPV法</strong>,即阳性事件的数量至少是预测变量个数的10倍(10 events per variable,10EPV)。</p>
+<p>但是“variable”一词具有误导性,因为在模型中一个预测变量可能有多个β(即回归系数),例如,具有三个类别的分类型预测变量就会有两个β(例如肿瘤等级1、2、3,那么就会有β(2和1比)、β(3和1比),因为分类变量在回归分析中需要进行<a href="https://mp.weixin.qq.com/s/8j0e3-PpbvTqGDnkPWRFyA">哑变量编码</a>)。还有就是在建模过程中使用了多项式转换和样条变换等也会使得同一个变量有多个β,如果变量之间有交互项也会产生同样的结果。</p>
+<p>由于预测模型的参数(也就是回归系数β)通常多于实际的预测变量个数,所以最好使用<strong>10EPP</strong>(10 events per candidate predictor parameter)法,即阳性事件的数量至少是“候选预测变量的参数”的10倍。“候选”一词很重要,因为模型过拟合的程度与预测变量参数的数量有关,而不是最终模型方程中的参数数量。</p>
+<p>但是10EPP原则目前也有一些争议,也有大佬建议5EPP或者15、20、50EPP。这些数量的使用都是和具体的情况有关的,也没个金标准,不仅取决于相对于候选预测变量参数数量的事件数量,还取决于参与者总数、研究人群中的结果比例(发生率)以及模型的预期预测性能等。</p>
+</section>
+<section id="步法" class="level2" data-number="42.2">
+<h2 data-number="42.2" class="anchored" data-anchor-id="步法"><span class="header-section-number">42.2</span> 4步法</h2>
+<p>Van Smeden等和Riley等人最近的工作描述了如何计算预测模型开发所需的样本量,使用条件是用户指定目标人群中的总体结果风险或平均结果值、候选预测变量参数的数量以及总体模型拟合方面的预期模型性能。具体实施起来总结为4个步骤:</p>
+<ol type="1">
+<li>第一步是确定需要多少样本才能准确估计平均风险(也就是平均概率,对应二分类或者生存数据)或者平均值(对应连续型数据);</li>
+<li>第二步是确定需要多少样本才能让模型的预测值和真实值之间的误差更小;</li>
+<li>第三步是确定有足够的的样本量以防止过拟合;</li>
+<li>第四步是确定有足够的的样本量使模型的表面性能和真实性能的误差更小。</li>
+</ol>
+<section id="第一步" class="level3" data-number="42.2.1">
+<h3 data-number="42.2.1" class="anchored" data-anchor-id="第一步"><span class="header-section-number">42.2.1</span> 第一步</h3>
+<p>样本大小必须让预测模型的截距能被精确估计,以确保开发的模型可以准确预测平均结果值(对应连续型数据)或总体结果比例(对应二分类或者生存数据)。一个简单的方法是计算:能够准确估计“没有预测变量的空模型(null model)的截距”所需要的样本量。</p>
+<p>这里涉及一个简单的数学知识,就是线性模型的截距反映了模型预测的平均值。</p>
+<p>这个“准确估计”一般要求误差在0.05以内,也就是说预测值最好不要超过均值的95%可信区间。</p>
+<p>下图是计算公式和一个例子。假如一个二分类数据,它的阳性事件比例是0.5,为了控制误差在0.05以内,根据以下公式计算,需要的样本量最少是385个。</p>
+<p><img src="figs/PixPin_2024-06-08_15-53-36.png" class="img-fluid"></p>
+</section>
+<section id="第二步" class="level3" data-number="42.2.2">
+<h3 data-number="42.2.2" class="anchored" data-anchor-id="第二步"><span class="header-section-number">42.2.2</span> 第二步</h3>
+<p>预测值和真实值之间的误差可以用很多指标衡量,比如平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),这个指标其实是衡量回归模型的常用指标,对于二分类数据如果使用的是概率的话也能用这个指标衡量。</p>
+<p>下面是计算公式和一个例子。假如一个二分类数据,它的阳性事件比例是0.3,预测变量有10个,为了控制误差(MAPE)在0.05以内,根据以下公式计算,需要的样本量最少是461个。</p>
+<p><img src="figs/PixPin_2024-06-08_16-05-36.png" class="img-fluid"></p>
+</section>
+<section id="第三步" class="level3" data-number="42.2.3">
+<h3 data-number="42.2.3" class="anchored" data-anchor-id="第三步"><span class="header-section-number">42.2.3</span> 第三步</h3>
+<p>样本量越少且预测变量数量越多,则越容易过拟合,因此需要足够的样本量防止过拟合。</p>
+<p>建模过程中通常会使用收缩法(Shrinkage,或者被称为惩罚(penalisation)或正则化(regularisation))来降低过拟合的风险。Riley等人建议使用一个较小的收缩值(≤10%),并计算此时所需要的样本量。并且还需要指定候选预测变量参数的个数以及一个模型性能指标,比如Cox-Snell R<sup>2</sup>(记为CS-R方,属于伪R方的一种)。CS-R方可以反应信噪比(signal:noise),从而反应模型是否过拟合。</p>
+<p>对于连续型数据来说,CS-R方就是决定系数,反应模型所能解释的方差(或者叫变异)百分比,范围是0到1之间,越接近1越好,说明模型能够准确识别数据内部的模式,不会被噪声(误差)干扰,如果CS-R方接近0则说明模型很有可能过拟合。</p>
+<p>对于二分类数据和生存数据来说,CS-R方的范围是0到max(CS-R方)。对于逻辑回归模型来说,如果阳性事件发生率为0.5,0.4,0.3,0.2,0.1,0.05,0.01,那么对应的max(CS-R方)分别是0.75,0.74,0.71,0.63,0.48,0.33,0.11。所以即使模型的预期性能非常好,这个CS-R方的值也一般会选择比较小的值。</p>
+<p>以下是二分类和生存数据的样本量计算公式和一个示例。对于一个逻辑回归模型,如果有20个候选预测变量参数(EPP),CS-R方选择0.1,那么为了使收缩值保持在10%,最少的样本量是1698。</p>
+<p><img src="figs/PixPin_2024-06-08_18-22-18.png" class="img-fluid"></p>
+<p>Cox-Snell R<sup>2</sup>(也就是CS-R方)的选择有多种方法,以下是作者比较推荐的几种:</p>
+<ul>
+<li>直接使用别人文献里报道的值</li>
+<li>使用其他指标近似,比如使用C指数、AUC值、其他伪R方等</li>
+<li>根据max(CS-R方)计算</li>
+</ul>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="figs/PixPin_2024-06-08_18-09-10.png" class="img-fluid figure-img"></p>
+<figcaption>CS-R方的确定方法</figcaption>
+</figure>
+</div>
+<p>本文献的附件5提供了详细的公式用于计算max(CS-R方),感兴趣的自己查看一下吧。</p>
+</section>
+<section id="第四步" class="level3" data-number="42.2.4">
+<h3 data-number="42.2.4" class="anchored" data-anchor-id="第四步"><span class="header-section-number">42.2.4</span> 第四步</h3>
+<p>应该有足够多的样本量保证模型的表面指标和真实指标之间的差异足够小。</p>
+<p>表面指标(apparent values),假如我们用训练集开发了一个模型,然后让这个模型对训练集进行预测,这样得到的指标就是表面指标,这种计算模型指标的方法叫做重代入法(resubstitution)。真实指标是指模型在其他数据中(就是模型开发时没用过的数据)得到的更真实、更接近模型真实性能的指标。</p>
+<p>本篇文献中采用的指标是另外一种调整的R方,即:Nagelkerke-R方(也是伪R方的一种),Nagelkerke-R方=CS-R方/max(CS-R方)。</p>
+<p>下面是二分类和生存数据的样本量计算公式。对于一个逻辑回归模型,假设阳性事件的比例是0.05(此时对应的max(CS-R方)是0.33),指定CS-R方为0.2,那么为了使真实的Nagelkerke-R方和表面Nagelkerke-R方的差异保持在0.05,至少需要的样本量是1079。</p>
+<p><img src="figs/PixPin_2024-06-08_18-45-22.png" class="img-fluid"></p>
+</section>
+</section>
+<section id="总结" class="level2" data-number="42.3">
+<h2 data-number="42.3" class="anchored" data-anchor-id="总结"><span class="header-section-number">42.3</span> 总结</h2>
+<p>下面是一个总结,对于连续型数据,推荐使用4步法(C1-C4),对于二分类数据推荐使用4步法(B1-B4),对于生存数据推荐使用3步法(T1-T4)。</p>
+<p><img src="figs/PixPin_2024-06-08_18-56-42.png" class="img-fluid"></p>
+<p>除此之外作者专门写了一个R包用于计算临床预测模型的样本量:<code>pmsampsize</code>,这个R包可以计算以上每一个步骤(除了B2这个步骤不行,这一步是通过网页计算的,网址是:https://mvansmeden.shinyapps.io/BeyondEPV/)所需要的样本量,并选择最大的一个作为开发模型所需要的最少样本量。</p>
+</section>
+<section id="r包使用方法" class="level2" data-number="42.4">
+<h2 data-number="42.4" class="anchored" data-anchor-id="r包使用方法"><span class="header-section-number">42.4</span> R包使用方法</h2>
+<p>下面用3个实例演示这个R包的使用方法。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pmsampsize)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<section id="二分类数据" class="level3" data-number="42.4.1">
+<h3 data-number="42.4.1" class="anchored" data-anchor-id="二分类数据"><span class="header-section-number">42.4.1</span> 二分类数据</h3>
+<p>假如我们要根据妊娠15周时测定的各种指标预测孕妇发生子痫前期的风险,这是一个二分类数据,结果变量是发生子痫/不发生子痫。</p>
+<p>假设该数据中,发生子痫的比例是0.05(阳性事件的比例),候选预测变量的参数数量是30(EPP是30),max(CS-R方)是0.33。如果我们预期模型能够解释15%的变异,根据第3步中介绍的CS-R方的计算方法,可以得到CS-R方=0.15*0.33=0.05。</p>
+<p>有了这几个数据,就可以计算样本量了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">pmsampsize</span>(</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">type =</span> <span class="st">"b"</span>,         <span class="co"># 二分类数据</span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">csrsquared =</span> <span class="fl">0.05</span>,  <span class="co"># CS-R方</span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">parameters =</span> <span class="dv">30</span>,    <span class="co"># EPP的数量</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">prevalence =</span> <span class="fl">0.05</span>,  <span class="co"># 阳性事件发生率</span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">seed =</span> <span class="dv">123</span>          <span class="co"># 设置随机数种子</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming 0.05 acceptable difference in apparent &amp; adjusted R-squared </span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming 0.05 margin of error in estimation of intercept </span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Events per Predictor Parameter (EPP) assumes prevalence = 0.05  </span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##            Samp_size Shrinkage Parameter CS_Rsq Max_Rsq Nag_Rsq  EPP</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 1      5249     0.900        30   0.05   0.328   0.153 8.75</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 2      1770     0.753        30   0.05   0.328   0.153 2.95</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 3        73     0.900        30   0.05   0.328   0.153 0.12</span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Final           5249     0.900        30   0.05   0.328   0.153 8.75</span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  Minimum sample size required for new model development based on user inputs = 5249, </span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  with 263 events (assuming an outcome prevalence = 0.05) and an EPP = 8.75 </span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>对于二分类数据,使用4步法计算样本量,其中B2这一步不能通过这个包计算,所以这个包给出了其他3个步骤所需要的样本量,B2这个步骤算出来是需要544例,因为要同时满足4个步骤的要求,所以最终需要的样本量是5249例。</p>
+</section>
+<section id="生存数据" class="level3" data-number="42.4.2">
+<h3 data-number="42.4.2" class="anchored" data-anchor-id="生存数据"><span class="header-section-number">42.4.2</span> 生存数据</h3>
+<p>假如我们要预测治疗停止一段时间后,静脉血栓栓塞复发的风险。这是一个time-to-event类型的数据,结局是复发/不复发,时间就是治疗停止后的时长。</p>
+<p>假设该数据中,C指数是0.69,CS-R方是0.051,EPP=30,平均随访时间是2.07年,阳性事件发生比例是0.065,需要进行预测的时间点选择2年,那么样本量计算如下:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">pmsampsize</span>(</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">type =</span> <span class="st">"s"</span>,         <span class="co"># 生存数据</span></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">csrsquared =</span> <span class="fl">0.051</span>, <span class="co"># CS-R方</span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">parameters =</span> <span class="dv">30</span>,    <span class="co"># EPP的数量</span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">rate =</span> <span class="fl">0.065</span>,       <span class="co"># 阳性事件发生率</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">timepoint =</span> <span class="dv">2</span>,      <span class="co"># 指定要预测的时间点</span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>  <span class="at">meanfup =</span> <span class="fl">2.07</span>      <span class="co"># 平均随访时间</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>)</span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming 0.05 acceptable difference in apparent &amp; adjusted R-squared </span></span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming 0.05 margin of error in estimation of overall risk at time point = 2  </span></span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Events per Predictor Parameter (EPP) assumes overall event rate = 0.065  </span></span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##              Samp_size Shrinkage Parameter CS_Rsq Max_Rsq Nag_Rsq   EPP</span></span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 1        5143     0.900        30  0.051   0.555   0.092 23.07</span></span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 2        1039     0.648        30  0.051   0.555   0.092  4.66</span></span>
+<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 3 *      5143     0.900        30  0.051   0.555   0.092 23.07</span></span>
+<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Final SS          5143     0.900        30  0.051   0.555   0.092 23.07</span></span>
+<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  Minimum sample size required for new model development based on user inputs = 5143, </span></span>
+<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  corresponding to 10646 person-time** of follow-up, with 692 outcome events </span></span>
+<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  assuming an overall event rate = 0.065 and therefore an EPP = 23.07  </span></span>
+<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  * 95% CI for overall risk = (0.113, 0.13), for true value of 0.122 and sample size n = 5143 </span></span>
+<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  **where time is in the units mean follow-up time was specified in</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>生存数据的样本量计算遵循4步法,所以结果中给出了4个步骤每一步骤所需要的样本量,最终需要的样本量是5143例。</p>
+</section>
+<section id="连续型数据" class="level3" data-number="42.4.3">
+<h3 data-number="42.4.3" class="anchored" data-anchor-id="连续型数据"><span class="header-section-number">42.4.3</span> 连续型数据</h3>
+<p>假如我们要预测青少年的无脂肪体重,该任务很明显是一个回归任务,结果变量是数值型的。</p>
+<p>假设该数据中,CS-R方为0.9,EPP=20,总体的平均无脂肪体重是26.7kg(截距的值),总体的无脂肪体重的标准差是8.7kg,那么计算样本量的代码为:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">pmsampsize</span>(</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">type =</span> <span class="st">"c"</span>,       <span class="co"># 连续型数据</span></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">rsquared =</span> <span class="fl">0.9</span>,   <span class="co"># 连续型数据的CS-R方=R方</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">parameters =</span> <span class="dv">20</span>,  <span class="co"># EPP的数量</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">intercept =</span> <span class="fl">26.7</span>, <span class="co"># 截距,也就是均值</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">sd =</span> <span class="fl">8.7</span>          <span class="co"># 总体的标准差</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>)</span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming 0.05 acceptable difference in apparent &amp; adjusted R-squared </span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">## NB: Assuming MMOE &lt;= 1.1 in estimation of intercept &amp; residual standard deviation </span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">## SPP - Subjects per Predictor Parameter </span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##             Samp_size Shrinkage Parameter Rsq   SPP</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 1         68     0.900        20 0.9  3.40</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 2         41     0.853        20 0.9  2.05</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 3        254     0.970        20 0.9 12.70</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Criteria 4*       254     0.970        20 0.9 12.70</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Final             254     0.970        20 0.9 12.70</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  Minimum sample size required for new model development based on user inputs = 254  </span></span>
+<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  * 95% CI for intercept = (26.36, 27.04), for sample size n = 254</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>连续型数据的样本量计算也遵循4步法,最终所需要的样本量是254。</p>
+
+
+</section>
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./model-compare_caret.html" class="pagination-link" aria-label="caret实现多模型比较">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./mice多重插补.html" class="pagination-link" aria-label="mice多重插补">
+        <span class="nav-page-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246.html" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246.html"
index 4946888..6fafaf3 100644
--- "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246.html"
+++ "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 43&nbsp; 决策曲线添加彩色条带</title>
+<title>37&nbsp; 决策曲线添加彩色条带 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./DCA测试集.html" rel="next">
+<link href="./bootstrap一切指标.html" rel="next">
 <link href="./dca-diy.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./DCA彩色条带.html"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./DCA彩色条带.html"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,17 +493,17 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar zindex-bottom">
         
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./DCA彩色条带.html"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></h1>
+<h1 class="title"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></h1>
 </div>
 
 
@@ -534,9 +516,11 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>前段时间给大家介绍了如何给列线图增加彩色的危险分层条带,详情请见:<a href="https://mp.weixin.qq.com/s/OO8HmWCuv4igB_nOnzq7eg">列线图增加彩色风险分层</a></p>
+
+<p>前面给大家介绍了如何给列线图增加彩色的危险分层条带,详情请见:<a href="https://mp.weixin.qq.com/s/OO8HmWCuv4igB_nOnzq7eg">列线图增加彩色风险分层</a></p>
 <p><img src="figs/Snipaste_2023-10-10_19-38-49.png" class="img-fluid"></p>
 <p>并且还介绍了如何根据列线图计算每个患者的得分,并根据得分进行最佳危险分层,请见:<a href="https://mp.weixin.qq.com/s/XI-GRcCHWA6LKrf-esX_sQ">根据列线图计算分数并进行危险分层</a></p>
 <p>今天介绍如何为<strong>决策曲线</strong>添加彩色条带,实现类似于下图的效果:</p>
@@ -559,23 +543,29 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 <span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(df_surv<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
 <span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>df_surv <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(df_surv) <span class="co"># stdca函数只接受data.frame</span></span>
 <span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a>cox_dca <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>df_surv, </span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span>,</span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>      <span class="at">xby =</span> <span class="fl">0.001</span>,</span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a>      <span class="at">ymin =</span> <span class="sc">-</span><span class="fl">0.1</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> df_surv)</span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a>cox_dca <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>df_surv, </span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span>,</span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a>      <span class="at">xby =</span> <span class="fl">0.001</span>,</span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a>      <span class="at">ymin =</span> <span class="sc">-</span><span class="fl">0.1</span></span>
+<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-1-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-1-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这个默认的出图不是很好看,我们可以自己提取数据,然后使用<code>ggplot2</code>画:</p>
@@ -601,12 +591,15 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 <span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.1</span>,<span class="fl">0.2</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
 <span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
 <span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.background =</span> <span class="fu">element_blank</span>(),</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.85</span>,<span class="fl">0.75</span>)</span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.85</span>,<span class="fl">0.75</span>)</span>
 <span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>p1</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 731 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>p1</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>添加彩色条带的思路也很简单,就是在合适的位置添加矩形色块即可。</p>
@@ -654,10 +647,13 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 <span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">annotate</span>(<span class="at">geom =</span> <span class="st">"text"</span>, <span class="at">label =</span> <span class="st">"Nomogram irrelevant"</span>, </span>
 <span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>           <span class="at">x =</span> <span class="fl">0.85</span>, <span class="at">y =</span> <span class="sc">-</span><span class="fl">0.075</span>,</span>
 <span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>           <span class="at">size =</span> <span class="fl">4.5</span>, <span class="at">color =</span> <span class="st">"white"</span>)</span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a>p2</span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 731 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a>p2</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>是不是很easy呢?</p>
@@ -673,10 +669,13 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>p2<span class="sc">+</span><span class="fu">geom_linerange</span>(<span class="at">data =</span> line_df, <span class="at">mapping =</span> <span class="fu">aes</span>(<span class="at">x=</span>x,<span class="at">ymin=</span>ymin,<span class="at">ymax=</span>ymax),</span>
 <span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">linetype =</span> <span class="dv">2</span>, <span class="at">linewidth =</span> <span class="fl">1.2</span></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 731 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                  )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>如果是默认的出图,那就更简单了,因为都是R语言默认的画图引擎,支持所有<code>base r</code>画图语法,和之前列线图添加彩色条带的方法一模一样:</p>
@@ -691,15 +690,22 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 <span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>      <span class="at">ymin =</span> <span class="sc">-</span><span class="fl">0.1</span></span>
 <span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>    )</span>
 <span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加条带</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="dv">0</span>,<span class="at">xright =</span> <span class="fl">0.1</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,<span class="at">col =</span> <span class="st">"#0151a2"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="fl">0.1</span>,<span class="at">xright =</span> <span class="fl">0.7</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,<span class="at">col =</span> <span class="st">"#c01e35"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="fl">0.7</span>,<span class="at">xright =</span> <span class="dv">1</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,<span class="at">col =</span> <span class="st">"#0151a2"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加文字</span></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="at">x =</span> <span class="fl">0.4</span>, <span class="at">y =</span> <span class="sc">-</span><span class="fl">0.075</span>, <span class="at">labels=</span><span class="st">"Nomogram relevant"</span>,<span class="at">col=</span><span class="st">"white"</span>)</span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="at">x =</span> <span class="fl">0.85</span>, <span class="at">y =</span> <span class="sc">-</span><span class="fl">0.075</span>, <span class="at">labels=</span><span class="st">"Nomogram relevant"</span>,<span class="at">col=</span><span class="st">"white"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="dv">0</span>,<span class="at">xright =</span> <span class="fl">0.1</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">col =</span> <span class="st">"#0151a2"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="fl">0.1</span>,<span class="at">xright =</span> <span class="fl">0.7</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,</span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>     <span class="at">col =</span> <span class="st">"#c01e35"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="fu">rect</span>(<span class="at">xleft =</span> <span class="fl">0.7</span>,<span class="at">xright =</span> <span class="dv">1</span>,<span class="at">ybottom =</span> <span class="sc">-</span><span class="fl">0.05</span>,<span class="at">ytop =</span> <span class="sc">-</span><span class="fl">0.1</span>,</span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a>     <span class="at">col =</span> <span class="st">"#0151a2"</span>,<span class="at">border =</span> <span class="cn">NA</span>)</span>
+<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加文字</span></span>
+<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="at">x =</span> <span class="fl">0.4</span>, <span class="at">y =</span> <span class="sc">-</span><span class="fl">0.075</span>, <span class="at">labels=</span><span class="st">"Nomogram relevant"</span>,<span class="at">col=</span><span class="st">"white"</span>)</span>
+<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="at">x =</span> <span class="fl">0.85</span>, <span class="at">y =</span> <span class="sc">-</span><span class="fl">0.075</span>, <span class="at">labels=</span><span class="st">"Nomogram relevant"</span>,<span class="at">col=</span><span class="st">"white"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="DCA彩色条带_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>搞定!</p>
@@ -742,18 +748,7 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -785,11 +780,50 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -799,8 +833,17 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -812,7 +855,130 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -856,6 +1022,7 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -881,6 +1048,32 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -942,27 +1135,32 @@ <h1 class="title"><span class="chapter-number">43</span>&nbsp; <span class="chap
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./dca-diy.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span>
+      <a href="./dca-diy.html" class="pagination-link" aria-label="适用一切模型的决策曲线">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./DCA测试集.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./bootstrap一切指标.html" class="pagination-link" aria-label="bootstrap一切指标">
+        <span class="nav-page-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    <div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-3-1.png" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-3-1.png"
index ef35964..118558d 100644
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-3-1.png" and "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-3-1.png" differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-5-1.png" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-5-1.png"
index b704bb2..96ebfa7 100644
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-5-1.png" and "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-5-1.png" differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-7-1.png" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-7-1.png"
index 7842fb6..5a70fb2 100644
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-7-1.png" and "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-html/unnamed-chunk-7-1.png" differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-1-1.pdf" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-1-1.pdf"
deleted file mode 100644
index 26636bb..0000000
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-1-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-3-1.pdf" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-3-1.pdf"
deleted file mode 100644
index 87f1dbf..0000000
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-3-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-5-1.pdf" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-5-1.pdf"
deleted file mode 100644
index 1cadc57..0000000
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-5-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-7-1.pdf" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-7-1.pdf"
deleted file mode 100644
index b1786c2..0000000
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-7-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-8-1.pdf" "b/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-8-1.pdf"
deleted file mode 100644
index b59e7b2..0000000
Binary files "a/docs/DCA\345\275\251\350\211\262\346\235\241\345\270\246_files/figure-pdf/unnamed-chunk-8-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206.html" "b/docs/DCA\346\265\213\350\257\225\351\233\206.html"
deleted file mode 100644
index 0b4fcb1..0000000
--- "a/docs/DCA\346\265\213\350\257\225\351\233\206.html"
+++ /dev/null
@@ -1,1057 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 44&nbsp; 测试集的决策曲线分析</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./校准曲线和决策曲线的概率.html" rel="next">
-<link href="./DCA彩色条带.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./DCA测试集.html"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#生存数据测试集" id="toc-生存数据测试集" class="nav-link active" data-scroll-target="#生存数据测试集"><span class="header-section-number">44.1</span> 生存数据测试集</a>
-  <ul class="collapse">
-  <li><a href="#方法1stdca.r" id="toc-方法1stdca.r" class="nav-link" data-scroll-target="#方法1stdca.r"><span class="header-section-number">44.1.1</span> 方法1:stdca.R</a></li>
-  <li><a href="#方法2ggdca" id="toc-方法2ggdca" class="nav-link" data-scroll-target="#方法2ggdca"><span class="header-section-number">44.1.2</span> 方法2:ggDCA</a></li>
-  </ul></li>
-  <li><a href="#分类数据测试集" id="toc-分类数据测试集" class="nav-link" data-scroll-target="#分类数据测试集"><span class="header-section-number">44.2</span> 分类数据测试集</a>
-  <ul class="collapse">
-  <li><a href="#方法1dca.r" id="toc-方法1dca.r" class="nav-link" data-scroll-target="#方法1dca.r"><span class="header-section-number">44.2.1</span> 方法1:dca.r</a></li>
-  <li><a href="#方法2ggdca-1" id="toc-方法2ggdca-1" class="nav-link" data-scroll-target="#方法2ggdca-1"><span class="header-section-number">44.2.2</span> 方法2:ggDCA</a></li>
-  </ul></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>突然发现我竟然从没专门介绍过测试集的决策曲线分析(其实在随机生存森林中介绍过)!直到前几天后台有人问我才意识到!</p>
-<p>分类数据的决策曲线我给大家介绍了5种方法,生存数据的决策曲线我给大家介绍了4种方法,具体可参考:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/0iycRpUsDm1Ds3DTkEu4-A">二分类资料的DCA决策曲线分析</a></li>
-<li><a href="https://mp.weixin.qq.com/s/buajk82tUFH02ht9DH3RwA">生存资料的决策曲线分析DCA</a></li>
-<li><a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">只会logistic和cox的决策曲线?来看看适用于一切模型的DCA!</a></li>
-</ul>
-<p>今天就给大家介绍几种在测试集实现DCA的方法,其实也是用的上面介绍的方法。</p>
-<p>除了决策曲线,还有校准曲线等,测试集的实现方法可参考:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/sSWA5eGZDTXKCG1RF38urA">Cox回归校准曲线(测试集)的实现方法(上)</a></li>
-<li><a href="https://mp.weixin.qq.com/s/9zLWDGOxh877HI1suEA-Ug">Cox回归校准曲线(测试集)的实现方法(下)</a></li>
-<li><a href="https://mp.weixin.qq.com/s/skhm7FGlb7EhYY3x5Z8rSg">logistic校准曲线(测试集)的6种实现方法</a></li>
-</ul>
-<p>关于校准曲线和决策曲线使用的概率问题,还进行了一些探讨,虽然枯燥,但是非常值得大家注意哈。<a href="https://mp.weixin.qq.com/s/gw-YwrHT-ArzwnASnOqZ-g">画校准曲线和决策曲线时使用的是生存概率还是死亡概率</a></p>
-<section id="生存数据测试集" class="level2" data-number="44.1">
-<h2 data-number="44.1" class="anchored" data-anchor-id="生存数据测试集"><span class="header-section-number">44.1</span> 生存数据测试集</h2>
-<p>使用的数据集是包自带的<code>df_surv</code>数据集,一共有750行,9列,其中<code>ttcancer</code>是时间,<code>cancer</code>是结局事件,TRUE代表有癌症,FALSE代表没有癌症。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"df_surv"</span>,<span class="at">package =</span> <span class="st">"dcurves"</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(df_surv)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 750   9</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(df_surv)</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Classes 'tbl_df', 'tbl' and 'data.frame':    750 obs. of  9 variables:</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ patientid       : num  1 2 3 4 5 6 7 8 9 10 ...</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ cancer          : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ttcancer        : num  3.009 0.249 1.59 3.457 3.329 ...</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ risk_group      : chr  "low" "high" "low" "low" ...</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age             : num  64 78.5 64.1 58.5 64 ...</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ famhistory      : num  0 0 0 0 0 0 0 0 0 0 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ marker          : num  0.7763 0.2671 0.1696 0.024 0.0709 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ cancerpredmarker: num  0.0372 0.57891 0.02155 0.00391 0.01879 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ cancer_cr       : Factor w/ 3 levels "censor","diagnosed with cancer",..: 1 1 1 1 1 1 1 2 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>划分训练集测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(df_surv<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>df_surv <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(df_surv) <span class="co"># stdca函数只接受data.frame</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df_surv),<span class="fu">nrow</span>(df_surv) <span class="sc">*</span> <span class="fl">0.7</span>)</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> df_surv[train,]</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> df_surv[<span class="sc">-</span> train,]</span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 525   9</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 225   9</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<section id="方法1stdca.r" class="level3" data-number="44.1.1">
-<h3 data-number="44.1.1" class="anchored" data-anchor-id="方法1stdca.r"><span class="header-section-number">44.1.1</span> 方法1:stdca.R</h3>
-<p>我这里选择方法是<code>stdca.R</code>,因为这种方法比较灵活,非常适合各种DIY。但是要注意:</p>
-<blockquote class="blockquote">
-<p>这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>之前可以免费下载<code>dca.r/stdca.r</code>这两段脚本,但是现在已经不再提供该代码的下载,我把<code>dca.r/stdca.r</code>这两段代码已经放在<strong>粉丝QQ群文件</strong>,需要的加群下载即可。</p>
-<p>但是原网站下载的<code>stdca.r</code>脚本在某些数据中会遇到以下报错:<code>Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument</code>,所以我对这段脚本进行了修改,可以解决这个报错。但是需要额外付费获取,获取链接:<a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">适用于一切模型的DCA</a>,赞赏后加我微信获取,或者加我微信转账获取。没有任何答疑服务,介意勿扰。</p>
-<p>另外,我在之前的推文中介绍过超多种绘制决策曲线的方法,你也可以选择其他方法。</p>
-</blockquote>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载函数</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"E:/R/r-clinical-model/000files/stdca.R"</span>) </span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df)</span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的事件概率</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>train_df), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>train_df, </span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个是训练集的决策曲线,这个是可以提取数据然后自己使用<code>ggplot2</code>绘制的,详情请参考上面的推文。</p>
-<p>下面就是<strong>测试集的决策曲线分析</strong>了,非常简单:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算测试集1.5年的事件概率</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>test_df), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>test_df, </span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个就是测试集的决策曲线分析了。</p>
-</section>
-<section id="方法2ggdca" class="level3" data-number="44.1.2">
-<h3 data-number="44.1.2" class="anchored" data-anchor-id="方法2ggdca"><span class="header-section-number">44.1.2</span> 方法2:ggDCA</h3>
-<p>初学者最适合的方法了。对于同一个模型多个时间点、同一个时间点多个模型,都可以非常简单的画出来。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>1行代码解决:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_model,</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fl">1.5</span> <span class="co"># 1.5年,默认值是中位数</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df)</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 128 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个图也是可以美化的,具体还是参考上面的推文。这个图和我们用<code>stdca.r</code>画出来的图是一模一样的哈,只是图形的长宽比例和坐标轴的范围不同而已(<code>stdca.r</code>画出来的图还进行了平滑处理)。</p>
-<p>测试集也是1行代码解决:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_model,</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>                <span class="at">times =</span> <span class="fl">1.5</span>, <span class="co"># 1.5年,默认值是中位数</span></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">new.data =</span> test_df</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                )</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df)</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 184 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>红色的那条是测试集的,<code>validate</code>是训练集的,你如果不想要可以自己提取数据画图。</p>
-<p>是不是很easy呢?</p>
-</section>
-</section>
-<section id="分类数据测试集" class="level2" data-number="44.2">
-<h2 data-number="44.2" class="anchored" data-anchor-id="分类数据测试集"><span class="header-section-number">44.2</span> 分类数据测试集</h2>
-<p>这个数据集一共500行,6列,其中<code>Cancer</code>是结果变量,1代表患病,0代表没病,其余列是预测变量。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"dcaData"</span>,<span class="at">package =</span> <span class="st">"rmda"</span>)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>dcaData <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(dcaData)</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dcaData) <span class="co"># 500,6</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 500   6</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dcaData)</span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    500 obs. of  6 variables:</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age    : int  33 29 28 27 23 35 34 29 35 27 ...</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Female : num  1 1 1 0 1 1 1 1 1 1 ...</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Smokes : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker1: num  0.245 0.943 0.774 0.406 0.508 ...</span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker2: num  1.02108 -0.25576 0.33184 -0.00569 0.20753 ...</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Cancer : int  0 0 0 0 0 0 0 0 0 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>划分训练集测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(dcaData), <span class="fu">nrow</span>(dcaData)<span class="sc">*</span><span class="fl">0.7</span>)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> dcaData[train,]</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> dcaData[<span class="sc">-</span> train,]</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 350   6</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 150   6</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<section id="方法1dca.r" class="level3" data-number="44.2.1">
-<h3 data-number="44.2.1" class="anchored" data-anchor-id="方法1dca.r"><span class="header-section-number">44.2.1</span> 方法1:dca.r</h3>
-<p>训练集的DCA:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"./datasets/dca.r"</span>)</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2, </span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出概率</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>)</span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>train_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>    <span class="at">xstop=</span><span class="fl">0.35</span> <span class="co"># 控制x轴范围</span></span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>测试集的DCA:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出概率</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>, <span class="at">newdata =</span> test_df)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>test_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">xstop=</span><span class="fl">0.35</span> <span class="co"># 控制x轴范围</span></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="方法2ggdca-1" class="level3" data-number="44.2.2">
-<h3 data-number="44.2.2" class="anchored" data-anchor-id="方法2ggdca-1"><span class="header-section-number">44.2.2</span> 方法2:ggDCA</h3>
-<p>训练集的DCA:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2, </span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(model)</span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(aa)</span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 73 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>测试集的DCA:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(model,<span class="at">new.data=</span>test_df)</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(aa)</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 120 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="DCA测试集_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>红色的是测试集的DCA曲线,因为坐标范围问题,看起来不太好看,但是你可以自己提取数据重新画。这里就不演示了。</p>
-<p>后台回复<strong>决策曲线</strong>即可获取决策曲线推文合集;回复<strong>校准曲线</strong>即可获取校准曲线推文合集~</p>
-
-
-</section>
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./DCA彩色条带.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./校准曲线和决策曲线的概率.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-10-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-10-1.png"
deleted file mode 100644
index 8bd3231..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-10-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-11-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-11-1.png"
deleted file mode 100644
index 3d47610..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-11-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-12-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-12-1.png"
deleted file mode 100644
index 2c50e90..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-12-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-13-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-13-1.png"
deleted file mode 100644
index 3e8076f..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-13-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-3-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-3-1.png"
deleted file mode 100644
index 715a479..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-3-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-4-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-4-1.png"
deleted file mode 100644
index 979af14..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-4-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-6-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-6-1.png"
deleted file mode 100644
index 2060b91..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-6-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-7-1.png" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-7-1.png"
deleted file mode 100644
index 4e81923..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-html/unnamed-chunk-7-1.png" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-10-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-10-1.pdf"
deleted file mode 100644
index b5ca4ef..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-10-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-11-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-11-1.pdf"
deleted file mode 100644
index 5c957a9..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-11-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-12-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-12-1.pdf"
deleted file mode 100644
index 13a86ba..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-12-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-13-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-13-1.pdf"
deleted file mode 100644
index ebeb232..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-13-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-3-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-3-1.pdf"
deleted file mode 100644
index ad5d9b0..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-3-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-4-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-4-1.pdf"
deleted file mode 100644
index 9e2255f..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-4-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-6-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-6-1.pdf"
deleted file mode 100644
index 284bb60..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-6-1.pdf" and /dev/null differ
diff --git "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-7-1.pdf" "b/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-7-1.pdf"
deleted file mode 100644
index a42ac5c..0000000
Binary files "a/docs/DCA\346\265\213\350\257\225\351\233\206_files/figure-pdf/unnamed-chunk-7-1.pdf" and /dev/null differ
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207.html" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207.html"
new file mode 100644
index 0000000..0c82cfa
--- /dev/null
+++ "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207.html"
@@ -0,0 +1,1339 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>38&nbsp; bootstrap一切指标 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+/* CSS for syntax highlighting */
+pre > code.sourceCode { white-space: pre; position: relative; }
+pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span:empty { height: 1.2em; }
+.sourceCode { overflow: visible; }
+code.sourceCode > span { color: inherit; text-decoration: inherit; }
+div.sourceCode { margin: 1em 0; }
+pre.sourceCode { margin: 0; }
+@media screen {
+div.sourceCode { overflow: auto; }
+}
+@media print {
+pre > code.sourceCode { white-space: pre-wrap; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+}
+pre.numberSource code
+  { counter-reset: source-line 0; }
+pre.numberSource code > span
+  { position: relative; left: -4em; counter-increment: source-line; }
+pre.numberSource code > span > a:first-child::before
+  { content: counter(source-line);
+    position: relative; left: -1em; text-align: right; vertical-align: baseline;
+    border: none; display: inline-block;
+    -webkit-touch-callout: none; -webkit-user-select: none;
+    -khtml-user-select: none; -moz-user-select: none;
+    -ms-user-select: none; user-select: none;
+    padding: 0 4px; width: 4em;
+  }
+pre.numberSource { margin-left: 3em;  padding-left: 4px; }
+div.sourceCode
+  {   }
+@media screen {
+pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./多模型比较.html" rel="next">
+<link href="./DCA彩色条带.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./bootstrap一切指标.html"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">38.1</span> 加载数据和R包</a></li>
+  <li><a href="#数据划分和模型选择" id="toc-数据划分和模型选择" class="nav-link" data-scroll-target="#数据划分和模型选择"><span class="header-section-number">38.2</span> 数据划分和模型选择</a></li>
+  <li><a href="#内部重抽样和建模" id="toc-内部重抽样和建模" class="nav-link" data-scroll-target="#内部重抽样和建模"><span class="header-section-number">38.3</span> 内部重抽样和建模</a></li>
+  <li><a href="#查看结果" id="toc-查看结果" class="nav-link" data-scroll-target="#查看结果"><span class="header-section-number">38.4</span> 查看结果</a></li>
+  <li><a href="#bootstrap分位数法" id="toc-bootstrap分位数法" class="nav-link" data-scroll-target="#bootstrap分位数法"><span class="header-section-number">38.5</span> bootstrap分位数法</a></li>
+  <li><a href="#bootstrap各种曲线" id="toc-bootstrap各种曲线" class="nav-link" data-scroll-target="#bootstrap各种曲线"><span class="header-section-number">38.6</span> bootstrap各种曲线</a></li>
+  <li><a href="#更通用的方法" id="toc-更通用的方法" class="nav-link" data-scroll-target="#更通用的方法"><span class="header-section-number">38.7</span> 更通用的方法</a></li>
+  <li><a href="#外部验证集的置信区间" id="toc-外部验证集的置信区间" class="nav-link" data-scroll-target="#外部验证集的置信区间"><span class="header-section-number">38.8</span> 外部验证集的置信区间</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./bootstrap一切指标.html"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>下面给大家演示如何用<code>tidymodels</code>实现bootstrap任意指标,这样你就可以获得任意指标的bootstrap置信区间,对于一些图形,比如ROC曲线,还可以顺便获得bootstrap-ROC曲线。</p>
+<p>这个方法是通用的方法,主要有以下优点:</p>
+<ul>
+<li>适用于一切模型(tidymodels支持的模型),不只是线性回归、逻辑回归;</li>
+<li>适用于一切指标(tidymodels支持的模型);</li>
+<li>与内部重抽样的方法无关,即使不是bootstrap法,也能计算bootstrap法的置信区间</li>
+</ul>
+<p>下面就以随机森林模型为例,实现各种指标的bootstrap!</p>
+<section id="加载数据和r包" class="level2" data-number="38.1">
+<h2 data-number="38.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">38.1</span> 加载数据和R包</h2>
+<p>演示数据为印第安人糖尿病数据集,这个数据一共有768行,9列,其中<code>diabetes</code>是结果变量,为二分类,其余列是预测变量。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"datasets/pimadiabetes.rdata"</span>)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(pimadiabetes)</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 768   9</span></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(pimadiabetes)</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    768 obs. of  9 variables:</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pregnant: num  6 1 8 1 0 5 3 10 2 8 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ glucose : num  148 85 183 89 137 116 78 115 197 125 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pressure: num  72 66 64 66 40 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ triceps : num  35 29 22.9 23 35 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ insulin : num  202.2 64.6 217.1 94 168 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ mass    : num  33.6 26.6 23.3 28.1 43.1 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pedigree: num  0.627 0.351 0.672 0.167 2.288 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  50 31 32 21 33 30 26 29 53 54 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ diabetes: Factor w/ 2 levels "pos","neg": 2 1 2 1 2 1 2 1 2 2 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>各个变量的含义:</p>
+<ul>
+<li><code>pregnant</code>:怀孕次数</li>
+<li><code>glucose</code>:血浆葡萄糖浓度(葡萄糖耐量试验)</li>
+<li><code>pressure</code>:舒张压(毫米汞柱)</li>
+<li><code>triceps</code>:三头肌皮褶厚度(mm)</li>
+<li><code>insulin</code>:2小时血清胰岛素(mu U/ml)</li>
+<li><code>mass</code>:BMI</li>
+<li><code>pedigree</code>:糖尿病谱系功能,是一种用于预测糖尿病发病风险的指标,该指标是基于家族史的糖尿病遗传风险因素的计算得出的。它计算了患者的家族成员是否患有糖尿病以及他们与患者的亲缘关系,从而得出一个综合评分,用于预测患糖尿病的概率。</li>
+<li><code>age</code>:年龄</li>
+<li><code>diabetes</code>:是否有糖尿病</li>
+</ul>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidymodels)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="数据划分和模型选择" class="level2" data-number="38.2">
+<h2 data-number="38.2" class="anchored" data-anchor-id="数据划分和模型选择"><span class="header-section-number">38.2</span> 数据划分和模型选择</h2>
+<p>划分训练集、测试集。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>split <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(pimadiabetes, <span class="at">prop =</span> <span class="fl">0.7</span>, <span class="at">strata =</span> diabetes)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">training</span>(split)</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>test <span class="ot">&lt;-</span> <span class="fu">testing</span>(split)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train)</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 537   9</span></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test)</span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 231   9</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>模型选择随机森林模型,如果你想用其他模型,就换其他模型就好了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>rf_spec <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">engine =</span> <span class="st">"ranger"</span>,<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">trees =</span> <span class="dv">200</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>下面就是建立工作流:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>rf_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(diabetes <span class="sc">~</span> ., <span class="at">data =</span> pimadiabetes)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>rf_wf <span class="ot">&lt;-</span> <span class="fu">workflow</span>(<span class="at">preprocessor =</span> rf_rec, <span class="at">spec =</span> rf_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="内部重抽样和建模" class="level2" data-number="38.3">
+<h2 data-number="38.3" class="anchored" data-anchor-id="内部重抽样和建模"><span class="header-section-number">38.3</span> 内部重抽样和建模</h2>
+<p>选择内部重抽样方法,这里就选大家最常问的bootstrap法,bootstrap的次数为1000次!</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1223</span>)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>resampling <span class="ot">&lt;-</span> <span class="fu">bootstraps</span>(train, <span class="at">times =</span> <span class="dv">1000</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>建立模型,评价指标把能选的都选上,主打一个大而全:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>ctrl <span class="ot">&lt;-</span> <span class="fu">control_resamples</span>(<span class="at">verbose =</span> F, <span class="at">save_pred =</span> T)</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">fit_resamples</span>(rf_wf,</span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">resamples =</span> resampling,</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                     <span class="co"># 常见的指标都选上!</span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">metrics =</span> <span class="fu">metric_set</span>(roc_auc, sens, spec, mcc, f_meas, </span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>                                          j_index, brier_class, precision,</span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>                                          accuracy, pr_auc, mn_log_loss,</span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>                                          brier_class),</span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>                     <span class="at">control =</span> ctrl)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>由于版本不同,有些人复制粘贴这段代码可能会报错,没关系,看下帮助文档即可(或者直接不写metrics这个参数,它有默认值的),小问题!</p>
+</section>
+<section id="查看结果" class="level2" data-number="38.4">
+<h2 data-number="38.4" class="anchored" data-anchor-id="查看结果"><span class="header-section-number">38.4</span> 查看结果</h2>
+<p>查看各个指标的结果:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(res)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 11 × 6</span></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##    .metric     .estimator  mean     n  std_err .config             </span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;chr&gt;       &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;    &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 accuracy    binary     0.762  1000 0.000778 Preprocessor1_Model1</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 brier_class binary     0.154  2000 0.000258 Preprocessor1_Model1</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 f_meas      binary     0.821  1000 0.000654 Preprocessor1_Model1</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 j_index     binary     0.459  1000 0.00181  Preprocessor1_Model1</span></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 mcc         binary     0.469  1000 0.00169  Preprocessor1_Model1</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 mn_log_loss binary     0.463  1000 0.000944 Preprocessor1_Model1</span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 pr_auc      binary     0.914  1000 0.000518 Preprocessor1_Model1</span></span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 precision   binary     0.805  1000 0.00109  Preprocessor1_Model1</span></span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 roc_auc     binary     0.843  1000 0.000702 Preprocessor1_Model1</span></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 sens        binary     0.841  1000 0.00116  Preprocessor1_Model1</span></span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 spec        binary     0.618  1000 0.00208  Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这个就是内部重抽样(重抽样方法选择的是1000次的bootstrap)得到的各种指标。</p>
+<p>通过统计学中学过的点估计和区间估计法计算<strong>置信区间</strong>:置信区间=均值±z*标准误</p>
+<p>95%置信区间是的z=1.96,是不是很熟悉的数字?</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算95%的置信区间</span></span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(res) <span class="sc">%&gt;%</span> </span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">select</span>(<span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">3</span>,<span class="dv">5</span>)) <span class="sc">%&gt;%</span> </span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">lower =</span> mean <span class="sc">-</span> <span class="fl">1.96</span><span class="sc">*</span>std_err,</span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>         <span class="at">upper =</span> mean <span class="sc">+</span> <span class="fl">1.96</span><span class="sc">*</span>std_err)</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 11 × 5</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    .metric      mean  std_err lower upper</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;chr&gt;       &lt;dbl&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 accuracy    0.762 0.000778 0.761 0.764</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 brier_class 0.154 0.000258 0.154 0.155</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 f_meas      0.821 0.000654 0.820 0.823</span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 j_index     0.459 0.00181  0.455 0.462</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 mcc         0.469 0.00169  0.466 0.473</span></span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 mn_log_loss 0.463 0.000944 0.461 0.465</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 pr_auc      0.914 0.000518 0.913 0.915</span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 precision   0.805 0.00109  0.803 0.807</span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 roc_auc     0.843 0.000702 0.842 0.845</span></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 sens        0.841 0.00116  0.839 0.843</span></span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 spec        0.618 0.00208  0.614 0.622</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>但是使用这种方法计算置信区间说明“你默认这个数据是符合t分布的”,但实际上很多数据是不符合的,但是也没关系,这个方法也是正确的。</p>
+</section>
+<section id="bootstrap分位数法" class="level2" data-number="38.5">
+<h2 data-number="38.5" class="anchored" data-anchor-id="bootstrap分位数法"><span class="header-section-number">38.5</span> bootstrap分位数法</h2>
+<p>由于我们选择了1000次的bootstrap法,所以对于每个指标,都会得到1000个值,上面的计算置信区间的方法就是默认:对于每个指标的1000个值,符合t分布。</p>
+<p>除此之外,我们还可以使用分位数法计算每个指标的95%置信区间。比如对于AUC这个指标,我们先提取出这1000个值,然后给大家画个图看看它们的分布:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>res2 <span class="ot">&lt;-</span> <span class="fu">collect_metrics</span>(res, <span class="at">summarize =</span> F) <span class="co"># 获取每个指标的1000个值</span></span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>res2 <span class="sc">%&gt;%</span> <span class="fu">filter</span>(.metric <span class="sc">==</span> <span class="st">"roc_auc"</span>) <span class="sc">%&gt;%</span> <span class="co"># 只选择auc这个指标</span></span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> .estimate))<span class="sc">+</span> <span class="co"># 画个图看看分布</span></span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_histogram</span>(<span class="at">fill=</span><span class="st">"grey"</span>,<span class="at">color=</span><span class="st">"blue"</span>)<span class="sc">+</span></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"AUC"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="bootstrap一切指标_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>上面这个图就是1000个AUC的分布,我们可以基于这1000个值,计算它的2.5%和97.5%分位数,这样就得到AUC的95%置信区间了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>ci_95 <span class="ot">&lt;-</span> res2 <span class="sc">%&gt;%</span> <span class="fu">filter</span>(.metric <span class="sc">==</span> <span class="st">"roc_auc"</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pull</span>(.estimate) <span class="sc">%&gt;%</span> </span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">quantile</span>(<span class="at">probs =</span> <span class="fu">c</span>(<span class="fl">0.025</span>,<span class="fl">0.975</span>))</span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>ci_95</span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">##      2.5%     97.5% </span></span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.7993783 0.8877514</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>分位数法是最常见的计算置信区间的方法。我们把置信区间画在图中:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>res2 <span class="sc">%&gt;%</span> <span class="fu">filter</span>(.metric <span class="sc">==</span> <span class="st">"roc_auc"</span>) <span class="sc">%&gt;%</span> <span class="co"># 只选择auc这个指标</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> .estimate))<span class="sc">+</span> <span class="co"># 画个图看看分布</span></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_histogram</span>(<span class="at">fill=</span><span class="st">"grey"</span>,<span class="at">color=</span><span class="st">"blue"</span>)<span class="sc">+</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_vline</span>(<span class="at">xintercept =</span> ci_95,<span class="at">color=</span><span class="st">"red"</span>)<span class="sc">+</span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"AUC"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="bootstrap一切指标_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>通过同样的方法就可以很方便的计算出所有指标的置信区间了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>ci_95_all <span class="ot">&lt;-</span> res2 <span class="sc">%&gt;%</span> <span class="fu">group_nest</span>(.metric) <span class="sc">%&gt;%</span> </span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">me =</span> <span class="fu">map</span>(data, <span class="sc">~</span> <span class="fu">pull</span>(.x, .estimate)),</span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>         <span class="at">ci95 =</span> <span class="fu">map_df</span>(me, quantile, <span class="at">probs=</span><span class="fu">c</span>(<span class="fl">0.025</span>,<span class="fl">0.975</span>))</span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">select</span>(.metric, ci95) <span class="sc">%&gt;%</span> </span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">unnest</span>(ci95)</span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>ci_95_all</span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 11 × 3</span></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">##    .metric     `2.5%` `97.5%`</span></span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;chr&gt;        &lt;dbl&gt;   &lt;dbl&gt;</span></span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 accuracy     0.712   0.812</span></span>
+<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 brier_class  0.132   0.177</span></span>
+<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 f_meas       0.780   0.862</span></span>
+<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 j_index      0.344   0.567</span></span>
+<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 mcc          0.363   0.575</span></span>
+<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 mn_log_loss  0.407   0.522</span></span>
+<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 pr_auc       0.879   0.946</span></span>
+<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 precision    0.734   0.868</span></span>
+<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 roc_auc      0.799   0.888</span></span>
+<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 sens         0.766   0.913</span></span>
+<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 spec         0.492   0.742</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这种方法非常正宗,得到的结果绝对可靠而且易于解释和理解。</p>
+</section>
+<section id="bootstrap各种曲线" class="level2" data-number="38.6">
+<h2 data-number="38.6" class="anchored" data-anchor-id="bootstrap各种曲线"><span class="header-section-number">38.6</span> bootstrap各种曲线</h2>
+<p>顺便再画个bootstrap-ROC曲线在,真的是像探囊取物一般简单!</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(res) <span class="sc">%&gt;%</span> </span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#filter(id == "Bootstrap002") %&gt;% </span></span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(id) <span class="sc">%&gt;%</span> </span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">roc_curve</span>(<span class="at">truth =</span> diabetes, .pred_pos) <span class="sc">%&gt;%</span> </span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="dv">1</span><span class="sc">-</span>specificity, sensitivity))<span class="sc">+</span></span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">alpha=</span><span class="fl">0.2</span>,<span class="fu">aes</span>(<span class="at">group=</span>id))<span class="sc">+</span></span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">linetype=</span><span class="dv">2</span>)<span class="sc">+</span></span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_fixed</span>()<span class="sc">+</span></span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="bootstrap一切指标_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>顺手再来个1000次bootstrap的PR曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(res) <span class="sc">%&gt;%</span> </span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#filter(id == "Bootstrap002") %&gt;% </span></span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(id) <span class="sc">%&gt;%</span> </span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pr_curve</span>(<span class="at">truth =</span> diabetes, .pred_pos) <span class="sc">%&gt;%</span> </span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(recall, precision))<span class="sc">+</span></span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">alpha=</span><span class="fl">0.2</span>,<span class="fu">aes</span>(<span class="at">group=</span>id))<span class="sc">+</span></span>
+<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">linetype=</span><span class="dv">2</span>)<span class="sc">+</span></span>
+<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_fixed</span>()<span class="sc">+</span></span>
+<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="bootstrap一切指标_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>你还想要lift-curve和gain-curve吗?我就不再重复了,因为太简单了!</p>
+<p>顺手再画个校准曲线,也是1行代码搞定:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(probably)</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 带95%置信区间的校准曲线,这个不是bootstrap法</span></span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="fu">cal_plot_breaks</span>(res,<span class="at">conf_level =</span> <span class="fl">0.95</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="bootstrap一切指标_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>这些指标和各种曲线,都是内部验证集的,且都使用了1000次bootstrap的内部重抽样方法,是不是非常easy呢?</p>
+</section>
+<section id="更通用的方法" class="level2" data-number="38.7">
+<h2 data-number="38.7" class="anchored" data-anchor-id="更通用的方法"><span class="header-section-number">38.7</span> 更通用的方法</h2>
+<p>但是如果我们一开始采用的重抽样方法是交叉验证法或者单个验证集法,没有使用bootstrap法,那么这种方法就不能用了。</p>
+<p>所以这里会给大家介绍一种更为通用的方法,用于计算bootstrap法的置信区间,你即使没有使用bootstrap法进行内部重抽样,依然可以计算出bootstrap的置信区间。</p>
+<p>我们可以直接使用<code>int_pctl()</code>函数计算bootstrap分位数法的置信区间:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 通过bootstrap分位数法计算置信区间</span></span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>res_boot <span class="ot">&lt;-</span> <span class="fu">int_pctl</span>(res, <span class="at">alpha =</span> <span class="fl">0.05</span>, <span class="at">times =</span> <span class="dv">1000</span>)</span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>res_boot</span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 11 × 6</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a><span class="do">##    .metric     .estimator .lower .estimate .upper .config             </span></span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 accuracy    bootstrap   0.728     0.767  0.803 Preprocessor1_Model1</span></span>
+<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 brier_class bootstrap   0.133     0.148  0.165 Preprocessor1_Model1</span></span>
+<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 f_meas      bootstrap   0.790     0.826  0.854 Preprocessor1_Model1</span></span>
+<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 j_index     bootstrap   0.379     0.463  0.540 Preprocessor1_Model1</span></span>
+<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 mcc         bootstrap   0.394     0.476  0.553 Preprocessor1_Model1</span></span>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 mn_log_loss bootstrap   0.411     0.448  0.490 Preprocessor1_Model1</span></span>
+<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 pr_auc      bootstrap   0.894     0.919  0.940 Preprocessor1_Model1</span></span>
+<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 precision   bootstrap   0.760     0.804  0.844 Preprocessor1_Model1</span></span>
+<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 roc_auc     bootstrap   0.820     0.853  0.883 Preprocessor1_Model1</span></span>
+<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 sens        bootstrap   0.813     0.849  0.886 Preprocessor1_Model1</span></span>
+<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 spec        bootstrap   0.541     0.614  0.682 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这样就直接得到了所有指标的95%置信区间(<code>.lower</code>和<code>.upper</code>),虽然结果和上面计算的不太一样(计算过程不一样),但是都是对的,而且也是bootstrap分位数法。</p>
+<p>就像我们上面说的,如果你一开始采用的内部重抽样方法不是bootstrap法,这种方法依然适用。</p>
+<p>比如我们使用5折交叉验证法:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 5折交叉验证法</span></span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>res_fold <span class="ot">&lt;-</span> <span class="fu">fit_resamples</span>(rf_wf,</span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">resamples =</span> <span class="fu">vfold_cv</span>(train,<span class="dv">5</span>),</span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>                     <span class="co">#metrics = "roc_auc",</span></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>                     <span class="at">control =</span> ctrl)</span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 依然适用</span></span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>bootresfold <span class="ot">&lt;-</span> <span class="fu">int_pctl</span>(res_fold, <span class="at">times =</span> <span class="dv">1000</span>,<span class="at">alpha =</span> <span class="fl">0.05</span>)</span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a>bootresfold</span>
+<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 3 × 6</span></span>
+<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .lower .estimate .upper .config             </span></span>
+<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy    bootstrap   0.723     0.761  0.797 Preprocessor1_Model1</span></span>
+<span id="cb18-15"><a href="#cb18-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 brier_class bootstrap   0.137     0.153  0.171 Preprocessor1_Model1</span></span>
+<span id="cb18-16"><a href="#cb18-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 roc_auc     bootstrap   0.810     0.843  0.875 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>结果也给出了3个指标各自的95%置信区间!</p>
+</section>
+<section id="外部验证集的置信区间" class="level2" data-number="38.8">
+<h2 data-number="38.8" class="anchored" data-anchor-id="外部验证集的置信区间"><span class="header-section-number">38.8</span> 外部验证集的置信区间</h2>
+<p>如果你想获得外部验证集的bootstrap法置信区间,也是非常简单,<code>tidymodels</code>的作者作为生物统计专业的博士,早就为我们想好了。</p>
+<p>首先是按照平常的步骤获取测试集(也就是外部验证集,也就是拟合模型时没用过的数据集)的性能指标:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 在训练集建模,在测试集(即外部验证集)预测</span></span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>test_res <span class="ot">&lt;-</span> rf_wf <span class="sc">%&gt;%</span> </span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">last_fit</span>(split)</span>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取测试集(即外部验证集)的性能指标</span></span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(test_res)</span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 3 × 4</span></span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .estimate .config             </span></span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy    binary         0.771 Preprocessor1_Model1</span></span>
+<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc     binary         0.842 Preprocessor1_Model1</span></span>
+<span id="cb19-12"><a href="#cb19-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 brier_class binary         0.155 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>对于这个结果,<code>int_pctl()</code>函数依然适用:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="fu">int_pctl</span>(test_res, <span class="at">alpha =</span> <span class="fl">0.05</span>, <span class="at">times =</span> <span class="dv">1000</span>)</span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 3 × 6</span></span>
+<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .lower .estimate .upper .config             </span></span>
+<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy    bootstrap   0.719     0.772  0.831 Preprocessor1_Model1</span></span>
+<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 brier_class bootstrap   0.129     0.154  0.181 Preprocessor1_Model1</span></span>
+<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 roc_auc     bootstrap   0.786     0.843  0.896 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>搞定,大功告成!</p>
+<blockquote class="blockquote">
+<p>数据如何获取?老规矩,粉丝qq群文件自取。</p>
+</blockquote>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./DCA彩色条带.html" class="pagination-link" aria-label="决策曲线添加彩色条带">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./多模型比较.html" class="pagination-link" aria-label="多模型比较">
+        <span class="nav-page-text">多模型比较</span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-10-1.png" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-10-1.png"
new file mode 100644
index 0000000..f300540
Binary files /dev/null and "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-10-1.png" differ
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-13-1.png" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-13-1.png"
new file mode 100644
index 0000000..27c094f
Binary files /dev/null and "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-13-1.png" differ
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-15-1.png" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-15-1.png"
new file mode 100644
index 0000000..e6e52c4
Binary files /dev/null and "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-15-1.png" differ
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-16-1.png" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-16-1.png"
new file mode 100644
index 0000000..eea7ea0
Binary files /dev/null and "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-16-1.png" differ
diff --git "a/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-17-1.png" "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-17-1.png"
new file mode 100644
index 0000000..f7bbe88
Binary files /dev/null and "b/docs/bootstrap\344\270\200\345\210\207\346\214\207\346\240\207_files/figure-html/unnamed-chunk-17-1.png" differ
diff --git a/docs/calibration-cox-test.html b/docs/calibration-cox-test.html
deleted file mode 100644
index 8297ac6..0000000
--- a/docs/calibration-cox-test.html
+++ /dev/null
@@ -1,1131 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 34&nbsp; Cox回归测试集校准曲线绘制</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./calibration-tidymodels-man.html" rel="next">
-<link href="./calibration-cox.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-cox-test.html"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#加载数据" id="toc-加载数据" class="nav-link active" data-scroll-target="#加载数据"><span class="header-section-number">34.1</span> 加载数据</a></li>
-  <li><a href="#数据分割" id="toc-数据分割" class="nav-link" data-scroll-target="#数据分割"><span class="header-section-number">34.2</span> 数据分割</a></li>
-  <li><a href="#方法1riskregression" id="toc-方法1riskregression" class="nav-link" data-scroll-target="#方法1riskregression"><span class="header-section-number">34.3</span> 方法1:riskRegression</a></li>
-  <li><a href="#方法2rms" id="toc-方法2rms" class="nav-link" data-scroll-target="#方法2rms"><span class="header-section-number">34.4</span> 方法2:rms</a></li>
-  <li><a href="#方法3" id="toc-方法3" class="nav-link" data-scroll-target="#方法3"><span class="header-section-number">34.5</span> 方法3</a>
-  <ul class="collapse">
-  <li><a href="#训练集的校准曲线" id="toc-训练集的校准曲线" class="nav-link" data-scroll-target="#训练集的校准曲线"><span class="header-section-number">34.5.1</span> 训练集的校准曲线</a></li>
-  <li><a href="#测试集的校准曲线" id="toc-测试集的校准曲线" class="nav-link" data-scroll-target="#测试集的校准曲线"><span class="header-section-number">34.5.2</span> 测试集的校准曲线</a></li>
-  </ul></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>之前给大家介绍了<strong>逻辑回归(logistic)测试集的校准曲线画法,给大家介绍了6种方法!</strong></p>
-<p>不过Cox回归测试集的校准曲线就没有那么简单了。</p>
-<p>目前最简单的COX回归测试集的实现方法是通过<code>riskRegression</code>包。</p>
-<p>使用<code>survival</code>包的自带的<code>lung</code>数据集做演示。</p>
-<section id="加载数据" class="level2" data-number="34.1">
-<h2 data-number="34.1" class="anchored" data-anchor-id="加载数据"><span class="header-section-number">34.1</span> 加载数据</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>lung<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(lung<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>lung <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(lung)</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 167  10</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    167 obs. of  10 variables:</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 5 12 7 11 1 7 6 12 22 ...</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  455 210 1022 310 361 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  1 1 0 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  68 57 74 68 71 53 61 57 57 70 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 2 2 1 1 1 1 1 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  0 1 1 2 2 1 2 1 1 1 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 50 70 60 70 70 80 80 90 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  90 60 80 60 80 80 70 80 70 100 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1225 1150 513 384 538 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  15 11 0 10 1 16 34 27 60 -5 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "na.action")= 'omit' Named int [1:61] 1 3 5 12 13 14 16 20 23 25 ...</span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##   ..- attr(*, "names")= chr [1:61] "1" "3" "5" "12" ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据分割" class="level2" data-number="34.2">
-<h2 data-number="34.2" class="anchored" data-anchor-id="数据分割"><span class="header-section-number">34.2</span> 数据分割</h2>
-<p>把数据随机划分为训练集、测试集,划分比例为7:3</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lung),<span class="fu">nrow</span>(lung)<span class="sc">*</span><span class="fl">0.7</span>)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lung[ind,]</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lung[<span class="sc">-</span> ind, ]</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 116  10</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 51 10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="方法1riskregression" class="level2" data-number="34.3">
-<h2 data-number="34.3" class="anchored" data-anchor-id="方法1riskregression"><span class="header-section-number">34.3</span> 方法1:riskRegression</h2>
-<p>使用<code>riskRegression</code>轻松实现,训练集的校准曲线就不画了,直接画测试集的校准曲线。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## riskRegression version 2023.09.08</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 在训练集建立模型</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>coxph_fit <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df,</span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 画出测试集的校准曲线</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>cox_fit_t <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit1"</span> <span class="ot">=</span> coxph_fit),</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> <span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="dv">1</span>,</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> test_df, <span class="co"># 这里写测试集即可</span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>, <span class="co"># 重抽样500次</span></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span>,</span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">100</span>) <span class="co"># 时间</span></span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图即可</span></span>
-<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(cox_fit_t,</span>
-<span id="cb3-25"><a href="#cb3-25" aria-hidden="true" tabindex="-1"></a>                <span class="at">cens.method=</span><span class="st">"local"</span>,</span>
-<span id="cb3-26"><a href="#cb3-26" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
-<span id="cb3-27"><a href="#cb3-27" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-cox-test_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个就是测试集的校准曲线了,非常简单,而且<strong>支持返回数据自己用<code>ggplot2</code>画,你想要的样子它都可以有!</strong>可参考推文:<a href="https://mp.weixin.qq.com/s/fOrzwh4bVhQxuur3aGU3Xg">生存资料校准曲线的绘制</a></p>
-</section>
-<section id="方法2rms" class="level2" data-number="34.4">
-<h2 data-number="34.4" class="anchored" data-anchor-id="方法2rms"><span class="header-section-number">34.4</span> 方法2:rms</h2>
-<p>回归建模神包<code>rms</code>当然也是支持COX回归测试集校准曲线的,不过隐藏的比较深。</p>
-<p>在上次介绍<code>logistic</code>回归测试集的校准曲线时,我们介绍过<code>val.prob</code>函数,这里给大家介绍下<code>val.surv</code>函数。</p>
-<p>首先还是要使用使用<code>cph</code>函数建立cox回归模型,这里我们指定时间为100天:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(rms))</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 一定要记得打包数据</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(train_df)</span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="fu">units</span>(train_df<span class="sc">$</span>time) <span class="ot">&lt;-</span> <span class="st">"days"</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>cph_fit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> train_df,</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">x =</span> T, <span class="at">y =</span> T,</span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">time.inc =</span> <span class="dv">100</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>               )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后计算模型在测试集中的各种指标:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>v <span class="ot">&lt;-</span> <span class="fu">val.surv</span>(<span class="at">fit=</span> cph_fit, <span class="co"># 模型</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>         <span class="at">newdata =</span> test_df, <span class="co"># 测试集</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>         <span class="at">u=</span><span class="dv">100</span>, <span class="co"># 时间</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>         <span class="co">#evaluate = 10,</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>         <span class="at">S=</span><span class="fu">Surv</span>(test_df<span class="sc">$</span>time,test_df<span class="sc">$</span>status) <span class="co"># 测试集的生存对象</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>         )</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>v</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Validation of Predicted Survival at Time= 100    n= 51 , events= 40 </span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## hare fit:</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## dim A/D   loglik       AIC        penalty </span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##                                 min    max </span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">##   1 Add   -284.61    573.15   11.98     Inf</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">##   2 Add   -278.62    565.11    7.05   11.98</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##   3 Add   -275.81    563.41      NA      NA</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">##   4 Add   -271.57    558.87    3.15    7.05</span></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">##   5 Add   -270.00    559.65    0.00    3.15</span></span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">## the present optimal number of dimensions is 4.</span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">## penalty(AIC) was the default: BIC=log(samplesize): log(51)=3.93</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a><span class="do">##   dim1           dim2           beta        SE         Wald</span></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Constant                            -5.6          1   -5.65</span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Time   3.6e+02                      0.01     0.0052    1.95</span></span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Co-1  linear                      -0.091       0.52   -0.17</span></span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a><span class="do">## Time   3.6e+02 Co-1  linear       0.0094     0.0033    2.89</span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Function used to transform predictions:</span></span>
-<span id="cb5-31"><a href="#cb5-31" aria-hidden="true" tabindex="-1"></a><span class="do">## function (p)  log(-log(p))</span></span>
-<span id="cb5-32"><a href="#cb5-32" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-33"><a href="#cb5-33" aria-hidden="true" tabindex="-1"></a><span class="do">## Mean absolute error in predicted probabilities: 0.0894 </span></span>
-<span id="cb5-34"><a href="#cb5-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9 Quantile of absolute errors               : 0.1025</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>之后通过调用<code>plot</code>实现测试集的校准曲线,可以看到这个校准曲线并不是通过分箱的方法获得的,这里使用了一种<code>hare</code>方法(通过polspline包实现,感兴趣的可以自己看看),且在测试集中没得选,只能用这种方法(训练集的校准曲线可通过method参数选择)。</p>
-<p>但是这里也要注意,仔细阅读<code>Regression Modeling Strategies</code> 就会发现,<code>val.surv</code>计算的是外部验证集的各种指标,画出来的图也是外部验证集的,这一点在<a href="https://mp.weixin.qq.com/s/skhm7FGlb7EhYY3x5Z8rSg">logistic回归测试集校准曲线的6种实现方法</a> 中也说过。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(v, </span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">scat1d.opts=</span><span class="fu">list</span>(<span class="at">nhistSpike=</span><span class="dv">200</span>, <span class="at">side=</span><span class="dv">3</span>)</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>     )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-cox-test_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这里由于数据集样本量太少,结果并不好看,大家可以使用自己的数据(样本量尽量大一点)尝试一下。</p>
-<p><strong>2种方法,我还是比较推荐<code>riskRegression</code>,因为简单又强大。</strong></p>
-<p>但是很明显这种简单又好用的方法反而是在文献中出现的比较少的!</p>
-<p>大家经常读文献就会发现这种COX回归测试集的校准曲线↓:</p>
-<p><img src="figs/Snipaste_2023-04-01_19-26-12.png" class="img-fluid"></p>
-<p>目前好像并没有包可以直接实现,不过也不是什么难题,下次介绍。</p>
-</section>
-<section id="方法3" class="level2" data-number="34.5">
-<h2 data-number="34.5" class="anchored" data-anchor-id="方法3"><span class="header-section-number">34.5</span> 方法3</h2>
-<p>首先把数据集划分为训练集、测试集,然后在训练集建立cox模型</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>lung<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(lung<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>lung <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(lung)</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lung),<span class="fu">nrow</span>(lung)<span class="sc">*</span><span class="fl">0.7</span>)</span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lung[ind,]</span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lung[<span class="sc">-</span> ind, ]</span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 在训练集建立cox模型</span></span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>coxph_fit <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog,</span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df,</span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> T, <span class="at">y =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<section id="训练集的校准曲线" class="level3" data-number="34.5.1">
-<h3 data-number="34.5.1" class="anchored" data-anchor-id="训练集的校准曲线"><span class="header-section-number">34.5.1</span> 训练集的校准曲线</h3>
-<p><strong>对于生存分析来说,校准曲线的横纵坐标分别是模型预测的生存概率(predicted survival probability)和K-M法估计的生存概率(也可以称为Observed survival probability)</strong>,其中模型预测的生存概率是模型算出来的(生存分析一般是根据COX算出来的),K-M法估计的生存概率则是根据乘积极限法(K-M法)计算的。</p>
-<p>模型计算的生存概率很简单可以得到,比如训练集100天的校准曲线,首先计算cox模型预测的100天的生存概率:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 模型预测的概率</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>train_p <span class="ot">&lt;-</span> <span class="fu">c</span>((<span class="fu">summary</span>(<span class="fu">survfit</span>(coxph_fit, <span class="at">newdata=</span>train_df), <span class="at">times=</span><span class="dv">100</span>)<span class="sc">$</span>surv))</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(train_p)</span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.6958190 0.9347173 0.8681793 0.7350013 0.8694693 0.8213824</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>以上是通过模型计算出的生存概率,为了画出校准曲线,我们还需要真实的生存概率,怎么计算?通过K-M法。</p>
-<p>如何通过K-M法计算真实的生存概率?</p>
-<p>首先,分组。根据什么东西分组?就根据我们通过模型计算的概率分组。</p>
-<p>为了保证每组都有人,我们就分为4组(可以多试几次):</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 根据这几个点进行切分</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>cuts <span class="ot">&lt;-</span> <span class="fu">unique</span>(<span class="fu">quantile</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, train_p), <span class="fu">seq</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="at">length =</span> <span class="dv">5</span>), <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>cuts</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.0000000 0.8097154 0.8526484 0.8892975 1.0000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后计算K-M法估计的生存概率:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(rms))</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>km_surv <span class="ot">&lt;-</span> <span class="fu">groupkm</span>(train_p,</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>                   <span class="at">Srv =</span> <span class="fu">Surv</span>(train_df<span class="sc">$</span>time,train_df<span class="sc">$</span>status),</span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>                   <span class="at">u =</span> <span class="dv">100</span>,</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>                   <span class="at">cuts =</span> cuts)</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>km_surv</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="do">##              x  n events        KM    std.err</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 0.7597781 28     24 0.7500000 0.10910895</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.8291634 29     20 0.8620690 0.07427814</span></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.8695150 30     23 0.8333333 0.08164966</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.9131132 29     13 0.9310345 0.05053987</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>其中<code>x</code>就是模型预测的概率,<code>KM</code>是K-M法估计的真实概率,所以就可以画图了:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(km_surv[,<span class="dv">1</span>], km_surv[,<span class="dv">4</span>],<span class="at">xlim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(km_surv[,<span class="dv">1</span>], km_surv[,<span class="dv">4</span>])</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-cox-test_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>上面这个图比较简陋,下面进行美化。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(km_surv[,<span class="dv">1</span>], km_surv[,<span class="dv">4</span>],</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">'Predicted 100-day Survival Probability'</span>,</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">'Observed 100-day Survival Probability'</span></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>     )</span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(km_surv[,<span class="dv">1</span>], km_surv[,<span class="dv">4</span>])</span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算误差线范围</span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>errl <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(km_surv[,<span class="st">"KM"</span>] <span class="sc">==</span> <span class="dv">0</span>, <span class="dv">0</span>,  </span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>               km_surv[,<span class="st">"KM"</span>] <span class="sc">*</span> <span class="fu">exp</span>(<span class="fl">1.959964</span> <span class="sc">*</span> (<span class="sc">-</span>km_surv[,<span class="st">"std.err"</span>])))</span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>errh <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(km_surv[,<span class="st">"KM"</span>] <span class="sc">==</span> <span class="dv">0</span>, <span class="dv">0</span>, </span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>               <span class="fu">pmin</span>(<span class="dv">1</span>, km_surv[,<span class="st">"KM"</span>] <span class="sc">*</span> <span class="fu">exp</span>(<span class="fl">1.959964</span> <span class="sc">*</span> km_surv[,<span class="st">"std.err"</span>])))</span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加误差线</span></span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="fu">errbar</span>(<span class="at">x =</span> km_surv[,<span class="st">"x"</span>],</span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">y =</span> km_surv[,<span class="st">"KM"</span>],</span>
-<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">yminus =</span> errl,<span class="at">yplus =</span> errh,</span>
-<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">add =</span> T,</span>
-<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">pch=</span><span class="dv">16</span>,<span class="at">cex=</span><span class="dv">1</span>,</span>
-<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">asp=</span><span class="dv">1</span>,<span class="at">xaxs=</span><span class="st">'i'</span>,<span class="at">yaxs=</span><span class="st">'i'</span></span>
-<span id="cb12-20"><a href="#cb12-20" aria-hidden="true" tabindex="-1"></a>       )</span>
-<span id="cb12-21"><a href="#cb12-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加对角线</span></span>
-<span id="cb12-22"><a href="#cb12-22" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="at">a =</span> <span class="dv">0</span>,<span class="at">b =</span> <span class="dv">1</span>,<span class="at">col=</span><span class="st">'grey'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-cox-test_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个图就基本和上面一样了,和开头的文献里的图一模一样!</p>
-</section>
-<section id="测试集的校准曲线" class="level3" data-number="34.5.2">
-<h3 data-number="34.5.2" class="anchored" data-anchor-id="测试集的校准曲线"><span class="header-section-number">34.5.2</span> 测试集的校准曲线</h3>
-<p>方法一模一样,很简单!</p>
-<p>测试集100天的校准曲线,首先也是计算概率:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>test_p <span class="ot">&lt;-</span> <span class="fu">c</span>((<span class="fu">summary</span>(<span class="fu">survfit</span>(coxph_fit, <span class="at">newdata=</span>test_df), <span class="at">times=</span><span class="dv">100</span>)<span class="sc">$</span>surv))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后分组:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>cuts_t <span class="ot">&lt;-</span> <span class="fu">unique</span>(<span class="fu">quantile</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, test_p), <span class="fu">seq</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="at">length =</span> <span class="dv">5</span>), <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>cuts_t</span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.0000000 0.7887829 0.8588841 0.8829986 1.0000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后计算K-M法估计的生存概率:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(rms))</span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>km_surv_t <span class="ot">&lt;-</span> <span class="fu">groupkm</span>(test_p,</span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">Srv =</span> <span class="fu">Surv</span>(test_df<span class="sc">$</span>time,test_df<span class="sc">$</span>status),</span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">u =</span> <span class="dv">100</span>,</span>
-<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>                     <span class="at">cuts =</span> cuts_t)</span>
-<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a>km_surv_t</span>
-<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="do">##              x  n events        KM   std.err</span></span>
-<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 0.7379403 12     10 0.6666667 0.2041241</span></span>
-<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.8263202 13     12 1.0000000 0.0000000</span></span>
-<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.8693478 13     11 0.8461538 0.1182625</span></span>
-<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.9073257 13      7 1.0000000 0.0000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后就可以画图了:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(km_surv_t[,<span class="dv">1</span>], km_surv_t[,<span class="dv">4</span>],</span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">'Predicted 100-day Survival Probability'</span>,</span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">'Observed 100-day Survival Probability'</span></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>     )</span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(km_surv_t[,<span class="dv">1</span>], km_surv_t[,<span class="dv">4</span>])</span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算误差线范围</span></span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>errl <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(km_surv_t[,<span class="st">"KM"</span>] <span class="sc">==</span> <span class="dv">0</span>, <span class="dv">0</span>,  </span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>               km_surv_t[,<span class="st">"KM"</span>] <span class="sc">*</span> <span class="fu">exp</span>(<span class="fl">1.959964</span> <span class="sc">*</span> (<span class="sc">-</span>km_surv_t[,<span class="st">"std.err"</span>])))</span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>errh <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(km_surv_t[,<span class="st">"KM"</span>] <span class="sc">==</span> <span class="dv">0</span>, <span class="dv">0</span>, </span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>               <span class="fu">pmin</span>(<span class="dv">1</span>, km_surv_t[,<span class="st">"KM"</span>] <span class="sc">*</span> <span class="fu">exp</span>(<span class="fl">1.959964</span> <span class="sc">*</span> km_surv_t[,<span class="st">"std.err"</span>])))</span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加误差线</span></span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a><span class="fu">errbar</span>(<span class="at">x =</span> km_surv_t[,<span class="st">"x"</span>],</span>
-<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">y =</span> km_surv_t[,<span class="st">"KM"</span>],</span>
-<span id="cb16-16"><a href="#cb16-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">yminus =</span> errl,<span class="at">yplus =</span> errh,</span>
-<span id="cb16-17"><a href="#cb16-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">add =</span> T,</span>
-<span id="cb16-18"><a href="#cb16-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">pch=</span><span class="dv">16</span>,<span class="at">cex=</span><span class="dv">1</span>,</span>
-<span id="cb16-19"><a href="#cb16-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">asp=</span><span class="dv">1</span>,<span class="at">xaxs=</span><span class="st">'i'</span>,<span class="at">yaxs=</span><span class="st">'i'</span></span>
-<span id="cb16-20"><a href="#cb16-20" aria-hidden="true" tabindex="-1"></a>       )</span>
-<span id="cb16-21"><a href="#cb16-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 添加对角线</span></span>
-<span id="cb16-22"><a href="#cb16-22" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="at">a =</span> <span class="dv">0</span>,<span class="at">b =</span> <span class="dv">1</span>,<span class="at">col=</span><span class="st">'grey'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-cox-test_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个就是测试集的校准曲线了!</p>
-<p>两张图拼在一起就是大家文献中常见的图了!后期我会把这些函数打包,然后变为长数据,支持使用<code>ggplot2</code>画图!</p>
-
-
-</section>
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./calibration-cox.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./calibration-tidymodels-man.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-12-1.png b/docs/calibration-cox-test_files/figure-html/unnamed-chunk-12-1.png
deleted file mode 100644
index 8ce624d..0000000
Binary files a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-12-1.png and /dev/null differ
diff --git a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-13-1.png b/docs/calibration-cox-test_files/figure-html/unnamed-chunk-13-1.png
deleted file mode 100644
index 9f2442f..0000000
Binary files a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-13-1.png and /dev/null differ
diff --git a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-17-1.png b/docs/calibration-cox-test_files/figure-html/unnamed-chunk-17-1.png
deleted file mode 100644
index d54bbea..0000000
Binary files a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-17-1.png and /dev/null differ
diff --git a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-3-1.png b/docs/calibration-cox-test_files/figure-html/unnamed-chunk-3-1.png
deleted file mode 100644
index 1e9cbf0..0000000
Binary files a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-3-1.png and /dev/null differ
diff --git a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-6-1.png b/docs/calibration-cox-test_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 3313bd6..0000000
Binary files a/docs/calibration-cox-test_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/calibration-cox.html b/docs/calibration-cox.html
index 7c0a2d4..db85394 100644
--- a/docs/calibration-cox.html
+++ b/docs/calibration-cox.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 33&nbsp; Cox回归校准曲线绘制</title>
+<title>31&nbsp; Cox回归校准曲线绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./calibration-cox-test.html" rel="next">
-<link href="./calibration-logistic-test.html" rel="prev">
+<link href="./calibration-qhscrnomo.html" rel="next">
+<link href="./hosmer-lemeshow检验.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-cox.html"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-cox.html"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +493,33 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link active" data-scroll-target="#加载r包和数据"><span class="header-section-number">33.1</span> 加载R包和数据</a></li>
-  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">33.2</span> 方法1:rms</a></li>
-  <li><a href="#方法2riskregression" id="toc-方法2riskregression" class="nav-link" data-scroll-target="#方法2riskregression"><span class="header-section-number">33.3</span> 方法2:riskRegression</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">31.1</span> 准备数据</a></li>
+  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">31.2</span> 方法1:rms</a>
+  <ul class="collapse">
+  <li><a href="#训练集" id="toc-训练集" class="nav-link" data-scroll-target="#训练集"><span class="header-section-number">31.2.1</span> 训练集</a></li>
+  <li><a href="#测试集" id="toc-测试集" class="nav-link" data-scroll-target="#测试集"><span class="header-section-number">31.2.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法2riskregression" id="toc-方法2riskregression" class="nav-link" data-scroll-target="#方法2riskregression"><span class="header-section-number">31.3</span> 方法2:riskRegression</a>
+  <ul class="collapse">
+  <li><a href="#训练集-1" id="toc-训练集-1" class="nav-link" data-scroll-target="#训练集-1"><span class="header-section-number">31.3.1</span> 训练集</a></li>
+  <li><a href="#测试集-1" id="toc-测试集-1" class="nav-link" data-scroll-target="#测试集-1"><span class="header-section-number">31.3.2</span> 测试集</a></li>
+  </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-cox.html"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></h1>
+<h1 class="title"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></h1>
 </div>
 
 
@@ -542,254 +532,276 @@ <h1 class="title"><span class="chapter-number">33</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>前面我们已经讲过logistic模型的校准曲线的画法,这次我们学习生存资料的校准曲线画法。</p>
-<section id="加载r包和数据" class="level2" data-number="33.1">
-<h2 data-number="33.1" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">33.1</span> 加载R包和数据</h2>
+
+<p>前面我们已经讲过逻辑回归模型的校准曲线的画法,这次我们学习cox回归的校准曲线画法。</p>
+<section id="准备数据" class="level2" data-number="31.1">
+<h2 data-number="31.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">31.1</span> 准备数据</h2>
+<p>使用自带数据<code>lung</code>数据集进行演示。</p>
+<p>这个是关于肺癌的生存数据,一共有228行,10列,其中<code>time</code>是生存时间,单位是天,<code>status</code>是生存状态,1是删失,2是死亡。其余变量是自变量,意义如下:</p>
+<ul>
+<li><code>inst</code>:机构代码,对于我们这次建模没啥用</li>
+<li><code>age</code>:年龄</li>
+<li><code>sex</code>:1是男性,2是女性</li>
+<li><code>ph.ecog</code>:ECOG评分。0=无症状,1=有症状但完全可以走动,2=每天&lt;50%的时间在床上,3=在床上&gt;50%的时间但没有卧床,4=卧床不起</li>
+<li><code>ph.karno</code>:医生评的KPS评分,范围是0-100,得分越高,健康状况越好,越能忍受治疗给身体带来的副作用。</li>
+<li><code>pat.karno</code>:患者自己评的KPS评分</li>
+<li><code>meal.cal</code>:用餐时消耗的卡路里</li>
+<li><code>wt.loss</code>:过去6个月的体重减少量,单位是磅</li>
+</ul>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>试试使用自带数据<code>lung</code>数据集进行演示。</p>
-<p>大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。但有的R包会报错,需要注意!</p>
+<p>大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡,但有的R包会报错,需要注意!</p>
+<p>我们这里给它改过来:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>lung <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  1 1 0 1 1 0 1 1 1 1 ...</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>然后把数据划分为训练集、测试集,下面这个划分方法是错的哈,这个示例数据样本量太少了,我想让训练集和测试集样本量都尽量多一点,所以用了一个错误的方法进行演示:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:Hmisc':</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##     src, summarize</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb3-25"><a href="#cb3-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb3-26"><a href="#cb3-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb3-27"><a href="#cb3-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb3-28"><a href="#cb3-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb3-29"><a href="#cb3-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>ind1 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lung),<span class="fu">nrow</span>(lung)<span class="sc">*</span><span class="fl">0.7</span>)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lung[ind1,]</span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">563435</span>)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>ind2 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lung),<span class="fu">nrow</span>(lung)<span class="sc">*</span><span class="fl">0.7</span>)</span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lung[ind2, ]</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 159  10</span></span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 159  10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="方法1rms" class="level2" data-number="33.2">
-<h2 data-number="33.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">33.2</span> 方法1:rms</h2>
+<section id="方法1rms" class="level2" data-number="31.2">
+<h2 data-number="31.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">31.2</span> 方法1:rms</h2>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(df1)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 必须先打包数据</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(train_df)</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="fu">units</span>(train_df<span class="sc">$</span>time) <span class="ot">&lt;-</span> <span class="st">"day"</span> <span class="co"># 单位设置为:天</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>构建cox比例风险模型:</p>
+<p>构建cox比例风险模型。<code>rms</code>可以使用内部重抽样的方法绘制校准曲线,可以选择bootstrap法或者交叉验证法,下面我们选择500次bootstrap的内部验证方法,计算时间点为第1年的校准曲线(样本太少,给警告了):</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 1年</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>coxfit1 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> df1, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T,</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">time.inc =</span> <span class="dv">365</span> <span class="co"># 1 年</span></span>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立cox回归模型,时间点选择1年</span></span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>coxfit1 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> wt.loss,</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> train_df, <span class="at">x =</span> T, <span class="at">y =</span> T, <span class="at">surv =</span> T,</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">time.inc =</span> <span class="dv">100</span> <span class="co"># 100天</span></span>
 <span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>              )</span>
 <span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="co"># m=50表示每次计算50个样本,一般取4-6个点,u=365和上面的time.inc对应</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>cal1 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(coxfit1, <span class="at">cmethod=</span><span class="st">"KM"</span>, <span class="at">method=</span><span class="st">"boot"</span>,<span class="at">u=</span><span class="dv">365</span>,<span class="at">m=</span><span class="dv">50</span>,<span class="at">B=</span><span class="dv">500</span>) </span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Using Cox survival estimates at 365 Days</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="co"># m=40表示以40个样本为1组,一般取4-6组,我们这个数据样本量太少了</span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="co"># u=100和上面的time.inc对应</span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>cal1 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(coxfit1, <span class="at">cmethod =</span> <span class="st">"KM"</span>, <span class="at">method =</span> <span class="st">"boot"</span>,</span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>                  <span class="at">u =</span> <span class="dv">100</span>, <span class="at">m =</span> <span class="dv">40</span>, <span class="at">B =</span> <span class="dv">500</span>) </span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Using Cox survival estimates at  100 days</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>然后就是画图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal1,</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co"># 误差线粗细</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">lty =</span> <span class="dv">1</span>, <span class="co"># 误差线类型,可选0-6</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">errbar.col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>), <span class="co"># 误差线颜色</span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Nomogram-prediced OS (%)"</span>,<span class="at">ylab =</span> <span class="st">"Observed OS (%)"</span>,</span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.6</span>) <span class="co"># 字体大小</span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal1[,<span class="fu">c</span>(<span class="st">'mean.predicted'</span>,<span class="st">"KM"</span>)], </span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'b'</span>, <span class="co"># 连线的类型,可以是"p","b","o"</span></span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co"># 连线的粗细</span></span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co"># 点的形状,可以是0-20</span></span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"tomato"</span>) <span class="co"># 连线的颜色</span></span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="fu">box</span>(<span class="at">lwd =</span> <span class="dv">2</span>) <span class="co"># 边框粗细</span></span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">lty =</span> <span class="dv">3</span>, <span class="co"># 对角线为虚线</span></span>
-<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co"># 对角线的粗细</span></span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"grey70"</span> <span class="co"># 对角线的颜色</span></span>
-<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>       ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<section id="训练集" class="level3" data-number="31.2.1">
+<h3 data-number="31.2.1" class="anchored" data-anchor-id="训练集"><span class="header-section-number">31.2.1</span> 训练集</h3>
+<p>接下来就是画图,可以直接使用<code>plot()</code>函数:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-cox_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>再介绍一下多个校正曲线图形画在一起的方法。</p>
+<p>也可以提取数据,自己画,以实现更多的细节控制:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 2年</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>coxfit2 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> df1, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T,</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">time.inc =</span> <span class="dv">730</span> <span class="co"># 2 年</span></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(coxfit2, <span class="at">cmethod=</span><span class="st">"KM"</span>, <span class="at">method=</span><span class="st">"boot"</span>,<span class="at">u=</span><span class="dv">730</span>,<span class="at">m=</span><span class="dv">50</span>,<span class="at">B=</span><span class="dv">500</span>) </span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Using Cox survival estimates at 730 Days</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one</span></span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">## interval had &lt; 2 observations</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal1,</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co"># 误差线粗细</span></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">lty =</span> <span class="dv">1</span>, <span class="co"># 误差线类型,可选0-6</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">errbar.col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>), <span class="co"># 误差线颜色</span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="fl">0.7</span>,<span class="dv">1</span>),<span class="at">ylim=</span> <span class="fu">c</span>(<span class="fl">0.7</span>,<span class="dv">1</span>), <span class="co"># 坐标轴范围</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced OS"</span>,<span class="at">ylab =</span> <span class="st">"Observed OS"</span>,</span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.6</span>) <span class="co"># 字体大小</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal1[,<span class="fu">c</span>(<span class="st">'mean.predicted'</span>,<span class="st">"KM"</span>)], </span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'b'</span>, <span class="co"># 连线的类型,可以是"p","b","o"</span></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co"># 连线的粗细</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co"># 点的形状,可以是0-20</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"tomato"</span>) <span class="co"># 连线的颜色</span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="fu">box</span>(<span class="at">lwd =</span> <span class="dv">2</span>) <span class="co"># 边框粗细</span></span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">lty =</span> <span class="dv">3</span>, <span class="co"># 对角线为虚线</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co"># 对角线的粗细</span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"grey70"</span> <span class="co"># 对角线的颜色</span></span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>       ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
-<p>画图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal1,<span class="at">lwd =</span> <span class="dv">2</span>,<span class="at">lty =</span> <span class="dv">1</span>,<span class="at">errbar.col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>),</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Nomogram-prediced OS (%)"</span>,<span class="at">ylab =</span> <span class="st">"Observed OS (%)"</span>,</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>),</span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>,<span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.6</span>)</span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal1[,<span class="fu">c</span>(<span class="st">'mean.predicted'</span>,<span class="st">"KM"</span>)],</span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'b'</span>, <span class="at">lwd =</span> <span class="dv">3</span>, <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>), <span class="at">pch =</span> <span class="dv">16</span>)</span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2,<span class="at">lwd =</span> <span class="dv">2</span>,<span class="at">lty =</span> <span class="dv">0</span>,<span class="at">errbar.col =</span> <span class="fu">c</span>(<span class="st">"#B2182B"</span>),</span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#B2182B"</span>),<span class="at">add =</span> T)</span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">'mean.predicted'</span>,<span class="st">"KM"</span>)],</span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'b'</span>, <span class="at">lwd =</span> <span class="dv">3</span>, <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#B2182B"</span>), <span class="at">pch =</span> <span class="dv">16</span>)</span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>, <span class="at">lwd =</span> <span class="dv">2</span>, <span class="at">lty =</span> <span class="dv">3</span>, <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#224444"</span>))</span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="co">#图例的位置</span></span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">legend =</span> <span class="fu">c</span>(<span class="st">"5-year"</span>,<span class="st">"8-year"</span>), <span class="co">#图例文字</span></span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span><span class="fu">c</span>(<span class="st">"#2166AC"</span>,<span class="st">"#B2182B"</span>), <span class="co">#图例线的颜色,与文字对应</span></span>
-<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>,<span class="co">#图例中线的粗细</span></span>
-<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">cex =</span> <span class="fl">1.2</span>,<span class="co">#图例字体大小</span></span>
-<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span>)<span class="co">#不显示图例边框</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</div>
+</section>
+<section id="测试集" class="level3" data-number="31.2.2">
+<h3 data-number="31.2.2" class="anchored" data-anchor-id="测试集"><span class="header-section-number">31.2.2</span> 测试集</h3>
+<p>然后是外部验证集的校准曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取测试集的预测的生存概率,这一步有没有都行</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>estimates <span class="ot">&lt;-</span> <span class="fu">survest</span>(coxfit1,<span class="at">newdata=</span>test_df,<span class="at">times=</span><span class="dv">100</span>)<span class="sc">$</span>surv</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>vs <span class="ot">&lt;-</span> <span class="fu">val.surv</span>(coxfit1, <span class="at">newdata =</span> test_df,</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">S =</span> <span class="fu">Surv</span>(test_df<span class="sc">$</span>time,test_df<span class="sc">$</span>status),</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">est.surv =</span> estimates,<span class="co"># 这一步有没有都行</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">u =</span> <span class="dv">100</span> <span class="co"># 时间点,也是选100天</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(vs)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-cox_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="方法2riskregression" class="level2" data-number="33.3">
-<h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><span class="header-section-number">33.3</span> 方法2:riskRegression</h2>
-<p>不过这种方法是把多个模型放在一张图上,不是同一个模型对应多个时间点。</p>
-<p>这种方法不能有缺失值。</p>
+</section>
+<section id="方法2riskregression" class="level2" data-number="31.3">
+<h2 data-number="31.3" class="anchored" data-anchor-id="方法2riskregression"><span class="header-section-number">31.3</span> 方法2:riskRegression</h2>
+<p>这个R包也非常好用,但是这种方法不能有缺失值,所以我先把缺失值去掉,然后再划分训练集和测试集,但是由于样本量太少,这里的划分方法是不正确的哈。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 删除缺失值</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>df2 <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(df1)</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>df2 <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(lung)</span>
 <span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> df2,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno,</span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> df2,<span class="at">x =</span> T, <span class="at">y =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 划分数据</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>ind1 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df2),<span class="fu">nrow</span>(df2)<span class="sc">*</span><span class="fl">0.9</span>)</span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> df2[ind1,]</span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">563435</span>)</span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>ind2 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df2),<span class="fu">nrow</span>(df2)<span class="sc">*</span><span class="fl">0.9</span>)</span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> df2[ind2, ]</span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 150  10</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 150  10</span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型</span></span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno,</span>
+<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df,<span class="at">x =</span> T, <span class="at">y =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<div class="cell" data-fig.asp="1">
+<section id="训练集-1" class="level3" data-number="31.3.1">
+<h3 data-number="31.3.1" class="anchored" data-anchor-id="训练集-1"><span class="header-section-number">31.3.1</span> 训练集</h3>
+<div class="cell">
 <div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
 <span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="do">## riskRegression version 2023.09.08</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>cox_fit_s <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit1"</span> <span class="ot">=</span> cox_fit1,</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>                        <span class="st">"fit2"</span> <span class="ot">=</span> cox_fit2),</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> <span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="dv">1</span>,</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> df2,</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>               <span class="co">#metrics = c("auc","brier"),</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>               <span class="co">#summary = c("risks","IPA","riskQuantile","ibs"),</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>               <span class="co">#null.model = T,</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span>,</span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">700</span>) <span class="co"># limit the time range</span></span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(cox_fit_s,</span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
-<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>)</span>
-<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a><span class="do">## The default method for estimating calibration curves based on censored data has changed for riskRegression version 2019-9-8 or higher</span></span>
-<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Set cens.method="jackknife" to get the estimate using pseudo-values.</span></span>
-<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a><span class="do">## However, note that the option "jackknife" is sensitive to violations of the assumption that the censoring is independent of both the event times and the covariates.</span></span>
-<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Set cens.method="local" to suppress this message.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>cox_fit_s <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit1"</span> <span class="ot">=</span> cox_fit1),</span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> <span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="dv">1</span>,</span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> train_df,</span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span>, <span class="co"># 每组的人数</span></span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">100</span>) <span class="co"># 时间点选100天</span></span>
+<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(cox_fit_s,<span class="at">cens.method=</span><span class="st">"local"</span>,<span class="co"># 减少输出日志</span></span>
+<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
+<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-cox_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>当然也是可以用<code>ggplot2</code>画图的。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取数据</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>data_all <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(cox_fit_s,<span class="at">plot =</span> F)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="do">## The default method for estimating calibration curves based on censored data has changed for riskRegression version 2019-9-8 or higher</span></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Set cens.method="jackknife" to get the estimate using pseudo-values.</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">## However, note that the option "jackknife" is sensitive to violations of the assumption that the censoring is independent of both the event times and the covariates.</span></span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Set cens.method="local" to suppress this message.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>data_all <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(cox_fit_s,<span class="at">plot =</span> F,<span class="at">cens.method=</span><span class="st">"local"</span>)</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据转换</span></span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>plot_df <span class="ot">&lt;-</span> data_all<span class="sc">$</span>plotFrames<span class="sc">$</span>fit1</span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plot_df, <span class="fu">aes</span>(Pred,Obs))<span class="sc">+</span></span>
+<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>()<span class="sc">+</span></span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
+<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.5</span>),<span class="at">name =</span> <span class="st">"Predicted Risk"</span>)<span class="sc">+</span></span>
+<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.5</span>),<span class="at">name =</span> <span class="st">"Observerd Risk"</span>)<span class="sc">+</span></span>
+<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">lty=</span><span class="dv">2</span>)<span class="sc">+</span></span>
+<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据转换</span></span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>plot_df <span class="ot">&lt;-</span> <span class="fu">bind_rows</span>(data_all<span class="sc">$</span>plotFrames) <span class="sc">%&gt;%</span> </span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">fits =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="st">"fit1"</span>,<span class="st">"fit2"</span>),<span class="fu">c</span>(<span class="dv">44</span>,<span class="dv">38</span>)))</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plot_df, <span class="fu">aes</span>(Pred,Obs))<span class="sc">+</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">group=</span>fits,<span class="at">color=</span>fits),<span class="at">size=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>),<span class="at">name=</span><span class="cn">NULL</span>)<span class="sc">+</span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Predicted Risk"</span>)<span class="sc">+</span></span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Observerd Risk"</span>)<span class="sc">+</span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">lty=</span><span class="dv">2</span>)<span class="sc">+</span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_rug</span>(<span class="fu">aes</span>(<span class="at">color=</span>fits))<span class="sc">+</span></span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.</span></span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="do">## ℹ Please use `linewidth` instead.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</div>
+</section>
+<section id="测试集-1" class="level3" data-number="31.3.2">
+<h3 data-number="31.3.2" class="anchored" data-anchor-id="测试集-1"><span class="header-section-number">31.3.2</span> 测试集</h3>
+<p>使用起来完全一样,只需要提供测试集即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>cox_fit_s <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit1"</span> <span class="ot">=</span> cox_fit1),</span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> <span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="dv">1</span>,</span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> test_df, <span class="co"># 测试集</span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span>,</span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">100</span>) <span class="co"># 时间点</span></span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(cox_fit_s,<span class="at">cens.method=</span><span class="st">"local"</span>,<span class="co"># 减少输出日志</span></span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
+<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd Risk"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-cox_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-cox_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+<p>这个结果也是可以用<code>ggplot2</code>绘制的,就不再重复了。</p>
 
 
+</section>
 </section>
 
 </main> <!-- /main -->
@@ -828,18 +840,7 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -871,11 +872,50 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -885,8 +925,17 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -898,7 +947,130 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -942,6 +1114,7 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -967,6 +1140,32 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1028,27 +1227,32 @@ <h2 data-number="33.3" class="anchored" data-anchor-id="方法2riskregression"><
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./calibration-logistic-test.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span>
+      <a href="./hosmer-lemeshow检验.html" class="pagination-link" aria-label="hosmer-lemeshow检验">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./calibration-cox-test.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./calibration-qhscrnomo.html" class="pagination-link" aria-label="竞争风险模型的校准曲线">
+        <span class="nav-page-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-10-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-10-1.png
index d277425..27f84cb 100644
Binary files a/docs/calibration-cox_files/figure-html/unnamed-chunk-10-1.png and b/docs/calibration-cox_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-11-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-11-1.png
new file mode 100644
index 0000000..5bdd0c0
Binary files /dev/null and b/docs/calibration-cox_files/figure-html/unnamed-chunk-11-1.png differ
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-12-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-12-1.png
index bed5830..8d1e893 100644
Binary files a/docs/calibration-cox_files/figure-html/unnamed-chunk-12-1.png and b/docs/calibration-cox_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-6-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-6-1.png
index a875dca..273b3c0 100644
Binary files a/docs/calibration-cox_files/figure-html/unnamed-chunk-6-1.png and b/docs/calibration-cox_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-7-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-7-1.png
new file mode 100644
index 0000000..b17bba0
Binary files /dev/null and b/docs/calibration-cox_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/docs/calibration-cox_files/figure-html/unnamed-chunk-8-1.png b/docs/calibration-cox_files/figure-html/unnamed-chunk-8-1.png
index a76f1db..3135ae8 100644
Binary files a/docs/calibration-cox_files/figure-html/unnamed-chunk-8-1.png and b/docs/calibration-cox_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/calibration-lasso.html b/docs/calibration-lasso.html
index 1617cde..d01d387 100644
--- a/docs/calibration-lasso.html
+++ b/docs/calibration-lasso.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 39&nbsp; lasso回归列线图、校准曲线、内外部验证</title>
+<title>33&nbsp; lasso回归校准曲线 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-lasso.html"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-lasso.html"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,45 +493,45 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">39.1</span> 安装</a></li>
-  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link" data-scroll-target="#加载r包和数据"><span class="header-section-number">39.2</span> 加载R包和数据</a></li>
-  <li><a href="#拟合模型" id="toc-拟合模型" class="nav-link" data-scroll-target="#拟合模型"><span class="header-section-number">39.3</span> 拟合模型</a></li>
-  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">39.4</span> 列线图</a></li>
-  <li><a href="#模型验证" id="toc-模型验证" class="nav-link" data-scroll-target="#模型验证"><span class="header-section-number">39.5</span> 模型验证</a>
+  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">33.1</span> 安装</a></li>
+  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link" data-scroll-target="#加载r包和数据"><span class="header-section-number">33.2</span> 加载R包和数据</a></li>
+  <li><a href="#拟合模型" id="toc-拟合模型" class="nav-link" data-scroll-target="#拟合模型"><span class="header-section-number">33.3</span> 拟合模型</a></li>
+  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">33.4</span> 列线图</a></li>
+  <li><a href="#模型验证" id="toc-模型验证" class="nav-link" data-scroll-target="#模型验证"><span class="header-section-number">33.5</span> 模型验证</a>
   <ul class="collapse">
-  <li><a href="#内部验证" id="toc-内部验证" class="nav-link" data-scroll-target="#内部验证"><span class="header-section-number">39.5.1</span> 内部验证</a></li>
-  <li><a href="#外部验证" id="toc-外部验证" class="nav-link" data-scroll-target="#外部验证"><span class="header-section-number">39.5.2</span> 外部验证</a></li>
+  <li><a href="#内部验证" id="toc-内部验证" class="nav-link" data-scroll-target="#内部验证"><span class="header-section-number">33.5.1</span> 内部验证</a></li>
+  <li><a href="#外部验证" id="toc-外部验证" class="nav-link" data-scroll-target="#外部验证"><span class="header-section-number">33.5.2</span> 外部验证</a></li>
   </ul></li>
-  <li><a href="#模型校准" id="toc-模型校准" class="nav-link" data-scroll-target="#模型校准"><span class="header-section-number">39.6</span> 模型校准</a>
+  <li><a href="#模型校准" id="toc-模型校准" class="nav-link" data-scroll-target="#模型校准"><span class="header-section-number">33.6</span> 模型校准</a>
   <ul class="collapse">
-  <li><a href="#内部校准曲线" id="toc-内部校准曲线" class="nav-link" data-scroll-target="#内部校准曲线"><span class="header-section-number">39.6.1</span> 内部校准曲线</a></li>
-  <li><a href="#外部校准" id="toc-外部校准" class="nav-link" data-scroll-target="#外部校准"><span class="header-section-number">39.6.2</span> 外部校准</a></li>
+  <li><a href="#内部校准曲线" id="toc-内部校准曲线" class="nav-link" data-scroll-target="#内部校准曲线"><span class="header-section-number">33.6.1</span> 内部校准曲线</a></li>
+  <li><a href="#外部校准" id="toc-外部校准" class="nav-link" data-scroll-target="#外部校准"><span class="header-section-number">33.6.2</span> 外部校准</a></li>
   </ul></li>
-  <li><a href="#risk-group的k-m生存曲线" id="toc-risk-group的k-m生存曲线" class="nav-link" data-scroll-target="#risk-group的k-m生存曲线"><span class="header-section-number">39.7</span> risk group的K-M生存曲线</a></li>
-  <li><a href="#risk-group的log-rank检验" id="toc-risk-group的log-rank检验" class="nav-link" data-scroll-target="#risk-group的log-rank检验"><span class="header-section-number">39.8</span> risk group的log-rank检验</a></li>
-  <li><a href="#模型比较" id="toc-模型比较" class="nav-link" data-scroll-target="#模型比较"><span class="header-section-number">39.9</span> 模型比较</a>
+  <li><a href="#risk-group的k-m生存曲线" id="toc-risk-group的k-m生存曲线" class="nav-link" data-scroll-target="#risk-group的k-m生存曲线"><span class="header-section-number">33.7</span> risk group的K-M生存曲线</a></li>
+  <li><a href="#risk-group的log-rank检验" id="toc-risk-group的log-rank检验" class="nav-link" data-scroll-target="#risk-group的log-rank检验"><span class="header-section-number">33.8</span> risk group的log-rank检验</a></li>
+  <li><a href="#模型比较" id="toc-模型比较" class="nav-link" data-scroll-target="#模型比较"><span class="header-section-number">33.9</span> 模型比较</a>
   <ul class="collapse">
-  <li><a href="#通过模型验证比较" id="toc-通过模型验证比较" class="nav-link" data-scroll-target="#通过模型验证比较"><span class="header-section-number">39.9.1</span> 通过模型验证比较</a></li>
-  <li><a href="#通过模型校准验证" id="toc-通过模型校准验证" class="nav-link" data-scroll-target="#通过模型校准验证"><span class="header-section-number">39.9.2</span> 通过模型校准验证</a></li>
+  <li><a href="#通过模型验证比较" id="toc-通过模型验证比较" class="nav-link" data-scroll-target="#通过模型验证比较"><span class="header-section-number">33.9.1</span> 通过模型验证比较</a></li>
+  <li><a href="#通过模型校准验证" id="toc-通过模型校准验证" class="nav-link" data-scroll-target="#通过模型校准验证"><span class="header-section-number">33.9.2</span> 通过模型校准验证</a></li>
   </ul></li>
-  <li><a href="#预测新数据" id="toc-预测新数据" class="nav-link" data-scroll-target="#预测新数据"><span class="header-section-number">39.10</span> 预测新数据</a></li>
-  <li><a href="#shiny版" id="toc-shiny版" class="nav-link" data-scroll-target="#shiny版"><span class="header-section-number">39.11</span> shiny版</a></li>
+  <li><a href="#预测新数据" id="toc-预测新数据" class="nav-link" data-scroll-target="#预测新数据"><span class="header-section-number">33.10</span> 预测新数据</a></li>
+  <li><a href="#shiny版" id="toc-shiny版" class="nav-link" data-scroll-target="#shiny版"><span class="header-section-number">33.11</span> shiny版</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-lasso.html"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span id="sec-hdnorm" class="quarto-section-identifier"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></h1>
+<h1 class="title"><span id="sec-hdnorm" class="quarto-section-identifier"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></h1>
 </div>
 
 
@@ -562,24 +544,26 @@ <h1 class="title"><span id="sec-hdnorm" class="quarto-section-identifier"><span
   </div>
   
 
+
 </header>
 
+
 <p>lasso回归是预测模型类文章中的常用方法,但是大家使用lasso主要是为了筛选变量,并不是把它用作最终的模型。它的缺点之一就是没法像cox回归或者逻辑回归那样,可以绘制列线图。今天介绍的<code>hdnom</code>就可以完美解决这个问题。</p>
 <p><code>hdnom</code>是专门为<a href="https://mp.weixin.qq.com/s/ABnu7mkIbVSHVwEq3nlnSQ">正则化cox回归</a>设计的R包,可以实现多种类型lasso回归的列线图绘制、内外部验证、校准曲线绘制、模型比较等。</p>
 <p>该包的github地址是:https://github.com/nanxstats/hdnom/,它的作者和<a href="https://mp.weixin.qq.com/s/BM1bhajcrCDOHn6J7aOwiA">ggsci</a>的作者是同一个人。</p>
 <p><code>hdnom</code>支持常规lasso、自适应lasso、弹性网络、自适应弹性网络、MCP、SCAD等多种方法,每种方法由不同的函数完成,并包括不同的超参数,见下图:</p>
 <p><img src="figs/PixPin_2023-12-25_19-24-29.png" class="img-fluid"></p>
 <p>关于几种lasso方法的简单介绍可参考知乎文章:<a href="https://zhuanlan.zhihu.com/p/120948323">几个降维方法—Adaptive Lasso、Dantzig Selector、SCAD的简单介绍</a>,或者自己搜索学习一下。</p>
-<section id="安装" class="level2" data-number="39.1">
-<h2 data-number="39.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">39.1</span> 安装</h2>
+<section id="安装" class="level2" data-number="33.1">
+<h2 data-number="33.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">33.1</span> 安装</h2>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 2选1</span></span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"hdnom"</span>)</span>
 <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"nanxstats/hdnom"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="加载r包和数据" class="level2" data-number="39.2">
-<h2 data-number="39.2" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">39.2</span> 加载R包和数据</h2>
+<section id="加载r包和数据" class="level2" data-number="33.2">
+<h2 data-number="33.2" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">33.2</span> 加载R包和数据</h2>
 <p>使用<code>smart</code>数据集进行演示,这是一个生存数据。该数据是经过缺失值插补的,所以没有缺失值。包含3873行,27个预测变量,<code>TEVENT</code>是时间变量,<code>EVENT</code>是结局变量。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(hdnom)</span>
@@ -591,8 +575,8 @@ <h2 data-number="39.2" class="anchored" data-anchor-id="加载r包和数据"><sp
 <span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> survival<span class="sc">::</span><span class="fu">Surv</span>(time, event)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="拟合模型" class="level2" data-number="39.3">
-<h2 data-number="39.3" class="anchored" data-anchor-id="拟合模型"><span class="header-section-number">39.3</span> 拟合模型</h2>
+<section id="拟合模型" class="level2" data-number="33.3">
+<h2 data-number="33.3" class="anchored" data-anchor-id="拟合模型"><span class="header-section-number">33.3</span> 拟合模型</h2>
 <p>拟合一个最简单的正则化COX回归,它会自动执行超参数调优的过程:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co">#suppressMessages(library("doParallel"))</span></span>
@@ -609,8 +593,8 @@ <h2 data-number="39.3" class="anchored" data-anchor-id="拟合模型"><span clas
 </div>
 <p>我们选择的最佳超参数的方法是<code>"lambda.1se"</code>,此时选中的最佳lambda是0.02351754。</p>
 </section>
-<section id="列线图" class="level2" data-number="39.4">
-<h2 data-number="39.4" class="anchored" data-anchor-id="列线图"><span class="header-section-number">39.4</span> 列线图</h2>
+<section id="列线图" class="level2" data-number="33.4">
+<h2 data-number="33.4" class="anchored" data-anchor-id="列线图"><span class="header-section-number">33.4</span> 列线图</h2>
 <p>首先要提取模型对象和超参数,不同的正则化模型有不同的超参数,不要搞错了:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> fit<span class="sc">$</span>model</span>
@@ -628,14 +612,18 @@ <h2 data-number="39.4" class="anchored" data-anchor-id="列线图"><span class="
 <span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="模型验证" class="level2" data-number="39.5">
-<h2 data-number="39.5" class="anchored" data-anchor-id="模型验证"><span class="header-section-number">39.5</span> 模型验证</h2>
-<section id="内部验证" class="level3" data-number="39.5.1">
-<h3 data-number="39.5.1" class="anchored" data-anchor-id="内部验证"><span class="header-section-number">39.5.1</span> 内部验证</h3>
+<section id="模型验证" class="level2" data-number="33.5">
+<h2 data-number="33.5" class="anchored" data-anchor-id="模型验证"><span class="header-section-number">33.5</span> 模型验证</h2>
+<section id="内部验证" class="level3" data-number="33.5.1">
+<h3 data-number="33.5.1" class="anchored" data-anchor-id="内部验证"><span class="header-section-number">33.5.1</span> 内部验证</h3>
 <p>通过<code>validate</code>函数可以实现内部验证,和<code>rms</code>包如出一辙!支持bootstrap、交叉验证、重复交叉验证3种重抽样方法。</p>
 <p>注意这个函数对不同的正则化方法有不同的要求,注意看帮助文档,下面是10次bootstrap的内部验证,时间截点选择的是第一年到第5年,每半年一次(也就是第1,1.5,2,2.5,3,3.5,4,4.5,5年这几个截点)。</p>
 <div class="cell">
@@ -699,13 +687,17 @@ <h3 data-number="39.5.1" class="anchored" data-anchor-id="内部验证"><span cl
 <span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.75 Qt. 0.6852553 0.7026699</span></span>
 <span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Max      0.6908602 0.7058832</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>上图中实线表示AUC的平均值,虚线表示AUC的中位数。图中较暗的区间显示AUC的25%和75%分位数,较浅的区间显示AUC的最小值和最大值。</p>
 </section>
-<section id="外部验证" class="level3" data-number="39.5.2">
-<h3 data-number="39.5.2" class="anchored" data-anchor-id="外部验证"><span class="header-section-number">39.5.2</span> 外部验证</h3>
+<section id="外部验证" class="level3" data-number="33.5.2">
+<h3 data-number="33.5.2" class="anchored" data-anchor-id="外部验证"><span class="header-section-number">33.5.2</span> 外部验证</h3>
 <p>也就是用一个新的数据集进行验证,这里我们从<code>smart</code>中随机抽取1000个样本作为外部验证集。</p>
 <p>外部验证使用<code>validate_external</code>,使用方法和<code>validate</code>一模一样,但是没有重抽样了,因为外部验证就是检查模型的,就是要最真实的结果,不需要重抽样:</p>
 <div class="cell">
@@ -738,16 +730,20 @@ <h3 data-number="39.5.2" class="anchored" data-anchor-id="外部验证"><span cl
 <span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="do">##           730</span></span>
 <span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a><span class="do">## AUC 0.7042923</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
 </section>
-<section id="模型校准" class="level2" data-number="39.6">
-<h2 data-number="39.6" class="anchored" data-anchor-id="模型校准"><span class="header-section-number">39.6</span> 模型校准</h2>
+<section id="模型校准" class="level2" data-number="33.6">
+<h2 data-number="33.6" class="anchored" data-anchor-id="模型校准"><span class="header-section-number">33.6</span> 模型校准</h2>
 <p>也就是绘制校准曲线,同样是支持内部校准和外部校准。</p>
-<section id="内部校准曲线" class="level3" data-number="39.6.1">
-<h3 data-number="39.6.1" class="anchored" data-anchor-id="内部校准曲线"><span class="header-section-number">39.6.1</span> 内部校准曲线</h3>
+<section id="内部校准曲线" class="level3" data-number="33.6.1">
+<h3 data-number="33.6.1" class="anchored" data-anchor-id="内部校准曲线"><span class="header-section-number">33.6.1</span> 内部校准曲线</h3>
 <p>内部校准通过<code>calibrate</code>实现,也是支持bootstrap、交叉验证、重复交叉验证3种重抽样方法,和<code>rms</code>包类似的。</p>
 <p>下面是10次bootstrap的内部校准,时间截点选择的是第5年:</p>
 <div class="cell">
@@ -785,18 +781,22 @@ <h3 data-number="39.6.1" class="anchored" data-anchor-id="内部校准曲线"><s
 </div>
 <p>这个结果的预测值是预测概率的中位数(因为使用了bootstrap,所以会有多个预测值,所以可以计算中位数),真实值是K-M法计算的,这些我们在之前的推文中都详细介绍过的,后台回复<strong>校准曲线</strong>即可获取相关推文合集了。</p>
 <p>绘制校准曲线:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal_int, <span class="at">xlim =</span> <span class="fu">c</span>(<span class="fl">0.7</span>, <span class="dv">1</span>), <span class="at">ylim =</span> <span class="fu">c</span>(<span class="fl">0.7</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>可以多个时间点的画在一起。</p>
 </section>
-<section id="外部校准" class="level3" data-number="39.6.2">
-<h3 data-number="39.6.2" class="anchored" data-anchor-id="外部校准"><span class="header-section-number">39.6.2</span> 外部校准</h3>
+<section id="外部校准" class="level3" data-number="33.6.2">
+<h3 data-number="33.6.2" class="anchored" data-anchor-id="外部校准"><span class="header-section-number">33.6.2</span> 外部校准</h3>
 <p>通过<code>calibrate_external</code>实现:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>cal_ext <span class="ot">&lt;-</span> <span class="fu">calibrate_external</span>(</span>
 <span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>  fit, x, time, event,</span>
 <span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>  x_new, time_new, event_new,</span>
@@ -816,13 +816,17 @@ <h3 data-number="39.6.2" class="anchored" data-anchor-id="外部校准"><span cl
 <span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 0.9021290 0.9381784 0.9113542 0.9657922</span></span>
 <span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal_ext, <span class="at">xlim =</span> <span class="fu">c</span>(<span class="fl">0.5</span>, <span class="dv">1</span>), <span class="at">ylim =</span> <span class="fu">c</span>(<span class="fl">0.5</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
 </section>
-<section id="risk-group的k-m生存曲线" class="level2" data-number="39.7">
-<h2 data-number="39.7" class="anchored" data-anchor-id="risk-group的k-m生存曲线"><span class="header-section-number">39.7</span> risk group的K-M生存曲线</h2>
+<section id="risk-group的k-m生存曲线" class="level2" data-number="33.7">
+<h2 data-number="33.7" class="anchored" data-anchor-id="risk-group的k-m生存曲线"><span class="header-section-number">33.7</span> risk group的K-M生存曲线</h2>
 <p>在进行模型校准时我们是分成了3组,所以这里可以对这3组进行K-M生存分析,log-tank检验的P值也会展示出来。</p>
 <p>内部验证的3个组别:</p>
 <div class="cell">
@@ -832,7 +836,11 @@ <h2 data-number="39.7" class="anchored" data-anchor-id="risk-group的k-m生存
 <span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">time.at =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span> <span class="sc">*</span> <span class="dv">365</span></span>
 <span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>外部验证的3个组别:</p>
@@ -843,12 +851,16 @@ <h2 data-number="39.7" class="anchored" data-anchor-id="risk-group的k-m生存
 <span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">time.at =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span> <span class="sc">*</span> <span class="dv">365</span></span>
 <span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="risk-group的log-rank检验" class="level2" data-number="39.8">
-<h2 data-number="39.8" class="anchored" data-anchor-id="risk-group的log-rank检验"><span class="header-section-number">39.8</span> risk group的log-rank检验</h2>
+<section id="risk-group的log-rank检验" class="level2" data-number="33.8">
+<h2 data-number="33.8" class="anchored" data-anchor-id="risk-group的log-rank检验"><span class="header-section-number">33.8</span> risk group的log-rank检验</h2>
 <p>也可以直接进行log-rank检验:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 内部验证3个组的log-rank检验</span></span>
@@ -886,10 +898,10 @@ <h2 data-number="39.8" class="anchored" data-anchor-id="risk-group的log-rank检
 <span id="cb14-33"><a href="#cb14-33" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 3.581463e-13</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="模型比较" class="level2" data-number="39.9">
-<h2 data-number="39.9" class="anchored" data-anchor-id="模型比较"><span class="header-section-number">39.9</span> 模型比较</h2>
-<section id="通过模型验证比较" class="level3" data-number="39.9.1">
-<h3 data-number="39.9.1" class="anchored" data-anchor-id="通过模型验证比较"><span class="header-section-number">39.9.1</span> 通过模型验证比较</h3>
+<section id="模型比较" class="level2" data-number="33.9">
+<h2 data-number="33.9" class="anchored" data-anchor-id="模型比较"><span class="header-section-number">33.9</span> 模型比较</h2>
+<section id="通过模型验证比较" class="level3" data-number="33.9.1">
+<h3 data-number="33.9.1" class="anchored" data-anchor-id="通过模型验证比较"><span class="header-section-number">33.9.1</span> 通过模型验证比较</h3>
 <p>通过validate进行比较,也就是通过计算不同模型的time-dependent AUC进行比较。</p>
 <p>比如这里比较一下lasso和自适应lasso的模型效果:</p>
 <div class="cell">
@@ -933,7 +945,11 @@ <h3 data-number="39.9.1" class="anchored" data-anchor-id="通过模型验证比
 <span id="cb15-38"><a href="#cb15-38" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.75 Qt. 0.6995719</span></span>
 <span id="cb15-39"><a href="#cb15-39" aria-hidden="true" tabindex="-1"></a><span class="do">## Max      0.7360047</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>内部验证的结果:</p>
@@ -968,12 +984,16 @@ <h3 data-number="39.9.1" class="anchored" data-anchor-id="通过模型验证比
 <span id="cb16-28"><a href="#cb16-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.75 Qt. 0.6995719</span></span>
 <span id="cb16-29"><a href="#cb16-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Max      0.7360047</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="通过模型校准验证" class="level3" data-number="39.9.2">
-<h3 data-number="39.9.2" class="anchored" data-anchor-id="通过模型校准验证"><span class="header-section-number">39.9.2</span> 通过模型校准验证</h3>
+<section id="通过模型校准验证" class="level3" data-number="33.9.2">
+<h3 data-number="33.9.2" class="anchored" data-anchor-id="通过模型校准验证"><span class="header-section-number">33.9.2</span> 通过模型校准验证</h3>
 <p>也就是通过校准曲线进行验证。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>cmp_cal <span class="ot">&lt;-</span> <span class="fu">compare_by_calibrate</span>(</span>
@@ -988,13 +1008,17 @@ <h3 data-number="39.9.2" class="anchored" data-anchor-id="通过模型校准验
 <span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a><span class="co">#summary(cmp_cal)</span></span>
 <span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cmp_cal, <span class="at">xlim =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="dv">1</span>), <span class="at">ylim =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-lasso_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
 </section>
-<section id="预测新数据" class="level2" data-number="39.10">
-<h2 data-number="39.10" class="anchored" data-anchor-id="预测新数据"><span class="header-section-number">39.10</span> 预测新数据</h2>
+<section id="预测新数据" class="level2" data-number="33.10">
+<h2 data-number="33.10" class="anchored" data-anchor-id="预测新数据"><span class="header-section-number">33.10</span> 预测新数据</h2>
 <p>由于在拟合模型时会自动进行超参数选择,所以得到的模型就是最终结果了。可以直接使用<code>predict</code>预测新数据。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(fit, x, y, <span class="at">newx =</span> x[<span class="dv">101</span><span class="sc">:</span><span class="dv">105</span>, ], <span class="at">pred.at =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span> <span class="sc">*</span> <span class="dv">365</span>)</span>
@@ -1013,8 +1037,8 @@ <h2 data-number="39.10" class="anchored" data-anchor-id="预测新数据"><span
 </div>
 <p>是不是很简单呢?</p>
 </section>
-<section id="shiny版" class="level2" data-number="39.11">
-<h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="header-section-number">39.11</span> shiny版</h2>
+<section id="shiny版" class="level2" data-number="33.11">
+<h2 data-number="33.11" class="anchored" data-anchor-id="shiny版"><span class="header-section-number">33.11</span> shiny版</h2>
 <p>该包还提供了shiny版本,可以通过点点点使用,感兴趣的可以试用一下:nanx.app/hdnom/</p>
 
 
@@ -1056,18 +1080,7 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1099,11 +1112,50 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1113,8 +1165,17 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1126,7 +1187,130 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1170,6 +1354,7 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1195,6 +1380,32 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1256,27 +1467,32 @@ <h2 data-number="39.11" class="anchored" data-anchor-id="shiny版"><span class="
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./calibration-qhscrnomo.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span>
+      <a href="./calibration-qhscrnomo.html" class="pagination-link" aria-label="竞争风险模型的校准曲线">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./dca-logistic.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./dca-logistic.html" class="pagination-link" aria-label="分类数据的决策曲线">
+        <span class="nav-page-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/calibration-lasso_files/figure-html/unnamed-chunk-12-1.png b/docs/calibration-lasso_files/figure-html/unnamed-chunk-12-1.png
index d5ce7ee..8329429 100644
Binary files a/docs/calibration-lasso_files/figure-html/unnamed-chunk-12-1.png and b/docs/calibration-lasso_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/calibration-lasso_files/figure-html/unnamed-chunk-13-1.png b/docs/calibration-lasso_files/figure-html/unnamed-chunk-13-1.png
index a278a27..a94bd2d 100644
Binary files a/docs/calibration-lasso_files/figure-html/unnamed-chunk-13-1.png and b/docs/calibration-lasso_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/calibration-lasso_files/figure-html/unnamed-chunk-15-1.png b/docs/calibration-lasso_files/figure-html/unnamed-chunk-15-1.png
index 1aaaf95..c21c72a 100644
Binary files a/docs/calibration-lasso_files/figure-html/unnamed-chunk-15-1.png and b/docs/calibration-lasso_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/calibration-lasso_files/figure-html/unnamed-chunk-16-1.png b/docs/calibration-lasso_files/figure-html/unnamed-chunk-16-1.png
index e2fc11b..c28a480 100644
Binary files a/docs/calibration-lasso_files/figure-html/unnamed-chunk-16-1.png and b/docs/calibration-lasso_files/figure-html/unnamed-chunk-16-1.png differ
diff --git a/docs/calibration-lasso_files/figure-html/unnamed-chunk-17-1.png b/docs/calibration-lasso_files/figure-html/unnamed-chunk-17-1.png
index aeecacb..17e5690 100644
Binary files a/docs/calibration-lasso_files/figure-html/unnamed-chunk-17-1.png and b/docs/calibration-lasso_files/figure-html/unnamed-chunk-17-1.png differ
diff --git a/docs/calibration-logistic-test.html b/docs/calibration-logistic-test.html
deleted file mode 100644
index 5443761..0000000
--- a/docs/calibration-logistic-test.html
+++ /dev/null
@@ -1,1012 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 32&nbsp; logistic回归测试集校准曲线的绘制</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./calibration-cox.html" rel="next">
-<link href="./calibration-logistic.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-logistic-test.html"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">32.1</span> 准备数据</a></li>
-  <li><a href="#数据分割" id="toc-数据分割" class="nav-link" data-scroll-target="#数据分割"><span class="header-section-number">32.2</span> 数据分割</a></li>
-  <li><a href="#训练集的校准曲线" id="toc-训练集的校准曲线" class="nav-link" data-scroll-target="#训练集的校准曲线"><span class="header-section-number">32.3</span> 训练集的校准曲线</a></li>
-  <li><a href="#测试集校准曲线方法1" id="toc-测试集校准曲线方法1" class="nav-link" data-scroll-target="#测试集校准曲线方法1"><span class="header-section-number">32.4</span> 测试集校准曲线方法1</a></li>
-  <li><a href="#测试集校准曲线方法2" id="toc-测试集校准曲线方法2" class="nav-link" data-scroll-target="#测试集校准曲线方法2"><span class="header-section-number">32.5</span> 测试集校准曲线方法2</a></li>
-  <li><a href="#测试集校准曲线方法3" id="toc-测试集校准曲线方法3" class="nav-link" data-scroll-target="#测试集校准曲线方法3"><span class="header-section-number">32.6</span> 测试集校准曲线方法3</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>今天给大家展示的是logistic回归测试集(或者叫验证集)的校准曲线如何实现(其实已经介绍过,不过没有单独说,有粉丝一直在后台问)。</p>
-<section id="准备数据" class="level2" data-number="32.1">
-<h2 data-number="32.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">32.1</span> 准备数据</h2>
-<p>数据来自于这篇推文:<a href="https://mp.weixin.qq.com/s/Nw_-jIXF6C5xY_iOGlb91g">logistic回归校准曲线的绘制</a>,数据获取方法也在上面的推文中给出了。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>black <span class="ot">=</span> <span class="fu">ifelse</span>(lowbirth<span class="sc">$</span>race <span class="sc">==</span> <span class="st">"black"</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>white <span class="ot">=</span> <span class="fu">ifelse</span>(lowbirth<span class="sc">$</span>race <span class="sc">==</span> <span class="st">"white"</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>other <span class="ot">=</span> <span class="fu">ifelse</span>(lowbirth<span class="sc">$</span>race <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>),<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>delivery <span class="ot">=</span> <span class="fu">factor</span>(lowbirth<span class="sc">$</span>delivery)</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>sex <span class="ot">&lt;-</span> <span class="fu">factor</span>(lowbirth<span class="sc">$</span>sex)</span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>race <span class="ot">&lt;-</span> <span class="cn">NULL</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth)</span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  12 variables:</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ black   : num  0 1 1 1 1 1 0 1 0 0 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ white   : num  1 0 0 0 0 0 1 0 1 1 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ other   : num  0 0 0 0 0 0 0 0 0 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据分割" class="level2" data-number="32.2">
-<h2 data-number="32.2" class="anchored" data-anchor-id="数据分割"><span class="header-section-number">32.2</span> 数据分割</h2>
-<p>把数据随机划分为训练集、测试集,划分比例为7:3</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lowbirth),<span class="fu">nrow</span>(lowbirth)<span class="sc">*</span><span class="fl">0.7</span>)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lowbirth[ind,]</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lowbirth[<span class="sc">-</span> ind, ]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="训练集的校准曲线" class="level2" data-number="32.3">
-<h2 data-number="32.3" class="anchored" data-anchor-id="训练集的校准曲线"><span class="header-section-number">32.3</span> 训练集的校准曲线</h2>
-<p>在之前的推文中这种二分类资料训练集的校准曲线给大家介绍了非常多的方法:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/Nw_-jIXF6C5xY_iOGlb91g">logistic回归校准曲线的绘制</a></li>
-</ul>
-<p>这里我们直接使用<code>rms</code>包实现,已在上面的推文中详细介绍过了,这里就不多解释了。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(train_df)</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>cal1 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit1, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">100</span>)</span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal1,</span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
-<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span></span>
-<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a>     ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-logistic-test_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
-</div>
-<pre><code>## 
-## n=395   Mean absolute error=0.01   Mean squared error=0.00016
-## 0.9 Quantile of absolute error=0.021</code></pre>
-</div>
-</section>
-<section id="测试集校准曲线方法1" class="level2" data-number="32.4">
-<h2 data-number="32.4" class="anchored" data-anchor-id="测试集校准曲线方法1"><span class="header-section-number">32.4</span> 测试集校准曲线方法1</h2>
-<p>测试集的校准曲线对于<code>logistic</code>回归很简单,任何可以计算概率的算法都可以轻松画出训练集、测试集的校准曲线,无非就是计算实际概率和预测概率而已。</p>
-<p>二分类资料测试集的校准曲线在之前的推文中也做过很多次介绍,比如:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/012hxUxGjkLFWQHodKmCEw">tidymodels不能画校准曲线?</a></li>
-<li><a href="https://mp.weixin.qq.com/s/RBYGP3rIheMoh27eegGRPg">mlr3的校准曲线也是一样画!</a></li>
-<li><a href="https://mp.weixin.qq.com/s/sUGkScPZ_RG3lGTeqsRXAA">tidymodels支持校准曲线了</a></li>
-</ul>
-<p>上面是3种实现方法,其实本质是一样的,前2种是手动计算,最后一种省去了自己计算的步骤,直接给你图形,并且完美继承<code>yardstick</code>的用法。</p>
-<p>这里再给大家介绍3种方法,加上上面介绍的方法,<strong>logistic测试集的校准曲线一共给大家介绍了6种方法!</strong></p>
-<p>这个方法是基于<code>rms</code>包的。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 首先获取测试集的预测结果</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>phat <span class="ot">&lt;-</span> <span class="fu">predict</span>(fit1, test_df, <span class="at">type =</span> <span class="st">'fitted'</span>)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 直接使用val.prob即可实现</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="fu">val.prob</span>(phat, test_df<span class="sc">$</span>dead,<span class="at">statloc =</span> F,<span class="at">cex =</span> <span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-logistic-test_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
-</div>
-<pre><code>##         Dxy     C (ROC)          R2           D    D:Chi-sq         D:p 
-##  0.74384874  0.87192437  0.42860880  0.28181902 48.90923309          NA 
-##           U    U:Chi-sq         U:p           Q       Brier   Intercept 
-## -0.01085663  0.15437207  0.92571762  0.29267565  0.08935692  0.12059928 
-##       Slope        Emax         E90        Eavg         S:z         S:p 
-##  1.08566597  0.29112563  0.07879941  0.03183303 -0.54088957  0.58858370</code></pre>
-</div>
-<p>这个结果,你可以把它当做测试集的校准曲线用,但其实<code>val.prob</code>函数的真正作用是实现外部验证数据(external validation)的校准曲线,这一点在Harrell大神写的书:<code>Regression Modeling Strategies</code> 中写的很清楚,或者你可以看函数的帮助文档。</p>
-<p>所以这个方法没有给你重抽样的选择,因为作者认为外部验证是对模型最后的检验,不需要重抽样。</p>
-<p><strong>你可能在文献看见过训练集和测试集的校准曲线都是上面那张图的样式,类似下面这张图展示的,训练集和测试集一样的图,实现方法也很简单。</strong></p>
-<p><img src="figs/Snipaste_2023-04-01_19-21-30.png" class="img-fluid"></p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取训练集的预测结果</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>phat_train <span class="ot">&lt;-</span> <span class="fu">predict</span>(fit1, train_df, <span class="at">type =</span> <span class="st">'fitted'</span>)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 直接使用val.prob即可实现</span></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">val.prob</span>(phat_train, train_df<span class="sc">$</span>dead,<span class="at">cex =</span> <span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-logistic-test_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-<pre><code>##           Dxy       C (ROC)            R2             D      D:Chi-sq 
-##  7.595104e-01  8.797552e-01  4.274140e-01  2.924665e-01  1.165243e+02 
-##           D:p             U      U:Chi-sq           U:p             Q 
-##            NA -5.063291e-03 -8.526513e-14  1.000000e+00  2.975298e-01 
-##         Brier     Intercept         Slope          Emax           E90 
-##  9.802204e-02 -8.039794e-10  1.000000e+00  3.476792e-02  3.030223e-02 
-##          Eavg           S:z           S:p 
-##  1.012113e-02 -1.990865e-01  8.421951e-01</code></pre>
-</div>
-<p>上面这张图可以用作训练集的校准曲线。</p>
-</section>
-<section id="测试集校准曲线方法2" class="level2" data-number="32.5">
-<h2 data-number="32.5" class="anchored" data-anchor-id="测试集校准曲线方法2"><span class="header-section-number">32.5</span> 测试集校准曲线方法2</h2>
-<p>如果你非要对测试集的校准曲线进行重抽样,其实也很简单(除了<code>rms</code>还有很多手段可实现)。</p>
-<p>这里还是用<code>rms</code>包实现。</p>
-<p>二分类资料的校准曲线就是计算下实际概率和预测概率就好了,基于这个原理,我们可以自己实现,方法如下:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 首先也是获取测试集的预测值</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>phat <span class="ot">&lt;-</span> <span class="fu">predict</span>(fit1, test_df)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>phat <span class="ot">&lt;-</span> phat <span class="co"># 添加到测试集中</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 以预测值为自变量,结果变量为因变量,在测试集中建立逻辑回归</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> phat, <span class="at">data =</span> test_df,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 对这个逻辑回归画校准曲线即可</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit2, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">100</span>)</span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2,</span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a>     ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-logistic-test_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-<pre><code>## 
-## n=170   Mean absolute error=0.031   Mean squared error=0.00183
-## 0.9 Quantile of absolute error=0.078</code></pre>
-</div>
-<p>这个图就是测试集的校准曲线,并且使用了<code>bootstrap</code>方法进行了重抽样。</p>
-<p>可以看到其实两张图是一样的,唯一不同是我们手动实现的方法多了重抽样100次的矫正曲线,其余就都是一样的了!</p>
-</section>
-<section id="测试集校准曲线方法3" class="level2" data-number="32.6">
-<h2 data-number="32.6" class="anchored" data-anchor-id="测试集校准曲线方法3"><span class="header-section-number">32.6</span> 测试集校准曲线方法3</h2>
-<p>使用<code>riskRegression</code>包。这是我推荐的方法,这个包真的好用!你可能还听说过另一个包:<code>pec</code>,<code>riskRegression</code>正是<code>pec</code>的升级版,目前大部分功能都已经转移到<code>riskRegression</code>了。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 训练集建立模型</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df, <span class="at">family =</span> binomial)</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">## riskRegression version 2023.09.08</span></span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 测试集的表现</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>score <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit"</span><span class="ot">=</span>fit),</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> dead <span class="sc">~</span> <span class="dv">1</span>,</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> test_df, <span class="co"># 这里选择测试集即可</span></span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>               <span class="at">metrics =</span> <span class="fu">c</span>(<span class="st">"auc"</span>,<span class="st">"brier"</span>),</span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">summary =</span> <span class="fu">c</span>(<span class="st">"risks"</span>,<span class="st">"IPA"</span>,<span class="st">"riskQuantile"</span>,<span class="st">"ibs"</span>),</span>
-<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
-<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>               <span class="at">null.model =</span> T,</span>
-<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
-<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">100</span>,</span>
-<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span></span>
-<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图即可</span></span>
-<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(score,<span class="at">col=</span><span class="st">"tomato"</span>,</span>
-<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
-<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>,</span>
-<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a>                <span class="at">bars =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-logistic-test_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>并且这个方法是可以返回数据自己用<code>ggplot2</code>美化的,详情参考<a href="https://mp.weixin.qq.com/s/Nw_-jIXF6C5xY_iOGlb91g">二分类资料校准曲线的绘制</a>,这里就不多介绍了。</p>
-<p><img src="figs/Snipaste_2023-04-01_19-22-43.png" class="img-fluid"></p>
-<p>logistic的校准曲线真的很简单,Cox回归测试集的校准曲下次再介绍。</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./calibration-logistic.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./calibration-cox.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-3-1.png b/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-3-1.png
deleted file mode 100644
index 8f26af6..0000000
Binary files a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-3-1.png and /dev/null differ
diff --git a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-4-1.png b/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-4-1.png
deleted file mode 100644
index 050a536..0000000
Binary files a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-4-1.png and /dev/null differ
diff --git a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-6-1.png b/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 1a66269..0000000
Binary files a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-7-1.png b/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index 0d1c536..0000000
Binary files a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-8-1.png b/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-8-1.png
deleted file mode 100644
index e61724a..0000000
Binary files a/docs/calibration-logistic-test_files/figure-html/unnamed-chunk-8-1.png and /dev/null differ
diff --git a/docs/calibration-logistic.html b/docs/calibration-logistic.html
index 9d06852..4ee6708 100644
--- a/docs/calibration-logistic.html
+++ b/docs/calibration-logistic.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 31&nbsp; logistic回归校准曲线绘制</title>
+<title>29&nbsp; 分类模型校准曲线绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./calibration-logistic-test.html" rel="next">
+<link href="./hosmer-lemeshow检验.html" rel="next">
 <link href="./idi.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-logistic.html"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-logistic.html"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,30 +493,38 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据" id="toc-加载数据" class="nav-link active" data-scroll-target="#加载数据"><span class="header-section-number">31.1</span> 加载数据</a></li>
-  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">31.2</span> 方法1:rms</a></li>
-  <li><a href="#方法2riskregression" id="toc-方法2riskregression" class="nav-link" data-scroll-target="#方法2riskregression"><span class="header-section-number">31.3</span> 方法2:riskRegression</a></li>
-  <li><a href="#多个calibration画在一起" id="toc-多个calibration画在一起" class="nav-link" data-scroll-target="#多个calibration画在一起"><span class="header-section-number">31.4</span> 多个calibration画在一起</a>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">29.1</span> 准备数据</a></li>
+  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">29.2</span> 方法1:rms</a>
   <ul class="collapse">
-  <li><a href="#方法1" id="toc-方法1" class="nav-link" data-scroll-target="#方法1"><span class="header-section-number">31.4.1</span> 方法1</a></li>
-  <li><a href="#方法2" id="toc-方法2" class="nav-link" data-scroll-target="#方法2"><span class="header-section-number">31.4.2</span> 方法2</a></li>
+  <li><a href="#训练集" id="toc-训练集" class="nav-link" data-scroll-target="#训练集"><span class="header-section-number">29.2.1</span> 训练集</a></li>
+  <li><a href="#测试集" id="toc-测试集" class="nav-link" data-scroll-target="#测试集"><span class="header-section-number">29.2.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法2riskregression" id="toc-方法2riskregression" class="nav-link" data-scroll-target="#方法2riskregression"><span class="header-section-number">29.3</span> 方法2:riskRegression</a>
+  <ul class="collapse">
+  <li><a href="#训练集-1" id="toc-训练集-1" class="nav-link" data-scroll-target="#训练集-1"><span class="header-section-number">29.3.1</span> 训练集</a></li>
+  <li><a href="#测试集-1" id="toc-测试集-1" class="nav-link" data-scroll-target="#测试集-1"><span class="header-section-number">29.3.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法3tidymodels" id="toc-方法3tidymodels" class="nav-link" data-scroll-target="#方法3tidymodels"><span class="header-section-number">29.4</span> 方法3:tidymodels</a>
+  <ul class="collapse">
+  <li><a href="#训练集-2" id="toc-训练集-2" class="nav-link" data-scroll-target="#训练集-2"><span class="header-section-number">29.4.1</span> 训练集</a></li>
+  <li><a href="#测试集-2" id="toc-测试集-2" class="nav-link" data-scroll-target="#测试集-2"><span class="header-section-number">29.4.2</span> 测试集</a></li>
   </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-logistic.html"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></h1>
+<h1 class="title"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></h1>
 </div>
 
 
@@ -547,17 +537,17 @@ <h1 class="title"><span class="chapter-number">31</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>评价模型的好坏主要看区分度和校准度,校准度方面目前最推荐的还是校准曲线(calibration curve),可用于评价模型预测概率和实际概率一致性。</p>
-<p>除了我介绍的这几种方法外,还有<code>predtools</code>、<code>caret</code>等可以用于分类变量的校准曲线绘制。如果你明白了校准曲线就是真实概率和预测概率的分箱平均值散点图,你其实可以自己画,并不局限于logistic和cox,像随机森林、lasso、SVM等很多模型都可以画出校准曲线。</p>
-<p>拟合优度检验(Hosmer-Lemeshow goodness-of-fit test)可以用来比较预测概率和实际概率是否有显著性差异,但是这个检验也只是能说明两者有没有统计学意义,并不能说明好多少、差多少。</p>
-<section id="加载数据" class="level2" data-number="31.1">
-<h2 data-number="31.1" class="anchored" data-anchor-id="加载数据"><span class="header-section-number">31.1</span> 加载数据</h2>
-<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中<em>dead</em>这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量。</p>
-<blockquote class="blockquote">
-<p>注意:需要把分类变量因子化,对于无序分类变量,需要设置哑变量!</p>
-</blockquote>
+<p>除了我介绍的这几种方法外,还有<code>predtools</code>、<code>caret</code>等可以用于分类变量的校准曲线绘制。如果你明白了校准曲线就是真实概率和预测概率的分箱平均值散点图,你其实可以自己画,并不局限于逻辑回归和cox回归,像随机森林、lasso、SVM等很多模型都可以画出校准曲线。</p>
+<p>拟合优度检验(Hosmer-Lemeshow)可以用来比较预测概率和实际概率是否有显著性差异,但是这个检验也只是能说明两者有没有统计学意义,并不能说明好多少、差多少。</p>
+<section id="准备数据" class="level2" data-number="29.1">
+<h2 data-number="29.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">29.1</span> 准备数据</h2>
+<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿能否存活的数据集,其中<code>dead</code>这一列是结果变量,0代表存活,1代表死亡,但是存活和死亡的比例严重失衡,存活的只有94个,死亡的有471个。其余列都是预测变量。该数据集没有缺失值,也没有高度相关的自变量。</p>
+<p>获取<code>lowbirth</code>数据请在公众号:医学和生信笔记,后台回复<em>20220520</em>。或者到粉丝QQ群文件自取。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
@@ -577,309 +567,482 @@ <h2 data-number="31.1" class="anchored" data-anchor-id="加载数据"><span clas
 <span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
 <span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
 <span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : chr  "female" "female" "male" "female" ...</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 看下结果变量的比例</span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="fu">table</span>(lowbirth<span class="sc">$</span>dead)</span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##   0   1 </span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 471  94</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p><code>race</code>这一列有4个类别,分别表示4个人种,但是东方人和美洲人太少了,这样会影响模型拟合,所以我们这两个人种变成<code>other</code>:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 其中两个人种人数太少了</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">table</span>(lowbirth<span class="sc">$</span>race)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##           black native American        oriental           white </span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">##             325              14               4             222</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 把人数太少的变成other</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>lowbirth[lowbirth <span class="sc">==</span> <span class="st">"oriental"</span>] <span class="ot">&lt;-</span> <span class="st">"other"</span></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>lowbirth[lowbirth <span class="sc">==</span> <span class="st">"native American"</span>] <span class="ot">&lt;-</span> <span class="st">"other"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>在R语言中一定要把分类变量因子型,这样才能在建模时进行正确的编码:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor)</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>         <span class="co">#dead = factor(dead, levels=c(1,0),labels=c("live","death"))</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>         )</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth)</span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : Factor w/ 3 levels "black","other",..: 3 1 1 1 1 1 3 1 3 3 ...</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<div class="callout callout-style-default callout-note callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+注释
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>如果结果变量是分类变量,我建议把结果变量也变为因子型,并设定好因子的顺序,但是对于<code>rms</code>来说,最好是使用数值型,所以这里我没改。</p>
 </div>
-<p>简单的把人种分为白色和黑色人种(无序分类变量需要设置哑变量),再去掉<code>race</code>这一列,然后其余分类变量因子化。</p>
+</div>
+<p>然后把数据划分为训练集、测试集,划分比例为7:3:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>tmp <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor),</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>         <span class="at">vent =</span> <span class="fu">factor</span>(vent),</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>         <span class="at">black =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"black"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>         <span class="at">white =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"white"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>         <span class="at">other =</span> <span class="fu">ifelse</span>(race <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>),<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span> race)</span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(tmp)</span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 565</span></span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 12</span></span>
-<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…</span></span>
-<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…</span></span>
-<span id="cb3-25"><a href="#cb3-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…</span></span>
-<span id="cb3-26"><a href="#cb3-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…</span></span>
-<span id="cb3-27"><a href="#cb3-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…</span></span>
-<span id="cb3-28"><a href="#cb3-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…</span></span>
-<span id="cb3-29"><a href="#cb3-29" aria-hidden="true" tabindex="-1"></a><span class="do">## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…</span></span>
-<span id="cb3-30"><a href="#cb3-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…</span></span>
-<span id="cb3-31"><a href="#cb3-31" aria-hidden="true" tabindex="-1"></a><span class="do">## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…</span></span>
-<span id="cb3-32"><a href="#cb3-32" aria-hidden="true" tabindex="-1"></a><span class="do">## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…</span></span>
-<span id="cb3-33"><a href="#cb3-33" aria-hidden="true" tabindex="-1"></a><span class="do">## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…</span></span>
-<span id="cb3-34"><a href="#cb3-34" aria-hidden="true" tabindex="-1"></a><span class="do">## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lowbirth),<span class="fu">nrow</span>(lowbirth)<span class="sc">*</span><span class="fl">0.7</span>)</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lowbirth[ind,]</span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lowbirth[<span class="sc">-</span> ind, ]</span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 395  10</span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 170  10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>接下来就是绘制校准曲线,首先我们会在训练集拟合模型,并使用bootstrap法进行内部验证,然后绘制内部验证的校准曲线,最后绘制测试集的校准曲线(其实就是外部验证集的校准曲线,但是我们数据量不多,只能这样演示了)。</p>
 </section>
-<section id="方法1rms" class="level2" data-number="31.2">
-<h2 data-number="31.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">31.2</span> 方法1:rms</h2>
-<p>使用<code>rms</code>包。</p>
+<section id="方法1rms" class="level2" data-number="29.2">
+<h2 data-number="29.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">29.2</span> 方法1:rms</h2>
+<p><code>rms</code>可以使用内部重抽样的方法绘制校准曲线,可以选择bootstrap法或者交叉验证法,下面我们选择500次bootstrap的内部验证方法:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:dplyr':</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     src, summarize</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(tmp)</span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit2, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 必须先打包数据</span></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(train_df)</span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立模型</span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df, <span class="at">x=</span>T,<span class="at">y=</span>T)</span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 进行内部验证</span></span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit2, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>接下来就是画图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2,</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span>,</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.8</span>,</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>     <span class="co">#subtitles = FALSE,</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">legend =</span> <span class="cn">FALSE</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>     ) </span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## n=565   Mean absolute error=0.012   Mean squared error=0.00029</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9 Quantile of absolute error=0.032</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)], </span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'l'</span>, <span class="co">#连线的类型,可以是"p","b","o"</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co">#连线的粗细</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co">#点的形状,可以是0-20</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"#2166AC"</span>) <span class="co">#连线的颜色</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.orig"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,</span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="dv">2</span>, <span class="co">#对角线为虚线</span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co">#对角线的粗细</span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"#224444"</span>) <span class="co">#对角线的颜色</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.2</span>,</span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="st">"Apparent"</span>,<span class="st">"Bias-corrected"</span>,<span class="st">"Ideal"</span>), </span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">1</span>), </span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">3</span>), </span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"black"</span>,<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>), </span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<section id="训练集" class="level3" data-number="29.2.1">
+<h3 data-number="29.2.1" class="anchored" data-anchor-id="训练集"><span class="header-section-number">29.2.1</span> 训练集</h3>
+<p>接下来就是画图,可以直接使用<code>plot()</code>函数:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>还可以计算hosmer-lemeshow的P值。</p>
+<pre><code>## 
+## n=395   Mean absolute error=0.009   Mean squared error=0.00013
+## 0.9 Quantile of absolute error=0.018</code></pre>
+</div>
+<p>也可以提取数据,自己画,以实现更多的细节控制:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 进行hosmer-lemeshow 检验</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ResourceSelection)</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">## ResourceSelection 0.3-6   2023-06-27</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>model_glm <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp, <span class="at">family =</span> binomial)</span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co"># hosmer-lemeshow 检验</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>p.hoslem <span class="ot">&lt;-</span> <span class="fu">hoslem.test</span>(model_glm<span class="sc">$</span>y, <span class="fu">fitted</span>(model_glm), <span class="at">g=</span><span class="dv">10</span>)<span class="sc">$</span>p.value</span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>p.hoslem</span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.2340365</span></span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建 calibration</span></span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit2, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2,</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span>,</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.8</span>,</span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>     <span class="co">#subtitles = FALSE,</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">legend =</span> <span class="cn">FALSE</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>     ) </span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## n=395   Mean absolute error=0.009   Mean squared error=0.00013</span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9 Quantile of absolute error=0.018</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)], </span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'l'</span>, <span class="co">#连线的类型,可以是"p","b","o"</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co">#连线的粗细</span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co">#点的形状,可以是0-20</span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"#2166AC"</span>) <span class="co">#连线的颜色</span></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.orig"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,</span>
+<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="dv">2</span>, <span class="co">#对角线为虚线</span></span>
+<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co">#对角线的粗细</span></span>
+<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"#224444"</span>) <span class="co">#对角线的颜色</span></span>
+<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.2</span>,</span>
+<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="st">"Ideal"</span>,<span class="st">"Bias-corrected"</span>,<span class="st">"Apparent"</span>), </span>
+<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">1</span>), </span>
+<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">3</span>), </span>
+<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"black"</span>,<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>), </span>
+<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span></span>
+<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
-<p>画图还是和上面一样,就是多了一个添加 hosmer-lemeshow P值的步骤。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal2,</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span>,</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.8</span>,</span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>     <span class="co">#subtitles = FALSE,</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">legend =</span> <span class="cn">FALSE</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>     ) </span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">## n=565   Mean absolute error=0.012   Mean squared error=0.00028</span></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9 Quantile of absolute error=0.032</span></span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)], </span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'l'</span>, <span class="co">#连线的类型,可以是"p","b","o"</span></span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co">#连线的粗细</span></span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co">#点的形状,可以是0-20</span></span>
-<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"#2166AC"</span>) <span class="co">#连线的颜色</span></span>
-<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.orig"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
-<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,</span>
-<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="dv">2</span>, <span class="co">#对角线为虚线</span></span>
-<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co">#对角线的粗细</span></span>
-<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"#224444"</span>)<span class="co">#对角线的颜色</span></span>
-<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.2</span>,</span>
-<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="st">"Apparent"</span>,<span class="st">"Bias-corrected"</span>,<span class="st">"Ideal"</span>), </span>
-<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">1</span>), </span>
-<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">3</span>), </span>
-<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"black"</span>,<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>), </span>
-<span id="cb7-28"><a href="#cb7-28" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span></span>
-<span id="cb7-29"><a href="#cb7-29" aria-hidden="true" tabindex="-1"></a>)</span>
-<span id="cb7-30"><a href="#cb7-30" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="fu">bquote</span>(<span class="st">"Hosmer-Lemeshow "</span><span class="sc">~</span><span class="fu">italic</span>(P)<span class="sc">~</span><span class="st">" = "</span><span class="sc">~</span>.(<span class="fu">round</span>(p.hoslem,<span class="dv">3</span>))),<span class="at">adj =</span> <span class="dv">0</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</div>
+<p>这个图就是训练集的校准曲线,同时是经过500次bootstrap内部验证过的校准曲线。</p>
+<p>虚线是理想情况下的校准曲线,红线是模型的校准曲线,蓝线是经过校正的校准曲线。</p>
+</section>
+<section id="测试集" class="level3" data-number="29.2.2">
+<h3 data-number="29.2.2" class="anchored" data-anchor-id="测试集"><span class="header-section-number">29.2.2</span> 测试集</h3>
+<p>然后是外部验证集的校准曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 首先获取测试集的预测结果</span></span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>phat <span class="ot">&lt;-</span> <span class="fu">predict</span>(fit2, test_df, <span class="at">type =</span> <span class="st">'fitted'</span>)</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 直接使用val.prob即可实现,statloc=F可不显示各种指标</span></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 赋值给aa是为了减少输出信息</span></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">val.prob</span>(phat, test_df<span class="sc">$</span>dead,<span class="at">cex =</span> <span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
+</div>
+<p>你可能在文献看见过训练集和测试集的校准曲线都是下面这张图展示的,训练集和测试集一样的图,实现方法也很简单。</p>
+<p><img src="figs/Snipaste_2023-04-01_19-21-30.png" class="img-fluid"></p>
+<p>上面是测试集(即外部验证集)的校准曲线,我们也可以用同样的方法绘制训练集的校准曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取训练集的预测结果</span></span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>phat_train <span class="ot">&lt;-</span> <span class="fu">predict</span>(fit2, train_df, <span class="at">type =</span> <span class="st">'fitted'</span>)</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 直接使用val.prob即可实现</span></span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">val.prob</span>(phat_train, train_df<span class="sc">$</span>dead,<span class="at">cex =</span> <span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>这张图就是内部验证集(或者叫训练集)的校准曲线了。</p>
+<p>这个图上有很多指标,其实就在函数的帮助文档里,我就是帮大家翻译一下:</p>
+<ul>
+<li>Dxy:预测概率与实际概率的相关性,Dxy=2C-1</li>
+<li>C:ROC曲线下面积。</li>
+<li>R2:复决定系数,越大越好,最大是1。</li>
+<li>D:discrimination index,区分度指数,越大越好。</li>
+<li>U:unreliability index,不可靠指数,越小越好。</li>
+<li>Q:quality index,质量指数,越大越好。</li>
+<li>Brier:布里尔分数,预测概率与实际概率的均方误差,brier越小,校准效果越好。</li>
+<li>Intercept:截距,为0的时候最好。</li>
+<li>Slope:斜率,为1的时候最好。</li>
+<li>Emax:预测概率和实际概率的最大绝对差。</li>
+<li>E90:预测概率和实际概率差值的90%分位数</li>
+<li>Eavg:预测概率和实际概率的平均差值。</li>
+<li>S:z:Z检验的z值</li>
+<li>S:p:Z检验的p值。p=0.842说明拟合效果好,P&gt;0.05说明拟合线和参考线无统计学差异,吻合度高。</li>
+</ul>
+</section>
 </section>
-<section id="方法2riskregression" class="level2" data-number="31.3">
-<h2 data-number="31.3" class="anchored" data-anchor-id="方法2riskregression"><span class="header-section-number">31.3</span> 方法2:riskRegression</h2>
-<p>使用<code>riskRegression</code>包。</p>
+<section id="方法2riskregression" class="level2" data-number="29.3">
+<h2 data-number="29.3" class="anchored" data-anchor-id="方法2riskregression"><span class="header-section-number">29.3</span> 方法2:riskRegression</h2>
+<p><code>riskRegression</code>也是非常好用的R包,使用起来也非常简单,可同时实现内部验证集和外部验证集的校准曲线绘制。</p>
+<p>首先是建立一个模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp, <span class="at">family =</span> binomial)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df, <span class="at">family =</span> binomial)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## riskRegression version 2023.09.08</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>fit22 <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit"</span><span class="ot">=</span>fit2),</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> dead <span class="sc">~</span> <span class="dv">1</span>,</span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> tmp,</span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">metrics =</span> <span class="fu">c</span>(<span class="st">"auc"</span>,<span class="st">"brier"</span>),</span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">summary =</span> <span class="fu">c</span>(<span class="st">"risks"</span>,<span class="st">"IPA"</span>,<span class="st">"riskQuantile"</span>,<span class="st">"ibs"</span>),</span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">null.model =</span> T,</span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(fit22,<span class="at">col=</span><span class="st">"tomato"</span>,</span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>,</span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a>                <span class="at">bars =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<section id="训练集-1" class="level3" data-number="29.3.1">
+<h3 data-number="29.3.1" class="anchored" data-anchor-id="训练集-1"><span class="header-section-number">29.3.1</span> 训练集</h3>
+<p>然后是使用<code>Score()</code>函数,最后使用<code>plotCalibration()</code>函数画图即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>fit22 <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit"</span><span class="ot">=</span>fit2),</span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> dead <span class="sc">~</span> <span class="dv">1</span>,</span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> train_df,</span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">metrics =</span> <span class="fu">c</span>(<span class="st">"auc"</span>,<span class="st">"brier"</span>),</span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>               <span class="co">#summary = c("risks","IPA","riskQuantile","ibs"),</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">null.model =</span> T,</span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
+<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span> <span class="co"># 每组的人数</span></span>
+<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(fit22,<span class="at">col=</span><span class="st">"tomato"</span>,</span>
+<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"quantile"</span>, <span class="co"># 默认是nne,quantile是分组计算的传统方法</span></span>
+<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
+<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>,</span>
+<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a>                <span class="at">brier.in.legend =</span> F, <span class="co"># 不显示brier分数</span></span>
+<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>                <span class="at">auc.in.legend =</span> F,  <span class="co"># 不显示auc值</span></span>
+<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>                <span class="at">bars =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>非常神奇的是,还可以用<code>ggplot2</code>来画!</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>plotdata <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(fit22,<span class="at">plot =</span> F,<span class="at">method =</span> <span class="st">"nne"</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>                            <span class="co">#bandwidth = 0.1</span></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>                            )</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plotdata<span class="sc">$</span>plotFrames<span class="sc">$</span>fit, <span class="fu">aes</span>(<span class="at">x=</span>Pred,<span class="at">y=</span>Obs))<span class="sc">+</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">color=</span><span class="st">"tomato"</span>,<span class="at">linewidth=</span><span class="fl">1.5</span>)<span class="sc">+</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Predicted Risk"</span>)<span class="sc">+</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Observerd Risk"</span>)<span class="sc">+</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">lty=</span><span class="dv">2</span>)<span class="sc">+</span></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_rug</span>(<span class="at">color=</span><span class="st">"grey"</span>)<span class="sc">+</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>plotdata <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(fit22,<span class="at">plot =</span> F,<span class="at">method =</span> <span class="st">"quantile"</span></span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>                            <span class="co">#bandwidth = 0.1</span></span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>                            )</span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plotdata<span class="sc">$</span>plotFrames<span class="sc">$</span>fit, <span class="fu">aes</span>(<span class="at">x=</span>Pred,<span class="at">y=</span>Obs))<span class="sc">+</span></span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">color=</span><span class="st">"tomato"</span>,<span class="at">linewidth=</span><span class="fl">1.5</span>)<span class="sc">+</span></span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Predicted Risk"</span>)<span class="sc">+</span></span>
+<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Observerd Risk"</span>)<span class="sc">+</span></span>
+<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">lty=</span><span class="dv">2</span>)<span class="sc">+</span></span>
+<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_rug</span>(<span class="at">color=</span><span class="st">"grey"</span>)<span class="sc">+</span></span>
+<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>除了这种校准曲线,<code>riskRegression</code>还提供另外一种预测风险的频率分布图(这个也就是前面提到过的预测概率直方图):</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(fit22,</span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"quantile"</span>, <span class="co"># 默认是nne,quantile是分组计算的传统方法</span></span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">bars =</span> T, <span class="co"># 这里选择TRUE即可</span></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">q =</span> <span class="dv">10</span> <span class="co"># 把风险分为10组</span></span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>                )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>横坐标是风险分组,被分成了10组,纵坐标是风险的频率,黑色表示实际的频率,灰色表示预测的频率,两者之间越接近说明模型预测的越准确。</p>
+<p>这个图也是可以用<code>ggplot2</code>自己绘制的。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>plotdata <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(fit22,<span class="at">plot =</span> F,<span class="at">method =</span> <span class="st">"quantile"</span>,</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>                            <span class="at">bars =</span> T, </span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>                            <span class="at">q =</span> <span class="dv">10</span> )</span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>plotdata <span class="ot">&lt;-</span> plotdata<span class="sc">$</span>plotFrames<span class="sc">$</span>fit</span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>plotdata<span class="sc">$</span>risk <span class="ot">&lt;-</span> <span class="fu">rownames</span>(plotdata)</span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>plotdata <span class="ot">&lt;-</span> plotdata <span class="sc">%&gt;%</span> </span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>,<span class="at">names_to =</span> <span class="st">"type"</span>,<span class="at">values_to =</span> <span class="st">"values"</span>)</span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plotdata, <span class="fu">aes</span>(<span class="at">x=</span>risk,<span class="at">y=</span>values))<span class="sc">+</span></span>
+<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_bar</span>(<span class="at">position =</span> <span class="st">"dodge"</span>,<span class="fu">aes</span>(<span class="at">fill=</span>type),<span class="at">stat =</span> <span class="st">"identity"</span>)<span class="sc">+</span></span>
+<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="dv">1</span>,<span class="at">angle =</span> <span class="dv">30</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="960"></p>
+</figure>
 </div>
 </div>
+</div>
+<p>横坐标的大小和顺序还有点问题,大家需要的话可以自己慢慢调整,这里就不演示了。</p>
+</section>
+<section id="测试集-1" class="level3" data-number="29.3.2">
+<h3 data-number="29.3.2" class="anchored" data-anchor-id="测试集-1"><span class="header-section-number">29.3.2</span> 测试集</h3>
+<p>下面是绘制测试集(外部验证集)的校准曲线。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>fit22 <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"fit"</span><span class="ot">=</span>fit2),</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> dead <span class="sc">~</span> <span class="dv">1</span>,</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> test_df, <span class="co"># 这里写测试集即可</span></span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">metrics =</span> <span class="fu">c</span>(<span class="st">"auc"</span>,<span class="st">"brier"</span>),</span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>               <span class="co">#summary = c("risks","IPA","riskQuantile","ibs"),</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">null.model =</span> T,</span>
+<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
+<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
+<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span></span>
+<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a><span class="fu">plotCalibration</span>(fit22,<span class="at">col=</span><span class="st">"tomato"</span>,</span>
+<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"quantile"</span>, <span class="co"># 默认是nne,quantile是分组计算的传统方法</span></span>
+<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">xlab =</span> <span class="st">"Predicted Risk"</span>,</span>
+<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a>                <span class="at">ylab =</span> <span class="st">"Observerd RISK"</span>,</span>
+<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a>                <span class="at">brier.in.legend =</span> F, <span class="co"># 不显示brier分数</span></span>
+<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a>                <span class="at">auc.in.legend =</span> F,  <span class="co"># 不显示auc值</span></span>
+<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a>                <span class="at">bars =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>测试集也是可以绘制风险频率分布图的,同时也支持返回数据使用<code>ggplot2</code>绘制,这里就不再重复了。</p>
+</section>
 </section>
-<section id="多个calibration画在一起" class="level2" data-number="31.4">
-<h2 data-number="31.4" class="anchored" data-anchor-id="多个calibration画在一起"><span class="header-section-number">31.4</span> 多个calibration画在一起</h2>
-<section id="方法1" class="level3" data-number="31.4.1">
-<h3 data-number="31.4.1" class="anchored" data-anchor-id="方法1"><span class="header-section-number">31.4.1</span> 方法1</h3>
-<p>首先构建多个画图需要的结果:</p>
+<section id="方法3tidymodels" class="level2" data-number="29.4">
+<h2 data-number="29.4" class="anchored" data-anchor-id="方法3tidymodels"><span class="header-section-number">29.4</span> 方法3:tidymodels</h2>
+<p>这个方法是我目前最推荐的方法,它是基于<code>tidymodels</code>实现的,主要优势有以下几个:</p>
+<ul>
+<li>支持所有的<code>tidyverse</code>语法,</li>
+<li>支持所有的分类模型,</li>
+<li>使用语法一致,</li>
+<li>使用的统计方法清晰</li>
+</ul>
+<p>我下面给大家展示一下<strong>随机森林</strong>模型,其他模型都是完全一致的语法,只要换个“引擎”即可,学习起来非常简单。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>cal2 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit2, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> lowph <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black,</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>cal1 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit1, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>fit3 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent,</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>cal3 <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit3, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidymodels) <span class="co"># 注意版本,我的是1.1.1</span></span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 先把结果变量变成因子型</span></span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>lowbirth<span class="sc">$</span>dead <span class="ot">&lt;-</span> <span class="fu">factor</span>(lowbirth<span class="sc">$</span>dead,<span class="at">levels=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">0</span>),<span class="at">labels=</span><span class="fu">c</span>(<span class="st">"death"</span>,<span class="st">"live"</span>))</span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 划分数据</span></span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a>split <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(lowbirth, <span class="at">strata =</span> <span class="st">"dead"</span>, <span class="at">prop =</span> <span class="fl">0.7</span>)</span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">training</span>(split)</span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a>test <span class="ot">&lt;-</span> <span class="fu">testing</span>(split)</span>
+<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 重抽样方法选择,也就是内部验证方法</span></span>
+<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a>rs <span class="ot">&lt;-</span> <span class="fu">bootstraps</span>(train, <span class="at">times =</span> <span class="dv">500</span>)</span>
+<span id="cb18-15"><a href="#cb18-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-16"><a href="#cb18-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择模型,选择预处理,建立工作流</span></span>
+<span id="cb18-17"><a href="#cb18-17" aria-hidden="true" tabindex="-1"></a>rf_spec <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"ranger"</span>,<span class="at">trees =</span> <span class="dv">500</span>)</span>
+<span id="cb18-18"><a href="#cb18-18" aria-hidden="true" tabindex="-1"></a>rf_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,<span class="at">data =</span> train)</span>
+<span id="cb18-19"><a href="#cb18-19" aria-hidden="true" tabindex="-1"></a>rf_wf <span class="ot">&lt;-</span> <span class="fu">workflow</span>(<span class="at">preprocessor =</span> rf_rec, <span class="at">spec =</span> rf_spec)</span>
+<span id="cb18-20"><a href="#cb18-20" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-21"><a href="#cb18-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 开始建模</span></span>
+<span id="cb18-22"><a href="#cb18-22" aria-hidden="true" tabindex="-1"></a>rf_res <span class="ot">&lt;-</span> <span class="fu">fit_resamples</span>(rf_wf,</span>
+<span id="cb18-23"><a href="#cb18-23" aria-hidden="true" tabindex="-1"></a>                        <span class="at">resamples =</span> rs,</span>
+<span id="cb18-24"><a href="#cb18-24" aria-hidden="true" tabindex="-1"></a>                        <span class="at">metrics =</span> <span class="fu">metric_set</span>(roc_auc, sens, spec, mcc, f_meas, </span>
+<span id="cb18-25"><a href="#cb18-25" aria-hidden="true" tabindex="-1"></a>                                          j_index, brier_class),</span>
+<span id="cb18-26"><a href="#cb18-26" aria-hidden="true" tabindex="-1"></a>                        <span class="at">control =</span> <span class="fu">control_resamples</span>(<span class="at">save_pred =</span> T))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>然后使用基础函数画在一起即可:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(<span class="dv">1</span>,</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">type =</span> <span class="st">"n"</span>,</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Nomogram-prediced Probability"</span>,</span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span>,</span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.8</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>)</span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal1[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)], </span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'l'</span>, <span class="co">#连线的类型,可以是"p","b","o"</span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co">#连线的粗细</span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co">#点的形状,可以是0-20</span></span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"#2166AC"</span>) <span class="co">#连线的颜色</span></span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal2[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal3[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"skyblue"</span>)</span>
-<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,</span>
-<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="dv">2</span>, <span class="co">#对角线为虚线</span></span>
-<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co">#对角线的粗细</span></span>
-<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"#224444"</span>)<span class="co">#对角线的颜色</span></span>
-<span id="cb12-20"><a href="#cb12-20" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.2</span>,</span>
-<span id="cb12-21"><a href="#cb12-21" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="st">"fit1"</span>,<span class="st">"fit2"</span>,<span class="st">"fit3"</span>), </span>
-<span id="cb12-22"><a href="#cb12-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>), </span>
-<span id="cb12-23"><a href="#cb12-23" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">3</span>,<span class="dv">3</span>,<span class="dv">3</span>), </span>
-<span id="cb12-24"><a href="#cb12-24" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>,<span class="st">"skyblue"</span>), </span>
-<span id="cb12-25"><a href="#cb12-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span></span>
-<span id="cb12-26"><a href="#cb12-26" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<p>查看模型结果,我在建模时同时选择了7个评价指标,所以结果也会同时展示出来:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(rf_res)</span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 7 × 6</span></span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator  mean     n  std_err .config             </span></span>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;    &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 brier_class binary     0.111   500 0.000591 Preprocessor1_Model1</span></span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 f_meas      binary     0.415   500 0.00388  Preprocessor1_Model1</span></span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 j_index     binary     0.287   500 0.00392  Preprocessor1_Model1</span></span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 mcc         binary     0.359   500 0.00394  Preprocessor1_Model1</span></span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 roc_auc     binary     0.835   500 0.00136  Preprocessor1_Model1</span></span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 sens        binary     0.337   500 0.00427  Preprocessor1_Model1</span></span>
+<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 7 spec        binary     0.950   500 0.00107  Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>所有指标都是通过500次bootstrap的内部重抽样得到的,并且同时给出了均值和标准差,很容易通过计算得到可信区间,比如95%的可信区间就是:均值±1.96*标准误:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算置信区间</span></span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(rf_res) <span class="sc">%&gt;%</span> </span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">select</span>(<span class="dv">1</span>,<span class="dv">3</span>,<span class="dv">5</span>) <span class="sc">%&gt;%</span> </span>
+<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">lower =</span> mean <span class="sc">-</span> <span class="fl">1.96</span><span class="sc">*</span>std_err,</span>
+<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a>         <span class="at">upper =</span> mean <span class="sc">+</span> <span class="fl">1.96</span><span class="sc">*</span>std_err)</span>
+<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 7 × 5</span></span>
+<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric      mean  std_err lower upper</span></span>
+<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;dbl&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
+<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 brier_class 0.111 0.000591 0.109 0.112</span></span>
+<span id="cb20-10"><a href="#cb20-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 f_meas      0.415 0.00388  0.407 0.422</span></span>
+<span id="cb20-11"><a href="#cb20-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 j_index     0.287 0.00392  0.279 0.294</span></span>
+<span id="cb20-12"><a href="#cb20-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 mcc         0.359 0.00394  0.351 0.367</span></span>
+<span id="cb20-13"><a href="#cb20-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 roc_auc     0.835 0.00136  0.832 0.838</span></span>
+<span id="cb20-14"><a href="#cb20-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 sens        0.337 0.00427  0.328 0.345</span></span>
+<span id="cb20-15"><a href="#cb20-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 7 spec        0.950 0.00107  0.948 0.952</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<section id="训练集-2" class="level3" data-number="29.4.1">
+<h3 data-number="29.4.1" class="anchored" data-anchor-id="训练集-2"><span class="header-section-number">29.4.1</span> 训练集</h3>
+<p>画校准曲线也只要1行代码即可,无缝衔接,而且是基于<code>ggplot2</code>绘制的,风格更加统一:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(probably)</span>
+<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 3种方法</span></span>
+<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a><span class="fu">cal_plot_breaks</span>(rf_res,<span class="at">num_breaks =</span> <span class="dv">9</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">cal_plot_logistic</span>(rf_res)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-20-2.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="fu">cal_plot_windowed</span>(rf_res)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-20-3.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="方法2" class="level3" data-number="31.4.2">
-<h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="header-section-number">31.4.2</span> 方法2</h3>
+<section id="测试集-2" class="level3" data-number="29.4.2">
+<h3 data-number="29.4.2" class="anchored" data-anchor-id="测试集-2"><span class="header-section-number">29.4.2</span> 测试集</h3>
+<p>以上是训练集的校准曲线,也就是内部验证的校准曲线,那么测试集(也就是外部验证集)的校准曲线如何绘制呢?</p>
+<p>首先要把训练好的模型应用到测试集上,获取测试集的预测结果:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> lowph <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black,<span class="at">data =</span> tmp,<span class="at">family=</span>binomial)</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp, <span class="at">family =</span> binomial)</span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>fit3 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent,<span class="at">data=</span>tmp,</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span>binomial)</span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>fit_all <span class="ot">&lt;-</span> <span class="fu">Score</span>(<span class="fu">list</span>(<span class="st">"Fit1"</span><span class="ot">=</span>fit1,</span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>                      <span class="st">"Fit2"</span><span class="ot">=</span>fit2,</span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>                      <span class="st">"Fit3"</span><span class="ot">=</span>fit3</span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>                      ),</span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">formula =</span> dead <span class="sc">~</span> <span class="dv">1</span>,</span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">data =</span> tmp,</span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>               <span class="at">metrics =</span> <span class="fu">c</span>(<span class="st">"auc"</span>,<span class="st">"brier"</span>),</span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a>               <span class="at">summary =</span> <span class="fu">c</span>(<span class="st">"risks"</span>,<span class="st">"IPA"</span>,<span class="st">"riskQuantile"</span>,<span class="st">"ibs"</span>),</span>
-<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>               <span class="at">plots =</span> <span class="st">"calibration"</span>,</span>
-<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>               <span class="at">null.model =</span> T,</span>
-<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>               <span class="at">conf.int =</span> T,</span>
-<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a>               <span class="at">B =</span> <span class="dv">500</span>,</span>
-<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>               <span class="at">M =</span> <span class="dv">50</span></span>
-<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a>data_all <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(fit_all,<span class="at">plot =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>pred_test <span class="ot">&lt;-</span> <span class="fu">last_fit</span>(rf_wf, <span class="at">split =</span> split)</span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看模型在测试集的表现</span></span>
+<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(pred_test)</span>
+<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 3 × 4</span></span>
+<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .estimate .config             </span></span>
+<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy    binary         0.860 Preprocessor1_Model1</span></span>
+<span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc     binary         0.836 Preprocessor1_Model1</span></span>
+<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 brier_class binary         0.108 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>接下来数据稍作变换,就可以画图了!</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>plot_df <span class="ot">&lt;-</span> <span class="fu">bind_rows</span>(data_all<span class="sc">$</span>plotFrames) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">fits =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="st">"fit1"</span>,<span class="st">"fit2"</span>,<span class="st">"fit3"</span>),<span class="at">each=</span><span class="dv">76</span>))</span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plot_df, <span class="fu">aes</span>(Pred,Obs))<span class="sc">+</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">group=</span>fits,<span class="at">color=</span>fits),<span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>,<span class="st">"skyblue"</span>),<span class="at">name=</span><span class="cn">NULL</span>)<span class="sc">+</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Predicted Risk"</span>)<span class="sc">+</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Observerd Risk"</span>)<span class="sc">+</span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>,<span class="at">intercept =</span> <span class="dv">0</span>,<span class="at">lty=</span><span class="dv">2</span>)<span class="sc">+</span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_rug</span>(<span class="fu">aes</span>(<span class="at">color=</span>fits))<span class="sc">+</span></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<p>提取测试集的预测概率,并绘制校准曲线即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>test <span class="sc">%&gt;%</span> dplyr<span class="sc">::</span><span class="fu">select</span>(dead) <span class="sc">%&gt;%</span> </span>
+<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">collect_predictions</span>(pred_test) <span class="sc">%&gt;%</span> dplyr<span class="sc">::</span><span class="fu">select</span>(.pred_death)) <span class="sc">%&gt;%</span> </span>
+<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">cal_plot_breaks</span>(dead, .pred_death,<span class="at">conf_level =</span> <span class="fl">0.95</span>) <span class="co"># 其他方法略</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-logistic_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>获取<code>lowbirth</code>数据请在公众号后台回复<em>20220520</em>。</p>
+<p>是不是非常简单呢?</p>
+<p>除此之外,还有很多R包可以绘制校准曲线,比如<code>caret</code>、<code>PredictABEL</code>等,但是用的比较少,就不给大家在这里介绍了,<code>caret</code>绘制校准曲线介绍过了,可以在公众号后台回复<strong>caret</strong>获取相关推文。</p>
 
 
 </section>
@@ -921,18 +1084,7 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -964,11 +1116,50 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -978,8 +1169,17 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -991,7 +1191,130 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1035,6 +1358,7 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1060,6 +1384,32 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1121,27 +1471,32 @@ <h3 data-number="31.4.2" class="anchored" data-anchor-id="方法2"><span class="
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./idi.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span>
+      <a href="./idi.html" class="pagination-link" aria-label="综合判别改善指数IDI">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./calibration-logistic-test.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./hosmer-lemeshow检验.html" class="pagination-link" aria-label="hosmer-lemeshow检验">
+        <span class="nav-page-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-10-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-10-1.png
index a30b70c..1a66269 100644
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-10-1.png and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-12-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-12-1.png
index e44338d..d584562 100644
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-12-1.png and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-13-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-13-1.png
new file mode 100644
index 0000000..d6e8fc4
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-14-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-14-1.png
index 24a7199..a86e6ed 100644
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-14-1.png and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-15-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-15-1.png
new file mode 100644
index 0000000..a3b77bb
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-16-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-16-1.png
new file mode 100644
index 0000000..8593803
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-16-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-1.png
new file mode 100644
index 0000000..d806dd5
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-2.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-2.png
new file mode 100644
index 0000000..ac324be
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-2.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-3.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-3.png
new file mode 100644
index 0000000..e210ac8
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-20-3.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-22-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-22-1.png
new file mode 100644
index 0000000..ff2eb71
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-22-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-5-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-5-1.png
deleted file mode 100644
index e12041e..0000000
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-5-1.png and /dev/null differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-7-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-7-1.png
index 1c8c0aa..53b1203 100644
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-7-1.png and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-8-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-8-1.png
new file mode 100644
index 0000000..34fc432
Binary files /dev/null and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/calibration-logistic_files/figure-html/unnamed-chunk-9-1.png b/docs/calibration-logistic_files/figure-html/unnamed-chunk-9-1.png
index 09b30e2..e6a469a 100644
Binary files a/docs/calibration-logistic_files/figure-html/unnamed-chunk-9-1.png and b/docs/calibration-logistic_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/calibration-mlr3.html b/docs/calibration-mlr3.html
deleted file mode 100644
index 8980b51..0000000
--- a/docs/calibration-mlr3.html
+++ /dev/null
@@ -1,1063 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 37&nbsp; mlr3绘制校准曲线</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./calibration-qhscrnomo.html" rel="next">
-<link href="./calibration-tidymodels.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-mlr3.html"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#加载r包" id="toc-加载r包" class="nav-link active" data-scroll-target="#加载r包"><span class="header-section-number">37.1</span> 加载R包</a></li>
-  <li><a href="#建立任务" id="toc-建立任务" class="nav-link" data-scroll-target="#建立任务"><span class="header-section-number">37.2</span> 建立任务</a></li>
-  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">37.3</span> 数据预处理</a></li>
-  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">37.4</span> 建立模型</a></li>
-  <li><a href="#评价模型" id="toc-评价模型" class="nav-link" data-scroll-target="#评价模型"><span class="header-section-number">37.5</span> 评价模型</a></li>
-  <li><a href="#训练集的校准曲线" id="toc-训练集的校准曲线" class="nav-link" data-scroll-target="#训练集的校准曲线"><span class="header-section-number">37.6</span> 训练集的校准曲线</a></li>
-  <li><a href="#测试集的校准曲线" id="toc-测试集的校准曲线" class="nav-link" data-scroll-target="#测试集的校准曲线"><span class="header-section-number">37.7</span> 测试集的校准曲线</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>前面介绍了使用<code>tidymodels</code>画校准曲线,不知道大家学会了没?</p>
-<p>众所周知,<code>mlr3</code>目前依然不支持校准曲线的绘制,需要自己提取数据画,大家多去<a href="https://github.com/mlr-org/mlr3viz/issues/71">github</a>提issue,加速对校准曲线的支持!</p>
-<p>今天介绍<code>mlr3</code>怎么画校准曲线,还是那句话,<strong>校准曲线就是散点图</strong>,你非说是折线图也行,校准曲线的基础知识请看前面模型评价部分。</p>
-<p>关于<code>mlr3</code>的教程,大家可以去我的公众号查看,一共写了十几篇。</p>
-<section id="加载r包" class="level2" data-number="37.1">
-<h2 data-number="37.1" class="anchored" data-anchor-id="加载r包"><span class="header-section-number">37.1</span> 加载R包</h2>
-<p>首先还是加载数据和R包,和之前的数据一样的。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3verse)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: mlr3</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3pipelines)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3filters)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="建立任务" class="level2" data-number="37.2">
-<h2 data-number="37.2" class="anchored" data-anchor-id="建立任务"><span class="header-section-number">37.2</span> 建立任务</h2>
-<p>然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的<code>tidymodels</code>进行比较,这里使用的数据和预处理步骤都是和之前一样的。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 读取数据</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>all_plays <span class="ot">&lt;-</span> <span class="fu">readRDS</span>(<span class="st">"./datasets/all_plays.rds"</span>)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立任务</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>pbp_task <span class="ot">&lt;-</span> <span class="fu">as_task_classif</span>(all_plays, <span class="at">target=</span><span class="st">"play_type"</span>)</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据划分</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>split_task <span class="ot">&lt;-</span> <span class="fu">partition</span>(pbp_task, <span class="at">ratio=</span><span class="fl">0.75</span>)</span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>task_train <span class="ot">&lt;-</span> pbp_task<span class="sc">$</span><span class="fu">clone</span>()<span class="sc">$</span><span class="fu">filter</span>(split_task<span class="sc">$</span>train)</span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>task_test <span class="ot">&lt;-</span> pbp_task<span class="sc">$</span><span class="fu">clone</span>()<span class="sc">$</span><span class="fu">filter</span>(split_task<span class="sc">$</span>test)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据预处理" class="level2" data-number="37.3">
-<h2 data-number="37.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">37.3</span> 数据预处理</h2>
-<p>建立任务后就是建立数据预处理步骤,这里采用和上篇推文<code>tidymodels</code>中一样的预处理步骤:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据预处理</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>pbp_prep <span class="ot">&lt;-</span> <span class="fu">po</span>(<span class="st">"select"</span>, <span class="co"># 去掉3列</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">selector =</span> <span class="fu">selector_invert</span>(</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>                 <span class="fu">selector_name</span>(<span class="fu">c</span>(<span class="st">"half_seconds_remaining"</span>,<span class="st">"yards_gained"</span>,<span class="st">"game_id"</span>)))</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>               ) <span class="sc">%&gt;&gt;%</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"colapply"</span>, <span class="co"># 把这两列变成因子类型</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">affect_columns =</span> <span class="fu">selector_name</span>(<span class="fu">c</span>(<span class="st">"posteam"</span>,<span class="st">"defteam"</span>)),</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">applicator =</span> as.factor) <span class="sc">%&gt;&gt;%</span> </span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"filter"</span>, <span class="co"># 去除高度相关的列</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">filter =</span> mlr3filters<span class="sc">::</span><span class="fu">flt</span>(<span class="st">"find_correlation"</span>), <span class="at">filter.cutoff=</span><span class="fl">0.3</span>) <span class="sc">%&gt;&gt;%</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"scale"</span>, <span class="at">scale =</span> F) <span class="sc">%&gt;&gt;%</span> <span class="co"># 中心化</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"removeconstants"</span>) <span class="co"># 去掉零方差变量</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="建立模型" class="level2" data-number="37.4">
-<h2 data-number="37.4" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">37.4</span> 建立模型</h2>
-<p>先选择随机森林模型。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>rf_glr <span class="ot">&lt;-</span> <span class="fu">as_learner</span>(pbp_prep <span class="sc">%&gt;&gt;%</span> <span class="fu">lrn</span>(<span class="st">"classif.ranger"</span>, <span class="at">predict_type=</span><span class="st">"prob"</span>)) </span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>rf_glr<span class="sc">$</span>id <span class="ot">&lt;-</span> <span class="st">"randomForest"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>很多人喜欢在训练集中使用10折交叉验证,但其实这对于提高模型表现没什么用<sub>尤其是临床预测模型这个领域</sub>因为你的模型表现好不好很大程度上取决于你的数据好不好!<em>鸭子是不会变成天鹅的</em>,这一点可以看附录。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加速</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(future)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plan</span>(<span class="st">"multisession"</span>,<span class="at">workers=</span><span class="dv">12</span>)</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 为了加快速度,用个3折交叉验证</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>rr <span class="ot">&lt;-</span> <span class="fu">resample</span>(<span class="at">task =</span> task_train,</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">learner =</span> rf_glr,</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">resampling =</span> <span class="fu">rsmp</span>(<span class="st">"cv"</span>,<span class="at">folds =</span> <span class="dv">3</span>),</span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">store_models =</span> T</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## INFO  [20:44:17.522] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 1/3)</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## INFO  [20:44:17.868] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 2/3)</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## INFO  [20:44:18.212] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 3/3)</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="评价模型" class="level2" data-number="37.5">
-<h2 data-number="37.5" class="anchored" data-anchor-id="评价模型"><span class="header-section-number">37.5</span> 评价模型</h2>
-<p>先看看在训练集中的表现。</p>
-<p>混淆矩阵:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>rr<span class="sc">$</span><span class="fu">prediction</span>()<span class="sc">$</span>confusion</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">##         truth</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">## response  pass   run</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="do">##     pass 32043 10055</span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">##     run   8708 18176</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>混淆矩阵可视化:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(rr<span class="sc">$</span><span class="fu">prediction</span>())</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>查看其他结果:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>rr<span class="sc">$</span><span class="fu">aggregate</span>(<span class="fu">msrs</span>(<span class="fu">c</span>(<span class="st">"classif.auc"</span>,<span class="st">"classif.acc"</span>,<span class="st">"classif.bbrier"</span>)))</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">##    classif.auc    classif.acc classif.bbrier </span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##      0.7960892      0.7280015      0.1798211</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>喜闻乐见ROC曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(rr,<span class="at">type =</span> <span class="st">"roc"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>喜闻乐见的prc曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(rr, <span class="at">type =</span> <span class="st">"prc"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>箱线图:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(rr, <span class="at">measure =</span> <span class="fu">msr</span>(<span class="st">"classif.auc"</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>以上所有介绍的图形和评价方法都在之前的推文详细介绍过了~不会的赶紧翻看。</p>
-</section>
-<section id="训练集的校准曲线" class="level2" data-number="37.6">
-<h2 data-number="37.6" class="anchored" data-anchor-id="训练集的校准曲线"><span class="header-section-number">37.6</span> 训练集的校准曲线</h2>
-<p>先画训练集的校准曲线,毫无难度,看不懂的可以加群一起讨论~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>prediction <span class="ot">&lt;-</span> <span class="fu">as.data.table</span>(rr<span class="sc">$</span><span class="fu">prediction</span>())</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(prediction)</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="do">##    row_ids truth response prob.pass  prob.run</span></span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:       8  pass      run 0.2116344 0.7883656</span></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:      14  pass     pass 0.8305389 0.1694611</span></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:      29   run     pass 0.6949074 0.3050926</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:      32   run      run 0.2503858 0.7496142</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 5:      37   run     pass 0.6836322 0.3163678</span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 6:      42  pass     pass 0.5705558 0.4294442</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>方法1:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidyverse))</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>calibration_df <span class="ot">&lt;-</span> prediction <span class="sc">%&gt;%</span> </span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>   <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(truth <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>          <span class="at">pred_rnd =</span> <span class="fu">round</span>(prob.pass, <span class="dv">2</span>)</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>          ) <span class="sc">%&gt;%</span> </span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(pred_rnd) <span class="sc">%&gt;%</span> </span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarize</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(prob.pass),</span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass),</span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>            <span class="at">n =</span> <span class="fu">n</span>()</span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(calibration_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">size =</span> n), <span class="at">alpha =</span> <span class="fl">0.5</span>)<span class="sc">+</span></span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_lancet</span>()<span class="sc">+</span></span>
-<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"Predicted Probability"</span>, <span class="at">y=</span> <span class="st">"Observed Probability"</span>)<span class="sc">+</span></span>
-<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>第2种方法,大家比较喜欢的折线图!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>cali_df <span class="ot">&lt;-</span> prediction <span class="sc">%&gt;%</span> </span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">arrange</span>(prob.pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(truth <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>         <span class="at">group =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,<span class="at">each=</span><span class="dv">680</span>), <span class="fu">rep</span>(<span class="dv">101</span>,<span class="dv">982</span>))</span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(group) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarise</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(prob.pass),</span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass)</span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(cali_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth=</span><span class="dv">1</span>)<span class="sc">+</span></span>
-<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"Predicted Probability"</span>, <span class="at">y=</span> <span class="st">"Observed Probability"</span>)<span class="sc">+</span></span>
-<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>是不是和上一篇中的<code>tidymodels</code>画出来的一模一样?没错,就是一样的,就是这么简单,想怎么画就怎么画 !</p>
-</section>
-<section id="测试集的校准曲线" class="level2" data-number="37.7">
-<h2 data-number="37.7" class="anchored" data-anchor-id="测试集的校准曲线"><span class="header-section-number">37.7</span> 测试集的校准曲线</h2>
-<p>先把模型用在测试集上,得到预测结果,然后画图!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>cv_pred <span class="ot">&lt;-</span> rf_glr<span class="sc">$</span><span class="fu">train</span>(task_train)<span class="sc">$</span><span class="fu">predict</span>(task_test)</span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>cv_pred_df <span class="ot">&lt;-</span> <span class="fu">as.data.table</span>(cv_pred)</span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(cv_pred_df)</span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a><span class="do">##    row_ids truth response prob.pass   prob.run</span></span>
-<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:       3   run     pass 0.7906472 0.20935277</span></span>
-<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:       4   run     pass 0.6911209 0.30887909</span></span>
-<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:       6   run      run 0.4308536 0.56914641</span></span>
-<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:       7  pass     pass 0.8317469 0.16825305</span></span>
-<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5:      13   run     pass 0.9383892 0.06161080</span></span>
-<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6:      16  pass     pass 0.9243608 0.07563917</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>先画个喜闻乐见的校准曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>cali_df <span class="ot">&lt;-</span> cv_pred_df <span class="sc">%&gt;%</span> </span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">arrange</span>(prob.pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(truth <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>         <span class="at">group =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,<span class="at">each=</span><span class="dv">229</span>), <span class="fu">rep</span>(<span class="dv">101</span>,<span class="dv">94</span>))</span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(group) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarise</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(prob.pass),</span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass)</span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(cali_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth=</span><span class="dv">1</span>)<span class="sc">+</span></span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"Predicted Probability"</span>, <span class="at">y=</span> <span class="st">"Observed Probability"</span>)<span class="sc">+</span></span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>另一种颜值高点的校准曲线,给你点颜色瞧瞧!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>calibration_df <span class="ot">&lt;-</span> cv_pred_df <span class="sc">%&gt;%</span> </span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>   <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(truth <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>          <span class="at">pred_rnd =</span> <span class="fu">round</span>(prob.pass, <span class="dv">2</span>)</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>          ) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(pred_rnd) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarize</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(prob.pass),</span>
-<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass),</span>
-<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">n =</span> <span class="fu">n</span>()</span>
-<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>            ) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">group =</span> <span class="fu">case_when</span>(n <span class="sc">&lt;</span> <span class="dv">100</span> <span class="sc">~</span> <span class="st">"&lt;100"</span>,</span>
-<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>                           n <span class="sc">&lt;</span> <span class="dv">200</span> <span class="sc">~</span> <span class="st">"&lt;200"</span>,</span>
-<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a>                           n <span class="sc">&lt;</span> <span class="dv">300</span> <span class="sc">~</span> <span class="st">"&lt;300"</span>,</span>
-<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>                           n <span class="sc">&lt;</span> <span class="dv">400</span> <span class="sc">~</span> <span class="st">"&lt;400"</span>,</span>
-<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a>                           <span class="cn">TRUE</span> <span class="sc">~</span> <span class="st">"≥400"</span></span>
-<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>                           ))</span>
-<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(calibration_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">size =</span> n, <span class="at">color =</span> group))<span class="sc">+</span></span>
-<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_d3</span>()<span class="sc">+</span></span>
-<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb17-21"><a href="#cb17-21" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"Predicted Probability"</span>, <span class="at">y=</span> <span class="st">"Observed Probability"</span>)<span class="sc">+</span></span>
-<span id="cb17-22"><a href="#cb17-22" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-mlr3_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>配色略诡异…</p>
-<p>校准曲线,你学会了吗?</p>
-<p>我知道并没有,比如,多条画一起怎么搞?生存资料的怎么搞?</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./calibration-tidymodels.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./calibration-qhscrnomo.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-10-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-10-1.png
deleted file mode 100644
index bf92953..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-10-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-11-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index b75f932..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-13-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-13-1.png
deleted file mode 100644
index 513a444..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-13-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-14-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-14-1.png
deleted file mode 100644
index c8cf810..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-14-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-16-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-16-1.png
deleted file mode 100644
index 11bed97..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-16-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-17-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-17-1.png
deleted file mode 100644
index 53cb7f8..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-17-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-7-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index 1df4374..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-9-1.png b/docs/calibration-mlr3_files/figure-html/unnamed-chunk-9-1.png
deleted file mode 100644
index 390226a..0000000
Binary files a/docs/calibration-mlr3_files/figure-html/unnamed-chunk-9-1.png and /dev/null differ
diff --git a/docs/calibration-qhscrnomo.html b/docs/calibration-qhscrnomo.html
index b7e69ea..44f4003 100644
--- a/docs/calibration-qhscrnomo.html
+++ b/docs/calibration-qhscrnomo.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 38&nbsp; 竞争风险模型的校准曲线</title>
+<title>32&nbsp; 竞争风险模型的校准曲线 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./calibration-lasso.html" rel="next">
-<link href="./calibration-mlr3.html" rel="prev">
+<link href="./calibration-cox.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-qhscrnomo.html"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-qhscrnomo.html"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,32 +493,32 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">38.1</span> 安装</a></li>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link" data-scroll-target="#准备数据"><span class="header-section-number">38.2</span> 准备数据</a></li>
-  <li><a href="#拟合竞争风险模型" id="toc-拟合竞争风险模型" class="nav-link" data-scroll-target="#拟合竞争风险模型"><span class="header-section-number">38.3</span> 拟合竞争风险模型</a></li>
-  <li><a href="#内部验证" id="toc-内部验证" class="nav-link" data-scroll-target="#内部验证"><span class="header-section-number">38.4</span> 内部验证</a></li>
-  <li><a href="#计算c-index" id="toc-计算c-index" class="nav-link" data-scroll-target="#计算c-index"><span class="header-section-number">38.5</span> 计算C-index</a></li>
-  <li><a href="#校准曲线" id="toc-校准曲线" class="nav-link" data-scroll-target="#校准曲线"><span class="header-section-number">38.6</span> 校准曲线</a></li>
-  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">38.7</span> 列线图</a></li>
-  <li><a href="#生成模型方程" id="toc-生成模型方程" class="nav-link" data-scroll-target="#生成模型方程"><span class="header-section-number">38.8</span> 生成模型方程</a></li>
-  <li><a href="#外部验证测试集" id="toc-外部验证测试集" class="nav-link" data-scroll-target="#外部验证测试集"><span class="header-section-number">38.9</span> 外部验证(测试集)</a></li>
-  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料"><span class="header-section-number">38.10</span> 参考资料</a></li>
+  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">32.1</span> 安装</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link" data-scroll-target="#准备数据"><span class="header-section-number">32.2</span> 准备数据</a></li>
+  <li><a href="#拟合竞争风险模型" id="toc-拟合竞争风险模型" class="nav-link" data-scroll-target="#拟合竞争风险模型"><span class="header-section-number">32.3</span> 拟合竞争风险模型</a></li>
+  <li><a href="#内部验证" id="toc-内部验证" class="nav-link" data-scroll-target="#内部验证"><span class="header-section-number">32.4</span> 内部验证</a></li>
+  <li><a href="#计算c-index" id="toc-计算c-index" class="nav-link" data-scroll-target="#计算c-index"><span class="header-section-number">32.5</span> 计算C-index</a></li>
+  <li><a href="#校准曲线" id="toc-校准曲线" class="nav-link" data-scroll-target="#校准曲线"><span class="header-section-number">32.6</span> 校准曲线</a></li>
+  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">32.7</span> 列线图</a></li>
+  <li><a href="#生成模型方程" id="toc-生成模型方程" class="nav-link" data-scroll-target="#生成模型方程"><span class="header-section-number">32.8</span> 生成模型方程</a></li>
+  <li><a href="#外部验证测试集" id="toc-外部验证测试集" class="nav-link" data-scroll-target="#外部验证测试集"><span class="header-section-number">32.9</span> 外部验证(测试集)</a></li>
+  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料"><span class="header-section-number">32.10</span> 参考资料</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./calibration-qhscrnomo.html"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span id="sec-QHScrnomo" class="quarto-section-identifier"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></h1>
+<h1 class="title"><span id="sec-QHScrnomo" class="quarto-section-identifier"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></h1>
 </div>
 
 
@@ -549,49 +531,49 @@ <h1 class="title"><span id="sec-QHScrnomo" class="quarto-section-identifier"><sp
   </div>
   
 
+
 </header>
 
-<p>之前介绍过一次竞争风险模型:<a href="https://mp.weixin.qq.com/s/PkHy2aMCFo8on2oK4BxwrA">Fine-Gray检验、竞争风险模型、列线图绘制</a>。</p>
-<p>主要是借助<code>cmprsk</code>这个包实现的,并且列线图的绘制也是间接实现的。</p>
-<p>今天介绍的<code>QHScrnomo</code>依赖于<code>rms</code>,<code>cmprsk</code>,<code>Hmisc</code>等包,是专门用于竞争风险模型的列线图绘制,除此之外还可以建立模型、绘制校准曲线、进行内外部验证等。</p>
-<section id="安装" class="level2" data-number="38.1">
-<h2 data-number="38.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">38.1</span> 安装</h2>
+
+<p>之前介绍过一次竞争风险模型:<a href="https://mp.weixin.qq.com/s/PkHy2aMCFo8on2oK4BxwrA">Fine-Gray检验、竞争风险模型、列线图绘制</a>,主要是借助<code>cmprsk</code>这个包实现的,并且列线图的绘制也是间接实现的。</p>
+<p>今天介绍的<code>QHScrnomo</code>依赖于<code>rms</code>,<code>cmprsk</code>,<code>Hmisc</code>等包,专门用于竞争风险模型的列线图绘制,除此之外还可以建立模型、绘制校准曲线、进行内外部验证等。</p>
+<section id="安装" class="level2" data-number="32.1">
+<h2 data-number="32.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">32.1</span> 安装</h2>
 <p>2选1:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"ClevelandClinicQHS/QHScrnomo"</span>)</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"QHScrnomo"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="准备数据" class="level2" data-number="38.2">
-<h2 data-number="38.2" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">38.2</span> 准备数据</h2>
+<section id="准备数据" class="level2" data-number="32.2">
+<h2 data-number="32.2" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">32.2</span> 准备数据</h2>
 <p>使用<code>casebase</code>中的<code>bmtcrr</code>数据,只使用其中的一部分,并且把字符型变成因子型。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(QHScrnomo)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"bmtcrr"</span>,<span class="at">package =</span> <span class="st">"casebase"</span>)</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>bmtcrr[,<span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">6</span>)] <span class="ot">&lt;-</span> <span class="fu">lapply</span>(bmtcrr[,<span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">6</span>)],as.factor)</span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr)</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  7 variables:</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : Factor w/ 2 levels "F","M": 2 1 2 1 1 2 2 1 2 1 ...</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : Factor w/ 2 levels "ALL","AML": 1 2 1 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : Factor w/ 4 levels "CR1","CR2","CR3",..: 4 2 3 2 2 4 1 1 1 4 ...</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: Factor w/ 2 levels "BM+PB","PB": 1 1 1 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"bmtcrr"</span>,<span class="at">package =</span> <span class="st">"casebase"</span>)</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>bmtcrr[,<span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">6</span>)] <span class="ot">&lt;-</span> <span class="fu">lapply</span>(bmtcrr[,<span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">6</span>)],as.factor)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr)</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  7 variables:</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : Factor w/ 2 levels "F","M": 2 1 2 1 1 2 2 1 2 1 ...</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : Factor w/ 2 levels "ALL","AML": 1 2 1 1 1 1 1 1 1 1 ...</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : Factor w/ 4 levels "CR1","CR2","CR3",..: 4 2 3 2 2 4 1 1 1 4 ...</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: Factor w/ 2 levels "BM+PB","PB": 1 1 1 1 1 1 1 1 1 1 ...</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="拟合竞争风险模型" class="level2" data-number="38.3">
-<h2 data-number="38.3" class="anchored" data-anchor-id="拟合竞争风险模型"><span class="header-section-number">38.3</span> 拟合竞争风险模型</h2>
-<p>先使用<code>rms</code>拟合cox回归模型,这几个变量只是我随便挑选的,可能并不是完全适合~</p>
+<section id="拟合竞争风险模型" class="level2" data-number="32.3">
+<h2 data-number="32.3" class="anchored" data-anchor-id="拟合竞争风险模型"><span class="header-section-number">32.3</span> 拟合竞争风险模型</h2>
+<p>先使用<code>rms</code>拟合cox回归模型,这几个变量只是我为了演示随便挑选的,可能并不是完全适合。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(bmtcrr)</span>
 <span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span>
 <span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(ftime,Status <span class="sc">==</span> <span class="dv">1</span>) <span class="sc">~</span> Sex <span class="sc">+</span> <span class="fu">rcs</span>(Age,<span class="dv">3</span>)<span class="sc">+</span>D<span class="sc">+</span>Phase, <span class="at">data =</span> bmtcrr,</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>           <span class="at">x =</span> <span class="cn">TRUE</span>, <span class="at">y=</span> <span class="cn">TRUE</span>, <span class="at">surv=</span><span class="cn">TRUE</span>, <span class="at">time.inc =</span> <span class="dv">24</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 对Age这个变量进行样条变换</span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(ftime,Status <span class="sc">==</span> <span class="dv">1</span>) <span class="sc">~</span> Sex <span class="sc">+</span> <span class="fu">rcs</span>(Age,<span class="dv">3</span>)<span class="sc">+</span>D<span class="sc">+</span>Phase, <span class="at">data =</span> bmtcrr,</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>           <span class="at">x =</span> <span class="cn">TRUE</span>, <span class="at">y=</span> <span class="cn">TRUE</span>, <span class="at">surv=</span><span class="cn">TRUE</span>, <span class="at">time.inc =</span> <span class="dv">24</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>拟合好之后再使用<code>crr.fit</code>变为竞争风险模型,其实是借助了<code>cmprsk::crr</code>:</p>
 <div class="cell">
@@ -629,20 +611,21 @@ <h2 data-number="38.3" class="anchored" data-anchor-id="拟合竞争风险模型
 <span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  TOTAL      19.86      7    0.0059</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="内部验证" class="level2" data-number="38.4">
-<h2 data-number="38.4" class="anchored" data-anchor-id="内部验证"><span class="header-section-number">38.4</span> 内部验证</h2>
+<section id="内部验证" class="level2" data-number="32.4">
+<h2 data-number="32.4" class="anchored" data-anchor-id="内部验证"><span class="header-section-number">32.4</span> 内部验证</h2>
 <p>建立好模型之后,可以用<code>tenf.crr</code>对验证集进行交叉验证,查看感兴趣时间点的预测结果(死亡概率),就相当于内部验证。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 默认10折交叉验证</span></span>
 <span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>preds.tenf <span class="ot">&lt;-</span> <span class="fu">tenf.crr</span>(crr, <span class="at">time =</span> <span class="dv">36</span>, <span class="at">trace =</span> <span class="cn">FALSE</span>)<span class="co">#可以计算线性预测值,可查看帮助文档</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr<span class="sc">$</span>preds.tenf)</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  num [1:177] 0.485 0.171 0.284 0.299 0.206 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co">#可以计算线性预测值,可查看帮助文档</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>preds.tenf <span class="ot">&lt;-</span> <span class="fu">tenf.crr</span>(crr, <span class="at">time =</span> <span class="dv">36</span>, <span class="at">trace =</span> <span class="cn">FALSE</span>)</span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr<span class="sc">$</span>preds.tenf)</span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  num [1:177] 0.485 0.171 0.284 0.299 0.206 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>结果是第36个月时,各个病人的死亡风险,而且是考虑到了竞争风险事件的。</p>
+<p>结果是第36个月的时候,各个病人的死亡风险,而且是考虑到了竞争风险事件的。</p>
 </section>
-<section id="计算c-index" class="level2" data-number="38.5">
-<h2 data-number="38.5" class="anchored" data-anchor-id="计算c-index"><span class="header-section-number">38.5</span> 计算C-index</h2>
+<section id="计算c-index" class="level2" data-number="32.5">
+<h2 data-number="32.5" class="anchored" data-anchor-id="计算c-index"><span class="header-section-number">32.5</span> 计算C-index</h2>
 <p>基于上面计算出的概率,计算cindex:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">cindex</span>(<span class="at">prob =</span> bmtcrr<span class="sc">$</span>preds.tenf,</span>
@@ -656,10 +639,10 @@ <h2 data-number="38.5" class="anchored" data-anchor-id="计算c-index"><span cla
 </div>
 <p>cindex=0.617,说明模型一般。</p>
 </section>
-<section id="校准曲线" class="level2" data-number="38.6">
-<h2 data-number="38.6" class="anchored" data-anchor-id="校准曲线"><span class="header-section-number">38.6</span> 校准曲线</h2>
+<section id="校准曲线" class="level2" data-number="32.6">
+<h2 data-number="32.6" class="anchored" data-anchor-id="校准曲线"><span class="header-section-number">32.6</span> 校准曲线</h2>
 <p>也是基于上面计算出的cindex。</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">groupci</span>(<span class="at">x =</span> bmtcrr<span class="sc">$</span>preds.tenf,</span>
 <span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">ftime =</span> bmtcrr<span class="sc">$</span>ftime,</span>
 <span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">fstatus =</span> bmtcrr<span class="sc">$</span>Status,</span>
@@ -670,7 +653,11 @@ <h2 data-number="38.6" class="anchored" data-anchor-id="校准曲线"><span clas
 <span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>        <span class="at">ylab =</span> <span class="st">"Actual 3-year mortality"</span></span>
 <span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 <pre><code>##              x  n events        ci    std.err
 ## [1,] 0.1408630 36      8 0.2286706 0.07313371
@@ -682,8 +669,8 @@ <h2 data-number="38.6" class="anchored" data-anchor-id="校准曲线"><span clas
 <p>这个其实就是内部验证的校准曲线了,看起来还不错,因为是在训练集中,训练集的校准曲线其实说明不了任何问题。</p>
 <p>如果你觉得不好看可以使用给出的数据自己画,或者直接自己计算也可。可信区间是95%CI,可以通过<code>pred.ci</code>计算的。</p>
 </section>
-<section id="列线图" class="level2" data-number="38.7">
-<h2 data-number="38.7" class="anchored" data-anchor-id="列线图"><span class="header-section-number">38.7</span> 列线图</h2>
+<section id="列线图" class="level2" data-number="32.7">
+<h2 data-number="32.7" class="anchored" data-anchor-id="列线图"><span class="header-section-number">32.7</span> 列线图</h2>
 <p>建立列线图,和<code>rms</code>包的使用一模一样:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">nomogram.crr</span>(</span>
@@ -695,12 +682,16 @@ <h2 data-number="38.7" class="anchored" data-anchor-id="列线图"><span class="
 <span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>  <span class="at">funlabel =</span> <span class="st">"Predicted 3-year risk"</span></span>
 <span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="生成模型方程" class="level2" data-number="38.8">
-<h2 data-number="38.8" class="anchored" data-anchor-id="生成模型方程"><span class="header-section-number">38.8</span> 生成模型方程</h2>
+<section id="生成模型方程" class="level2" data-number="32.8">
+<h2 data-number="32.8" class="anchored" data-anchor-id="生成模型方程"><span class="header-section-number">32.8</span> 生成模型方程</h2>
 <p>可以直接给出某个时间点的线性预测值的计算方程:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sas.cmprsk</span>(crr,<span class="at">time =</span> <span class="dv">36</span>)</span>
@@ -712,8 +703,8 @@ <h2 data-number="38.8" class="anchored" data-anchor-id="生成模型方程"><spa
 <span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     (Phase = "CR3") + 1.1358137 * (Phase = "Relapse")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="外部验证测试集" class="level2" data-number="38.9">
-<h2 data-number="38.9" class="anchored" data-anchor-id="外部验证测试集"><span class="header-section-number">38.9</span> 外部验证(测试集)</h2>
+<section id="外部验证测试集" class="level2" data-number="32.9">
+<h2 data-number="32.9" class="anchored" data-anchor-id="外部验证测试集"><span class="header-section-number">32.9</span> 外部验证(测试集)</h2>
 <p>直接<code>predict</code>即可:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> <span class="fu">head</span>(bmtcrr,<span class="dv">50</span>)<span class="co">#取前50个作为测试集</span></span>
@@ -731,7 +722,7 @@ <h2 data-number="38.9" class="anchored" data-anchor-id="外部验证测试集"><
 <span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  50.0000000  50.0000000 630.0000000 454.0000000   0.7206349</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>还可以绘制校准曲线:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">groupci</span>(<span class="at">x =</span> prob,</span>
 <span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">ftime =</span> test_df<span class="sc">$</span>ftime,</span>
 <span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">fstatus =</span> test_df<span class="sc">$</span>Status,</span>
@@ -739,7 +730,11 @@ <h2 data-number="38.9" class="anchored" data-anchor-id="外部验证测试集"><
 <span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">g =</span> <span class="dv">5</span></span>
 <span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="calibration-qhscrnomo_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 <pre><code>##              x  n events  ci   std.err
 ## [1,] 0.1619231 10      1 0.1 0.1013889
@@ -750,8 +745,8 @@ <h2 data-number="38.9" class="anchored" data-anchor-id="外部验证测试集"><
 </div>
 <p>是不是很easy呢。</p>
 </section>
-<section id="参考资料" class="level2" data-number="38.10">
-<h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span class="header-section-number">38.10</span> 参考资料</h2>
+<section id="参考资料" class="level2" data-number="32.10">
+<h2 data-number="32.10" class="anchored" data-anchor-id="参考资料"><span class="header-section-number">32.10</span> 参考资料</h2>
 <ol type="1">
 <li>https://github.com/ClevelandClinicQHS/QHScrnomo</li>
 <li>vignette(“QHScrnomo”)</li>
@@ -796,18 +791,7 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -839,11 +823,50 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -853,8 +876,17 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -866,7 +898,130 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -910,6 +1065,7 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -935,6 +1091,32 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -996,27 +1178,32 @@ <h2 data-number="38.10" class="anchored" data-anchor-id="参考资料"><span cla
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./calibration-mlr3.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span>
+      <a href="./calibration-cox.html" class="pagination-link" aria-label="Cox回归校准曲线绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./calibration-lasso.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./calibration-lasso.html" class="pagination-link" aria-label="lasso回归校准曲线">
+        <span class="nav-page-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/calibration-tidymodels-man.html b/docs/calibration-tidymodels-man.html
deleted file mode 100644
index 5c517e7..0000000
--- a/docs/calibration-tidymodels-man.html
+++ /dev/null
@@ -1,1065 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 35&nbsp; tidymodels手动绘制校准曲线</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./calibration-tidymodels.html" rel="next">
-<link href="./calibration-cox-test.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-tidymodels-man.html"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">35.1</span> 加载数据和R包</a></li>
-  <li><a href="#数据划分" id="toc-数据划分" class="nav-link" data-scroll-target="#数据划分"><span class="header-section-number">35.2</span> 数据划分</a></li>
-  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">35.3</span> 数据预处理</a></li>
-  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">35.4</span> 建立模型</a></li>
-  <li><a href="#模型评价" id="toc-模型评价" class="nav-link" data-scroll-target="#模型评价"><span class="header-section-number">35.5</span> 模型评价</a></li>
-  <li><a href="#校准曲线" id="toc-校准曲线" class="nav-link" data-scroll-target="#校准曲线"><span class="header-section-number">35.6</span> 校准曲线</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>很多人都开始用<code>tidymodels</code>了,但是很多人还没意识到,<code>tidymodels</code>目前还不支持一键绘制校准曲线!(更新:目前已支持,下面会讲到)相同类型的<code>mlr3</code>也是不支持的,都说在开发中!开发了1年多了,还没开发好!</p>
-<p>大家可以去项目的github相关的issue里面留言,引起开发者重视。。。</p>
-<p>总的来说,在临床预测模型这个领域,目前还是一些分散的R包更好用,尤其是涉及到时间依赖性的生存数据时,<code>tidymodels</code>和<code>mlr3</code>目前还无法满足大家的需求~</p>
-<p>但是很多朋友想要用这俩包画校准曲线曲线,其实还是可以搞一下的,挺简单的,之前介绍过很多次了,校准曲线就是散点图,横坐标是预测概率,纵坐标是实际概率(换过来也行!)。不理解的请翻看前面的内容。</p>
-<p>今天先介绍下<code>tidymodels</code>的校准曲线画法。</p>
-<section id="加载数据和r包" class="level2" data-number="35.1">
-<h2 data-number="35.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">35.1</span> 加载数据和R包</h2>
-<p>没有安装的R包的自己安装下~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidyverse))</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidymodels))</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">tidymodels_prefer</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>由于要做演示用,肯定要一份比较好的数据才能说明问题,今天用的这份数据,结果变量是一个二分类的。</p>
-<p>一共有91976行,26列,其中<code>play_type</code>是结果变量,因子型,其余列都是预测变量。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>all_plays <span class="ot">&lt;-</span> <span class="fu">read_rds</span>(<span class="st">"./datasets/all_plays.rds"</span>)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(all_plays)</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 91,976</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 26</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam                    &lt;chr&gt; "NE", "NE", "NE", "NE", "NE", "NE", "NE", "…</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam                    &lt;chr&gt; "KC", "KC", "KC", "KC", "KC", "KC", "KC", "…</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …</span></span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…</span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…</span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…</span></span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…</span></span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…</span></span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …</span></span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…</span></span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…</span></span>
-<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a><span class="do">## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据划分" class="level2" data-number="35.2">
-<h2 data-number="35.2" class="anchored" data-anchor-id="数据划分"><span class="header-section-number">35.2</span> 数据划分</h2>
-<p>把75%的数据用于训练集,剩下的做测试集。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据划分,根据play_type分层</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>split_pbp <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(all_plays, <span class="fl">0.75</span>, <span class="at">strata =</span> play_type)</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>train_data <span class="ot">&lt;-</span> <span class="fu">training</span>(split_pbp) <span class="co"># 训练集</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>test_data <span class="ot">&lt;-</span> <span class="fu">testing</span>(split_pbp) <span class="co"># 测试集</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据预处理" class="level2" data-number="35.3">
-<h2 data-number="35.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">35.3</span> 数据预处理</h2>
-<p>使用<code>recipe</code>包进行数据预处理,如果你认真学习过<code>caret</code>,那这个包你应该不陌生。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>pbp_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(play_type <span class="sc">~</span> ., <span class="at">data =</span> train_data)  <span class="sc">%&gt;%</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_rm</span>(half_seconds_remaining,yards_gained, game_id) <span class="sc">%&gt;%</span> <span class="co"># 移除这3列</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_string2factor</span>(posteam, defteam) <span class="sc">%&gt;%</span>  <span class="co"># 变为因子类型</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="co">#update_role(yards_gained, game_id, new_role = "ID") %&gt;% </span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 去掉高度相关的变量</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_corr</span>(<span class="fu">all_numeric</span>(), <span class="at">threshold =</span> <span class="fl">0.7</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_center</span>(<span class="fu">all_numeric</span>()) <span class="sc">%&gt;%</span>  <span class="co"># 中心化</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_zv</span>(<span class="fu">all_predictors</span>())  <span class="co"># 去掉零方差变量</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="建立模型" class="level2" data-number="35.4">
-<h2 data-number="35.4" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">35.4</span> 建立模型</h2>
-<p>就以经常用的随机森林进行演示,这里就不演示调参了,因为也不一定比默认参数的结果好……</p>
-<p>选择随机森林,建立<code>workflow</code>:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>rf_spec <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">mode =</span> <span class="st">"classification"</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">set_engine</span>(<span class="st">"ranger"</span>,<span class="at">importance =</span> <span class="st">"permutation"</span>)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>rf_wflow <span class="ot">&lt;-</span> <span class="fu">workflow</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_recipe</span>(pbp_rec) <span class="sc">%&gt;%</span> </span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_model</span>(rf_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>在训练集建模:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>fit_rf <span class="ot">&lt;-</span> rf_wflow <span class="sc">%&gt;%</span> </span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">fit</span>(train_data)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="模型评价" class="level2" data-number="35.5">
-<h2 data-number="35.5" class="anchored" data-anchor-id="模型评价"><span class="header-section-number">35.5</span> 模型评价</h2>
-<p>应用于测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="ot">&lt;-</span> test_data <span class="sc">%&gt;%</span> <span class="fu">select</span>(play_type) <span class="sc">%&gt;%</span> </span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_rf, test_data, <span class="at">type =</span> <span class="st">"prob"</span>)) <span class="sc">%&gt;%</span> </span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_rf, test_data, <span class="at">type =</span> <span class="st">"class"</span>))</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co">#save(pred_rf, file = "../000预测模型/pred_rf.rdata")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个<code>pred_rf</code>就是接下来一系列操作的基础,非常重要!!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(pred_rf)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 6 × 4</span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   play_type .pred_pass .pred_run .pred_class</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      </span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 pass           0.312     0.688 run        </span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 pass           0.829     0.171 pass       </span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 pass           0.806     0.194 pass       </span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 pass           0.678     0.322 pass       </span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 run            0.184     0.816 run        </span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 run            0.544     0.456 pass</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看模型表现:</p>
-<p>你知道的又或者不知道的指标基本上都有:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.441</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.439</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>混淆矩阵:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">conf_mat</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="do">##           Truth</span></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Prediction  pass   run</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="do">##       pass 10622  3226</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="do">##       run   2962  6185</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>混淆矩阵图形版:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">conf_mat</span>(play_type,.pred_class) <span class="sc">%&gt;%</span> </span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>大家最喜欢的AUC:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(<span class="at">truth =</span> play_type, .pred_pass)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.799</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>可视化结果,首先是大家喜闻乐见的ROC曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>pr曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">pr_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>gain_curve:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">gain_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>lift_curve:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">lift_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<blockquote class="blockquote">
-<p>就是没有校准曲线!!</p>
-</blockquote>
-</section>
-<section id="校准曲线" class="level2" data-number="35.6">
-<h2 data-number="35.6" class="anchored" data-anchor-id="校准曲线"><span class="header-section-number">35.6</span> 校准曲线</h2>
-<p>下面给大家手动画一个<em>校准曲线</em>。</p>
-<p>两种画法,差别不大,主要是分组方法不一样,第2种分组方法是大家常见的哦~</p>
-<p>如果你还不懂为什么我说<strong>校准曲线是散点图</strong>,建议你先看看前面的基础知识,看了不吃亏。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>calibration_df <span class="ot">&lt;-</span> pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>   <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(play_type <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>          <span class="at">pred_rnd =</span> <span class="fu">round</span>(.pred_pass, <span class="dv">2</span>)</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>          ) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(pred_rnd) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarize</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(.pred_pass),</span>
-<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass),</span>
-<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">n =</span> <span class="fu">n</span>()</span>
-<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(calibration_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">size =</span> n), <span class="at">alpha =</span> <span class="fl">0.5</span>)<span class="sc">+</span></span>
-<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>第2种方法:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>cali_df <span class="ot">&lt;-</span> pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">arrange</span>(.pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(play_type <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>         <span class="at">group =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">249</span>,<span class="at">each=</span><span class="dv">92</span>), <span class="fu">rep</span>(<span class="dv">250</span>,<span class="dv">87</span>))</span>
-<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(group) <span class="sc">%&gt;%</span> </span>
-<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarise</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(.pred_pass),</span>
-<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass)</span>
-<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a>cali_plot <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(cali_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="at">alpha =</span> <span class="fl">0.5</span>)<span class="sc">+</span></span>
-<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb18-15"><a href="#cb18-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span>
-<span id="cb18-16"><a href="#cb18-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb18-17"><a href="#cb18-17" aria-hidden="true" tabindex="-1"></a>cali_plot</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>两种方法差别不大,效果都是很好的,这就说明,<strong>好就是好,不管你用什么方法,都是好!如果你的数据很烂,那大概率你的结果也是很烂!不管用什么方法都是烂!</strong></p>
-<p>最后,随机森林这种方法是可以计算变量重要性的,当然也是能把结果可视化的。</p>
-<p>顺手给大家演示下如何可视化随机森林结果的变量重要性:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(vip)</span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a>fit_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">extract_fit_parsnip</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">vip</span>(<span class="at">num_features =</span> <span class="dv">10</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels-man_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>所以,校准曲线的画法,你学会了吗?</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./calibration-cox-test.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./calibration-tidymodels.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-11-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index a2cc761..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-13-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-13-1.png
deleted file mode 100644
index fdcc7ab..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-13-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-14-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-14-1.png
deleted file mode 100644
index b67ffca..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-14-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-15-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-15-1.png
deleted file mode 100644
index 1689cd5..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-15-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-16-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-16-1.png
deleted file mode 100644
index a18dc30..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-16-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-17-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-17-1.png
deleted file mode 100644
index ce7b984..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-17-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-18-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-18-1.png
deleted file mode 100644
index 481b9e7..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-18-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-19-1.png b/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-19-1.png
deleted file mode 100644
index da8a7b2..0000000
Binary files a/docs/calibration-tidymodels-man_files/figure-html/unnamed-chunk-19-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-5-1.png b/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-5-1.png
deleted file mode 100644
index 81f3e64..0000000
Binary files a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-5-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-6-1.png b/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 3cdd182..0000000
Binary files a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-7-1.png b/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index 75f55ae..0000000
Binary files a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-8-1.png b/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-8-1.png
deleted file mode 100644
index 6bacfee..0000000
Binary files a/docs/calibration-tidymodels_files/figure-html/unnamed-chunk-8-1.png and /dev/null differ
diff --git a/docs/cindex-compare.html b/docs/cindex-compare.html
index 829ffc0..0e91594 100644
--- a/docs/cindex-compare.html
+++ b/docs/cindex-compare.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 27&nbsp; C-index的比较</title>
+<title>26&nbsp; C-index的比较 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./conf_matrix-3d.html" rel="next">
+<link href="./nri.html" rel="next">
 <link href="./cindex.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./cindex-compare.html"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./cindex-compare.html"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +493,25 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#二分类资料c-index的比较" id="toc-二分类资料c-index的比较" class="nav-link active" data-scroll-target="#二分类资料c-index的比较"><span class="header-section-number">27.1</span> 二分类资料C-index的比较</a></li>
-  <li><a href="#生存资料c-index的比较" id="toc-生存资料c-index的比较" class="nav-link" data-scroll-target="#生存资料c-index的比较"><span class="header-section-number">27.2</span> 生存资料C-index的比较</a></li>
-  <li><a href="#两个cox模型的比较" id="toc-两个cox模型的比较" class="nav-link" data-scroll-target="#两个cox模型的比较"><span class="header-section-number">27.3</span> 两个cox模型的比较</a></li>
+  <li><a href="#二分类资料c-index的比较" id="toc-二分类资料c-index的比较" class="nav-link active" data-scroll-target="#二分类资料c-index的比较"><span class="header-section-number">26.1</span> 二分类资料C-index的比较</a></li>
+  <li><a href="#生存资料c-index的比较" id="toc-生存资料c-index的比较" class="nav-link" data-scroll-target="#生存资料c-index的比较"><span class="header-section-number">26.2</span> 生存资料C-index的比较</a></li>
+  <li><a href="#两个cox模型的比较" id="toc-两个cox模型的比较" class="nav-link" data-scroll-target="#两个cox模型的比较"><span class="header-section-number">26.3</span> 两个cox模型的比较</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./cindex-compare.html"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></h1>
+<h1 class="title"><span id="sec-cindexcompare" class="quarto-section-identifier"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></h1>
 </div>
 
 
@@ -542,15 +524,17 @@ <h1 class="title"><span class="chapter-number">27</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>前面介绍了C-index的计算,下面学习C-index的比较。</p>
-<section id="二分类资料c-index的比较" class="level2" data-number="27.1">
-<h2 data-number="27.1" class="anchored" data-anchor-id="二分类资料c-index的比较"><span class="header-section-number">27.1</span> 二分类资料C-index的比较</h2>
-<p>二分类资料的AUC和C-index是一样的,所以可以参考<a href="roc-compare.html">Chapter&nbsp;<span>21</span></a>关于ROC曲线的显著性检验。</p>
+<section id="二分类资料c-index的比较" class="level2" data-number="26.1">
+<h2 data-number="26.1" class="anchored" data-anchor-id="二分类资料c-index的比较"><span class="header-section-number">26.1</span> 二分类资料C-index的比较</h2>
+<p>二分类资料的AUC和C-index是一样的,所以可以参考<a href="roc-compare.html" class="quarto-xref">Chapter&nbsp;<span>23</span></a>关于ROC曲线的显著性检验。</p>
 </section>
-<section id="生存资料c-index的比较" class="level2" data-number="27.2">
-<h2 data-number="27.2" class="anchored" data-anchor-id="生存资料c-index的比较"><span class="header-section-number">27.2</span> 生存资料C-index的比较</h2>
+<section id="生存资料c-index的比较" class="level2" data-number="26.2">
+<h2 data-number="26.2" class="anchored" data-anchor-id="生存资料c-index的比较"><span class="header-section-number">26.2</span> 生存资料C-index的比较</h2>
 <p>可以使用<code>compareC</code>包,专门用来比较生存资料的C-index。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
@@ -602,34 +586,26 @@ <h2 data-number="27.2" class="anchored" data-anchor-id="生存资料c-index的
 <span id="cb3-28"><a href="#cb3-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $pval</span></span>
 <span id="cb3-29"><a href="#cb3-29" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.2677329</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>第1行给出了2个C指数; 第2行是2个C指数相减的差值; 第3行是2个C指数方差相减的差值; 第4、5行是方差; 第6行是协方差; 第7、8行是z值和p值。</p>
+<p>第1行给出了2个C指数;第2行是2个C指数相减的差值;第3行是2个C指数方差相减的差值;第4、5行是方差;第6行是协方差;第7、8行是z值和p值。</p>
 </section>
-<section id="两个cox模型的比较" class="level2" data-number="27.3">
-<h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较"><span class="header-section-number">27.3</span> 两个cox模型的比较</h2>
+<section id="两个cox模型的比较" class="level2" data-number="26.3">
+<h2 data-number="26.3" class="anchored" data-anchor-id="两个cox模型的比较"><span class="header-section-number">26.3</span> 两个cox模型的比较</h2>
 <p>下面再多说一点两个cox模型的比较,也是很简单的,方差分析即可,使用<code>anova()</code>函数。</p>
 <p>我们用<code>lung</code>数据集进行演示。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>建立两个cox模型:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> lung,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df1,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
 <span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> lung,<span class="at">x =</span> T, <span class="at">y =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df1,<span class="at">x =</span> T, <span class="at">y =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>直接使用<code>anova()</code>即可:</p>
 <div class="cell">
@@ -638,33 +614,31 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
 <span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  Cox model: response is  Surv(time, status)</span></span>
 <span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  Model 1: ~ age + sex + ph.ecog + ph.karno + pat.karno</span></span>
 <span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  Model 2: ~ ph.ecog + ph.karno + pat.karno</span></span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">##    loglik  Chisq Df Pr(&gt;|Chi|)   </span></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -706.48                        </span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 -712.83 12.703  2   0.001745 **</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">##    loglik  Chisq Df Pr(&gt;|Chi|)  </span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -257.97                       </span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 -261.94 7.9486  2    0.01879 *</span></span>
 <span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
 <span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p><code>rms</code>包也带了一个<code>lrtest()</code>函数,也是直接构建两个<code>cph</code>模型即可进行比较,简单演示一下。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(rms))</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> lung,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> lung,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="fu">lrtest</span>(cox_fit1,cox_fit2)</span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Model 1: Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno</span></span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Model 2: Surv(time, status) ~ ph.ecog + ph.karno + pat.karno</span></span>
-<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="do">##   L.R. Chisq         d.f.            P </span></span>
-<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 12.702485990  2.000000000  0.001744577</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> df1,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> df1,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="fu">lrtest</span>(cox_fit1,cox_fit2)</span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Model 1: Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno</span></span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Model 2: Surv(time, status) ~ ph.ecog + ph.karno + pat.karno</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">## L.R. Chisq       d.f.          P </span></span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 7.94861288 2.00000000 0.01879233</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>可以看到P值是一样的~</p>
 
@@ -707,18 +681,7 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -750,11 +713,50 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -764,8 +766,17 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -777,7 +788,130 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -821,6 +955,7 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -846,6 +981,32 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -907,27 +1068,32 @@ <h2 data-number="27.3" class="anchored" data-anchor-id="两个cox模型的比较
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./cindex.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span>
+      <a href="./cindex.html" class="pagination-link" aria-label="C-index的计算">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./conf_matrix-3d.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nri.html" class="pagination-link" aria-label="净重分类指数NRI">
+        <span class="nav-page-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/cindex.html b/docs/cindex.html
index 9eb50b9..aa80b34 100644
--- a/docs/cindex.html
+++ b/docs/cindex.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 26&nbsp; C-index的计算</title>
+<title>25&nbsp; C-index的计算 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./cindex-compare.html" rel="next">
-<link href="./多分类数据的ROC曲线.html" rel="prev">
+<link href="./roc-bootstrap.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./cindex.html"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./cindex.html"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,30 +493,30 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#logistic回归的c-statistic" id="toc-logistic回归的c-statistic" class="nav-link active" data-scroll-target="#logistic回归的c-statistic"><span class="header-section-number">26.1</span> logistic回归的C-statistic</a>
+  <li><a href="#logistic回归" id="toc-logistic回归" class="nav-link active" data-scroll-target="#logistic回归"><span class="header-section-number">25.1</span> logistic回归</a>
   <ul class="collapse">
-  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">26.1.1</span> 方法1:rms</a></li>
-  <li><a href="#方法2rocr" id="toc-方法2rocr" class="nav-link" data-scroll-target="#方法2rocr"><span class="header-section-number">26.1.2</span> 方法2:ROCR</a></li>
-  <li><a href="#方法3proc" id="toc-方法3proc" class="nav-link" data-scroll-target="#方法3proc"><span class="header-section-number">26.1.3</span> 方法3:pROC</a></li>
-  <li><a href="#方法4hmisc" id="toc-方法4hmisc" class="nav-link" data-scroll-target="#方法4hmisc"><span class="header-section-number">26.1.4</span> 方法4:Hmisc</a></li>
+  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">25.1.1</span> 方法1:rms</a></li>
+  <li><a href="#方法2hmisc" id="toc-方法2hmisc" class="nav-link" data-scroll-target="#方法2hmisc"><span class="header-section-number">25.1.2</span> 方法2:Hmisc</a></li>
+  <li><a href="#方法3rocr" id="toc-方法3rocr" class="nav-link" data-scroll-target="#方法3rocr"><span class="header-section-number">25.1.3</span> 方法3:ROCR</a></li>
+  <li><a href="#方法4proc" id="toc-方法4proc" class="nav-link" data-scroll-target="#方法4proc"><span class="header-section-number">25.1.4</span> 方法4:pROC</a></li>
   </ul></li>
-  <li><a href="#cox回归的c-statistic" id="toc-cox回归的c-statistic" class="nav-link" data-scroll-target="#cox回归的c-statistic"><span class="header-section-number">26.2</span> cox回归的C-statistic</a></li>
+  <li><a href="#cox回归" id="toc-cox回归" class="nav-link" data-scroll-target="#cox回归"><span class="header-section-number">25.2</span> cox回归</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./cindex.html"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></h1>
+<h1 class="title"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></h1>
 </div>
 
 
@@ -547,230 +529,199 @@ <h1 class="title"><span class="chapter-number">26</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>C-statistic(C-index)是评价模型区分度的指标之一,在logistic模型中,C-statistic就是AUC,在生存资料中,C-statistic和AUC略有不同。</p>
+
+<p>C-statistic(C-index,C指数)是评价模型区分度的指标之一,在逻辑回归模型中,C-statistic就是AUC,在生存资料中,C-statistic和AUC略有不同。</p>
 <p>下面给大家分别介绍logistic和cox回归的C-statistic计算方法。</p>
-<section id="logistic回归的c-statistic" class="level2" data-number="26.1">
-<h2 data-number="26.1" class="anchored" data-anchor-id="logistic回归的c-statistic"><span class="header-section-number">26.1</span> logistic回归的C-statistic</h2>
+<section id="logistic回归" class="level2" data-number="25.1">
+<h2 data-number="25.1" class="anchored" data-anchor-id="logistic回归"><span class="header-section-number">25.1</span> logistic回归</h2>
 <p>今天学习C-index的4种计算方法,在二分类变量中,C-statistic就是AUC,二者在数值上是一样的。</p>
-<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中<em>dead</em>这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量。数据的预处理和之前一样。</p>
+<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中<em>dead</em>这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量(获取<code>lowbirth</code>数据请在公众号:医学和生信笔记 后台回复<em>20220520</em>,或者在粉丝qq群文件自取)。</p>
+<p>我们首先对这个数据做一些预处理(参考:<a href="nomogram-logistic.html" class="quarto-xref">Chapter&nbsp;<span>7</span></a>)</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span>
 <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>tmp <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor),</span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a>         <span class="at">vent =</span> <span class="fu">factor</span>(vent),</span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a>         <span class="at">black =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"black"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a>         <span class="at">white =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"white"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a>         <span class="at">other =</span> <span class="fu">ifelse</span>(race <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>),<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span> race)</span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(tmp)</span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 565</span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 12</span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…</span></span>
-<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…</span></span>
-<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…</span></span>
-<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…</span></span>
-<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…</span></span>
-<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…</span></span>
-<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="do">## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…</span></span>
-<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a><span class="do">## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…</span></span>
-<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a><span class="do">## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…</span></span>
-<span id="cb1-36"><a href="#cb1-36" aria-hidden="true" tabindex="-1"></a><span class="do">## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…</span></span>
-<span id="cb1-37"><a href="#cb1-37" aria-hidden="true" tabindex="-1"></a><span class="do">## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>tmp <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor),</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>         <span class="at">vent =</span> <span class="fu">factor</span>(vent),</span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>         <span class="co">#dead = factor(dead), 下面介绍的方法2不能是因子型,所以不转换了</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>         <span class="at">race =</span> <span class="fu">case_when</span>(race <span class="sc">%in%</span> </span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>                            <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>) <span class="sc">~</span> <span class="st">"other"</span>,</span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>                          <span class="at">.default =</span> race),</span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>         <span class="at">race =</span> <span class="fu">factor</span>(race))</span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(tmp)</span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : Factor w/ 3 levels "black","other",..: 3 1 1 1 1 1 3 1 3 3 ...</span></span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 2 ...</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<section id="方法1rms" class="level3" data-number="26.1.1">
-<h3 data-number="26.1.1" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">26.1.1</span> 方法1:rms</h3>
-<p>使用<code>rms</code>包构建模型,模型结果中<strong>Rank Discrim.下面的C</strong> 就是C-Statistic,本模型中C-Statistic = 0.879。</p>
+<section id="方法1rms" class="level3" data-number="25.1.1">
+<h3 data-number="25.1.1" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">25.1.1</span> 方法1:rms</h3>
+<p>使用<code>rms</code>包构建模型,模型结果中<strong>Rank Discrim.下面的C</strong>就是C-Statistic,本模型中C-Statistic = 0.879。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:dplyr':</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     src, summarize</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(tmp)</span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a>fit2</span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Logistic Regression Model</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">## lrm(formula = dead ~ birth + lowph + pltct + bwt + vent + black + </span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">##     white, data = tmp, x = T, y = T)</span></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">##                        Model Likelihood      Discrimination    Rank Discrim.    </span></span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">##                              Ratio Test             Indexes          Indexes    </span></span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">## Obs           565    LR chi2     167.56      R2       0.432    C       0.879    </span></span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  0            471    d.f.             7      R2(7,565)0.247    Dxy     0.759    </span></span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  1             94    Pr(&gt; chi2) &lt;0.0001    R2(7,235.1)0.495    gamma   0.759    </span></span>
-<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a><span class="do">## max |deriv| 1e-06                            Brier    0.095    tau-a   0.211    </span></span>
-<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a><span class="do">##           Coef    S.E.    Wald Z Pr(&gt;|Z|)</span></span>
-<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a><span class="do">## Intercept 38.3815 11.0303  3.48  0.0005  </span></span>
-<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a><span class="do">## birth     -0.1201  0.0914 -1.31  0.1890  </span></span>
-<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a><span class="do">## lowph     -4.1451  1.1881 -3.49  0.0005  </span></span>
-<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a><span class="do">## pltct     -0.0017  0.0019 -0.91  0.3644  </span></span>
-<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a><span class="do">## bwt       -0.0031  0.0006 -5.14  &lt;0.0001 </span></span>
-<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a><span class="do">## vent=1     2.7526  0.7436  3.70  0.0002  </span></span>
-<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a><span class="do">## black      1.1974  0.8448  1.42  0.1564  </span></span>
-<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a><span class="do">## white      0.8597  0.8655  0.99  0.3206</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(tmp)</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>fit2</span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Logistic Regression Model</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## lrm(formula = dead ~ birth + lowph + pltct + bwt + vent + race, </span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##     data = tmp)</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##                        Model Likelihood      Discrimination    Rank Discrim.    </span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##                              Ratio Test             Indexes          Indexes    </span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Obs           565    LR chi2     167.56      R2       0.432    C       0.879    </span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  0            471    d.f.             7      R2(7,565)0.247    Dxy     0.759    </span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  1             94    Pr(&gt; chi2) &lt;0.0001    R2(7,235.1)0.495    gamma   0.759    </span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">## max |deriv| 1e-06                            Brier    0.095    tau-a   0.211    </span></span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">##            Coef    S.E.    Wald Z Pr(&gt;|Z|)</span></span>
+<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Intercept  39.5788 11.0070  3.60  0.0003  </span></span>
+<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">## birth      -0.1201  0.0914 -1.31  0.1890  </span></span>
+<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">## lowph      -4.1451  1.1881 -3.49  0.0005  </span></span>
+<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">## pltct      -0.0017  0.0019 -0.91  0.3644  </span></span>
+<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">## bwt        -0.0031  0.0006 -5.14  &lt;0.0001 </span></span>
+<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">## vent=1      2.7526  0.7436  3.70  0.0002  </span></span>
+<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="do">## race=other -1.1974  0.8448 -1.42  0.1564  </span></span>
+<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">## race=white -0.3377  0.2953 -1.14  0.2529</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="方法2rocr" class="level3" data-number="26.1.2">
-<h3 data-number="26.1.2" class="anchored" data-anchor-id="方法2rocr"><span class="header-section-number">26.1.2</span> 方法2:ROCR</h3>
-<p><code>ROCR</code>包计算AUC,logistic回归的AUC就是C-statistic。这种方法和SPSS得到的一样。</p>
+<section id="方法2hmisc" class="level3" data-number="25.1.2">
+<h3 data-number="25.1.2" class="anchored" data-anchor-id="方法2hmisc"><span class="header-section-number">25.1.2</span> 方法2:Hmisc</h3>
+<p>使用<code>Hmisc</code>包。结果中的C就是C-Statistic。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ROCR)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>tmp<span class="sc">$</span>predvalue<span class="ot">&lt;-</span><span class="fu">predict</span>(fit2)</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出C-Statistics,和上面结果一样</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(tmp<span class="sc">$</span>predvalue, tmp<span class="sc">$</span>dead)</span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>auc <span class="ot">&lt;-</span> <span class="fu">round</span>(<span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]],<span class="at">digits =</span> <span class="dv">4</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个包也是用来画ROC曲线常用的包,可以根据上面的结果直接画出ROC曲线:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred,<span class="st">"tpr"</span>,<span class="st">"fpr"</span>)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,<span class="at">col=</span><span class="st">"tomato"</span>,<span class="at">lwd=</span><span class="dv">2</span>)</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">lty=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"grey"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="cindex_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
-</div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 先计算线性预测值</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>tmp<span class="sc">$</span>predvalue<span class="ot">&lt;-</span><span class="fu">predict</span>(fit2)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(Hmisc)</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="fu">somers2</span>(tmp<span class="sc">$</span>predvalue, tmp<span class="sc">$</span>dead)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##           C         Dxy           n     Missing </span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.8793875   0.7587749 565.0000000   0.0000000</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 或者用</span></span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="fu">rcorr.cens</span>(tmp<span class="sc">$</span>predvalue, tmp<span class="sc">$</span>dead)</span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">##        C Index            Dxy           S.D.              n        missing </span></span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   8.793875e-01   7.587749e-01   3.417295e-02   5.650000e+02   0.000000e+00 </span></span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##     uncensored Relevant Pairs     Concordant      Uncertain </span></span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">##   5.650000e+02   8.854800e+04   7.786800e+04   0.000000e+00</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="方法3proc" class="level3" data-number="26.1.3">
-<h3 data-number="26.1.3" class="anchored" data-anchor-id="方法3proc"><span class="header-section-number">26.1.3</span> 方法3:pROC</h3>
-<p><code>pROC</code>包计算AUC,这个包也是画ROC曲线常用的R包,但是这个包在使用时需要注意,这部分内容会在后面详细介绍。</p>
+<section id="方法3rocr" class="level3" data-number="25.1.3">
+<h3 data-number="25.1.3" class="anchored" data-anchor-id="方法3rocr"><span class="header-section-number">25.1.3</span> 方法3:ROCR</h3>
+<p><code>ROCR</code>包计算AUC,logistic回归的AUC就是C-statistic。这种方法和SPSS得到的一样。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Type 'citation("pROC")' for a citation.</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'pROC'</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     cov, smooth, var</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算AUC,也就是C-statistic</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(tmp<span class="sc">$</span>dead, tmp<span class="sc">$</span>predvalue, <span class="at">legacy.axes =</span> T, <span class="at">print.auc =</span> T, <span class="at">print.auc.y =</span> <span class="dv">45</span>)</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = 0, case = 1</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = tmp$dead, predictor = tmp$predvalue, legacy.axes = T,     print.auc = T, print.auc.y = 45)</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: tmp$predvalue in 471 controls (tmp$dead 0) &lt; 94 cases (tmp$dead 1).</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.8794</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>也是可以直接画法ROC曲线的:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>roc.plot <span class="ot">&lt;-</span> <span class="fu">roc</span>(tmp<span class="sc">$</span>dead, tmp<span class="sc">$</span>predvalue)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = 0, case = 1</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(roc.plot,<span class="at">legacy.axes=</span>T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="cindex_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ROCR)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>tmp<span class="sc">$</span>predvalue<span class="ot">&lt;-</span><span class="fu">predict</span>(fit2)</span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出C-Statistics,和上面结果一样</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(tmp<span class="sc">$</span>predvalue, tmp<span class="sc">$</span>dead)</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>auc <span class="ot">&lt;-</span> <span class="fu">round</span>(<span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]],<span class="at">digits =</span> <span class="dv">4</span>)</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>auc</span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.8794</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>这个包也是用来画ROC曲线常用的包,可以根据上面的结果直接画出ROC曲线,这里就不重复演示了。</p>
 </section>
-<section id="方法4hmisc" class="level3" data-number="26.1.4">
-<h3 data-number="26.1.4" class="anchored" data-anchor-id="方法4hmisc"><span class="header-section-number">26.1.4</span> 方法4:Hmisc</h3>
-<p>使用<code>Hmisc</code>包。结果中的C就是C-Statistic。</p>
+<section id="方法4proc" class="level3" data-number="25.1.4">
+<h3 data-number="25.1.4" class="anchored" data-anchor-id="方法4proc"><span class="header-section-number">25.1.4</span> 方法4:pROC</h3>
+<p><code>pROC</code>包计算AUC,这个包也是画ROC曲线常用的R包,但是这个包在使用时需要注意,这部分内容会在后面详细介绍。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(Hmisc)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">somers2</span>(tmp<span class="sc">$</span>predvalue, tmp<span class="sc">$</span>dead)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">##           C         Dxy           n     Missing </span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.8793875   0.7587749 565.0000000   0.0000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算AUC,也就是C-statistic</span></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(tmp<span class="sc">$</span>dead, tmp<span class="sc">$</span>predvalue, <span class="at">legacy.axes =</span> T, <span class="at">print.auc =</span> T, <span class="at">print.auc.y =</span> <span class="dv">45</span>)</span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = tmp$dead, predictor = tmp$predvalue, legacy.axes = T,     print.auc = T, print.auc.y = 45)</span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: tmp$predvalue in 471 controls (tmp$dead 0) &lt; 94 cases (tmp$dead 1).</span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.8794</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>也是可以直接画法ROC曲线的,请参考前面的文章。</p>
 </section>
 </section>
-<section id="cox回归的c-statistic" class="level2" data-number="26.2">
-<h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"><span class="header-section-number">26.2</span> cox回归的C-statistic</h2>
-<p>cox回归的C-statistic可以用<code>survival</code>包计算,需要注意,生存分析的C-statistic和AUC是不一样的。</p>
+<section id="cox回归" class="level2" data-number="25.2">
+<h2 data-number="25.2" class="anchored" data-anchor-id="cox回归"><span class="header-section-number">25.2</span> cox回归</h2>
+<p>cox回归的C-statistic可以用<code>survival</code>包计算,需要注意,生存分析的C-statistic和AUC是不一样的,生存分析的C指数一般是指Harrell’s C指数(Harrell就是<code>rms</code>包的作者,统计学大佬)。</p>
 <p>使用<code>survival</code>包自带的<code>lung</code>数据集进行演示。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> lung <span class="sc">%&gt;%</span> </span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">status=</span><span class="fu">ifelse</span>(status <span class="sc">==</span> <span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(df1)</span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  0 0 1 0 0 1 0 0 0 0 ...</span></span>
+<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>R语言自带的<code>coxph</code>函数即可给出C-index,非常简单:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(cox_fit1)</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## coxph(formula = Surv(time, status) ~ age + sex + ph.ecog + ph.karno + </span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     pat.karno, data = lung, x = T, y = T)</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   n= 223, number of events= 160 </span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">##    (5 observations deleted due to missingness)</span></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">##                coef exp(coef)  se(coef)      z Pr(&gt;|z|)   </span></span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">## age        0.011383  1.011448  0.009510  1.197  0.23134   </span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">## sex       -0.561464  0.570373  0.170689 -3.289  0.00100 **</span></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.ecog    0.565533  1.760386  0.186716  3.029  0.00245 **</span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.karno   0.015853  1.015979  0.009853  1.609  0.10762   </span></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">## pat.karno -0.010111  0.989940  0.006881 -1.470  0.14169   </span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
-<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">##           exp(coef) exp(-coef) lower .95 upper .95</span></span>
-<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">## age          1.0114     0.9887    0.9928     1.030</span></span>
-<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">## sex          0.5704     1.7532    0.4082     0.797</span></span>
-<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.ecog      1.7604     0.5681    1.2209     2.538</span></span>
-<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.karno     1.0160     0.9843    0.9965     1.036</span></span>
-<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">## pat.karno    0.9899     1.0102    0.9767     1.003</span></span>
-<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a><span class="do">## Concordance= 0.647  (se = 0.025 )</span></span>
-<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Likelihood ratio test= 32.9  on 5 df,   p=4e-06</span></span>
-<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Wald test            = 33  on 5 df,   p=4e-06</span></span>
-<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a><span class="do">## Score (logrank) test = 33.79  on 5 df,   p=3e-06</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog,</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> df1,<span class="at">x =</span> T, <span class="at">y =</span> T)</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(cox_fit1)</span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## coxph(formula = Surv(time, status) ~ age + sex + ph.ecog, data = df1, </span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     x = T, y = T)</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   n= 227, number of events= 63 </span></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">##    (1 observation deleted due to missingness)</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">##             coef exp(coef) se(coef)      z Pr(&gt;|z|)  </span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">## age     -0.02193   0.97831  0.01496 -1.465   0.1428  </span></span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">## sex      0.63989   1.89626  0.26588  2.407   0.0161 *</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.ecog -0.19941   0.81922  0.20708 -0.963   0.3356  </span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="do">##         exp(coef) exp(-coef) lower .95 upper .95</span></span>
+<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a><span class="do">## age        0.9783     1.0222    0.9500     1.007</span></span>
+<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a><span class="do">## sex        1.8963     0.5274    1.1261     3.193</span></span>
+<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a><span class="do">## ph.ecog    0.8192     1.2207    0.5459     1.229</span></span>
+<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Concordance= 0.584  (se = 0.042 )</span></span>
+<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Likelihood ratio test= 10.28  on 3 df,   p=0.02</span></span>
+<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Wald test            = 10.14  on 3 df,   p=0.02</span></span>
+<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Score (logrank) test = 10.43  on 3 df,   p=0.02</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>Concordance就是C-statistic,本次示例中为0.584。</p>
+<p>也可以用以下代码提取结果:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(cox_fit1)<span class="sc">$</span>concordance</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">##          C      se(C) </span></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.58390352 0.04179314</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>Concordance就是C-statistic,本次示例中为0.647。</p>
 <p>以上就是C-statistic的计算。</p>
-<p>获取<code>lowbirth</code>数据请在公众号:医学和生信笔记 后台回复<em>20220520</em></p>
 
 
 </section>
@@ -811,18 +762,7 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -854,11 +794,50 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -868,8 +847,17 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -881,7 +869,130 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -925,6 +1036,7 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -950,6 +1062,32 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1011,27 +1149,32 @@ <h2 data-number="26.2" class="anchored" data-anchor-id="cox回归的c-statistic"
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./多分类数据的ROC曲线.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span>
+      <a href="./roc-bootstrap.html" class="pagination-link" aria-label="bootstrap ROC/AUC">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./cindex-compare.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./cindex-compare.html" class="pagination-link" aria-label="C-index的比较">
+        <span class="nav-page-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/cindex_files/figure-html/unnamed-chunk-4-1.png b/docs/cindex_files/figure-html/unnamed-chunk-4-1.png
deleted file mode 100644
index f22f74f..0000000
Binary files a/docs/cindex_files/figure-html/unnamed-chunk-4-1.png and /dev/null differ
diff --git a/docs/cindex_files/figure-html/unnamed-chunk-6-1.png b/docs/cindex_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 5ca405d..0000000
Binary files a/docs/cindex_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/conf_matrix-3d.html b/docs/conf_matrix-3d.html
index af8f1b0..a80082a 100644
--- a/docs/conf_matrix-3d.html
+++ b/docs/conf_matrix-3d.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 28&nbsp; 三维混淆矩阵</title>
+<title>20&nbsp; 三维混淆矩阵 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./nri.html" rel="next">
-<link href="./cindex-compare.html" rel="prev">
+<link href="./roc-binominal.html" rel="next">
+<link href="./临床预测模型评价.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./conf_matrix-3d.html"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./conf_matrix-3d.html"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,24 +493,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#d混淆矩阵可视化" id="toc-d混淆矩阵可视化" class="nav-link active" data-scroll-target="#d混淆矩阵可视化"><span class="header-section-number">28.1</span> 2d混淆矩阵可视化</a></li>
-  <li><a href="#d版混淆矩阵可视化" id="toc-d版混淆矩阵可视化" class="nav-link" data-scroll-target="#d版混淆矩阵可视化"><span class="header-section-number">28.2</span> 3d版混淆矩阵可视化</a></li>
+  <li><a href="#d混淆矩阵可视化" id="toc-d混淆矩阵可视化" class="nav-link active" data-scroll-target="#d混淆矩阵可视化"><span class="header-section-number">20.1</span> 2d混淆矩阵可视化</a></li>
+  <li><a href="#d版混淆矩阵可视化" id="toc-d版混淆矩阵可视化" class="nav-link" data-scroll-target="#d版混淆矩阵可视化"><span class="header-section-number">20.2</span> 3d版混淆矩阵可视化</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./conf_matrix-3d.html"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></h1>
+<h1 class="title"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></h1>
 </div>
 
 
@@ -541,8 +523,10 @@ <h1 class="title"><span class="chapter-number">28</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>混淆矩阵大家应该都不陌生,但是3d版的混淆矩阵你见过吗?</p>
 <p>今天的3d版混淆矩阵来自一位粉丝,图形如下:</p>
 <p><img src="figs/Snipaste_2023-04-01_18-53-20.png" class="img-fluid"></p>
@@ -577,8 +561,8 @@ <h1 class="title"><span class="chapter-number">28</span>&nbsp; <span class="chap
 <span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   猜他是肿瘤    肿瘤  9</span></span>
 <span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 4   猜他是肿瘤  非肿瘤  5</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<section id="d混淆矩阵可视化" class="level2" data-number="28.1">
-<h2 data-number="28.1" class="anchored" data-anchor-id="d混淆矩阵可视化"><span class="header-section-number">28.1</span> 2d混淆矩阵可视化</h2>
+<section id="d混淆矩阵可视化" class="level2" data-number="20.1">
+<h2 data-number="20.1" class="anchored" data-anchor-id="d混淆矩阵可视化"><span class="header-section-number">20.1</span> 2d混淆矩阵可视化</h2>
 <p>如果要可视化混淆矩阵,简单的2维非常简单,比如用<code>ggplot2</code>即可:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df1, <span class="fu">aes</span>(pred, outcome))<span class="sc">+</span></span>
@@ -587,13 +571,17 @@ <h2 data-number="28.1" class="anchored" data-anchor-id="d混淆矩阵可视化">
 <span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()<span class="sc">+</span></span>
 <span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="st">"none"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="conf_matrix-3d_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="conf_matrix-3d_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>想要修改更多细节,大家自己动手即可,非常简单!</p>
 </section>
-<section id="d版混淆矩阵可视化" class="level2" data-number="28.2">
-<h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视化"><span class="header-section-number">28.2</span> 3d版混淆矩阵可视化</h2>
+<section id="d版混淆矩阵可视化" class="level2" data-number="20.2">
+<h2 data-number="20.2" class="anchored" data-anchor-id="d版混淆矩阵可视化"><span class="header-section-number">20.2</span> 3d版混淆矩阵可视化</h2>
 <p>也是很简单,使用<code>barplot3d</code>这个包即可。这个包需要本地安装。</p>
 <p>注意这个包画图的顺序:<strong>从左到右,从前到后</strong>!</p>
 <div class="cell">
@@ -659,18 +647,7 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -702,11 +679,50 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -716,8 +732,17 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -729,7 +754,130 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -773,6 +921,7 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -798,6 +947,32 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -859,27 +1034,32 @@ <h2 data-number="28.2" class="anchored" data-anchor-id="d版混淆矩阵可视
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./cindex-compare.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span>
+      <a href="./临床预测模型评价.html" class="pagination-link" aria-label="临床预测模型的评价">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">临床预测模型的评价</span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nri.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./roc-binominal.html" class="pagination-link" aria-label="二分类ROC曲线绘制">
+        <span class="nav-page-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-3-1.png b/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-3-1.png
new file mode 100644
index 0000000..52211d7
Binary files /dev/null and b/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-4-1.png b/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-4-1.png
deleted file mode 100644
index 19aa194..0000000
Binary files a/docs/conf_matrix-3d_files/figure-html/unnamed-chunk-4-1.png and /dev/null differ
diff --git a/docs/data-preprocess.html b/docs/data-preprocess.html
index 6b86806..55bd8a3 100644
--- a/docs/data-preprocess.html
+++ b/docs/data-preprocess.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 附录 A — 常见的数据预处理方法</title>
+<title>6&nbsp; 常见的数据预处理方法 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./data-split.html" rel="next">
-<link href="./model-compare_caret.html" rel="prev">
+<link href="./nomogram-logistic.html" rel="next">
+<link href="./data-split.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./data-preprocess.html">附录</a></li><li class="breadcrumb-item"><a href="./data-preprocess.html"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./data-preprocess.html"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,33 +493,33 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link active" data-scroll-target="#加载r包和数据"><span class="header-section-number">A.1</span> 加载R包和数据</a></li>
-  <li><a href="#中心化和标准化" id="toc-中心化和标准化" class="nav-link" data-scroll-target="#中心化和标准化"><span class="header-section-number">A.2</span> 中心化和标准化</a></li>
-  <li><a href="#偏度问题" id="toc-偏度问题" class="nav-link" data-scroll-target="#偏度问题"><span class="header-section-number">A.3</span> 偏度问题</a></li>
-  <li><a href="#解决离群值" id="toc-解决离群值" class="nav-link" data-scroll-target="#解决离群值"><span class="header-section-number">A.4</span> 解决离群值</a></li>
-  <li><a href="#降维和特征提取" id="toc-降维和特征提取" class="nav-link" data-scroll-target="#降维和特征提取"><span class="header-section-number">A.5</span> 降维和特征提取</a></li>
-  <li><a href="#处理缺失值" id="toc-处理缺失值" class="nav-link" data-scroll-target="#处理缺失值"><span class="header-section-number">A.6</span> 处理缺失值</a></li>
-  <li><a href="#过滤" id="toc-过滤" class="nav-link" data-scroll-target="#过滤"><span class="header-section-number">A.7</span> 过滤</a></li>
-  <li><a href="#共线性" id="toc-共线性" class="nav-link" data-scroll-target="#共线性"><span class="header-section-number">A.8</span> 共线性</a></li>
-  <li><a href="#构建虚拟变量" id="toc-构建虚拟变量" class="nav-link" data-scroll-target="#构建虚拟变量"><span class="header-section-number">A.9</span> 构建虚拟变量</a></li>
-  <li><a href="#区间化预测变量" id="toc-区间化预测变量" class="nav-link" data-scroll-target="#区间化预测变量"><span class="header-section-number">A.10</span> 区间化预测变量</a></li>
-  <li><a href="#多个预处理步骤放一起" id="toc-多个预处理步骤放一起" class="nav-link" data-scroll-target="#多个预处理步骤放一起"><span class="header-section-number">A.11</span> 多个预处理步骤放一起</a></li>
+  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link active" data-scroll-target="#加载r包和数据"><span class="header-section-number">6.1</span> 加载R包和数据</a></li>
+  <li><a href="#中心化和标准化" id="toc-中心化和标准化" class="nav-link" data-scroll-target="#中心化和标准化"><span class="header-section-number">6.2</span> 中心化和标准化</a></li>
+  <li><a href="#偏度问题" id="toc-偏度问题" class="nav-link" data-scroll-target="#偏度问题"><span class="header-section-number">6.3</span> 偏度问题</a></li>
+  <li><a href="#解决离群值" id="toc-解决离群值" class="nav-link" data-scroll-target="#解决离群值"><span class="header-section-number">6.4</span> 解决离群值</a></li>
+  <li><a href="#降维和特征提取" id="toc-降维和特征提取" class="nav-link" data-scroll-target="#降维和特征提取"><span class="header-section-number">6.5</span> 降维和特征提取</a></li>
+  <li><a href="#处理缺失值" id="toc-处理缺失值" class="nav-link" data-scroll-target="#处理缺失值"><span class="header-section-number">6.6</span> 处理缺失值</a></li>
+  <li><a href="#过滤" id="toc-过滤" class="nav-link" data-scroll-target="#过滤"><span class="header-section-number">6.7</span> 过滤</a></li>
+  <li><a href="#共线性" id="toc-共线性" class="nav-link" data-scroll-target="#共线性"><span class="header-section-number">6.8</span> 共线性</a></li>
+  <li><a href="#构建虚拟变量" id="toc-构建虚拟变量" class="nav-link" data-scroll-target="#构建虚拟变量"><span class="header-section-number">6.9</span> 构建虚拟变量</a></li>
+  <li><a href="#区间化预测变量" id="toc-区间化预测变量" class="nav-link" data-scroll-target="#区间化预测变量"><span class="header-section-number">6.10</span> 区间化预测变量</a></li>
+  <li><a href="#多个预处理步骤放一起" id="toc-多个预处理步骤放一起" class="nav-link" data-scroll-target="#多个预处理步骤放一起"><span class="header-section-number">6.11</span> 多个预处理步骤放一起</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./data-preprocess.html"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title">附录 A — 常见的数据预处理方法</h1>
+<h1 class="title"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></h1>
 </div>
 
 
@@ -550,8 +532,10 @@ <h1 class="title">附录 A — 常见的数据预处理方法</h1>
   </div>
   
 
+
 </header>
 
+
 <p>数据预处理对获得表现良好的模型有非常重要的作用!</p>
 <p><strong>是金子总会发光</strong>,一个未经雕琢的数据,本身的价值也难以得到体现,通过数据预处理,可以让数据展现真正的价值;另外,不同的模型对数据有不同的要求,通过预处理可以让数据符合算法的要求,这样也能提高模型的预测能力。这就是数据预处理的重要作用!</p>
 <p>但是,一个本身就没有什么价值的数据,再好的模型也得不出理想的结果,这就是我常说的:<strong>鸭子是不会变成天鹅的!</strong></p>
@@ -559,106 +543,104 @@ <h1 class="title">附录 A — 常见的数据预处理方法</h1>
 <p>但是要注意,数据预处理不是单纯的数字操作,一定要结合自己的实际情况!</p>
 <p>今天的推文给大家介绍一些临床预测模型和机器学习常用的数据预处理方法。</p>
 <p><strong>最有效的数据预处理的方法来自于建模者对数据的理解,而不是通过任何数学方法。</strong></p>
-<section id="加载r包和数据" class="level2" data-number="A.1">
-<h2 data-number="A.1" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">A.1</span> 加载R包和数据</h2>
+<section id="加载r包和数据" class="level2" data-number="6.1">
+<h2 data-number="6.1" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">6.1</span> 加载R包和数据</h2>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(AppliedPredictiveModeling)</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(caret)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: ggplot2</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: lattice</span></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"segmentationOriginal"</span>)</span>
 <span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"segmentationOriginal"</span>)</span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> <span class="fu">subset</span>(segmentationOriginal, Case <span class="sc">==</span> <span class="st">"Train"</span>)</span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>cellID <span class="ot">&lt;-</span> segData<span class="sc">$</span>Cell</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>calss <span class="ot">&lt;-</span> segData<span class="sc">$</span>Class</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>case <span class="ot">&lt;-</span> segData<span class="sc">$</span>Case</span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> segData[ ,  <span class="sc">-</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>)]</span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>statusColNum <span class="ot">&lt;-</span> <span class="fu">grep</span>(<span class="st">"Status"</span>, <span class="fu">names</span>(segData))</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>statusColNum</span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  [1]   2   4   9  10  11  12  14  16  20  21  22  26  27  28  30  32  34  36  38</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [20]  40  43  44  46  48  51  52  55  56  59  60  63  64  68  69  70  72  73  74</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## [39]  76  78  80  82  84  86  88  92  93  94  97  98 103 104 105 106 110 111 112</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## [58] 114</span></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> <span class="fu">subset</span>(segmentationOriginal, Case <span class="sc">==</span> <span class="st">"Train"</span>)</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>cellID <span class="ot">&lt;-</span> segData<span class="sc">$</span>Cell</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>calss <span class="ot">&lt;-</span> segData<span class="sc">$</span>Class</span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>case <span class="ot">&lt;-</span> segData<span class="sc">$</span>Case</span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> segData[ ,  <span class="sc">-</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>)]</span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>statusColNum <span class="ot">&lt;-</span> <span class="fu">grep</span>(<span class="st">"Status"</span>, <span class="fu">names</span>(segData))</span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>statusColNum</span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [1]   2   4   9  10  11  12  14  16  20  21  22  26  27  28  30  32  34  36  38</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [20]  40  43  44  46  48  51  52  55  56  59  60  63  64  68  69  70  72  73  74</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [39]  76  78  80  82  84  86  88  92  93  94  97  98 103 104 105 106 110 111 112</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [58] 114</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> segData[ , <span class="sc">-</span>statusColNum]</span>
 <span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>segData <span class="ot">&lt;-</span> segData[ , <span class="sc">-</span>statusColNum]</span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(segData)</span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    1009 obs. of  58 variables:</span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AngleCh1               : num  133.8 106.6 69.2 109.4 104.3 ...</span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AreaCh1                : int  819 431 298 256 258 358 158 315 246 223 ...</span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh1            : num  31.9 28 19.5 18.8 17.6 ...</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh2            : num  206 115 101 126 124 ...</span></span>
-<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh3            : num  69.9 63.9 28.2 13.6 22.5 ...</span></span>
-<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh4            : num  164.2 106.7 31 46.8 71.2 ...</span></span>
-<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ConvexHullAreaRatioCh1 : num  1.26 1.05 1.2 1.08 1.08 ...</span></span>
-<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ConvexHullPerimRatioCh1: num  0.797 0.935 0.866 0.92 0.931 ...</span></span>
-<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh1    : num  31.9 32.5 26.7 28 27.9 ...</span></span>
-<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh3    : num  43.1 36 22.9 14.9 16.1 ...</span></span>
-<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh4    : num  79.3 51.4 26.4 32.7 36.2 ...</span></span>
-<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh1        : num  6.09 5.88 5.42 5.38 5.18 ...</span></span>
-<span id="cb1-36"><a href="#cb1-36" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh3        : num  6.64 6.68 5.44 4.15 5.49 ...</span></span>
-<span id="cb1-37"><a href="#cb1-37" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh4        : num  7.88 7.14 5.78 6.19 6.62 ...</span></span>
-<span id="cb1-38"><a href="#cb1-38" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqCircDiamCh1          : num  32.3 23.4 19.5 18.1 18.2 ...</span></span>
-<span id="cb1-39"><a href="#cb1-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseLWRCh1        : num  1.56 1.38 3.39 1.38 1.62 ...</span></span>
-<span id="cb1-40"><a href="#cb1-40" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseOblateVolCh1  : num  2233 802 725 368 404 ...</span></span>
-<span id="cb1-41"><a href="#cb1-41" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseProlateVolCh1 : num  1433 583 214 267 250 ...</span></span>
-<span id="cb1-42"><a href="#cb1-42" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqSphereAreaCh1        : num  3279 1727 1195 1027 1036 ...</span></span>
-<span id="cb1-43"><a href="#cb1-43" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqSphereVolCh1         : num  17654 6751 3884 3096 3134 ...</span></span>
-<span id="cb1-44"><a href="#cb1-44" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberAlign2Ch3         : num  0.488 0.301 0.22 0.364 0.359 ...</span></span>
-<span id="cb1-45"><a href="#cb1-45" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberAlign2Ch4         : num  0.352 0.522 0.733 0.481 0.244 ...</span></span>
-<span id="cb1-46"><a href="#cb1-46" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberLengthCh1         : num  64.3 21.1 43.1 22.3 26.5 ...</span></span>
-<span id="cb1-47"><a href="#cb1-47" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberWidthCh1          : num  13.2 21.1 7.4 12.1 10.2 ...</span></span>
-<span id="cb1-48"><a href="#cb1-48" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocASMCh3        : num  0.02805 0.00686 0.03096 0.10816 0.01303 ...</span></span>
-<span id="cb1-49"><a href="#cb1-49" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocASMCh4        : num  0.01259 0.00614 0.01103 0.00995 0.00896 ...</span></span>
-<span id="cb1-50"><a href="#cb1-50" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocContrastCh3   : num  8.23 14.45 7.3 6.16 9.4 ...</span></span>
-<span id="cb1-51"><a href="#cb1-51" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocContrastCh4   : num  6.98 16.7 13.39 10.59 10.3 ...</span></span>
-<span id="cb1-52"><a href="#cb1-52" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocEntropyCh3    : num  6.82 7.58 6.31 5.04 6.96 ...</span></span>
-<span id="cb1-53"><a href="#cb1-53" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocEntropyCh4    : num  7.1 7.67 7.2 7.13 7.14 ...</span></span>
-<span id="cb1-54"><a href="#cb1-54" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocMaxCh3        : num  0.1532 0.0284 0.1628 0.3153 0.0739 ...</span></span>
-<span id="cb1-55"><a href="#cb1-55" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocMaxCh4        : num  0.0739 0.0232 0.0775 0.0586 0.0348 ...</span></span>
-<span id="cb1-56"><a href="#cb1-56" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh1           : num  -0.249 -0.293 0.626 -0.365 -0.556 ...</span></span>
-<span id="cb1-57"><a href="#cb1-57" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh3           : num  -0.331 1.051 0.128 1.083 -0.512 ...</span></span>
-<span id="cb1-58"><a href="#cb1-58" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh4           : num  -0.265 0.151 -0.347 -0.626 -0.647 ...</span></span>
-<span id="cb1-59"><a href="#cb1-59" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ LengthCh1              : num  47.2 28.1 37.9 23.1 26.3 ...</span></span>
-<span id="cb1-60"><a href="#cb1-60" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborAvgDistCh1     : num  174 158 206 264 231 ...</span></span>
-<span id="cb1-61"><a href="#cb1-61" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborMinDistCh1     : num  30.1 34.9 33.1 38.4 29.8 ...</span></span>
-<span id="cb1-62"><a href="#cb1-62" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborVarDistCh1     : num  81.4 90.4 116.9 88.5 103.5 ...</span></span>
-<span id="cb1-63"><a href="#cb1-63" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ PerimCh1               : num  154.9 84.6 101.1 68.7 73.4 ...</span></span>
-<span id="cb1-64"><a href="#cb1-64" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeBFRCh1            : num  0.54 0.724 0.589 0.635 0.557 ...</span></span>
-<span id="cb1-65"><a href="#cb1-65" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeLWRCh1            : num  1.47 1.33 2.83 1.31 1.49 ...</span></span>
-<span id="cb1-66"><a href="#cb1-66" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeP2ACh1            : num  2.26 1.27 2.55 1.4 1.59 ...</span></span>
-<span id="cb1-67"><a href="#cb1-67" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh1           : num  0.399 0.472 0.882 0.547 0.443 ...</span></span>
-<span id="cb1-68"><a href="#cb1-68" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh3           : num  0.62 0.971 1 1.432 0.556 ...</span></span>
-<span id="cb1-69"><a href="#cb1-69" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh4           : num  0.527 0.325 0.604 0.704 0.137 ...</span></span>
-<span id="cb1-70"><a href="#cb1-70" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SpotFiberCountCh3      : int  4 2 4 0 1 1 4 2 2 2 ...</span></span>
-<span id="cb1-71"><a href="#cb1-71" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SpotFiberCountCh4      : int  11 6 7 5 4 5 4 2 5 1 ...</span></span>
-<span id="cb1-72"><a href="#cb1-72" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh1          : int  24964 11552 5545 4613 4340 14461 4743 88725 136957 79885 ...</span></span>
-<span id="cb1-73"><a href="#cb1-73" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh2          : int  160997 47510 28869 30855 30719 74259 15434 148012 57421 62235 ...</span></span>
-<span id="cb1-74"><a href="#cb1-74" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh3          : int  54675 26344 8042 3332 5548 14474 6265 58224 20304 23878 ...</span></span>
-<span id="cb1-75"><a href="#cb1-75" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh4          : int  128368 43959 8843 11466 17588 23099 17534 120536 15482 98948 ...</span></span>
-<span id="cb1-76"><a href="#cb1-76" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh1            : num  18.8 17.3 13.8 13.9 12.3 ...</span></span>
-<span id="cb1-77"><a href="#cb1-77" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh3            : num  56.7 37.7 30 18.6 17.7 ...</span></span>
-<span id="cb1-78"><a href="#cb1-78" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh4            : num  118.4 49.5 24.7 40.3 41.9 ...</span></span>
-<span id="cb1-79"><a href="#cb1-79" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ WidthCh1               : num  32.2 21.2 13.4 17.5 17.7 ...</span></span>
-<span id="cb1-80"><a href="#cb1-80" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ XCentroid              : int  215 371 487 211 172 276 239 95 438 386 ...</span></span>
-<span id="cb1-81"><a href="#cb1-81" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ YCentroid              : int  347 252 295 495 207 385 404 95 16 14 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(segData)</span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    1009 obs. of  58 variables:</span></span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AngleCh1               : num  133.8 106.6 69.2 109.4 104.3 ...</span></span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AreaCh1                : int  819 431 298 256 258 358 158 315 246 223 ...</span></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh1            : num  31.9 28 19.5 18.8 17.6 ...</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh2            : num  206 115 101 126 124 ...</span></span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh3            : num  69.9 63.9 28.2 13.6 22.5 ...</span></span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ AvgIntenCh4            : num  164.2 106.7 31 46.8 71.2 ...</span></span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ConvexHullAreaRatioCh1 : num  1.26 1.05 1.2 1.08 1.08 ...</span></span>
+<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ConvexHullPerimRatioCh1: num  0.797 0.935 0.866 0.92 0.931 ...</span></span>
+<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh1    : num  31.9 32.5 26.7 28 27.9 ...</span></span>
+<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh3    : num  43.1 36 22.9 14.9 16.1 ...</span></span>
+<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ DiffIntenDensityCh4    : num  79.3 51.4 26.4 32.7 36.2 ...</span></span>
+<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh1        : num  6.09 5.88 5.42 5.38 5.18 ...</span></span>
+<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh3        : num  6.64 6.68 5.44 4.15 5.49 ...</span></span>
+<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EntropyIntenCh4        : num  7.88 7.14 5.78 6.19 6.62 ...</span></span>
+<span id="cb1-36"><a href="#cb1-36" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqCircDiamCh1          : num  32.3 23.4 19.5 18.1 18.2 ...</span></span>
+<span id="cb1-37"><a href="#cb1-37" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseLWRCh1        : num  1.56 1.38 3.39 1.38 1.62 ...</span></span>
+<span id="cb1-38"><a href="#cb1-38" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseOblateVolCh1  : num  2233 802 725 368 404 ...</span></span>
+<span id="cb1-39"><a href="#cb1-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqEllipseProlateVolCh1 : num  1433 583 214 267 250 ...</span></span>
+<span id="cb1-40"><a href="#cb1-40" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqSphereAreaCh1        : num  3279 1727 1195 1027 1036 ...</span></span>
+<span id="cb1-41"><a href="#cb1-41" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ EqSphereVolCh1         : num  17654 6751 3884 3096 3134 ...</span></span>
+<span id="cb1-42"><a href="#cb1-42" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberAlign2Ch3         : num  0.488 0.301 0.22 0.364 0.359 ...</span></span>
+<span id="cb1-43"><a href="#cb1-43" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberAlign2Ch4         : num  0.352 0.522 0.733 0.481 0.244 ...</span></span>
+<span id="cb1-44"><a href="#cb1-44" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberLengthCh1         : num  64.3 21.1 43.1 22.3 26.5 ...</span></span>
+<span id="cb1-45"><a href="#cb1-45" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FiberWidthCh1          : num  13.2 21.1 7.4 12.1 10.2 ...</span></span>
+<span id="cb1-46"><a href="#cb1-46" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocASMCh3        : num  0.02805 0.00686 0.03096 0.10816 0.01303 ...</span></span>
+<span id="cb1-47"><a href="#cb1-47" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocASMCh4        : num  0.01259 0.00614 0.01103 0.00995 0.00896 ...</span></span>
+<span id="cb1-48"><a href="#cb1-48" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocContrastCh3   : num  8.23 14.45 7.3 6.16 9.4 ...</span></span>
+<span id="cb1-49"><a href="#cb1-49" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocContrastCh4   : num  6.98 16.7 13.39 10.59 10.3 ...</span></span>
+<span id="cb1-50"><a href="#cb1-50" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocEntropyCh3    : num  6.82 7.58 6.31 5.04 6.96 ...</span></span>
+<span id="cb1-51"><a href="#cb1-51" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocEntropyCh4    : num  7.1 7.67 7.2 7.13 7.14 ...</span></span>
+<span id="cb1-52"><a href="#cb1-52" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocMaxCh3        : num  0.1532 0.0284 0.1628 0.3153 0.0739 ...</span></span>
+<span id="cb1-53"><a href="#cb1-53" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ IntenCoocMaxCh4        : num  0.0739 0.0232 0.0775 0.0586 0.0348 ...</span></span>
+<span id="cb1-54"><a href="#cb1-54" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh1           : num  -0.249 -0.293 0.626 -0.365 -0.556 ...</span></span>
+<span id="cb1-55"><a href="#cb1-55" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh3           : num  -0.331 1.051 0.128 1.083 -0.512 ...</span></span>
+<span id="cb1-56"><a href="#cb1-56" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ KurtIntenCh4           : num  -0.265 0.151 -0.347 -0.626 -0.647 ...</span></span>
+<span id="cb1-57"><a href="#cb1-57" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ LengthCh1              : num  47.2 28.1 37.9 23.1 26.3 ...</span></span>
+<span id="cb1-58"><a href="#cb1-58" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborAvgDistCh1     : num  174 158 206 264 231 ...</span></span>
+<span id="cb1-59"><a href="#cb1-59" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborMinDistCh1     : num  30.1 34.9 33.1 38.4 29.8 ...</span></span>
+<span id="cb1-60"><a href="#cb1-60" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NeighborVarDistCh1     : num  81.4 90.4 116.9 88.5 103.5 ...</span></span>
+<span id="cb1-61"><a href="#cb1-61" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ PerimCh1               : num  154.9 84.6 101.1 68.7 73.4 ...</span></span>
+<span id="cb1-62"><a href="#cb1-62" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeBFRCh1            : num  0.54 0.724 0.589 0.635 0.557 ...</span></span>
+<span id="cb1-63"><a href="#cb1-63" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeLWRCh1            : num  1.47 1.33 2.83 1.31 1.49 ...</span></span>
+<span id="cb1-64"><a href="#cb1-64" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ShapeP2ACh1            : num  2.26 1.27 2.55 1.4 1.59 ...</span></span>
+<span id="cb1-65"><a href="#cb1-65" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh1           : num  0.399 0.472 0.882 0.547 0.443 ...</span></span>
+<span id="cb1-66"><a href="#cb1-66" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh3           : num  0.62 0.971 1 1.432 0.556 ...</span></span>
+<span id="cb1-67"><a href="#cb1-67" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SkewIntenCh4           : num  0.527 0.325 0.604 0.704 0.137 ...</span></span>
+<span id="cb1-68"><a href="#cb1-68" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SpotFiberCountCh3      : int  4 2 4 0 1 1 4 2 2 2 ...</span></span>
+<span id="cb1-69"><a href="#cb1-69" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ SpotFiberCountCh4      : int  11 6 7 5 4 5 4 2 5 1 ...</span></span>
+<span id="cb1-70"><a href="#cb1-70" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh1          : int  24964 11552 5545 4613 4340 14461 4743 88725 136957 79885 ...</span></span>
+<span id="cb1-71"><a href="#cb1-71" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh2          : int  160997 47510 28869 30855 30719 74259 15434 148012 57421 62235 ...</span></span>
+<span id="cb1-72"><a href="#cb1-72" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh3          : int  54675 26344 8042 3332 5548 14474 6265 58224 20304 23878 ...</span></span>
+<span id="cb1-73"><a href="#cb1-73" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TotalIntenCh4          : int  128368 43959 8843 11466 17588 23099 17534 120536 15482 98948 ...</span></span>
+<span id="cb1-74"><a href="#cb1-74" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh1            : num  18.8 17.3 13.8 13.9 12.3 ...</span></span>
+<span id="cb1-75"><a href="#cb1-75" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh3            : num  56.7 37.7 30 18.6 17.7 ...</span></span>
+<span id="cb1-76"><a href="#cb1-76" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ VarIntenCh4            : num  118.4 49.5 24.7 40.3 41.9 ...</span></span>
+<span id="cb1-77"><a href="#cb1-77" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ WidthCh1               : num  32.2 21.2 13.4 17.5 17.7 ...</span></span>
+<span id="cb1-78"><a href="#cb1-78" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ XCentroid              : int  215 371 487 211 172 276 239 95 438 386 ...</span></span>
+<span id="cb1-79"><a href="#cb1-79" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ YCentroid              : int  347 252 295 495 207 385 404 95 16 14 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="中心化和标准化" class="level2" data-number="A.2">
-<h2 data-number="A.2" class="anchored" data-anchor-id="中心化和标准化"><span class="header-section-number">A.2</span> 中心化和标准化</h2>
+<section id="中心化和标准化" class="level2" data-number="6.2">
+<h2 data-number="6.2" class="anchored" data-anchor-id="中心化和标准化"><span class="header-section-number">6.2</span> 中心化和标准化</h2>
 <p>某些算法对预测变量是有要求的,比如需要预测变量具有相同的尺度,如果有的预测变量范围是0.1<sub>0.2,但是有的却是10000</sub>20000,这种变量间的绝大差距会影像某些模型的稳定性,所以需要想办法把它们变成差不多的范围(有个专有名词:无量纲化)。</p>
 <p>中心化和标准化可以解决这样的问题。</p>
 <p><strong>中心化是将所有变量减去其均值,其结果是变换后的变量均值为0;标准化是将每个变量除以其自身的标准差,标准化迫使变量的标准差为1。</strong></p>
 <p>R语言中<code>scale()</code>函数可实现中心化和标准化,就不多做介绍了。</p>
 </section>
-<section id="偏度问题" class="level2" data-number="A.3">
-<h2 data-number="A.3" class="anchored" data-anchor-id="偏度问题"><span class="header-section-number">A.3</span> 偏度问题</h2>
+<section id="偏度问题" class="level2" data-number="6.3">
+<h2 data-number="6.3" class="anchored" data-anchor-id="偏度问题"><span class="header-section-number">6.3</span> 偏度问题</h2>
 <p>无偏分布类似我们常说的正态分布,有偏分布又分为右偏和左偏,分别类似正偏态分布和负偏态分布。</p>
 <p><strong>一个判断数据有偏的黄金标准:如果最大值与最小值的比例超过20,那么我们认为数据有偏。</strong></p>
 <p>可以通过计算<strong>偏度统计量</strong>来衡量偏度。如果预测变量分布是大致对称的,那么偏度将接近于0,右偏分布偏度大于0,越大说明偏的越厉害;左偏分布偏度小于0,越小说明偏的越厉害。</p>
 <p>计算偏度的包很多。</p>
-<p>使用<code>e1071</code>包查看变量的偏度</p>
+<p>使用<code>e1071</code>包查看变量的偏度:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(e1071)</span>
 <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看偏度</span></span>
@@ -716,7 +698,11 @@ <h2 data-number="A.3" class="anchored" data-anchor-id="偏度问题"><span class
 <span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(segData<span class="sc">$</span>AreaCh1)</span>
 <span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(AreaCh1_transed)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="data-preprocess_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="data-preprocess_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">par</span>(opar)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
@@ -730,23 +716,20 @@ <h2 data-number="A.3" class="anchored" data-anchor-id="偏度问题"><span class
 <p>还有很多R包可以实现<code>BoxCox</code>变换,其中比较简单的是<code>forecast</code>,简单演示如下:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(forecast)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Registered S3 method overwritten by 'quantmod':</span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   method            from</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   as.zoo.data.frame zoo</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>best.lambda <span class="ot">&lt;-</span> <span class="fu">BoxCox.lambda</span>(segData<span class="sc">$</span>AreaCh1) <span class="co"># 计算lambda</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>best.lambda</span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] -0.9999264</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>AreaCh1.transformed <span class="ot">&lt;-</span> <span class="fu">BoxCox</span>(segData<span class="sc">$</span>AreaCh1, <span class="at">lambda =</span> best.lambda) <span class="co"># 变换</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(AreaCh1.transformed)</span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9988519 0.9977522 0.9967163 0.9961655 0.9961958 0.9972789</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>y0 <span class="ot">&lt;-</span> <span class="fu">InvBoxCox</span>(AreaCh1.transformed,<span class="at">lambda=</span>best.lambda) <span class="co"># 还原</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>best.lambda <span class="ot">&lt;-</span> <span class="fu">BoxCox.lambda</span>(segData<span class="sc">$</span>AreaCh1) <span class="co"># 计算lambda</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>best.lambda</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] -0.9999264</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>AreaCh1.transformed <span class="ot">&lt;-</span> <span class="fu">BoxCox</span>(segData<span class="sc">$</span>AreaCh1, <span class="at">lambda =</span> best.lambda) <span class="co"># 变换</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(AreaCh1.transformed)</span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9988519 0.9977522 0.9967163 0.9961655 0.9961958 0.9972789</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>y0 <span class="ot">&lt;-</span> <span class="fu">InvBoxCox</span>(AreaCh1.transformed,<span class="at">lambda=</span>best.lambda) <span class="co"># 还原</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="解决离群值" class="level2" data-number="A.4">
-<h2 data-number="A.4" class="anchored" data-anchor-id="解决离群值"><span class="header-section-number">A.4</span> 解决离群值</h2>
+<section id="解决离群值" class="level2" data-number="6.4">
+<h2 data-number="6.4" class="anchored" data-anchor-id="解决离群值"><span class="header-section-number">6.4</span> 解决离群值</h2>
 <p>离群值其实是有明确定义的,通常我们会选择直接删除离群值,但是还是要根据实际情况来看,有的离群值是非常有意义的,这样的离群值不能直接删除。</p>
 <ul>
 <li>有的离群值可能是数据录入时不小心输错了,比如错把收缩压132mmHg录成了 -132mmHg,只需要改正即可;</li>
@@ -755,6 +738,7 @@ <h2 data-number="A.4" class="anchored" data-anchor-id="解决离群值"><span cl
 </ul>
 <p>有些模型对离群值很敏感,比如线性模型,这样是需要处理的,一个常见的方法是<strong>空间表示变换</strong>,该变换将预测变量取值映射到高纬的球上,它会把所有样本变换到离球心相等的球面上。在<code>caret</code>中可以实现。关于它的具体数学运算过程,感兴趣的自己了解即可,我不太感兴趣。</p>
 <p><strong>在进行空间表示变换前,最好先进行中心化和标准化</strong>,这也和它的数学计算有关,我也不太感兴趣。</p>
+<p>查看变换前的图形:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 变换前的图形</span></span>
 <span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(mdrr)</span>
@@ -766,10 +750,15 @@ <h2 data-number="A.4" class="anchored" data-anchor-id="解决离群值"><span cl
 <span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>       <span class="at">groups =</span> mdrrClass, </span>
 <span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>       <span class="at">auto.key =</span> <span class="fu">list</span>(<span class="at">columns =</span> <span class="dv">2</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="data-preprocess_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="data-preprocess_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<div class="cell" data-fig.asp="1">
+<p>查看变换后的图形:</p>
+<div class="cell">
 <div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 变换后的图形</span></span>
 <span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>transformed <span class="ot">&lt;-</span> <span class="fu">spatialSign</span>(plotSubset)</span>
 <span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>transformed <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(transformed)</span>
@@ -778,14 +767,18 @@ <h2 data-number="A.4" class="anchored" data-anchor-id="解决离群值"><span cl
 <span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>       <span class="at">groups =</span> mdrrClass, </span>
 <span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>       <span class="at">auto.key =</span> <span class="fu">list</span>(<span class="at">columns =</span> <span class="dv">2</span>)) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="data-preprocess_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="data-preprocess_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>是不是很神奇?</p>
 </section>
-<section id="降维和特征提取" class="level2" data-number="A.5">
-<h2 data-number="A.5" class="anchored" data-anchor-id="降维和特征提取"><span class="header-section-number">A.5</span> 降维和特征提取</h2>
-<p>有很多方法,比如PCA, ICA, PLS, UMAP等,最流行的还是PCA,主要是它给出的主成分是彼此不相关的,这恰好符合一些模型的需求。</p>
+<section id="降维和特征提取" class="level2" data-number="6.5">
+<h2 data-number="6.5" class="anchored" data-anchor-id="降维和特征提取"><span class="header-section-number">6.5</span> 降维和特征提取</h2>
+<p>有很多方法,比如PCA,ICA,PLS,UMAP等,最流行的还是PCA,主要是它给出的主成分是彼此不相关的,这恰好符合一些模型的需求。</p>
 <p>对数据进行PCA变换之前,最好先解决偏度问题,然后进行中心化和标准化,和它的数学计算过程有关,感兴趣的自己了解。</p>
 <p>可视化前后不同:</p>
 <div class="cell">
@@ -806,17 +799,32 @@ <h2 data-number="A.5" class="anchored" data-anchor-id="降维和特征提取"><s
 <span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span>
 <span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>cowplot<span class="sc">::</span><span class="fu">plot_grid</span>(p1,p2)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="data-preprocess_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="data-preprocess_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="处理缺失值" class="level2" data-number="A.6">
-<h2 data-number="A.6" class="anchored" data-anchor-id="处理缺失值"><span class="header-section-number">A.6</span> 处理缺失值</h2>
-<p>处理缺失值主要有两种方法,直接删除或者进行插补,使用哪种方法应取决于对数据的理解!</p>
-<p>一些常见的缺失值处理方法可以参考我之前的推文:<a href="https://mp.weixin.qq.com/s/L7a1CTqkndYcpmszNReucg">我常用的缺失值插补方法</a></p>
+<section id="处理缺失值" class="level2" data-number="6.6">
+<h2 data-number="6.6" class="anchored" data-anchor-id="处理缺失值"><span class="header-section-number">6.6</span> 处理缺失值</h2>
+<p>缺失值处理是一个宏大的话题,首先要了解缺失值的类型:</p>
+<ul>
+<li><strong>完全随机缺失</strong>:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据 为完全随机缺失(MCAR)。注意,如果每个有缺失值的变量都是MCAR,那么可以将数据完整的实例看作对更大数据集的一个简单随机抽样。</li>
+<li><strong>随机缺失</strong>:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关, 则数据为随机缺失(MAR)。</li>
+<li><strong>非随机缺失</strong>:若缺失数据不属于MCAR和MAR,则数据为非随机缺失(NMAR)。</li>
+</ul>
+<p>大部分处理缺失数据的方法都假定数据是MCAR或MAR。缺失值的处理方法非常多,理论也非常复杂,下面是一些常见的缺失值处理方法:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/T0sn5JFkMWZ_dqQcbRKySw">缺失值探索</a></li>
+<li><a href="https://mp.weixin.qq.com/s/pJt5F6Ydj0eeV1S6CXiWaw">缺失值插补之simputation包</a></li>
+<li><a href="https://mp.weixin.qq.com/s/L7a1CTqkndYcpmszNReucg">我常用的缺失值插补方法</a></li>
+<li><a href="https://mp.weixin.qq.com/s/od2kkxPfN5inpTTJUHJNXg">mice多重插补</a></li>
+</ul>
 </section>
-<section id="过滤" class="level2" data-number="A.7">
-<h2 data-number="A.7" class="anchored" data-anchor-id="过滤"><span class="header-section-number">A.7</span> 过滤</h2>
+<section id="过滤" class="level2" data-number="6.7">
+<h2 data-number="6.7" class="anchored" data-anchor-id="过滤"><span class="header-section-number">6.7</span> 过滤</h2>
 <p>这里的过滤和解决共线性,其实部分属于<strong>特征选择</strong>的范围,就是大家常见的自变量选择问题,这个问题在以后的推文中还会详细介绍。</p>
 <blockquote class="blockquote">
 <p>冗余的变量通常增加了模型的复杂度而非信息量</p>
@@ -884,10 +892,13 @@ <h2 data-number="A.7" class="anchored" data-anchor-id="过滤"><span class="head
 <span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 可视化相关系数矩阵,中间几个颜色深的就是高度相关的变量</span></span>
 <span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(corrplot)</span>
-<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a><span class="do">## corrplot 0.92 loaded</span></span>
-<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="fu">corrplot</span>(correlations, <span class="at">order =</span> <span class="st">"hclust"</span>,<span class="at">tl.col =</span> <span class="st">"black"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a><span class="fu">corrplot</span>(correlations, <span class="at">order =</span> <span class="st">"hclust"</span>,<span class="at">tl.col =</span> <span class="st">"black"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="data-preprocess_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="data-preprocess_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>去掉高度相关的变量:</p>
@@ -903,8 +914,8 @@ <h2 data-number="A.7" class="anchored" data-anchor-id="过滤"><span class="head
 <span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>filteredSegData <span class="ot">&lt;-</span> segData[, <span class="sc">-</span>highCorr]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="共线性" class="level2" data-number="A.8">
-<h2 data-number="A.8" class="anchored" data-anchor-id="共线性"><span class="header-section-number">A.8</span> 共线性</h2>
+<section id="共线性" class="level2" data-number="6.8">
+<h2 data-number="6.8" class="anchored" data-anchor-id="共线性"><span class="header-section-number">6.8</span> 共线性</h2>
 <p>假设一个下面这种的数据,其中第2列和第3列的值加起来和第1列一样,第4,5,6列的值起来也和第1列一样。这种数据的某些变量间是有高度共线性的。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>ltfrDesign <span class="ot">&lt;-</span> <span class="fu">matrix</span>(<span class="dv">0</span>, <span class="at">nrow=</span><span class="dv">6</span>, <span class="at">ncol=</span><span class="dv">6</span>)</span>
@@ -952,11 +963,11 @@ <h2 data-number="A.8" class="anchored" data-anchor-id="共线性"><span class="h
 <span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [6,]    1    0    0    0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="构建虚拟变量" class="level2" data-number="A.9">
-<h2 data-number="A.9" class="anchored" data-anchor-id="构建虚拟变量"><span class="header-section-number">A.9</span> 构建虚拟变量</h2>
+<section id="构建虚拟变量" class="level2" data-number="6.9">
+<h2 data-number="6.9" class="anchored" data-anchor-id="构建虚拟变量"><span class="header-section-number">6.9</span> 构建虚拟变量</h2>
 <p>最常见的回归分析中的哑变量设置,可以参考之前的推文,详细介绍了常见的分类变量的编码方式:<a href="https://mp.weixin.qq.com/s/8j0e3-PpbvTqGDnkPWRFyA">分类变量进行回归分析时的编码方案</a></p>
 <p>这里介绍下独热编码(one-hot encoding),和哑变量编码稍有不同,哑变量是变成k-1个变量,独热编码是变成k个变量。</p>
-<p>使用以下数据进行演示</p>
+<p>使用以下数据进行演示:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"cars"</span>, <span class="at">package =</span> <span class="st">"caret"</span>)</span>
 <span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(cars)</span>
@@ -982,13 +993,13 @@ <h2 data-number="A.9" class="anchored" data-anchor-id="构建虚拟变量"><span
 <span id="cb20-22"><a href="#cb20-22" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb20-23"><a href="#cb20-23" aria-hidden="true" tabindex="-1"></a><span class="co"># 上面是数据生成过程,不重要,记住下面这个数据的样子即可!!</span></span>
 <span id="cb20-24"><a href="#cb20-24" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(carSubset)</span>
-<span id="cb20-25"><a href="#cb20-25" aria-hidden="true" tabindex="-1"></a><span class="do">##        Price Mileage        Type</span></span>
-<span id="cb20-26"><a href="#cb20-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 249 12553.07   32844       coupe</span></span>
-<span id="cb20-27"><a href="#cb20-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 37  35580.33   21167 convertible</span></span>
-<span id="cb20-28"><a href="#cb20-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 745 43374.05   25199       sedan</span></span>
-<span id="cb20-29"><a href="#cb20-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 331 11179.95   23121   hatchback</span></span>
-<span id="cb20-30"><a href="#cb20-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 266 10777.05   27906   hatchback</span></span>
-<span id="cb20-31"><a href="#cb20-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 155 15253.87   20917       coupe</span></span>
+<span id="cb20-25"><a href="#cb20-25" aria-hidden="true" tabindex="-1"></a><span class="do">##        Price Mileage  Type</span></span>
+<span id="cb20-26"><a href="#cb20-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 627 36332.89   25153 sedan</span></span>
+<span id="cb20-27"><a href="#cb20-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 692 15233.16   32535 sedan</span></span>
+<span id="cb20-28"><a href="#cb20-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 548 27714.05    5379 sedan</span></span>
+<span id="cb20-29"><a href="#cb20-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 49  29844.20   23143 sedan</span></span>
+<span id="cb20-30"><a href="#cb20-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 295 13688.95   21611 sedan</span></span>
+<span id="cb20-31"><a href="#cb20-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 523 19116.13   26252 sedan</span></span>
 <span id="cb20-32"><a href="#cb20-32" aria-hidden="true" tabindex="-1"></a><span class="fu">levels</span>(carSubset<span class="sc">$</span>Type) <span class="co"># Type是一个因子型变量</span></span>
 <span id="cb20-33"><a href="#cb20-33" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "convertible" "coupe"       "hatchback"   "sedan"       "wagon"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
@@ -1010,12 +1021,12 @@ <h2 data-number="A.9" class="anchored" data-anchor-id="构建虚拟变量"><span
 <div class="cell">
 <div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(simpleMod, <span class="fu">head</span>(carSubset))</span>
 <span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="do">##     Mileage convertible coupe hatchback sedan wagon</span></span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 249   32844           0     1         0     0     0</span></span>
-<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 37    21167           1     0         0     0     0</span></span>
-<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 745   25199           0     0         0     1     0</span></span>
-<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 331   23121           0     0         1     0     0</span></span>
-<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 266   27906           0     0         1     0     0</span></span>
-<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 155   20917           0     1         0     0     0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 627   25153           0     0         0     1     0</span></span>
+<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 692   32535           0     0         0     1     0</span></span>
+<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 548    5379           0     0         0     1     0</span></span>
+<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 49    23143           0     0         0     1     0</span></span>
+<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 295   21611           0     0         0     1     0</span></span>
+<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 523   26252           0     0         0     1     0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>可以看到<code>Type</code>变量没有了,完成了虚拟变量的转换。</p>
 <p>假如你认为车型和里程有交互影响,则可以使用<code>:</code>表示:</p>
@@ -1035,27 +1046,27 @@ <h2 data-number="A.9" class="anchored" data-anchor-id="构建虚拟变量"><span
 <div class="cell">
 <div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(withInteraction, <span class="fu">head</span>(carSubset))</span>
 <span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="do">##     Mileage convertible coupe hatchback sedan wagon Mileage:Typeconvertible</span></span>
-<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 249   32844           0     1         0     0     0                       0</span></span>
-<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 37    21167           1     0         0     0     0                   21167</span></span>
-<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 745   25199           0     0         0     1     0                       0</span></span>
-<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 331   23121           0     0         1     0     0                       0</span></span>
-<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 266   27906           0     0         1     0     0                       0</span></span>
-<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 155   20917           0     1         0     0     0                       0</span></span>
+<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 627   25153           0     0         0     1     0                       0</span></span>
+<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 692   32535           0     0         0     1     0                       0</span></span>
+<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 548    5379           0     0         0     1     0                       0</span></span>
+<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 49    23143           0     0         0     1     0                       0</span></span>
+<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 295   21611           0     0         0     1     0                       0</span></span>
+<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 523   26252           0     0         0     1     0                       0</span></span>
 <span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     Mileage:Typecoupe Mileage:Typehatchback Mileage:Typesedan Mileage:Typewagon</span></span>
-<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 249             32844                     0                 0                 0</span></span>
-<span id="cb24-11"><a href="#cb24-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 37                  0                     0                 0                 0</span></span>
-<span id="cb24-12"><a href="#cb24-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 745                 0                     0             25199                 0</span></span>
-<span id="cb24-13"><a href="#cb24-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 331                 0                 23121                 0                 0</span></span>
-<span id="cb24-14"><a href="#cb24-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 266                 0                 27906                 0                 0</span></span>
-<span id="cb24-15"><a href="#cb24-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 155             20917                     0                 0                 0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 627                 0                     0             25153                 0</span></span>
+<span id="cb24-11"><a href="#cb24-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 692                 0                     0             32535                 0</span></span>
+<span id="cb24-12"><a href="#cb24-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 548                 0                     0              5379                 0</span></span>
+<span id="cb24-13"><a href="#cb24-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 49                  0                     0             23143                 0</span></span>
+<span id="cb24-14"><a href="#cb24-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 295                 0                     0             21611                 0</span></span>
+<span id="cb24-15"><a href="#cb24-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 523                 0                     0             26252                 0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="区间化预测变量" class="level2" data-number="A.10">
-<h2 data-number="A.10" class="anchored" data-anchor-id="区间化预测变量"><span class="header-section-number">A.10</span> 区间化预测变量</h2>
+<section id="区间化预测变量" class="level2" data-number="6.10">
+<h2 data-number="6.10" class="anchored" data-anchor-id="区间化预测变量"><span class="header-section-number">6.10</span> 区间化预测变量</h2>
 <p>主要是为了好解释结果,比如把血压分为高血压1级、2级、3级,把贫血分为轻中重极重等,这样比如你做logistic回归,可以说血压每增高一个等级,因变量的风险增加多少,但是你如果说血压值每增加1mmHg,因变量增加多少倍,这就有点扯了。</p>
 </section>
-<section id="多个预处理步骤放一起" class="level2" data-number="A.11">
-<h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放一起"><span class="header-section-number">A.11</span> 多个预处理步骤放一起</h2>
+<section id="多个预处理步骤放一起" class="level2" data-number="6.11">
+<h2 data-number="6.11" class="anchored" data-anchor-id="多个预处理步骤放一起"><span class="header-section-number">6.11</span> 多个预处理步骤放一起</h2>
 <p>在<code>caret</code>中是通过<code>preProcess()</code>函数里面的<code>method</code>参数实现的,把不同的预处理步骤按照顺序写好即可。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(AppliedPredictiveModeling)</span>
@@ -1128,7 +1139,7 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
 <p>如果你用过<code>tidymodels</code>,那你应该知道里面的数据预处理步骤是通过<code>recipes</code>包完成的,每一步都是<code>step_xx</code>,说实话我觉得<code>caret</code>的这种方式更加简洁易懂!</p>
 <p>以上就是数据预处理的一般过程,一个<code>caret</code>包可以解决上面所有的问题,有兴趣的小伙伴可以自行学习。</p>
 <p>数据预处理是一个非常系统且专业的过程,如同开头说的那样:<strong>最有效的编码数据的方法来自于建模者对数据的理解,而不是通过任何数学方法</strong>,在对数据进行预处理之前,一定要仔细理解自己的数据哦,结果导向的思维是不对的哦!</p>
-<p>本文简单介绍了常见的数据预处理方法和简单的实现方法,目前在R中实现数据预处理是非常方便的,这部分内容可参考:</p>
+<p>本文简单介绍了常见的数据预处理方法和简单的实现方法,并且大量使用了<code>caret</code>包,但是目前在R中实现数据预处理有更好的方法了,那就是<code>tidymodels</code>和<code>mlr3</code>,这部分内容可参考:</p>
 <ul>
 <li><a href="https://mp.weixin.qq.com/s/w122H-CuQbK7vXhF_KQh-g">mlr3数据预处理</a></li>
 <li><a href="https://mp.weixin.qq.com/s/DPUAFApls8MhHG2fK4jfQw">tidymodels菜谱:数据预处理</a></li>
@@ -1174,18 +1185,7 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1217,11 +1217,50 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1231,8 +1270,17 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1244,7 +1292,130 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1288,6 +1459,7 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1313,6 +1485,32 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1374,27 +1572,32 @@ <h2 data-number="A.11" class="anchored" data-anchor-id="多个预处理步骤放
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./model-compare_caret.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span>
+      <a href="./data-split.html" class="pagination-link" aria-label="常见的数据划分方法">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./data-split.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-logistic.html" class="pagination-link" aria-label="逻辑回归列线图绘制">
+        <span class="nav-page-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/data-preprocess_files/figure-html/unnamed-chunk-10-1.png b/docs/data-preprocess_files/figure-html/unnamed-chunk-10-1.png
index 192413e..b54c288 100644
Binary files a/docs/data-preprocess_files/figure-html/unnamed-chunk-10-1.png and b/docs/data-preprocess_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/data-split.html b/docs/data-split.html
index 098d3e5..fa4666c 100644
--- a/docs/data-split.html
+++ b/docs/data-split.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 附录 B — 常见的数据划分方法</title>
+<title>5&nbsp; 常见的数据划分方法 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -30,24 +30,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./9999-appendix.html" rel="next">
-<link href="./data-preprocess.html" rel="prev">
+<link href="./data-preprocess.html" rel="next">
+<link href="./模型建立和可视化.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -56,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -70,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./data-preprocess.html">附录</a></li><li class="breadcrumb-item"><a href="./data-split.html"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./data-split.html"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -85,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -109,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -281,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -477,29 +459,30 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#留出法holdout" id="toc-留出法holdout" class="nav-link active" data-scroll-target="#留出法holdout"><span class="header-section-number">B.1</span> 留出法(holdout)</a></li>
-  <li><a href="#交叉验证cross-validation" id="toc-交叉验证cross-validation" class="nav-link" data-scroll-target="#交叉验证cross-validation"><span class="header-section-number">B.2</span> 交叉验证(cross validation)</a></li>
-  <li><a href="#bootstrap" id="toc-bootstrap" class="nav-link" data-scroll-target="#bootstrap"><span class="header-section-number">B.3</span> bootstrap</a></li>
-  <li><a href="#其他方法" id="toc-其他方法" class="nav-link" data-scroll-target="#其他方法"><span class="header-section-number">B.4</span> 其他方法</a></li>
-  <li><a href="#重抽样的目的" id="toc-重抽样的目的" class="nav-link" data-scroll-target="#重抽样的目的"><span class="header-section-number">B.5</span> 重抽样的目的</a></li>
-  <li><a href="#为什么要单独划分出一部分数据" id="toc-为什么要单独划分出一部分数据" class="nav-link" data-scroll-target="#为什么要单独划分出一部分数据"><span class="header-section-number">B.6</span> 为什么要单独划分出一部分数据</a></li>
-  <li><a href="#方法选择建议" id="toc-方法选择建议" class="nav-link" data-scroll-target="#方法选择建议"><span class="header-section-number">B.7</span> 方法选择建议</a></li>
+  <li><a href="#留出法holdout" id="toc-留出法holdout" class="nav-link active" data-scroll-target="#留出法holdout"><span class="header-section-number">5.1</span> 留出法(holdout)</a></li>
+  <li><a href="#交叉验证cross-validation" id="toc-交叉验证cross-validation" class="nav-link" data-scroll-target="#交叉验证cross-validation"><span class="header-section-number">5.2</span> 交叉验证(cross validation)</a></li>
+  <li><a href="#bootstrap" id="toc-bootstrap" class="nav-link" data-scroll-target="#bootstrap"><span class="header-section-number">5.3</span> bootstrap</a></li>
+  <li><a href="#其他方法" id="toc-其他方法" class="nav-link" data-scroll-target="#其他方法"><span class="header-section-number">5.4</span> 其他方法</a></li>
+  <li><a href="#内部验证外部验证" id="toc-内部验证外部验证" class="nav-link" data-scroll-target="#内部验证外部验证"><span class="header-section-number">5.5</span> 内部验证/外部验证</a></li>
+  <li><a href="#重抽样的目的" id="toc-重抽样的目的" class="nav-link" data-scroll-target="#重抽样的目的"><span class="header-section-number">5.6</span> 重抽样的目的</a></li>
+  <li><a href="#为什么要单独划分" id="toc-为什么要单独划分" class="nav-link" data-scroll-target="#为什么要单独划分"><span class="header-section-number">5.7</span> 为什么要单独划分</a></li>
+  <li><a href="#方法选择建议" id="toc-方法选择建议" class="nav-link" data-scroll-target="#方法选择建议"><span class="header-section-number">5.8</span> 方法选择建议</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./data-split.html"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title">附录 B — 常见的数据划分方法</h1>
+<h1 class="title"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></h1>
 </div>
 
 
@@ -512,61 +495,75 @@ <h1 class="title">附录 B — 常见的数据划分方法</h1>
   </div>
   
 
+
 </header>
 
-<p>随着<strong>临床预测模型</strong>的愈加火爆,越来越多的医生/医学生开始搞临床预测模型,但其实这个东西已经很老了,并不是什么新鲜的东西。</p>
-<p>在我2018年左右刚开始学习生信数据挖掘的时候,临床预测模型就被广泛应用于各种生信SCI中,但它在临床中的使用,远比这个早得多!</p>
-<p>不知道什么原因最近又火起来了!(也有可能一直都很火,只不过我最近没关注它……)</p>
-<p>大家一定要明白,<strong>临床预测模型的本质就是机器学习</strong>,这其实是机器学习在生物医学领域的应用,不管怎么改头换面,都逃不出机器学习的各种方法。</p>
+
 <p>通常大家在做临床预测模型或者机器学习时,首先就是要<strong>划分数据</strong>,比如训练集/测试集划分、<strong>内部验证/外部验证</strong>,这些都属于重抽样技术。</p>
 <p>重抽样技术大家应该都不陌生,比如常用的<strong>K折交叉验证、bootstrap、训练集/测试集划分,等,都属于重抽样技术</strong>。</p>
-<p>它的基本思想是:<strong>对于一个数据集,先用其中一部分训练模型,然后用剩余的数据评估模型表现,这一过程会重复进行多次,最后对结果进行归纳汇总</strong>。</p>
-<p>使用<strong>重抽样技术有助于模型更好地“认识理解”数据,从而得到更加稳健的结果</strong>。这就好比让你看一本书,如果只看1次,可能什么也记不住,但是如果让你看10次,那效果肯定比只看1次要好。</p>
-<p>因为重抽样过程是随机的,它每次都会<strong>随机</strong>地从整个数据中抽取一部分,给模型学习,所以每次每次抽取的数据都不一样(既然是随机的,那也有可能一样),这样就让模型有机会认识全部的数据,从而提高模型稳定性。</p>
-<p>在临床预测模型领域大家经常听到<strong>内部验证、外部验证</strong>这种说法,其实很好理解。对于<strong>数据集A</strong>,我把它分成A1和A2两份,A1这部分数据用于训练模型,A2这部分数据用于评估模型表现,用来评估模型表现的这部分A2数据就是<strong>内部验证</strong>;假如此时我找来另一份<strong>数据集B</strong>,在数据集B上再次评估模型表现,那数据集B就是<strong>外部验证</strong>。</p>
-<p><strong>重抽样的方法有很多种</strong>,除了大家常见的K折交叉验证、bootstrap,还有蒙特卡洛交叉验证、留一法交叉验证等。</p>
-<p><strong>如何选择合适的重抽样方法呢?</strong>这个一定要和你的数据结合讨论,没有金标准!如果你是一个精通机器学习的人,那你肯定不会有这样的问题,所以说到底,这都是机器学习中的问题,一个临床的医务工作者不懂这些很正常。<strong>我会在文末给出一些方法选择建议供大家参考</strong>。</p>
-<section id="留出法holdout" class="level2" data-number="B.1">
-<h2 data-number="B.1" class="anchored" data-anchor-id="留出法holdout"><span class="header-section-number">B.1</span> 留出法(holdout)</h2>
-<p>大家最常使用的,把数据集随机划分为训练集(train)/测试集(test)的做法就是<code>holdout</code>,其中训练集用于建模,测试集用于评估模型表现。</p>
-<p>有时还会把数据划分为训练集(train)/测试集(test)/验证集(validation),训练集用来训练模型,测试集查看模型表现,不断进行调整,然后训练集和测试集一起训练出一个模型,最后用验证集评估模型表现。</p>
+<p>它的基本思想是:<strong>对于一个数据集,先用其中一部分训练模型,然后用剩余的数据评估模型表现,这一过程会重复进行多次,最后对多个结果进行归纳汇总</strong>。</p>
+<p>使用<strong>重抽样技术有助于模型更好地“认识理解”数据,从而得到更加稳健的结果</strong>。只使用一个结果可能会得到偏差较大的结果,那我使用100次的结果是不是就更加稳健了呢?得到极端结果的可能性是不是就更小了呢?</p>
+<p>因为重抽样过程是随机的,它每次都会<strong>随机</strong>地从整个数据中抽取一部分,给模型学习,所以每次抽取的数据都不一样(既然是随机的,那也有可能一样),这样就让模型有机会认识全部的数据,从而提高模型稳定性。</p>
+<p>在临床预测模型领域大家经常听到<strong>内部验证、外部验证</strong>这种说法,其实很好理解。对于<strong>数据集A</strong>,我把它分成A1和A2两份,A1这部分数据用于训练模型,A2这部分数据用于评估模型表现,用来评估模型表现的这部分A2数据就是内部验证,因为虽然我们把A分成了A1和A2两部分,但是这两部分本质上还是一个来源的,所以这是内部验证;假如此时我找来另一份<strong>数据集B</strong>,在数据集B上再次评估模型表现,那数据集B就是外部验证。</p>
+<p>内外部验证其实是非常简单的概念,但是统计学家总是喜欢搞这些高大上的概念。我再推荐冯国双老师的一篇文章,大家可以阅读一下:<a href="https://mp.weixin.qq.com/s/-8DGbu002IqJQn1FwY8lqw">你以为的“外部验证”,其实只是内部验证</a></p>
+<p>重抽样的方法有很多种,除了大家常见的K折交叉验证、bootstrap,还有蒙特卡洛交叉验证、留一法交叉验证等。</p>
+<p>如何选择合适的重抽样方法呢?这个一定要和你的数据结合讨论,没有金标准!如果你是一个精通机器学习的人,那你肯定不会有这样的问题,所以说到底,这都是机器学习中的问题,一个临床的医务工作者不懂这些很正常。我会在文末给出一些方法选择建议供大家参考。</p>
+<section id="留出法holdout" class="level2" data-number="5.1">
+<h2 data-number="5.1" class="anchored" data-anchor-id="留出法holdout"><span class="header-section-number">5.1</span> 留出法(holdout)</h2>
+<p>大家最常使用的,把数据集随机划分为训练集(train)/测试集(test)的做法就是<code>holdout</code>,其中训练集用于建模,测试集用于评估模型表现。测试集有时也被称为验证集(validation)。</p>
+<p>如果你的数据样本量足够大,大到几乎不可能产生错误的结果,那你可以大胆放心用这种方法,否则一般都<strong>不推荐只使用这种方法</strong>。</p>
+<p>通常的做法是把数据集划分为训练集/测试集后,在训练集中建立模型,当确定最终的模型后,我们会让模型对测试集进行预测,以评估模型最终的表现。</p>
 </section>
-<section id="交叉验证cross-validation" class="level2" data-number="B.2">
-<h2 data-number="B.2" class="anchored" data-anchor-id="交叉验证cross-validation"><span class="header-section-number">B.2</span> 交叉验证(cross validation)</h2>
+<section id="交叉验证cross-validation" class="level2" data-number="5.2">
+<h2 data-number="5.2" class="anchored" data-anchor-id="交叉验证cross-validation"><span class="header-section-number">5.2</span> 交叉验证(cross validation)</h2>
 <p>交叉验证,意思就是一份数据既用作训练,也用作验证,互相交叉,主要有以下几种:</p>
-<p><strong>K折交叉验证(K fold cross validation)</strong>,就是把数据集随机分为K个样本量基本相同的子数据集。比如5折交叉验证,就是把数据集分为5个子集(比如分成A,B,C,D,E,5份),在建模时,首先会使用其中A,B,C,D,4份数据进行建模,然后用剩下的E数据评估模型表现,接下来使用A,B,C,E,4份数据建模,用剩下的D评估模型表现。这样依次进行5个循环,每份数据都会用来评估模型表现。最后将得到的5个模型表现结果进行汇总。</p>
-<p>下面是一个10折交叉验证的示意图:</p>
+<p><strong>K折交叉验证(K fold cross validation)</strong>,就是把数据集随机分为K个样本量基本相同的子数据集。比如5折交叉验证,就是把数据集分为5个子集(比如分成A,B,C,D,E,5份),在建模时,首先会使用其中A,B,C,D,4份数据进行建模,然后用剩下的E数据评估模型表现,接下来使用A,B,C,E,4份数据建模,用剩下的D评估模型表现。这样依次进行5个循环,每份数据都会用来评估模型表现。这样就会得到5个模型,就会有5个结果,最后将得到的5个模型表现结果进行汇总作为最终的结果。</p>
+<p>下面是一个5折交叉验证的示意图,我们把所有数据分为训练集和测试集,然后在训练集建立模型,建立模型时,对训练集使用了5折交叉验证的方法:</p>
 <p><img src="figs/Snipaste_2023-04-01_14-12-58.png" class="img-fluid"></p>
 <p><strong>留一交叉验证(LOOCV, leave one out cross validation)</strong>,是K折交叉验证的特例。每次都只留1个样本用于评估模型表现,所以这里的K其实就等于样本量,每一个样本都会被用来评估模型表现。</p>
 <p><strong>重复交叉验证(repeated cross validation)</strong>,也是K折交叉验证的扩展版本,比如,重复10次的5折交叉验证,就是把5折交叉验证这个过程重复10遍。</p>
 <p><strong>蒙特卡洛交叉验证(Monte Carlo cross validation)</strong>,也是交叉验证的一个变种。留出法是将数据集划分1次,而蒙特卡洛交叉验证就是将留出法进行多次。</p>
 </section>
-<section id="bootstrap" class="level2" data-number="B.3">
-<h2 data-number="B.3" class="anchored" data-anchor-id="bootstrap"><span class="header-section-number">B.3</span> bootstrap</h2>
+<section id="bootstrap" class="level2" data-number="5.3">
+<h2 data-number="5.3" class="anchored" data-anchor-id="bootstrap"><span class="header-section-number">5.3</span> bootstrap</h2>
 <p>自助法,即有放回的随机抽样法。具体做法如下:</p>
-<p>比如,一个数据集有100个样本,每次随机抽取1个,然后放回,再随机抽取1个,这样的过程重复100次,就得到了一个<strong>和原数据集样本量相等的抽样数据集</strong>,这个抽样数据集就叫做自助集。</p>
-<p>由于每次都是有放回然后再随机抽取,所以一个自助集中可能有多个同一样本!所以就有可能在100次随机抽取中,有一些没被抽中过的样本,这些样本就被称为袋外样本(out of bag),其中被抽中的样本(也就是自助集)用于训练模型,袋外样本用来评估模型表现。随机森林算法就是使用这种方法的!</p>
+<p>比如,一个数据集有100个样本,每次随机抽取1个,然后放回去,再随机抽取1个,再放回去,这样的过程重复100次,就得到了一个<strong>和原数据集样本量相等的抽样数据集</strong>,这个抽样数据集就叫做<strong>自助集</strong>或自助样本。</p>
+<p>由于每次都是有放回然后再随机抽取,所以一个自助集中可能有多个同一样本!所以就有可能在100次随机抽取中,有一些没被抽中过的样本,这些样本就被称为<strong>袋外样本</strong>(out-of-bag,OOB),其中被抽中的样本(也就是自助集)用于训练模型,袋外样本用来评估模型表现。</p>
+<p>如果设置bootstrap的次数是10,就是抽取10个自助集,10个袋外样本,在每个自助集中训练一个模型,并在相应的袋外样本中评估模型,这样就会得到10个模型表现,对它们取平均值,就是最终的模型表现。</p>
 </section>
-<section id="其他方法" class="level2" data-number="B.4">
-<h2 data-number="B.4" class="anchored" data-anchor-id="其他方法"><span class="header-section-number">B.4</span> 其他方法</h2>
+<section id="其他方法" class="level2" data-number="5.4">
+<h2 data-number="5.4" class="anchored" data-anchor-id="其他方法"><span class="header-section-number">5.4</span> 其他方法</h2>
 <p>除了以上方法,其实还有非常多没有介绍,比如在<code>mlr3</code>中经常使用的嵌套重抽样,这些大家感兴趣可以自行了解。</p>
 </section>
-<section id="重抽样的目的" class="level2" data-number="B.5">
-<h2 data-number="B.5" class="anchored" data-anchor-id="重抽样的目的"><span class="header-section-number">B.5</span> 重抽样的目的</h2>
-<p>经常有粉丝问我:<strong>为什么我用了各种方法,10折交叉验证、10折重复交叉验证、自助法,都用过了,为什么最后模型的表现还是很差?</strong></p>
-<p>看到类似的问题,我想这部分朋友可能把重抽样的目的搞错了,<strong>重抽样的目的不是为了提高模型表现,重抽样也确实不能提高模型表现!</strong>开头我已说过,重抽样技术是为了让模型更好的<strong>认识数据</strong>而已,这样能够得到更加稳健、无偏的结果,但是对于提高模型表现没有直接的影响哦~</p>
-<p>你可以这么理解,如果你不重抽样,可能某次结果的AUC是0.8,再做一次可能就变成0.5了,而你重抽样10次,得到的结果是10次的平均,这样的结果很明显是更加稳健的。</p>
-<p>模型表现好不好首先是数据原因,一个牛逼的数据不需要复杂的模型也能有很好的结果,数据预处理对数据影响很大,大家可以参考上面的推文。另外还和模型本身的性质有关,比如模型的超参数、模型本身的上限等,这些会在以后陆续介绍。</p>
+<section id="内部验证外部验证" class="level2" data-number="5.5">
+<h2 data-number="5.5" class="anchored" data-anchor-id="内部验证外部验证"><span class="header-section-number">5.5</span> 内部验证/外部验证</h2>
+<p>临床预测模型中会有<strong>内部验证/外部验证</strong>的说法,内部验证又叫<strong>内部重抽样</strong>,其实没有任何特殊的地方,只是换个说法而已。</p>
+<p>一个数据集被随机划分为训练集和测试集,在训练集建立模型时,我们可能会对训练集使用K折交叉验证或者bootstrap等方法,这样可以使我们的模型更加稳健,避免出现极坏或者极好的结果。在训练集中使用K折交叉验证或者bootstrap等方法,就被叫做内部验证或者内部重抽样。在测试集(指建模时未使用过的数据)测试模型的表现,就叫做外部验证。</p>
+<p>下图是《R语言整洁建模》中的典型数据划分方法示意图,非常贴合临床预测模型的数据划分方法。</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="figs/PixPin_2024-04-27_19-11-28.png" class="img-fluid figure-img"></p>
+<figcaption>典型的数据划分方法</figcaption>
+</figure>
+</div>
+<p>首先我们会把所有数据划分为训练集和测试集,然后在训练集中建立模型,这个过程会对训练集使用另一种重抽样方法(比如交叉验证或者bootstrap等),每一次重抽样我们都会使用其中一部分数据用于拟合模型,另一部分数据用于评估模型,用于拟合模型的这部分数据被称为<strong>分析集</strong>,用于评估模型的数据被称为<strong>评估集</strong>。</p>
+</section>
+<section id="重抽样的目的" class="level2" data-number="5.6">
+<h2 data-number="5.6" class="anchored" data-anchor-id="重抽样的目的"><span class="header-section-number">5.6</span> 重抽样的目的</h2>
+<p>经常有粉丝问我:为什么我用了各种方法,10折交叉验证、10折重复交叉验证、自助法,都用过了,为什么最后模型的表现还是很差?</p>
+<p>看到类似的问题,我想这部分朋友可能把重抽样的目的搞错了,<strong>重抽样的目的不是为了提高模型表现,重抽样也确实不能提高模型表现</strong>!开头我已说过,重抽样技术是为了让模型更好的<strong>认识数据</strong>而已,这样能够得到更加稳健、无偏的结果,但是对于提高模型表现没有直接的影响哦~</p>
+<p>你可以这么理解,如果你不重抽样,可能某一次结果的AUC是0.9,再做一次可能就变成0.5了,而你重抽样10次,得到的结果是10次的平均,这样的结果很明显是更加稳健的、误差小的。</p>
+<p>模型表现好不好首先是数据原因,一个牛逼的数据不需要复杂的模型也能有很好的结果,数据预处理对数据影响很大,大家可以参考下一章内容。另外还和模型本身的性质有关,比如模型的超参数、<a href="https://mp.weixin.qq.com/s/7WUAx43wfAMhrWkpVgUnaA">模型本身的上限</a>等,这些都会影响模型的表现。</p>
 </section>
-<section id="为什么要单独划分出一部分数据" class="level2" data-number="B.6">
-<h2 data-number="B.6" class="anchored" data-anchor-id="为什么要单独划分出一部分数据"><span class="header-section-number">B.6</span> 为什么要单独划分出一部分数据</h2>
+<section id="为什么要单独划分" class="level2" data-number="5.7">
+<h2 data-number="5.7" class="anchored" data-anchor-id="为什么要单独划分"><span class="header-section-number">5.7</span> 为什么要单独划分</h2>
 <p>通常我们建立模型时,会把数据集A划分为A1和A2两份,A1用来训练模型,A2用来测试模型,在训练模型的过程中,完全不用使用到A2这部分数据。有些人不理解,把这种方法和嵌套重抽样混为一谈。其实这两个有着本质的区别。</p>
 <p>嵌套重抽样是在训练模型时使用的,把两份数据集全都用到了,而且两份数据集都会再叠加其他重抽样方法。</p>
 <p>但<strong>我们划分数据的目的是什么呢?我们是为了测试最终的模型表现</strong>。临床问题数据很珍贵,通常都只有1份,这种情况下我把这份数据全都用于训练模型,那我用什么测试训练出来的模型好坏呢?有的人喜欢把训练好的模型作用于用来训练模型的数据上,发现结果竟然很好,这样是不对的,这叫数据泄露,你的数据模型已经<strong>学习</strong>过了,这不是作弊吗?这样的模型结果能说明什么问题呢?</p>
-<p>所以一开始把数据就划分为2份是一个很好的解决方法。如果你有很多个数据集,你完全可以在其中1个数据集中使用各种方法建模。</p>
+<p>所以一开始把数据就划分为2份是一个很好的解决方法。如果你有很多个数据集,你完全可以在其中1个数据集中使用各种方法建模。比如,你的临床试验有多个分中心,你完全可以使用其中1个或几个中心的数据建立模型,然后在其余中心的数据中评估最终的模型。</p>
 </section>
-<section id="方法选择建议" class="level2" data-number="B.7">
-<h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span class="header-section-number">B.7</span> 方法选择建议</h2>
+<section id="方法选择建议" class="level2" data-number="5.8">
+<h2 data-number="5.8" class="anchored" data-anchor-id="方法选择建议"><span class="header-section-number">5.8</span> 方法选择建议</h2>
 <p>以上就是一些常见的重抽样方法,可以看到每种方法都强调一个问题,那就是<strong>随机</strong>!,只有随机,才能保证模型学习到这个数据集中的更多信息,才能获得稳健的模型表现!</p>
 <p><strong>以下是一些方法选择建议:</strong></p>
 <ol type="1">
@@ -616,18 +613,7 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -659,11 +645,50 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -673,8 +698,17 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -686,7 +720,130 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -730,6 +887,7 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -755,6 +913,32 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -816,27 +1000,32 @@ <h2 data-number="B.7" class="anchored" data-anchor-id="方法选择建议"><span
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./data-preprocess.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span>
+      <a href="./模型建立和可视化.html" class="pagination-link" aria-label="模型建立和可视化">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">模型建立和可视化</span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./9999-appendix.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./data-preprocess.html" class="pagination-link" aria-label="常见的数据预处理方法">
+        <span class="nav-page-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/dca-cox.html b/docs/dca-cox.html
index 939bb6d..b1c40bd 100644
--- a/docs/dca-cox.html
+++ b/docs/dca-cox.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 41&nbsp; 生存数据的决策曲线分析</title>
+<title>35&nbsp; 生存数据的决策曲线 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./dca-cox.html"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-cox.html"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,26 +493,42 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#方法1dcurves" id="toc-方法1dcurves" class="nav-link active" data-scroll-target="#方法1dcurves"><span class="header-section-number">41.1</span> 方法1:dcurves</a></li>
-  <li><a href="#方法2ggdca" id="toc-方法2ggdca" class="nav-link" data-scroll-target="#方法2ggdca"><span class="header-section-number">41.2</span> 方法2:ggDCA</a></li>
-  <li><a href="#方法3stdca.r" id="toc-方法3stdca.r" class="nav-link" data-scroll-target="#方法3stdca.r"><span class="header-section-number">41.3</span> 方法3:stdca.R</a></li>
-  <li><a href="#方法4diy" id="toc-方法4diy" class="nav-link" data-scroll-target="#方法4diy"><span class="header-section-number">41.4</span> 方法4:DIY</a></li>
+  <li><a href="#方法1dcurves" id="toc-方法1dcurves" class="nav-link active" data-scroll-target="#方法1dcurves"><span class="header-section-number">35.1</span> 方法1:dcurves</a>
+  <ul class="collapse">
+  <li><a href="#训练集" id="toc-训练集" class="nav-link" data-scroll-target="#训练集"><span class="header-section-number">35.1.1</span> 训练集</a></li>
+  <li><a href="#测试集" id="toc-测试集" class="nav-link" data-scroll-target="#测试集"><span class="header-section-number">35.1.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法2ggdca" id="toc-方法2ggdca" class="nav-link" data-scroll-target="#方法2ggdca"><span class="header-section-number">35.2</span> 方法2:ggDCA</a>
+  <ul class="collapse">
+  <li><a href="#训练集-1" id="toc-训练集-1" class="nav-link" data-scroll-target="#训练集-1"><span class="header-section-number">35.2.1</span> 训练集</a></li>
+  <li><a href="#测试集-1" id="toc-测试集-1" class="nav-link" data-scroll-target="#测试集-1"><span class="header-section-number">35.2.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法3stdca.r" id="toc-方法3stdca.r" class="nav-link" data-scroll-target="#方法3stdca.r"><span class="header-section-number">35.3</span> 方法3:stdca.R</a>
+  <ul class="collapse">
+  <li><a href="#训练集-2" id="toc-训练集-2" class="nav-link" data-scroll-target="#训练集-2"><span class="header-section-number">35.3.1</span> 训练集</a></li>
+  <li><a href="#测试集-2" id="toc-测试集-2" class="nav-link" data-scroll-target="#测试集-2"><span class="header-section-number">35.3.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法4diy" id="toc-方法4diy" class="nav-link" data-scroll-target="#方法4diy"><span class="header-section-number">35.4</span> 方法4:DIY</a>
+  <ul class="collapse">
+  <li><a href="#训练集-3" id="toc-训练集-3" class="nav-link" data-scroll-target="#训练集-3"><span class="header-section-number">35.4.1</span> 训练集</a></li>
+  <li><a href="#测试集-3" id="toc-测试集-3" class="nav-link" data-scroll-target="#测试集-3"><span class="header-section-number">35.4.2</span> 测试集</a></li>
+  </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-cox.html"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></h1>
+<h1 class="title"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></h1>
 </div>
 
 
@@ -543,16 +541,19 @@ <h1 class="title"><span class="chapter-number">41</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>前面介绍了logistic回归的DCA的5种绘制方法,今天学习下cox回归的DCA绘制方法。也是有多种方法可以实现,但我比较推荐能返回数据,用<code>ggplot2</code>自己画的那种。</p>
-<section id="方法1dcurves" class="level2" data-number="41.1">
-<h2 data-number="41.1" class="anchored" data-anchor-id="方法1dcurves"><span class="header-section-number">41.1</span> 方法1:dcurves</h2>
+
+<p>前面介绍了分类数据的DCA的5种绘制方法,今天学习下cox回归的DCA绘制方法。也是有多种方法可以实现,我这里给大家介绍4种,但我比较推荐能返回数据,用<code>ggplot2</code>自己画的那种。</p>
+<section id="方法1dcurves" class="level2" data-number="35.1">
+<h2 data-number="35.1" class="anchored" data-anchor-id="方法1dcurves"><span class="header-section-number">35.1</span> 方法1:dcurves</h2>
 <p>使用<code>dcurves</code>包,使用的数据集是包自带的<code>df_surv</code>数据集,一共有750行,9列,其中<code>ttcancer</code>是时间,<code>cancer</code>是结局事件,TRUE代表有癌症,FALSE代表没有癌症。</p>
+<p>这个包是官方基于方法3的代码写的,所以也算是一个官方的方法,虽然你没有<code>dca.r/stdca.r</code>,但是你可以直接使用<code>dcurves</code>包。</p>
 <p>并不是只有结局事件是生存或者死亡的才叫生存资料哦!只要是<em>time-event</em>类型的,都可以。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载R包和数据,不知道怎么安装的请看我前面的推文</span></span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载R包和数据</span></span>
 <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dcurves)</span>
 <span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
 <span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"df_surv"</span>)</span>
@@ -572,152 +573,249 @@ <h2 data-number="41.1" class="anchored" data-anchor-id="方法1dcurves"><span cl
 <span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ cancerpredmarker: num [1:750] 0.0372 0.57891 0.02155 0.00391 0.01879 ...</span></span>
 <span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ cancer_cr       : Factor w/ 3 levels "censor","diagnosed with cancer",..: 1 1 1 1 1 1 1 2 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>划分训练集测试集:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df_surv),<span class="fu">nrow</span>(df_surv) <span class="sc">*</span> <span class="fl">0.7</span>)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> df_surv[train,]</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> df_surv[<span class="sc">-</span> train,]</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 525   9</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 225   9</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<section id="训练集" class="level3" data-number="35.1.1">
+<h3 data-number="35.1.1" class="anchored" data-anchor-id="训练集"><span class="header-section-number">35.1.1</span> 训练集</h3>
 <p>这个包使用起来很别扭,但是可以说它很灵活!</p>
 <p>如果预测变量只有1个,且是0,1表示的,那就很简单,直接用就行;如果有多个预测变量,就需要先计算出预测概率,然后才能使用。</p>
 <p>预测变量是<code>famhistory</code>,这是0,1表示的二分类变量:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory,</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> df_surv,</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>             <span class="at">time =</span> <span class="dv">1</span> <span class="co"># 时间选1年</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>             ) <span class="sc">%&gt;%</span> </span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory,</span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> train_df,</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>             <span class="at">time =</span> <span class="dv">1</span> <span class="co"># 时间选1年</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>             ) <span class="sc">%&gt;%</span> </span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-2-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>下面展示一个把多个模型的DCA画在一起的例子,和之前介绍的<code>dca.r</code>的用法优点类似。</p>
+<p>下面展示一个把多个模型的DCA画在一起的例子,和之前介绍的<code>dca.r</code>的用法有点类似。</p>
 <p><em>cancerpredmarker</em>这一列已经是概率了,<em>marker</em>是数值型的连续性变量,<em>famhistory</em>是0,1表示的二分类变量。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> cancerpredmarker <span class="sc">+</span> marker <span class="sc">+</span> famhistory,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>    <span class="at">data =</span> df_surv,</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">as_probability =</span> <span class="st">"marker"</span>, <span class="co"># 只有marker需要转换成概率</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">time =</span> <span class="dv">1</span>,</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>    <span class="at">label =</span> <span class="fu">list</span>(<span class="at">cancerpredmarker =</span> <span class="st">"Prediction Model"</span>, <span class="at">marker =</span> <span class="st">"Biomarker"</span>)) <span class="sc">%&gt;%</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> <span class="cn">TRUE</span>,<span class="at">show_ggplot_code =</span> T) <span class="sc">+</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>  ggplot2<span class="sc">::</span><span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Treatment Threshold Probability"</span>)</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # ggplot2 code to create DCA figure -------------------------------</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">## as_tibble(x) %&gt;%</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   dplyr::filter(!is.na(net_benefit)) %&gt;%</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", </span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##     span = 0.2) +</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">##   coord_cartesian(ylim = c(-0.0147287067742928, 0.147287067742928</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## )) +</span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +</span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">##   labs(x = "Threshold Probability", y = "Net Benefit", color = "") +</span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">##   theme_bw()</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> cancerpredmarker <span class="sc">+</span> marker <span class="sc">+</span> famhistory,</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>    <span class="at">data =</span> train_df,</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">as_probability =</span> <span class="st">"marker"</span>, <span class="co"># 只有marker需要转换成概率</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">time =</span> <span class="dv">1</span>,</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>    <span class="at">label =</span> <span class="fu">list</span>(<span class="at">cancerpredmarker =</span> <span class="st">"Prediction Model"</span>, </span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker =</span> <span class="st">"Biomarker"</span>)) <span class="sc">%&gt;%</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> <span class="cn">TRUE</span>,<span class="at">show_ggplot_code =</span> T) <span class="sc">+</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>  ggplot2<span class="sc">::</span><span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Treatment Threshold Probability"</span>)</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">## # ggplot2 code to create DCA figure -------------------------------</span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">## as_tibble(x) %&gt;%</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   dplyr::filter(!is.na(net_benefit)) %&gt;%</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", </span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##     span = 0.2) +</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##   coord_cartesian(ylim = c(-0.0142882170725106, 0.142882170725106</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## )) +</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##   labs(x = "Threshold Probability", y = "Net Benefit", color = "") +</span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">##   theme_bw()</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>可以看到<code>marker</code>这个曲线有点过分了。。结果也给出了<code>ggplot2</code>的代码,大家可以自己修改。</p>
 <p>上面是<strong>多个模型在同一个时间点的DCA曲线</strong>,如果是<strong>同一个模型在不同时间点的DCA</strong>,这个包不能直接画出,需要自己整理数据,因为不同时间点进行治疗的风险和获益都是不一样的,所以会出现同一个阈值概率对应多个净获益的情况,所以none和all每个概率阈值下都有1套数据。</p>
 <p>如果你的预测变量是多个,就需要先计算预测概率。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 我们分2步,先获取数据,再用ggplot2画图</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>x1 <span class="ot">&lt;-</span> dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> prob1,</span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>    <span class="at">data =</span> df_surv,</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>    <span class="at">time =</span> <span class="fl">1.5</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>    )<span class="sc">%&gt;%</span> </span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>  dcurves<span class="sc">::</span><span class="fu">as_tibble</span>()</span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用自带的画图代码</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(x1, <span class="fu">aes</span>(<span class="at">x=</span>threshold, <span class="at">y=</span>net_benefit,<span class="at">color=</span>variable))<span class="sc">+</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">stat_smooth</span>(<span class="at">method =</span> <span class="st">"loess"</span>, <span class="at">se =</span> <span class="cn">FALSE</span>, <span class="at">formula =</span> <span class="st">"y ~ x"</span>, <span class="at">span =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_cartesian</span>(<span class="at">ylim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>, <span class="fl">0.25</span>)) <span class="sc">+</span></span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>)) <span class="sc">+</span></span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Threshold Probability"</span>, <span class="at">y =</span> <span class="st">"Net Benefit"</span>, <span class="at">color =</span> <span class="st">""</span>) <span class="sc">+</span></span>
-<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span>
-<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 20 rows containing non-finite values (`stat_smooth()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df)</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model,<span class="at">newdata=</span>train_df), </span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 我们分2步,先获取数据,再用ggplot2画图</span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>x1 <span class="ot">&lt;-</span> dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> prob1,</span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>    <span class="at">data =</span> train_df,</span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">time =</span> <span class="fl">1.5</span></span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>    )<span class="sc">%&gt;%</span> </span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>  dcurves<span class="sc">::</span><span class="fu">as_tibble</span>()</span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用自带的画图代码</span></span>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(x1, <span class="fu">aes</span>(<span class="at">x=</span>threshold, <span class="at">y=</span>net_benefit,<span class="at">color=</span>variable))<span class="sc">+</span></span>
+<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">stat_smooth</span>(<span class="at">method =</span> <span class="st">"loess"</span>, <span class="at">se =</span> <span class="cn">FALSE</span>, <span class="at">formula =</span> <span class="st">"y ~ x"</span>, <span class="at">span =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
+<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_cartesian</span>(<span class="at">ylim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>, <span class="fl">0.25</span>)) <span class="sc">+</span></span>
+<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>)) <span class="sc">+</span></span>
+<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Threshold Probability"</span>, <span class="at">y =</span> <span class="st">"Net Benefit"</span>, <span class="at">color =</span> <span class="st">""</span>) <span class="sc">+</span></span>
+<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>大家还可以根据自己的喜好继续调整细节。</p>
 </section>
-<section id="方法2ggdca" class="level2" data-number="41.2">
-<h2 data-number="41.2" class="anchored" data-anchor-id="方法2ggdca"><span class="header-section-number">41.2</span> 方法2:ggDCA</h2>
+<section id="测试集" class="level3" data-number="35.1.2">
+<h3 data-number="35.1.2" class="anchored" data-anchor-id="测试集"><span class="header-section-number">35.1.2</span> 测试集</h3>
+<p>使用思路和分类数据是一样的,也是先计算预测概率,再画图:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 在训练集构建一个多元cox回归</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df)</span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算测试集1.5年的概率</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model,<span class="at">newdata=</span>test_df), </span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 先获取数据,再用ggplot2画图</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>x1 <span class="ot">&lt;-</span> dcurves<span class="sc">::</span><span class="fu">dca</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> prob1,</span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>    <span class="at">data =</span> test_df,</span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">time =</span> <span class="fl">1.5</span></span>
+<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>    )<span class="sc">%&gt;%</span> </span>
+<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>  dcurves<span class="sc">::</span><span class="fu">as_tibble</span>()</span>
+<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用自带的画图代码</span></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(x1, <span class="fu">aes</span>(<span class="at">x=</span>threshold, <span class="at">y=</span>net_benefit,<span class="at">color=</span>variable))<span class="sc">+</span></span>
+<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">stat_smooth</span>(<span class="at">method =</span> <span class="st">"loess"</span>, <span class="at">se =</span> <span class="cn">FALSE</span>, <span class="at">formula =</span> <span class="st">"y ~ x"</span>, <span class="at">span =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
+<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_cartesian</span>(<span class="at">ylim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>, <span class="fl">0.25</span>)) <span class="sc">+</span></span>
+<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>)) <span class="sc">+</span></span>
+<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"Threshold Probability"</span>, <span class="at">y =</span> <span class="st">"Net Benefit"</span>, <span class="at">color =</span> <span class="st">""</span>) <span class="sc">+</span></span>
+<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+</section>
+<section id="方法2ggdca" class="level2" data-number="35.2">
+<h2 data-number="35.2" class="anchored" data-anchor-id="方法2ggdca"><span class="header-section-number">35.2</span> 方法2:ggDCA</h2>
 <p>使用<code>ggDCA</code>包。是这么多方法里面最简单的一个。对于同一个模型多个时间点、同一个时间点多个模型,都可以非常简单的画出来。</p>
 <p><strong>如果遇到报错:no points selected for one or more curves, consider using …,请安装GitHub版本的ggDCA包,且不要同时加载其它可以做DCA的R包。</strong></p>
 <p>还是使用<code>dcurves</code>里面的<code>df_surv</code>数据集作为演示。</p>
+<section id="训练集-1" class="level3" data-number="35.2.1">
+<h3 data-number="35.2.1" class="anchored" data-anchor-id="训练集-1"><span class="header-section-number">35.2.1</span> 训练集</h3>
+<p>直接展示多个模型的绘制方法。</p>
+<p>首先建立多个模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'ggDCA'</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked from 'package:dcurves':</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     dca</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立多个模型</span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, </span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, <span class="at">data =</span> df_surv)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立多个模型</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, </span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df)</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df)</span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, </span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>多个模型同一时间点的DCA:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit1, cox_fit2, cox_fit3,</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fl">1.5</span> <span class="co"># 1.5年,默认值是中位数</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df1,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>,<span class="at">labels=</span><span class="fu">c</span>(<span class="st">"Cox 1"</span>,<span class="st">"Cox 2"</span>,<span class="st">"Cox 3"</span>,<span class="st">"All"</span>,<span class="st">"None"</span>))<span class="sc">+</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>),</span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 498 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>df1 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit1, cox_fit2, cox_fit3,</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fl">1.5</span> <span class="co"># 1.5年,默认值是中位数</span></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df1,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>,</span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels=</span><span class="fu">c</span>(<span class="st">"Cox 1"</span>,<span class="st">"Cox 2"</span>,<span class="st">"Cox 3"</span>,<span class="st">"All"</span>,<span class="st">"None"</span>))<span class="sc">+</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>),</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>同一个模型多个时间的DCA:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>df2 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit2,</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df2,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>)<span class="sc">+</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time) <span class="co"># 分面展示,因为不同时间点净获益是不一样的</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 1689 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>df2 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit2,</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>)</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df2,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>)<span class="sc">+</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time) <span class="co"># 分面展示,因为不同时间点净获益是不一样的</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>多个模型多个时间点:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>df3 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit1,cox_fit2,cox_fit3,</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df3,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>)<span class="sc">+</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time)</span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 1226 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>df3 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit1,cox_fit2,cox_fit3,</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>)</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>                  )</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df3,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>)<span class="sc">+</span></span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>非常强!如果你不会自己搞数据,就用这个!</p>
 </section>
-<section id="方法3stdca.r" class="level2" data-number="41.3">
-<h2 data-number="41.3" class="anchored" data-anchor-id="方法3stdca.r"><span class="header-section-number">41.3</span> 方法3:stdca.R</h2>
-<p>使用这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>给出的<code>stdca.r</code>文件绘制cox的DCA,需要代码的直接去网站下载即可。</p>
+<section id="测试集-1" class="level3" data-number="35.2.2">
+<h3 data-number="35.2.2" class="anchored" data-anchor-id="测试集-1"><span class="header-section-number">35.2.2</span> 测试集</h3>
+<p>这里直接展示多个模型多个时间点的决策曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>df3 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(cox_fit1,cox_fit2,cox_fit3,</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>),</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">new.data =</span> test_df <span class="co"># 这里提供测试集即可</span></span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>                  )</span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df3,<span class="at">linetype =</span> F)<span class="sc">+</span></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Model Type"</span>)<span class="sc">+</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+</section>
+<section id="方法3stdca.r" class="level2" data-number="35.3">
+<h2 data-number="35.3" class="anchored" data-anchor-id="方法3stdca.r"><span class="header-section-number">35.3</span> 方法3:stdca.R</h2>
+<p>这个方法是纪念斯隆·凯特林癌症中心给出的方法,非常正规,目前绝大多数其他实现DCA的方法都是基于此方法实现的。</p>
+<p>曾经,纪念斯隆·凯特林癌症中心的官网<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>会让你免费下载<code>dca.r/stdca.r</code>这两段脚本,可分别用于二分类数据和生存数据的决策曲线分析,但是非常遗憾的是,目前该网站已不再提供代码下载了。</p>
 <div class="callout callout-style-default callout-tip callout-titled" title="注意">
 <div class="callout-header d-flex align-content-center">
 <div class="callout-icon-container">
@@ -729,112 +827,220 @@ <h2 data-number="41.3" class="anchored" data-anchor-id="方法3stdca.r"><span cl
 </div>
 <div class="callout-body-container callout-body">
 <p>这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>已经不再提供该代码的下载,我很早之前就下载过了,所以我把<code>dca.r/stdca.r</code>这两段代码放在粉丝QQ群文件,需要的加群下载即可(免费的,别问我怎么加群)。</p>
-<p>但是原网站下载的<code>stdca.r</code>脚本在某些数据中会遇到以下报错:<code>Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument</code>,所以我对这段脚本进行了修改,可以解决这个报错。但是需要付费获取,获取链接:<a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">适用于一切模型的DCA</a>,没有任何答疑服务,介意勿扰。</p>
+<p>但是原网站下载的<code>stdca.r</code>脚本在某些数据中会遇到以下报错:<code>Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument</code>,所以我对这段脚本进行了修改,可以解决这个报错,也只能解决这个报错。但是需要付费获取,获取链接:<a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">适用于一切模型的DCA</a>,没有任何答疑服务,介意勿扰。</p>
 </div>
 </div>
 <p>数据还是用<code>df_surv</code>数据集。</p>
+<section id="训练集-2" class="level3" data-number="35.3.1">
+<h3 data-number="35.3.1" class="anchored" data-anchor-id="训练集-2"><span class="header-section-number">35.3.1</span> 训练集</h3>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dcurves)</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"df_surv"</span>)</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载函数,这个是我修改过的</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 原函数有时会报错:no points selected for one or more curves, consider using...</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"E:/R/r-clinical-model/000files/stdca.R"</span>) </span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(df_surv<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a>df_surv <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(df_surv) <span class="co"># stdca函数只接受data.frame</span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
-<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>df_surv, </span>
-<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
-<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
-<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
-<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
-<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
-<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co">#rm(list = ls())</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="co">#library(dcurves)</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="co">#data("df_surv")</span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载函数,这个是我修改过的</span></span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 原函数有时会报错:no points selected for one or more curves...</span></span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw</span></span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"E:/R/r-clinical-model/000files/stdca.R"</span>) </span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 格式准备好</span></span>
+<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(train_df<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
+<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(train_df) <span class="co"># stdca函数只接受data.frame</span></span>
+<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建一个多元cox回归</span></span>
+<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df)</span>
+<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算1.5年的概率</span></span>
+<span id="cb12-20"><a href="#cb12-20" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_model,<span class="at">newdata=</span>train_df),</span>
+<span id="cb12-21"><a href="#cb12-21" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb12-22"><a href="#cb12-22" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-23"><a href="#cb12-23" aria-hidden="true" tabindex="-1"></a><span class="co"># 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决</span></span>
+<span id="cb12-24"><a href="#cb12-24" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>train_df, <span class="at">outcome=</span><span class="st">"cancer"</span>, <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
+<span id="cb12-25"><a href="#cb12-25" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
+<span id="cb12-26"><a href="#cb12-26" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="st">"prob1"</span>,</span>
+<span id="cb12-27"><a href="#cb12-27" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
+<span id="cb12-28"><a href="#cb12-28" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>多个模型在同一个时间点的DCA画法,和第一种方法很类似,也是要分别计算出每个模型的概率。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立多个模型</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, </span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, <span class="at">data =</span> df_surv)</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型的概率</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob2 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob3 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>df_surv, </span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome=</span><span class="st">"cancer"</span>, </span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),  </span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立多个模型</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, </span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df)</span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df)</span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, </span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> train_df)</span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型的概率</span></span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>train_df), </span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob2 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>train_df), </span>
+<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob3 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>train_df), </span>
+<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>train_df, <span class="at">outcome=</span><span class="st">"cancer"</span>, <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
+<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
+<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),  </span>
+<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
+<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "prob3: No observations with risk greater than 94%, and therefore net benefit not calculable in this range."</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+<section id="测试集-2" class="level3" data-number="35.3.2">
+<h3 data-number="35.3.2" class="anchored" data-anchor-id="测试集-2"><span class="header-section-number">35.3.2</span> 测试集</h3>
+<p>思路依然是先计算概率,再画图,下面直接给大家展示多条曲线的画法。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 格式准备好</span></span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(test_df<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(test_df) <span class="co"># stdca函数只接受data.frame</span></span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型的概率</span></span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>test_df), </span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob2 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>test_df), </span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob3 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>test_df), </span>
+<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>test_df, <span class="at">outcome=</span><span class="st">"cancer"</span>, <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
+<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
+<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),  </span>
+<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span></span>
+<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "prob1: No observations with risk greater than 95%, and therefore net benefit not calculable in this range."</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="方法4diy" class="level2" data-number="41.4">
-<h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class="header-section-number">41.4</span> 方法4:DIY</h2>
+</section>
+<section id="方法4diy" class="level2" data-number="35.4">
+<h2 data-number="35.4" class="anchored" data-anchor-id="方法4diy"><span class="header-section-number">35.4</span> 方法4:DIY</h2>
+<section id="训练集-3" class="level3" data-number="35.4.1">
+<h3 data-number="35.4.1" class="anchored" data-anchor-id="训练集-3"><span class="header-section-number">35.4.1</span> 训练集</h3>
 <p>返回画图数据,再用<code>ggplot2</code>画图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>cox_dca <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data =</span> df_surv, </span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>      <span class="at">outcome =</span> <span class="st">"cancer"</span>, </span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>      <span class="at">ttoutcome =</span> <span class="st">"ttcancer"</span>, </span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint =</span> <span class="fl">1.5</span>, </span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors =</span> <span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span>,</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>      <span class="at">graph =</span> <span class="cn">FALSE</span></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>    )</span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>cox_dca_df <span class="ot">&lt;-</span> cox_dca<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="fu">c</span>(all,none,<span class="fu">contains</span>(<span class="st">"sm"</span>)),<span class="at">names_to =</span> <span class="st">"models"</span>,</span>
-<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">values_to =</span> <span class="st">"net_benefit"</span></span>
-<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>               )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>cox_dca <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data =</span> train_df, <span class="at">outcome =</span> <span class="st">"cancer"</span>, <span class="at">ttoutcome =</span> <span class="st">"ttcancer"</span>, </span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint =</span> <span class="fl">1.5</span>, </span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors =</span> <span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),</span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span>,</span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>      <span class="at">graph =</span> <span class="cn">FALSE</span></span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "prob3: No observations with risk greater than 94%, and therefore net benefit not calculable in this range."</span></span>
+<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
+<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a>cox_dca_df <span class="ot">&lt;-</span> cox_dca<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
+<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="fu">c</span>(all,none,<span class="fu">contains</span>(<span class="st">"sm"</span>)),<span class="at">names_to =</span> <span class="st">"models"</span>,</span>
+<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">values_to =</span> <span class="st">"net_benefit"</span></span>
+<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a>               )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>使用<code>ggplot2</code>画图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(cox_dca_df, <span class="fu">aes</span>(<span class="at">x=</span>threshold,<span class="at">y=</span>net_benefit))<span class="sc">+</span></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">color=</span>models),<span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Models Types"</span>,</span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels=</span><span class="fu">c</span>(<span class="st">"All"</span>,<span class="st">"None"</span>,<span class="st">"Model1"</span>,<span class="st">"Model2"</span>,<span class="st">"Model3"</span>))<span class="sc">+</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>),</span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.2</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.background =</span> <span class="fu">element_blank</span>(),</span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.85</span>,<span class="fl">0.75</span>)</span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 83 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(cox_dca_df, <span class="fu">aes</span>(<span class="at">x=</span>threshold,<span class="at">y=</span>net_benefit))<span class="sc">+</span></span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">color=</span>models),<span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Models Types"</span>,</span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels=</span><span class="fu">c</span>(<span class="st">"All"</span>,<span class="st">"None"</span>,<span class="st">"Model1"</span>,<span class="st">"Model2"</span>,<span class="st">"Model3"</span>))<span class="sc">+</span></span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>),</span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.2</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
+<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.background =</span> <span class="fu">element_blank</span>(),</span>
+<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.85</span>,<span class="fl">0.75</span>)</span>
+<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-cox_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+<section id="测试集-3" class="level3" data-number="35.4.2">
+<h3 data-number="35.4.2" class="anchored" data-anchor-id="测试集-3"><span class="header-section-number">35.4.2</span> 测试集</h3>
+<p>先获取画图数据:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 格式准备好</span></span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>cancer <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(test_df<span class="sc">$</span>cancer) <span class="co"># stdca函数需要结果变量是0,1</span></span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(test_df) <span class="co"># stdca函数只接受data.frame</span></span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型的概率</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>test_df), </span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob2 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>test_df), </span>
+<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob3 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>test_df), </span>
+<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>                              <span class="at">times=</span><span class="fl">1.5</span>)<span class="sc">$</span>surv))</span>
+<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 返回画图数据</span></span>
+<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">stdca</span>(<span class="at">data=</span>test_df, <span class="at">outcome=</span><span class="st">"cancer"</span>, <span class="at">ttoutcome=</span><span class="st">"ttcancer"</span>, </span>
+<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">timepoint=</span><span class="fl">1.5</span>, </span>
+<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob1"</span>,<span class="st">"prob2"</span>,<span class="st">"prob3"</span>),  </span>
+<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">smooth=</span><span class="cn">TRUE</span>, <span class="at">graph =</span> F</span>
+<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "prob1: No observations with risk greater than 95%, and therefore net benefit not calculable in this range."</span></span>
+<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-21"><a href="#cb17-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 格式整理</span></span>
+<span id="cb17-22"><a href="#cb17-22" aria-hidden="true" tabindex="-1"></a>cox_dca_df <span class="ot">&lt;-</span> dd<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
+<span id="cb17-23"><a href="#cb17-23" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="fu">c</span>(all,none,<span class="fu">contains</span>(<span class="st">"sm"</span>)),<span class="at">names_to =</span> <span class="st">"models"</span>,</span>
+<span id="cb17-24"><a href="#cb17-24" aria-hidden="true" tabindex="-1"></a>               <span class="at">values_to =</span> <span class="st">"net_benefit"</span></span>
+<span id="cb17-25"><a href="#cb17-25" aria-hidden="true" tabindex="-1"></a>               )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>使用<code>ggplot2</code>画图:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(cox_dca_df, <span class="fu">aes</span>(<span class="at">x=</span>threshold,<span class="at">y=</span>net_benefit))<span class="sc">+</span></span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">color=</span>models),<span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name=</span><span class="st">"Models Types"</span>,</span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels=</span><span class="fu">c</span>(<span class="st">"All"</span>,<span class="st">"None"</span>,<span class="st">"Model1"</span>,<span class="st">"Model2"</span>,<span class="st">"Model3"</span>))<span class="sc">+</span></span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>),</span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.2</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
+<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
+<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.background =</span> <span class="fu">element_blank</span>(),</span>
+<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.85</span>,<span class="fl">0.75</span>)</span>
+<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-cox_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>常见的DCA方法都展示了,大家自己选择使用哪个就好。</p>
 
 
+</section>
 </section>
 
 </main> <!-- /main -->
@@ -873,18 +1079,7 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -916,11 +1111,50 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -930,8 +1164,17 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -943,7 +1186,130 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -987,6 +1353,7 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1012,6 +1379,32 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1073,27 +1466,32 @@ <h2 data-number="41.4" class="anchored" data-anchor-id="方法4diy"><span class=
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./dca-logistic.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span>
+      <a href="./dca-logistic.html" class="pagination-link" aria-label="分类数据的决策曲线">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./dca-diy.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./dca-diy.html" class="pagination-link" aria-label="适用一切模型的决策曲线">
+        <span class="nav-page-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-10-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-10-1.png
index f32c367..56009c2 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-10-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-11-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-11-1.png
new file mode 100644
index 0000000..f6a0660
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-11-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-12-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-12-1.png
index ab7dbbd..59dd778 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-12-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-13-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-13-1.png
new file mode 100644
index 0000000..97f77d9
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-14-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-14-1.png
new file mode 100644
index 0000000..ac5be93
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-16-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-16-1.png
new file mode 100644
index 0000000..23b40b9
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-16-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-18-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-18-1.png
new file mode 100644
index 0000000..8c35495
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-18-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-2-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-2-1.png
deleted file mode 100644
index 4577563..0000000
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-2-1.png and /dev/null differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-3-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-3-1.png
index 3ab9c2c..05b34c9 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-3-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-4-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-4-1.png
index 8acc4ea..762e85d 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-4-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-5-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-5-1.png
new file mode 100644
index 0000000..f9dee0a
Binary files /dev/null and b/docs/dca-cox_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-6-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-6-1.png
index 5890216..4f037dc 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-6-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-7-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index e54ef1f..0000000
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-8-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-8-1.png
index f5781ba..ad25e7b 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-8-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/dca-cox_files/figure-html/unnamed-chunk-9-1.png b/docs/dca-cox_files/figure-html/unnamed-chunk-9-1.png
index 82328f6..6396fc8 100644
Binary files a/docs/dca-cox_files/figure-html/unnamed-chunk-9-1.png and b/docs/dca-cox_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/dca-diy.html b/docs/dca-diy.html
index 5e55aed..173b214 100644
--- a/docs/dca-diy.html
+++ b/docs/dca-diy.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 42&nbsp; 适用于一切模型的决策曲线分析</title>
+<title>36&nbsp; 适用一切模型的决策曲线 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./dca-diy.html"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-diy.html"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,30 +493,29 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#多个时间点多个cox模型的数据提取" id="toc-多个时间点多个cox模型的数据提取" class="nav-link active" data-scroll-target="#多个时间点多个cox模型的数据提取"><span class="header-section-number">42.1</span> 多个时间点多个cox模型的数据提取</a>
+  <li><a href="#多个时间点多个cox模型的数据提取" id="toc-多个时间点多个cox模型的数据提取" class="nav-link active" data-scroll-target="#多个时间点多个cox模型的数据提取"><span class="header-section-number">36.1</span> 多个时间点多个cox模型的数据提取</a>
   <ul class="collapse">
-  <li><a href="#第一种数据整理方法" id="toc-第一种数据整理方法" class="nav-link" data-scroll-target="#第一种数据整理方法"><span class="header-section-number">42.1.1</span> 第一种数据整理方法</a></li>
-  <li><a href="#第二种数据整理方法" id="toc-第二种数据整理方法" class="nav-link" data-scroll-target="#第二种数据整理方法"><span class="header-section-number">42.1.2</span> 第二种数据整理方法</a></li>
+  <li><a href="#第一种数据整理方法" id="toc-第一种数据整理方法" class="nav-link" data-scroll-target="#第一种数据整理方法"><span class="header-section-number">36.1.1</span> 第一种数据整理方法</a></li>
+  <li><a href="#第二种数据整理方法" id="toc-第二种数据整理方法" class="nav-link" data-scroll-target="#第二种数据整理方法"><span class="header-section-number">36.1.2</span> 第二种数据整理方法</a></li>
   </ul></li>
-  <li><a href="#lasso回归" id="toc-lasso回归" class="nav-link" data-scroll-target="#lasso回归"><span class="header-section-number">42.2</span> lasso回归</a></li>
-  <li><a href="#随机森林" id="toc-随机森林" class="nav-link" data-scroll-target="#随机森林"><span class="header-section-number">42.3</span> 随机森林</a></li>
-  <li><a href="#logistic" id="toc-logistic" class="nav-link" data-scroll-target="#logistic"><span class="header-section-number">42.4</span> logistic</a></li>
+  <li><a href="#lasso回归" id="toc-lasso回归" class="nav-link" data-scroll-target="#lasso回归"><span class="header-section-number">36.2</span> lasso回归</a></li>
+  <li><a href="#随机森林" id="toc-随机森林" class="nav-link" data-scroll-target="#随机森林"><span class="header-section-number">36.3</span> 随机森林</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-diy.html"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></h1>
+<h1 class="title"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></h1>
 </div>
 
 
@@ -547,8 +528,10 @@ <h1 class="title"><span class="chapter-number">42</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>前面介绍了超多DCA的实现方法,基本上常见的方法都包括了,代码和数据获取方法也给了大家。</p>
 <p>今天介绍的是如何实现其他模型的DCA,比如lasso回归、随机森林、决策树、SVM、xgboost等。</p>
 <p>这是基于<code>dca.r/stdca.r</code>实现的一种通用方法,使用这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>给出的代码文件绘制DCA,需要代码的直接去网站下载即可。</p>
@@ -563,16 +546,11 @@ <h1 class="title"><span class="chapter-number">42</span>&nbsp; <span class="chap
 </div>
 <div class="callout-body-container callout-body">
 <p>这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>已经不再提供该代码的下载,我很早之前就下载过了,所以我把<code>dca.r/stdca.r</code>这两段代码放在粉丝QQ群文件,需要的加群下载即可(免费的,别问我怎么加群)。</p>
-<p>但是原网站下载的<code>stdca.r</code>脚本在某些数据中会遇到以下报错:<code>Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument</code>,所以我对这段脚本进行了修改,可以解决这个报错。但是需要付费获取,获取链接:<a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">适用于一切模型的DCA</a>,没有任何答疑服务,介意勿扰。</p>
+<p>但是原网站下载的<code>stdca.r</code>脚本在某些数据中会遇到以下报错:<code>Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument</code>,所以我对这段脚本进行了修改,可以解决这个报错,也只能解决这个报错。但是需要付费获取,获取链接:<a href="https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw">适用于一切模型的DCA</a>,没有任何答疑服务,介意勿扰。</p>
 </div>
 </div>
-<ul>
-<li>多个模型多个时间点DCA数据提取并用<code>ggplot2</code>画图</li>
-<li>lasso回归的DCA</li>
-<li>随机森林的DCA</li>
-</ul>
-<section id="多个时间点多个cox模型的数据提取" class="level2" data-number="42.1">
-<h2 data-number="42.1" class="anchored" data-anchor-id="多个时间点多个cox模型的数据提取"><span class="header-section-number">42.1</span> 多个时间点多个cox模型的数据提取</h2>
+<section id="多个时间点多个cox模型的数据提取" class="level2" data-number="36.1">
+<h2 data-number="36.1" class="anchored" data-anchor-id="多个时间点多个cox模型的数据提取"><span class="header-section-number">36.1</span> 多个时间点多个cox模型的数据提取</h2>
 <p>其实<code>ggDCA</code>包完全可以做到,只要1行代码就搞定了,而且功能还很丰富。</p>
 <p>我给大家演示一遍基于<code>stdca.r</code>的方法,给大家开阔思路,代码可能不够简洁,但是思路没问题,无非就是各种数据整理与转换。</p>
 <p>而且<em>很定会有人对默认结果不满意,想要各种修改,下面介绍的这个方法非常适合自己进行各种自定义!</em></p>
@@ -594,22 +572,34 @@ <h2 data-number="42.1" class="anchored" data-anchor-id="多个时间点多个cox
 <p>建立多个模型,计算每个模型在不同时间点的概率:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立多个模型</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, <span class="at">data =</span> df_surv)</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, <span class="at">data =</span> df_surv)</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型在不同时间点的概率</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob11 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob21 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob31 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob12 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob22 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob32 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob13 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob23 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob33 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>cox_fit1 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> famhistory<span class="sc">+</span>marker, </span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>cox_fit2 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory <span class="sc">+</span> marker, </span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>cox_fit3 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(ttcancer, cancer) <span class="sc">~</span> age <span class="sc">+</span> famhistory, </span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>                  <span class="at">data =</span> df_surv)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算每个模型在不同时间点的死亡概率</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob11 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob21 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob31 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">1</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob12 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob22 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob32 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">2</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob13 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit1, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob23 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit2, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span>
+<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a>df_surv<span class="sc">$</span>prob33 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(cox_fit3, <span class="at">newdata=</span>df_surv), </span>
+<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a>                               <span class="at">times=</span><span class="dv">3</span>)<span class="sc">$</span>surv))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>计算threshold和net benefit:</p>
 <div class="cell">
@@ -643,18 +633,10 @@ <h2 data-number="42.1" class="anchored" data-anchor-id="多个时间点多个cox
 <span id="cb3-28"><a href="#cb3-28" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb3-29"><a href="#cb3-29" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb3-30"><a href="#cb3-30" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
-<span id="cb3-31"><a href="#cb3-31" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb3-32"><a href="#cb3-32" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-33"><a href="#cb3-33" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb3-34"><a href="#cb3-34" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb3-35"><a href="#cb3-35" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-36"><a href="#cb3-36" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb3-37"><a href="#cb3-37" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb3-38"><a href="#cb3-38" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-39"><a href="#cb3-39" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-31"><a href="#cb3-31" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<section id="第一种数据整理方法" class="level3" data-number="42.1.1">
-<h3 data-number="42.1.1" class="anchored" data-anchor-id="第一种数据整理方法"><span class="header-section-number">42.1.1</span> 第一种数据整理方法</h3>
+<section id="第一种数据整理方法" class="level3" data-number="36.1.1">
+<h3 data-number="36.1.1" class="anchored" data-anchor-id="第一种数据整理方法"><span class="header-section-number">36.1.1</span> 第一种数据整理方法</h3>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>cox_dca_df1 <span class="ot">&lt;-</span> cox_dca1<span class="sc">$</span>net.benefit</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>cox_dca_df2 <span class="ot">&lt;-</span> cox_dca2<span class="sc">$</span>net.benefit</span>
@@ -670,9 +652,7 @@ <h3 data-number="42.1.1" class="anchored" data-anchor-id="第一种数据整理
 <span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="fu">contains</span>(<span class="fu">c</span>(<span class="st">"all"</span>,<span class="st">"sm"</span>,<span class="st">"none"</span>)),</span>
 <span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>               <span class="at">names_to =</span> <span class="st">"models"</span>,</span>
 <span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>               <span class="at">values_to =</span> <span class="st">"net_benefit"</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Joining with `by = join_by(threshold, none)`</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Joining with `by = join_by(threshold, none)`</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>               )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图:</p>
 <div class="cell">
@@ -684,15 +664,18 @@ <h3 data-number="42.1.1" class="anchored" data-anchor-id="第一种数据整理
 <span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>),</span>
 <span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
 <span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.3</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 235 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="第二种数据整理方法" class="level3" data-number="42.1.2">
-<h3 data-number="42.1.2" class="anchored" data-anchor-id="第二种数据整理方法"><span class="header-section-number">42.1.2</span> 第二种数据整理方法</h3>
+<section id="第二种数据整理方法" class="level3" data-number="36.1.2">
+<h3 data-number="36.1.2" class="anchored" data-anchor-id="第二种数据整理方法"><span class="header-section-number">36.1.2</span> 第二种数据整理方法</h3>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>cox_dca_df1 <span class="ot">&lt;-</span> cox_dca1<span class="sc">$</span>net.benefit</span>
 <span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>cox_dca_df2 <span class="ot">&lt;-</span> cox_dca2<span class="sc">$</span>net.benefit</span>
@@ -741,10 +724,13 @@ <h3 data-number="42.1.2" class="anchored" data-anchor-id="第二种数据整理
 <span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span><span class="fu">label_percent</span>(<span class="at">accuracy =</span> <span class="dv">1</span>),</span>
 <span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
 <span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.3</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)</span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 235 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这种方法可以分面。</p>
@@ -756,23 +742,24 @@ <h3 data-number="42.1.2" class="anchored" data-anchor-id="第二种数据整理
 <span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name=</span><span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
 <span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.05</span>,<span class="fl">0.3</span>),<span class="at">name=</span><span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
 <span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">14</span>)<span class="sc">+</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time)</span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Scale for y is already present.</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Adding another scale for y, which will replace the existing scale.</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 73 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span>time)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>接下来演示其他模型的DCA实现方法,这里就以二分类变量为例,生存资料的DCA也是一样的,就是需要一个概率而已!</p>
 </section>
 </section>
-<section id="lasso回归" class="level2" data-number="42.2">
-<h2 data-number="42.2" class="anchored" data-anchor-id="lasso回归"><span class="header-section-number">42.2</span> lasso回归</h2>
+<section id="lasso回归" class="level2" data-number="36.2">
+<h2 data-number="36.2" class="anchored" data-anchor-id="lasso回归"><span class="header-section-number">36.2</span> lasso回归</h2>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(glmnet))</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidyverse))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>准备数据,这是从TCGA下载的一部分数据,其中<code>sample_type</code>是样本类型,1代表tumor,0代表normal,我们首先把因变量变为0,1。然后划分训练集和测试集。</p>
 <div class="cell">
@@ -782,10 +769,11 @@ <h2 data-number="42.2" class="anchored" data-anchor-id="lasso回归"><span class
 <span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span><span class="fu">c</span>(<span class="dv">2</span><span class="sc">:</span><span class="dv">3</span>)) <span class="sc">%&gt;%</span> </span>
 <span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">sample_type =</span> <span class="fu">ifelse</span>(sample_type<span class="sc">==</span><span class="st">"Tumor"</span>,<span class="dv">1</span>,<span class="dv">0</span>))</span>
 <span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df),<span class="fu">nrow</span>(df)<span class="sc">*</span><span class="fl">0.6</span>)</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> df[ind,]</span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> df[<span class="sc">-</span>ind,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(df),<span class="fu">nrow</span>(df)<span class="sc">*</span><span class="fl">0.6</span>)</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> df[ind,]</span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> df[<span class="sc">-</span>ind,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建lasso回归需要的参数值。</p>
 <div class="cell">
@@ -797,7 +785,11 @@ <h2 data-number="42.2" class="anchored" data-anchor-id="lasso回归"><span class
 <div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>cvfit <span class="ot">=</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>)</span>
 <span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>在测试集上查看模型表现:</p>
@@ -819,7 +811,11 @@ <h2 data-number="42.2" class="anchored" data-anchor-id="lasso回归"><span class
 <span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T</span>
 <span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这就是lasso的DCA,由于数据和模型原因,这个DCA看起来很诡异,大家千万要理解实现方法!</p>
@@ -838,33 +834,39 @@ <h2 data-number="42.2" class="anchored" data-anchor-id="lasso回归"><span class
 <span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.02</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span> </span>
 <span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
 <span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
-<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.2</span>,<span class="fl">0.3</span>),</span>
+<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.2</span>,<span class="fl">0.3</span>),</span>
 <span id="cb15-16"><a href="#cb15-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
-<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb15-18"><a href="#cb15-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 10 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="随机森林" class="level2" data-number="42.3">
-<h2 data-number="42.3" class="anchored" data-anchor-id="随机森林"><span class="header-section-number">42.3</span> 随机森林</h2>
+<section id="随机森林" class="level2" data-number="36.3">
+<h2 data-number="36.3" class="anchored" data-anchor-id="随机森林"><span class="header-section-number">36.3</span> 随机森林</h2>
+<p>思路完全一样,首先建立随机森林模型,然后计算预测概率(训练集或者测试集都是可以计算的),然后画图即可。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ranger)</span>
 <span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>rf <span class="ot">&lt;-</span> <span class="fu">ranger</span>(sample_type <span class="sc">~</span> ., <span class="at">data =</span> train_df)</span>
 <span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>prob_rf <span class="ot">&lt;-</span> <span class="fu">predict</span>(rf,test_df[,<span class="sc">-</span><span class="dv">1</span>],<span class="at">type =</span> <span class="st">"response"</span>)<span class="sc">$</span>predictions</span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>rf <span class="ot">&lt;-</span> prob_rf</span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>df_rf <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> test_df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"sample_type"</span>, <span class="co"># 指定结果变量</span></span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"rf"</span>, <span class="co"># 指定预测变量</span></span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a>    <span class="at">graph =</span> F</span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取测试集的概率</span></span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>prob_rf <span class="ot">&lt;-</span> <span class="fu">predict</span>(rf,test_df[,<span class="sc">-</span><span class="dv">1</span>],<span class="at">type =</span> <span class="st">"response"</span>)<span class="sc">$</span>predictions</span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>rf <span class="ot">&lt;-</span> prob_rf</span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>df_rf <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> test_df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"sample_type"</span>, <span class="co"># 指定结果变量</span></span>
+<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"rf"</span>, <span class="co"># 指定预测变量</span></span>
+<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
+<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>    <span class="at">graph =</span> F</span>
+<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>画图即可:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>df_rf<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
 <span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold, </span>
@@ -878,36 +880,17 @@ <h2 data-number="42.3" class="anchored" data-anchor-id="随机森林"><span clas
 <span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
 <span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.2</span>,<span class="fl">0.3</span>),</span>
 <span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
-<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 10 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-diy_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-</section>
-<section id="logistic" class="level2" data-number="42.4">
-<h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="header-section-number">42.4</span> logistic</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>logis <span class="ot">&lt;-</span> <span class="fu">glm</span>(sample_type <span class="sc">~</span> ., <span class="at">data =</span> train_df,<span class="at">family =</span> <span class="fu">binomial</span>())</span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: glm.fit: algorithm did not converge</span></span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred</span></span>
-<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>prob_logis <span class="ot">&lt;-</span> <span class="fu">predict</span>(logis, test_df[,<span class="sc">-</span><span class="dv">1</span>],<span class="at">type =</span> <span class="st">"response"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>logis <span class="ot">&lt;-</span> prob_logis</span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a>df_logis <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> test_df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
-<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"sample_type"</span>, <span class="co"># 指定结果变量</span></span>
-<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"logis"</span>, <span class="co"># 指定预测变量</span></span>
-<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">graph =</span> T</span>
-<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="dca-diy_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid" width="672"></p>
-</div>
 </div>
 <p>还有其他比如支持向量机等,就不一一介绍了,实现原理都是一样的,就是需要一个概率而已。</p>
+<p>如果是生存分析的话,会比较复杂一点,因为真实概率不好计算,需要指定一个时间点。</p>
 
 
 </section>
@@ -948,18 +931,7 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -991,11 +963,50 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1005,8 +1016,17 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1018,7 +1038,130 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1062,6 +1205,7 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1087,6 +1231,32 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1148,27 +1318,32 @@ <h2 data-number="42.4" class="anchored" data-anchor-id="logistic"><span class="h
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./dca-cox.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span>
+      <a href="./dca-cox.html" class="pagination-link" aria-label="生存数据的决策曲线">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./DCA彩色条带.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./DCA彩色条带.html" class="pagination-link" aria-label="决策曲线添加彩色条带">
+        <span class="nav-page-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/dca-diy_files/figure-html/unnamed-chunk-12-1.png b/docs/dca-diy_files/figure-html/unnamed-chunk-12-1.png
index fe29a71..14ea299 100644
Binary files a/docs/dca-diy_files/figure-html/unnamed-chunk-12-1.png and b/docs/dca-diy_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/dca-diy_files/figure-html/unnamed-chunk-14-1.png b/docs/dca-diy_files/figure-html/unnamed-chunk-14-1.png
index 50aeb1f..d7ad628 100644
Binary files a/docs/dca-diy_files/figure-html/unnamed-chunk-14-1.png and b/docs/dca-diy_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/dca-diy_files/figure-html/unnamed-chunk-15-1.png b/docs/dca-diy_files/figure-html/unnamed-chunk-15-1.png
index 28cf224..5963ec0 100644
Binary files a/docs/dca-diy_files/figure-html/unnamed-chunk-15-1.png and b/docs/dca-diy_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/dca-diy_files/figure-html/unnamed-chunk-17-1.png b/docs/dca-diy_files/figure-html/unnamed-chunk-17-1.png
index 516d3a5..bcbb900 100644
Binary files a/docs/dca-diy_files/figure-html/unnamed-chunk-17-1.png and b/docs/dca-diy_files/figure-html/unnamed-chunk-17-1.png differ
diff --git a/docs/dca-diy_files/figure-html/unnamed-chunk-19-1.png b/docs/dca-diy_files/figure-html/unnamed-chunk-19-1.png
deleted file mode 100644
index 9ff92a8..0000000
Binary files a/docs/dca-diy_files/figure-html/unnamed-chunk-19-1.png and /dev/null differ
diff --git a/docs/dca-logistic.html b/docs/dca-logistic.html
index e3954f1..d52c40f 100644
--- a/docs/dca-logistic.html
+++ b/docs/dca-logistic.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 40&nbsp; 分类数据的决策曲线分析</title>
+<title>34&nbsp; 分类数据的决策曲线 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./dca-logistic.html"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-logistic.html"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,27 +493,47 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#方法1rmda" id="toc-方法1rmda" class="nav-link active" data-scroll-target="#方法1rmda"><span class="header-section-number">40.1</span> 方法1:rmda</a></li>
-  <li><a href="#方法2dca.r" id="toc-方法2dca.r" class="nav-link" data-scroll-target="#方法2dca.r"><span class="header-section-number">40.2</span> 方法2:dca.r</a></li>
-  <li><a href="#方法3diy" id="toc-方法3diy" class="nav-link" data-scroll-target="#方法3diy"><span class="header-section-number">40.3</span> 方法3:DIY</a></li>
-  <li><a href="#方法4ggdca" id="toc-方法4ggdca" class="nav-link" data-scroll-target="#方法4ggdca"><span class="header-section-number">40.4</span> 方法4:ggDCA</a></li>
-  <li><a href="#方法5dcurves" id="toc-方法5dcurves" class="nav-link" data-scroll-target="#方法5dcurves"><span class="header-section-number">40.5</span> 方法5:dcurves</a></li>
+  <li><a href="#方法1rmda" id="toc-方法1rmda" class="nav-link active" data-scroll-target="#方法1rmda"><span class="header-section-number">34.1</span> 方法1:rmda</a>
+  <ul class="collapse">
+  <li><a href="#训练集" id="toc-训练集" class="nav-link" data-scroll-target="#训练集"><span class="header-section-number">34.1.1</span> 训练集</a></li>
+  <li><a href="#测试集" id="toc-测试集" class="nav-link" data-scroll-target="#测试集"><span class="header-section-number">34.1.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法2dca.r" id="toc-方法2dca.r" class="nav-link" data-scroll-target="#方法2dca.r"><span class="header-section-number">34.2</span> 方法2:dca.r</a>
+  <ul class="collapse">
+  <li><a href="#训练集-1" id="toc-训练集-1" class="nav-link" data-scroll-target="#训练集-1"><span class="header-section-number">34.2.1</span> 训练集</a></li>
+  <li><a href="#测试集-1" id="toc-测试集-1" class="nav-link" data-scroll-target="#测试集-1"><span class="header-section-number">34.2.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法3diy" id="toc-方法3diy" class="nav-link" data-scroll-target="#方法3diy"><span class="header-section-number">34.3</span> 方法3:DIY</a>
+  <ul class="collapse">
+  <li><a href="#训练集-2" id="toc-训练集-2" class="nav-link" data-scroll-target="#训练集-2"><span class="header-section-number">34.3.1</span> 训练集</a></li>
+  <li><a href="#测试集-2" id="toc-测试集-2" class="nav-link" data-scroll-target="#测试集-2"><span class="header-section-number">34.3.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法4ggdca" id="toc-方法4ggdca" class="nav-link" data-scroll-target="#方法4ggdca"><span class="header-section-number">34.4</span> 方法4:ggDCA</a>
+  <ul class="collapse">
+  <li><a href="#训练集-3" id="toc-训练集-3" class="nav-link" data-scroll-target="#训练集-3"><span class="header-section-number">34.4.1</span> 训练集</a></li>
+  <li><a href="#测试集-3" id="toc-测试集-3" class="nav-link" data-scroll-target="#测试集-3"><span class="header-section-number">34.4.2</span> 测试集</a></li>
+  </ul></li>
+  <li><a href="#方法5dcurves" id="toc-方法5dcurves" class="nav-link" data-scroll-target="#方法5dcurves"><span class="header-section-number">34.5</span> 方法5:dcurves</a>
+  <ul class="collapse">
+  <li><a href="#训练集-4" id="toc-训练集-4" class="nav-link" data-scroll-target="#训练集-4"><span class="header-section-number">34.5.1</span> 训练集</a></li>
+  <li><a href="#测试集-4" id="toc-测试集-4" class="nav-link" data-scroll-target="#测试集-4"><span class="header-section-number">34.5.2</span> 测试集</a></li>
+  </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./dca-logistic.html"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></h1>
+<h1 class="title"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></h1>
 </div>
 
 
@@ -544,115 +546,188 @@ <h1 class="title"><span class="chapter-number">40</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>DCA,decision curve analysis,临床决策曲线分析,更佳贴近临床实际,对临床工作的开展比AUC/NRI/IDI等更具有指导意义。</p>
-<p>我刚接触DCA的时候一个正经画DCA的R包都没有,现在R语言画DCA的方法实在是太多了,我这里只介绍了5种方法,后面再慢慢补充。大家看着喜欢哪个就用哪个吧。</p>
-<section id="方法1rmda" class="level2" data-number="40.1">
-<h2 data-number="40.1" class="anchored" data-anchor-id="方法1rmda"><span class="header-section-number">40.1</span> 方法1:rmda</h2>
+
+<p>临床决策曲线分析(decision curve analysis,DCA),更佳贴近临床实际,对临床工作的开展比AUC/NRI/IDI等更具有指导意义。</p>
+<p>我刚接触DCA的时候一个正经画DCA的R包都没有,现在R语言画DCA的方法实在是太多了,我这里只介绍了5种方法。大家看着喜欢哪个就用哪个吧。</p>
+<section id="方法1rmda" class="level2" data-number="34.1">
+<h2 data-number="34.1" class="anchored" data-anchor-id="方法1rmda"><span class="header-section-number">34.1</span> 方法1:rmda</h2>
 <p>使用<code>rmda</code>包。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 先安装R包</span></span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"rmda"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>使用这个包自带的一个<code>dcaData</code>,作为演示,这个数据集一共500行,6列,其中<code>Cancer</code>是结果变量,1代表患病,0代表没病,其余列是预测变量。</p>
+<p>使用这个包自带的一个<code>dcaData</code>作为演示,这个数据集一共500行,6列,其中<code>Cancer</code>是结果变量,1代表患病,0代表没病,其余列是预测变量。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rmda)</span>
 <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"dcaData"</span>)</span>
 <span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dcaData) <span class="co"># 500,6</span></span>
 <span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 500   6</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(dcaData)</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 6 × 6</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     Age Female Smokes Marker1  Marker2 Cancer</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;int&gt;  &lt;dbl&gt; &lt;lgl&gt;    &lt;dbl&gt;    &lt;dbl&gt;  &lt;int&gt;</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1    33      1 FALSE    0.245  1.02         0</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 2    29      1 FALSE    0.943 -0.256        0</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 3    28      1 FALSE    0.774  0.332        0</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 4    27      0 FALSE    0.406 -0.00569      0</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 5    23      1 FALSE    0.508  0.208        0</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 6    35      1 FALSE    0.186  1.41         0</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dcaData)</span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## tibble [500 × 6] (S3: tbl_df/tbl/data.frame)</span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age    : int [1:500] 33 29 28 27 23 35 34 29 35 27 ...</span></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Female : num [1:500] 1 1 1 0 1 1 1 1 1 1 ...</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Smokes : logi [1:500] FALSE FALSE FALSE FALSE FALSE FALSE ...</span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker1: num [1:500] 0.245 0.943 0.774 0.406 0.508 ...</span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker2: num [1:500] 1.02108 -0.25576 0.33184 -0.00569 0.20753 ...</span></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Cancer : int [1:500] 0 0 0 0 0 0 0 0 0 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(dcaData)</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 6 × 6</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     Age Female Smokes Marker1  Marker2 Cancer</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;int&gt;  &lt;dbl&gt; &lt;lgl&gt;    &lt;dbl&gt;    &lt;dbl&gt;  &lt;int&gt;</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1    33      1 FALSE    0.245  1.02         0</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 2    29      1 FALSE    0.943 -0.256        0</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 3    28      1 FALSE    0.774  0.332        0</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 4    27      0 FALSE    0.406 -0.00569      0</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 5    23      1 FALSE    0.508  0.208        0</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 6    35      1 FALSE    0.186  1.41         0</span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dcaData)</span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## tibble [500 × 6] (S3: tbl_df/tbl/data.frame)</span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age    : int [1:500] 33 29 28 27 23 35 34 29 35 27 ...</span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Female : num [1:500] 1 1 1 0 1 1 1 1 1 1 ...</span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Smokes : logi [1:500] FALSE FALSE FALSE FALSE FALSE FALSE ...</span></span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker1: num [1:500] 0.245 0.943 0.774 0.406 0.508 ...</span></span>
+<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Marker2: num [1:500] 1.02108 -0.25576 0.33184 -0.00569 0.20753 ...</span></span>
+<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Cancer : int [1:500] 0 0 0 0 0 0 0 0 0 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>使用起来非常简单,首先构建dca,然后画图:</p>
+<p>划分训练集测试集,划分比例为7:3。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a> </span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">decision_curve</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, <span class="co"># R语言里常见的公式类型</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>                       <span class="at">data =</span> dcaData, </span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>                       <span class="at">study.design =</span> <span class="st">"cohort"</span>, <span class="co"># 选择研究类型</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>                       <span class="at">bootstraps =</span> <span class="dv">50</span> <span class="co"># 重抽样次数</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>                       )</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Note:  The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance.</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_decision_curve</span>(fit1, <span class="at">curve.names =</span> <span class="st">"fit1"</span>,</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                    <span class="at">cost.benefit.axis =</span> F, <span class="co"># 是否需要损失:获益比 轴</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">confidence.intervals =</span> <span class="st">"none"</span> <span class="co"># 不画可信区间</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>train <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(dcaData), <span class="fu">nrow</span>(dcaData)<span class="sc">*</span><span class="fl">0.7</span>)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> dcaData[train,]</span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> dcaData[<span class="sc">-</span> train,]</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_df)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 350   6</span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_df)</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 150   6</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<section id="训练集" class="level3" data-number="34.1.1">
+<h3 data-number="34.1.1" class="anchored" data-anchor-id="训练集"><span class="header-section-number">34.1.1</span> 训练集</h3>
+<p>使用起来非常简单,首先构建dca,然后画图:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建DCA</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">decision_curve</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, <span class="co"># 自变量和因变量</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>                       <span class="at">data =</span> train_df, <span class="co"># 训练集数据</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>                       <span class="at">study.design =</span> <span class="st">"cohort"</span>, <span class="co"># 选择研究类型</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>                       <span class="at">bootstraps =</span> <span class="dv">50</span> <span class="co"># 重抽样次数</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>                       )</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_decision_curve</span>(fit1, <span class="at">curve.names =</span> <span class="st">"fit1"</span>,</span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>                    <span class="at">cost.benefit.axis =</span> F, <span class="co"># 是否需要损失:获益比 轴</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">confidence.intervals =</span> <span class="st">"none"</span> <span class="co"># 不画可信区间</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>                    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>可以查看模型中的各个数据的值:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据很大,没有展示,大家可以自己运行看看</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(fit1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据很大,没有展示全部,大家可以自己运行看看</span></span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(fit1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>给出了详细的概率阈值(展示部分):</p>
+<p><img src="figs/PixPin_2024-06-07_15-28-31.png" class="img-fluid"></p>
 <p>多个模型的多条DCA曲线一起绘制也是可以的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 新建立1个模型</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">decision_curve</span>(Cancer<span class="sc">~</span>Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2,</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> dcaData, </span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>              <span class="at">bootstraps =</span> <span class="dv">50</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Note:  The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance.</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图只要把多个模型放在1个列表中即可,还可以进行很多自定义调整</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_decision_curve</span>(<span class="fu">list</span>(fit1, fit2),</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>                    <span class="at">curve.names =</span> <span class="fu">c</span>(<span class="st">"fit1"</span>, <span class="st">"fit2"</span>), </span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>                    <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), <span class="co"># 可以设置x轴范围</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">legend.position =</span> <span class="st">"topright"</span>, <span class="co"># 图例位置,</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>                    <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"red"</span>,<span class="st">"blue"</span>), <span class="co"># 自定义颜色</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>                    <span class="at">confidence.intervals =</span> <span class="st">"none"</span>,</span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>                    <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>), <span class="co"># 线型,注意顺序</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a>                    <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">3</span>,<span class="dv">2</span>,<span class="dv">2</span>,<span class="dv">1</span>) <span class="co">#注意顺序,先是自己的模型,然后All,然后None</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a>                    )</span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Note: When multiple decision curves are plotted, decision curves for 'All' are calculated using the prevalence from the first DecisionCurve object in the list provided.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 新建立1个模型</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">decision_curve</span>(Cancer<span class="sc">~</span>Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2,</span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> train_df, </span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>              <span class="at">bootstraps =</span> <span class="dv">50</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>              )</span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图只要把多个模型放在1个列表中即可,还可以进行很多自定义调整</span></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_decision_curve</span>(<span class="fu">list</span>(fit1, fit2),</span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>                    <span class="at">curve.names =</span> <span class="fu">c</span>(<span class="st">"fit1"</span>, <span class="st">"fit2"</span>), </span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>                    <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), <span class="co"># 可以设置x轴范围</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>                    <span class="at">legend.position =</span> <span class="st">"topright"</span>, <span class="co"># 图例位置,</span></span>
+<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"red"</span>,<span class="st">"blue"</span>), <span class="co"># 自定义颜色</span></span>
+<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>                    <span class="at">confidence.intervals =</span> <span class="st">"none"</span>,</span>
+<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>                    <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>), <span class="co"># 线型,注意顺序</span></span>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>                    <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">3</span>,<span class="dv">2</span>,<span class="dv">2</span>,<span class="dv">1</span>) <span class="co">#注意顺序,先是自己的模型,然后All,然后None</span></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>                    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>这个包还可以绘制临床影响曲线:</p>
+</div>
+<p>这个包还可以绘制临床影响曲线(这也是我目前发现的唯一能绘制临床影响曲线的包):</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 1次只能绘制1个模型</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_clinical_impact</span>(fit1,</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                     <span class="at">population.size=</span> <span class="dv">1000</span>,</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">cost.benefit.axis =</span> T,</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">n.cost.benefits=</span> <span class="dv">8</span>,</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>                     <span class="at">col=</span><span class="fu">c</span>(<span class="st">'red'</span>,<span class="st">'blue'</span>),</span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">confidence.intervals=</span> T,</span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>                     <span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1000</span>),</span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">legend.position=</span><span class="st">"topright"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 1次只能绘制1个模型</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_clinical_impact</span>(fit1,</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                     <span class="at">population.size=</span> <span class="dv">1000</span>,</span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">cost.benefit.axis =</span> T,</span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">n.cost.benefits=</span> <span class="dv">8</span>,</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                     <span class="at">col=</span><span class="fu">c</span>(<span class="st">'red'</span>,<span class="st">'blue'</span>),</span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">confidence.intervals=</span> T,</span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>                     <span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1000</span>),</span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">legend.position=</span><span class="st">"topright"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这就是这个包画DCA的例子,效果还是不错的,自定义设置也很多,方便大家画出更好看的图。这个包还有很多其他功能,我们就不演示了,感兴趣的小伙伴可以自己探索哦。美中不足的是不能画生存资料的DCA。</p>
 </section>
-<section id="方法2dca.r" class="level2" data-number="40.2">
-<h2 data-number="40.2" class="anchored" data-anchor-id="方法2dca.r"><span class="header-section-number">40.2</span> 方法2:dca.r</h2>
-<p>使用这个<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>给出的<code>dca.r</code>文件绘制DCA,需要代码的直接去网站下载即可。</p>
+<section id="测试集" class="level3" data-number="34.1.2">
+<h3 data-number="34.1.2" class="anchored" data-anchor-id="测试集"><span class="header-section-number">34.1.2</span> 测试集</h3>
+<p>只需要提供测试集数据即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建DCA</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">decision_curve</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, <span class="co"># 自变量和因变量</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>                       <span class="at">data =</span> test_df, <span class="co"># 测试集数据</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>                       <span class="at">study.design =</span> <span class="st">"cohort"</span>, <span class="co"># 选择研究类型</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>                       <span class="at">bootstraps =</span> <span class="dv">50</span> <span class="co"># 重抽样次数</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>                       )</span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_decision_curve</span>(fit1, <span class="at">curve.names =</span> <span class="st">"fit1"</span>,</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>                    <span class="at">cost.benefit.axis =</span> F, <span class="co"># 是否需要损失:获益比 轴</span></span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>                    <span class="at">confidence.intervals =</span> <span class="st">"none"</span> <span class="co"># 不画可信区间</span></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>                    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>测试集的临床影响曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 1次只能绘制1个模型</span></span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_clinical_impact</span>(fit1,</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>                     <span class="at">population.size=</span> <span class="dv">1000</span>,</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>                     <span class="at">cost.benefit.axis =</span> T,</span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>                     <span class="at">n.cost.benefits=</span> <span class="dv">8</span>,</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>                     <span class="at">col=</span><span class="fu">c</span>(<span class="st">'red'</span>,<span class="st">'blue'</span>),</span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">confidence.intervals=</span> T,</span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>                     <span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1000</span>),</span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>                     <span class="at">legend.position=</span><span class="st">"topright"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+</section>
+<section id="方法2dca.r" class="level2" data-number="34.2">
+<h2 data-number="34.2" class="anchored" data-anchor-id="方法2dca.r"><span class="header-section-number">34.2</span> 方法2:dca.r</h2>
+<p>这个方法是纪念斯隆·凯特林癌症中心给出的方法,非常正规,目前绝大多数其他实现DCA的方法都是基于此方法实现的。</p>
+<p>曾经,纪念斯隆·凯特林癌症中心的官网<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis">网站</a>会让你免费下载<code>dca.r/stdca.r</code>这两段脚本,可分别用于二分类数据和生存数据的决策曲线分析,但是非常遗憾的是,目前该网站已不再提供代码下载了。</p>
 <div class="callout callout-style-default callout-tip callout-titled" title="注意">
 <div class="callout-header d-flex align-content-center">
 <div class="callout-icon-container">
@@ -663,309 +738,481 @@ <h2 data-number="40.2" class="anchored" data-anchor-id="方法2dca.r"><span clas
 </div>
 </div>
 <div class="callout-body-container callout-body">
-<p>这个网站已经不再提供该代码的下载,我把<code>dca.r/stdca.r</code>这两段代码已经放在粉丝QQ群文件,需要的加群下载即可。</p>
+<p>这个网站(<a href="https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis" class="uri">https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis</a>)已经不再提供该代码的下载,我在多年前就下载好了,我把<code>dca.r/stdca.r</code>这两段代码已经放在粉丝QQ群文件,需要的加群下载即可。</p>
 </div>
 </div>
+<section id="训练集-1" class="level3" data-number="34.2.1">
+<h3 data-number="34.2.1" class="anchored" data-anchor-id="训练集-1"><span class="header-section-number">34.2.1</span> 训练集</h3>
 <p>还是使用<code>rmda</code>包的数据,首先我们画一个简单的DCA,结果变量是<code>Cancer</code>,预测变量我们只用一个<code>Smokes</code>。使用起来非常简单,一句代码即可:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"./datasets/dca.r"</span>)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(dcaData)</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="co"># 指定结果变量</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"Smokes"</span>, <span class="co"># 指定预测变量</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> F <span class="co"># Smokes这一列是0,1组成的二分类变量,不是概率,所以是F</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"./datasets/dca.r"</span>)</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 变为数据框类型</span></span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(train_df)</span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> train_df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="co"># 指定结果变量</span></span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"Smokes"</span>, <span class="co"># 指定预测变量</span></span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> F, <span class="co"># Smokes这一列是0,1组成的二分类变量,不是概率,所以是F</span></span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>    <span class="at">xstop =</span> <span class="fl">0.3</span> <span class="co"># x轴范围</span></span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>但是如果你的预测变量不是0,1这种,或者有多个的话,这个函数就比较蛋疼了,它需要你先把预测概率算出来,才能使用这个函数。</p>
+</div>
+<p>但是如果你的预测变量不是0,1这种,或者有多个的话,这时候需要你先把预测概率算出来,才能使用这个函数。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2, </span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> df</span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出概率</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>)</span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>    <span class="at">xstop=</span><span class="fl">0.35</span> <span class="co"># 控制x轴范围</span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, </span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>            )</span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出概率</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>)</span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>train_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
+<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T</span>
+<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>把多个模型画在一起的方式也有点奇怪,比如我们下面演示下3个模型画在一起,其中<em>prob</em>代表的是上面的<code>model</code>模型,<em>Marker2</em>代表的是只有一个预测变量<em>Marker2</em>的模型,<em>Smokes</em>代表只有一个预测变量<em>Smokes</em>的模型!</p>
+</div>
+<p>把多个模型画在一起的方式需要注意,比如我们下面演示下3个模型画在一起,其中<em>prob</em>代表的是上面的<code>model</code>模型,<em>Marker2</em>代表的是只有一个预测变量<em>Marker2</em>的模型,<em>Smokes</em>代表只有一个预测变量<em>Smokes</em>的模型!</p>
 <p><code>prob</code>是概率,所以是T,<code>Smokes</code>和<code>Marker2</code>不是概率,所以是F。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, </span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob"</span>,<span class="st">"Smokes"</span>,<span class="st">"Marker2"</span>), <span class="co"># 这是3个模型哦!</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> <span class="fu">c</span>(T,F,F) <span class="co"># 和上面是对应的!</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>    )</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur."</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Marker2 converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur."</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> train_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, </span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob"</span>,<span class="st">"Smokes"</span>,<span class="st">"Marker2"</span>), <span class="co"># 这是3个模型!</span></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> <span class="fu">c</span>(T,F,F) <span class="co"># 和上面是对应的!</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur."</span></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Marker2 converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur."</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="方法3diy" class="level2" data-number="40.3">
-<h2 data-number="40.3" class="anchored" data-anchor-id="方法3diy"><span class="header-section-number">40.3</span> 方法3:DIY</h2>
+<section id="测试集-1" class="level3" data-number="34.2.2">
+<h3 data-number="34.2.2" class="anchored" data-anchor-id="测试集-1"><span class="header-section-number">34.2.2</span> 测试集</h3>
+<p>如果只有1个预测变量,直接用即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 变为数据框类型</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> <span class="fu">as.data.frame</span>(test_df)</span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> test_df, <span class="co"># 指定数据集,必须是data.frame类型</span></span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="co"># 指定结果变量</span></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"Smokes"</span>, <span class="co"># 指定预测变量</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> F, <span class="co"># Smokes这一列是0,1组成的二分类变量,不是概率,所以是F</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>    <span class="at">xstop =</span> <span class="fl">0.3</span> <span class="co"># x轴范围</span></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>    )</span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur."</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>如果有多个预测变量,需要自己计算出概率,再画图:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 在训练集建立包含多个自变量的logistic模型</span></span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, </span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>            )</span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出测试集的概率</span></span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>, <span class="at">newdata =</span> test_df)</span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
+<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>test_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
+<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>          <span class="at">probability =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>其他的就不再重复说了。</p>
+</section>
+</section>
+<section id="方法3diy" class="level2" data-number="34.3">
+<h2 data-number="34.3" class="anchored" data-anchor-id="方法3diy"><span class="header-section-number">34.3</span> 方法3:DIY</h2>
 <p>上面的方法自定义选项也很少,不利于美化图形。但是呢,有一个优点就是可以直接返回画图数据,我们只要稍加修改,就能使用<code>ggplot2</code>画图了!而且由于直接给出了源码,我们可以试着自己修改,这样可发挥的地方就太多了!</p>
 <p>下面几个将要介绍的方法,都是可以返回数据的,都支持使用<code>ggplot2</code>画图!</p>
 <p>下面我们返回2个模型的画图数据,自己稍加整理,然后使用<code>ggplot2</code>画DCA,大家如果只有1个模型或者更多的模型,道理都是一样的哦,就是整成<code>ggplot2</code>需要的格式就行了!</p>
+<section id="训练集-2" class="level3" data-number="34.3.1">
+<h3 data-number="34.3.1" class="anchored" data-anchor-id="训练集-2"><span class="header-section-number">34.3.1</span> 训练集</h3>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 返回模型1的画图数据</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"./datasets/dca.r"</span>)</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>dca_data1 <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> df, </span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">outcome=</span><span class="st">"Cancer"</span>, </span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>    <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>    <span class="at">probability =</span> T,</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>    <span class="at">graph =</span> F</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>    )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 返回模型1的画图数据</span></span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"./datasets/dca.r"</span>)</span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, </span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
+<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
+<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a>            )</span>
+<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出概率</span></span>
+<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>)</span>
+<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA,返回画图数据</span></span>
+<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a>dca_data1 <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>train_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
+<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a>          <span class="at">probability =</span> T, <span class="at">graph =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后提取数据,数据转换:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 转换数据</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>dca_df1 <span class="ot">&lt;-</span> dca_data1<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> <span class="co"># 画图数据就藏在这里!</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!</span></span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold, <span class="at">names_to =</span> <span class="st">"type"</span>, <span class="at">values_to =</span> <span class="st">"net_benefit"</span>) </span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 看下数据结构</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dca_df1)</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="do">## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)</span></span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...</span></span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ type       : chr [1:297] "all" "none" "prob" "all" ...</span></span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ net_benefit: num [1:297] 0.111 0 0.11 0.102 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 转换数据</span></span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>dca_df1 <span class="ot">&lt;-</span> dca_data1<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> <span class="co"># 画图数据就藏在这里!</span></span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!</span></span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold, <span class="at">names_to =</span> <span class="st">"type"</span>, <span class="at">values_to =</span> <span class="st">"net_benefit"</span>) </span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 看下数据结构</span></span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dca_df1)</span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a><span class="do">## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)</span></span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...</span></span>
+<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ type       : chr [1:297] "all" "none" "prob" "all" ...</span></span>
+<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ net_benefit: num [1:297] 0.12 0 0.12 0.111 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图就是非常简单了,先给大家看看只画1个模型的例子:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 以prob这个模型为例</span></span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca_df1, <span class="fu">aes</span>(threshold, net_benefit, <span class="at">color =</span> type))<span class="sc">+</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth =</span> <span class="fl">1.2</span>)<span class="sc">+</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name =</span> <span class="st">"Model Type"</span>)<span class="sc">+</span> <span class="co"># c("steelblue","firebrick","green4")</span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>,<span class="fl">0.12</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>  <span class="co">#限定y轴范围是重点,你可以去掉这句看看</span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.8</span>),</span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 85 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 以prob这个模型为例</span></span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca_df1, <span class="fu">aes</span>(threshold, net_benefit, <span class="at">color =</span> type))<span class="sc">+</span></span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth =</span> <span class="fl">1.2</span>)<span class="sc">+</span></span>
+<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name =</span> <span class="st">"Model Type"</span>)<span class="sc">+</span> <span class="co"># c("steelblue","firebrick","green4")</span></span>
+<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>,<span class="fl">0.12</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
+<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>  <span class="co">#限定y轴范围是重点,你可以去掉这句看看</span></span>
+<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
+<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.8</span>),</span>
+<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
+<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>看着是不是比上面的颜值都高些?是不是已经有了JAMA杂志的味道?</p>
 <p>下面是2个模型画在一起的例子,和上面的思路一模一样!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型2</span></span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>mod2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Age <span class="sc">+</span> Smokes, df, <span class="at">family =</span> binomial)</span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>df<span class="sc">$</span>model2 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod2, <span class="at">type=</span><span class="st">"response"</span>)</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 返回两个模型的画图数据</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>dca12 <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> df, </span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>             <span class="at">outcome=</span><span class="st">"Cancer"</span>, </span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>             <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob"</span>,<span class="st">"model2"</span>) ,</span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>             <span class="at">probability =</span> <span class="fu">c</span>(T,T),</span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>             <span class="at">graph =</span> F</span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>             )</span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="co"># 合并数据,大家可以打开这2个数据看下,可以直接合并</span></span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dplyr'</span></span>
-<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a><span class="do">##     filter, lag</span></span>
-<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a><span class="do">##     intersect, setdiff, setequal, union</span></span>
-<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a>dca_df_all <span class="ot">&lt;-</span> dca12<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
-<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold,<span class="at">names_to =</span> <span class="st">"models"</span>,<span class="at">values_to =</span> <span class="st">"net_benefit"</span>)</span>
-<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-28"><a href="#cb13-28" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(dca_df_all)</span>
-<span id="cb13-29"><a href="#cb13-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 396</span></span>
-<span id="cb13-30"><a href="#cb13-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 3</span></span>
-<span id="cb13-31"><a href="#cb13-31" aria-hidden="true" tabindex="-1"></a><span class="do">## $ threshold   &lt;dbl&gt; 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03…</span></span>
-<span id="cb13-32"><a href="#cb13-32" aria-hidden="true" tabindex="-1"></a><span class="do">## $ models      &lt;chr&gt; "all", "none", "prob", "model2", "all", "none", "prob", "m…</span></span>
-<span id="cb13-33"><a href="#cb13-33" aria-hidden="true" tabindex="-1"></a><span class="do">## $ net_benefit &lt;dbl&gt; 0.11111111, 0.00000000, 0.10957576, 0.11111111, 0.10204082…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型2</span></span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>mod2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Age <span class="sc">+</span> Smokes, train_df, <span class="at">family =</span> binomial)</span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>model2 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod2, <span class="at">type=</span><span class="st">"response"</span>)</span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 返回两个模型的画图数据</span></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>dca12 <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data =</span> train_df, </span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a>             <span class="at">outcome=</span><span class="st">"Cancer"</span>, </span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a>             <span class="at">predictors=</span><span class="fu">c</span>(<span class="st">"prob"</span>,<span class="st">"model2"</span>) ,</span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>             <span class="at">probability =</span> <span class="fu">c</span>(T,T),</span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a>             <span class="at">graph =</span> F</span>
+<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a>             )</span>
+<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a><span class="co"># 合并数据,大家可以打开这2个数据看下,可以直接合并</span></span>
+<span id="cb18-15"><a href="#cb18-15" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb18-16"><a href="#cb18-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-17"><a href="#cb18-17" aria-hidden="true" tabindex="-1"></a>dca_df_all <span class="ot">&lt;-</span> dca12<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> </span>
+<span id="cb18-18"><a href="#cb18-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold,<span class="at">names_to =</span> <span class="st">"models"</span>,<span class="at">values_to =</span> <span class="st">"net_benefit"</span>)</span>
+<span id="cb18-19"><a href="#cb18-19" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb18-20"><a href="#cb18-20" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(dca_df_all)</span>
+<span id="cb18-21"><a href="#cb18-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 396</span></span>
+<span id="cb18-22"><a href="#cb18-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 3</span></span>
+<span id="cb18-23"><a href="#cb18-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ threshold   &lt;dbl&gt; 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03…</span></span>
+<span id="cb18-24"><a href="#cb18-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ models      &lt;chr&gt; "all", "none", "prob", "model2", "all", "none", "prob", "m…</span></span>
+<span id="cb18-25"><a href="#cb18-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ net_benefit &lt;dbl&gt; 0.11976912, 0.00000000, 0.11976912, 0.11976912, 0.11078717…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图也是一样的简单:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca_df_all, <span class="fu">aes</span>(threshold, net_benefit, <span class="at">color =</span> models))<span class="sc">+</span></span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#geom_line(size = 1.2)+</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">stat_smooth</span>(<span class="at">method =</span> <span class="st">"loess"</span>, <span class="at">se =</span> <span class="cn">FALSE</span>, <span class="at">formula =</span> <span class="st">"y ~ x"</span>, <span class="at">span =</span> <span class="fl">0.2</span>)<span class="sc">+</span> </span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 灵感来自于方法5!</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name =</span> <span class="st">"Model Type"</span>)<span class="sc">+</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>,<span class="fl">0.12</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>),</span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 85 rows containing non-finite values (`stat_smooth()`).</span></span>
-<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,</span></span>
-<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a><span class="do">## : span too small.  fewer data values than degrees of freedom.</span></span>
-<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,</span></span>
-<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a><span class="do">## : pseudoinverse used at 0.00935</span></span>
-<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,</span></span>
-<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a><span class="do">## : neighborhood radius 0.01065</span></span>
-<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,</span></span>
-<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a><span class="do">## : reciprocal condition number 0</span></span>
-<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,</span></span>
-<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a><span class="do">## : There are other near singularities as well. 0.00011342</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca_df_all, <span class="fu">aes</span>(threshold, net_benefit, <span class="at">color =</span> models))<span class="sc">+</span></span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#geom_line(size = 1.2)+</span></span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">stat_smooth</span>(<span class="at">method =</span> <span class="st">"loess"</span>, <span class="at">se =</span> <span class="cn">FALSE</span>, <span class="at">formula =</span> <span class="st">"y ~ x"</span>, <span class="at">span =</span> <span class="fl">0.2</span>)<span class="sc">+</span> </span>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 灵感来自于方法5!</span></span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name =</span> <span class="st">"Model Type"</span>)<span class="sc">+</span></span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>,<span class="fl">0.12</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>),</span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
+<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>挺好,还是不错的,能直接返回数据的都是可以高度自定义的,配合<code>ggplot2</code>,你可以尽情发挥。</p>
 <p>在今天推荐的所有方法中,这个方法我是最喜欢的,虽然只有一段代码,连个正经的R包都没有,但是很明显这个方法的潜力最大!只要你会自己修改,那这个方法就是万能的,适合很多模型的DCA绘制!</p>
 </section>
-<section id="方法4ggdca" class="level2" data-number="40.4">
-<h2 data-number="40.4" class="anchored" data-anchor-id="方法4ggdca"><span class="header-section-number">40.4</span> 方法4:ggDCA</h2>
+<section id="测试集-2" class="level3" data-number="34.3.2">
+<h3 data-number="34.3.2" class="anchored" data-anchor-id="测试集-2"><span class="header-section-number">34.3.2</span> 测试集</h3>
+<p>还是首先获取测试集的预测概率:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立包含多个自变量的logistic模型</span></span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>model <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, </span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">family=</span><span class="fu">binomial</span>(),</span>
+<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df</span>
+<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a>            )</span>
+<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 算出测试集的概率</span></span>
+<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>prob <span class="ot">&lt;-</span> <span class="fu">predict</span>(model, <span class="at">type=</span><span class="st">"response"</span>, <span class="at">newdata =</span> test_df)</span>
+<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb20-10"><a href="#cb20-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘制多个预测变量的DCA</span></span>
+<span id="cb20-11"><a href="#cb20-11" aria-hidden="true" tabindex="-1"></a>dca_data1 <span class="ot">&lt;-</span> <span class="fu">dca</span>(<span class="at">data=</span>test_df, <span class="at">outcome=</span><span class="st">"Cancer"</span>, <span class="at">predictors=</span><span class="st">"prob"</span>, </span>
+<span id="cb20-12"><a href="#cb20-12" aria-hidden="true" tabindex="-1"></a>          <span class="at">probability =</span> T, <span class="at">graph =</span> F)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>然后提取数据,数据转换:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 转换数据</span></span>
+<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
+<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a>dca_df1 <span class="ot">&lt;-</span> dca_data1<span class="sc">$</span>net.benefit <span class="sc">%&gt;%</span> <span class="co"># 画图数据就藏在这里!</span></span>
+<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!</span></span>
+<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(<span class="at">cols =</span> <span class="sc">-</span>threshold, <span class="at">names_to =</span> <span class="st">"type"</span>, <span class="at">values_to =</span> <span class="st">"net_benefit"</span>) </span>
+<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 看下数据结构</span></span>
+<span id="cb21-9"><a href="#cb21-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dca_df1)</span>
+<span id="cb21-10"><a href="#cb21-10" aria-hidden="true" tabindex="-1"></a><span class="do">## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)</span></span>
+<span id="cb21-11"><a href="#cb21-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...</span></span>
+<span id="cb21-12"><a href="#cb21-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ type       : chr [1:297] "all" "none" "prob" "all" ...</span></span>
+<span id="cb21-13"><a href="#cb21-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ net_benefit: num [1:297] 0.0909 0 0.0909 0.0816 0 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>画图即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggsci)</span>
+<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 以prob这个模型为例</span></span>
+<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca_df1, <span class="fu">aes</span>(threshold, net_benefit, <span class="at">color =</span> type))<span class="sc">+</span></span>
+<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">linewidth =</span> <span class="fl">1.2</span>)<span class="sc">+</span></span>
+<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_jama</span>(<span class="at">name =</span> <span class="st">"Model Type"</span>)<span class="sc">+</span> <span class="co"># c("steelblue","firebrick","green4")</span></span>
+<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_y_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="fl">0.03</span>,<span class="fl">0.12</span>),<span class="at">name =</span> <span class="st">"Net Benefit"</span>)<span class="sc">+</span></span>
+<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a>  <span class="co">#限定y轴范围是重点,你可以去掉这句看看</span></span>
+<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_x_continuous</span>(<span class="at">limits =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">name =</span> <span class="st">"Threshold Probility"</span>)<span class="sc">+</span></span>
+<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>(<span class="at">base_size =</span> <span class="dv">16</span>)<span class="sc">+</span></span>
+<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position.inside =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.8</span>),</span>
+<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_blank</span>()</span>
+<span id="cb22-15"><a href="#cb22-15" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+</section>
+<section id="方法4ggdca" class="level2" data-number="34.4">
+<h2 data-number="34.4" class="anchored" data-anchor-id="方法4ggdca"><span class="header-section-number">34.4</span> 方法4:ggDCA</h2>
 <p>使用<code>ggDCA</code>包,和上面的提取数据再画图有点像,不过它给你简化了,一句代码即可,省事儿!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包,使用有问题的小伙伴请安装github版本</span></span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"ggDCA"</span>)</span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">'yikeshu0611/ggDCA'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包,建议安装github版本,不然会出问题</span></span>
+<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">'yikeshu0611/ggDCA'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<section id="训练集-3" class="level3" data-number="34.4.1">
+<h3 data-number="34.4.1" class="anchored" data-anchor-id="训练集-3"><span class="header-section-number">34.4.1</span> 训练集</h3>
 <p>还是使用<code>rmda</code>包里面自带的<code>dcaData</code>演示。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'ggDCA'</span></span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked _by_ '.GlobalEnv':</span></span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     dca</span></span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rmda)</span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型</span></span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, <span class="at">data =</span> dcaData, <span class="at">family =</span> <span class="fu">binomial</span>())</span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer<span class="sc">~</span>Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2,</span>
-<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> dcaData,<span class="at">family =</span> <span class="fu">binomial</span>())</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggDCA)</span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rmda)</span>
+<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="co">#options(datadist= dd )</span></span>
+<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建模型</span></span>
+<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes, </span>
+<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df, <span class="at">family =</span> <span class="fu">binomial</span>())</span>
+<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer<span class="sc">~</span>Age <span class="sc">+</span> Female <span class="sc">+</span> Smokes <span class="sc">+</span> Marker1 <span class="sc">+</span> Marker2,</span>
+<span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> train_df,<span class="at">family =</span> <span class="fu">binomial</span>())</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图,非常简洁!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>dca1 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(fit1)</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca1)</span>
-<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 18 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
+<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a>dca1 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(fit1)</span>
+<span id="cb25-4"><a href="#cb25-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb25-5"><a href="#cb25-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-25-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>大家可以使用<code>ggplot2</code>语法继续修改细节,在此之前先给大家看看这个<code>dca1</code>的数据结构。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dca1)</span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Classes 'dca.lrm' and 'data.frame':  188 obs. of  5 variables:</span></span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ thresholds: num  0.021 0.0228 0.0251 0.0272 0.0298 ...</span></span>
-<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TPR       : num  0.12 0.12 0.12 0.118 0.118 0.116 0.112 0.112 0.112 0.112 ...</span></span>
-<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FPR       : num  0.88 0.85 0.832 0.806 0.784 0.758 0.732 0.7 0.67 0.648 ...</span></span>
-<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NB        : num  0.1011 0.1001 0.0986 0.0955 0.0939 ...</span></span>
-<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ model     : Factor w/ 3 levels "fit1","All","None": 1 1 1 1 1 1 1 1 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dca1)</span>
+<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Classes 'dca.lrm' and 'data.frame':  182 obs. of  5 variables:</span></span>
+<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ thresholds: num  0.0242 0.0245 0.0289 0.0291 0.0344 ...</span></span>
+<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ TPR       : num  0.129 0.129 0.129 0.129 0.126 ...</span></span>
+<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ FPR       : num  0.871 0.857 0.831 0.814 0.794 ...</span></span>
+<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ NB        : num  0.1069 0.1071 0.1039 0.1041 0.0974 ...</span></span>
+<span id="cb26-7"><a href="#cb26-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ model     : Factor w/ 3 levels "fit1","All","None": 1 1 1 1 1 1 1 1 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>还自动算出了TPR和FPR,如果你想画ROC的话也是一句代码的事,咱就不演示了!就给大家演示下怎么自定义细节。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca1,<span class="at">linetype =</span> <span class="dv">1</span>,<span class="at">color =</span> <span class="fu">c</span>(<span class="st">"firebrick"</span>,<span class="st">"steelblue"</span>,<span class="st">"green4"</span>))<span class="sc">+</span></span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 18 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca1,<span class="at">linetype =</span> <span class="dv">1</span>,<span class="at">color =</span> <span class="fu">c</span>(<span class="st">"firebrick"</span>,<span class="st">"steelblue"</span>,<span class="st">"green4"</span>))<span class="sc">+</span></span>
+<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-27-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>多个模型画在一起也是非常简单!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 2个模型画在一起</span></span>
-<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>dca12 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(fit1,fit2)</span>
-<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca12, <span class="at">linetype =</span> <span class="dv">1</span>,<span class="at">color =</span> <span class="fu">c</span>(<span class="st">"firebrick"</span>,<span class="st">"steelblue"</span>,<span class="st">"green4"</span>,<span class="st">"tomato"</span>))<span class="sc">+</span></span>
-<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span>
-<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Removed 131 rows containing missing values (`geom_line()`).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 2个模型画在一起</span></span>
+<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a>dca12 <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(fit1,fit2)</span>
+<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb28-4"><a href="#cb28-4" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dca12, <span class="at">linetype =</span> <span class="dv">1</span>,</span>
+<span id="cb28-5"><a href="#cb28-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">color =</span> <span class="fu">c</span>(<span class="st">"firebrick"</span>,<span class="st">"steelblue"</span>,<span class="st">"green4"</span>,<span class="st">"tomato"</span>))<span class="sc">+</span></span>
+<span id="cb28-6"><a href="#cb28-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-28-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>简洁强大!</p>
 </section>
-<section id="方法5dcurves" class="level2" data-number="40.5">
-<h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span class="header-section-number">40.5</span> 方法5:dcurves</h2>
-<p>使用<code>dcurves</code>包。</p>
+<section id="测试集-3" class="level3" data-number="34.4.2">
+<h3 data-number="34.4.2" class="anchored" data-anchor-id="测试集-3"><span class="header-section-number">34.4.2</span> 测试集</h3>
+<p>也是只要1行代码即可:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装,2选1</span></span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"dcurves"</span>)</span>
-<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="co"># install.packages("devtools")</span></span>
-<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"ddsjoberg/dcurves"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> ggDCA<span class="sc">::</span><span class="fu">dca</span>(fit1,<span class="at">new.data=</span>test_df)</span>
+<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb29-3"><a href="#cb29-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(aa)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-29-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>但是这个包画出的测试集的决策曲线和其他R包差别较大,有人建议大家慎用该方法:<a href="https://mp.weixin.qq.com/s/kVsGOYs4i1FODRQuAWj2eg">二分类logistic回归模型决策曲线的绘制与解读</a></p>
+</section>
+</section>
+<section id="方法5dcurves" class="level2" data-number="34.5">
+<h2 data-number="34.5" class="anchored" data-anchor-id="方法5dcurves"><span class="header-section-number">34.5</span> 方法5:dcurves</h2>
+<p>使用<code>dcurves</code>包,这个包是官方基于方法2的代码写的,所以也算是一个官方的方法,虽然你没有<code>dca.r/stdca.r</code>,但是你可以直接使用<code>dcurves</code>包。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装,2选1</span></span>
+<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"dcurves"</span>)</span>
+<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a><span class="co"># install.packages("devtools")</span></span>
+<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"ddsjoberg/dcurves"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>还是使用<code>rmda</code>包的<code>dcaData</code>数据进行演示。</p>
+<section id="训练集-4" class="level3" data-number="34.5.1">
+<h3 data-number="34.5.1" class="anchored" data-anchor-id="训练集-4"><span class="header-section-number">34.5.1</span> 训练集</h3>
 <p>和<code>dca.r</code>的使用很像。废话不多说了,直接上 画2个模型DCA 的代码。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dcurves)</span>
-<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'dcurves'</span></span>
-<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked _by_ '.GlobalEnv':</span></span>
-<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="do">##     dca</span></span>
-<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked from 'package:ggDCA':</span></span>
-<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     dca</span></span>
-<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rmda)</span>
-<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"dcaData"</span>)</span>
-<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个模型,算出概率</span></span>
-<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a>mod1 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Age <span class="sc">+</span> Smokes, dcaData, <span class="at">family =</span> binomial)</span>
-<span id="cb22-15"><a href="#cb22-15" aria-hidden="true" tabindex="-1"></a>dcaData<span class="sc">$</span>model1 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod1, <span class="at">type=</span><span class="st">"response"</span>)</span>
-<span id="cb22-16"><a href="#cb22-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb22-17"><a href="#cb22-17" aria-hidden="true" tabindex="-1"></a>mod2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Marker2 <span class="sc">+</span> Age <span class="sc">+</span> Smokes <span class="sc">+</span> Female, </span>
-<span id="cb22-18"><a href="#cb22-18" aria-hidden="true" tabindex="-1"></a>            dcaData, <span class="at">family =</span> binomial)</span>
-<span id="cb22-19"><a href="#cb22-19" aria-hidden="true" tabindex="-1"></a>dcaData<span class="sc">$</span>model2 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod2, <span class="at">type=</span><span class="st">"response"</span>)</span>
-<span id="cb22-20"><a href="#cb22-20" aria-hidden="true" tabindex="-1"></a>  </span>
-<span id="cb22-21"><a href="#cb22-21" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(Cancer <span class="sc">~</span> model1 <span class="sc">+</span> model2,</span>
-<span id="cb22-22"><a href="#cb22-22" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> dcaData</span>
-<span id="cb22-23"><a href="#cb22-23" aria-hidden="true" tabindex="-1"></a>             ) <span class="sc">%&gt;%</span> </span>
-<span id="cb22-24"><a href="#cb22-24" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> T,</span>
-<span id="cb22-25"><a href="#cb22-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">show_ggplot_code =</span> T <span class="co"># 显示ggplot2代码,方便大家自己调整</span></span>
-<span id="cb22-26"><a href="#cb22-26" aria-hidden="true" tabindex="-1"></a>       )</span>
-<span id="cb22-27"><a href="#cb22-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Assuming '1' is [Event] and '0' is [non-Event]</span></span>
-<span id="cb22-28"><a href="#cb22-28" aria-hidden="true" tabindex="-1"></a><span class="do">## # ggplot2 code to create DCA figure -------------------------------</span></span>
-<span id="cb22-29"><a href="#cb22-29" aria-hidden="true" tabindex="-1"></a><span class="do">## as_tibble(x) %&gt;%</span></span>
-<span id="cb22-30"><a href="#cb22-30" aria-hidden="true" tabindex="-1"></a><span class="do">##   dplyr::filter(!is.na(net_benefit)) %&gt;%</span></span>
-<span id="cb22-31"><a href="#cb22-31" aria-hidden="true" tabindex="-1"></a><span class="do">##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +</span></span>
-<span id="cb22-32"><a href="#cb22-32" aria-hidden="true" tabindex="-1"></a><span class="do">##   stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", </span></span>
-<span id="cb22-33"><a href="#cb22-33" aria-hidden="true" tabindex="-1"></a><span class="do">##     span = 0.2) +</span></span>
-<span id="cb22-34"><a href="#cb22-34" aria-hidden="true" tabindex="-1"></a><span class="do">##   coord_cartesian(ylim = c(-0.012, 0.12)) +</span></span>
-<span id="cb22-35"><a href="#cb22-35" aria-hidden="true" tabindex="-1"></a><span class="do">##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +</span></span>
-<span id="cb22-36"><a href="#cb22-36" aria-hidden="true" tabindex="-1"></a><span class="do">##   labs(x = "Threshold Probability", y = "Net Benefit", color = "") +</span></span>
-<span id="cb22-37"><a href="#cb22-37" aria-hidden="true" tabindex="-1"></a><span class="do">##   theme_bw()</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dcurves)</span>
+<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rmda)</span>
+<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"dcaData"</span>)</span>
+<span id="cb31-4"><a href="#cb31-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb31-5"><a href="#cb31-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个模型,算出概率</span></span>
+<span id="cb31-6"><a href="#cb31-6" aria-hidden="true" tabindex="-1"></a>mod1 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Age <span class="sc">+</span> Smokes, train_df, <span class="at">family =</span> binomial)</span>
+<span id="cb31-7"><a href="#cb31-7" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>model1 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod1, <span class="at">type=</span><span class="st">"response"</span>)</span>
+<span id="cb31-8"><a href="#cb31-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb31-9"><a href="#cb31-9" aria-hidden="true" tabindex="-1"></a>mod2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(Cancer <span class="sc">~</span> Marker1 <span class="sc">+</span> Marker2 <span class="sc">+</span> Age <span class="sc">+</span> Smokes <span class="sc">+</span> Female, </span>
+<span id="cb31-10"><a href="#cb31-10" aria-hidden="true" tabindex="-1"></a>            train_df, <span class="at">family =</span> binomial)</span>
+<span id="cb31-11"><a href="#cb31-11" aria-hidden="true" tabindex="-1"></a>train_df<span class="sc">$</span>model2 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod2, <span class="at">type=</span><span class="st">"response"</span>)</span>
+<span id="cb31-12"><a href="#cb31-12" aria-hidden="true" tabindex="-1"></a>  </span>
+<span id="cb31-13"><a href="#cb31-13" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(Cancer <span class="sc">~</span> model1 <span class="sc">+</span> model2,</span>
+<span id="cb31-14"><a href="#cb31-14" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> train_df</span>
+<span id="cb31-15"><a href="#cb31-15" aria-hidden="true" tabindex="-1"></a>             ) <span class="sc">%&gt;%</span> </span>
+<span id="cb31-16"><a href="#cb31-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> T,</span>
+<span id="cb31-17"><a href="#cb31-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">show_ggplot_code =</span> T <span class="co"># 显示ggplot2代码,方便大家自己调整</span></span>
+<span id="cb31-18"><a href="#cb31-18" aria-hidden="true" tabindex="-1"></a>       )</span>
+<span id="cb31-19"><a href="#cb31-19" aria-hidden="true" tabindex="-1"></a><span class="do">## # ggplot2 code to create DCA figure -------------------------------</span></span>
+<span id="cb31-20"><a href="#cb31-20" aria-hidden="true" tabindex="-1"></a><span class="do">## as_tibble(x) %&gt;%</span></span>
+<span id="cb31-21"><a href="#cb31-21" aria-hidden="true" tabindex="-1"></a><span class="do">##   dplyr::filter(!is.na(net_benefit)) %&gt;%</span></span>
+<span id="cb31-22"><a href="#cb31-22" aria-hidden="true" tabindex="-1"></a><span class="do">##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +</span></span>
+<span id="cb31-23"><a href="#cb31-23" aria-hidden="true" tabindex="-1"></a><span class="do">##   stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", </span></span>
+<span id="cb31-24"><a href="#cb31-24" aria-hidden="true" tabindex="-1"></a><span class="do">##     span = 0.2) +</span></span>
+<span id="cb31-25"><a href="#cb31-25" aria-hidden="true" tabindex="-1"></a><span class="do">##   coord_cartesian(ylim = c(-0.0128571428571429, 0.128571428571429</span></span>
+<span id="cb31-26"><a href="#cb31-26" aria-hidden="true" tabindex="-1"></a><span class="do">## )) +</span></span>
+<span id="cb31-27"><a href="#cb31-27" aria-hidden="true" tabindex="-1"></a><span class="do">##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +</span></span>
+<span id="cb31-28"><a href="#cb31-28" aria-hidden="true" tabindex="-1"></a><span class="do">##   labs(x = "Threshold Probability", y = "Net Benefit", color = "") +</span></span>
+<span id="cb31-29"><a href="#cb31-29" aria-hidden="true" tabindex="-1"></a><span class="do">##   theme_bw()</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="dca-logistic_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-31-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>大家看到<code>ggplot2</code>的代码了吧?自己调整就可以了。</p>
+</section>
+<section id="测试集-4" class="level3" data-number="34.5.2">
+<h3 data-number="34.5.2" class="anchored" data-anchor-id="测试集-4"><span class="header-section-number">34.5.2</span> 测试集</h3>
+<p>也是展示同时画两个曲线,只需要提前计算出预测概率即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>model1 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod1, <span class="at">type=</span><span class="st">"response"</span>,<span class="at">newdata =</span> test_df)</span>
+<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>test_df<span class="sc">$</span>model2 <span class="ot">&lt;-</span> <span class="fu">predict</span>(mod2, <span class="at">type=</span><span class="st">"response"</span>,<span class="at">newdata =</span> test_df)</span>
+<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a>dcurves<span class="sc">::</span><span class="fu">dca</span>(Cancer <span class="sc">~</span> model1 <span class="sc">+</span> model2,</span>
+<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> test_df</span>
+<span id="cb32-6"><a href="#cb32-6" aria-hidden="true" tabindex="-1"></a>             ) <span class="sc">%&gt;%</span> </span>
+<span id="cb32-7"><a href="#cb32-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">plot</span>(<span class="at">smooth =</span> T,</span>
+<span id="cb32-8"><a href="#cb32-8" aria-hidden="true" tabindex="-1"></a>       <span class="at">show_ggplot_code =</span> T <span class="co"># 显示ggplot2代码,方便大家自己调整</span></span>
+<span id="cb32-9"><a href="#cb32-9" aria-hidden="true" tabindex="-1"></a>       )</span>
+<span id="cb32-10"><a href="#cb32-10" aria-hidden="true" tabindex="-1"></a><span class="do">## # ggplot2 code to create DCA figure -------------------------------</span></span>
+<span id="cb32-11"><a href="#cb32-11" aria-hidden="true" tabindex="-1"></a><span class="do">## as_tibble(x) %&gt;%</span></span>
+<span id="cb32-12"><a href="#cb32-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   dplyr::filter(!is.na(net_benefit)) %&gt;%</span></span>
+<span id="cb32-13"><a href="#cb32-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +</span></span>
+<span id="cb32-14"><a href="#cb32-14" aria-hidden="true" tabindex="-1"></a><span class="do">##   stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", </span></span>
+<span id="cb32-15"><a href="#cb32-15" aria-hidden="true" tabindex="-1"></a><span class="do">##     span = 0.2) +</span></span>
+<span id="cb32-16"><a href="#cb32-16" aria-hidden="true" tabindex="-1"></a><span class="do">##   coord_cartesian(ylim = c(-0.01, 0.1)) +</span></span>
+<span id="cb32-17"><a href="#cb32-17" aria-hidden="true" tabindex="-1"></a><span class="do">##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +</span></span>
+<span id="cb32-18"><a href="#cb32-18" aria-hidden="true" tabindex="-1"></a><span class="do">##   labs(x = "Threshold Probability", y = "Net Benefit", color = "") +</span></span>
+<span id="cb32-19"><a href="#cb32-19" aria-hidden="true" tabindex="-1"></a><span class="do">##   theme_bw()</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="dca-logistic_files/figure-html/unnamed-chunk-32-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
 <p>今天就给大家简单介绍下logistic回归DCA的5种画法,其实还有很多,留着以后再介绍吧,实在是写不动了。。除了常见的logistic、cox,其实<strong>随机森林、决策树、lasso、xgboost、SVM等很多模型都是可以绘制DCA的</strong>,更多进阶内容可以关注公众号查看。</p>
 
 
+</section>
 </section>
 
 </main> <!-- /main -->
@@ -1004,18 +1251,7 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1047,11 +1283,50 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1061,8 +1336,17 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1074,7 +1358,130 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1118,6 +1525,7 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1143,6 +1551,32 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1204,27 +1638,32 @@ <h2 data-number="40.5" class="anchored" data-anchor-id="方法5dcurves"><span cl
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./calibration-lasso.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span>
+      <a href="./calibration-lasso.html" class="pagination-link" aria-label="lasso回归校准曲线">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./dca-cox.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./dca-cox.html" class="pagination-link" aria-label="生存数据的决策曲线">
+        <span class="nav-page-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-10-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-10-1.png
new file mode 100644
index 0000000..b6118ec
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-11-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-11-1.png
new file mode 100644
index 0000000..ae97533
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-11-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-12-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-12-1.png
index cc9cc5d..135ac52 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-12-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-13-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-13-1.png
new file mode 100644
index 0000000..72c1c25
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-14-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-14-1.png
index be5a494..e4d3478 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-14-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-17-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-17-1.png
index 1f652e2..a36f7b3 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-17-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-17-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-19-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-19-1.png
index 34fabdb..d82b7f3 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-19-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-19-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-20-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-20-1.png
deleted file mode 100644
index 927bfa1..0000000
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-20-1.png and /dev/null differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-22-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-22-1.png
index d18df3e..c462875 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-22-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-22-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-25-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-25-1.png
new file mode 100644
index 0000000..bde9aba
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-25-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-27-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-27-1.png
new file mode 100644
index 0000000..5293e0e
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-27-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-28-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-28-1.png
new file mode 100644
index 0000000..da60cf3
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-28-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-29-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-29-1.png
new file mode 100644
index 0000000..2875186
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-29-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-3-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-3-1.png
deleted file mode 100644
index a35937d..0000000
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-3-1.png and /dev/null differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-31-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-31-1.png
new file mode 100644
index 0000000..0eb536a
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-31-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-32-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-32-1.png
new file mode 100644
index 0000000..d697804
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-32-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-4-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-4-1.png
new file mode 100644
index 0000000..ecb1edd
Binary files /dev/null and b/docs/dca-logistic_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-5-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-5-1.png
deleted file mode 100644
index f605c6b..0000000
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-5-1.png and /dev/null differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-6-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-6-1.png
index 65d60c7..a01e1cf 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-6-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-7-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-7-1.png
index 0c830a4..7442610 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-7-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-8-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-8-1.png
index e5a0249..0f64542 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-8-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/dca-logistic_files/figure-html/unnamed-chunk-9-1.png b/docs/dca-logistic_files/figure-html/unnamed-chunk-9-1.png
index a738403..f61b56e 100644
Binary files a/docs/dca-logistic_files/figure-html/unnamed-chunk-9-1.png and b/docs/dca-logistic_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/feature-selection.html b/docs/feature-selection.html
index dff8ae6..26729a1 100644
--- a/docs/feature-selection.html
+++ b/docs/feature-selection.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 10&nbsp; 常见的变量选择方法</title>
+<title>常见的变量选择方法 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -37,17 +37,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -56,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -70,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection.html"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -85,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -109,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -281,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -477,24 +459,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#常见方法简介" id="toc-常见方法简介" class="nav-link active" data-scroll-target="#常见方法简介"><span class="header-section-number">10.1</span> 常见方法简介</a></li>
-  <li><a href="#r语言中的实现" id="toc-r语言中的实现" class="nav-link" data-scroll-target="#r语言中的实现"><span class="header-section-number">10.2</span> R语言中的实现</a></li>
+  <li><a href="#常见方法简介" id="toc-常见方法简介" class="nav-link active" data-scroll-target="#常见方法简介">常见方法简介</a></li>
+  <li><a href="#r语言中的实现" id="toc-r语言中的实现" class="nav-link" data-scroll-target="#r语言中的实现">R语言中的实现</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
 <header id="title-block-header" class="quarto-title-block default">
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></h1>
+<h1 class="title">常见的变量选择方法</h1>
 </div>
 
 
@@ -507,11 +489,13 @@ <h1 class="title"><span class="chapter-number">10</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<section id="常见方法简介" class="level2" data-number="10.1">
-<h2 data-number="10.1" class="anchored" data-anchor-id="常见方法简介"><span class="header-section-number">10.1</span> 常见方法简介</h2>
-<p>变量选择(特征选择,feature selection),是机器学习领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论非常复杂,实在不是一个临床医生能完全掌握的,以下简单介绍下,感兴趣的自己看书,后续会推一些相关R包的使用教程。</p>
+
+<section id="常见方法简介" class="level2">
+<h2 class="anchored" data-anchor-id="常见方法简介">常见方法简介</h2>
+<p>变量选择(又叫特征选择,feature-selection),是机器学习和统计建模领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论非常复杂,实在不是一个临床医生能完全掌握的,以下简单介绍下,感兴趣的自己看书。</p>
 <p>在传统的临床预测模型中,比较常见的变量筛选方法有:</p>
 <ul>
 <li>先单因素后多因素</li>
@@ -521,9 +505,12 @@ <h2 data-number="10.1" class="anchored" data-anchor-id="常见方法简介"><spa
 <li>随机森林筛选变量</li>
 <li>…</li>
 </ul>
-<p>本文介绍的机器学习中的变量筛选方法(并没有包含在本书中,可在公众号<strong>医学和生信笔记</strong>后台回复<strong>变量筛选</strong>获取相关合集)虽然可以用在临床预测模型中,但是和大家常见的“先单因素后多因素”这种完全不是一个概念,虽然它们的目的相同,都是为了提高模型表现。</p>
+<p>我会在接下来的几章里详细介绍上面这几种方法.</p>
+<p>除了以上方法外,在机器学习领域其实还有非常多专门用于特征选择的方法.</p>
+<p>下面要介绍的变量筛选方法(并没有包含在本书中,可在公众号<strong>医学和生信笔记</strong>后台回复<strong>变量筛选</strong>获取相关合集)虽然可以用在临床预测模型中,但是和大家常见的“先单因素后多因素”这种完全不是一个概念,虽然它们的目的相同,都是为了提高模型表现以及减少使用的预测变量个数。</p>
+<p>通常建议在机器学习为主的文章中使用以下变量选择方法,在传统的预测模型类文章中还是以上面介绍的方法为主。</p>
 <p>当数据的维度增加时,决定模型最终使用哪些预测变量是很关键的问题。数据的维度就是自变量(预测变量)</p>
-<p>特征选择是特征工程中非常重要的一部分内容,特征选择的方法非常多,主要可以分为以下3类,每个大类下又会细分为好多具体的方法,有机会慢慢介绍…</p>
+<p>特征选择是特征工程中非常重要的一部分内容,特征选择的方法非常多,主要可以分为以下3类,每个大类下又会细分为好多具体的方法,但是我基本都在公众号中介绍过了,感兴趣的可以自翻看历史推文。</p>
 <ul>
 <li><strong>过滤法(filter)</strong>
 <ul>
@@ -549,7 +536,7 @@ <h2 data-number="10.1" class="anchored" data-anchor-id="常见方法简介"><spa
 <li>…</li>
 </ul></li>
 </ul>
-<p>大家经常使用的逐步选择法(step/stepAIC),也属于包装法的一种,在之前的推文中已有介绍:<a href="https://mp.weixin.qq.com/s/3A8ZiegbsQRjOSw2T3jldg">R语言逻辑回归的细节解读</a>,但是并不局限于逻辑回归。</p>
+<p>大家经常使用的逐步选择法(step/stepAIC),也属于包装法的一种,但是并不局限于逻辑回归。</p>
 <p>3种方法的简单解释如下,以后单独演示时会专门再解释:</p>
 <ul>
 <li>过滤法:进行变量选择时不考虑模型表现和变量重要性等,只是通过变量自身的情况、变量间的关系进行选择。</li>
@@ -557,32 +544,17 @@ <h2 data-number="10.1" class="anchored" data-anchor-id="常见方法简介"><spa
 <li>嵌入法:变量选择的过程就在模型训练的过程之中</li>
 </ul>
 </section>
-<section id="r语言中的实现" class="level2" data-number="10.2">
-<h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><span class="header-section-number">10.2</span> R语言中的实现</h2>
-<p>后续主要介绍3个包:<code>caret</code>、<code>mlr3</code>、<code>tidymodels</code></p>
+<section id="r语言中的实现" class="level2">
+<h2 class="anchored" data-anchor-id="r语言中的实现">R语言中的实现</h2>
+<p>主要是3个R包:<code>caret</code>、<code>mlr3</code>、<code>tidymodels</code></p>
 <p>在<code>caret</code>包中主要可以实现<strong>包装法和过滤法</strong>。</p>
 <p><code>caret</code>包中的封装法有递归特征消除(recursive feature elimination,rfe)算法,遗传算法(genetic algorithms,ga)和模拟退火(Simulated annealing,sa)算法。</p>
-<p>过滤法通过<code>sbf</code>函数实现,但其实部分数据预处理方法属于过滤法的内容。</p>
-<p><code>mlr3</code>中的变量选择主要包括两种:<strong>过滤法和包装法</strong>。不过和<code>caret</code>的实现方法略有不同。</p>
-<div class="callout callout-style-default callout-tip callout-titled" title="注意">
-<div class="callout-header d-flex align-content-center">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<div class="callout-title-container flex-fill">
-注意
-</div>
-</div>
-<div class="callout-body-container callout-body">
-<p>目前<code>mlr3</code>已经实现了对<strong>嵌入法</strong>的支持,可以说是R语言中对变量筛选做的最好的综合性R包了。</p>
-</div>
-</div>
-<p>过滤法通过<code>mlr3filters</code>包实现,包装法通过<code>mlr3fselect</code>包实现,关于这两种方法的具体实现,早已在之前的推文介绍过,大家可以参考之前的推文<a href="https://mp.weixin.qq.com/s/rcK4iMBm6rzclhoScPWTMA">mlr3特征选择</a></p>
-<p>不过随着<code>mlr3</code>的更新,部分细节稍有不同,以后再给大家慢慢演示。</p>
+<p>过滤法通过<code>sbf</code>函数实现,但其实部分数据预处理方法属于过滤法的内容。公众号后台回复<strong>caret</strong>可以获取相关合集。</p>
+<p>目前<code>mlr3</code>已经实现了对这3种方法的支持,可以说是R语言中对变量筛选做的最好的综合性R包了。</p>
+<p>过滤法和嵌入法通过<code>mlr3filters</code>包实现,包装法通过<code>mlr3fselect</code>包实现,关于3两种方法的具体实现,大家可以在公众号后台回复<strong>mlr3</strong>获取相关推文。</p>
 <p><code>tidymodels</code>中的特征选择很不完善,不如<code>mlr3</code>做得好,也不如<code>caret</code>做得好!</p>
 <p>部分过滤法包含在<code>recipes</code>中,部分包装法和嵌入法现在并不成熟,没有完整的实现,部分可通过<code>colina</code>包实现,但是这个包并不属于<code>tidymodels</code>,而是个人开发者贡献的R包。</p>
 <p>已经看到<code>tidymodels</code>的开发者有计划增加特征选择的这部分特性,但不知何时实现…</p>
-<p>总的来说,想要在R中完整实现以上三种方法,一言难尽……</p>
 
 
 </section>
@@ -623,18 +595,7 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -666,11 +627,50 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -680,8 +680,17 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -693,7 +702,130 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -737,6 +869,7 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -762,6 +895,32 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -823,27 +982,32 @@ <h2 data-number="10.2" class="anchored" data-anchor-id="r语言中的实现"><sp
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-points.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span>
+      <a href="./nomogram-points.html" class="pagination-link" aria-label="计算列线图得分及危险分层">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection_unimulti.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection_unimulti.html" class="pagination-link" aria-label="变量选择之先单后多">
+        <span class="nav-page-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/feature-selection_bestsubset.html b/docs/feature-selection_bestsubset.html
index 1c00888..2fb7f67 100644
--- a/docs/feature-selection_bestsubset.html
+++ b/docs/feature-selection_bestsubset.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 13&nbsp; 变量筛选之最优子集</title>
+<title>17&nbsp; 变量选择之最优子集 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,14 +96,43 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
-  <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
+  <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
   <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
 
+<script type="text/javascript">
+const typesetMath = (el) => {
+  if (window.MathJax) {
+    // MathJax Typeset
+    window.MathJax.typeset([el]);
+  } else if (window.katex) {
+    // KaTeX Render
+    var mathElements = el.getElementsByClassName("math");
+    var macros = [];
+    for (var i = 0; i < mathElements.length; i++) {
+      var texText = mathElements[i].firstChild;
+      if (mathElements[i].tagName == "SPAN") {
+        window.katex.render(texText.data, mathElements[i], {
+          displayMode: mathElements[i].classList.contains('display'),
+          throwOnError: false,
+          macros: macros,
+          fleqn: false
+        });
+      }
+    }
+  }
+}
+window.Quarto = {
+  typesetMath
+};
+</script>
+
 </head>
 
 <body class="nav-sidebar floating">
@@ -106,13 +141,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection_bestsubset.html"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_bestsubset.html"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -121,18 +156,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -145,171 +180,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -317,195 +363,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -513,27 +522,27 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">13.1</span> 准备数据</a></li>
-  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">13.2</span> 建立模型</a></li>
-  <li><a href="#最优子集法" id="toc-最优子集法" class="nav-link" data-scroll-target="#最优子集法"><span class="header-section-number">13.3</span> 最优子集法</a></li>
-  <li><a href="#子集选择" id="toc-子集选择" class="nav-link" data-scroll-target="#子集选择"><span class="header-section-number">13.4</span> 子集选择</a></li>
-  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料"><span class="header-section-number">13.5</span> 参考资料</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">17.1</span> 准备数据</a></li>
+  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">17.2</span> 建立模型</a></li>
+  <li><a href="#最优子集法" id="toc-最优子集法" class="nav-link" data-scroll-target="#最优子集法"><span class="header-section-number">17.3</span> 最优子集法</a></li>
+  <li><a href="#子集选择" id="toc-子集选择" class="nav-link" data-scroll-target="#子集选择"><span class="header-section-number">17.4</span> 子集选择</a></li>
+  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料"><span class="header-section-number">17.5</span> 参考资料</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_bestsubset.html"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></h1>
+<h1 class="title"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></h1>
 </div>
 
 
@@ -546,15 +555,17 @@ <h1 class="title"><span class="chapter-number">13</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>最优子集法,又叫全子集回归法,全局择优法。</p>
 <p>对于特征选择,最优子集回归是逐步回归的一个替代方案。我们在之前的推文中已经介绍过逐步回归了:<a href="https://mp.weixin.qq.com/s/Lw0FLXaijbmVgpWQx7fWMQ">变量选择之逐步(stepwise)回归法</a></p>
 <p>在最优子集回归中,算法使用所有可能的特征组合来拟合模型,所以,如果有3个特征,将生成7个模型(一个简单的排列组合问题)。所以这种方法的问题就是,如果数据集有多个特征,工作量就会非常大。当特征数多于观测数时(p大于n),这个方法的效果就不会很好。</p>
 <p>目前看来最优子集筛选变量只适用于线性回归。</p>
-<section id="准备数据" class="level2" data-number="13.1">
-<h2 data-number="13.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">13.1</span> 准备数据</h2>
-<p>使用孙振球版医学统计学<strong>例15-1</strong>的数据。</p>
+<section id="准备数据" class="level2" data-number="17.1">
+<h2 data-number="17.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">17.1</span> 准备数据</h2>
+<p>使用孙振球版医学统计学<strong>例15-1</strong>的数据。使用多个变量预测患者的空腹血糖。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">cho =</span> <span class="fu">c</span>(<span class="fl">5.68</span>,<span class="fl">3.79</span>,<span class="fl">6.02</span>,<span class="fl">4.85</span>,<span class="fl">4.60</span>,<span class="fl">6.05</span>,<span class="fl">4.90</span>,<span class="fl">7.08</span>,<span class="fl">3.85</span>,<span class="fl">4.65</span>,<span class="fl">4.59</span>,<span class="fl">4.29</span>,<span class="fl">7.97</span>,</span>
@@ -573,8 +584,8 @@ <h2 data-number="13.1" class="anchored" data-anchor-id="准备数据"><span clas
 <span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a>  )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="建立模型" class="level2" data-number="13.2">
-<h2 data-number="13.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">13.2</span> 建立模型</h2>
+<section id="建立模型" class="level2" data-number="17.2">
+<h2 data-number="17.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">17.2</span> 建立模型</h2>
 <p>使用全部的4个变量建立回归方程:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="fu">lm</span>(fpg <span class="sc">~</span> cho <span class="sc">+</span> tg <span class="sc">+</span> ri <span class="sc">+</span> hba, <span class="at">data =</span> df)</span>
@@ -603,8 +614,8 @@ <h2 data-number="13.2" class="anchored" data-anchor-id="建立模型"><span clas
 <span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">## F-statistic: 8.278 on 4 and 22 DF,  p-value: 0.0003121</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="最优子集法" class="level2" data-number="13.3">
-<h2 data-number="13.3" class="anchored" data-anchor-id="最优子集法"><span class="header-section-number">13.3</span> 最优子集法</h2>
+<section id="最优子集法" class="level2" data-number="17.3">
+<h2 data-number="17.3" class="anchored" data-anchor-id="最优子集法"><span class="header-section-number">17.3</span> 最优子集法</h2>
 <p>使用最优子集法筛选变量,借助<code>leaps</code>包实现。使用起来其实就是1行代码而已:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(leaps)</span>
@@ -628,14 +639,14 @@ <h2 data-number="13.3" class="anchored" data-anchor-id="最优子集法"><span c
 </div>
 <p><code>*</code>表示变量被包含在模型中,这个结果看起来并不是很直观,下面会结合图进行解释。</p>
 </section>
-<section id="子集选择" class="level2" data-number="13.4">
-<h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span class="header-section-number">13.4</span> 子集选择</h2>
+<section id="子集选择" class="level2" data-number="17.4">
+<h2 data-number="17.4" class="anchored" data-anchor-id="子集选择"><span class="header-section-number">17.4</span> 子集选择</h2>
 <p>我们首先查看<code>rss</code>(Residual sum of squares,残差平方和)最小的结果,因为RSS越小说明模型拟合结果越好:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">which.min</span>(<span class="fu">summary</span>(leaps)<span class="sc">$</span>rss)</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 4</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>结果表明有4个特征的模型具有最小的RSS,这是很明显的哈,因为这里就有4个自变量。。。</p>
+<p>结果表明有4个特征的模型具有最小的RSS,这是很明显的哈,因为这个数据最多就有4个自变量。。。</p>
 <p><strong>增加特征数量必然会减少RSS!而且必然会增加R方</strong>。我们即使添加一个完全不相关的特征,比如洛杉矶湖人队的胜场数,模型的RSS也会减少,R方也会增加。</p>
 <p>所以只看RSS并不能帮助我们很好的选择变量。</p>
 <p>我们这里讨论4种用于特征选择的统计方法:</p>
@@ -663,34 +674,46 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
 <p><span class="math display">\[
 \mathrm{CP}=\frac{\mathrm{RSS}_{p}}{\mathrm{MSE}_{f}}-n+2*p
 \]</span></p>
-<p>调整的R^2(修正R方)的计算公式如下:</p>
+<p>调整的R<sup>2</sup>(修正R方)的计算公式如下:</p>
 <p><span class="math display">\[
 \text{修正R方}=1-\left(\frac{\mathrm{RSS}}{n-p-1}\right)/\left(\frac{\mathrm{R}\text{方}}{ n - 1 }\right)
 \]</span></p>
 <p>前三种方法的目标是追求统计量的值最小化,调整的R方的目标是追求统计量的值最大化。这些统计方法的目的是建立一个尽可能简约的模型,换句话说,要对模型复杂性进行”惩罚”。</p>
 <p>在线性模型中,AIC和Cp成正比,所以我们只需关注Cp即可。</p>
 <p>下面以CP为纵坐标进行可视化:</p>
-<div class="cell" data-fig.asp="0.5">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">par</span>(<span class="at">mfrow=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>))</span>
 <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(<span class="fu">summary</span>(leaps)<span class="sc">$</span>cp,<span class="at">type =</span> <span class="st">"l"</span>,<span class="at">xlab =</span> <span class="st">"number of features"</span>,<span class="at">ylab =</span> <span class="st">"cp"</span>)</span>
 <span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(leaps, <span class="at">scale =</span> <span class="st">"Cp"</span>) <span class="co"># 通过Cp判断</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>左图横坐标是自变量数量,纵坐标是CP值大小,可以看到在变量数量为3时,CP是最小的;右边的图也是一样的意思,先看纵坐标,CP最小是3.2,此时对应的黑色块是<code>tg</code>,<code>ri</code>,<code>hba</code>这3个变量。</p>
-<p>也可以用其他指标作为纵坐标进行可视化,比如调整的R2<code>adjr2</code>:</p>
-<div class="cell" data-fig.asp="1">
+<p>也可以用其他指标作为纵坐标进行可视化,比如调整的R方<code>adjr2</code>:</p>
+<div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(leaps, <span class="at">scale =</span> <span class="st">"adjr2"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>或者<code>BIC</code>,BIC和AIC意思是一样的:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(leaps, <span class="at">scale =</span> <span class="st">"bic"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>可以看到3种方法得到的结果都是一样的,都是选出了<code>tg</code>,<code>ri</code>,<code>hba</code>这3个变量,但有时结果也是不太一样的,不用纠结。</p>
@@ -726,24 +749,23 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
 <span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>  ) <span class="sc">%&gt;%</span></span>
 <span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>  gt<span class="sc">::</span><span class="fu">fmt_number</span>(r.squared<span class="sc">:</span>mallows_cp, <span class="at">n_sigfig =</span> <span class="dv">4</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-
-<div id="azsehbzpdj" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
-<style>#azsehbzpdj table {
+<div id="gjvxhpuzem" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
+<style>#gjvxhpuzem table {
   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
   -webkit-font-smoothing: antialiased;
   -moz-osx-font-smoothing: grayscale;
 }
 
-#azsehbzpdj thead, #azsehbzpdj tbody, #azsehbzpdj tfoot, #azsehbzpdj tr, #azsehbzpdj td, #azsehbzpdj th {
+#gjvxhpuzem thead, #gjvxhpuzem tbody, #gjvxhpuzem tfoot, #gjvxhpuzem tr, #gjvxhpuzem td, #gjvxhpuzem th {
   border-style: none;
 }
 
-#azsehbzpdj p {
+#gjvxhpuzem p {
   margin: 0;
   padding: 0;
 }
 
-#azsehbzpdj .gt_table {
+#gjvxhpuzem .gt_table {
   display: table;
   border-collapse: collapse;
   line-height: normal;
@@ -769,12 +791,12 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-left-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_caption {
+#gjvxhpuzem .gt_caption {
   padding-top: 4px;
   padding-bottom: 4px;
 }
 
-#azsehbzpdj .gt_title {
+#gjvxhpuzem .gt_title {
   color: #333333;
   font-size: 125%;
   font-weight: initial;
@@ -786,7 +808,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-bottom-width: 0;
 }
 
-#azsehbzpdj .gt_subtitle {
+#gjvxhpuzem .gt_subtitle {
   color: #333333;
   font-size: 85%;
   font-weight: initial;
@@ -798,7 +820,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-top-width: 0;
 }
 
-#azsehbzpdj .gt_heading {
+#gjvxhpuzem .gt_heading {
   background-color: #FFFFFF;
   text-align: center;
   border-bottom-color: #FFFFFF;
@@ -810,13 +832,13 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-right-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_bottom_border {
+#gjvxhpuzem .gt_bottom_border {
   border-bottom-style: solid;
   border-bottom-width: 2px;
   border-bottom-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_col_headings {
+#gjvxhpuzem .gt_col_headings {
   border-top-style: solid;
   border-top-width: 2px;
   border-top-color: #D3D3D3;
@@ -831,7 +853,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-right-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_col_heading {
+#gjvxhpuzem .gt_col_heading {
   color: #333333;
   background-color: #FFFFFF;
   font-size: 100%;
@@ -851,7 +873,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   overflow-x: hidden;
 }
 
-#azsehbzpdj .gt_column_spanner_outer {
+#gjvxhpuzem .gt_column_spanner_outer {
   color: #333333;
   background-color: #FFFFFF;
   font-size: 100%;
@@ -863,15 +885,15 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 4px;
 }
 
-#azsehbzpdj .gt_column_spanner_outer:first-child {
+#gjvxhpuzem .gt_column_spanner_outer:first-child {
   padding-left: 0;
 }
 
-#azsehbzpdj .gt_column_spanner_outer:last-child {
+#gjvxhpuzem .gt_column_spanner_outer:last-child {
   padding-right: 0;
 }
 
-#azsehbzpdj .gt_column_spanner {
+#gjvxhpuzem .gt_column_spanner {
   border-bottom-style: solid;
   border-bottom-width: 2px;
   border-bottom-color: #D3D3D3;
@@ -883,11 +905,11 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   width: 100%;
 }
 
-#azsehbzpdj .gt_spanner_row {
+#gjvxhpuzem .gt_spanner_row {
   border-bottom-style: hidden;
 }
 
-#azsehbzpdj .gt_group_heading {
+#gjvxhpuzem .gt_group_heading {
   padding-top: 8px;
   padding-bottom: 8px;
   padding-left: 5px;
@@ -913,7 +935,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   text-align: left;
 }
 
-#azsehbzpdj .gt_empty_group_heading {
+#gjvxhpuzem .gt_empty_group_heading {
   padding: 0.5px;
   color: #333333;
   background-color: #FFFFFF;
@@ -928,15 +950,15 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   vertical-align: middle;
 }
 
-#azsehbzpdj .gt_from_md > :first-child {
+#gjvxhpuzem .gt_from_md > :first-child {
   margin-top: 0;
 }
 
-#azsehbzpdj .gt_from_md > :last-child {
+#gjvxhpuzem .gt_from_md > :last-child {
   margin-bottom: 0;
 }
 
-#azsehbzpdj .gt_row {
+#gjvxhpuzem .gt_row {
   padding-top: 8px;
   padding-bottom: 8px;
   padding-left: 5px;
@@ -955,7 +977,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   overflow-x: hidden;
 }
 
-#azsehbzpdj .gt_stub {
+#gjvxhpuzem .gt_stub {
   color: #333333;
   background-color: #FFFFFF;
   font-size: 100%;
@@ -968,7 +990,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 5px;
 }
 
-#azsehbzpdj .gt_stub_row_group {
+#gjvxhpuzem .gt_stub_row_group {
   color: #333333;
   background-color: #FFFFFF;
   font-size: 100%;
@@ -982,15 +1004,15 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   vertical-align: top;
 }
 
-#azsehbzpdj .gt_row_group_first td {
+#gjvxhpuzem .gt_row_group_first td {
   border-top-width: 2px;
 }
 
-#azsehbzpdj .gt_row_group_first th {
+#gjvxhpuzem .gt_row_group_first th {
   border-top-width: 2px;
 }
 
-#azsehbzpdj .gt_summary_row {
+#gjvxhpuzem .gt_summary_row {
   color: #333333;
   background-color: #FFFFFF;
   text-transform: inherit;
@@ -1000,16 +1022,16 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 5px;
 }
 
-#azsehbzpdj .gt_first_summary_row {
+#gjvxhpuzem .gt_first_summary_row {
   border-top-style: solid;
   border-top-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_first_summary_row.thick {
+#gjvxhpuzem .gt_first_summary_row.thick {
   border-top-width: 2px;
 }
 
-#azsehbzpdj .gt_last_summary_row {
+#gjvxhpuzem .gt_last_summary_row {
   padding-top: 8px;
   padding-bottom: 8px;
   padding-left: 5px;
@@ -1019,7 +1041,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-bottom-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_grand_summary_row {
+#gjvxhpuzem .gt_grand_summary_row {
   color: #333333;
   background-color: #FFFFFF;
   text-transform: inherit;
@@ -1029,7 +1051,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 5px;
 }
 
-#azsehbzpdj .gt_first_grand_summary_row {
+#gjvxhpuzem .gt_first_grand_summary_row {
   padding-top: 8px;
   padding-bottom: 8px;
   padding-left: 5px;
@@ -1039,7 +1061,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-top-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_last_grand_summary_row_top {
+#gjvxhpuzem .gt_last_grand_summary_row_top {
   padding-top: 8px;
   padding-bottom: 8px;
   padding-left: 5px;
@@ -1049,11 +1071,11 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-bottom-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_striped {
+#gjvxhpuzem .gt_striped {
   background-color: rgba(128, 128, 128, 0.05);
 }
 
-#azsehbzpdj .gt_table_body {
+#gjvxhpuzem .gt_table_body {
   border-top-style: solid;
   border-top-width: 2px;
   border-top-color: #D3D3D3;
@@ -1062,7 +1084,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-bottom-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_footnotes {
+#gjvxhpuzem .gt_footnotes {
   color: #333333;
   background-color: #FFFFFF;
   border-bottom-style: none;
@@ -1076,7 +1098,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-right-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_footnote {
+#gjvxhpuzem .gt_footnote {
   margin: 0px;
   font-size: 90%;
   padding-top: 4px;
@@ -1085,7 +1107,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 5px;
 }
 
-#azsehbzpdj .gt_sourcenotes {
+#gjvxhpuzem .gt_sourcenotes {
   color: #333333;
   background-color: #FFFFFF;
   border-bottom-style: none;
@@ -1099,7 +1121,7 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   border-right-color: #D3D3D3;
 }
 
-#azsehbzpdj .gt_sourcenote {
+#gjvxhpuzem .gt_sourcenote {
   font-size: 90%;
   padding-top: 4px;
   padding-bottom: 4px;
@@ -1107,122 +1129,138 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
   padding-right: 5px;
 }
 
-#azsehbzpdj .gt_left {
+#gjvxhpuzem .gt_left {
   text-align: left;
 }
 
-#azsehbzpdj .gt_center {
+#gjvxhpuzem .gt_center {
   text-align: center;
 }
 
-#azsehbzpdj .gt_right {
+#gjvxhpuzem .gt_right {
   text-align: right;
   font-variant-numeric: tabular-nums;
 }
 
-#azsehbzpdj .gt_font_normal {
+#gjvxhpuzem .gt_font_normal {
   font-weight: normal;
 }
 
-#azsehbzpdj .gt_font_bold {
+#gjvxhpuzem .gt_font_bold {
   font-weight: bold;
 }
 
-#azsehbzpdj .gt_font_italic {
+#gjvxhpuzem .gt_font_italic {
   font-style: italic;
 }
 
-#azsehbzpdj .gt_super {
+#gjvxhpuzem .gt_super {
   font-size: 65%;
 }
 
-#azsehbzpdj .gt_footnote_marks {
+#gjvxhpuzem .gt_footnote_marks {
   font-size: 75%;
   vertical-align: 0.4em;
   position: initial;
 }
 
-#azsehbzpdj .gt_asterisk {
+#gjvxhpuzem .gt_asterisk {
   font-size: 100%;
   vertical-align: 0;
 }
 
-#azsehbzpdj .gt_indent_1 {
+#gjvxhpuzem .gt_indent_1 {
   text-indent: 5px;
 }
 
-#azsehbzpdj .gt_indent_2 {
+#gjvxhpuzem .gt_indent_2 {
   text-indent: 10px;
 }
 
-#azsehbzpdj .gt_indent_3 {
+#gjvxhpuzem .gt_indent_3 {
   text-indent: 15px;
 }
 
-#azsehbzpdj .gt_indent_4 {
+#gjvxhpuzem .gt_indent_4 {
   text-indent: 20px;
 }
 
-#azsehbzpdj .gt_indent_5 {
+#gjvxhpuzem .gt_indent_5 {
   text-indent: 25px;
 }
+
+#gjvxhpuzem .katex-display {
+  display: inline-flex !important;
+  margin-bottom: 0.75em !important;
+}
+
+#gjvxhpuzem div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
+  height: 0px !important;
+}
 </style>
-<table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
-  <thead>
-    
-    <tr class="gt_col_headings">
-      <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id=""></th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="cho">cho</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="tg">tg</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="ri">ri</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="hba">hba</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="r.squared">r.squared</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="adj.r.squared">adj.r.squared</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="BIC">BIC</th>
-      <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="mallows_cp">mallows_cp</th>
-    </tr>
-  </thead>
-  <tbody class="gt_table_body">
-    <tr><th id="stub_1_1" scope="row" class="gt_row gt_right gt_stub">1</th>
-<td headers="stub_1_1 cho" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_1 tg" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_1 ri" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_1 hba" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_1 r.squared" class="gt_row gt_right">0.3717</td>
-<td headers="stub_1_1 adj.r.squared" class="gt_row gt_right">0.3465</td>
-<td headers="stub_1_1 BIC" class="gt_row gt_right">−5.955</td>
-<td headers="stub_1_1 mallows_cp" class="gt_row gt_right">11.63</td></tr>
-    <tr><th id="stub_1_2" scope="row" class="gt_row gt_right gt_stub">2</th>
-<td headers="stub_1_2 cho" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_2 tg" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_2 ri" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_2 hba" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_2 r.squared" class="gt_row gt_right">0.4843</td>
-<td headers="stub_1_2 adj.r.squared" class="gt_row gt_right">0.4414</td>
-<td headers="stub_1_2 BIC" class="gt_row gt_right">−7.995</td>
-<td headers="stub_1_2 mallows_cp" class="gt_row gt_right">7.419</td></tr>
-    <tr><th id="stub_1_3" scope="row" class="gt_row gt_right gt_stub">3</th>
-<td headers="stub_1_3 cho" class="gt_row gt_center" style="background-color: #FDAE61; color: #000000;">FALSE</td>
-<td headers="stub_1_3 tg" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_3 ri" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_3 hba" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_3 r.squared" class="gt_row gt_right">0.5981</td>
-<td headers="stub_1_3 adj.r.squared" class="gt_row gt_right">0.5456</td>
-<td headers="stub_1_3 BIC" class="gt_row gt_right">−11.43</td>
-<td headers="stub_1_3 mallows_cp" class="gt_row gt_right">3.152</td></tr>
-    <tr><th id="stub_1_4" scope="row" class="gt_row gt_right gt_stub">4</th>
-<td headers="stub_1_4 cho" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_4 tg" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_4 ri" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_4 hba" class="gt_row gt_center" style="background-color: #ABDDA4; color: #000000;">TRUE</td>
-<td headers="stub_1_4 r.squared" class="gt_row gt_right">0.6008</td>
-<td headers="stub_1_4 adj.r.squared" class="gt_row gt_right">0.5282</td>
-<td headers="stub_1_4 BIC" class="gt_row gt_right">−8.315</td>
-<td headers="stub_1_4 mallows_cp" class="gt_row gt_right">5.000</td></tr>
-  </tbody>
-  
-  
+
+<table class="gt_table caption-top" data-quarto-postprocess="true" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
+<thead>
+<tr class="gt_col_headings">
+<th id="a::stub" class="gt_col_heading gt_columns_bottom_border gt_left" data-quarto-table-cell-role="th" scope="col"></th>
+<th id="cho" class="gt_col_heading gt_columns_bottom_border gt_center" data-quarto-table-cell-role="th" scope="col">cho</th>
+<th id="tg" class="gt_col_heading gt_columns_bottom_border gt_center" data-quarto-table-cell-role="th" scope="col">tg</th>
+<th id="ri" class="gt_col_heading gt_columns_bottom_border gt_center" data-quarto-table-cell-role="th" scope="col">ri</th>
+<th id="hba" class="gt_col_heading gt_columns_bottom_border gt_center" data-quarto-table-cell-role="th" scope="col">hba</th>
+<th id="r.squared" class="gt_col_heading gt_columns_bottom_border gt_right" data-quarto-table-cell-role="th" scope="col">r.squared</th>
+<th id="adj.r.squared" class="gt_col_heading gt_columns_bottom_border gt_right" data-quarto-table-cell-role="th" scope="col">adj.r.squared</th>
+<th id="BIC" class="gt_col_heading gt_columns_bottom_border gt_right" data-quarto-table-cell-role="th" scope="col">BIC</th>
+<th id="mallows_cp" class="gt_col_heading gt_columns_bottom_border gt_right" data-quarto-table-cell-role="th" scope="col">mallows_cp</th>
+</tr>
+</thead>
+<tbody class="gt_table_body">
+<tr>
+<td id="stub_1_1" class="gt_row gt_right gt_stub" data-quarto-table-cell-role="th" scope="row">1</td>
+<td class="gt_row gt_center" headers="stub_1_1 cho" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_1 tg" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_1 ri" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_1 hba" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_right" headers="stub_1_1 r.squared">0.3717</td>
+<td class="gt_row gt_right" headers="stub_1_1 adj.r.squared">0.3465</td>
+<td class="gt_row gt_right" headers="stub_1_1 BIC">−5.955</td>
+<td class="gt_row gt_right" headers="stub_1_1 mallows_cp">11.63</td>
+</tr>
+<tr>
+<td id="stub_1_2" class="gt_row gt_right gt_stub" data-quarto-table-cell-role="th" scope="row">2</td>
+<td class="gt_row gt_center" headers="stub_1_2 cho" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_2 tg" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_2 ri" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_2 hba" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_right" headers="stub_1_2 r.squared">0.4843</td>
+<td class="gt_row gt_right" headers="stub_1_2 adj.r.squared">0.4414</td>
+<td class="gt_row gt_right" headers="stub_1_2 BIC">−7.995</td>
+<td class="gt_row gt_right" headers="stub_1_2 mallows_cp">7.419</td>
+</tr>
+<tr>
+<td id="stub_1_3" class="gt_row gt_right gt_stub" data-quarto-table-cell-role="th" scope="row">3</td>
+<td class="gt_row gt_center" headers="stub_1_3 cho" style="background-color: #FDAE61; color: #000000">FALSE</td>
+<td class="gt_row gt_center" headers="stub_1_3 tg" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_3 ri" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_3 hba" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_right" headers="stub_1_3 r.squared">0.5981</td>
+<td class="gt_row gt_right" headers="stub_1_3 adj.r.squared">0.5456</td>
+<td class="gt_row gt_right" headers="stub_1_3 BIC">−11.43</td>
+<td class="gt_row gt_right" headers="stub_1_3 mallows_cp">3.152</td>
+</tr>
+<tr>
+<td id="stub_1_4" class="gt_row gt_right gt_stub" data-quarto-table-cell-role="th" scope="row">4</td>
+<td class="gt_row gt_center" headers="stub_1_4 cho" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_4 tg" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_4 ri" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_center" headers="stub_1_4 hba" style="background-color: #ABDDA4; color: #000000">TRUE</td>
+<td class="gt_row gt_right" headers="stub_1_4 r.squared">0.6008</td>
+<td class="gt_row gt_right" headers="stub_1_4 adj.r.squared">0.5282</td>
+<td class="gt_row gt_right" headers="stub_1_4 BIC">−8.315</td>
+<td class="gt_row gt_right" headers="stub_1_4 mallows_cp">5.000</td>
+</tr>
+</tbody>
 </table>
+
 </div>
 </div>
 </div>
@@ -1246,13 +1284,17 @@ <h2 data-number="13.4" class="anchored" data-anchor-id="子集选择"><span clas
 <span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
 <span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="sc">~</span> metric, <span class="at">scales =</span> <span class="st">"free_y"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_bestsubset_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>强大!牛B!专业!</p>
 </section>
-<section id="参考资料" class="level2" data-number="13.5">
-<h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span class="header-section-number">13.5</span> 参考资料</h2>
+<section id="参考资料" class="level2" data-number="17.5">
+<h2 data-number="17.5" class="anchored" data-anchor-id="参考资料"><span class="header-section-number">17.5</span> 参考资料</h2>
 <ol type="1">
 <li>维基百科:AIC</li>
 <li>https://zhuanlan.zhihu.com/p/293315874</li>
@@ -1298,18 +1340,7 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1341,11 +1372,50 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1355,8 +1425,17 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1368,7 +1447,130 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1412,6 +1614,7 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1437,6 +1640,32 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1498,27 +1727,32 @@ <h2 data-number="13.5" class="anchored" data-anchor-id="参考资料"><span clas
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection_stepwise.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span>
+      <a href="./feature-selection_stepwise.html" class="pagination-link" aria-label="变量选择之逐步回归">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection_lasso.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection_lasso.html" class="pagination-link" aria-label="lasso回归筛选变量">
+        <span class="nav-page-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png
index de8da95..9d91417 100644
Binary files a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png and b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png
index 30da0e2..129de72 100644
Binary files a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png and b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png
index 5476c98..6c4e03e 100644
Binary files a/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png and b/docs/feature-selection_bestsubset_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/docs/feature-selection_lasso.html b/docs/feature-selection_lasso.html
index 6cb0181..f07acb6 100644
--- a/docs/feature-selection_lasso.html
+++ b/docs/feature-selection_lasso.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 14&nbsp; lasso回归筛选变量</title>
+<title>18&nbsp; lasso回归筛选变量 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection_lasso.html"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_lasso.html"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,55 +493,41 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">14.1</span> 安装</a></li>
-  <li><a href="#建模" id="toc-建模" class="nav-link" data-scroll-target="#建模"><span class="header-section-number">14.2</span> 建模</a></li>
-  <li><a href="#可视化" id="toc-可视化" class="nav-link" data-scroll-target="#可视化"><span class="header-section-number">14.3</span> 可视化</a></li>
-  <li><a href="#打印结果" id="toc-打印结果" class="nav-link" data-scroll-target="#打印结果"><span class="header-section-number">14.4</span> 打印结果</a></li>
-  <li><a href="#查看变量系数" id="toc-查看变量系数" class="nav-link" data-scroll-target="#查看变量系数"><span class="header-section-number">14.5</span> 查看变量系数</a></li>
-  <li><a href="#预测新数据" id="toc-预测新数据" class="nav-link" data-scroll-target="#预测新数据"><span class="header-section-number">14.6</span> 预测新数据</a></li>
-  <li><a href="#交叉验证" id="toc-交叉验证" class="nav-link" data-scroll-target="#交叉验证"><span class="header-section-number">14.7</span> 交叉验证</a>
-  <ul class="collapse">
-  <li><a href="#plot方法" id="toc-plot方法" class="nav-link" data-scroll-target="#plot方法"><span class="header-section-number">14.7.1</span> plot方法</a></li>
-  <li><a href="#coef方法" id="toc-coef方法" class="nav-link" data-scroll-target="#coef方法"><span class="header-section-number">14.7.2</span> coef方法</a></li>
-  <li><a href="#predict方法" id="toc-predict方法" class="nav-link" data-scroll-target="#predict方法"><span class="header-section-number">14.7.3</span> predict方法</a></li>
-  </ul></li>
-  <li><a href="#一些参数解释" id="toc-一些参数解释" class="nav-link" data-scroll-target="#一些参数解释"><span class="header-section-number">14.8</span> 一些参数解释</a></li>
-  <li><a href="#在测试集评估模型" id="toc-在测试集评估模型" class="nav-link" data-scroll-target="#在测试集评估模型"><span class="header-section-number">14.9</span> 在测试集评估模型</a>
-  <ul class="collapse">
-  <li><a href="#assess.glmnet" id="toc-assess.glmnet" class="nav-link" data-scroll-target="#assess.glmnet"><span class="header-section-number">14.9.1</span> assess.glmnet()</a></li>
-  <li><a href="#roc.glmnet" id="toc-roc.glmnet" class="nav-link" data-scroll-target="#roc.glmnet"><span class="header-section-number">14.9.2</span> roc.glmnet()</a></li>
-  <li><a href="#confusion.glmnet" id="toc-confusion.glmnet" class="nav-link" data-scroll-target="#confusion.glmnet"><span class="header-section-number">14.9.3</span> confusion.glmnet()</a></li>
-  </ul></li>
-  <li><a href="#其他功能" id="toc-其他功能" class="nav-link" data-scroll-target="#其他功能"><span class="header-section-number">14.10</span> 其他功能</a>
+  <li><a href="#正则化逻辑回归" id="toc-正则化逻辑回归" class="nav-link active" data-scroll-target="#正则化逻辑回归"><span class="header-section-number">18.1</span> 正则化逻辑回归</a>
   <ul class="collapse">
-  <li><a href="#拟合非正则化的广义线性模型" id="toc-拟合非正则化的广义线性模型" class="nav-link" data-scroll-target="#拟合非正则化的广义线性模型"><span class="header-section-number">14.10.1</span> 拟合非正则化的广义线性模型</a></li>
-  <li><a href="#修改自变量矩阵格式" id="toc-修改自变量矩阵格式" class="nav-link" data-scroll-target="#修改自变量矩阵格式"><span class="header-section-number">14.10.2</span> 修改自变量矩阵格式</a></li>
-  <li><a href="#添加进度条" id="toc-添加进度条" class="nav-link" data-scroll-target="#添加进度条"><span class="header-section-number">14.10.3</span> 添加进度条</a></li>
+  <li><a href="#可视化" id="toc-可视化" class="nav-link" data-scroll-target="#可视化"><span class="header-section-number">18.1.1</span> 可视化</a></li>
+  <li><a href="#打印结果" id="toc-打印结果" class="nav-link" data-scroll-target="#打印结果"><span class="header-section-number">18.1.2</span> 打印结果</a></li>
+  <li><a href="#查看变量系数" id="toc-查看变量系数" class="nav-link" data-scroll-target="#查看变量系数"><span class="header-section-number">18.1.3</span> 查看变量系数</a></li>
+  <li><a href="#预测新数据" id="toc-预测新数据" class="nav-link" data-scroll-target="#预测新数据"><span class="header-section-number">18.1.4</span> 预测新数据</a></li>
+  <li><a href="#交叉验证" id="toc-交叉验证" class="nav-link" data-scroll-target="#交叉验证"><span class="header-section-number">18.1.5</span> 交叉验证</a></li>
+  <li><a href="#plot方法" id="toc-plot方法" class="nav-link" data-scroll-target="#plot方法"><span class="header-section-number">18.1.6</span> plot方法</a></li>
+  <li><a href="#coef方法" id="toc-coef方法" class="nav-link" data-scroll-target="#coef方法"><span class="header-section-number">18.1.7</span> coef方法</a></li>
+  <li><a href="#predict方法" id="toc-predict方法" class="nav-link" data-scroll-target="#predict方法"><span class="header-section-number">18.1.8</span> predict方法</a></li>
+  <li><a href="#一些参数解释" id="toc-一些参数解释" class="nav-link" data-scroll-target="#一些参数解释"><span class="header-section-number">18.1.9</span> 一些参数解释</a></li>
   </ul></li>
-  <li><a href="#正则化cox回归" id="toc-正则化cox回归" class="nav-link" data-scroll-target="#正则化cox回归"><span class="header-section-number">14.11</span> 正则化Cox回归</a>
+  <li><a href="#正则化cox回归" id="toc-正则化cox回归" class="nav-link" data-scroll-target="#正则化cox回归"><span class="header-section-number">18.2</span> 正则化Cox回归</a>
   <ul class="collapse">
-  <li><a href="#基础使用" id="toc-基础使用" class="nav-link" data-scroll-target="#基础使用"><span class="header-section-number">14.11.1</span> 基础使用</a></li>
-  <li><a href="#交叉验证-1" id="toc-交叉验证-1" class="nav-link" data-scroll-target="#交叉验证-1"><span class="header-section-number">14.11.2</span> 交叉验证</a></li>
-  <li><a href="#分层cox" id="toc-分层cox" class="nav-link" data-scroll-target="#分层cox"><span class="header-section-number">14.11.3</span> 分层COX</a></li>
-  <li><a href="#生存曲线" id="toc-生存曲线" class="nav-link" data-scroll-target="#生存曲线"><span class="header-section-number">14.11.4</span> 生存曲线</a></li>
+  <li><a href="#基础使用" id="toc-基础使用" class="nav-link" data-scroll-target="#基础使用"><span class="header-section-number">18.2.1</span> 基础使用</a></li>
+  <li><a href="#交叉验证-1" id="toc-交叉验证-1" class="nav-link" data-scroll-target="#交叉验证-1"><span class="header-section-number">18.2.2</span> 交叉验证</a></li>
+  <li><a href="#分层cox" id="toc-分层cox" class="nav-link" data-scroll-target="#分层cox"><span class="header-section-number">18.2.3</span> 分层COX</a></li>
+  <li><a href="#生存曲线" id="toc-生存曲线" class="nav-link" data-scroll-target="#生存曲线"><span class="header-section-number">18.2.4</span> 生存曲线</a></li>
   </ul></li>
-  <li><a href="#其他" id="toc-其他" class="nav-link" data-scroll-target="#其他"><span class="header-section-number">14.12</span> 其他</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_lasso.html"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></h1>
+<h1 class="title"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></h1>
 </div>
 
 
@@ -572,325 +540,331 @@ <h1 class="title"><span class="chapter-number">14</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <blockquote class="blockquote">
-<p>本文是对<code>glmnet</code>包的说明,主要参考官方文档:https://glmnet.stanford.edu/</p>
-<p><code>glmnet</code>包可以实现lasso回归、岭(ridge)回归、弹性网络(elastic-net),它非常强大,可以用于<strong>线性回归、逻辑回归和多项式回归模型、泊松回归、Cox模型、多响应高斯模型和分组多项式回归</strong>的Lasso或弹性网络正则化路径拟合,并且效率极高。</p>
+<p>本文节选自<a href="https://mp.weixin.qq.com/s/ABnu7mkIbVSHVwEq3nlnSQ">用glmnet做lasso回归</a></p>
 </blockquote>
-<p>我们主要介绍它的lasso回归功能,主要是因为lasso可以把变量的系数变为0,达到筛选变量的目的。并且我们会以逻辑回归和COX回归的lasso为例进行演示。</p>
+<p><code>glmnet</code>包可以实现lasso回归、岭(ridge)回归、弹性网络(elastic-net),我们主要介绍它的lasso回归功能,主要是因为lasso可以把变量的系数变为0,达到筛选变量的目的。并且我们会以逻辑回归和COX回归的lasso为例进行演示。</p>
 <p>在进行演示前,有一些基础知识需要大家提前了解。</p>
-<p>对于一些回归模型来说,变量的系数可以说明变量的重要程度,所以如果某个变量的系数是0,那么说明这个变量不太重要。lasso回归就可以通过算法让其中一些不重要变量的系数变成0,达到筛选变量的目的。让系数变小,就是大家常说的对系数进行<strong>惩罚penalty</strong>,也被称为<strong>正则化regularization</strong>。具体实现方式大家可以自己去学习复杂的公式~</p>
+<p>对于一些回归模型来说,变量的系数可以说明变量的重要程度,所以如果某个变量的系数是0,那么说明这个变量不太重要。lasso回归就可以通过算法让其中一些不重要变量的系数变成0,达到筛选变量的目的。让系数变小,就是大家常说的对系数进行<strong>惩罚(penalty)</strong>,也被称为<strong>正则化(regularization)</strong>。具体实现方式大家可以自己去学习复杂的公式~</p>
 <p>正则化一般有2种,也就是<strong>L1正则化</strong>和<strong>L2正则化</strong>,又称为<strong>L1范数</strong>和<strong>L2范数</strong>。如果使用L1正则化,就是lasso回归,使用L2正则化就是岭回归。</p>
-<p>在<code>glmnet</code>包中,<code>lambda</code>是总的正则化程度,该值越大惩罚力度越大,最终保留的变量越少,模型复杂度越低;alpha是L1正则化的比例,当alpha=1时,就是lasso,当alpha=0时,就是岭回归,当0&lt;alpha&lt;1时,就是弹性网络。</p>
-<section id="安装" class="level2" data-number="14.1">
-<h2 data-number="14.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">14.1</span> 安装</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"glmnet"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="建模" class="level2" data-number="14.2">
-<h2 data-number="14.2" class="anchored" data-anchor-id="建模"><span class="header-section-number">14.2</span> 建模</h2>
+<p>在<code>glmnet</code>包中,<code>lambda</code>这个参数是总的正则化程度,该值越大惩罚力度越大,最终保留的变量越少,模型复杂度越低;<code>alpha</code>这个参数是L1正则化的比例,当<code>alpha</code>=1时,就是lasso,当<code>alpha</code>=0时,就是岭回归,当0&lt;<code>alpha</code>&lt;1时,就是弹性网络。</p>
+<p>加载R包:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Matrix</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loaded glmnet 4.1-8</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<section id="正则化逻辑回归" class="level2" data-number="18.1">
+<h2 data-number="18.1" class="anchored" data-anchor-id="正则化逻辑回归"><span class="header-section-number">18.1</span> 正则化逻辑回归</h2>
 <p>用一个二分类数据进行演示,因为大家最常用的就是二分类数据和生存数据了。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(BinomialExample)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>x</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>y</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(x)</span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 100  30</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(x)</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "matrix" "array"</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>x[<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>,<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>]</span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##            [,1]       [,2]       [,3]       [,4]</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] -0.6192614 0.01624409 -0.6260683  0.4126846</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  1.0942728 0.47257285 -1.3371470 -0.6405813</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] -0.3567040 0.30121334  0.1905619  0.2340268</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] -2.4690701 2.84771447  1.6602435  1.5688130</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(y)</span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "integer"</span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(y)</span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0 1 1 0 1 0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(BinomialExample)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>x</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>y</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(x)</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 100  30</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(x)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "matrix" "array"</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>x[<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>,<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>]</span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##            [,1]       [,2]       [,3]       [,4]</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] -0.6192614 0.01624409 -0.6260683  0.4126846</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  1.0942728 0.47257285 -1.3371470 -0.6405813</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] -0.3567040 0.30121334  0.1905619  0.2340268</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] -2.4690701 2.84771447  1.6602435  1.5688130</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(y)</span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "integer"</span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(y)</span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0 1 1 0 1 0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>注意<code>glmnet</code>需要的自变量格式,需要是<code>matrix</code>或者<code>稀疏矩阵</code>格式!</p>
 <p><code>family</code>用来指定不同的模型类型,对于二分类数据,应该选择<code>binomial</code>。</p>
 <p><code>family</code>的其他选项如下:“gaussian”(默认), “poisson”, “multinomial”, “cox”, “mgaussian”。</p>
-<p>建立模型就是1句代码,非常简单:</p>
+<p>建立正则化的逻辑回归模型(就是大家说的lasso-logistic模型)就是1句代码,非常简单:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>官方不建议直接提取<code>fit</code>中的元素,因为提供了<code>plot</code>,<code>print</code>,<code>coef</code>,<code>predict</code>方法帮助大家探索结果。</p>
-</section>
-<section id="可视化" class="level2" data-number="14.3">
-<h2 data-number="14.3" class="anchored" data-anchor-id="可视化"><span class="header-section-number">14.3</span> 可视化</h2>
+<section id="可视化" class="level3" data-number="18.1.1">
+<h3 data-number="18.1.1" class="anchored" data-anchor-id="可视化"><span class="header-section-number">18.1.1</span> 可视化</h3>
 <p>可视化各个变量系数的变化,这个图是大家最常见的图形之一:</p>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit,<span class="at">label =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit,<span class="at">label =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>这个图形中的每一条线都代表1个变量,并且展示了在不同的L1范数(L1 Norm)下该变量的系数变化。这个图下面的横坐标是L1范数,上面的横坐标是L1范数下对应的非零系数的个数,比如当L1范数是20时,对应的非零系数有27个,也就是此时可以有27个变量保留下来。左侧纵坐标是变量的系数值。</p>
+</div>
+<p>这个图形中的每一条线都代表1个变量,并且展示了在不同的L1范数(L1-Norm)下该变量的系数变化。这个图下面的横坐标是L1范数,上面的横坐标是L1范数下对应的非零系数的个数,比如当L1范数是20时,对应的非零系数有27个,也就是此时可以有27个变量保留下来。左侧纵坐标是变量的系数值。</p>
 <p>这里的<code>plot()</code>函数还有一个<code>xvar</code>参数,可以用于指定不同的横坐标:</p>
 <ul>
 <li><code>norm</code>:横坐标是L1 norm,这个是默认值;</li>
 <li><code>lambda</code>:横坐标是log-lambda;</li>
 <li><code>dev</code>:横坐标是模型解释的%deviance</li>
 </ul>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit, <span class="at">xvar =</span> <span class="st">"lambda"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit, <span class="at">xvar =</span> <span class="st">"lambda"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这里的横坐标是log-lambda,可以看做是正则化程度。</p>
 <p>上面这幅图展示了随着lambda值的变化,每个变量系数的变化,可以看到随着lambda值变大,系数值逐渐减小,直至为0,上面的横坐标也显示随着lambda值变大,保留的变量数量也越来越少。</p>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit, <span class="at">xvar =</span> <span class="st">"dev"</span>, <span class="at">label =</span> <span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit, <span class="at">xvar =</span> <span class="st">"dev"</span>, <span class="at">label =</span> <span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这幅图和上面图的解释是一样的,只有下面的横坐标不一样。</p>
 <p>最后一幅图下面的横坐标是模型解释的偏差百分比,也可以用来衡量模型复杂度。可以看出在图形的右侧部分,模型能够解释的偏差百分比基本变化不大,但是模型系数基本都是往上或往下“飘”的很厉害。</p>
 <p>虽然官方不建议提取数据,但是很明显大家都喜欢提取数据再自己美化图片,我之前也介绍过一种简便方法,可以实现自定义美化图形:<a href="https://mp.weixin.qq.com/s/JKFis5gyFeBjxPZIJr50fg">lasso回归结果美化</a></p>
 </section>
-<section id="打印结果" class="level2" data-number="14.4">
-<h2 data-number="14.4" class="anchored" data-anchor-id="打印结果"><span class="header-section-number">14.4</span> 打印结果</h2>
+<section id="打印结果" class="level3" data-number="18.1.2">
+<h3 data-number="18.1.2" class="anchored" data-anchor-id="打印结果"><span class="header-section-number">18.1.2</span> 打印结果</h3>
 <p>使用<code>print(fit)</code>可以查看不同lambda值对应的自由度和模型能够解释的偏差百分比:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(fit) <span class="co"># 直接fit也可</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  glmnet(x = x, y = y, family = "binomial") </span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">##    Df  %Dev   Lambda</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0  0.00 0.240500</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   1  2.90 0.219100</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   1  5.34 0.199600</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4   2  8.86 0.181900</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5   2 11.95 0.165800</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6   2 14.59 0.151000</span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 7   2 16.88 0.137600</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 8   3 18.95 0.125400</span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 9   7 22.38 0.114200</span></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 10  8 26.26 0.104100</span></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 11  8 29.73 0.094850</span></span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 12  8 32.77 0.086420</span></span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 13  9 35.58 0.078750</span></span>
-<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 14 11 38.98 0.071750</span></span>
-<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 15 12 42.23 0.065380</span></span>
-<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 16 12 45.29 0.059570</span></span>
-<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 17 13 48.09 0.054280</span></span>
-<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 18 13 50.63 0.049450</span></span>
-<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 19 14 53.00 0.045060</span></span>
-<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 20 14 55.19 0.041060</span></span>
-<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 21 15 57.33 0.037410</span></span>
-<span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 22 15 59.43 0.034090</span></span>
-<span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 23 16 61.36 0.031060</span></span>
-<span id="cb8-29"><a href="#cb8-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 24 17 63.15 0.028300</span></span>
-<span id="cb8-30"><a href="#cb8-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 25 17 64.85 0.025790</span></span>
-<span id="cb8-31"><a href="#cb8-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 26 18 66.42 0.023490</span></span>
-<span id="cb8-32"><a href="#cb8-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 27 19 67.98 0.021410</span></span>
-<span id="cb8-33"><a href="#cb8-33" aria-hidden="true" tabindex="-1"></a><span class="do">## 28 20 69.44 0.019510</span></span>
-<span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 29 20 70.80 0.017770</span></span>
-<span id="cb8-35"><a href="#cb8-35" aria-hidden="true" tabindex="-1"></a><span class="do">## 30 21 72.10 0.016190</span></span>
-<span id="cb8-36"><a href="#cb8-36" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 21 73.33 0.014760</span></span>
-<span id="cb8-37"><a href="#cb8-37" aria-hidden="true" tabindex="-1"></a><span class="do">## 32 23 74.52 0.013440</span></span>
-<span id="cb8-38"><a href="#cb8-38" aria-hidden="true" tabindex="-1"></a><span class="do">## 33 23 75.65 0.012250</span></span>
-<span id="cb8-39"><a href="#cb8-39" aria-hidden="true" tabindex="-1"></a><span class="do">## 34 24 76.72 0.011160</span></span>
-<span id="cb8-40"><a href="#cb8-40" aria-hidden="true" tabindex="-1"></a><span class="do">## 35 24 77.77 0.010170</span></span>
-<span id="cb8-41"><a href="#cb8-41" aria-hidden="true" tabindex="-1"></a><span class="do">## 36 25 78.77 0.009267</span></span>
-<span id="cb8-42"><a href="#cb8-42" aria-hidden="true" tabindex="-1"></a><span class="do">## 37 25 79.73 0.008444</span></span>
-<span id="cb8-43"><a href="#cb8-43" aria-hidden="true" tabindex="-1"></a><span class="do">## 38 26 80.66 0.007693</span></span>
-<span id="cb8-44"><a href="#cb8-44" aria-hidden="true" tabindex="-1"></a><span class="do">## 39 26 81.57 0.007010</span></span>
-<span id="cb8-45"><a href="#cb8-45" aria-hidden="true" tabindex="-1"></a><span class="do">## 40 27 82.48 0.006387</span></span>
-<span id="cb8-46"><a href="#cb8-46" aria-hidden="true" tabindex="-1"></a><span class="do">## 41 27 83.39 0.005820</span></span>
-<span id="cb8-47"><a href="#cb8-47" aria-hidden="true" tabindex="-1"></a><span class="do">## 42 27 84.30 0.005303</span></span>
-<span id="cb8-48"><a href="#cb8-48" aria-hidden="true" tabindex="-1"></a><span class="do">## 43 27 85.21 0.004832</span></span>
-<span id="cb8-49"><a href="#cb8-49" aria-hidden="true" tabindex="-1"></a><span class="do">## 44 27 86.12 0.004402</span></span>
-<span id="cb8-50"><a href="#cb8-50" aria-hidden="true" tabindex="-1"></a><span class="do">## 45 27 87.05 0.004011</span></span>
-<span id="cb8-51"><a href="#cb8-51" aria-hidden="true" tabindex="-1"></a><span class="do">## 46 28 87.96 0.003655</span></span>
-<span id="cb8-52"><a href="#cb8-52" aria-hidden="true" tabindex="-1"></a><span class="do">## 47 28 88.87 0.003330</span></span>
-<span id="cb8-53"><a href="#cb8-53" aria-hidden="true" tabindex="-1"></a><span class="do">## 48 28 89.76 0.003034</span></span>
-<span id="cb8-54"><a href="#cb8-54" aria-hidden="true" tabindex="-1"></a><span class="do">## 49 28 90.61 0.002765</span></span>
-<span id="cb8-55"><a href="#cb8-55" aria-hidden="true" tabindex="-1"></a><span class="do">## 50 28 91.41 0.002519</span></span>
-<span id="cb8-56"><a href="#cb8-56" aria-hidden="true" tabindex="-1"></a><span class="do">## 51 28 92.16 0.002295</span></span>
-<span id="cb8-57"><a href="#cb8-57" aria-hidden="true" tabindex="-1"></a><span class="do">## 52 28 92.86 0.002092</span></span>
-<span id="cb8-58"><a href="#cb8-58" aria-hidden="true" tabindex="-1"></a><span class="do">## 53 28 93.50 0.001906</span></span>
-<span id="cb8-59"><a href="#cb8-59" aria-hidden="true" tabindex="-1"></a><span class="do">## 54 28 94.08 0.001736</span></span>
-<span id="cb8-60"><a href="#cb8-60" aria-hidden="true" tabindex="-1"></a><span class="do">## 55 29 94.61 0.001582</span></span>
-<span id="cb8-61"><a href="#cb8-61" aria-hidden="true" tabindex="-1"></a><span class="do">## 56 29 95.10 0.001442</span></span>
-<span id="cb8-62"><a href="#cb8-62" aria-hidden="true" tabindex="-1"></a><span class="do">## 57 29 95.54 0.001314</span></span>
-<span id="cb8-63"><a href="#cb8-63" aria-hidden="true" tabindex="-1"></a><span class="do">## 58 29 95.95 0.001197</span></span>
-<span id="cb8-64"><a href="#cb8-64" aria-hidden="true" tabindex="-1"></a><span class="do">## 59 29 96.31 0.001091</span></span>
-<span id="cb8-65"><a href="#cb8-65" aria-hidden="true" tabindex="-1"></a><span class="do">## 60 29 96.64 0.000994</span></span>
-<span id="cb8-66"><a href="#cb8-66" aria-hidden="true" tabindex="-1"></a><span class="do">## 61 29 96.94 0.000905</span></span>
-<span id="cb8-67"><a href="#cb8-67" aria-hidden="true" tabindex="-1"></a><span class="do">## 62 29 97.22 0.000825</span></span>
-<span id="cb8-68"><a href="#cb8-68" aria-hidden="true" tabindex="-1"></a><span class="do">## 63 29 97.47 0.000752</span></span>
-<span id="cb8-69"><a href="#cb8-69" aria-hidden="true" tabindex="-1"></a><span class="do">## 64 29 97.69 0.000685</span></span>
-<span id="cb8-70"><a href="#cb8-70" aria-hidden="true" tabindex="-1"></a><span class="do">## 65 29 97.90 0.000624</span></span>
-<span id="cb8-71"><a href="#cb8-71" aria-hidden="true" tabindex="-1"></a><span class="do">## 66 29 98.09 0.000569</span></span>
-<span id="cb8-72"><a href="#cb8-72" aria-hidden="true" tabindex="-1"></a><span class="do">## 67 29 98.26 0.000518</span></span>
-<span id="cb8-73"><a href="#cb8-73" aria-hidden="true" tabindex="-1"></a><span class="do">## 68 29 98.41 0.000472</span></span>
-<span id="cb8-74"><a href="#cb8-74" aria-hidden="true" tabindex="-1"></a><span class="do">## 69 29 98.55 0.000430</span></span>
-<span id="cb8-75"><a href="#cb8-75" aria-hidden="true" tabindex="-1"></a><span class="do">## 70 29 98.68 0.000392</span></span>
-<span id="cb8-76"><a href="#cb8-76" aria-hidden="true" tabindex="-1"></a><span class="do">## 71 29 98.80 0.000357</span></span>
-<span id="cb8-77"><a href="#cb8-77" aria-hidden="true" tabindex="-1"></a><span class="do">## 72 30 98.91 0.000325</span></span>
-<span id="cb8-78"><a href="#cb8-78" aria-hidden="true" tabindex="-1"></a><span class="do">## 73 30 99.00 0.000296</span></span>
-<span id="cb8-79"><a href="#cb8-79" aria-hidden="true" tabindex="-1"></a><span class="do">## 74 30 99.09 0.000270</span></span>
-<span id="cb8-80"><a href="#cb8-80" aria-hidden="true" tabindex="-1"></a><span class="do">## 75 30 99.17 0.000246</span></span>
-<span id="cb8-81"><a href="#cb8-81" aria-hidden="true" tabindex="-1"></a><span class="do">## 76 30 99.25 0.000224</span></span>
-<span id="cb8-82"><a href="#cb8-82" aria-hidden="true" tabindex="-1"></a><span class="do">## 77 30 99.31 0.000204</span></span>
-<span id="cb8-83"><a href="#cb8-83" aria-hidden="true" tabindex="-1"></a><span class="do">## 78 30 99.37 0.000186</span></span>
-<span id="cb8-84"><a href="#cb8-84" aria-hidden="true" tabindex="-1"></a><span class="do">## 79 30 99.43 0.000170</span></span>
-<span id="cb8-85"><a href="#cb8-85" aria-hidden="true" tabindex="-1"></a><span class="do">## 80 30 99.48 0.000155</span></span>
-<span id="cb8-86"><a href="#cb8-86" aria-hidden="true" tabindex="-1"></a><span class="do">## 81 30 99.52 0.000141</span></span>
-<span id="cb8-87"><a href="#cb8-87" aria-hidden="true" tabindex="-1"></a><span class="do">## 82 30 99.57 0.000128</span></span>
-<span id="cb8-88"><a href="#cb8-88" aria-hidden="true" tabindex="-1"></a><span class="do">## 83 30 99.61 0.000117</span></span>
-<span id="cb8-89"><a href="#cb8-89" aria-hidden="true" tabindex="-1"></a><span class="do">## 84 30 99.64 0.000106</span></span>
-<span id="cb8-90"><a href="#cb8-90" aria-hidden="true" tabindex="-1"></a><span class="do">## 85 30 99.67 0.000097</span></span>
-<span id="cb8-91"><a href="#cb8-91" aria-hidden="true" tabindex="-1"></a><span class="do">## 86 30 99.70 0.000088</span></span>
-<span id="cb8-92"><a href="#cb8-92" aria-hidden="true" tabindex="-1"></a><span class="do">## 87 30 99.73 0.000081</span></span>
-<span id="cb8-93"><a href="#cb8-93" aria-hidden="true" tabindex="-1"></a><span class="do">## 88 30 99.75 0.000073</span></span>
-<span id="cb8-94"><a href="#cb8-94" aria-hidden="true" tabindex="-1"></a><span class="do">## 89 30 99.77 0.000067</span></span>
-<span id="cb8-95"><a href="#cb8-95" aria-hidden="true" tabindex="-1"></a><span class="do">## 90 30 99.79 0.000061</span></span>
-<span id="cb8-96"><a href="#cb8-96" aria-hidden="true" tabindex="-1"></a><span class="do">## 91 30 99.81 0.000056</span></span>
-<span id="cb8-97"><a href="#cb8-97" aria-hidden="true" tabindex="-1"></a><span class="do">## 92 30 99.83 0.000051</span></span>
-<span id="cb8-98"><a href="#cb8-98" aria-hidden="true" tabindex="-1"></a><span class="do">## 93 30 99.84 0.000046</span></span>
-<span id="cb8-99"><a href="#cb8-99" aria-hidden="true" tabindex="-1"></a><span class="do">## 94 30 99.86 0.000042</span></span>
-<span id="cb8-100"><a href="#cb8-100" aria-hidden="true" tabindex="-1"></a><span class="do">## 95 30 99.87 0.000038</span></span>
-<span id="cb8-101"><a href="#cb8-101" aria-hidden="true" tabindex="-1"></a><span class="do">## 96 30 99.88 0.000035</span></span>
-<span id="cb8-102"><a href="#cb8-102" aria-hidden="true" tabindex="-1"></a><span class="do">## 97 30 99.89 0.000032</span></span>
-<span id="cb8-103"><a href="#cb8-103" aria-hidden="true" tabindex="-1"></a><span class="do">## 98 30 99.90 0.000029</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(fit) <span class="co"># 直接fit也可</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  glmnet(x = x, y = y, family = "binomial") </span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="do">##    Df  %Dev   Lambda</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0  0.00 0.240500</span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   1  2.90 0.219100</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   1  5.34 0.199600</span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4   2  8.86 0.181900</span></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5   2 11.95 0.165800</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6   2 14.59 0.151000</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 7   2 16.88 0.137600</span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 8   3 18.95 0.125400</span></span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 9   7 22.38 0.114200</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 10  8 26.26 0.104100</span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 11  8 29.73 0.094850</span></span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 12  8 32.77 0.086420</span></span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 13  9 35.58 0.078750</span></span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 14 11 38.98 0.071750</span></span>
+<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 15 12 42.23 0.065380</span></span>
+<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 16 12 45.29 0.059570</span></span>
+<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 17 13 48.09 0.054280</span></span>
+<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 18 13 50.63 0.049450</span></span>
+<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 19 14 53.00 0.045060</span></span>
+<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 20 14 55.19 0.041060</span></span>
+<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 21 15 57.33 0.037410</span></span>
+<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 22 15 59.43 0.034090</span></span>
+<span id="cb7-28"><a href="#cb7-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 23 16 61.36 0.031060</span></span>
+<span id="cb7-29"><a href="#cb7-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 24 17 63.15 0.028300</span></span>
+<span id="cb7-30"><a href="#cb7-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 25 17 64.85 0.025790</span></span>
+<span id="cb7-31"><a href="#cb7-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 26 18 66.42 0.023490</span></span>
+<span id="cb7-32"><a href="#cb7-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 27 19 67.98 0.021410</span></span>
+<span id="cb7-33"><a href="#cb7-33" aria-hidden="true" tabindex="-1"></a><span class="do">## 28 20 69.44 0.019510</span></span>
+<span id="cb7-34"><a href="#cb7-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 29 20 70.80 0.017770</span></span>
+<span id="cb7-35"><a href="#cb7-35" aria-hidden="true" tabindex="-1"></a><span class="do">## 30 21 72.10 0.016190</span></span>
+<span id="cb7-36"><a href="#cb7-36" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 21 73.33 0.014760</span></span>
+<span id="cb7-37"><a href="#cb7-37" aria-hidden="true" tabindex="-1"></a><span class="do">## 32 23 74.52 0.013440</span></span>
+<span id="cb7-38"><a href="#cb7-38" aria-hidden="true" tabindex="-1"></a><span class="do">## 33 23 75.65 0.012250</span></span>
+<span id="cb7-39"><a href="#cb7-39" aria-hidden="true" tabindex="-1"></a><span class="do">## 34 24 76.72 0.011160</span></span>
+<span id="cb7-40"><a href="#cb7-40" aria-hidden="true" tabindex="-1"></a><span class="do">## 35 24 77.77 0.010170</span></span>
+<span id="cb7-41"><a href="#cb7-41" aria-hidden="true" tabindex="-1"></a><span class="do">## 36 25 78.77 0.009267</span></span>
+<span id="cb7-42"><a href="#cb7-42" aria-hidden="true" tabindex="-1"></a><span class="do">## 37 25 79.73 0.008444</span></span>
+<span id="cb7-43"><a href="#cb7-43" aria-hidden="true" tabindex="-1"></a><span class="do">## 38 26 80.66 0.007693</span></span>
+<span id="cb7-44"><a href="#cb7-44" aria-hidden="true" tabindex="-1"></a><span class="do">## 39 26 81.57 0.007010</span></span>
+<span id="cb7-45"><a href="#cb7-45" aria-hidden="true" tabindex="-1"></a><span class="do">## 40 27 82.48 0.006387</span></span>
+<span id="cb7-46"><a href="#cb7-46" aria-hidden="true" tabindex="-1"></a><span class="do">## 41 27 83.39 0.005820</span></span>
+<span id="cb7-47"><a href="#cb7-47" aria-hidden="true" tabindex="-1"></a><span class="do">## 42 27 84.30 0.005303</span></span>
+<span id="cb7-48"><a href="#cb7-48" aria-hidden="true" tabindex="-1"></a><span class="do">## 43 27 85.21 0.004832</span></span>
+<span id="cb7-49"><a href="#cb7-49" aria-hidden="true" tabindex="-1"></a><span class="do">## 44 27 86.12 0.004402</span></span>
+<span id="cb7-50"><a href="#cb7-50" aria-hidden="true" tabindex="-1"></a><span class="do">## 45 27 87.05 0.004011</span></span>
+<span id="cb7-51"><a href="#cb7-51" aria-hidden="true" tabindex="-1"></a><span class="do">## 46 28 87.96 0.003655</span></span>
+<span id="cb7-52"><a href="#cb7-52" aria-hidden="true" tabindex="-1"></a><span class="do">## 47 28 88.87 0.003330</span></span>
+<span id="cb7-53"><a href="#cb7-53" aria-hidden="true" tabindex="-1"></a><span class="do">## 48 28 89.76 0.003034</span></span>
+<span id="cb7-54"><a href="#cb7-54" aria-hidden="true" tabindex="-1"></a><span class="do">## 49 28 90.61 0.002765</span></span>
+<span id="cb7-55"><a href="#cb7-55" aria-hidden="true" tabindex="-1"></a><span class="do">## 50 28 91.41 0.002519</span></span>
+<span id="cb7-56"><a href="#cb7-56" aria-hidden="true" tabindex="-1"></a><span class="do">## 51 28 92.16 0.002295</span></span>
+<span id="cb7-57"><a href="#cb7-57" aria-hidden="true" tabindex="-1"></a><span class="do">## 52 28 92.86 0.002092</span></span>
+<span id="cb7-58"><a href="#cb7-58" aria-hidden="true" tabindex="-1"></a><span class="do">## 53 28 93.50 0.001906</span></span>
+<span id="cb7-59"><a href="#cb7-59" aria-hidden="true" tabindex="-1"></a><span class="do">## 54 28 94.08 0.001736</span></span>
+<span id="cb7-60"><a href="#cb7-60" aria-hidden="true" tabindex="-1"></a><span class="do">## 55 29 94.61 0.001582</span></span>
+<span id="cb7-61"><a href="#cb7-61" aria-hidden="true" tabindex="-1"></a><span class="do">## 56 29 95.10 0.001442</span></span>
+<span id="cb7-62"><a href="#cb7-62" aria-hidden="true" tabindex="-1"></a><span class="do">## 57 29 95.54 0.001314</span></span>
+<span id="cb7-63"><a href="#cb7-63" aria-hidden="true" tabindex="-1"></a><span class="do">## 58 29 95.95 0.001197</span></span>
+<span id="cb7-64"><a href="#cb7-64" aria-hidden="true" tabindex="-1"></a><span class="do">## 59 29 96.31 0.001091</span></span>
+<span id="cb7-65"><a href="#cb7-65" aria-hidden="true" tabindex="-1"></a><span class="do">## 60 29 96.64 0.000994</span></span>
+<span id="cb7-66"><a href="#cb7-66" aria-hidden="true" tabindex="-1"></a><span class="do">## 61 29 96.94 0.000905</span></span>
+<span id="cb7-67"><a href="#cb7-67" aria-hidden="true" tabindex="-1"></a><span class="do">## 62 29 97.22 0.000825</span></span>
+<span id="cb7-68"><a href="#cb7-68" aria-hidden="true" tabindex="-1"></a><span class="do">## 63 29 97.47 0.000752</span></span>
+<span id="cb7-69"><a href="#cb7-69" aria-hidden="true" tabindex="-1"></a><span class="do">## 64 29 97.69 0.000685</span></span>
+<span id="cb7-70"><a href="#cb7-70" aria-hidden="true" tabindex="-1"></a><span class="do">## 65 29 97.90 0.000624</span></span>
+<span id="cb7-71"><a href="#cb7-71" aria-hidden="true" tabindex="-1"></a><span class="do">## 66 29 98.09 0.000569</span></span>
+<span id="cb7-72"><a href="#cb7-72" aria-hidden="true" tabindex="-1"></a><span class="do">## 67 29 98.26 0.000518</span></span>
+<span id="cb7-73"><a href="#cb7-73" aria-hidden="true" tabindex="-1"></a><span class="do">## 68 29 98.41 0.000472</span></span>
+<span id="cb7-74"><a href="#cb7-74" aria-hidden="true" tabindex="-1"></a><span class="do">## 69 29 98.55 0.000430</span></span>
+<span id="cb7-75"><a href="#cb7-75" aria-hidden="true" tabindex="-1"></a><span class="do">## 70 29 98.68 0.000392</span></span>
+<span id="cb7-76"><a href="#cb7-76" aria-hidden="true" tabindex="-1"></a><span class="do">## 71 29 98.80 0.000357</span></span>
+<span id="cb7-77"><a href="#cb7-77" aria-hidden="true" tabindex="-1"></a><span class="do">## 72 30 98.91 0.000325</span></span>
+<span id="cb7-78"><a href="#cb7-78" aria-hidden="true" tabindex="-1"></a><span class="do">## 73 30 99.00 0.000296</span></span>
+<span id="cb7-79"><a href="#cb7-79" aria-hidden="true" tabindex="-1"></a><span class="do">## 74 30 99.09 0.000270</span></span>
+<span id="cb7-80"><a href="#cb7-80" aria-hidden="true" tabindex="-1"></a><span class="do">## 75 30 99.17 0.000246</span></span>
+<span id="cb7-81"><a href="#cb7-81" aria-hidden="true" tabindex="-1"></a><span class="do">## 76 30 99.25 0.000224</span></span>
+<span id="cb7-82"><a href="#cb7-82" aria-hidden="true" tabindex="-1"></a><span class="do">## 77 30 99.31 0.000204</span></span>
+<span id="cb7-83"><a href="#cb7-83" aria-hidden="true" tabindex="-1"></a><span class="do">## 78 30 99.37 0.000186</span></span>
+<span id="cb7-84"><a href="#cb7-84" aria-hidden="true" tabindex="-1"></a><span class="do">## 79 30 99.43 0.000170</span></span>
+<span id="cb7-85"><a href="#cb7-85" aria-hidden="true" tabindex="-1"></a><span class="do">## 80 30 99.48 0.000155</span></span>
+<span id="cb7-86"><a href="#cb7-86" aria-hidden="true" tabindex="-1"></a><span class="do">## 81 30 99.52 0.000141</span></span>
+<span id="cb7-87"><a href="#cb7-87" aria-hidden="true" tabindex="-1"></a><span class="do">## 82 30 99.57 0.000128</span></span>
+<span id="cb7-88"><a href="#cb7-88" aria-hidden="true" tabindex="-1"></a><span class="do">## 83 30 99.61 0.000117</span></span>
+<span id="cb7-89"><a href="#cb7-89" aria-hidden="true" tabindex="-1"></a><span class="do">## 84 30 99.64 0.000106</span></span>
+<span id="cb7-90"><a href="#cb7-90" aria-hidden="true" tabindex="-1"></a><span class="do">## 85 30 99.67 0.000097</span></span>
+<span id="cb7-91"><a href="#cb7-91" aria-hidden="true" tabindex="-1"></a><span class="do">## 86 30 99.70 0.000088</span></span>
+<span id="cb7-92"><a href="#cb7-92" aria-hidden="true" tabindex="-1"></a><span class="do">## 87 30 99.73 0.000081</span></span>
+<span id="cb7-93"><a href="#cb7-93" aria-hidden="true" tabindex="-1"></a><span class="do">## 88 30 99.75 0.000073</span></span>
+<span id="cb7-94"><a href="#cb7-94" aria-hidden="true" tabindex="-1"></a><span class="do">## 89 30 99.77 0.000067</span></span>
+<span id="cb7-95"><a href="#cb7-95" aria-hidden="true" tabindex="-1"></a><span class="do">## 90 30 99.79 0.000061</span></span>
+<span id="cb7-96"><a href="#cb7-96" aria-hidden="true" tabindex="-1"></a><span class="do">## 91 30 99.81 0.000056</span></span>
+<span id="cb7-97"><a href="#cb7-97" aria-hidden="true" tabindex="-1"></a><span class="do">## 92 30 99.83 0.000051</span></span>
+<span id="cb7-98"><a href="#cb7-98" aria-hidden="true" tabindex="-1"></a><span class="do">## 93 30 99.84 0.000046</span></span>
+<span id="cb7-99"><a href="#cb7-99" aria-hidden="true" tabindex="-1"></a><span class="do">## 94 30 99.86 0.000042</span></span>
+<span id="cb7-100"><a href="#cb7-100" aria-hidden="true" tabindex="-1"></a><span class="do">## 95 30 99.87 0.000038</span></span>
+<span id="cb7-101"><a href="#cb7-101" aria-hidden="true" tabindex="-1"></a><span class="do">## 96 30 99.88 0.000035</span></span>
+<span id="cb7-102"><a href="#cb7-102" aria-hidden="true" tabindex="-1"></a><span class="do">## 97 30 99.89 0.000032</span></span>
+<span id="cb7-103"><a href="#cb7-103" aria-hidden="true" tabindex="-1"></a><span class="do">## 98 30 99.90 0.000029</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>左侧的<code>df</code>是非零系数的个数,中间的<code>%Dev</code>是模型解释的偏差百分比,右侧的<code>Lambda</code>是总惩罚值大小。</p>
 <p>默认情况下,<code>glmnet()</code>函数中的<code>nlambda</code>参数的取值是100,也就是会取100个不同的Lambda值,但是如果<code>%Dev</code>变化不大或者不再变化,它可能会提前停止,取不到100个值,比如我们这个例子就是这样。</p>
 </section>
-<section id="查看变量系数" class="level2" data-number="14.5">
-<h2 data-number="14.5" class="anchored" data-anchor-id="查看变量系数"><span class="header-section-number">14.5</span> 查看变量系数</h2>
+<section id="查看变量系数" class="level3" data-number="18.1.3">
+<h3 data-number="18.1.3" class="anchored" data-anchor-id="查看变量系数"><span class="header-section-number">18.1.3</span> 查看变量系数</h3>
 <p>我们可以通过<code>coef()</code>查看某个Lambda值下的变量系数:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.065380</span>)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.210158382</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.193006823</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.069820214</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.606741531</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.081962193</span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.285761723</span></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.165879158</span></span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.092678665</span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.595865115</span></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .          </span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .          </span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
-<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .          </span></span>
-<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
-<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
-<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
-<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
-<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
-<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.054956208</span></span>
-<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.001474751</span></span>
-<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
-<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.187112112</span></span>
-<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.113782733</span></span>
-<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
-<span id="cb9-32"><a href="#cb9-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          .          </span></span>
-<span id="cb9-33"><a href="#cb9-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V29          .          </span></span>
-<span id="cb9-34"><a href="#cb9-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 比如让lambda=0.065380</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.065380</span>)</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.210158382</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.193006823</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.069820214</span></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.606741531</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.081962193</span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.285761723</span></span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.165879158</span></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.092678665</span></span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.595865115</span></span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .          </span></span>
+<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
+<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .          </span></span>
+<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
+<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
+<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .          </span></span>
+<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
+<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
+<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
+<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
+<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
+<span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.054956208</span></span>
+<span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.001474751</span></span>
+<span id="cb8-29"><a href="#cb8-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
+<span id="cb8-30"><a href="#cb8-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.187112112</span></span>
+<span id="cb8-31"><a href="#cb8-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.113782733</span></span>
+<span id="cb8-32"><a href="#cb8-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
+<span id="cb8-33"><a href="#cb8-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          .          </span></span>
+<span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V29          .          </span></span>
+<span id="cb8-35"><a href="#cb8-35" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>可以看到此时一共有12个变量的系数不是0,和上面<code>print(fit)</code>的结果是一样的。</p>
+<p>可以看到此时一共有12个变量的系数不是0(没包括截距),其余系数是0的变量就可以去掉了,和上面<code>print(fit)</code>的结果是一样的。</p>
 <p>这里使用了<code>s</code>表示lambda,为什么不直接用<code>lambda</code>呢?这是作者为了以后的某些功能做准备,但是这一点在<code>tidymodels</code>中大受诟病…</p>
 <p>也可以同时指定多个lambda值:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>))</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 2 sparse Matrix of class "dgCMatrix"</span></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1          s2</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.210158382  0.22467551</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .            .         </span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.193006823  0.13578915</span></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.069820214  .         </span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.606741531 -0.55088786</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.081962193 -0.08588769</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.285761723 -0.18303729</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .            .         </span></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.165879158 -0.12710236</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.092678665  .         </span></span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.595865115 -0.50054790</span></span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .            .         </span></span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .            .         </span></span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .            .         </span></span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .            .         </span></span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .            .         </span></span>
-<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .            .         </span></span>
-<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .            .         </span></span>
-<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .            .         </span></span>
-<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .            .         </span></span>
-<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .            .         </span></span>
-<span id="cb10-25"><a href="#cb10-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .            .         </span></span>
-<span id="cb10-26"><a href="#cb10-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.054956208  0.01466017</span></span>
-<span id="cb10-27"><a href="#cb10-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.001474751  .         </span></span>
-<span id="cb10-28"><a href="#cb10-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .            .         </span></span>
-<span id="cb10-29"><a href="#cb10-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.187112112  0.13534486</span></span>
-<span id="cb10-30"><a href="#cb10-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.113782733 -0.08255906</span></span>
-<span id="cb10-31"><a href="#cb10-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .            .         </span></span>
-<span id="cb10-32"><a href="#cb10-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          .            .         </span></span>
-<span id="cb10-33"><a href="#cb10-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V29          .            .         </span></span>
-<span id="cb10-34"><a href="#cb10-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .            .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>))</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 2 sparse Matrix of class "dgCMatrix"</span></span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1          s2</span></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.210158382  0.22467551</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .            .         </span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.193006823  0.13578915</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.069820214  .         </span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.606741531 -0.55088786</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.081962193 -0.08588769</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.285761723 -0.18303729</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .            .         </span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.165879158 -0.12710236</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.092678665  .         </span></span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.595865115 -0.50054790</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .            .         </span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .            .         </span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .            .         </span></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .            .         </span></span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .            .         </span></span>
+<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .            .         </span></span>
+<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .            .         </span></span>
+<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .            .         </span></span>
+<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .            .         </span></span>
+<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .            .         </span></span>
+<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .            .         </span></span>
+<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.054956208  0.01466017</span></span>
+<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.001474751  .         </span></span>
+<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .            .         </span></span>
+<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.187112112  0.13534486</span></span>
+<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.113782733 -0.08255906</span></span>
+<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .            .         </span></span>
+<span id="cb9-32"><a href="#cb9-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          .            .         </span></span>
+<span id="cb9-33"><a href="#cb9-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V29          .            .         </span></span>
+<span id="cb9-34"><a href="#cb9-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .            .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>除此之外,<code>coef()</code>还有一个<code>exact</code>参数,如果<code>exact = TRUE</code>,那么当一个lambda不在默认的lambda值中时,函数会重新使用这个lambda值拟合模型然后给出结果,如果<code>exact = FALSE</code>(默认值),那么会使用线性插值给出结果。</p>
+<p>除此之外,<code>coef()</code>还有一个<code>exact</code>参数,如果<code>exact=TRUE</code>,那么当一个lambda不在默认的lambda值中时,函数会重新使用这个lambda值拟合模型然后给出结果,如果<code>exact=FALSE</code>(默认值),那么会使用线性插值给出结果。</p>
 <p>举个例子,0.08并不在lambda值向量中:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 可以看前面的print(fit)的结果,看看lambda的取值有哪些</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">any</span>(fit<span class="sc">$</span>lambda <span class="sc">==</span> <span class="fl">0.08</span>)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] FALSE</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 可以看前面的print(fit)的结果,看看lambda的取值有哪些</span></span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">any</span>(fit<span class="sc">$</span>lambda <span class="sc">==</span> <span class="fl">0.08</span>)</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] FALSE</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>此时两种情况下的系数是不太一样的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>coef.apprx <span class="ot">&lt;-</span> <span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.08</span>, <span class="at">exact =</span> <span class="cn">FALSE</span>)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>coef.exact <span class="ot">&lt;-</span> <span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.08</span>, <span class="at">exact =</span> <span class="cn">TRUE</span>, <span class="at">x=</span>x, <span class="at">y=</span>y)</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="fu">cbind2</span>(coef.exact[<span class="fu">which</span>(coef.exact <span class="sc">!=</span> <span class="dv">0</span>)], </span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>       coef.apprx[<span class="fu">which</span>(coef.apprx <span class="sc">!=</span> <span class="dv">0</span>)])</span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">##              [,1]        [,2]</span></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  [1,]  0.22549572  0.22541853</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  [2,]  0.13138628  0.13159475</span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  [3,] -0.54737500 -0.54723674</span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  [4,] -0.08464614 -0.08430109</span></span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  [5,] -0.17544453 -0.17586695</span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  [6,] -0.12334038 -0.12323991</span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  [7,] -0.49261301 -0.49314684</span></span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [8,]  0.01036968  0.01227180</span></span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  [9,]  0.13183895  0.13169100</span></span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [10,] -0.07909589 -0.07914430</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>coef.apprx <span class="ot">&lt;-</span> <span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.08</span>, <span class="at">exact =</span> <span class="cn">FALSE</span>)</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>coef.exact <span class="ot">&lt;-</span> <span class="fu">coef</span>(fit, <span class="at">s =</span> <span class="fl">0.08</span>, <span class="at">exact =</span> <span class="cn">TRUE</span>, <span class="at">x=</span>x, <span class="at">y=</span>y)</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">cbind2</span>(coef.exact[<span class="fu">which</span>(coef.exact <span class="sc">!=</span> <span class="dv">0</span>)], </span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>       coef.apprx[<span class="fu">which</span>(coef.apprx <span class="sc">!=</span> <span class="dv">0</span>)])</span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">##              [,1]        [,2]</span></span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  [1,]  0.22549572  0.22541853</span></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  [2,]  0.13138628  0.13159475</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  [3,] -0.54737500 -0.54723674</span></span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  [4,] -0.08464614 -0.08430109</span></span>
+<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  [5,] -0.17544453 -0.17586695</span></span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  [6,] -0.12334038 -0.12323991</span></span>
+<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  [7,] -0.49261301 -0.49314684</span></span>
+<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [8,]  0.01036968  0.01227180</span></span>
+<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  [9,]  0.13183895  0.13169100</span></span>
+<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [10,] -0.07909589 -0.07914430</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>注意在使用<code>exact = TRUE</code>时,需要提供<code>x</code>和<code>y</code>,因为需要重新拟合模型。</p>
 </section>
-<section id="预测新数据" class="level2" data-number="14.6">
-<h2 data-number="14.6" class="anchored" data-anchor-id="预测新数据"><span class="header-section-number">14.6</span> 预测新数据</h2>
+<section id="预测新数据" class="level3" data-number="18.1.4">
+<h3 data-number="18.1.4" class="anchored" data-anchor-id="预测新数据"><span class="header-section-number">18.1.4</span> 预测新数据</h3>
 <p>对于新数据,可直接使用<code>predict()</code>进行预测,此时也是可以指定lambda值的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>nx <span class="ot">&lt;-</span> <span class="fu">head</span>(x) <span class="co">#随便准备的新的测试数据</span></span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(fit, <span class="at">newx =</span> nx, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>))</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">##              s1         s2</span></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] -0.7609757 -0.5755105</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  1.4563904  1.1266031</span></span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,]  0.4415409  0.3981256</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] -1.1676684 -0.9923334</span></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,]  0.5730604  0.5612494</span></span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [6,]  0.3064590  0.1926588</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>nx <span class="ot">&lt;-</span> <span class="fu">head</span>(x) <span class="co">#随便准备的新的测试数据</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(fit, <span class="at">newx =</span> nx, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>))</span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="do">##              s1         s2</span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] -0.7609757 -0.5755105</span></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  1.4563904  1.1266031</span></span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,]  0.4415409  0.3981256</span></span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] -1.1676684 -0.9923334</span></span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,]  0.5730604  0.5612494</span></span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [6,]  0.3064590  0.1926588</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>由于<code>glmnet</code>包可以用于线性回归、逻辑回归、cox回归、泊松回归、多项式回归等(通过参数<code>family</code>指定即可,默认值是<code>gaussian</code>,可通过<code>?glmnet</code>查看帮助文档),所以在<code>predict()</code>时,<code>type</code>参数略有不同,对于逻辑回归,<code>type</code>可以是以下3种:</p>
 <ul>
@@ -900,23 +874,23 @@ <h2 data-number="14.6" class="anchored" data-anchor-id="预测新数据"><span c
 </ul>
 <p>如果要获得预测概率:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(fit, <span class="at">newx =</span> nx, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>), <span class="at">type =</span> <span class="st">"response"</span>)</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">##             s1        s2</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 0.3184345 0.3599663</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.8109800 0.7552115</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.6086261 0.5982372</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.2372767 0.2704514</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,] 0.6394690 0.6367416</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [6,] 0.5760207 0.5480163</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(fit, <span class="at">newx =</span> nx, <span class="at">s =</span> <span class="fu">c</span>(<span class="fl">0.065380</span>,<span class="fl">0.078750</span>), <span class="at">type =</span> <span class="st">"response"</span>)</span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="do">##             s1        s2</span></span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 0.3184345 0.3599663</span></span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.8109800 0.7552115</span></span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.6086261 0.5982372</span></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.2372767 0.2704514</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,] 0.6394690 0.6367416</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [6,] 0.5760207 0.5480163</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>可以通过<code>?predict.glmnet</code>查看帮助文档。</p>
 </section>
-<section id="交叉验证" class="level2" data-number="14.7">
-<h2 data-number="14.7" class="anchored" data-anchor-id="交叉验证"><span class="header-section-number">14.7</span> 交叉验证</h2>
+<section id="交叉验证" class="level3" data-number="18.1.5">
+<h3 data-number="18.1.5" class="anchored" data-anchor-id="交叉验证"><span class="header-section-number">18.1.5</span> 交叉验证</h3>
 <p><code>glmnet()</code>函数会返回多个模型(因为会使用多个lambda值),<strong>但是很多情况下,用户并不知道到底选择哪一个lambda值,即不知道到底保留哪些变量,或者希望函数能自动给出结果</strong>。</p>
 <p>所以<code>glmnet</code>包提供了交叉验证法,帮助用户做出选择,使用方法也非常简单:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>cvfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>cvfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>除了<code>glmnet()</code>中的参数之外,<code>cv.glmnet()</code>还有一些独有的参数:</p>
 <ul>
@@ -932,162 +906,171 @@ <h2 data-number="14.7" class="anchored" data-anchor-id="交叉验证"><span clas
 <li><code>class</code>:错分率;</li>
 <li><code>auc</code>:只能用于<strong>二分类</strong>逻辑回归</li>
 </ul>
-<section id="plot方法" class="level3" data-number="14.7.1">
-<h3 data-number="14.7.1" class="anchored" data-anchor-id="plot方法"><span class="header-section-number">14.7.1</span> plot方法</h3>
+</section>
+<section id="plot方法" class="level3" data-number="18.1.6">
+<h3 data-number="18.1.6" class="anchored" data-anchor-id="plot方法"><span class="header-section-number">18.1.6</span> plot方法</h3>
 <p>对于<code>cv.glmnet()</code>的结果,也提供了<code>plot</code>,<code>print</code>,<code>coef</code>,<code>predict</code>方法。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>该图形下面的横坐标是log10(lambda),上面的横坐标是非零系数的数量,左侧的纵坐标是MSE(均方误差),改图展示了不同lambda取值下MSE的变化以及MSE±1倍标准差的置信区间。</p>
 <p>图中的两条竖线就是函数帮你挑选的两个结果,一个是<code>lambda.min</code>,此时的lambda值可以使得MSE最小,另外一个是<code>lambda.1se</code>,此时的lambda值可以使得MSE在最小MSE的1倍标准误区间内,但是同时可以使模型的复杂度降低。(在模型误差之间的差距不是很大的时候,我们肯定是喜欢更简单的模型啦,这个不难理解吧?)</p>
 <p>查看这两个lambda值:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>cvfit<span class="sc">$</span>lambda.min</span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.02829953</span></span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>cvfit<span class="sc">$</span>lambda<span class="fl">.1</span>se</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.04945423</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>cvfit<span class="sc">$</span>lambda.min</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.02829953</span></span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>cvfit<span class="sc">$</span>lambda<span class="fl">.1</span>se</span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.04945423</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>换一个<code>type.measure</code>试试看:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>cvfit1 <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">type.measure =</span> <span class="st">"auc"</span>)</span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>cvfit1 <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">type.measure =</span> <span class="st">"auc"</span>)</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这个图的解读和上面那个图的解读也是一样的,只不过左侧纵坐标不一样而已。</p>
 <p>交叉验证的图形也是可以自己美化的,参考推文:<a href="https://mp.weixin.qq.com/s/JKFis5gyFeBjxPZIJr50fg">lasso回归结果美化</a></p>
 </section>
-<section id="coef方法" class="level3" data-number="14.7.2">
-<h3 data-number="14.7.2" class="anchored" data-anchor-id="coef方法"><span class="header-section-number">14.7.2</span> coef方法</h3>
+<section id="coef方法" class="level3" data-number="18.1.7">
+<h3 data-number="18.1.7" class="anchored" data-anchor-id="coef方法"><span class="header-section-number">18.1.7</span> coef方法</h3>
 <p>查看这两个取值下保留的非零系数情况:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 此时s不能同时使用多个值</span></span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(cvfit, <span class="at">s =</span> <span class="st">"lambda.min"</span>)</span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
-<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
-<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.538475144</span></span>
-<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
-<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.054881645</span></span>
-<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.044528447</span></span>
-<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.145609945</span></span>
-<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.023218071</span></span>
-<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.104593647</span></span>
-<span id="cb19-12"><a href="#cb19-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
-<span id="cb19-13"><a href="#cb19-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.057762149</span></span>
-<span id="cb19-14"><a href="#cb19-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.073669351</span></span>
-<span id="cb19-15"><a href="#cb19-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.148264046</span></span>
-<span id="cb19-16"><a href="#cb19-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V11         -0.009489879</span></span>
-<span id="cb19-17"><a href="#cb19-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
-<span id="cb19-18"><a href="#cb19-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V13         -0.002021430</span></span>
-<span id="cb19-19"><a href="#cb19-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
-<span id="cb19-20"><a href="#cb19-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
-<span id="cb19-21"><a href="#cb19-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          0.013778043</span></span>
-<span id="cb19-22"><a href="#cb19-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
-<span id="cb19-23"><a href="#cb19-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
-<span id="cb19-24"><a href="#cb19-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
-<span id="cb19-25"><a href="#cb19-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
-<span id="cb19-26"><a href="#cb19-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
-<span id="cb19-27"><a href="#cb19-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.032149957</span></span>
-<span id="cb19-28"><a href="#cb19-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.034431329</span></span>
-<span id="cb19-29"><a href="#cb19-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
-<span id="cb19-30"><a href="#cb19-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.069884641</span></span>
-<span id="cb19-31"><a href="#cb19-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.050479757</span></span>
-<span id="cb19-32"><a href="#cb19-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
-<span id="cb19-33"><a href="#cb19-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.021367958</span></span>
-<span id="cb19-34"><a href="#cb19-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.021118533</span></span>
-<span id="cb19-35"><a href="#cb19-35" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span>
-<span id="cb19-36"><a href="#cb19-36" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(cvfit, <span class="at">s =</span> <span class="st">"lambda.1se"</span>) <span class="co"># 这个是默认值</span></span>
-<span id="cb19-37"><a href="#cb19-37" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
-<span id="cb19-38"><a href="#cb19-38" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
-<span id="cb19-39"><a href="#cb19-39" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.541225753</span></span>
-<span id="cb19-40"><a href="#cb19-40" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
-<span id="cb19-41"><a href="#cb19-41" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.046087719</span></span>
-<span id="cb19-42"><a href="#cb19-42" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.027102998</span></span>
-<span id="cb19-43"><a href="#cb19-43" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.132840898</span></span>
-<span id="cb19-44"><a href="#cb19-44" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.019424141</span></span>
-<span id="cb19-45"><a href="#cb19-45" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.079980759</span></span>
-<span id="cb19-46"><a href="#cb19-46" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
-<span id="cb19-47"><a href="#cb19-47" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.044011217</span></span>
-<span id="cb19-48"><a href="#cb19-48" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.043650956</span></span>
-<span id="cb19-49"><a href="#cb19-49" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.133222487</span></span>
-<span id="cb19-50"><a href="#cb19-50" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .          </span></span>
-<span id="cb19-51"><a href="#cb19-51" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
-<span id="cb19-52"><a href="#cb19-52" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .          </span></span>
-<span id="cb19-53"><a href="#cb19-53" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
-<span id="cb19-54"><a href="#cb19-54" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
-<span id="cb19-55"><a href="#cb19-55" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .          </span></span>
-<span id="cb19-56"><a href="#cb19-56" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
-<span id="cb19-57"><a href="#cb19-57" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
-<span id="cb19-58"><a href="#cb19-58" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
-<span id="cb19-59"><a href="#cb19-59" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
-<span id="cb19-60"><a href="#cb19-60" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
-<span id="cb19-61"><a href="#cb19-61" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.022463353</span></span>
-<span id="cb19-62"><a href="#cb19-62" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.015349808</span></span>
-<span id="cb19-63"><a href="#cb19-63" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
-<span id="cb19-64"><a href="#cb19-64" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.052132213</span></span>
-<span id="cb19-65"><a href="#cb19-65" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.037104017</span></span>
-<span id="cb19-66"><a href="#cb19-66" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
-<span id="cb19-67"><a href="#cb19-67" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.002725018</span></span>
-<span id="cb19-68"><a href="#cb19-68" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.005935917</span></span>
-<span id="cb19-69"><a href="#cb19-69" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 此时s不能同时使用多个值</span></span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(cvfit, <span class="at">s =</span> <span class="st">"lambda.min"</span>)</span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.538475144</span></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.054881645</span></span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.044528447</span></span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.145609945</span></span>
+<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.023218071</span></span>
+<span id="cb18-11"><a href="#cb18-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.104593647</span></span>
+<span id="cb18-12"><a href="#cb18-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
+<span id="cb18-13"><a href="#cb18-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.057762149</span></span>
+<span id="cb18-14"><a href="#cb18-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.073669351</span></span>
+<span id="cb18-15"><a href="#cb18-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.148264046</span></span>
+<span id="cb18-16"><a href="#cb18-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V11         -0.009489879</span></span>
+<span id="cb18-17"><a href="#cb18-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
+<span id="cb18-18"><a href="#cb18-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V13         -0.002021430</span></span>
+<span id="cb18-19"><a href="#cb18-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
+<span id="cb18-20"><a href="#cb18-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
+<span id="cb18-21"><a href="#cb18-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          0.013778043</span></span>
+<span id="cb18-22"><a href="#cb18-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
+<span id="cb18-23"><a href="#cb18-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
+<span id="cb18-24"><a href="#cb18-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
+<span id="cb18-25"><a href="#cb18-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
+<span id="cb18-26"><a href="#cb18-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
+<span id="cb18-27"><a href="#cb18-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.032149957</span></span>
+<span id="cb18-28"><a href="#cb18-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.034431329</span></span>
+<span id="cb18-29"><a href="#cb18-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
+<span id="cb18-30"><a href="#cb18-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.069884641</span></span>
+<span id="cb18-31"><a href="#cb18-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.050479757</span></span>
+<span id="cb18-32"><a href="#cb18-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
+<span id="cb18-33"><a href="#cb18-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.021367958</span></span>
+<span id="cb18-34"><a href="#cb18-34" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.021118533</span></span>
+<span id="cb18-35"><a href="#cb18-35" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span>
+<span id="cb18-36"><a href="#cb18-36" aria-hidden="true" tabindex="-1"></a><span class="fu">coef</span>(cvfit, <span class="at">s =</span> <span class="st">"lambda.1se"</span>) <span class="co"># 这个是默认值</span></span>
+<span id="cb18-37"><a href="#cb18-37" aria-hidden="true" tabindex="-1"></a><span class="do">## 31 x 1 sparse Matrix of class "dgCMatrix"</span></span>
+<span id="cb18-38"><a href="#cb18-38" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
+<span id="cb18-39"><a href="#cb18-39" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.541225753</span></span>
+<span id="cb18-40"><a href="#cb18-40" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           .          </span></span>
+<span id="cb18-41"><a href="#cb18-41" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.046087719</span></span>
+<span id="cb18-42"><a href="#cb18-42" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.027102998</span></span>
+<span id="cb18-43"><a href="#cb18-43" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.132840898</span></span>
+<span id="cb18-44"><a href="#cb18-44" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.019424141</span></span>
+<span id="cb18-45"><a href="#cb18-45" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.079980759</span></span>
+<span id="cb18-46"><a href="#cb18-46" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           .          </span></span>
+<span id="cb18-47"><a href="#cb18-47" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.044011217</span></span>
+<span id="cb18-48"><a href="#cb18-48" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.043650956</span></span>
+<span id="cb18-49"><a href="#cb18-49" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.133222487</span></span>
+<span id="cb18-50"><a href="#cb18-50" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          .          </span></span>
+<span id="cb18-51"><a href="#cb18-51" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          .          </span></span>
+<span id="cb18-52"><a href="#cb18-52" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          .          </span></span>
+<span id="cb18-53"><a href="#cb18-53" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          .          </span></span>
+<span id="cb18-54"><a href="#cb18-54" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          .          </span></span>
+<span id="cb18-55"><a href="#cb18-55" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          .          </span></span>
+<span id="cb18-56"><a href="#cb18-56" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          .          </span></span>
+<span id="cb18-57"><a href="#cb18-57" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          .          </span></span>
+<span id="cb18-58"><a href="#cb18-58" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          .          </span></span>
+<span id="cb18-59"><a href="#cb18-59" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          .          </span></span>
+<span id="cb18-60"><a href="#cb18-60" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          .          </span></span>
+<span id="cb18-61"><a href="#cb18-61" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.022463353</span></span>
+<span id="cb18-62"><a href="#cb18-62" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.015349808</span></span>
+<span id="cb18-63"><a href="#cb18-63" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          .          </span></span>
+<span id="cb18-64"><a href="#cb18-64" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.052132213</span></span>
+<span id="cb18-65"><a href="#cb18-65" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.037104017</span></span>
+<span id="cb18-66"><a href="#cb18-66" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          .          </span></span>
+<span id="cb18-67"><a href="#cb18-67" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.002725018</span></span>
+<span id="cb18-68"><a href="#cb18-68" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.005935917</span></span>
+<span id="cb18-69"><a href="#cb18-69" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          .</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>此时你就可以根据实际情况选择使用<code>lambda.min</code>还是<code>lambda.1se</code>,如果你选择了<code>lambda.1se</code>的话,那么就是有以下变量被保留:<code>V2/V3/V4/V5/V6/V8/V9/V10/V22/V23/V25/V26/28/V29</code>,其他变量的系数都是0,说明不重要,就可以被丢掉了。</p>
 <p>可以看到<code>coef()</code>的结果都是稀疏矩阵格式,这种格式计算效率更高,但是不方便后续使用,可以使用<code>as.matrix()</code>转换为矩阵格式:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">as.matrix</span>(<span class="fu">coef</span>(cvfit))</span>
-<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
-<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.541225753</span></span>
-<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           0.000000000</span></span>
-<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.046087719</span></span>
-<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.027102998</span></span>
-<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.132840898</span></span>
-<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.019424141</span></span>
-<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.079980759</span></span>
-<span id="cb20-10"><a href="#cb20-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           0.000000000</span></span>
-<span id="cb20-11"><a href="#cb20-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.044011217</span></span>
-<span id="cb20-12"><a href="#cb20-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.043650956</span></span>
-<span id="cb20-13"><a href="#cb20-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.133222487</span></span>
-<span id="cb20-14"><a href="#cb20-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          0.000000000</span></span>
-<span id="cb20-15"><a href="#cb20-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          0.000000000</span></span>
-<span id="cb20-16"><a href="#cb20-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          0.000000000</span></span>
-<span id="cb20-17"><a href="#cb20-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          0.000000000</span></span>
-<span id="cb20-18"><a href="#cb20-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          0.000000000</span></span>
-<span id="cb20-19"><a href="#cb20-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          0.000000000</span></span>
-<span id="cb20-20"><a href="#cb20-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          0.000000000</span></span>
-<span id="cb20-21"><a href="#cb20-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          0.000000000</span></span>
-<span id="cb20-22"><a href="#cb20-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          0.000000000</span></span>
-<span id="cb20-23"><a href="#cb20-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          0.000000000</span></span>
-<span id="cb20-24"><a href="#cb20-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          0.000000000</span></span>
-<span id="cb20-25"><a href="#cb20-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.022463353</span></span>
-<span id="cb20-26"><a href="#cb20-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.015349808</span></span>
-<span id="cb20-27"><a href="#cb20-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          0.000000000</span></span>
-<span id="cb20-28"><a href="#cb20-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.052132213</span></span>
-<span id="cb20-29"><a href="#cb20-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.037104017</span></span>
-<span id="cb20-30"><a href="#cb20-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          0.000000000</span></span>
-<span id="cb20-31"><a href="#cb20-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.002725018</span></span>
-<span id="cb20-32"><a href="#cb20-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.005935917</span></span>
-<span id="cb20-33"><a href="#cb20-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          0.000000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">as.matrix</span>(<span class="fu">coef</span>(cvfit))</span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="do">##                       s1</span></span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  0.541225753</span></span>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="do">## V1           0.000000000</span></span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="do">## V2           0.046087719</span></span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="do">## V3          -0.027102998</span></span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="do">## V4          -0.132840898</span></span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="do">## V5          -0.019424141</span></span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">## V6          -0.079980759</span></span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="do">## V7           0.000000000</span></span>
+<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a><span class="do">## V8          -0.044011217</span></span>
+<span id="cb19-12"><a href="#cb19-12" aria-hidden="true" tabindex="-1"></a><span class="do">## V9           0.043650956</span></span>
+<span id="cb19-13"><a href="#cb19-13" aria-hidden="true" tabindex="-1"></a><span class="do">## V10         -0.133222487</span></span>
+<span id="cb19-14"><a href="#cb19-14" aria-hidden="true" tabindex="-1"></a><span class="do">## V11          0.000000000</span></span>
+<span id="cb19-15"><a href="#cb19-15" aria-hidden="true" tabindex="-1"></a><span class="do">## V12          0.000000000</span></span>
+<span id="cb19-16"><a href="#cb19-16" aria-hidden="true" tabindex="-1"></a><span class="do">## V13          0.000000000</span></span>
+<span id="cb19-17"><a href="#cb19-17" aria-hidden="true" tabindex="-1"></a><span class="do">## V14          0.000000000</span></span>
+<span id="cb19-18"><a href="#cb19-18" aria-hidden="true" tabindex="-1"></a><span class="do">## V15          0.000000000</span></span>
+<span id="cb19-19"><a href="#cb19-19" aria-hidden="true" tabindex="-1"></a><span class="do">## V16          0.000000000</span></span>
+<span id="cb19-20"><a href="#cb19-20" aria-hidden="true" tabindex="-1"></a><span class="do">## V17          0.000000000</span></span>
+<span id="cb19-21"><a href="#cb19-21" aria-hidden="true" tabindex="-1"></a><span class="do">## V18          0.000000000</span></span>
+<span id="cb19-22"><a href="#cb19-22" aria-hidden="true" tabindex="-1"></a><span class="do">## V19          0.000000000</span></span>
+<span id="cb19-23"><a href="#cb19-23" aria-hidden="true" tabindex="-1"></a><span class="do">## V20          0.000000000</span></span>
+<span id="cb19-24"><a href="#cb19-24" aria-hidden="true" tabindex="-1"></a><span class="do">## V21          0.000000000</span></span>
+<span id="cb19-25"><a href="#cb19-25" aria-hidden="true" tabindex="-1"></a><span class="do">## V22          0.022463353</span></span>
+<span id="cb19-26"><a href="#cb19-26" aria-hidden="true" tabindex="-1"></a><span class="do">## V23          0.015349808</span></span>
+<span id="cb19-27"><a href="#cb19-27" aria-hidden="true" tabindex="-1"></a><span class="do">## V24          0.000000000</span></span>
+<span id="cb19-28"><a href="#cb19-28" aria-hidden="true" tabindex="-1"></a><span class="do">## V25          0.052132213</span></span>
+<span id="cb19-29"><a href="#cb19-29" aria-hidden="true" tabindex="-1"></a><span class="do">## V26         -0.037104017</span></span>
+<span id="cb19-30"><a href="#cb19-30" aria-hidden="true" tabindex="-1"></a><span class="do">## V27          0.000000000</span></span>
+<span id="cb19-31"><a href="#cb19-31" aria-hidden="true" tabindex="-1"></a><span class="do">## V28          0.002725018</span></span>
+<span id="cb19-32"><a href="#cb19-32" aria-hidden="true" tabindex="-1"></a><span class="do">## V29         -0.005935917</span></span>
+<span id="cb19-33"><a href="#cb19-33" aria-hidden="true" tabindex="-1"></a><span class="do">## V30          0.000000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="predict方法" class="level3" data-number="14.7.3">
-<h3 data-number="14.7.3" class="anchored" data-anchor-id="predict方法"><span class="header-section-number">14.7.3</span> predict方法</h3>
+<section id="predict方法" class="level3" data-number="18.1.8">
+<h3 data-number="18.1.8" class="anchored" data-anchor-id="predict方法"><span class="header-section-number">18.1.8</span> predict方法</h3>
 <p>对新数据进行预测也是一样的用法:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(cvfit, <span class="at">newx =</span> x[<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>,], <span class="at">s =</span> <span class="st">"lambda.min"</span>)</span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="do">##      lambda.min</span></span>
-<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,]  0.2880810</span></span>
-<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  0.9411606</span></span>
-<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,]  0.6169352</span></span>
-<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,]  0.1604069</span></span>
-<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,]  0.5976043</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(cvfit, <span class="at">newx =</span> x[<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>,], <span class="at">s =</span> <span class="st">"lambda.min"</span>)</span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="do">##      lambda.min</span></span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,]  0.2880810</span></span>
+<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,]  0.9411606</span></span>
+<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,]  0.6169352</span></span>
+<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,]  0.1604069</span></span>
+<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,]  0.5976043</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-</section>
-<section id="一些参数解释" class="level2" data-number="14.8">
-<h2 data-number="14.8" class="anchored" data-anchor-id="一些参数解释"><span class="header-section-number">14.8</span> 一些参数解释</h2>
+<section id="一些参数解释" class="level3" data-number="18.1.9">
+<h3 data-number="18.1.9" class="anchored" data-anchor-id="一些参数解释"><span class="header-section-number">18.1.9</span> 一些参数解释</h3>
 <ul>
 <li><code>alpha</code>:可以看做是L1正则化的比例,当alpha=1时,就是lasso,当alpha=0时,就是岭回归,当0&lt;alpha&lt;1时,就是弹性网络。</li>
 <li><code>weights</code>:不同观测的权重,默认都是1。(<code>glmnet</code>会自动对权重进行重新标准化,使得所有观测的权重相加等于样本数量)。</li>
@@ -1098,544 +1081,193 @@ <h2 data-number="14.8" class="anchored" data-anchor-id="一些参数解释"><spa
 <p>下面是一个对不同观测自定义权重的示例。</p>
 <p>我们这个示例中,样本量是100,所以我们为100个观测自定义以下权重:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 简单定义一下,前50个是1,后50个是2</span></span>
-<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>wts <span class="ot">&lt;-</span>  <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span>,<span class="dv">50</span>), <span class="fu">rep</span>(<span class="dv">2</span>,<span class="dv">50</span>))</span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">alpha =</span> <span class="fl">0.2</span>, <span class="at">weights =</span> wts, <span class="at">nlambda =</span> <span class="dv">20</span>)</span>
-<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(fit1)</span>
-<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  glmnet(x = x, y = y, weights = wts, alpha = 0.2, nlambda = 20) </span></span>
-<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a><span class="do">##    Df  %Dev  Lambda</span></span>
-<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0  0.00 1.18600</span></span>
-<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   2 11.40 0.73050</span></span>
-<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  10 31.21 0.44990</span></span>
-<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  11 48.89 0.27710</span></span>
-<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  15 59.86 0.17060</span></span>
-<span id="cb22-15"><a href="#cb22-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 6  21 66.72 0.10510</span></span>
-<span id="cb22-16"><a href="#cb22-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 7  26 71.32 0.06471</span></span>
-<span id="cb22-17"><a href="#cb22-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 8  28 73.71 0.03985</span></span>
-<span id="cb22-18"><a href="#cb22-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 9  29 74.84 0.02454</span></span>
-<span id="cb22-19"><a href="#cb22-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 29 75.37 0.01512</span></span>
-<span id="cb22-20"><a href="#cb22-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 29 75.58 0.00931</span></span>
-<span id="cb22-21"><a href="#cb22-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 12 29 75.66 0.00573</span></span>
-<span id="cb22-22"><a href="#cb22-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 13 30 75.70 0.00353</span></span>
-<span id="cb22-23"><a href="#cb22-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 14 30 75.71 0.00217</span></span>
-<span id="cb22-24"><a href="#cb22-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 15 30 75.72 0.00134</span></span>
-<span id="cb22-25"><a href="#cb22-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 16 30 75.72 0.00082</span></span>
-<span id="cb22-26"><a href="#cb22-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 17 30 75.72 0.00051</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 简单定义一下,前50个是1,后50个是2</span></span>
+<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>wts <span class="ot">&lt;-</span>  <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span>,<span class="dv">50</span>), <span class="fu">rep</span>(<span class="dv">2</span>,<span class="dv">50</span>))</span>
+<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">alpha =</span> <span class="fl">0.2</span>, <span class="at">weights =</span> wts, <span class="at">nlambda =</span> <span class="dv">20</span>)</span>
+<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(fit1)</span>
+<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  glmnet(x = x, y = y, weights = wts, alpha = 0.2, nlambda = 20) </span></span>
+<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb21-9"><a href="#cb21-9" aria-hidden="true" tabindex="-1"></a><span class="do">##    Df  %Dev  Lambda</span></span>
+<span id="cb21-10"><a href="#cb21-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0  0.00 1.18600</span></span>
+<span id="cb21-11"><a href="#cb21-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   2 11.40 0.73050</span></span>
+<span id="cb21-12"><a href="#cb21-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  10 31.21 0.44990</span></span>
+<span id="cb21-13"><a href="#cb21-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  11 48.89 0.27710</span></span>
+<span id="cb21-14"><a href="#cb21-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  15 59.86 0.17060</span></span>
+<span id="cb21-15"><a href="#cb21-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 6  21 66.72 0.10510</span></span>
+<span id="cb21-16"><a href="#cb21-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 7  26 71.32 0.06471</span></span>
+<span id="cb21-17"><a href="#cb21-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 8  28 73.71 0.03985</span></span>
+<span id="cb21-18"><a href="#cb21-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 9  29 74.84 0.02454</span></span>
+<span id="cb21-19"><a href="#cb21-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 29 75.37 0.01512</span></span>
+<span id="cb21-20"><a href="#cb21-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 11 29 75.58 0.00931</span></span>
+<span id="cb21-21"><a href="#cb21-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 12 29 75.66 0.00573</span></span>
+<span id="cb21-22"><a href="#cb21-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 13 30 75.70 0.00353</span></span>
+<span id="cb21-23"><a href="#cb21-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 14 30 75.71 0.00217</span></span>
+<span id="cb21-24"><a href="#cb21-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 15 30 75.72 0.00134</span></span>
+<span id="cb21-25"><a href="#cb21-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 16 30 75.72 0.00082</span></span>
+<span id="cb21-26"><a href="#cb21-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 17 30 75.72 0.00051</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>可以看到结果中只有17个lambda值,少于我们指定的20个,原因已经在前面解释过了。</p>
 </section>
-<section id="在测试集评估模型" class="level2" data-number="14.9">
-<h2 data-number="14.9" class="anchored" data-anchor-id="在测试集评估模型"><span class="header-section-number">14.9</span> 在测试集评估模型</h2>
-<p>模型建立后,我们可能会使用测试集检测模型性能,<code>glmnet</code>包为我们提供了<code>assess.glmnet</code>,<code>roc.glmnet</code>,<code>confusion.glmnet</code>,帮助我们快速在衡量模型性能。</p>
-<section id="assess.glmnet" class="level3" data-number="14.9.1">
-<h3 data-number="14.9.1" class="anchored" data-anchor-id="assess.glmnet"><span class="header-section-number">14.9.1</span> assess.glmnet()</h3>
-<p>还是使用这个二分类数据,我们把前70个观测作为训练集,用来建模,后30个观测作为测试集。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(BinomialExample)</span>
-<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>x</span>
-<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>y</span>
-<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>itrain <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">70</span> <span class="co"># 前70个作为训练集</span></span>
-<span id="cb23-5"><a href="#cb23-5" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x[itrain, ], y[itrain], <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">nlambda =</span> <span class="dv">6</span>)</span>
-<span id="cb23-6"><a href="#cb23-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb23-7"><a href="#cb23-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 在测试集评估模型</span></span>
-<span id="cb23-8"><a href="#cb23-8" aria-hidden="true" tabindex="-1"></a><span class="fu">assess.glmnet</span>(fit, <span class="at">newx =</span> x[<span class="sc">-</span>itrain, ], <span class="at">newy =</span> y[<span class="sc">-</span>itrain])</span>
-<span id="cb23-9"><a href="#cb23-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $deviance</span></span>
-<span id="cb23-10"><a href="#cb23-10" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2        s3        s4        s5 </span></span>
-<span id="cb23-11"><a href="#cb23-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1.3877348 0.8547044 1.2031017 2.3732041 3.1831559 3.7565310 </span></span>
-<span id="cb23-12"><a href="#cb23-12" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb23-13"><a href="#cb23-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Binomial Deviance"</span></span>
-<span id="cb23-14"><a href="#cb23-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb23-15"><a href="#cb23-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $class</span></span>
-<span id="cb23-16"><a href="#cb23-16" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2        s3        s4        s5 </span></span>
-<span id="cb23-17"><a href="#cb23-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.4666667 0.1666667 0.2000000 0.2000000 0.1666667 0.1666667 </span></span>
-<span id="cb23-18"><a href="#cb23-18" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb23-19"><a href="#cb23-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Misclassification Error"</span></span>
-<span id="cb23-20"><a href="#cb23-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb23-21"><a href="#cb23-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $auc</span></span>
-<span id="cb23-22"><a href="#cb23-22" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.5000000 0.8973214 0.8794643 0.8214286 0.8169643 0.8303571</span></span>
-<span id="cb23-23"><a href="#cb23-23" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb23-24"><a href="#cb23-24" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "AUC"</span></span>
-<span id="cb23-25"><a href="#cb23-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb23-26"><a href="#cb23-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $mse</span></span>
-<span id="cb23-27"><a href="#cb23-27" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2        s3        s4        s5 </span></span>
-<span id="cb23-28"><a href="#cb23-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.5006803 0.2620161 0.3157726 0.3570313 0.3500126 0.3482634 </span></span>
-<span id="cb23-29"><a href="#cb23-29" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb23-30"><a href="#cb23-30" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean-Squared Error"</span></span>
-<span id="cb23-31"><a href="#cb23-31" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb23-32"><a href="#cb23-32" aria-hidden="true" tabindex="-1"></a><span class="do">## $mae</span></span>
-<span id="cb23-33"><a href="#cb23-33" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2        s3        s4        s5 </span></span>
-<span id="cb23-34"><a href="#cb23-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9904762 0.5650890 0.4609257 0.4227314 0.3865725 0.3745569 </span></span>
-<span id="cb23-35"><a href="#cb23-35" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb23-36"><a href="#cb23-36" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean Absolute Error"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>结果是一个列表,里面是<code>family = "binomial"</code>时,5个性能指标在不同lambda值下的结果,由于我们这里指定了只使用6个lambda值,所以结果就是6个,你指定几个,结果就会有几个。</p>
-<p>不同的<code>family</code>对应着不同的性能指标,可以通过<code>glmnet.measures()</code>查看每个<code>family</code>对应的性能指标:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">glmnet.measures</span>()</span>
-<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="do">## $gaussian</span></span>
-<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "mse" "mae"</span></span>
-<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">## $binomial</span></span>
-<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "deviance" "class"    "auc"      "mse"      "mae"     </span></span>
-<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a><span class="do">## $poisson</span></span>
-<span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "deviance" "mse"      "mae"     </span></span>
-<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-11"><a href="#cb24-11" aria-hidden="true" tabindex="-1"></a><span class="do">## $cox</span></span>
-<span id="cb24-12"><a href="#cb24-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "deviance" "C"       </span></span>
-<span id="cb24-13"><a href="#cb24-13" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-14"><a href="#cb24-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $multinomial</span></span>
-<span id="cb24-15"><a href="#cb24-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "deviance" "class"    "mse"      "mae"     </span></span>
-<span id="cb24-16"><a href="#cb24-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-17"><a href="#cb24-17" aria-hidden="true" tabindex="-1"></a><span class="do">## $mgaussian</span></span>
-<span id="cb24-18"><a href="#cb24-18" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "mse" "mae"</span></span>
-<span id="cb24-19"><a href="#cb24-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb24-20"><a href="#cb24-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $GLM</span></span>
-<span id="cb24-21"><a href="#cb24-21" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "deviance" "mse"      "mae"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>交叉验证同样也是适用的:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>cfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x[itrain, ], y[itrain], <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">nlambda =</span> <span class="dv">30</span>)</span>
-<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a><span class="fu">assess.glmnet</span>(cfit, <span class="at">newx =</span> x[<span class="sc">-</span>itrain, ], <span class="at">newy =</span> y[<span class="sc">-</span>itrain])</span>
-<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a><span class="do">## $deviance</span></span>
-<span id="cb25-4"><a href="#cb25-4" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.1se </span></span>
-<span id="cb25-5"><a href="#cb25-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   1.062957 </span></span>
-<span id="cb25-6"><a href="#cb25-6" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb25-7"><a href="#cb25-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Binomial Deviance"</span></span>
-<span id="cb25-8"><a href="#cb25-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb25-9"><a href="#cb25-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $class</span></span>
-<span id="cb25-10"><a href="#cb25-10" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.1se </span></span>
-<span id="cb25-11"><a href="#cb25-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.2333333 </span></span>
-<span id="cb25-12"><a href="#cb25-12" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb25-13"><a href="#cb25-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Misclassification Error"</span></span>
-<span id="cb25-14"><a href="#cb25-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb25-15"><a href="#cb25-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $auc</span></span>
-<span id="cb25-16"><a href="#cb25-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.8392857</span></span>
-<span id="cb25-17"><a href="#cb25-17" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb25-18"><a href="#cb25-18" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "AUC"</span></span>
-<span id="cb25-19"><a href="#cb25-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb25-20"><a href="#cb25-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $mse</span></span>
-<span id="cb25-21"><a href="#cb25-21" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.1se </span></span>
-<span id="cb25-22"><a href="#cb25-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.3509219 </span></span>
-<span id="cb25-23"><a href="#cb25-23" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb25-24"><a href="#cb25-24" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean-Squared Error"</span></span>
-<span id="cb25-25"><a href="#cb25-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb25-26"><a href="#cb25-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $mae</span></span>
-<span id="cb25-27"><a href="#cb25-27" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.1se </span></span>
-<span id="cb25-28"><a href="#cb25-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.7730458 </span></span>
-<span id="cb25-29"><a href="#cb25-29" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb25-30"><a href="#cb25-30" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean Absolute Error"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>不过此时默认使用的lambda值是<code>lambda.1se</code>,也可以使用<code>lambda.min</code>:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="fu">assess.glmnet</span>(cfit, <span class="at">newx =</span> x[<span class="sc">-</span>itrain, ],<span class="at">newy =</span> y[<span class="sc">-</span>itrain], <span class="at">s =</span> <span class="st">"lambda.min"</span>)</span>
-<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a><span class="do">## $deviance</span></span>
-<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.min </span></span>
-<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.877155 </span></span>
-<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Binomial Deviance"</span></span>
-<span id="cb26-7"><a href="#cb26-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb26-8"><a href="#cb26-8" aria-hidden="true" tabindex="-1"></a><span class="do">## $class</span></span>
-<span id="cb26-9"><a href="#cb26-9" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.min </span></span>
-<span id="cb26-10"><a href="#cb26-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.1666667 </span></span>
-<span id="cb26-11"><a href="#cb26-11" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb26-12"><a href="#cb26-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Misclassification Error"</span></span>
-<span id="cb26-13"><a href="#cb26-13" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb26-14"><a href="#cb26-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $auc</span></span>
-<span id="cb26-15"><a href="#cb26-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.8973214</span></span>
-<span id="cb26-16"><a href="#cb26-16" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb26-17"><a href="#cb26-17" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "AUC"</span></span>
-<span id="cb26-18"><a href="#cb26-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb26-19"><a href="#cb26-19" aria-hidden="true" tabindex="-1"></a><span class="do">## $mse</span></span>
-<span id="cb26-20"><a href="#cb26-20" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.min </span></span>
-<span id="cb26-21"><a href="#cb26-21" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.273071 </span></span>
-<span id="cb26-22"><a href="#cb26-22" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb26-23"><a href="#cb26-23" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean-Squared Error"</span></span>
-<span id="cb26-24"><a href="#cb26-24" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb26-25"><a href="#cb26-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $mae</span></span>
-<span id="cb26-26"><a href="#cb26-26" aria-hidden="true" tabindex="-1"></a><span class="do">## lambda.min </span></span>
-<span id="cb26-27"><a href="#cb26-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.6069619 </span></span>
-<span id="cb26-28"><a href="#cb26-28" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb26-29"><a href="#cb26-29" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean Absolute Error"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>当然也可以获取<strong>训练集</strong>的各种指标,只要在建模时使用<code>keep=TRUE</code>参数即可:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>cfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">keep =</span> <span class="cn">TRUE</span>, <span class="at">nlambda =</span> <span class="dv">3</span>)</span>
-<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a><span class="fu">assess.glmnet</span>(cfit<span class="sc">$</span>fit.preval, <span class="at">newy =</span> y, <span class="at">family =</span> <span class="st">"binomial"</span>)</span>
-<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a><span class="do">## $deviance</span></span>
-<span id="cb27-4"><a href="#cb27-4" aria-hidden="true" tabindex="-1"></a><span class="do">##       s0       s1       s2 </span></span>
-<span id="cb27-5"><a href="#cb27-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1.344523 1.701907 3.167967 </span></span>
-<span id="cb27-6"><a href="#cb27-6" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb27-7"><a href="#cb27-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Binomial Deviance"</span></span>
-<span id="cb27-8"><a href="#cb27-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb27-9"><a href="#cb27-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $class</span></span>
-<span id="cb27-10"><a href="#cb27-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   s0   s1   s2 </span></span>
-<span id="cb27-11"><a href="#cb27-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.41 0.20 0.21 </span></span>
-<span id="cb27-12"><a href="#cb27-12" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb27-13"><a href="#cb27-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Misclassification Error"</span></span>
-<span id="cb27-14"><a href="#cb27-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb27-15"><a href="#cb27-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $auc</span></span>
-<span id="cb27-16"><a href="#cb27-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.6225649 0.8668831 0.8620130</span></span>
-<span id="cb27-17"><a href="#cb27-17" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb27-18"><a href="#cb27-18" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "AUC"</span></span>
-<span id="cb27-19"><a href="#cb27-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb27-20"><a href="#cb27-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $mse</span></span>
-<span id="cb27-21"><a href="#cb27-21" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2 </span></span>
-<span id="cb27-22"><a href="#cb27-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.4792227 0.3204998 0.3901110 </span></span>
-<span id="cb27-23"><a href="#cb27-23" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb27-24"><a href="#cb27-24" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean-Squared Error"</span></span>
-<span id="cb27-25"><a href="#cb27-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb27-26"><a href="#cb27-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $mae</span></span>
-<span id="cb27-27"><a href="#cb27-27" aria-hidden="true" tabindex="-1"></a><span class="do">##        s0        s1        s2 </span></span>
-<span id="cb27-28"><a href="#cb27-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9635782 0.4058027 0.4178002 </span></span>
-<span id="cb27-29"><a href="#cb27-29" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"measure")</span></span>
-<span id="cb27-30"><a href="#cb27-30" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "Mean Absolute Error"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="roc.glmnet" class="level3" data-number="14.9.2">
-<h3 data-number="14.9.2" class="anchored" data-anchor-id="roc.glmnet"><span class="header-section-number">14.9.2</span> roc.glmnet()</h3>
-<p>对于二分类数据,ROC曲线是非常重要的模型衡量工具。</p>
-<p><code>roc.glmnet()</code>可以快速计算出画ROC曲线需要的数据,然后使用<code>plot()</code>画图即可。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x[itrain,], y[itrain], <span class="at">family =</span> <span class="st">"binomial"</span>)</span>
-<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a>rocs <span class="ot">&lt;-</span> <span class="fu">roc.glmnet</span>(fit, <span class="at">newx =</span> x[<span class="sc">-</span>itrain,], <span class="at">newy=</span>y[<span class="sc">-</span>itrain])</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个<code>rocs</code>是一个列表,其长度就是lambda值的数量,对于每一个lambda取值,它都计算了可以用来画ROC曲线的数据。</p>
-<p>我们随便取其中一个画出来:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(rocs[[<span class="dv">3</span>]],<span class="at">type =</span> <span class="st">"l"</span>,<span class="at">xlim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),<span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))</span>
-<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a><span class="fu">invisible</span>(<span class="fu">sapply</span>(rocs, lines)) <span class="co"># 把所有的ROC都画出来</span></span>
-<span id="cb29-3"><a href="#cb29-3" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">col=</span><span class="st">"grey"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>交叉验证的结果当然也是可以的:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立模型</span></span>
-<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>cfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">type.measure =</span> <span class="st">"auc"</span>, </span>
-<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">keep =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算画ROC曲线需要的数据</span></span>
-<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a>rocs <span class="ot">&lt;-</span> <span class="fu">roc.glmnet</span>(cfit<span class="sc">$</span>fit.preval, <span class="at">newy =</span> y)</span>
-<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb30-8"><a href="#cb30-8" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(rocs)</span>
-<span id="cb30-9"><a href="#cb30-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "list"</span></span>
-<span id="cb30-10"><a href="#cb30-10" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(rocs)</span>
-<span id="cb30-11"><a href="#cb30-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 98</span></span>
-<span id="cb30-12"><a href="#cb30-12" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(rocs[[<span class="dv">1</span>]])</span>
-<span id="cb30-13"><a href="#cb30-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 43  2</span></span>
-<span id="cb30-14"><a href="#cb30-14" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(rocs[[<span class="dv">1</span>]])</span>
-<span id="cb30-15"><a href="#cb30-15" aria-hidden="true" tabindex="-1"></a><span class="do">##                          FPR TPR</span></span>
-<span id="cb30-16"><a href="#cb30-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.515726153922901 0.02272727   0</span></span>
-<span id="cb30-17"><a href="#cb30-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.493415443261052 0.04545455   0</span></span>
-<span id="cb30-18"><a href="#cb30-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.455710371846811 0.06818182   0</span></span>
-<span id="cb30-19"><a href="#cb30-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.454710952490737 0.09090909   0</span></span>
-<span id="cb30-20"><a href="#cb30-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.440189664756163 0.11363636   0</span></span>
-<span id="cb30-21"><a href="#cb30-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.436170361317587 0.13636364   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个<code>rocs</code>也是一个列表,其长度就是lambda值的数量,对于每一个lambda取值,它都计算了可以用来画ROC曲线的数据。</p>
-<p>下面我们把AUC最大的ROC曲线画出来,用红色标记,并把其他ROC曲线也画在一起:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a>best <span class="ot">&lt;-</span> cvfit<span class="sc">$</span>index[<span class="st">"min"</span>,] <span class="co"># 提取AUC最大的lambda值</span></span>
-<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(rocs[[best]], <span class="at">type =</span> <span class="st">"l"</span>) <span class="co"># 画出AUC最大的ROC曲线</span></span>
-<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a><span class="fu">invisible</span>(<span class="fu">sapply</span>(rocs, lines, <span class="at">col=</span><span class="st">"grey"</span>)) <span class="co"># 把所有的ROC都画出来</span></span>
-<span id="cb31-4"><a href="#cb31-4" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(rocs[[best]], <span class="at">lwd =</span> <span class="dv">2</span>,<span class="at">col =</span> <span class="st">"red"</span>) <span class="co"># 把AUC最大的标红</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-31-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="confusion.glmnet" class="level3" data-number="14.9.3">
-<h3 data-number="14.9.3" class="anchored" data-anchor-id="confusion.glmnet"><span class="header-section-number">14.9.3</span> confusion.glmnet()</h3>
-<p>混淆矩阵作为分类数据必不可少的工具,可以通过<code>confusion.glmnet()</code>实现。</p>
-<p>用一个多分类数据进行演示。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(MultinomialExample)</span>
-<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> MultinomialExample<span class="sc">$</span>x</span>
-<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> MultinomialExample<span class="sc">$</span>y</span>
-<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">101</span>)</span>
-<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a>itrain <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">500</span>, <span class="dv">400</span>, <span class="at">replace =</span> <span class="cn">FALSE</span>)</span>
-<span id="cb32-6"><a href="#cb32-6" aria-hidden="true" tabindex="-1"></a>cfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x[itrain, ], y[itrain], <span class="at">family =</span> <span class="st">"multinomial"</span>)</span>
-<span id="cb32-7"><a href="#cb32-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb32-8"><a href="#cb32-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 默认lambda值是lambda.1se</span></span>
-<span id="cb32-9"><a href="#cb32-9" aria-hidden="true" tabindex="-1"></a>cnf <span class="ot">&lt;-</span> <span class="fu">confusion.glmnet</span>(cfit, <span class="at">newx =</span> x[<span class="sc">-</span>itrain, ], <span class="at">newy =</span> y[<span class="sc">-</span>itrain]) </span>
-<span id="cb32-10"><a href="#cb32-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb32-11"><a href="#cb32-11" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(cnf)</span>
-<span id="cb32-12"><a href="#cb32-12" aria-hidden="true" tabindex="-1"></a><span class="do">##          True</span></span>
-<span id="cb32-13"><a href="#cb32-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Predicted  1  2  3 Total</span></span>
-<span id="cb32-14"><a href="#cb32-14" aria-hidden="true" tabindex="-1"></a><span class="do">##     1     13  6  4    23</span></span>
-<span id="cb32-15"><a href="#cb32-15" aria-hidden="true" tabindex="-1"></a><span class="do">##     2      7 25  5    37</span></span>
-<span id="cb32-16"><a href="#cb32-16" aria-hidden="true" tabindex="-1"></a><span class="do">##     3      4  3 33    40</span></span>
-<span id="cb32-17"><a href="#cb32-17" aria-hidden="true" tabindex="-1"></a><span class="do">##     Total 24 34 42   100</span></span>
-<span id="cb32-18"><a href="#cb32-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb32-19"><a href="#cb32-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  Percent Correct:  0.71</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>如果使用<code>keep=TRUE</code>,那么结果也是多个混淆矩阵,此时也可以选择任意一个进行展示:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb33"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a>cfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"multinomial"</span>, <span class="at">type =</span> <span class="st">"class"</span>, <span class="at">keep =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb33-2"><a href="#cb33-2" aria-hidden="true" tabindex="-1"></a>cnf <span class="ot">&lt;-</span> <span class="fu">confusion.glmnet</span>(cfit<span class="sc">$</span>fit.preval, <span class="at">newy =</span> y, <span class="at">family =</span> <span class="st">"multinomial"</span>)</span>
-<span id="cb33-3"><a href="#cb33-3" aria-hidden="true" tabindex="-1"></a>best <span class="ot">&lt;-</span> cfit<span class="sc">$</span>index[<span class="st">"min"</span>,]</span>
-<span id="cb33-4"><a href="#cb33-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(cnf[[best]])</span>
-<span id="cb33-5"><a href="#cb33-5" aria-hidden="true" tabindex="-1"></a><span class="do">##          True</span></span>
-<span id="cb33-6"><a href="#cb33-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Predicted   1   2   3 Total</span></span>
-<span id="cb33-7"><a href="#cb33-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     1      76  22  14   112</span></span>
-<span id="cb33-8"><a href="#cb33-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     2      39 129  23   191</span></span>
-<span id="cb33-9"><a href="#cb33-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     3      27  23 147   197</span></span>
-<span id="cb33-10"><a href="#cb33-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     Total 142 174 184   500</span></span>
-<span id="cb33-11"><a href="#cb33-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb33-12"><a href="#cb33-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  Percent Correct:  0.704</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>虽然<code>glmnet</code>包提供了这3个函数帮助我们查看模型性能,但是很明显不能满足大家的需求,所以一般情况下我们都用其他的R包来代替这几个函数了,比如<code>caret</code>,<code>yardstick</code>,<code>pROC</code>等。</p>
-</section>
-</section>
-<section id="其他功能" class="level2" data-number="14.10">
-<h2 data-number="14.10" class="anchored" data-anchor-id="其他功能"><span class="header-section-number">14.10</span> 其他功能</h2>
-<section id="拟合非正则化的广义线性模型" class="level3" data-number="14.10.1">
-<h3 data-number="14.10.1" class="anchored" data-anchor-id="拟合非正则化的广义线性模型"><span class="header-section-number">14.10.1</span> 拟合非正则化的广义线性模型</h3>
-<p><code>glmnet</code>包提供了<code>bigGlm()</code>函数,可以对大型数据拟合非正则化的广义线性模型,类似于常规的<code>glm()</code>,但是支持<code>glmnet</code>中的所有参数。其实此时的<code>lambda=0</code>,也就是不进行正则化。如果你的数据巨大,使用<code>glm</code>很慢,或者你需要其他参数,可以尝试一下<code>bigGlm()</code>。</p>
-<p>以下是一个使用示例:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb34"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb34-1"><a href="#cb34-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(BinomialExample)</span>
-<span id="cb34-2"><a href="#cb34-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>x</span>
-<span id="cb34-3"><a href="#cb34-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> BinomialExample<span class="sc">$</span>y</span>
-<span id="cb34-4"><a href="#cb34-4" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">bigGlm</span>(x, y, <span class="at">family =</span> <span class="st">"binomial"</span>, <span class="at">lower.limits =</span> <span class="sc">-</span><span class="dv">1</span>)</span>
-<span id="cb34-5"><a href="#cb34-5" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(fit)</span>
-<span id="cb34-6"><a href="#cb34-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb34-7"><a href="#cb34-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  bigGlm(x = x, y = y, family = "binomial", lower.limits = -1) </span></span>
-<span id="cb34-8"><a href="#cb34-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb34-9"><a href="#cb34-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   Df  %Dev Lambda</span></span>
-<span id="cb34-10"><a href="#cb34-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 30 77.57      0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="修改自变量矩阵格式" class="level3" data-number="14.10.2">
-<h3 data-number="14.10.2" class="anchored" data-anchor-id="修改自变量矩阵格式"><span class="header-section-number">14.10.2</span> 修改自变量矩阵格式</h3>
-<p><code>glmnet</code>包提供了一个<code>makeX()</code>函数,可以对自变量的格式进行修改,比如,如果你提供了1个数据框<code>data.frame</code>,这个格式是不行的,它可以帮你转换为<code>matrix</code>格式,除此之外,还可以进行如下操作:</p>
-<ul>
-<li>对因子型或字符型变量进行独热编码;</li>
-<li>使用均值填补缺失值;</li>
-<li>可以直接变为稀疏矩阵,适合大数据;</li>
-<li>可以直接提供训练集和测试集两个数据集,这样可以保证两个数据集的因子水平对应,以及使用训练集中的均值对测试集进行插补</li>
-</ul>
-<p>先展示下独热编码转换功能,我们建立一个数据框,其中两列是字符型,<code>makeX</code>可以帮我们进行独热编码,并把数据变为稀疏矩阵格式:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb35"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">101</span>)</span>
-<span id="cb35-2"><a href="#cb35-2" aria-hidden="true" tabindex="-1"></a>X <span class="ot">&lt;-</span> <span class="fu">matrix</span>(<span class="fu">rnorm</span>(<span class="dv">5</span>), <span class="at">nrow =</span> <span class="dv">5</span>)</span>
-<span id="cb35-3"><a href="#cb35-3" aria-hidden="true" tabindex="-1"></a>X2 <span class="ot">&lt;-</span> <span class="fu">sample</span>(letters[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>], <span class="dv">5</span>, <span class="at">replace =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb35-4"><a href="#cb35-4" aria-hidden="true" tabindex="-1"></a>X3 <span class="ot">&lt;-</span> <span class="fu">sample</span>(LETTERS[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>], <span class="dv">5</span>, <span class="at">replace =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb35-5"><a href="#cb35-5" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(X, X2, X3)</span>
-<span id="cb35-6"><a href="#cb35-6" aria-hidden="true" tabindex="-1"></a>df</span>
-<span id="cb35-7"><a href="#cb35-7" aria-hidden="true" tabindex="-1"></a><span class="do">##            X X2 X3</span></span>
-<span id="cb35-8"><a href="#cb35-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -0.3260365  c  C</span></span>
-<span id="cb35-9"><a href="#cb35-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  0.5524619  b  C</span></span>
-<span id="cb35-10"><a href="#cb35-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 -0.6749438  c  B</span></span>
-<span id="cb35-11"><a href="#cb35-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  0.2143595  c  C</span></span>
-<span id="cb35-12"><a href="#cb35-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  0.3107692  a  C</span></span>
-<span id="cb35-13"><a href="#cb35-13" aria-hidden="true" tabindex="-1"></a><span class="fu">makeX</span>(df) <span class="co"># 转换</span></span>
-<span id="cb35-14"><a href="#cb35-14" aria-hidden="true" tabindex="-1"></a><span class="do">##            X X2a X2b X2c X3B X3C</span></span>
-<span id="cb35-15"><a href="#cb35-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -0.3260365   0   0   1   0   1</span></span>
-<span id="cb35-16"><a href="#cb35-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  0.5524619   0   1   0   0   1</span></span>
-<span id="cb35-17"><a href="#cb35-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 -0.6749438   0   0   1   1   0</span></span>
-<span id="cb35-18"><a href="#cb35-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  0.2143595   0   0   1   0   1</span></span>
-<span id="cb35-19"><a href="#cb35-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  0.3107692   1   0   0   0   1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>添加<code>sparse=T</code>可以返回稀疏矩阵格式:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb36"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb36-1"><a href="#cb36-1" aria-hidden="true" tabindex="-1"></a><span class="fu">makeX</span>(df, <span class="at">sparse =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb36-2"><a href="#cb36-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 x 6 sparse Matrix of class "dgCMatrix"</span></span>
-<span id="cb36-3"><a href="#cb36-3" aria-hidden="true" tabindex="-1"></a><span class="do">##            X X2a X2b X2c X3B X3C</span></span>
-<span id="cb36-4"><a href="#cb36-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -0.3260365   .   .   1   .   1</span></span>
-<span id="cb36-5"><a href="#cb36-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  0.5524619   .   1   .   .   1</span></span>
-<span id="cb36-6"><a href="#cb36-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 -0.6749438   .   .   1   1   .</span></span>
-<span id="cb36-7"><a href="#cb36-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  0.2143595   .   .   1   .   1</span></span>
-<span id="cb36-8"><a href="#cb36-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  0.3107692   1   .   .   .   1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>下面我们对原数据框添加一些缺失值,用来演示<code>makeX</code>的缺失值插补功能:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb37"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" aria-hidden="true" tabindex="-1"></a>Xn  <span class="ot">&lt;-</span> X ; Xn[<span class="dv">3</span>,<span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
-<span id="cb37-2"><a href="#cb37-2" aria-hidden="true" tabindex="-1"></a>X2n <span class="ot">&lt;-</span> X2; X2n[<span class="dv">1</span>]  <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
-<span id="cb37-3"><a href="#cb37-3" aria-hidden="true" tabindex="-1"></a>X3n <span class="ot">&lt;-</span> X3; X3n[<span class="dv">5</span>]  <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
-<span id="cb37-4"><a href="#cb37-4" aria-hidden="true" tabindex="-1"></a>dfn <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(Xn, X2n, X3n)</span>
-<span id="cb37-5"><a href="#cb37-5" aria-hidden="true" tabindex="-1"></a>dfn</span>
-<span id="cb37-6"><a href="#cb37-6" aria-hidden="true" tabindex="-1"></a><span class="do">##           Xn  X2n  X3n</span></span>
-<span id="cb37-7"><a href="#cb37-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -0.3260365 &lt;NA&gt;    C</span></span>
-<span id="cb37-8"><a href="#cb37-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  0.5524619    b    C</span></span>
-<span id="cb37-9"><a href="#cb37-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 3         NA    c    B</span></span>
-<span id="cb37-10"><a href="#cb37-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  0.2143595    c    C</span></span>
-<span id="cb37-11"><a href="#cb37-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  0.3107692    a &lt;NA&gt;</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>通过添加<code>na.impute=T</code>可以进行插补:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb38"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" aria-hidden="true" tabindex="-1"></a><span class="fu">makeX</span>(dfn,<span class="at">na.impute =</span> T)</span>
-<span id="cb38-2"><a href="#cb38-2" aria-hidden="true" tabindex="-1"></a><span class="do">##           Xn X2na X2nb X2nc X3nB X3nC</span></span>
-<span id="cb38-3"><a href="#cb38-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 -0.3260365 0.25 0.25  0.5 0.00 1.00</span></span>
-<span id="cb38-4"><a href="#cb38-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  0.5524619 0.00 1.00  0.0 0.00 1.00</span></span>
-<span id="cb38-5"><a href="#cb38-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  0.1878885 0.00 0.00  1.0 1.00 0.00</span></span>
-<span id="cb38-6"><a href="#cb38-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  0.2143595 0.00 0.00  1.0 0.00 1.00</span></span>
-<span id="cb38-7"><a href="#cb38-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  0.3107692 1.00 0.00  0.0 0.25 0.75</span></span>
-<span id="cb38-8"><a href="#cb38-8" aria-hidden="true" tabindex="-1"></a><span class="do">## attr(,"means")</span></span>
-<span id="cb38-9"><a href="#cb38-9" aria-hidden="true" tabindex="-1"></a><span class="do">##        Xn      X2na      X2nb      X2nc      X3nB      X3nC </span></span>
-<span id="cb38-10"><a href="#cb38-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.1878885 0.2500000 0.2500000 0.5000000 0.2500000 0.7500000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个函数总体来说还是挺方便的。</p>
-</section>
-<section id="添加进度条" class="level3" data-number="14.10.3">
-<h3 data-number="14.10.3" class="anchored" data-anchor-id="添加进度条"><span class="header-section-number">14.10.3</span> 添加进度条</h3>
-<p><code>glmnet()</code>和<code>cv.glmnet()</code>都可以通过添加<code>trace.it=TRUE</code>实现进度条功能:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb39"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb39-1"><a href="#cb39-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 结果太长不展示了</span></span>
-<span id="cb39-2"><a href="#cb39-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">trace.it =</span> <span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb40"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 结果太长不展示了</span></span>
-<span id="cb40-2"><a href="#cb40-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">trace.it =</span> <span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>也可以通过以下方式实现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb41"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb41-1"><a href="#cb41-1" aria-hidden="true" tabindex="-1"></a><span class="fu">glmnet.control</span>(<span class="at">itrace =</span> <span class="dv">1</span>) <span class="co"># 变成0就不显示了~</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
 </section>
-<section id="正则化cox回归" class="level2" data-number="14.11">
-<h2 data-number="14.11" class="anchored" data-anchor-id="正则化cox回归"><span class="header-section-number">14.11</span> 正则化Cox回归</h2>
+<section id="正则化cox回归" class="level2" data-number="18.2">
+<h2 data-number="18.2" class="anchored" data-anchor-id="正则化cox回归"><span class="header-section-number">18.2</span> 正则化Cox回归</h2>
 <p>正则化的COX回归,也就是<code>glmnet</code>在生存分析中的应用,这里我们还是以lasso为例进行演示。</p>
 <p><code>glmnet</code>包的详细使用介绍已经在前面都介绍过了,正则化的COX回归并没有太大的不同,所以这里简单介绍一下。</p>
 <p>下面是一些理论解释,大家随便看看就好。</p>
 <p>在<code>glmnet</code>中,我们使用弹性网络(elastic net)方法对部分似然的负对数进行惩罚。</p>
 <p>部分似然(partial-likelihood)是一种用于处理生存分析(survival-analysis)中右侧截尾(right-censored)观测的方法。而负对数部分似然(negative-log-partial-likelihood)则是对部分似然取反并求对数,目的是将最大化似然函数的问题转化为最小化负对数似然函数的问题。</p>
 <p>为了进一步约束模型的复杂度和提高模型的泛化能力,我们在负对数部分似然的基础上引入了弹性网络惩罚(elastic-net-penalty)。弹性网惩罚结合了L1正则化(L1-regularization)和L2正则化(L2-regularization)的特性,从而既能产生稀疏解,又能保留一些高度相关的特征。这样我们可以在建立模型时在部分似然的基础上,使用弹性网惩罚来进行模型的优化和参数选择,以提高模型的性能和泛化能力。</p>
-<section id="基础使用" class="level3" data-number="14.11.1">
-<h3 data-number="14.11.1" class="anchored" data-anchor-id="基础使用"><span class="header-section-number">14.11.1</span> 基础使用</h3>
-<p><code>glmnet</code>对数据格式是有要求的,之前也说过,<code>x</code>必须是由自变量组成的<code>matrix</code>,<code>y</code>可以是一个两列的<code>matrix</code>,两列的列名必须是<code>time</code>和<code>status</code>,分别表示生存时间和生存状态,其中<code>status</code>必须使用0和1组成,0表示删失,1表示发生终点事件(又叫失效事件,比如死亡)。除此之外,<code>y</code>还可以是由<code>Surv()</code>函数生成的对象。</p>
+<section id="基础使用" class="level3" data-number="18.2.1">
+<h3 data-number="18.2.1" class="anchored" data-anchor-id="基础使用"><span class="header-section-number">18.2.1</span> 基础使用</h3>
+<p><code>glmnet</code>对数据格式是有要求的,之前也说过,<code>x</code>必须是由自变量组成的<code>matrix</code>,<code>y</code>可以是一个两列的<code>matrix</code>,两列的列名必须是<code>time</code>和<code>status</code>,分别表示生存时间和生存状态,其中<code>status</code>必须使用数字0和数字1组成,0表示删失,1表示发生终点事件(又叫失效事件,比如死亡)。除此之外,<code>y</code>还可以是由<code>Surv()</code>函数生成的对象。</p>
 <p>下面是一个示例数据:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb42"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb42-1"><a href="#cb42-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span>
-<span id="cb42-2"><a href="#cb42-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb42-3"><a href="#cb42-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-4"><a href="#cb42-4" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(CoxExample)</span>
-<span id="cb42-5"><a href="#cb42-5" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>x</span>
-<span id="cb42-6"><a href="#cb42-6" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>y</span>
-<span id="cb42-7"><a href="#cb42-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-8"><a href="#cb42-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看y的数据格式</span></span>
-<span id="cb42-9"><a href="#cb42-9" aria-hidden="true" tabindex="-1"></a>y[<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>, ]</span>
-<span id="cb42-10"><a href="#cb42-10" aria-hidden="true" tabindex="-1"></a><span class="do">##            time status</span></span>
-<span id="cb42-11"><a href="#cb42-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 1.76877757      1</span></span>
-<span id="cb42-12"><a href="#cb42-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.54528404      1</span></span>
-<span id="cb42-13"><a href="#cb42-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.04485918      0</span></span>
-<span id="cb42-14"><a href="#cb42-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.85032298      0</span></span>
-<span id="cb42-15"><a href="#cb42-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,] 0.61488426      1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmnet)</span>
+<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(CoxExample)</span>
+<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>x</span>
+<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>y</span>
+<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看y的数据格式</span></span>
+<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a>y[<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>, ]</span>
+<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="do">##            time status</span></span>
+<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 1.76877757      1</span></span>
+<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.54528404      1</span></span>
+<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [3,] 0.04485918      0</span></span>
+<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [4,] 0.85032298      0</span></span>
+<span id="cb22-15"><a href="#cb22-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [5,] 0.61488426      1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>建立模型,只需要使用<code>family = "cox"</code>即可:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb43"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>其中的一些参数比如<code>alpha</code>,<code>weights</code>,<code>nlambda</code>等,在前面已经介绍过了,这里就不再多介绍了。</p>
 <p>可视化、提取系数、预测新数据和之前介绍的用法也是一模一样,这里也不再多说了。</p>
 </section>
-<section id="交叉验证-1" class="level3" data-number="14.11.2">
-<h3 data-number="14.11.2" class="anchored" data-anchor-id="交叉验证-1"><span class="header-section-number">14.11.2</span> 交叉验证</h3>
+<section id="交叉验证-1" class="level3" data-number="18.2.2">
+<h3 data-number="18.2.2" class="anchored" data-anchor-id="交叉验证-1"><span class="header-section-number">18.2.2</span> 交叉验证</h3>
 <p>对于正则化的cox来说,<code>cv.glmnet()</code>中的<code>type.measure</code>只能是<code>"deviance"</code>(默认值,给出部分似然),或者<code>"C"</code>,给出 Harrell-C-index。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb44"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb44-1"><a href="#cb44-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
-<span id="cb44-2"><a href="#cb44-2" aria-hidden="true" tabindex="-1"></a>cvfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>, <span class="at">type.measure =</span> <span class="st">"C"</span>)</span>
-<span id="cb44-3"><a href="#cb44-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb44-4"><a href="#cb44-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(cvfit)</span>
-<span id="cb44-5"><a href="#cb44-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb44-6"><a href="#cb44-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  cv.glmnet(x = x, y = y, type.measure = "C", family = "cox") </span></span>
-<span id="cb44-7"><a href="#cb44-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb44-8"><a href="#cb44-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Measure: C-index </span></span>
-<span id="cb44-9"><a href="#cb44-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb44-10"><a href="#cb44-10" aria-hidden="true" tabindex="-1"></a><span class="do">##      Lambda Index Measure       SE Nonzero</span></span>
-<span id="cb44-11"><a href="#cb44-11" aria-hidden="true" tabindex="-1"></a><span class="do">## min 0.03058    23  0.7304 0.005842      11</span></span>
-<span id="cb44-12"><a href="#cb44-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 1se 0.05865    16  0.7267 0.005993      10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>cvfit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>, <span class="at">type.measure =</span> <span class="st">"C"</span>)</span>
+<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(cvfit)</span>
+<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:  cv.glmnet(x = x, y = y, type.measure = "C", family = "cox") </span></span>
+<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Measure: C-index </span></span>
+<span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a><span class="do">##      Lambda Index Measure       SE Nonzero</span></span>
+<span id="cb24-11"><a href="#cb24-11" aria-hidden="true" tabindex="-1"></a><span class="do">## min 0.03058    23  0.7304 0.005842      11</span></span>
+<span id="cb24-12"><a href="#cb24-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 1se 0.05865    16  0.7267 0.005993      10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图也是一样的,下面这幅图的解释在前面也已经详细介绍过了,这里就不再多做解释了:</p>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb45"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb45-1"><a href="#cb45-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cvfit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-45-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-25-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<blockquote class="blockquote">
-<p>在glmnet中,对于生存时间的排列相同(ties)情况,使用的是Breslow近似(Breslow approximation)。这与survival软件包中的coxph函数的默认排列处理方法(tie-handling method)——Efron近似(Efron approximation)不同。</p>
+</div>
+<div class="callout callout-style-default callout-tip callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+提示
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>在glmnet中,对于生存时间的排列相同(ties)情况,使用的是Breslow近似(Breslow approximation)。这与survival软件包中的coxph函数的默认排列处理方法(tie-handling method)-Efron近似(Efron approximation)不同。</p>
 <p>当存在相同的生存时间观测时,例如多个个体在同一时间发生事件,排列的处理方法对估计结果和推断的准确性至关重要。Breslow近似与Efron近似是最常见的两种处理方法。</p>
 <p>在glmnet中,使用Breslow近似处理排列,该方法假设所有的排列发生在后一事件之前的所有时间上。这种近似方法在计算效率上比较高,但可能会导致估计的偏差。</p>
 <p>而在survival软件包中的coxph函数,默认使用的是Efron近似处理排列。Efron近似方法基于考虑排列发生的时间顺序进行调整,更接近真实的结果,但在计算过程中稍微耗时一些。</p>
 <p>因此,当在glmnet和survival软件包中处理生存分析时,需要注意到在处理排列的方法上的差异,以确保得到准确和一致的结果。</p>
-</blockquote>
+</div>
+</div>
 </section>
-<section id="分层cox" class="level3" data-number="14.11.3">
-<h3 data-number="14.11.3" class="anchored" data-anchor-id="分层cox"><span class="header-section-number">14.11.3</span> 分层COX</h3>
+<section id="分层cox" class="level3" data-number="18.2.3">
+<h3 data-number="18.2.3" class="anchored" data-anchor-id="分层cox"><span class="header-section-number">18.2.3</span> 分层COX</h3>
 <p><code>coxph()</code>支持<code>strata()</code>函数,因为它是使用公式形式的,但是<code>glmnet</code>不支持公式形式,只能使用<code>x/y</code>形式的输入,所以如果要实现分层,需要使用<code>stratifySurv()</code>。</p>
 <p>继续使用上面的示例数据,我们把1000个观测分成5层:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb46"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb46-1"><a href="#cb46-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 把1000个观测分5层</span></span>
-<span id="cb46-2"><a href="#cb46-2" aria-hidden="true" tabindex="-1"></a>strata <span class="ot">&lt;-</span> <span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>, <span class="at">length.out =</span> <span class="dv">1000</span>)</span>
-<span id="cb46-3"><a href="#cb46-3" aria-hidden="true" tabindex="-1"></a>y2 <span class="ot">&lt;-</span> <span class="fu">stratifySurv</span>(y, strata) <span class="co"># 对y进行分层</span></span>
-<span id="cb46-4"><a href="#cb46-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(y2[<span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>])</span>
-<span id="cb46-5"><a href="#cb46-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  'stratifySurv' num [1:6, 1:2] 1.7688  0.5453  0.0449+ 0.8503+ 0.6149  0.2986+</span></span>
-<span id="cb46-6"><a href="#cb46-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "dimnames")=List of 2</span></span>
-<span id="cb46-7"><a href="#cb46-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   ..$ : NULL</span></span>
-<span id="cb46-8"><a href="#cb46-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   ..$ : chr [1:2] "time" "status"</span></span>
-<span id="cb46-9"><a href="#cb46-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "type")= chr "right"</span></span>
-<span id="cb46-10"><a href="#cb46-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "strata")= int [1:6] 1 2 3 4 5 1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 把1000个观测分5层</span></span>
+<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a>strata <span class="ot">&lt;-</span> <span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>, <span class="at">length.out =</span> <span class="dv">1000</span>)</span>
+<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a>y2 <span class="ot">&lt;-</span> <span class="fu">stratifySurv</span>(y, strata) <span class="co"># 对y进行分层</span></span>
+<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(y2[<span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>])</span>
+<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  'stratifySurv' num [1:6, 1:2] 1.7688  0.5453  0.0449+ 0.8503+ 0.6149  0.2986+</span></span>
+<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "dimnames")=List of 2</span></span>
+<span id="cb26-7"><a href="#cb26-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   ..$ : NULL</span></span>
+<span id="cb26-8"><a href="#cb26-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   ..$ : chr [1:2] "time" "status"</span></span>
+<span id="cb26-9"><a href="#cb26-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "type")= chr "right"</span></span>
+<span id="cb26-10"><a href="#cb26-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  - attr(*, "strata")= int [1:6] 1 2 3 4 5 1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>接下来把<code>y2</code>提供给<code>glmnet()</code>或者<code>cv.glmnet()</code>就可以实现正则化的分层COX了。</p>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb47"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb47-1"><a href="#cb47-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y2, <span class="at">family =</span> <span class="st">"cox"</span>)</span>
-<span id="cb47-2"><a href="#cb47-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb47-3"><a href="#cb47-3" aria-hidden="true" tabindex="-1"></a>cv.fit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y2, <span class="at">family =</span> <span class="st">"cox"</span>, <span class="at">nfolds =</span> <span class="dv">5</span>)</span>
-<span id="cb47-4"><a href="#cb47-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cv.fit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y2, <span class="at">family =</span> <span class="st">"cox"</span>)</span>
+<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a>cv.fit <span class="ot">&lt;-</span> <span class="fu">cv.glmnet</span>(x, y2, <span class="at">family =</span> <span class="st">"cox"</span>, <span class="at">nfolds =</span> <span class="dv">5</span>)</span>
+<span id="cb27-4"><a href="#cb27-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cv.fit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-47-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-27-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="生存曲线" class="level3" data-number="14.11.4">
-<h3 data-number="14.11.4" class="anchored" data-anchor-id="生存曲线"><span class="header-section-number">14.11.4</span> 生存曲线</h3>
+<section id="生存曲线" class="level3" data-number="18.2.4">
+<h3 data-number="18.2.4" class="anchored" data-anchor-id="生存曲线"><span class="header-section-number">18.2.4</span> 生存曲线</h3>
 <p><code>glmnet</code>的结果可以直接提供给<code>survfit()</code>使用,可以用来画生存曲线。这里简单介绍一下,大家知道即可,因为大家在平时写文章时根本不会这么用……</p>
 <p>以下是一个示例。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb48"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb48-1"><a href="#cb48-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(CoxExample)</span>
-<span id="cb48-2"><a href="#cb48-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>x</span>
-<span id="cb48-3"><a href="#cb48-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>y</span>
-<span id="cb48-4"><a href="#cb48-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb48-5"><a href="#cb48-5" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> <span class="fu">Surv</span>(y[,<span class="dv">1</span>],y[,<span class="dv">2</span>]) <span class="co"># 需要用Surv转换格式</span></span>
-<span id="cb48-6"><a href="#cb48-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb48-7"><a href="#cb48-7" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>)</span>
-<span id="cb48-8"><a href="#cb48-8" aria-hidden="true" tabindex="-1"></a>survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y)</span>
-<span id="cb48-9"><a href="#cb48-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y)</span></span>
-<span id="cb48-10"><a href="#cb48-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb48-11"><a href="#cb48-11" aria-hidden="true" tabindex="-1"></a><span class="do">##         n events median</span></span>
-<span id="cb48-12"><a href="#cb48-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 1000    692  0.922</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(CoxExample)</span>
+<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a>x <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>x</span>
+<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> CoxExample<span class="sc">$</span>y</span>
+<span id="cb28-4"><a href="#cb28-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb28-5"><a href="#cb28-5" aria-hidden="true" tabindex="-1"></a>y <span class="ot">&lt;-</span> <span class="fu">Surv</span>(y[,<span class="dv">1</span>],y[,<span class="dv">2</span>]) <span class="co"># 需要用Surv转换格式</span></span>
+<span id="cb28-6"><a href="#cb28-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb28-7"><a href="#cb28-7" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">glmnet</span>(x, y, <span class="at">family =</span> <span class="st">"cox"</span>)</span>
+<span id="cb28-8"><a href="#cb28-8" aria-hidden="true" tabindex="-1"></a>survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y)</span>
+<span id="cb28-9"><a href="#cb28-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y)</span></span>
+<span id="cb28-10"><a href="#cb28-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb28-11"><a href="#cb28-11" aria-hidden="true" tabindex="-1"></a><span class="do">##         n events median</span></span>
+<span id="cb28-12"><a href="#cb28-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1,] 1000    692  0.922</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>直接画图即可:</p>
-<div class="cell" data-fig.asp="0.8">
-<div class="sourceCode cell-code" id="cb49"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb49-1"><a href="#cb49-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-49-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这个生存曲线有些奇怪,因为数据原因,大家可以自己尝试下。</p>
 <p>基于新的数据画生存曲线也是可以的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb50"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb50-1"><a href="#cb50-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y, <span class="at">newx =</span> x[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, ]))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(survival<span class="sc">::</span><span class="fu">survfit</span>(fit, <span class="at">s =</span> <span class="fl">0.05</span>, <span class="at">x =</span> x, <span class="at">y =</span> y, <span class="at">newx =</span> x[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, ]))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-50-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_lasso_files/figure-html/unnamed-chunk-30-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-</section>
-</section>
-<section id="其他" class="level2" data-number="14.12">
-<h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="header-section-number">14.12</span> 其他</h2>
-<p>我知道大家想看的肯定不是这些,所以后期会安排一些<code>glmnet</code>实战的推文,用几个详细的示例进行演示,并展示<strong>lasso回归相关的列线图、校准曲线、决策曲线、ROC曲线等内容</strong>,结合一些文章进行讲解。</p>
-<p>敬请期待~</p>
 
 
+</section>
 </section>
 
 </main> <!-- /main -->
@@ -1674,18 +1306,7 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1717,11 +1338,50 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1731,8 +1391,17 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1744,7 +1413,130 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1788,6 +1580,7 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1813,6 +1606,32 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1874,27 +1693,32 @@ <h2 data-number="14.12" class="anchored" data-anchor-id="其他"><span class="he
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection_bestsubset.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span>
+      <a href="./feature-selection_bestsubset.html" class="pagination-link" aria-label="变量选择之最优子集">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection_randomforest.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection_randomforest.html" class="pagination-link" aria-label="随机森林筛选变量">
+        <span class="nav-page-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-15-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-15-1.png
new file mode 100644
index 0000000..2269f5a
Binary files /dev/null and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-16-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-16-1.png
deleted file mode 100644
index c567d89..0000000
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-16-1.png and /dev/null differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-17-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-17-1.png
new file mode 100644
index 0000000..ffec3f2
Binary files /dev/null and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-17-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-18-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-18-1.png
deleted file mode 100644
index 6a4dac5..0000000
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-18-1.png and /dev/null differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-45-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-25-1.png
similarity index 100%
rename from docs/feature-selection_lasso_files/figure-html/unnamed-chunk-45-1.png
rename to docs/feature-selection_lasso_files/figure-html/unnamed-chunk-25-1.png
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-47-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-27-1.png
similarity index 100%
rename from docs/feature-selection_lasso_files/figure-html/unnamed-chunk-47-1.png
rename to docs/feature-selection_lasso_files/figure-html/unnamed-chunk-27-1.png
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png
index e5b831d..3eb9137 100644
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-29-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-50-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-30-1.png
similarity index 100%
rename from docs/feature-selection_lasso_files/figure-html/unnamed-chunk-50-1.png
rename to docs/feature-selection_lasso_files/figure-html/unnamed-chunk-30-1.png
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-31-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-31-1.png
deleted file mode 100644
index bbad053..0000000
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-31-1.png and /dev/null differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-4-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-4-1.png
new file mode 100644
index 0000000..ca60606
Binary files /dev/null and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-49-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-49-1.png
deleted file mode 100644
index 3eb9137..0000000
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-49-1.png and /dev/null differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png
index ca60606..69c8a14 100644
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png
index 69c8a14..b985e78 100644
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png and b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-7-1.png b/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index b985e78..0000000
Binary files a/docs/feature-selection_lasso_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/feature-selection_randomforest.html b/docs/feature-selection_randomforest.html
index 96a1c82..e6fe8b4 100644
--- a/docs/feature-selection_randomforest.html
+++ b/docs/feature-selection_randomforest.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 15&nbsp; 变量筛选之随机森林</title>
+<title>19&nbsp; 随机森林筛选变量 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./clinmodel-evalution.html" rel="next">
+<link href="./临床预测模型评价.html" rel="next">
 <link href="./feature-selection_lasso.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection_randomforest.html"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_randomforest.html"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,27 +493,27 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">15.1</span> 准备数据</a></li>
-  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">15.2</span> 建立模型</a></li>
-  <li><a href="#结果探索" id="toc-结果探索" class="nav-link" data-scroll-target="#结果探索"><span class="header-section-number">15.3</span> 结果探索</a></li>
-  <li><a href="#交叉验证变量筛选" id="toc-交叉验证变量筛选" class="nav-link" data-scroll-target="#交叉验证变量筛选"><span class="header-section-number">15.4</span> 交叉验证变量筛选</a></li>
-  <li><a href="#boruta筛选变量" id="toc-boruta筛选变量" class="nav-link" data-scroll-target="#boruta筛选变量"><span class="header-section-number">15.5</span> Boruta筛选变量</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">19.1</span> 准备数据</a></li>
+  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">19.2</span> 建立模型</a></li>
+  <li><a href="#结果探索" id="toc-结果探索" class="nav-link" data-scroll-target="#结果探索"><span class="header-section-number">19.3</span> 结果探索</a></li>
+  <li><a href="#交叉验证变量筛选" id="toc-交叉验证变量筛选" class="nav-link" data-scroll-target="#交叉验证变量筛选"><span class="header-section-number">19.4</span> 交叉验证变量筛选</a></li>
+  <li><a href="#boruta筛选变量" id="toc-boruta筛选变量" class="nav-link" data-scroll-target="#boruta筛选变量"><span class="header-section-number">19.5</span> Boruta筛选变量</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_randomforest.html"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></h1>
+<h1 class="title"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></h1>
 </div>
 
 
@@ -544,21 +526,23 @@ <h1 class="title"><span class="chapter-number">15</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>之前已经给大家介绍了4种可用于筛选变量的方法,分别是:</p>
 <ul>
-<li><a href="https://mp.weixin.qq.com/s/Eb6ihab87Y3zSc9c7WsCJg">递归特征消除</a></li>
 <li><a href="https://mp.weixin.qq.com/s/Lw0FLXaijbmVgpWQx7fWMQ">变量选择之逐步(stepwise)回归法</a></li>
 <li><a href="https://mp.weixin.qq.com/s/KzRVoEq2HF8ZdNbS69DkwA">变量选择之先单因素后多因素</a></li>
-<li><a href="https://mp.weixin.qq.com/s/ABnu7mkIbVSHVwEq3nlnSQ">用glmnet做lasso回归</a></li>
+<li><a href="https://mp.weixin.qq.com/s/ABnu7mkIbVSHVwEq3nlnSQ">lasso回归筛选变量</a></li>
 <li><a href="https://mp.weixin.qq.com/s/JTVWvtkAsqqpnS86WFpj2w">变量选择之最优子集法</a></li>
 </ul>
+<p>除此之外,还介绍过递归特征消除这种方法:<a href="https://mp.weixin.qq.com/s/Eb6ihab87Y3zSc9c7WsCJg">递归特征消除</a></p>
 <p>这里再介绍一下如何根据随机森林得出的变量重要性筛选变量。</p>
 <p>随机森林筛选变量和递归特征消除其实更偏向于机器学习方面,和<strong>先单后多</strong>这种筛选变量的方法并不一样。随机森林作为一种非常常见的机器学习方法,它是可以调参的,我们这里就不演示调参的过程了,大家可以参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=126&amp;uin=&amp;key=&amp;devicetype=Windows+11+x64&amp;version=6309071d&amp;lang=zh_CN&amp;ascene=0">机器学习系列合集</a>。</p>
 <p>这里展示的是随机森林在分类问题中的使用,对于回归问题也是完全一致的使用方法。对于随机生存森林,请参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2699591889800560640&amp;scene=126&amp;uin=&amp;key=&amp;devicetype=Windows+11+x64&amp;version=6309071d&amp;lang=zh_CN&amp;ascene=0">随机生存森林合集</a></p>
-<section id="准备数据" class="level2" data-number="15.1">
-<h2 data-number="15.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">15.1</span> 准备数据</h2>
+<section id="准备数据" class="level2" data-number="19.1">
+<h2 data-number="19.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">19.1</span> 准备数据</h2>
 <p>我们使用<code>TCGA-BLCA</code>的<code>lncRNA</code>数据(数据在粉丝QQ群文件,需要的加群下载即可),其中包括408个样本,<code>time_months</code>是生存时间,<code>event</code>是生存状态,1代表死亡,0代表生存,其余变量都是自变量。</p>
 <p>先简单处理一下数据:</p>
 <div class="cell">
@@ -586,8 +570,8 @@ <h2 data-number="15.1" class="anchored" data-anchor-id="准备数据"><span clas
 <span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 4     0 2.73075081 1.7314314  0.8609916  0.7323014 1.0531249</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="建立模型" class="level2" data-number="15.2">
-<h2 data-number="15.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">15.2</span> 建立模型</h2>
+<section id="建立模型" class="level2" data-number="19.2">
+<h2 data-number="19.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">19.2</span> 建立模型</h2>
 <p>使用经典的<code>randomForest</code>建立随机森林模型:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(randomForest)</span>
@@ -611,13 +595,17 @@ <h2 data-number="15.2" class="anchored" data-anchor-id="建立模型"><span clas
 </div>
 <p>结果给出了树的数量:500颗;OOB错误率:23.91%;还给出了混淆矩阵。</p>
 </section>
-<section id="结果探索" class="level2" data-number="15.3">
-<h2 data-number="15.3" class="anchored" data-anchor-id="结果探索"><span class="header-section-number">15.3</span> 结果探索</h2>
+<section id="结果探索" class="level2" data-number="19.3">
+<h2 data-number="19.3" class="anchored" data-anchor-id="结果探索"><span class="header-section-number">19.3</span> 结果探索</h2>
 <p>下面是可视化<strong>整体错误率</strong>和<strong>树的数量</strong>的关系,可以看到随着树的数量增加,错误率逐渐降低并渐趋平稳,中间的黑色线条是整体的错误率,上下两条是结果变量中两个类别的错误率。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(fit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>可以看到结果有一个类别的错误率竟然是逐渐增加的,因为我们这个数据的存在严重的<strong>类不平衡</strong>问题,也就是结果变量中的两种类别差异很大:</p>
@@ -627,7 +615,7 @@ <h2 data-number="15.3" class="anchored" data-anchor-id="结果探索"><span clas
 <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   0   1 </span></span>
 <span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 226  71</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>类别0有226个,类别1只有71个,模型为了提高整体准确率,就会牺牲掉类别为1的准确性~</p>
+<p>类别0有226个,类别1只有71个,模型为了提高整体准确率,就会牺牲掉类别为1的准确性。</p>
 <p>查看整体错误率最小时有几棵树:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">which.min</span>(fit<span class="sc">$</span>err.rate[,<span class="dv">1</span>])</span>
@@ -701,13 +689,17 @@ <h2 data-number="15.3" class="anchored" data-anchor-id="结果探索"><span clas
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">varImpPlot</span>(fit)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="480"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="480"></p>
+</figure>
+</div>
 </div>
 </div>
 <p><strong>通过变量重要性,大家就可以选择比较重要的变量了。你可以选择前5个,前10个,或者大于所有变量性平均值(中位数,百分位数等)的变量等等。</strong></p>
 </section>
-<section id="交叉验证变量筛选" class="level2" data-number="15.4">
-<h2 data-number="15.4" class="anchored" data-anchor-id="交叉验证变量筛选"><span class="header-section-number">15.4</span> 交叉验证变量筛选</h2>
+<section id="交叉验证变量筛选" class="level2" data-number="19.4">
+<h2 data-number="19.4" class="anchored" data-anchor-id="交叉验证变量筛选"><span class="header-section-number">19.4</span> 交叉验证变量筛选</h2>
 <p><code>randomForest</code>还提供了使用交叉验证法进行递归特征消除,筛选变量的方法:<code>rfcv</code>,下面是使用5折交叉验证进行递归特征消除:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">647</span>)</span>
@@ -726,7 +718,11 @@ <h2 data-number="15.4" class="anchored" data-anchor-id="交叉验证变量筛选
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">with</span>(res, <span class="fu">plot</span>(n.var, error.cv, <span class="at">type=</span><span class="st">"o"</span>, <span class="at">lwd=</span><span class="dv">2</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_randomforest_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>结合上面的变量重要性,你可以选择前7个最重要的变量。</p>
@@ -745,8 +741,8 @@ <h2 data-number="15.4" class="anchored" data-anchor-id="交叉验证变量筛选
 </div>
 </div>
 </section>
-<section id="boruta筛选变量" class="level2" data-number="15.5">
-<h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><span class="header-section-number">15.5</span> Boruta筛选变量</h2>
+<section id="boruta筛选变量" class="level2" data-number="19.5">
+<h2 data-number="19.5" class="anchored" data-anchor-id="boruta筛选变量"><span class="header-section-number">19.5</span> Boruta筛选变量</h2>
 <p>Boruta是基于随机森林的一种变量筛选方法,它可以基于随机森林的变量重要性计算<code>z-score</code>,然后对每个变量标记<strong>确认 or 待定 or 拒绝</strong>,从而实现变量筛选。</p>
 <p>这种方法倾向于找到所有与结果变量最相关的变量,所以结果有可能是冗余的(或者存在共线性、相关性)。</p>
 <p>参考文献:Kursa M B, Rudnicki W R. Feature selection with the Boruta package[J]. Journal of statistical software, 2010, 36: 1-13.</p>
@@ -756,35 +752,7 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
 <span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">23</span>)</span>
 <span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>fs <span class="ot">&lt;-</span> <span class="fu">Boruta</span>(event <span class="sc">~</span> ., <span class="at">data =</span> dat.cox, <span class="at">doTrace=</span><span class="dv">1</span>)</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="do">## After 13 iterations, +0.91 secs:</span></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  rejected 35 attributes: AATBC, AC002398.2, AC008735.2, AC008736.1, AC012085.2 and 30 more;</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 24 attributes left.</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="do">## After 17 iterations, +0.99 secs:</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  rejected 2 attributes: KRT7AS, MAFGDT;</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 22 attributes left.</span></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="do">## After 21 iterations, +1.1 secs:</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 1 attribute: AL161431.1;</span></span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  rejected 3 attributes: AC099850.4, AL162424.1, FENDRR;</span></span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 18 attributes left.</span></span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="do">## After 24 iterations, +1.1 secs:</span></span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  rejected 1 attribute: AP001107.5;</span></span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 17 attributes left.</span></span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="do">## After 30 iterations, +1.2 secs:</span></span>
-<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 1 attribute: ADAMTS9AS1;</span></span>
-<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 16 attributes left.</span></span>
-<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a><span class="do">## After 45 iterations, +1.5 secs:</span></span>
-<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 1 attribute: SNHG25;</span></span>
-<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 15 attributes left.</span></span>
-<span id="cb10-25"><a href="#cb10-25" aria-hidden="true" tabindex="-1"></a><span class="do">## After 48 iterations, +1.6 secs:</span></span>
-<span id="cb10-26"><a href="#cb10-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 2 attributes: AC093010.3, MIR100HG;</span></span>
-<span id="cb10-27"><a href="#cb10-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 13 attributes left.</span></span>
-<span id="cb10-28"><a href="#cb10-28" aria-hidden="true" tabindex="-1"></a><span class="do">## After 63 iterations, +1.9 secs:</span></span>
-<span id="cb10-29"><a href="#cb10-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 1 attribute: SPINT1AS1;</span></span>
-<span id="cb10-30"><a href="#cb10-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 12 attributes left.</span></span>
-<span id="cb10-31"><a href="#cb10-31" aria-hidden="true" tabindex="-1"></a><span class="do">## After 71 iterations, +2 secs:</span></span>
-<span id="cb10-32"><a href="#cb10-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  confirmed 1 attribute: HAND2AS1;</span></span>
-<span id="cb10-33"><a href="#cb10-33" aria-hidden="true" tabindex="-1"></a><span class="do">##  still have 11 attributes left.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>fs <span class="ot">&lt;-</span> <span class="fu">Boruta</span>(event <span class="sc">~</span> ., <span class="at">data =</span> dat.cox, <span class="at">doTrace=</span><span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>查看筛选结果:变量<strong>确认</strong>,变量<strong>待定</strong>,变量<strong>拒绝</strong>:</p>
 <div class="cell">
@@ -841,18 +809,7 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -884,11 +841,50 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -898,8 +894,17 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -911,7 +916,130 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -955,6 +1083,7 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -980,6 +1109,32 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1041,27 +1196,32 @@ <h2 data-number="15.5" class="anchored" data-anchor-id="boruta筛选变量"><spa
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection_lasso.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span>
+      <a href="./feature-selection_lasso.html" class="pagination-link" aria-label="lasso回归筛选变量">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./clinmodel-evalution.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./临床预测模型评价.html" class="pagination-link" aria-label="临床预测模型的评价">
+        <span class="nav-page-text">临床预测模型的评价</span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/feature-selection_stepwise.html b/docs/feature-selection_stepwise.html
index f23ba13..daef1f4 100644
--- a/docs/feature-selection_stepwise.html
+++ b/docs/feature-selection_stepwise.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 12&nbsp; 筛选变量逐步回归</title>
+<title>16&nbsp; 变量选择之逐步回归 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection_stepwise.html"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_stepwise.html"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,26 +493,26 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据" id="toc-加载数据" class="nav-link active" data-scroll-target="#加载数据"><span class="header-section-number">12.1</span> 加载数据</a></li>
-  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">12.2</span> 建立模型</a></li>
-  <li><a href="#逐步选择" id="toc-逐步选择" class="nav-link" data-scroll-target="#逐步选择"><span class="header-section-number">12.3</span> 逐步选择</a></li>
-  <li><a href="#自助法stepwise" id="toc-自助法stepwise" class="nav-link" data-scroll-target="#自助法stepwise"><span class="header-section-number">12.4</span> 自助法stepwise</a></li>
+  <li><a href="#加载数据" id="toc-加载数据" class="nav-link active" data-scroll-target="#加载数据"><span class="header-section-number">16.1</span> 加载数据</a></li>
+  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">16.2</span> 建立模型</a></li>
+  <li><a href="#逐步选择" id="toc-逐步选择" class="nav-link" data-scroll-target="#逐步选择"><span class="header-section-number">16.3</span> 逐步选择</a></li>
+  <li><a href="#自助法stepwise" id="toc-自助法stepwise" class="nav-link" data-scroll-target="#自助法stepwise"><span class="header-section-number">16.4</span> 自助法stepwise</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_stepwise.html"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></h1>
+<h1 class="title"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></h1>
 </div>
 
 
@@ -543,8 +525,10 @@ <h1 class="title"><span class="chapter-number">12</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p>筛选变量的方法多如牛毛,我们今天介绍逐步选择法。逐步选择有3种策略,分别是向前(forward)、向后(backward)、逐步法(stepwise)。</p>
 <p><strong>向前逐步选择</strong>从一个零特征模型开始,然后每次添加一个特征,直到所有特征添加完毕。在这个过程中,被添加的选定特征建立的模型具有最小的RSS(残差平方和)。所以理论上,第一个选定的特征应该能最好地解释响应变量,依此类推。</p>
 <div class="callout callout-style-default callout-tip callout-titled" title="注意">
@@ -576,8 +560,8 @@ <h1 class="title"><span class="chapter-number">12</span>&nbsp; <span class="chap
 </div>
 </div>
 <p>逐步选择可以使用<code>MASS</code>包的<code>stepAIC</code>实现,如<a href="https://mp.weixin.qq.com/s/zChALgyYPQ8jqJmKChhzMA">R语言和医学统计学系列(7):多元线性回归</a>所介绍的,也可以直接使用R语言自带的<code>step</code>函数。<code>stepAIC</code>比<code>step</code>功能多一点,但是对于简单的变量筛选来说这俩没区别。</p>
-<section id="加载数据" class="level2" data-number="12.1">
-<h2 data-number="12.1" class="anchored" data-anchor-id="加载数据"><span class="header-section-number">12.1</span> 加载数据</h2>
+<section id="加载数据" class="level2" data-number="16.1">
+<h2 data-number="16.1" class="anchored" data-anchor-id="加载数据"><span class="header-section-number">16.1</span> 加载数据</h2>
 <p>我们使用<code>TCGA-BLCA</code>的lncRNA数据(数据已放在粉丝qq群文件),其中包括408个样本,<code>time_months</code>是生存时间,<code>event</code>是生存状态,1代表死亡,0代表生存,其余变量都是自变量。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
@@ -599,8 +583,8 @@ <h2 data-number="12.1" class="anchored" data-anchor-id="加载数据"><span clas
 </div>
 <p>现在这个数据一共59个自变量,我们先使用所有自变量建立cox回归模型。</p>
 </section>
-<section id="建立模型" class="level2" data-number="12.2">
-<h2 data-number="12.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">12.2</span> 建立模型</h2>
+<section id="建立模型" class="level2" data-number="16.2">
+<h2 data-number="16.2" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">16.2</span> 建立模型</h2>
 <p>我们这个是生存数据,使用cox回归。如果你的数据是其他类型,使用逻辑回归或者线性回归都是可以的。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
@@ -676,8 +660,8 @@ <h2 data-number="12.2" class="anchored" data-anchor-id="建立模型"><span clas
 </div>
 <p>下面就是用逐步法选择变量。</p>
 </section>
-<section id="逐步选择" class="level2" data-number="12.3">
-<h2 data-number="12.3" class="anchored" data-anchor-id="逐步选择"><span class="header-section-number">12.3</span> 逐步选择</h2>
+<section id="逐步选择" class="level2" data-number="16.3">
+<h2 data-number="16.3" class="anchored" data-anchor-id="逐步选择"><span class="header-section-number">16.3</span> 逐步选择</h2>
 <p>我们使用逐步选择法进行变量筛选:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>fit.step <span class="ot">&lt;-</span> <span class="fu">step</span>(fit.cox,<span class="at">direction =</span> <span class="st">"both"</span>)</span>
@@ -953,7 +937,7 @@ <h2 data-number="12.3" class="anchored" data-anchor-id="逐步选择"><span clas
 <span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 17 AC015912.3       -0.433    0.184      -2.35 0.0189</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>一目了然,简洁清晰,<code>broom</code>真的是神包~</p>
-<p>还可以1行代码查看模型的各种统计值,包括P值、R^2、AIC、BIC、C-index等等:</p>
+<p>还可以1行代码查看模型的各种统计值,包括P值、R<sup>2</sup>、AIC、BIC、C-index等等:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>broom<span class="sc">::</span><span class="fu">glance</span>(fit.step)</span>
 <span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 18</span></span>
@@ -966,8 +950,8 @@ <h2 data-number="12.3" class="anchored" data-anchor-id="逐步选择"><span clas
 <span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## #   BIC &lt;dbl&gt;, nobs &lt;int&gt;</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="自助法stepwise" class="level2" data-number="12.4">
-<h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span class="header-section-number">12.4</span> 自助法stepwise</h2>
+<section id="自助法stepwise" class="level2" data-number="16.4">
+<h2 data-number="16.4" class="anchored" data-anchor-id="自助法stepwise"><span class="header-section-number">16.4</span> 自助法stepwise</h2>
 <p>这里再给大家介绍下一种自助法stepwise,可以通过自助法重抽样进行逐步筛选变量,比如进行1000次<code>bootstrap</code>。</p>
 <p>该方法借助<code>bootStepAIC</code>实现,是基于<code>stepAIC()</code>函数的,支持”lm”, “aov”,“glm”, “negbin”, “polr”, “survreg”,以及”coxph”。</p>
 <p>使用方法也很简单,下面是一个10次bootstrap的逐步选择法(因为耗时太长了,我只用了10次) :</p>
@@ -1041,18 +1025,7 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1084,11 +1057,50 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1098,8 +1110,17 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1111,7 +1132,130 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1155,6 +1299,7 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1180,6 +1325,32 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1241,27 +1412,32 @@ <h2 data-number="12.4" class="anchored" data-anchor-id="自助法stepwise"><span
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection_unimulti.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span>
+      <a href="./feature-selection_unimulti.html" class="pagination-link" aria-label="变量选择之先单后多">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection_bestsubset.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection_bestsubset.html" class="pagination-link" aria-label="变量选择之最优子集">
+        <span class="nav-page-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/feature-selection_unimulti.html b/docs/feature-selection_unimulti.html
index ece6110..6d41861 100644
--- a/docs/feature-selection_unimulti.html
+++ b/docs/feature-selection_unimulti.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 11&nbsp; 变量筛选之先单后多</title>
+<title>15&nbsp; 变量选择之先单后多 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">变量筛选</a></li><li class="breadcrumb-item"><a href="./feature-selection_unimulti.html"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_unimulti.html"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,26 +493,26 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">11.1</span> 准备数据</a></li>
-  <li><a href="#批量单因素cox" id="toc-批量单因素cox" class="nav-link" data-scroll-target="#批量单因素cox"><span class="header-section-number">11.2</span> 批量单因素cox</a></li>
-  <li><a href="#多因素cox" id="toc-多因素cox" class="nav-link" data-scroll-target="#多因素cox"><span class="header-section-number">11.3</span> 多因素cox</a></li>
-  <li><a href="#行代码实现" id="toc-行代码实现" class="nav-link" data-scroll-target="#行代码实现"><span class="header-section-number">11.4</span> 1行代码实现</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">15.1</span> 准备数据</a></li>
+  <li><a href="#批量单因素cox" id="toc-批量单因素cox" class="nav-link" data-scroll-target="#批量单因素cox"><span class="header-section-number">15.2</span> 批量单因素cox</a></li>
+  <li><a href="#多因素cox" id="toc-多因素cox" class="nav-link" data-scroll-target="#多因素cox"><span class="header-section-number">15.3</span> 多因素cox</a></li>
+  <li><a href="#行代码实现" id="toc-行代码实现" class="nav-link" data-scroll-target="#行代码实现"><span class="header-section-number">15.4</span> 1行代码实现</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./feature-selection.html">常见的变量选择方法</a></li><li class="breadcrumb-item"><a href="./feature-selection_unimulti.html"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></h1>
+<h1 class="title"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></h1>
 </div>
 
 
@@ -543,8 +525,10 @@ <h1 class="title"><span class="chapter-number">11</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
+
 <p><strong>先进行单因素分析,有意义的变量继续进行多因素分析</strong>,这个可能是大家最先接触到的变量筛选方法,但是这种思路对吗?要不要使用这种方法?</p>
 <p>强烈建议大家先阅读冯国双老师的4篇文章,除了能解决以上两个问题外,还解释了为什么<strong>单因素有意义多因素却没有意义/单因素无意义多因素有意义</strong>的问题:</p>
 <ul>
@@ -554,8 +538,8 @@ <h1 class="title"><span class="chapter-number">11</span>&nbsp; <span class="chap
 <li><a href="https://mp.weixin.qq.com/s/71HNjhMJ3ZaIzfejKSYoaA">单因素分析到底有没有必要做?</a></li>
 </ul>
 <p>读完之后看实操~</p>
-<section id="准备数据" class="level2" data-number="11.1">
-<h2 data-number="11.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">11.1</span> 准备数据</h2>
+<section id="准备数据" class="level2" data-number="15.1">
+<h2 data-number="15.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">15.1</span> 准备数据</h2>
 <p>我们使用<code>TCGA-BLCA</code>的<code>lncRNA</code>数据,其中包括408个样本,<code>time_months</code>是生存时间,<code>event</code>是生存状态,1代表死亡,0代表生存,其余变量都是自变量。</p>
 <p>先简单处理一下数据(数据已放在粉丝QQ群文件):</p>
 <div class="cell">
@@ -591,8 +575,8 @@ <h2 data-number="11.1" class="anchored" data-anchor-id="准备数据"><span clas
 <span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4     0       18.20     high      high       high       high</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="批量单因素cox" class="level2" data-number="11.2">
-<h2 data-number="11.2" class="anchored" data-anchor-id="批量单因素cox"><span class="header-section-number">11.2</span> 批量单因素cox</h2>
+<section id="批量单因素cox" class="level2" data-number="15.2">
+<h2 data-number="15.2" class="anchored" data-anchor-id="批量单因素cox"><span class="header-section-number">15.2</span> 批量单因素cox</h2>
 <p>然后就可以对每个变量进行单因素COX分析了:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
@@ -629,8 +613,8 @@ <h2 data-number="11.2" class="anchored" data-anchor-id="批量单因素cox"><spa
 <span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [21] "AC002398.2"   "AL161431.1"   "U62317.1"     "AL023284.4"   "AATBC"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="多因素cox" class="level2" data-number="11.3">
-<h2 data-number="11.3" class="anchored" data-anchor-id="多因素cox"><span class="header-section-number">11.3</span> 多因素cox</h2>
+<section id="多因素cox" class="level2" data-number="15.3">
+<h2 data-number="15.3" class="anchored" data-anchor-id="多因素cox"><span class="header-section-number">15.3</span> 多因素cox</h2>
 <p>把这些变量进行多因素COX回归</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>sub_dat <span class="ot">&lt;-</span> dat_cox[,<span class="fu">c</span>(<span class="st">"time_months"</span>,<span class="st">"event"</span>,unifea)]</span>
@@ -680,23 +664,20 @@ <h2 data-number="11.3" class="anchored" data-anchor-id="多因素cox"><span clas
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>fit5 <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time_months,event)<span class="sc">~</span><span class="st">`</span><span class="at">ADAMTS9-AS1</span><span class="st">`</span><span class="sc">+</span>AC093010<span class="fl">.3</span><span class="sc">+</span>SNHG25<span class="sc">+</span></span>
 <span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>                AC025575<span class="fl">.2</span><span class="sc">+</span>AL161431<span class="fl">.1</span>,<span class="at">data =</span> sub_dat)</span>
 <span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survminer)</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: ggplot2</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: ggpubr</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'survminer'</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked from 'package:survival':</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     myeloma</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>survminer<span class="sc">::</span><span class="fu">ggforest</span>(fit5)</span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .get_data(model, data = data): The `data` argument is not provided.</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Data will be extracted from model fit.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>survminer<span class="sc">::</span><span class="fu">ggforest</span>(fit5)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="feature-selection_unimulti_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="feature-selection_unimulti_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+<p>上面这个森林图是多因素回归的森林图,和亚组分析的森林图完全不是一回事,不知道大家有没有注意过呢?</p>
+<p>关于森林图和亚组分析的相关问题和详细解释以及各种代码可以在公众号后台回复<strong>森林图</strong>获取合集。</p>
 </section>
-<section id="行代码实现" class="level2" data-number="11.4">
-<h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span class="header-section-number">11.4</span> 1行代码实现</h2>
+<section id="行代码实现" class="level2" data-number="15.4">
+<h2 data-number="15.4" class="anchored" data-anchor-id="行代码实现"><span class="header-section-number">15.4</span> 1行代码实现</h2>
 <p>手动实现的过程就是为了告诉大家思路是怎样的,这样大家有一定的基础就可以自己做,不管是什么数据,都是一样的思路,用什么方法和工具不重要,思路才是最重要的。</p>
 <p>下面再给大家介绍一个R包,可以实现1行代码完成先单后多cox分析,得到的结果和我们的手动实现的结果是一样的。</p>
 <p>首先安装R包:</p>
@@ -719,7 +700,7 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
 <span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 报错</span></span>
 <span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>Error <span class="cf">in</span> <span class="fu">parse</span>(<span class="at">text =</span> eq) <span class="sc">:</span> <span class="er">&lt;</span>text<span class="sc">&gt;</span><span class="er">:</span><span class="dv">1</span><span class="sc">:</span><span class="dv">23</span><span class="sc">:</span> unexpected symbol</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="dv">1</span><span class="sc">:</span> df[[<span class="st">'MIR1-1HG-AS1'</span>]]<span class="sc">+</span>1HG</span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="dv">1</span><span class="sc">:</span> df[[<span class="st">'MIR1-1HG-AS1'</span>]]<span class="sc">+</span><span class="dv">1</span>HG</span>
 <span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a><span class="sc">^</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <p>我们给这个数据集的变量名字修改一下即可,我这里直接把<code>-</code>去掉了:</p>
 <div class="cell">
@@ -793,18 +774,7 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -836,11 +806,50 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -850,8 +859,17 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -863,7 +881,130 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -907,6 +1048,7 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -932,6 +1074,32 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -993,27 +1161,32 @@ <h2 data-number="11.4" class="anchored" data-anchor-id="行代码实现"><span c
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span>
+      <a href="./feature-selection.html" class="pagination-link" aria-label="常见的变量选择方法">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">常见的变量选择方法</span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection_stepwise.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection_stepwise.html" class="pagination-link" aria-label="变量选择之逐步回归">
+        <span class="nav-page-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/figs/PixPin_2023-12-25_20-03-51.png b/docs/figs/PixPin_2023-12-25_20-03-51.png
deleted file mode 100644
index af06ef2..0000000
Binary files a/docs/figs/PixPin_2023-12-25_20-03-51.png and /dev/null differ
diff --git a/docs/figs/PixPin_2024-04-27_13-20-37.png b/docs/figs/PixPin_2024-04-27_13-20-37.png
new file mode 100644
index 0000000..dd1ee5a
Binary files /dev/null and b/docs/figs/PixPin_2024-04-27_13-20-37.png differ
diff --git a/docs/figs/PixPin_2024-04-27_19-11-28.png b/docs/figs/PixPin_2024-04-27_19-11-28.png
new file mode 100644
index 0000000..2a193fd
Binary files /dev/null and b/docs/figs/PixPin_2024-04-27_19-11-28.png differ
diff --git a/docs/figs/PixPin_2024-04-28_12-56-47.png b/docs/figs/PixPin_2024-04-28_12-56-47.png
new file mode 100644
index 0000000..8a5d7cd
Binary files /dev/null and b/docs/figs/PixPin_2024-04-28_12-56-47.png differ
diff --git a/docs/figs/PixPin_2024-05-09_21-39-57.png b/docs/figs/PixPin_2024-05-09_21-39-57.png
new file mode 100644
index 0000000..a3cad1b
Binary files /dev/null and b/docs/figs/PixPin_2024-05-09_21-39-57.png differ
diff --git a/docs/figs/PixPin_2024-06-03_19-15-43.png b/docs/figs/PixPin_2024-06-03_19-15-43.png
new file mode 100644
index 0000000..bb07ccf
Binary files /dev/null and b/docs/figs/PixPin_2024-06-03_19-15-43.png differ
diff --git a/docs/figs/PixPin_2024-06-07_15-28-31.png b/docs/figs/PixPin_2024-06-07_15-28-31.png
new file mode 100644
index 0000000..474cb03
Binary files /dev/null and b/docs/figs/PixPin_2024-06-07_15-28-31.png differ
diff --git a/docs/figs/PixPin_2024-06-08_13-07-06.png b/docs/figs/PixPin_2024-06-08_13-07-06.png
new file mode 100644
index 0000000..0f72c2a
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_13-07-06.png differ
diff --git a/docs/figs/PixPin_2024-06-08_15-53-36.png b/docs/figs/PixPin_2024-06-08_15-53-36.png
new file mode 100644
index 0000000..1688629
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_15-53-36.png differ
diff --git a/docs/figs/PixPin_2024-06-08_16-05-36.png b/docs/figs/PixPin_2024-06-08_16-05-36.png
new file mode 100644
index 0000000..fafc231
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_16-05-36.png differ
diff --git a/docs/figs/PixPin_2024-06-08_18-09-10.png b/docs/figs/PixPin_2024-06-08_18-09-10.png
new file mode 100644
index 0000000..b769da7
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_18-09-10.png differ
diff --git a/docs/figs/PixPin_2024-06-08_18-22-18.png b/docs/figs/PixPin_2024-06-08_18-22-18.png
new file mode 100644
index 0000000..9bfcf6f
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_18-22-18.png differ
diff --git a/docs/figs/PixPin_2024-06-08_18-45-22.png b/docs/figs/PixPin_2024-06-08_18-45-22.png
new file mode 100644
index 0000000..917dc6e
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_18-45-22.png differ
diff --git a/docs/figs/PixPin_2024-06-08_18-56-42.png b/docs/figs/PixPin_2024-06-08_18-56-42.png
new file mode 100644
index 0000000..3d80af6
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_18-56-42.png differ
diff --git a/docs/figs/PixPin_2024-06-08_20-28-40.png b/docs/figs/PixPin_2024-06-08_20-28-40.png
new file mode 100644
index 0000000..7bb9e75
Binary files /dev/null and b/docs/figs/PixPin_2024-06-08_20-28-40.png differ
diff --git a/docs/figs/PixPin_2024-06-17_19-25-13.png b/docs/figs/PixPin_2024-06-17_19-25-13.png
new file mode 100644
index 0000000..c24edfe
Binary files /dev/null and b/docs/figs/PixPin_2024-06-17_19-25-13.png differ
diff --git a/docs/figs/PixPin_2024-06-17_19-28-58.png b/docs/figs/PixPin_2024-06-17_19-28-58.png
new file mode 100644
index 0000000..932155a
Binary files /dev/null and b/docs/figs/PixPin_2024-06-17_19-28-58.png differ
diff --git a/docs/figs/PixPin_2024-06-18_13-17-31.png b/docs/figs/PixPin_2024-06-18_13-17-31.png
new file mode 100644
index 0000000..8420d0f
Binary files /dev/null and b/docs/figs/PixPin_2024-06-18_13-17-31.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-48-15.png b/docs/figs/PixPin_2024-09-30_16-48-15.png
new file mode 100644
index 0000000..3e0737f
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-48-15.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-49-15.png b/docs/figs/PixPin_2024-09-30_16-49-15.png
new file mode 100644
index 0000000..145b828
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-49-15.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-50-03.png b/docs/figs/PixPin_2024-09-30_16-50-03.png
new file mode 100644
index 0000000..3074ce5
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-50-03.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-50-22.png b/docs/figs/PixPin_2024-09-30_16-50-22.png
new file mode 100644
index 0000000..bb08a47
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-50-22.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-51-07.png b/docs/figs/PixPin_2024-09-30_16-51-07.png
new file mode 100644
index 0000000..b4ad2cb
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-51-07.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-51-34.png b/docs/figs/PixPin_2024-09-30_16-51-34.png
new file mode 100644
index 0000000..6ef7acf
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-51-34.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-52-12.png b/docs/figs/PixPin_2024-09-30_16-52-12.png
new file mode 100644
index 0000000..89ecf37
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-52-12.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-52-37.png b/docs/figs/PixPin_2024-09-30_16-52-37.png
new file mode 100644
index 0000000..745bf4b
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-52-37.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-53-56.png b/docs/figs/PixPin_2024-09-30_16-53-56.png
new file mode 100644
index 0000000..3cd217d
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-53-56.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-54-16.png b/docs/figs/PixPin_2024-09-30_16-54-16.png
new file mode 100644
index 0000000..1c41fef
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-54-16.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-54-44.png b/docs/figs/PixPin_2024-09-30_16-54-44.png
new file mode 100644
index 0000000..c997e06
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-54-44.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-55-12.png b/docs/figs/PixPin_2024-09-30_16-55-12.png
new file mode 100644
index 0000000..ed84206
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-55-12.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-55-56.png b/docs/figs/PixPin_2024-09-30_16-55-56.png
new file mode 100644
index 0000000..5165d5f
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-55-56.png differ
diff --git a/docs/figs/PixPin_2024-09-30_16-56-13.png b/docs/figs/PixPin_2024-09-30_16-56-13.png
new file mode 100644
index 0000000..89963c2
Binary files /dev/null and b/docs/figs/PixPin_2024-09-30_16-56-13.png differ
diff --git a/docs/figs/Snipaste_2023-04-01_14-21-06.png b/docs/figs/Snipaste_2023-04-01_14-21-06.png
deleted file mode 100644
index dc33197..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_14-21-06.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_14-24-25.png b/docs/figs/Snipaste_2023-04-01_14-24-25.png
deleted file mode 100644
index 8921e21..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_14-24-25.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_14-25-12.png b/docs/figs/Snipaste_2023-04-01_14-25-12.png
deleted file mode 100644
index bf3374d..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_14-25-12.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_17-54-26.png b/docs/figs/Snipaste_2023-04-01_17-54-26.png
deleted file mode 100644
index 2a31e12..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_17-54-26.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_17-55-23.png b/docs/figs/Snipaste_2023-04-01_17-55-23.png
deleted file mode 100644
index 96838fa..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_17-55-23.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_18-02-23.png b/docs/figs/Snipaste_2023-04-01_18-02-23.png
deleted file mode 100644
index e456303..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_18-02-23.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_18-20-16.png b/docs/figs/Snipaste_2023-04-01_18-20-16.png
deleted file mode 100644
index 0ed4e43..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_18-20-16.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_19-22-43.png b/docs/figs/Snipaste_2023-04-01_19-22-43.png
deleted file mode 100644
index 0c3e6b4..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_19-22-43.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_19-26-12.png b/docs/figs/Snipaste_2023-04-01_19-26-12.png
deleted file mode 100644
index 81aa07d..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_19-26-12.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_21-00-07.png b/docs/figs/Snipaste_2023-04-01_21-00-07.png
deleted file mode 100644
index 472da87..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_21-00-07.png and /dev/null differ
diff --git a/docs/figs/Snipaste_2023-04-01_21-09-04.png b/docs/figs/Snipaste_2023-04-01_21-09-04.png
deleted file mode 100644
index 9d630dc..0000000
Binary files a/docs/figs/Snipaste_2023-04-01_21-09-04.png and /dev/null differ
diff --git "a/docs/hosmer-lemeshow\346\243\200\351\252\214.html" "b/docs/hosmer-lemeshow\346\243\200\351\252\214.html"
new file mode 100644
index 0000000..203ac8a
--- /dev/null
+++ "b/docs/hosmer-lemeshow\346\243\200\351\252\214.html"
@@ -0,0 +1,1223 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>30&nbsp; hosmer-lemeshow检验 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+/* CSS for syntax highlighting */
+pre > code.sourceCode { white-space: pre; position: relative; }
+pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span:empty { height: 1.2em; }
+.sourceCode { overflow: visible; }
+code.sourceCode > span { color: inherit; text-decoration: inherit; }
+div.sourceCode { margin: 1em 0; }
+pre.sourceCode { margin: 0; }
+@media screen {
+div.sourceCode { overflow: auto; }
+}
+@media print {
+pre > code.sourceCode { white-space: pre-wrap; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+}
+pre.numberSource code
+  { counter-reset: source-line 0; }
+pre.numberSource code > span
+  { position: relative; left: -4em; counter-increment: source-line; }
+pre.numberSource code > span > a:first-child::before
+  { content: counter(source-line);
+    position: relative; left: -1em; text-align: right; vertical-align: baseline;
+    border: none; display: inline-block;
+    -webkit-touch-callout: none; -webkit-user-select: none;
+    -khtml-user-select: none; -moz-user-select: none;
+    -ms-user-select: none; user-select: none;
+    padding: 0 4px; width: 4em;
+  }
+pre.numberSource { margin-left: 3em;  padding-left: 4px; }
+div.sourceCode
+  {   }
+@media screen {
+pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./calibration-cox.html" rel="next">
+<link href="./calibration-logistic.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./hosmer-lemeshow检验.html"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">30.1</span> 准备数据</a></li>
+  <li><a href="#方法1resourceselection" id="toc-方法1resourceselection" class="nav-link" data-scroll-target="#方法1resourceselection"><span class="header-section-number">30.2</span> 方法1:ResourceSelection</a></li>
+  <li><a href="#方法2generalhoslem" id="toc-方法2generalhoslem" class="nav-link" data-scroll-target="#方法2generalhoslem"><span class="header-section-number">30.3</span> 方法2:generalhoslem</a></li>
+  <li><a href="#方法3performance" id="toc-方法3performance" class="nav-link" data-scroll-target="#方法3performance"><span class="header-section-number">30.4</span> 方法3:performance</a></li>
+  <li><a href="#方法4predictabel" id="toc-方法4predictabel" class="nav-link" data-scroll-target="#方法4predictabel"><span class="header-section-number">30.5</span> 方法4:PredictABEL</a></li>
+  <li><a href="#方法5glmtoolbox" id="toc-方法5glmtoolbox" class="nav-link" data-scroll-target="#方法5glmtoolbox"><span class="header-section-number">30.6</span> 方法5:glmtoolbox</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./hosmer-lemeshow检验.html"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>模型的校准度除了使用校准曲线进行衡量外,还可以用统计检验来评估真实概率和预测概率的差异,比如<strong>Hosmer-Lemeshow检验(H-L检验)</strong>,若得到的P值小于0.05,那说明模型的预测概率和真实概率之间确实有差异,不是由于随机误差导致的,若P值大于0.05,说明通过了H-L检验,预测概率和实际概率没有明显的差异。</p>
+<p>但是H-L检验无法量化差异的大小,也不能说明差异的大小在低风险患者和高风险患者之间是否存在差异。另外这个指标受到组别数量的影响很大,非常不稳定,建议大家不要单独使用这个指标。</p>
+<p>H-L检验目前主要是针对逻辑回归模型的拟合优度(goodness-of-fit)检验,但是由于它只要有预测概率就能计算,所以理论上其他模型也是可以进行这个检验的(虽然我也不知道这样做对不对)。</p>
+<p>在R语言中有多个包都可以进行H-L检验,下面给大家介绍5个方法。</p>
+<section id="准备数据" class="level2" data-number="30.1">
+<h2 data-number="30.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">30.1</span> 准备数据</h2>
+<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿能否存活的数据集,其中<code>dead</code>这一列是结果变量,0代表存活,1代表死亡,但是存活和死亡的比例严重失衡,存活的只有94个,死亡的有471个。其余列都是预测变量。该数据集没有缺失值,也没有高度相关的自变量。</p>
+<p>获取<code>lowbirth</code>数据请在公众号:医学和生信笔记,后台回复<em>20220520</em>。或者到粉丝QQ群文件自取。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>查看一下数据:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lowbirth) <span class="co"># 565行,10列</span></span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 565  10</span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth) </span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : chr  "white" "black" "black" "black" ...</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: chr  "abdominal" "vaginal" "vaginal" "abdominal" ...</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : chr  "female" "female" "male" "female" ...</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="co"># 看下结果变量的比例</span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="fu">table</span>(lowbirth<span class="sc">$</span>dead)</span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##   0   1 </span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 471  94</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p><code>race</code>这一列有4个类别,分别表示4个人种,但是东方人和美洲人太少了,这样会影响模型拟合,所以我们这两个人种变成<code>other</code>:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 其中两个人种人数太少了</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">table</span>(lowbirth<span class="sc">$</span>race)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##           black native American        oriental           white </span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">##             325              14               4             222</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 把人数太少的变成other</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>lowbirth[lowbirth <span class="sc">==</span> <span class="st">"oriental"</span>] <span class="ot">&lt;-</span> <span class="st">"other"</span></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>lowbirth[lowbirth <span class="sc">==</span> <span class="st">"native American"</span>] <span class="ot">&lt;-</span> <span class="st">"other"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>在R语言中一定要把分类变量因子型,这样才能在建模时进行正确的编码:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor)</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>         <span class="co">#dead = factor(dead, levels=c(1,0),labels=c("live","death"))</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>         )</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth)</span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : Factor w/ 3 levels "black","other",..: 3 1 1 1 1 1 3 1 3 3 ...</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<div class="callout callout-style-default callout-note callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+注释
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>如果结果变量是分类变量,我建议把结果变量也变为因子型,并设定好因子的顺序,但是对于<code>rms</code>来说,最好是使用数值型,所以这里我没改。</p>
+</div>
+</div>
+</section>
+<section id="方法1resourceselection" class="level2" data-number="30.2">
+<h2 data-number="30.2" class="anchored" data-anchor-id="方法1resourceselection"><span class="header-section-number">30.2</span> 方法1:ResourceSelection</h2>
+<p>这个R包进行H-L检验应该是大家见的比较多的方法。</p>
+<p>首先是建立逻辑回归模型:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>model_glm <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> lowbirth, <span class="at">family =</span> binomial)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>然后使用模型预测的概率,和模型的真是结果,就可以进行H-L检验了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载R包</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ResourceSelection)</span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co"># hosmer-lemeshow 检验</span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="fu">hoslem.test</span>(model_glm<span class="sc">$</span>y, <span class="fu">fitted</span>(model_glm), <span class="at">g=</span><span class="dv">10</span>) <span class="co"># g=10表示分成10组</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  Hosmer and Lemeshow goodness of fit (GOF) test</span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">## data:  model_glm$y, fitted(model_glm)</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">## X-squared = 10.463, df = 8, p-value = 0.234</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>只提取P值也可以,方便加在校准曲线图中:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>p.hoslem <span class="ot">&lt;-</span> <span class="fu">hoslem.test</span>(model_glm<span class="sc">$</span>y, <span class="fu">fitted</span>(model_glm), <span class="at">g=</span><span class="dv">10</span>)<span class="sc">$</span>p.value</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>p.hoslem</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.2340365</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>下面我们绘制一个校准曲线,并把H-L检验的结果放在图里:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 必须先打包数据</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lowbirth)</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建 calibration</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race, </span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>           <span class="at">data =</span> lowbirth,<span class="at">x =</span> <span class="cn">TRUE</span>, <span class="at">y =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>cal <span class="ot">&lt;-</span> <span class="fu">calibrate</span>(fit, <span class="at">method=</span><span class="st">'boot'</span>, <span class="at">B=</span><span class="dv">500</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>画图还是和上面一样,就是多了一个添加 hosmer-lemeshow P值的步骤。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cal,</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">xlab =</span> <span class="st">"Prediced Probability"</span>,</span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">ylab =</span> <span class="st">"Observed Probability"</span>,</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.lab=</span><span class="fl">1.2</span>, <span class="at">cex.axis=</span><span class="dv">1</span>, <span class="at">cex.main=</span><span class="fl">1.2</span>, <span class="at">cex.sub=</span><span class="fl">0.8</span>,</span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>     <span class="co">#subtitles = FALSE,</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">legend =</span> <span class="cn">FALSE</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>     ) </span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## n=565   Mean absolute error=0.012   Mean squared error=0.00028</span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9 Quantile of absolute error=0.032</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.corrected"</span>)], </span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>      <span class="at">type =</span> <span class="st">'l'</span>, <span class="co">#连线的类型,可以是"p","b","o"</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>      <span class="at">lwd =</span> <span class="dv">3</span>, <span class="co">#连线的粗细</span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a>      <span class="at">pch =</span> <span class="dv">16</span>, <span class="co">#点的形状,可以是0-20</span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a>      <span class="at">col =</span> <span class="st">"#2166AC"</span>) <span class="co">#连线的颜色</span></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(cal[,<span class="fu">c</span>(<span class="st">"predy"</span>,<span class="st">"calibrated.orig"</span>)],<span class="at">type=</span><span class="st">"l"</span>,<span class="at">pch=</span><span class="dv">16</span>,<span class="at">lwd=</span><span class="dv">3</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,</span>
+<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="dv">2</span>, <span class="co">#对角线为虚线</span></span>
+<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="dv">2</span>, <span class="co">#对角线的粗细</span></span>
+<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="st">"#224444"</span>)<span class="co">#对角线的颜色</span></span>
+<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.2</span>,</span>
+<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="st">"Ideal"</span>,<span class="st">"Bias-corrected"</span>,<span class="st">"Apparent"</span>), </span>
+<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">1</span>), </span>
+<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">lwd =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">3</span>), </span>
+<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"black"</span>,<span class="st">"#2166AC"</span>,<span class="st">"tomato"</span>), </span>
+<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a>       <span class="at">bty =</span> <span class="st">"n"</span></span>
+<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a>)</span>
+<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">0</span>,<span class="fl">0.9</span>,<span class="fu">bquote</span>(<span class="st">"Hosmer-Lemeshow "</span><span class="sc">~</span><span class="fu">italic</span>(P)<span class="sc">~</span><span class="st">" = "</span><span class="sc">~</span>.(<span class="fu">round</span>(p.hoslem,<span class="dv">3</span>))),</span>
+<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a>     <span class="at">adj =</span> <span class="dv">0</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="hosmer-lemeshow检验_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+<section id="方法2generalhoslem" class="level2" data-number="30.3">
+<h2 data-number="30.3" class="anchored" data-anchor-id="方法2generalhoslem"><span class="header-section-number">30.3</span> 方法2:generalhoslem</h2>
+<p>这个R包的使用方法和<code>ResourceSelection</code>完全一样,结果也是一样的:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(generalhoslem)</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">logitgof</span>(model_glm<span class="sc">$</span>y, <span class="fu">fitted</span>(model_glm), <span class="at">g=</span><span class="dv">10</span>, <span class="at">ord =</span> F)</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  Hosmer and Lemeshow test (binary model)</span></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="do">## data:  model_glm$y, fitted(model_glm)</span></span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="do">## X-squared = 10.463, df = 8, p-value = 0.234</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="方法3performance" class="level2" data-number="30.4">
+<h2 data-number="30.4" class="anchored" data-anchor-id="方法3performance"><span class="header-section-number">30.4</span> 方法3:performance</h2>
+<p>这个包非常强大,它属于<code>easystats</code>这个包的一部分,我在之前也介绍过:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/uK5E3yxpGjUn9IT_z2wP4Q">线性模型回归诊断图</a></li>
+</ul>
+<p>但是它只能对一些统计模型进行检验,不能对机器学习模型进行检验,而且在计算模型性能指标方面,和<code>yardstick</code>有很多重合,所以我平常还是用<code>yardstick</code>更多。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(performance)</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">performance_hosmer</span>(model_glm, <span class="at">n_bins =</span> <span class="dv">10</span>)</span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="do">## # Hosmer-Lemeshow Goodness-of-Fit Test</span></span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   Chi-squared: 10.463</span></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="do">##            df:  8    </span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="do">##       p-value:  0.234</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="方法4predictabel" class="level2" data-number="30.5">
+<h2 data-number="30.5" class="anchored" data-anchor-id="方法4predictabel"><span class="header-section-number">30.5</span> 方法4:PredictABEL</h2>
+<p>这个包在计算NRI和IDI时使用过,非常强大,还可以绘制校准曲线并且进行H-L检验,只需要使用<code>plotCalibration()</code>函数即可。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(PredictABEL)</span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 首先获得预测概率,和fitted(model_glm)完全一样</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>predRisk <span class="ot">&lt;-</span> PredictABEL<span class="sc">::</span><span class="fu">predRisk</span>(model_glm)</span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>rr <span class="ot">&lt;-</span> <span class="fu">plotCalibration</span>(<span class="at">data=</span>lowbirth, <span class="at">cOutcome=</span><span class="dv">10</span>, <span class="co">#结果变量在数据的第几列</span></span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>                <span class="at">predRisk=</span>predRisk, </span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>                <span class="at">groups=</span><span class="dv">10</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="hosmer-lemeshow检验_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>提取H-L检验的P值:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>rr<span class="sc">$</span>p_value</span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.2805</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>也是和其他方法不一样,建议别用这个结果。</p>
+</section>
+<section id="方法5glmtoolbox" class="level2" data-number="30.6">
+<h2 data-number="30.6" class="anchored" data-anchor-id="方法5glmtoolbox"><span class="header-section-number">30.6</span> 方法5:glmtoolbox</h2>
+<p>这个方法得到的结果与其他几种方法的结果都不一样,我没查看源码,不知道有啥区别,大家还是选择其他几个方法吧。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(glmtoolbox)</span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="fu">hltest</span>(model_glm,<span class="at">verbose =</span> F)<span class="sc">$</span>p.value</span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "0.3410089"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>多种方法,任君选择,搭配校准曲线教程一起,食用更佳。</p>
+<p>公众号后台回复<strong>校准曲线</strong>集合获取合集。</p>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./calibration-logistic.html" class="pagination-link" aria-label="分类模型校准曲线绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./calibration-cox.html" class="pagination-link" aria-label="Cox回归校准曲线绘制">
+        <span class="nav-page-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-12-1.png" "b/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-12-1.png"
new file mode 100644
index 0000000..1186a4e
Binary files /dev/null and "b/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-12-1.png" differ
diff --git "a/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-9-1.png" "b/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-9-1.png"
new file mode 100644
index 0000000..f6cb0fb
Binary files /dev/null and "b/docs/hosmer-lemeshow\346\243\200\351\252\214_files/figure-html/unnamed-chunk-9-1.png" differ
diff --git a/docs/idi.html b/docs/idi.html
index 2acaecb..3185c03 100644
--- a/docs/idi.html
+++ b/docs/idi.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 30&nbsp; IDI综合判别改善指数</title>
+<title>28&nbsp; 综合判别改善指数IDI – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./idi.html"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./idi.html"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,24 +493,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#logistic的idi" id="toc-logistic的idi" class="nav-link active" data-scroll-target="#logistic的idi"><span class="header-section-number">30.1</span> logistic的IDI</a></li>
-  <li><a href="#生存资料的idi" id="toc-生存资料的idi" class="nav-link" data-scroll-target="#生存资料的idi"><span class="header-section-number">30.2</span> 生存资料的IDI</a></li>
+  <li><a href="#二分类模型的idi" id="toc-二分类模型的idi" class="nav-link active" data-scroll-target="#二分类模型的idi"><span class="header-section-number">28.1</span> 二分类模型的IDI</a></li>
+  <li><a href="#生存资料的idi" id="toc-生存资料的idi" class="nav-link" data-scroll-target="#生存资料的idi"><span class="header-section-number">28.2</span> 生存资料的IDI</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./idi.html"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></h1>
+<h1 class="title"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></h1>
 </div>
 
 
@@ -541,57 +523,120 @@ <h1 class="title"><span class="chapter-number">30</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>IDI,Integrated Discrimination Index,综合判别改善指数,也适用于评价不同模型优劣的,比起NRI,IDI能够从整体角度对模型进行评价,和NRI一起使用效果更佳!</p>
-<section id="logistic的idi" class="level2" data-number="30.1">
-<h2 data-number="30.1" class="anchored" data-anchor-id="logistic的idi"><span class="header-section-number">30.1</span> logistic的IDI</h2>
-<p>二分类变量的NRI和IDI计算使用<code>PredictABEL</code>包。</p>
-<p>使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示logistic回归,只要不使用time这一列就可以了。</p>
+
+<p>综合判别改善指数(Integrated Discrimination Index,IDI),也适用于评价不同模型优劣的,比起NRI,IDI能够从整体角度对模型进行评价,和NRI一起使用效果更佳!相关概念的解读请参考“临床预测模型的评价”一章。本文主要介绍如何通过R语言计算IDI。</p>
+<p>对于NRI和IDI的计算,以下是常见的R包总结:</p>
+<table class="caption-top">
+<thead>
+<tr>
+<th>R包</th>
+<th>NRI</th>
+<th>IDI</th>
+<th>二分类模型</th>
+<th>生存模型</th>
+<th>机器学习模型</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td>nricens</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>支持</td>
+<td>支持</td>
+</tr>
+<tr>
+<td>PredictABEL</td>
+<td>支持</td>
+<td>支持</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+</tr>
+<tr>
+<td>survNRI</td>
+<td>支持</td>
+<td>不支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>不支持</td>
+</tr>
+<tr>
+<td>survIDINRI</td>
+<td>支持</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>不支持</td>
+</tr>
+</tbody>
+</table>
+<section id="二分类模型的idi" class="level2" data-number="28.1">
+<h2 data-number="28.1" class="anchored" data-anchor-id="二分类模型的idi"><span class="header-section-number">28.1</span> 二分类模型的IDI</h2>
+<p>二分类模型的NRI和IDI计算使用<code>PredictABEL</code>包,这个包在之前演示二分类模型的NRI时也演示过了,使用起来非常简单,可以同时给出NRI和IDI。</p>
+<p>使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示分类模型,只要不使用<code>time</code>这一列就可以了。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 只使用部分数据</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">=</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,] </span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">=</span> dat[ dat<span class="sc">$</span>time <span class="sc">&gt;</span> <span class="dv">2000</span> <span class="sc">|</span> (dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>), ]</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat) <span class="co"># 数据长这样</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    232 obs. of  20 variables:</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...</span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...</span></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 944 ...</span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...</span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...</span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...</span></span>
-<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...</span></span>
-<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dat) <span class="co"># 232 20</span></span>
-<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 232  20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 只使用部分数据</span></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,] </span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> dat[ dat<span class="sc">$</span>time <span class="sc">&gt;</span> <span class="dv">2000</span> <span class="sc">|</span> (dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>), ]</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat) <span class="co"># 数据长这样</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    232 obs. of  20 variables:</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...</span></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...</span></span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...</span></span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...</span></span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...</span></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 944 ...</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...</span></span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...</span></span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...</span></span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...</span></span>
+<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...</span></span>
+<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dat) <span class="co"># 232 20</span></span>
+<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 232  20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后就是准备计算IDI所需要的各个参数。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 定义结局事件,0是存活,1是死亡</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>event <span class="ot">=</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>event <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
 <span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个模型</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">=</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">=</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">&lt;-</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">&lt;-</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
 <span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出模型预测概率</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">=</span> mstd<span class="sc">$</span>fitted.values</span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">=</span> mnew<span class="sc">$</span>fitted.values</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">&lt;-</span> mstd<span class="sc">$</span>fitted.values</span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">&lt;-</span> mnew<span class="sc">$</span>fitted.values</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<div class="callout callout-style-default callout-tip callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+提示
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>在建立模型时可以选择任何能够计算概率的模型,并不一定需要是逻辑回归模型,随机森林、支持向量机等机器学习模型也都可以的。</p>
+</div>
 </div>
 <p>接下来就是使用<code>PredictABEL</code>计算IDI:</p>
 <div class="cell">
@@ -642,76 +687,147 @@ <h2 data-number="30.1" class="anchored" data-anchor-id="logistic的idi"><span cl
 <span id="cb3-45"><a href="#cb3-45" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 </span></span>
 <span id="cb3-46"><a href="#cb3-46" aria-hidden="true" tabindex="-1"></a><span class="do">##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>IDI在最后一行,同时给出了95%的可信区间和P值;还给出了NRI和P值。重分类表中,absent是event=0的结果,present是event=1的结果。</p>
+<p>IDI在最后一行,同时给出了95%的可信区间和P值。重分类表格中,absent是event=0的结果,present是event=1的结果。</p>
+<p>这个包还是很全面的,如果你的模型只涉及分类,不涉及生存分析,那么在计算NRI和IDI时我推荐你使用这个包,因为使用简单,1行代码即可得到两个结果。</p>
+<p><strong>测试集</strong>(验证集,外部验证集)的计算也是很简单,只要计算出概率就可以了。</p>
+<p>我们先随机建立一个测试集:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 取前100行作为测试集,这个方法是不正规的哈</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>testset <span class="ot">&lt;-</span> dat[<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,]</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算测试集的概率</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>p.std_test <span class="ot">&lt;-</span> <span class="fu">predict</span>(mstd, <span class="at">newdata =</span> testset,<span class="at">type =</span> <span class="st">"response"</span>)</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>p.new_test <span class="ot">&lt;-</span> <span class="fu">predict</span>(mnew, <span class="at">newdata =</span> testset,<span class="at">type =</span> <span class="st">"response"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>计算IDI即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">reclassification</span>(<span class="at">data =</span> testset,</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cOutcome =</span> <span class="dv">21</span>, <span class="co"># 结果变量在哪一列</span></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk1 =</span> p.std_test,</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk2 =</span> p.new_test,</span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cutoff =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.3</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                 )</span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">##      Reclassification table    </span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: absent </span></span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)        49         1       0               2</span></span>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       0         6       1              14</span></span>
+<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         0       3               0</span></span>
+<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: present </span></span>
+<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)         6         0       0               0</span></span>
+<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       0         7       2              22</span></span>
+<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1      24               4</span></span>
+<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  Combined Data </span></span>
+<span id="cb5-31"><a href="#cb5-31" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb5-32"><a href="#cb5-32" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb5-33"><a href="#cb5-33" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb5-34"><a href="#cb5-34" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)        55         1       0               2</span></span>
+<span id="cb5-35"><a href="#cb5-35" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       0        13       3              19</span></span>
+<span id="cb5-36"><a href="#cb5-36" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1      27               4</span></span>
+<span id="cb5-37"><a href="#cb5-37" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb5-38"><a href="#cb5-38" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-39"><a href="#cb5-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Categorical) [95% CI]: -0.0083 [ -0.1043 - 0.0876 ] ; p-value: 0.86483 </span></span>
+<span id="cb5-40"><a href="#cb5-40" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Continuous) [95% CI]: -0.15 [ -0.5466 - 0.2466 ] ; p-value: 0.45847 </span></span>
+<span id="cb5-41"><a href="#cb5-41" aria-hidden="true" tabindex="-1"></a><span class="do">##  IDI [95% CI]: 7e-04 [ -0.0091 - 0.0105 ] ; p-value: 0.89138</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>easy!结果解读也是一模一样的。</p>
 </section>
-<section id="生存资料的idi" class="level2" data-number="30.2">
-<h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><span class="header-section-number">30.2</span> 生存资料的IDI</h2>
-<p>生存资料的IDI计算使用<code>survIDINRI</code>包计算。</p>
+<section id="生存资料的idi" class="level2" data-number="28.2">
+<h2 data-number="28.2" class="anchored" data-anchor-id="生存资料的idi"><span class="header-section-number">28.2</span> 生存资料的IDI</h2>
+<p>生存资料的IDI使用<code>survIDINRI</code>包计算。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"survIDINRI"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"survIDINRI"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>加载R包并使用,还是用上面的<code>pbc</code>数据集。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co">#library(survNRI)</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survIDINRI)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: survC1</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用部分数据</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat)</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    312 obs. of  20 variables:</span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : num  1 0 1 1 0 1 0 1 1 1 ...</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 2 2 1 2 ...</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 38.1 ...</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 1 1 0 0 0 ...</span></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...</span></span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...</span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...</span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...</span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...</span></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 671 ...</span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 113.2 ...</span></span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...</span></span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...</span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...</span></span>
-<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survIDINRI)</span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用部分数据</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat)</span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    312 obs. of  20 variables:</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...</span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : num  1 0 1 1 0 1 0 1 1 1 ...</span></span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 2 2 1 2 ...</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 38.1 ...</span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...</span></span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 1 1 0 0 0 ...</span></span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...</span></span>
+<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...</span></span>
+<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...</span></span>
+<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...</span></span>
+<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...</span></span>
+<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...</span></span>
+<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 671 ...</span></span>
+<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 113.2 ...</span></span>
+<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...</span></span>
+<span id="cb7-28"><a href="#cb7-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...</span></span>
+<span id="cb7-29"><a href="#cb7-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...</span></span>
+<span id="cb7-30"><a href="#cb7-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建参数需要的值:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后使用<code>IDI.INF()</code>函数计算IDI:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">IDI.INF</span>(<span class="at">indata =</span> dat[,<span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>)],</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">covs0 =</span> z.std,</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">covs1 =</span> z.new,</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">t0 =</span> <span class="dv">2000</span>, <span class="co"># 时间点</span></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">npert =</span> <span class="dv">500</span> <span class="co"># 重抽样次数</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="fu">IDI.INF.OUT</span>(res) <span class="co"># 提取结果</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     Est.  Lower Upper p-value</span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## M1 0.020 -0.002 0.056   0.076</span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">## M2 0.202 -0.028 0.393   0.076</span></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## M3 0.011 -0.001 0.035   0.068</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">IDI.INF</span>(<span class="at">indata =</span> dat[,<span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>)],</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">covs0 =</span> z.std,</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">covs1 =</span> z.new,</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">t0 =</span> <span class="dv">2000</span>, <span class="co"># 时间点</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">npert =</span> <span class="dv">500</span>, <span class="co"># 重抽样次数</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">seed1 =</span> <span class="dv">1234</span> <span class="co"># 设定重抽样的种子数</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="fu">IDI.INF.OUT</span>(res) <span class="co"># 提取结果</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     Est.  Lower Upper p-value</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## M1 0.020 -0.004 0.055   0.104</span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## M2 0.202 -0.064 0.382   0.084</span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">## M3 0.011 -0.003 0.033   0.088</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <ul>
 <li>m1:IDI的值,可信区间,P值</li>
 <li>m2:NRI的值,可信区间,P值</li>
-<li>m3:Median improvement in risk score,可信区间,p值。</li>
+<li>m3:风险分数的中位数提升(median improvement of risk score),可信区间,p值。</li>
 </ul>
-<p>以上就是IDI的计算方法。</p>
-<p>除此之外,随机森林、决策树、lasso回归等也是可以计算IDI的,大家可以关注公众号查看相关内容。</p>
+<p>这里的NRI是连续型NRI,定义是当“1/2 NRI(&gt;0)”时的值,详细内容请参考该函数的帮助文档。</p>
+<p>计算IDI也是基于概率的,这个函数默认会帮你建立cox模型从而计算生存概率,所以这个函数计算的其实是两个cox模型的IDI。</p>
+<p>除此之外这个包还可以绘制图形,以图形的方式同时展示IDI、NRI、中位数提升分数:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">IDI.INF.GRAPH</span>(res)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="idi_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>红色面积减去蓝色面积得到的值就是IDI;两个黑点之间的垂直距离就是连续NRI;两个灰点之间的距离是中位数提升。</p>
+<p>由于这个函数计算IDI时不支持使用概率,只能使用原始数据,所以理论上这个函数<strong>无法计算测试集</strong>(验证集,外部验证集)的IDI,而且也不支持计算机器学习模型(比如随机生存森林、生存支持向量机等)的IDI。目前我并没有发现其他更好的R包,大家有知道的欢迎评论区留言。</p>
+<p>但是在实际使用时,NRI和IDI都是作为比较最终模型准确性的,所以通常都是只做一遍就可以了,不需要再训练集、验证集各来一遍。</p>
 
 
 </section>
@@ -752,18 +868,7 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -795,11 +900,50 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -809,8 +953,17 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -822,7 +975,130 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -866,6 +1142,7 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -891,6 +1168,32 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -952,27 +1255,32 @@ <h2 data-number="30.2" class="anchored" data-anchor-id="生存资料的idi"><spa
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nri.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span>
+      <a href="./nri.html" class="pagination-link" aria-label="净重分类指数NRI">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./calibration-logistic.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./calibration-logistic.html" class="pagination-link" aria-label="分类模型校准曲线绘制">
+        <span class="nav-page-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/idi_files/figure-html/unnamed-chunk-10-1.png b/docs/idi_files/figure-html/unnamed-chunk-10-1.png
new file mode 100644
index 0000000..e614077
Binary files /dev/null and b/docs/idi_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/index.html b/docs/index.html
index d596819..e13aab6 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 <meta name="author" content="阿越就是我">
-<meta name="dcterms.date" content="2023-12-30">
+<meta name="dcterms.date" content="2024-11-08">
 
 <title>R语言实战临床预测模型</title>
 <style>
@@ -32,23 +32,29 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./clinmodel-definition.html" rel="next">
+<link href="./临床预测模型概念.html" rel="next">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -57,8 +63,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -71,13 +79,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./index.html">前言</a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./index.html">前言</a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -86,18 +94,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://github.com/ayueme/R_clinical_model/" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -110,171 +118,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -282,195 +301,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -478,7 +460,7 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
@@ -492,7 +474,7 @@ <h2 id="toc-title">目录</h2>
   <li><a href="#作者简介" id="toc-作者简介" class="nav-link" data-scroll-target="#作者简介">作者简介</a></li>
   </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
@@ -516,7 +498,7 @@ <h1 class="title">R语言实战临床预测模型</h1>
     <div>
     <div class="quarto-title-meta-heading">发布日期</div>
     <div class="quarto-title-meta-contents">
-      <p class="date">2023-12-30</p>
+      <p class="date">2024-11-08</p>
     </div>
   </div>
   
@@ -524,21 +506,26 @@ <h1 class="title">R语言实战临床预测模型</h1>
   </div>
   
 
+
 </header>
 
+
 <section id="前言" class="level1 unnumbered">
 <h1 class="unnumbered">前言</h1>
-<p>谨以此书献给我不务正业的研究生生涯。</p>
+<p>谨以此书纪念我不务正业的研究生生涯。</p>
 <section id="本书缘起" class="level2 unnumbered">
 <h2 class="unnumbered anchored" data-anchor-id="本书缘起">本书缘起</h2>
 <p>我在2019年接触到R语言和临床预测模型,彼时还是“简单的纯生信也能随便发SCI的上古时代”,当时的临床预测模型并不像现在这么火爆,连培训班也只有零星的几个,收费不过1000块左右。</p>
-<p>然而随着大家愈加内卷,各种各样的培训班也越来越多,价格也是水涨船高,竟然都要3000+,甚至8000+了,真是离谱!但是内容并没有什么新意,无非就是列线图/ROC曲线/C-index/NRI/IDI/校准曲线/决策曲线等等。</p>
-<p>回想自己的学习经历,这些东西无非就是各种R语言操作而已,本人的公众号也一直向大家免费提供这些教程。这部分内容已经积累了几十篇推文,是时候做个总结了,我把这些内容整理在一起,方便有需要的人学习。</p>
-<p>本书github地址:https://github.com/ayueme/R_clinical_model</p>
+<p>然而随着大家愈加内卷,各种各样的培训班也越来越多,价格也是水涨船高,竟然都要3000+,甚至8000+了,更让人匪夷所思的是竟然还有付费订阅制软件!离谱!魔幻!但是内容并没有什么新意,无非就是列线图/ROC曲线/C-index/NRI/IDI/校准曲线/决策曲线等等。</p>
+<p>回想自己的学习经历,这些东西无非就是各种R语言操作而已,本人的公众号也一直向大家免费提供这些教程。这部分内容已经积累了近百篇推文,是时候做个总结了,我把这些内容整理在一起,方便有需要的人学习。</p>
+<ul>
+<li>本书在线阅读地址:https://ayueme.github.io/R_clinical_model/</li>
+<li>本书github地址:https://github.com/ayueme/R_clinical_model</li>
+</ul>
 </section>
 <section id="书籍简介" class="level2 unnumbered">
 <h2 class="unnumbered anchored" data-anchor-id="书籍简介">书籍简介</h2>
-<p>本书主要介绍R语言在临床预测模型中的应用,重实践,少理论,全书只有少量内容是理论,其余部分都是R语言实操。</p>
+<p>本书主要介绍R语言在临床预测模型中的应用,重实践,少理论,全书多数内容都是R语言实操,但是对于每一种方法和概念都进行了详细的解释。</p>
 <p>临床预测模型和统计学以及机器学习交叉很多,本书虽然是R语言实现临床预测模型的入门书籍,但在阅读本书前,还需要你已经对<strong>临床预测模型、统计学、机器学习</strong>具有一定的了解。</p>
 <div class="callout callout-style-default callout-note callout-titled" title="提醒">
 <div class="callout-header d-flex align-content-center">
@@ -550,13 +537,13 @@ <h2 class="unnumbered anchored" data-anchor-id="书籍简介">书籍简介</h2>
 </div>
 </div>
 <div class="callout-body-container callout-body">
-<p>本书不适合R语言零基础的人。</p>
-<p>如果你是刚入门的小白,我首先推荐你了解下R语言的基础知识,比如R语言和R包安装(初学者可参考附录)、Rstudio的界面、R语言中数据类型(向量、矩阵、数据框、列表等)、R语言中的数据导入导出、R语言的基础数据操作等。</p>
-<p>对于医学生/医生,我比较推荐先看《R语言实战》,再看《R数据科学》,无需全部了解,只需要熟悉其中的基础知识即可。</p>
+<p>本书不适合R语言零基础的人。 如果你是刚入门的小白,我首先推荐你了解下R语言的基础知识,比如R语言和R包安装、Rstudio的界面、R语言中数据类型(向量、矩阵、数据框、列表等)、R语言中的数据导入导出、R语言的基础数据操作等。</p>
 </div>
 </div>
-<p>本书内容主要涉及<strong>模型建立、模型评价、模型比较</strong>3部分内容,其中模型建立和模型评价内容占比较多,模型比较部分主要是几个综合性R包的使用,简化多模型比较的流程。<strong>变量筛选</strong>内容较多,我把它单独放在一个章节中。对于临床预测模型中常见的列线图、C-index、ROC曲线、校准曲线、决策曲线、临床影响曲线、NRI、IDI等内容,皆进行了详细的操作演示,同时提供多种实现方法。</p>
-<p>对于一些比较火爆的机器学习方法,如<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2699591889800560640&amp;from_itemidx=1&amp;from_msgid=2247500351&amp;scene=173&amp;subscene=&amp;sessionid=svr_c7db21a769f&amp;enterid=1703484864&amp;count=3&amp;nolastread=1#wechat_redirect">随机生存森林</a>、<strong>生存支持向量机、提升法、神经网络</strong>等内容,本书并未进行介绍,公众号会逐步更新这部分内容(随机生存森林、生存支持向量机已完结),需要的朋友可关注公众号:医学和生信笔记。</p>
+<p>我结合自己学习R语言时的经验,也专门为编程零基础的医学生/医生等群体录制了<a href="https://space.bilibili.com/42460432/channel/collectiondetail?sid=3740949">R语言零基础入门</a>的视频教程,已放在B站,且配套文档、数据都是免费的,无任何套路。各种在初学R时遇到的“坑”,我都替你踩过了,并且也在视频中指出来了。<strong>强烈建议没接触过R语言的朋友先去了解下基础知识,切勿直接上手实操!</strong></p>
+<p>本书内容主要涉及<strong>模型建立、模型评价、模型比较</strong>3部分内容,其中模型建立和模型评价内容占比较多,模型比较部分主要是几个综合性R包的使用,简化多模型比较的流程。<strong>变量筛选</strong>内容较多,我把它单独放在一个章节中。对于临床预测模型中常见的列线图、C-index、ROC曲线、校准曲线、决策曲线、临床影响曲线、NRI、IDI等内容,皆进行了详细的操作演示(包括训练集、内部验证、外部验证),同时提供多种实现方法。</p>
+<p>本书并未对机器学习方法(如:随机森林、支持向量机、决策树、xgboost、岭回归/lasso回归、knn、GBM等)进行介绍,因为这又是一个全新的领域,虽然目前临床预测模型中经常会用到机器学习方法,但是都比较初级,使用也不规范。对于机器学习,我也专门出了一个合集进行介绍:<a href="https://ayueme.github.io/machine_learning_base_r/">R语言实战机器学习</a></p>
+<p>对于一些比较火爆的机器学习方法,如<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2699591889800560640&amp;from_itemidx=1&amp;from_msgid=2247500351&amp;scene=173&amp;subscene=&amp;sessionid=svr_c7db21a769f&amp;enterid=1703484864&amp;count=3&amp;nolastread=1#wechat_redirect">随机生存森林</a>、<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3212521253916540928&amp;from_itemidx=1&amp;from_msgid=2247501946#wechat_redirect">生存支持向量机</a>、<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3234170053936447493&amp;scene=173&amp;subscene=&amp;sessionid=svr_9665ae68aa2&amp;enterid=1715395457&amp;from_msgid=2247500931&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">提升法</a>、神经网络等内容,本书也未进行介绍,公众号已更新这部分内容,需要的朋友可关注公众号:医学和生信笔记,并使用关键词搜索历史推文即可。</p>
 <div class="callout callout-style-default callout-tip callout-titled" title="注意">
 <div class="callout-header d-flex align-content-center">
 <div class="callout-icon-container">
@@ -567,7 +554,7 @@ <h2 class="unnumbered anchored" data-anchor-id="书籍简介">书籍简介</h2>
 </div>
 </div>
 <div class="callout-body-container callout-body">
-<p>本书实际上是我公众号历史推文的整理和汇总(部分内容有改动),<strong>书中涉及的所有数据都可以在相关历史推文中免费获取!</strong>推文合集链接:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2393825487539191816&amp;scene=173&amp;from_msgid=2247495829&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">临床预测模型</a></p>
+<p>本书是我基于公众号历史推文的重新整理和汇总,<strong>书中涉及的所有数据都可以在相关历史推文中免费获取!</strong>推文合集链接:<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2393825487539191816&amp;scene=173&amp;from_msgid=2247495829&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">临床预测模型</a>。本书自上线以来一直在不断更新中,内容相较于原推文已经发生了较大变化,部分内容在公众号中可能没有。</p>
 <p>我也准备了一个PDF版合集,内容和网页版一致,只是打包了所有的数据,付费获取(10元),介意勿扰!<strong>PDF版合集获取链接</strong>:<a href="https://mp.weixin.qq.com/s/Sx7onA339TYSxIF6Bi6JTw">R语言实战临床预测模型</a></p>
 </div>
 </div>
@@ -575,6 +562,7 @@ <h2 class="unnumbered anchored" data-anchor-id="书籍简介">书籍简介</h2>
 <p>本书会不定期更新,内容和格式都会不断完善。</p>
 <p><em>更新日志</em>:</p>
 <ul>
+<li>20241108:这是一次比较大的更新。(1)修改各个章节内容和顺序,增加大量解释说明的内容和基础知识,合并一些内容,放在同一章节里,并适当精简一些内容;(2)模型评价部分增加新的评价内容,训练集和测试集分别演示;(3)增加<code>tidymodels</code>的使用以及内部验证/外部验证的内容;(4)每个指标和图形都增加解释内容,方便初学者理解;(5)增加样本量计算和缺失值插补相关内容;(6)增加模型比较的内容;(7)增加文献学习内容。</li>
 <li>20231230:优化内容结构和章节,增加变量筛选;增加列线图和决策曲线相关内容等</li>
 <li>20231015:首次上传</li>
 </ul>
@@ -583,12 +571,11 @@ <h2 class="unnumbered anchored" data-anchor-id="书籍简介">书籍简介</h2>
 <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
 <ul>
 <li>阿越,外科医生,R语言爱好者,长期分享R语言和医学统计学、临床预测模型、生信数据挖掘、R语言机器学习等知识。</li>
-<li>公众号:<strong>医学和生信笔记</strong></li>
-<li>知乎:<a href="https://www.zhihu.com/people/li-xiao-yue-65-90">医学和生信笔记</a></li>
-<li>CSDN:<a href="https://blog.csdn.net/Ayue0616">医学和生信笔记</a></li>
 <li>哔哩哔哩:<a href="https://space.bilibili.com/42460432">阿越就是我</a></li>
 <li>Github:<a href="https://github.com/ayueme">ayueme</a></li>
+<li>公众号:<strong>医学和生信笔记</strong>,欢迎扫码关注:</li>
 </ul>
+<p><img src="figs/46346465dfgdfgd.jpg" class="img-fluid"></p>
 
 
 </section>
@@ -630,18 +617,7 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -673,11 +649,50 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -687,8 +702,17 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -700,7 +724,130 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -744,6 +891,7 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -769,6 +917,32 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -832,7 +1006,7 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
   <div class="nav-page nav-page-previous">
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./clinmodel-definition.html" class="pagination-link">
+      <a href="./临床预测模型概念.html" class="pagination-link" aria-label="什么是临床预测模型?">
         <span class="nav-page-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
@@ -840,14 +1014,19 @@ <h2 class="unnumbered anchored" data-anchor-id="作者简介">作者简介</h2>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git "a/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245.html" "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245.html"
new file mode 100644
index 0000000..7bbb9ac
--- /dev/null
+++ "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245.html"
@@ -0,0 +1,1476 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>43&nbsp; mice多重插补 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+/* CSS for syntax highlighting */
+pre > code.sourceCode { white-space: pre; position: relative; }
+pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span:empty { height: 1.2em; }
+.sourceCode { overflow: visible; }
+code.sourceCode > span { color: inherit; text-decoration: inherit; }
+div.sourceCode { margin: 1em 0; }
+pre.sourceCode { margin: 0; }
+@media screen {
+div.sourceCode { overflow: auto; }
+}
+@media print {
+pre > code.sourceCode { white-space: pre-wrap; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+}
+pre.numberSource code
+  { counter-reset: source-line 0; }
+pre.numberSource code > span
+  { position: relative; left: -4em; counter-increment: source-line; }
+pre.numberSource code > span > a:first-child::before
+  { content: counter(source-line);
+    position: relative; left: -1em; text-align: right; vertical-align: baseline;
+    border: none; display: inline-block;
+    -webkit-touch-callout: none; -webkit-user-select: none;
+    -khtml-user-select: none; -moz-user-select: none;
+    -ms-user-select: none; user-select: none;
+    padding: 0 4px; width: 4em;
+  }
+pre.numberSource { margin-left: 3em;  padding-left: 4px; }
+div.sourceCode
+  {   }
+@media screen {
+pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./9999-appendix.html" rel="next">
+<link href="./BMJ预测模型样本量计算.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html">其他内容</a></li><li class="breadcrumb-item"><a href="./mice多重插补.html"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">43.1</span> 加载数据和R包</a></li>
+  <li><a href="#多种使用方法" id="toc-多种使用方法" class="nav-link" data-scroll-target="#多种使用方法"><span class="header-section-number">43.2</span> 多种使用方法</a>
+  <ul class="collapse">
+  <li><a href="#常规用法" id="toc-常规用法" class="nav-link" data-scroll-target="#常规用法"><span class="header-section-number">43.2.1</span> 常规用法</a></li>
+  <li><a href="#tidy用法" id="toc-tidy用法" class="nav-link" data-scroll-target="#tidy用法"><span class="header-section-number">43.2.2</span> tidy用法</a></li>
+  </ul></li>
+  <li><a href="#提取插补结果" id="toc-提取插补结果" class="nav-link" data-scroll-target="#提取插补结果"><span class="header-section-number">43.3</span> 提取插补结果</a></li>
+  <li><a href="#不推荐的用法" id="toc-不推荐的用法" class="nav-link" data-scroll-target="#不推荐的用法"><span class="header-section-number">43.4</span> 不推荐的用法</a>
+  <ul class="collapse">
+  <li><a href="#平均多个结果" id="toc-平均多个结果" class="nav-link" data-scroll-target="#平均多个结果"><span class="header-section-number">43.4.1</span> 平均多个结果</a></li>
+  <li><a href="#堆叠多个结果" id="toc-堆叠多个结果" class="nav-link" data-scroll-target="#堆叠多个结果"><span class="header-section-number">43.4.2</span> 堆叠多个结果</a></li>
+  </ul></li>
+  <li><a href="#插补细节探索" id="toc-插补细节探索" class="nav-link" data-scroll-target="#插补细节探索"><span class="header-section-number">43.5</span> 插补细节探索</a>
+  <ul class="collapse">
+  <li><a href="#插补方法" id="toc-插补方法" class="nav-link" data-scroll-target="#插补方法"><span class="header-section-number">43.5.1</span> 插补方法</a></li>
+  <li><a href="#预测变量矩阵" id="toc-预测变量矩阵" class="nav-link" data-scroll-target="#预测变量矩阵"><span class="header-section-number">43.5.2</span> 预测变量矩阵</a></li>
+  <li><a href="#共线性" id="toc-共线性" class="nav-link" data-scroll-target="#共线性"><span class="header-section-number">43.5.3</span> 共线性</a></li>
+  <li><a href="#插补顺序" id="toc-插补顺序" class="nav-link" data-scroll-target="#插补顺序"><span class="header-section-number">43.5.4</span> 插补顺序</a></li>
+  </ul></li>
+  <li><a href="#插补结果探索" id="toc-插补结果探索" class="nav-link" data-scroll-target="#插补结果探索"><span class="header-section-number">43.6</span> 插补结果探索</a>
+  <ul class="collapse">
+  <li><a href="#收敛" id="toc-收敛" class="nav-link" data-scroll-target="#收敛"><span class="header-section-number">43.6.1</span> 收敛</a></li>
+  <li><a href="#诊断图" id="toc-诊断图" class="nav-link" data-scroll-target="#诊断图"><span class="header-section-number">43.6.2</span> 诊断图</a></li>
+  </ul></li>
+  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料"><span class="header-section-number">43.7</span> 参考资料</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./BMJ预测模型样本量计算.html">其他内容</a></li><li class="breadcrumb-item"><a href="./mice多重插补.html"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span id="section-mice" class="quarto-section-identifier"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>多重插补(multiple imputation,MI)的思想是由Donald B. Rubin在19世纪70年代提出来的,它是相对于simple-imputation而言的,大多数的插补方法都是只插补一次,比如均数插补、中位数插补、众数插补、随机森林插补、KNN插补等,但是多重插补可以对缺失值插补多次,得到多个结果,并且不同的变量可以使用不同的方法进行插补,这样可以得到更准确的结果,降低误差。</p>
+<p>多重插补的示意图如下,对于一个有缺失值的数据,MI会插补多次,得到多个插补后的数据,然后对这多个结果进行分析,并对分析结果进行汇总:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="figs/PixPin_2024-06-17_19-25-13.png" class="img-fluid figure-img"></p>
+<figcaption>多重插补的流程</figcaption>
+</figure>
+</div>
+<p>目前在医学相关的文献中越来越多地见到多重插补的身影,<code>mice</code>是R语言中用的最多的多重插补R包,下面我们就以<code>mice</code>为例介绍下多重插补的使用。</p>
+<section id="加载数据和r包" class="level2" data-number="43.1">
+<h2 data-number="43.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">43.1</span> 加载数据和R包</h2>
+<p>首先我们加载<code>mice</code>包,并使用自带的<code>nhanes</code>数据进行演示。</p>
+<p>这个数据一共25行,4个变量,除了<code>age</code>这个变量外都有缺失值,各个变量的类型如下所示:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mice)</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(nhanes)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    25 obs. of  4 variables:</span></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age: num  1 2 1 3 1 3 1 1 2 2 ...</span></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bmi: num  NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...</span></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hyp: num  NA 1 1 NA 1 NA 1 1 1 NA ...</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chl: num  NA 187 187 NA 113 184 118 187 238 NA ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>使用<code>mice</code>进行缺失值插补非常简单,如果你不考虑各种细节的话,使用起来就是3行代码而已,主要使用的函数和作用如下所示:</p>
+<ul>
+<li><code>mice()</code>:对缺失值进行插补</li>
+<li><code>with()</code>:对多个插补后的结果进行分析,注意这里的<code>with()</code>是<code>mice</code>包里的函数</li>
+<li><code>pool()</code>:对分析结果进行汇总</li>
+</ul>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="figs/PixPin_2024-06-17_19-28-58.png" class="img-fluid figure-img"></p>
+<figcaption>mice使用示意图</figcaption>
+</figure>
+</div>
+</section>
+<section id="多种使用方法" class="level2" data-number="43.2">
+<h2 data-number="43.2" class="anchored" data-anchor-id="多种使用方法"><span class="header-section-number">43.2</span> 多种使用方法</h2>
+<p>假如我们的研究目的是:分析对<code>chl</code>这个变量有影响的因素,或者说是使用<code>age</code>、<code>bmi</code>、<code>hyp</code>预测<code>chl</code>的值,因为<code>chl</code>这个变量是连续型变量,此时我们可以使用<code>lm()</code>建立多元线性回归模型:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(<span class="fu">lm</span>(chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp, <span class="at">data =</span> nhanes))</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## lm(formula = chl ~ age + bmi + hyp, data = nhanes)</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Residuals:</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     Min      1Q  Median      3Q     Max </span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## -31.315 -15.782   0.576   6.315  59.335 </span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Coefficients:</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##             Estimate Std. Error t value Pr(&gt;|t|)   </span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)  -80.971     61.772  -1.311  0.22238   </span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## age           55.210     14.290   3.864  0.00383 **</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi            7.065      2.052   3.443  0.00736 **</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp           -6.222     23.177  -0.268  0.79441   </span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Residual standard error: 29.05 on 9 degrees of freedom</span></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##   (12 observations deleted due to missingness)</span></span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Multiple R-squared:  0.7339, Adjusted R-squared:  0.6452 </span></span>
+<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">## F-statistic: 8.274 on 3 and 9 DF,  p-value: 0.005915</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>此时虽然也能得到结果,但是这个是删除了缺失值之后的结果(12个观察量被删除了),<code>lm()</code>默认的对缺失值的默认操作就是直接删除,我们可以修改一下,但是会报错:</p>
+<div class="sourceCode" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lm</span>(chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp, <span class="at">data =</span> nhanes, <span class="at">na.action =</span> <span class="fu">na.fail</span>())</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Error in na.fail.default() : 缺少参数"object",也没有缺省值</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<p>此时我们可以使用<code>mice</code>对数据进行多重插补。</p>
+<p><code>mice</code>在3.0版本以后增加了对管道符的支持,所以现在使用起来有多种语法,下面给大家介绍常见的两种使用方法。</p>
+<section id="常规用法" class="level3" data-number="43.2.1">
+<h3 data-number="43.2.1" class="anchored" data-anchor-id="常规用法"><span class="header-section-number">43.2.1</span> 常规用法</h3>
+<p>常规用法就是3行代码,分别做3件事:</p>
+<ul>
+<li>插补</li>
+<li>分析</li>
+<li>汇总</li>
+</ul>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 进行插补,默认插补5次</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>) </span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 对5个结果进行分析</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co"># chl是连续型,所以用lm;二分类就用glm</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">with</span>(imp, <span class="fu">lm</span>(chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp)) </span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 汇总结果</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>est1 <span class="ot">&lt;-</span> <span class="fu">pool</span>(fit)</span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看汇总结果</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(est1)</span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##          term  estimate std.error  statistic        df    p.value</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 (Intercept) 10.312370 73.181125 0.14091571  8.137530 0.89136250</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 2         age 27.218585 12.835482 2.12057358 10.608141 0.05841745</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 3         bmi  4.958399  2.490281 1.99109978  7.079015 0.08629345</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 4         hyp  1.955541 21.541135 0.09078171 14.986247 0.92886832</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这样我们就得到了最终的结果,可以和前面的回归分析结果对比一下,不管是变量系数还是p值、标准误等,都有很大的不同。</p>
+<p>以上是5次分析汇总(不是平均)后的结果,如果要单独提取某次插补后的回归分析结果,可以通过以下方式:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 提取第2次插补后的回归分析结果</span></span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(fit<span class="sc">$</span>analyses[[<span class="dv">2</span>]])</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## lm(formula = chl ~ age + bmi + hyp)</span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Residuals:</span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     Min      1Q  Median      3Q     Max </span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">## -48.746 -24.916  -2.562   8.620  81.342 </span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Coefficients:</span></span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##             Estimate Std. Error t value Pr(&gt;|t|)  </span></span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## (Intercept)   40.313     52.734   0.764   0.4531  </span></span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## age           18.783     10.760   1.746   0.0955 .</span></span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi            4.198      1.731   2.425   0.0244 *</span></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp            5.211     20.693   0.252   0.8036  </span></span>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
+<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
+<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Residual standard error: 34.55 on 21 degrees of freedom</span></span>
+<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Multiple R-squared:  0.2957, Adjusted R-squared:  0.1951 </span></span>
+<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">## F-statistic:  2.94 on 3 and 21 DF,  p-value: 0.0568</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="tidy用法" class="level3" data-number="43.2.2">
+<h3 data-number="43.2.2" class="anchored" data-anchor-id="tidy用法"><span class="header-section-number">43.2.2</span> tidy用法</h3>
+<p>以上代码可以使用管道符的写法,更加简洁美观,效果是一样的:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>est2 <span class="ot">&lt;-</span> nhanes <span class="sc">|&gt;</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mice</span>(<span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>) <span class="sc">|&gt;</span></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">with</span>(<span class="fu">lm</span>(chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp)) <span class="sc">|&gt;</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pool</span>()</span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(est2)</span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">##          term  estimate std.error  statistic        df    p.value</span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 (Intercept) 10.312370 73.181125 0.14091571  8.137530 0.89136250</span></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2         age 27.218585 12.835482 2.12057358 10.608141 0.05841745</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3         bmi  4.958399  2.490281 1.99109978  7.079015 0.08629345</span></span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4         hyp  1.955541 21.541135 0.09078171 14.986247 0.92886832</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>和上面的常规写法完全一致。</p>
+</section>
+</section>
+<section id="提取插补结果" class="level2" data-number="43.3">
+<h2 data-number="43.3" class="anchored" data-anchor-id="提取插补结果"><span class="header-section-number">43.3</span> 提取插补结果</h2>
+<p>分析多重插补数据的<strong>合适方法</strong>是在每个插补数据集中拟合模型,然后再汇总多个拟合结果,也就是<code>mice</code>-<code>with</code>-<code>pool</code>三部曲。所以作者并不推荐提取其中某一次插补的结果进行后续分析。如果非要提取也是可以的。</p>
+<p><code>mice</code>默认可以插补5次,我们可以提取其中某一次插补的结果,比如提取第2次插补的结果:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>imputed_df <span class="ot">&lt;-</span> mice<span class="sc">::</span><span class="fu">complete</span>(imp, <span class="at">action =</span> <span class="dv">2</span>)</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">md.pattern</span>(imputed_df,<span class="at">plot =</span> F) <span class="co"># 没有缺失值了</span></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  /\     /\</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="do">## {  `---'  }</span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="do">## {  O   O  }</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## ==&gt;  V &lt;==  No need for mice. This data set is completely observed.</span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  \  \|/  /</span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   `-----'</span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">##    age bmi hyp chl  </span></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 25   1   1   1   1 0</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">##      0   0   0   0 0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>到底选择哪一次插补的结果没有标准,可以试试选择表现更好的,比如R<sup>2</sup>更大的,AIC更小的,等等。</p>
+</section>
+<section id="不推荐的用法" class="level2" data-number="43.4">
+<h2 data-number="43.4" class="anchored" data-anchor-id="不推荐的用法"><span class="header-section-number">43.4</span> 不推荐的用法</h2>
+<p>虽然作者也没说到底用哪次插补的结果,但是明确说了不推荐的用法,参考:https://stefvanbuuren.name/fimd/workflow.html</p>
+<section id="平均多个结果" class="level3" data-number="43.4.1">
+<h3 data-number="43.4.1" class="anchored" data-anchor-id="平均多个结果"><span class="header-section-number">43.4.1</span> 平均多个结果</h3>
+<p>对多个插补后的数据集计算平均值,作为最终的结果,这种做法是不推荐的。</p>
+<p>以下是对5次插补结果取平均值的示例代码,其中的<code>ave</code>就是取平均值后的插补后的数据:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(magrittr)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取5次平均的结果</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>ave <span class="ot">&lt;-</span> nhanes <span class="sc">%&gt;%</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mice</span>(<span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>  mice<span class="sc">::</span><span class="fu">complete</span>(<span class="st">"long"</span>) <span class="sc">%&gt;%</span> </span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(.id) <span class="sc">%&gt;%</span></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">summarise_all</span>(<span class="at">.funs =</span> mean) <span class="sc">%&gt;%</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span>.id, <span class="sc">-</span>.imp)</span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 用平均结果做后续分析</span></span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>est8 <span class="ot">&lt;-</span> <span class="fu">lm</span>(<span class="at">formula =</span> chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp, <span class="at">data =</span> ave)</span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="co">#summary(est8)</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这个结果和上面的正确用法的结果相差甚大,作者不推荐使用,因为这种方法和常规的simple-imputation的思想一样,<strong>具有常规方法的所有缺点</strong>。</p>
+</section>
+<section id="堆叠多个结果" class="level3" data-number="43.4.2">
+<h3 data-number="43.4.2" class="anchored" data-anchor-id="堆叠多个结果"><span class="header-section-number">43.4.2</span> 堆叠多个结果</h3>
+<p>这个也很简单,就是把5次插补的结果直接<strong>按行合并</strong>起来,比如<code>nhanes</code>这个数据一共25行,插补5次后,再按行合并5次的插补结果,于是就有25*5=125行数据,用这个数据作为最终的结果进行后续分析。这种也是作者不推荐的。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>stacked <span class="ot">&lt;-</span> nhanes <span class="sc">%&gt;%</span></span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mice</span>(<span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>  mice<span class="sc">::</span><span class="fu">complete</span>(<span class="st">"stacked"</span>)</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>est9 <span class="ot">&lt;-</span> <span class="fu">lm</span>(<span class="at">formula =</span> chl <span class="sc">~</span> age <span class="sc">+</span> bmi <span class="sc">+</span> hyp, <span class="at">data =</span> stacked)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这种方法计算的回归系数相比平均法更加准确一点,但是t值、标准误等也是不准的。</p>
+</section>
+</section>
+<section id="插补细节探索" class="level2" data-number="43.5">
+<h2 data-number="43.5" class="anchored" data-anchor-id="插补细节探索"><span class="header-section-number">43.5</span> 插补细节探索</h2>
+<p>如果正常使用的话就是3步即可,不需要其他操作。但是实际使用中总是需要各种DIY操作的,<code>mice</code>包的每一步都可以自己控制,非常强大。</p>
+<p>拿到一个有缺失值的数据后,首先是探索缺失值,我们可以用<code>mice</code>包里的函数,也可以用其他R包,比如之前介绍过的<a href="https://mp.weixin.qq.com/s/T0sn5JFkMWZ_dqQcbRKySw">naniar</a>。这里就不给大家演示这一步了。</p>
+<p>直接看一下<code>mice</code>的一些使用细节,并介绍一些比较重要的参数。</p>
+<div class="sourceCode" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">mice</span>(</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>  data,</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">m =</span> <span class="dv">5</span>, <span class="co"># 插补次数,默认5次,不用太多,一般5次就够用了</span></span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">method =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>  predictorMatrix,</span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">ignore =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>  <span class="at">where =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>  blocks,</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>  <span class="at">visitSequence =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>  formulas,</span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>  <span class="at">blots =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>  <span class="at">post =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>  <span class="at">defaultMethod =</span> <span class="fu">c</span>(<span class="st">"pmm"</span>, <span class="st">"logreg"</span>, <span class="st">"polyreg"</span>, <span class="st">"polr"</span>),</span>
+<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>  <span class="at">maxit =</span> <span class="dv">5</span>,</span>
+<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>  <span class="at">printFlag =</span> <span class="cn">TRUE</span>,</span>
+<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>  <span class="at">seed =</span> <span class="cn">NA</span>,</span>
+<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a>  <span class="at">data.init =</span> <span class="cn">NULL</span>,</span>
+<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a>  ...</span>
+<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<section id="插补方法" class="level3" data-number="43.5.1">
+<h3 data-number="43.5.1" class="anchored" data-anchor-id="插补方法"><span class="header-section-number">43.5.1</span> 插补方法</h3>
+<ul>
+<li><code>method</code>:插补时使用的方法,默认方法由<code>defaultMethod</code>参数指定,一般是4种方法(参考上面的代码),对应4种数据类型,分别是连续型变量、二分类、无序多分类、有序多分类。</li>
+</ul>
+<p><code>mice</code>支持36种插补方法,可通过<code>methods(mice)</code>查看支持的方法:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">methods</span>(mice)</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="do">##  [1] mice.impute.2l.bin              mice.impute.2l.lmer            </span></span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  [3] mice.impute.2l.norm             mice.impute.2l.pan             </span></span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  [5] mice.impute.2lonly.mean         mice.impute.2lonly.norm        </span></span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  [7] mice.impute.2lonly.pmm          mice.impute.cart               </span></span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  [9] mice.impute.jomoImpute          mice.impute.lasso.logreg       </span></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [11] mice.impute.lasso.norm          mice.impute.lasso.select.logreg</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [13] mice.impute.lasso.select.norm   mice.impute.lda                </span></span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="do">## [15] mice.impute.logreg              mice.impute.logreg.boot        </span></span>
+<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [17] mice.impute.mean                mice.impute.midastouch         </span></span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [19] mice.impute.mnar.logreg         mice.impute.mnar.norm          </span></span>
+<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [21] mice.impute.mpmm                mice.impute.norm               </span></span>
+<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [23] mice.impute.norm.boot           mice.impute.norm.nob           </span></span>
+<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a><span class="do">## [25] mice.impute.norm.predict        mice.impute.panImpute          </span></span>
+<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [27] mice.impute.passive             mice.impute.pmm                </span></span>
+<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [29] mice.impute.polr                mice.impute.polyreg            </span></span>
+<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a><span class="do">## [31] mice.impute.quadratic           mice.impute.rf                 </span></span>
+<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a><span class="do">## [33] mice.impute.ri                  mice.impute.sample             </span></span>
+<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [35] mice.mids                       mice.theme                     </span></span>
+<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a><span class="do">## see '?methods' for accessing help and source code</span></span>
+<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看每种方法的详细信息和支持的数据类型</span></span>
+<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a><span class="co">#?mice.impute.2l.norm </span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>在插补的过程中会自动对不同的变量选择不同的插补方法,可以通过以下方式查看每个变量使用的插补方法:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>) </span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>imp</span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Class: mids</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of multiple imputations:  5 </span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Imputation methods:</span></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   age   bmi   hyp   chl </span></span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    "" "pmm" "pmm" "pmm" </span></span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="do">## PredictorMatrix:</span></span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     age bmi hyp chl</span></span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="do">## age   0   1   1   1</span></span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi   1   0   1   1</span></span>
+<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp   1   1   0   1</span></span>
+<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="do">## chl   1   1   1   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这个<code>imp</code>是一个<code>mids</code>对象,在中间部分可以看到<code>age</code>下面是<code>""</code>,表示没有进行插补,因为它没有缺失值,其余3个变量都是用的<code>pmm</code>法。</p>
+<p>也可以单独查看每个变量使用的方法:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 所有变量使用的插补方法</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>method</span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   age   bmi   hyp   chl </span></span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    "" "pmm" "pmm" "pmm"</span></span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="co"># chl这个变量使用的插补方法</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>method[[<span class="st">"chl"</span>]]</span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "pmm"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>对于每个变量,你都可以更改方法,比如对于<code>hyp</code>这个变量我们想使用<code>norm</code>法,即贝叶斯线性回归法,可以使用以下代码更改:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>impp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>)</span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 更改方法</span></span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>impp<span class="sc">$</span>method[[<span class="st">"hyp"</span>]] <span class="ot">&lt;-</span> <span class="st">"norm"</span></span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 重新插补即可</span></span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>, <span class="at">method =</span> impp<span class="sc">$</span>method)</span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Class: mids</span></span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of multiple imputations:  5 </span></span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Imputation methods:</span></span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="do">##    age    bmi    hyp    chl </span></span>
+<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     ""  "pmm" "norm"  "pmm" </span></span>
+<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">## PredictorMatrix:</span></span>
+<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="do">##     age bmi hyp chl</span></span>
+<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="do">## age   0   1   1   1</span></span>
+<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi   1   0   1   1</span></span>
+<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp   1   1   0   1</span></span>
+<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a><span class="do">## chl   1   1   1   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>可以看到<code>hyp</code>的插补方法就变成<code>norm</code>了。</p>
+<blockquote class="blockquote">
+<p>如果变量是正态分布的,那么使用<code>norm</code>法可能比<code>pmm</code>法更好。对于大型数据集,选择<code>norm.nob</code>可能更有用,它不绘制回归参数,因此更简单、更快。<code>norm.boot</code>方法是<code>norm</code>的快速非贝叶斯替代方法。在<code>pmm</code>效果不佳的情况下,<code>norm</code>方法是<code>pmm</code>的替代方法。对于稀疏分类数据,最好使用方法<code>pmm</code>而不是<code>logreg</code>、<code>polr</code>或<code>polyreg</code>。<code>logreg.boot</code>是<code>logreg</code>的一个版本,它使用<code>bootstrap</code>来模拟采样方差。<code>lda</code>法通常不如<code>polyreg</code>法,并且仅应在所有其他方法均失败时用作备用方法。<code>sample</code>是一种无需协变量即可创建起始插补的快速方法。</p>
+</blockquote>
+</section>
+<section id="预测变量矩阵" class="level3" data-number="43.5.2">
+<h3 data-number="43.5.2" class="anchored" data-anchor-id="预测变量矩阵"><span class="header-section-number">43.5.2</span> 预测变量矩阵</h3>
+<p><code>imp</code>最下面的预测变量矩阵也可以单独查看:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>predictorMatrix</span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="do">##     age bmi hyp chl</span></span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a><span class="do">## age   0   1   1   1</span></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi   1   0   1   1</span></span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp   1   1   0   1</span></span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="do">## chl   1   1   1   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>多重插补进行插补时会借助其他变量,比如插补<code>chl</code>时,会使用其他3个变量,插补<code>bmi</code>时,也会使用其他3个变量。这个矩阵中的1就表示使用,0表示未使用。比如在上面的例子中,<code>bmi</code>就是根据<code>age</code>、<code>hyp</code>、<code>chl</code>这3个变量进行插补的。</p>
+<p><code>predictorMatrix</code>的默认设置是:每个变量都用于插补其他变量。可以自由修改使用哪些变量去插补缺失值,比如我只想用<code>age</code>和<code>chl</code>这两个变量,不想使用<code>hyp</code>,直接把<code>hyp</code>这个变量变成0即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>impp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>)</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 修改变量</span></span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>impp<span class="sc">$</span>predictorMatrix[,<span class="st">"hyp"</span>] <span class="ot">&lt;-</span> <span class="dv">0</span></span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 重新插补即可</span></span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>imppp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes,<span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>, </span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">predictorMatrix =</span> impp<span class="sc">$</span>predictorMatrix)</span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看预测变量矩阵</span></span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>imppp<span class="sc">$</span>predictorMatrix</span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="do">##     age bmi hyp chl</span></span>
+<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a><span class="do">## age   0   1   0   1</span></span>
+<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="do">## bmi   1   0   0   1</span></span>
+<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a><span class="do">## hyp   1   1   0   1</span></span>
+<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a><span class="do">## chl   1   1   0   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<blockquote class="blockquote">
+<p>对于小型数据集(最多20-30个变量),使用所有其他变量去插补缺失值是合理的,但是对于大型数据集(包含几百个或者几千个变量)不推荐这种做法,通常使用15-25个变量就足够了。</p>
+</blockquote>
+<p>在实践中有时可能会需要快速使用相关的变量对某个缺失变量进行插补(比如只使用和该变量相关系数大于0.3的变量对该变量进行插补),这时可以使用<code>quickpred()</code>函数快速自动确定符合条件的预测变量。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算预测变量矩阵</span></span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>predmatrix <span class="ot">&lt;-</span> <span class="fu">quickpred</span>(</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>  data, <span class="co"># 数据</span></span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">mincor =</span> <span class="fl">0.1</span>, <span class="co"># 最小相关系数</span></span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">minpuc =</span> <span class="dv">0</span>, <span class="co"># 使用的最少样本比例</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">include =</span> <span class="st">""</span>, <span class="co"># 使用哪些变量</span></span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>  <span class="at">exclude =</span> <span class="st">""</span>, <span class="co"># 不使用哪些变量</span></span>
+<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>  <span class="at">method =</span> <span class="st">"pearson"</span> <span class="co"># 相关系数计算方法</span></span>
+<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>)</span>
+<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 下面使用这个矩阵进行插补即可</span></span>
+<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a><span class="fu">mice</span>(nhanes,<span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">m=</span><span class="dv">5</span>, </span>
+<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>     <span class="at">predictorMatrix =</span> predmatrix)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="共线性" class="level3" data-number="43.5.3">
+<h3 data-number="43.5.3" class="anchored" data-anchor-id="共线性"><span class="header-section-number">43.5.3</span> 共线性</h3>
+<p><code>mice</code>包在插补时会自动去除存在共线性的变量。下面我们增加一个变量<code>chl2</code>,这个变量是<code>chl</code>这个变量的两倍,是很明显的共线性,<code>mice</code>在插补时会显示一条<code>warning</code>:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(<span class="fu">cbind</span>(nhanes, <span class="at">chl2 =</span> <span class="dv">2</span> <span class="sc">*</span> nhanes<span class="sc">$</span>chl), <span class="co"># 新建一个有共线性的变量</span></span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">maxit =</span> <span class="dv">1</span>, <span class="at">m =</span> <span class="dv">3</span>, <span class="at">seed =</span> <span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这个<code>warning</code>表示有1个变量被排除了,通过以下代码查看被排除的变量,发现是<code>chl2</code>,所以此时<code>chl</code>会被插补,但是<code>chl2</code>不会被插补。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>loggedEvents</span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="do">##   it im dep      meth  out</span></span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  0  0     collinear chl2</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="插补顺序" class="level3" data-number="43.5.4">
+<h3 data-number="43.5.4" class="anchored" data-anchor-id="插补顺序"><span class="header-section-number">43.5.4</span> 插补顺序</h3>
+<p>一个数据集中可能有多个变量都有缺失值,每个变量都需要被插补,先插补哪个变量呢?</p>
+<p><code>mice</code>默认是从左到右依次插补。可以通过<code>visitSequence</code>查看插补的顺序:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>) </span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>visitSequence</span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "age" "bmi" "hyp" "chl"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>这个顺序当然也是可以更改的:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 自定义顺序</span></span>
+<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>vis <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"bmi"</span>,<span class="st">"chl"</span>,<span class="st">"hyp"</span>,<span class="st">"age"</span>)</span>
+<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 按照自定义顺序插补</span></span>
+<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">123</span>, <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">visitSequence =</span> vis) </span>
+<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a>imp<span class="sc">$</span>visitSequence</span>
+<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "bmi" "chl" "hyp" "age"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+</section>
+<section id="插补结果探索" class="level2" data-number="43.6">
+<h2 data-number="43.6" class="anchored" data-anchor-id="插补结果探索"><span class="header-section-number">43.6</span> 插补结果探索</h2>
+<p>在完成插补后,可以通过多种图形的方式查看插补后的数据集,检查插补效果等。</p>
+<section id="收敛" class="level3" data-number="43.6.1">
+<h3 data-number="43.6.1" class="anchored" data-anchor-id="收敛"><span class="header-section-number">43.6.1</span> 收敛</h3>
+<p>没有明确的方法来确定MICE算法何时收敛。</p>
+<p>我们可以根据迭代次数绘制出每个变量的均值和标准差(方差)的变化情况。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">62006</span>, <span class="at">maxit =</span> <span class="dv">20</span>, <span class="at">print =</span> <span class="cn">FALSE</span>)</span>
+<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(imp)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="mice多重插补_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>如果算法收敛的话,那么多条线应该趋于交织、重合在一起,不应该有明显的趋势。上图可认为是已经收敛了。</p>
+<p>下面是一个不收敛的示例:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>meth <span class="ot">&lt;-</span> <span class="fu">make.method</span>(boys)</span>
+<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>meth[<span class="st">"bmi"</span>] <span class="ot">&lt;-</span> <span class="st">"~I(wgt / (hgt / 100)^2)"</span></span>
+<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a>imp.bmi1 <span class="ot">&lt;-</span> <span class="fu">mice</span>(boys, <span class="at">meth =</span> meth, <span class="at">maxit =</span> <span class="dv">20</span>,</span>
+<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">print =</span> <span class="cn">FALSE</span>, <span class="at">seed =</span> <span class="dv">60109</span>)</span>
+<span id="cb23-5"><a href="#cb23-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(imp.bmi1)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p><img src="figs/PixPin_2024-06-18_13-17-31.png" class="img-fluid"></p>
+<p>上图中的曲线一开始是明显的上升趋势,然后是平稳,这种就被认为是没有收敛。</p>
+</section>
+<section id="诊断图" class="level3" data-number="43.6.2">
+<h3 data-number="43.6.2" class="anchored" data-anchor-id="诊断图"><span class="header-section-number">43.6.2</span> 诊断图</h3>
+<p>有多种图形可以用来检查插补后的数据质量如何,它们基于的思想是:<strong>好的插补数据应该具有和观测数据相同的分布</strong>。如果观测数据和插补数据的分布相差很大,那么缺失数据可能是非随机缺失。</p>
+<p>比如下面这个散点图,分别展示了4个变量的观测数据和插补数据。其中蓝色点是观测数据(<code>age</code>没有缺失值,所以全是蓝色),红色点是插补数据。</p>
+<p>在<code>bmi</code>、<code>hyp</code>、<code>chl</code>这3个变量中,插补的数据和观测数据的<strong>重合度非常高</strong>,说明插补质量好。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>imp <span class="ot">&lt;-</span> <span class="fu">mice</span>(nhanes, <span class="at">seed =</span> <span class="dv">29981</span>, <span class="at">printFlag =</span> F)</span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="fu">stripplot</span>(imp, <span class="at">pch =</span> <span class="fu">c</span>(<span class="dv">21</span>, <span class="dv">20</span>), <span class="at">cex =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="fl">1.5</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="mice多重插补_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>另一种看分布比较好的图形是箱线图,蓝色是观测数据,红色是插补数据,可以看出观测数据和插补数据分布基本一致,<code>hyp</code>有几个分布差的比较多,另外两个变量还可以。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="fu">bwplot</span>(imp)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="mice多重插补_files/figure-html/unnamed-chunk-23-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>除此之外,还有密度曲线图,也是一样的解读方法,红色是插补数据的分布,蓝色是观测数据的分布。重合度越高越好。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="fu">densityplot</span>(imp, <span class="at">layout =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="mice多重插补_files/figure-html/unnamed-chunk-24-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+</section>
+</section>
+<section id="参考资料" class="level2" data-number="43.7">
+<h2 data-number="43.7" class="anchored" data-anchor-id="参考资料"><span class="header-section-number">43.7</span> 参考资料</h2>
+<ol type="1">
+<li>mice包帮助文档</li>
+<li>Flexible Imputation of Missing Data: https://stefvanbuuren.name/fimd/</li>
+</ol>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./BMJ预测模型样本量计算.html" class="pagination-link" aria-label="开发预测模型样本量计算">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./9999-appendix.html" class="pagination-link" aria-label="其他合集">
+        <span class="nav-page-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-20-1.png" "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-20-1.png"
new file mode 100644
index 0000000..ed8c14b
Binary files /dev/null and "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-20-1.png" differ
diff --git "a/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-22-1.png" "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-22-1.png"
new file mode 100644
index 0000000..04b7649
Binary files /dev/null and "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-22-1.png" differ
diff --git "a/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-23-1.png" "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-23-1.png"
new file mode 100644
index 0000000..aaf424f
Binary files /dev/null and "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-23-1.png" differ
diff --git "a/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-24-1.png" "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-24-1.png"
new file mode 100644
index 0000000..7d4f577
Binary files /dev/null and "b/docs/mice\345\244\232\351\207\215\346\217\222\350\241\245_files/figure-html/unnamed-chunk-24-1.png" differ
diff --git a/docs/model-compare_caret.html b/docs/model-compare_caret.html
index f7c46c6..e4b53e9 100644
--- a/docs/model-compare_caret.html
+++ b/docs/model-compare_caret.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 49&nbsp; caret实现多模型比较</title>
+<title>41&nbsp; caret实现多模型比较 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./data-preprocess.html" rel="next">
+<link href="./BMJ预测模型样本量计算.html" rel="next">
 <link href="./model-compare_mlr3.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./model-compare_tidymodels.html">模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_caret.html"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_caret.html"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,34 +493,27 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#数据划分" id="toc-数据划分" class="nav-link active" data-scroll-target="#数据划分"><span class="header-section-number">49.1</span> 数据划分</a></li>
-  <li><a href="#重抽样" id="toc-重抽样" class="nav-link" data-scroll-target="#重抽样"><span class="header-section-number">49.2</span> 重抽样</a></li>
-  <li><a href="#超参数调整" id="toc-超参数调整" class="nav-link" data-scroll-target="#超参数调整"><span class="header-section-number">49.3</span> 超参数调整</a></li>
-  <li><a href="#选择最终模型" id="toc-选择最终模型" class="nav-link" data-scroll-target="#选择最终模型"><span class="header-section-number">49.4</span> 选择最终模型</a></li>
-  <li><a href="#应用于测试集" id="toc-应用于测试集" class="nav-link" data-scroll-target="#应用于测试集"><span class="header-section-number">49.5</span> 应用于测试集</a></li>
-  <li><a href="#多个模型的比较" id="toc-多个模型的比较" class="nav-link" data-scroll-target="#多个模型的比较"><span class="header-section-number">49.6</span> 多个模型的比较</a>
-  <ul class="collapse">
-  <li><a href="#多建立几个模型" id="toc-多建立几个模型" class="nav-link" data-scroll-target="#多建立几个模型"><span class="header-section-number">49.6.1</span> 多建立几个模型</a></li>
-  <li><a href="#多个模型可视化" id="toc-多个模型可视化" class="nav-link" data-scroll-target="#多个模型可视化"><span class="header-section-number">49.6.2</span> 多个模型可视化</a></li>
-  <li><a href="#多个模型的显著性检验" id="toc-多个模型的显著性检验" class="nav-link" data-scroll-target="#多个模型的显著性检验"><span class="header-section-number">49.6.3</span> 多个模型的显著性检验</a></li>
-  </ul></li>
-  <li><a href="#使用默认超参数" id="toc-使用默认超参数" class="nav-link" data-scroll-target="#使用默认超参数"><span class="header-section-number">49.7</span> 使用默认超参数</a></li>
+  <li><a href="#数据划分" id="toc-数据划分" class="nav-link active" data-scroll-target="#数据划分"><span class="header-section-number">41.1</span> 数据划分</a></li>
+  <li><a href="#建立多个模型" id="toc-建立多个模型" class="nav-link" data-scroll-target="#建立多个模型"><span class="header-section-number">41.2</span> 建立多个模型</a></li>
+  <li><a href="#结果查看" id="toc-结果查看" class="nav-link" data-scroll-target="#结果查看"><span class="header-section-number">41.3</span> 结果查看</a></li>
+  <li><a href="#结果可视化" id="toc-结果可视化" class="nav-link" data-scroll-target="#结果可视化"><span class="header-section-number">41.4</span> 结果可视化</a></li>
+  <li><a href="#显著性检验" id="toc-显著性检验" class="nav-link" data-scroll-target="#显著性检验"><span class="header-section-number">41.5</span> 显著性检验</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_caret.html"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></h1>
+<h1 class="title"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></h1>
 </div>
 
 
@@ -551,456 +526,346 @@ <h1 class="title"><span class="chapter-number">49</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<div class="callout callout-style-default callout-tip callout-titled" title="注意">
-<div class="callout-header d-flex align-content-center">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<div class="callout-title-container flex-fill">
-注意
-</div>
-</div>
-<div class="callout-body-container callout-body">
-<p>这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的信息,可参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">机器学习合集</a></p>
-</div>
-</div>
-<p>本文主要演示<code>caret</code>包的基本使用,比如建模、重抽样方法选择、调参、可视化、模型比较等。</p>
-<p>目前支持238个model。这个数目是<code>mlr3</code>和<code>tidymodels</code>不能比的!基本你知道的不知道的模型<code>caret</code>都支持(但是仅限分类和回归)!</p>
-<p>关于每种模型的具体实现方法,背后的原理,超参数等,需要大家自己学习哦,我只提供R语言的实现方法。</p>
-<p>下面用几个例子演示下。</p>
-<section id="数据划分" class="level2" data-number="49.1">
-<h2 data-number="49.1" class="anchored" data-anchor-id="数据划分"><span class="header-section-number">49.1</span> 数据划分</h2>
-<p>下面是一个分类数据的演示。</p>
+
+<blockquote class="blockquote">
+<p>该方法基于<code>caret</code>实现,<code>caret</code>曾经是R语言里做机器学习和预测模型最火爆的R包之一(现在不是了),公众号后台回复<strong>caret</strong>即可获取<code>caret</code>合集链接,带你全面了解<code>caret</code>。</p>
+</blockquote>
+<p><code>caret</code>是R里面经典的综合性统计建模R包,目前来看已经落后于<code>mlr3</code>和<code>tidymodels</code>了,但是作为老牌R包,日常使用还是没问题的(速度很慢)。</p>
+<section id="数据划分" class="level2" data-number="41.1">
+<h2 data-number="41.1" class="anchored" data-anchor-id="数据划分"><span class="header-section-number">41.1</span> 数据划分</h2>
+<p>下面是一个分类数据的演示。这个数据一共208行,61列,其中<code>Class</code>是结果变量,二分类,因子型,其余变量都是预测变量。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用的数据集</span></span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlbench)</span>
 <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(Sonar)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(Sonar[, <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>])</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    208 obs. of  10 variables:</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V1 : num  0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V2 : num  0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V3 : num  0.0428 0.0843 0.1099 0.0623 0.0481 ...</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V4 : num  0.0207 0.0689 0.1083 0.0205 0.0394 ...</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V5 : num  0.0954 0.1183 0.0974 0.0205 0.059 ...</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V6 : num  0.0986 0.2583 0.228 0.0368 0.0649 ...</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V7 : num  0.154 0.216 0.243 0.11 0.121 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V8 : num  0.16 0.348 0.377 0.128 0.247 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V9 : num  0.3109 0.3337 0.5598 0.0598 0.3564 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V10: num  0.211 0.287 0.619 0.126 0.446 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(Sonar)</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 208  61</span></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(Sonar[, <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>])<span class="co"># 展示前10列</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    208 obs. of  10 variables:</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V1 : num  0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V2 : num  0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V3 : num  0.0428 0.0843 0.1099 0.0623 0.0481 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V4 : num  0.0207 0.0689 0.1083 0.0205 0.0394 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V5 : num  0.0954 0.1183 0.0974 0.0205 0.059 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V6 : num  0.0986 0.2583 0.228 0.0368 0.0649 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V7 : num  0.154 0.216 0.243 0.11 0.121 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V8 : num  0.16 0.348 0.377 0.128 0.247 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V9 : num  0.3109 0.3337 0.5598 0.0598 0.3564 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ V10: num  0.211 0.287 0.619 0.126 0.446 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>用<code>caret</code>包实现<code>boosted tree</code>模型。</p>
+<p>划分训练集、测试集:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载R包,划分数据集</span></span>
 <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(caret)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: ggplot2</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: lattice</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 训练集、测试集划分,比例为0.75</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">998</span>)</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>inTraining <span class="ot">&lt;-</span> <span class="fu">createDataPartition</span>(Sonar<span class="sc">$</span>Class, <span class="at">p =</span> .<span class="dv">75</span>, <span class="at">list =</span> <span class="cn">FALSE</span>)</span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>training <span class="ot">&lt;-</span> Sonar[inTraining,]</span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>testing  <span class="ot">&lt;-</span> Sonar[<span class="sc">-</span>inTraining,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 训练集、测试集划分,比例为0.75</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">998</span>)</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>inTraining <span class="ot">&lt;-</span> <span class="fu">createDataPartition</span>(Sonar<span class="sc">$</span>Class, <span class="at">p =</span> .<span class="dv">75</span>, <span class="at">list =</span> <span class="cn">FALSE</span>)</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>training <span class="ot">&lt;-</span> Sonar[inTraining,]</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>testing  <span class="ot">&lt;-</span> Sonar[<span class="sc">-</span>inTraining,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="重抽样" class="level2" data-number="49.2">
-<h2 data-number="49.2" class="anchored" data-anchor-id="重抽样"><span class="header-section-number">49.2</span> 重抽样</h2>
-<p><code>trainControl()</code>选择重抽样方法。</p>
+<section id="建立多个模型" class="level2" data-number="41.2">
+<h2 data-number="41.2" class="anchored" data-anchor-id="建立多个模型"><span class="header-section-number">41.2</span> 建立多个模型</h2>
+<p>首先建立一个<code>boosted tree</code>模型,并设置好它的超参数范围以及重抽样方法:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择重抽样方法,重复10折交叉验证</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>fitControl <span class="ot">&lt;-</span> <span class="fu">trainControl</span>(<span class="at">method =</span> <span class="st">"repeatedcv"</span>, <span class="co">#默认是simple boost</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>                           <span class="at">number =</span> <span class="dv">10</span>,</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>                           <span class="at">repeats =</span> <span class="dv">10</span>,</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>                           <span class="at">classProbs =</span> T <span class="co"># 计算概率</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>                           )</span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 借助 gbm 包实现 boosted tree</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>gbmFit1 <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> training, </span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                 <span class="at">method =</span> <span class="st">"gbm"</span>, </span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                 <span class="at">trControl =</span> fitControl,</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                 <span class="at">verbose =</span> <span class="cn">FALSE</span>)</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>gbmFit1</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Stochastic Gradient Boosting </span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 157 samples</span></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  60 predictor</span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">##   2 classes: 'M', 'R' </span></span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">## No pre-processing</span></span>
-<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Resampling: Cross-Validated (10 fold, repeated 10 times) </span></span>
-<span id="cb3-24"><a href="#cb3-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Summary of sample sizes: 141, 142, 141, 142, 141, 142, ... </span></span>
-<span id="cb3-25"><a href="#cb3-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Resampling results across tuning parameters:</span></span>
-<span id="cb3-26"><a href="#cb3-26" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-27"><a href="#cb3-27" aria-hidden="true" tabindex="-1"></a><span class="do">##   interaction.depth  n.trees  Accuracy   Kappa    </span></span>
-<span id="cb3-28"><a href="#cb3-28" aria-hidden="true" tabindex="-1"></a><span class="do">##   1                   50      0.7935784  0.5797839</span></span>
-<span id="cb3-29"><a href="#cb3-29" aria-hidden="true" tabindex="-1"></a><span class="do">##   1                  100      0.8171078  0.6290208</span></span>
-<span id="cb3-30"><a href="#cb3-30" aria-hidden="true" tabindex="-1"></a><span class="do">##   1                  150      0.8219608  0.6383173</span></span>
-<span id="cb3-31"><a href="#cb3-31" aria-hidden="true" tabindex="-1"></a><span class="do">##   2                   50      0.8041912  0.6027771</span></span>
-<span id="cb3-32"><a href="#cb3-32" aria-hidden="true" tabindex="-1"></a><span class="do">##   2                  100      0.8296176  0.6544713</span></span>
-<span id="cb3-33"><a href="#cb3-33" aria-hidden="true" tabindex="-1"></a><span class="do">##   2                  150      0.8283627  0.6520181</span></span>
-<span id="cb3-34"><a href="#cb3-34" aria-hidden="true" tabindex="-1"></a><span class="do">##   3                   50      0.8110343  0.6170317</span></span>
-<span id="cb3-35"><a href="#cb3-35" aria-hidden="true" tabindex="-1"></a><span class="do">##   3                  100      0.8301275  0.6551379</span></span>
-<span id="cb3-36"><a href="#cb3-36" aria-hidden="true" tabindex="-1"></a><span class="do">##   3                  150      0.8310343  0.6577252</span></span>
-<span id="cb3-37"><a href="#cb3-37" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-38"><a href="#cb3-38" aria-hidden="true" tabindex="-1"></a><span class="do">## Tuning parameter 'shrinkage' was held constant at a value of 0.1</span></span>
-<span id="cb3-39"><a href="#cb3-39" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-40"><a href="#cb3-40" aria-hidden="true" tabindex="-1"></a><span class="do">## Tuning parameter 'n.minobsinnode' was held constant at a value of 10</span></span>
-<span id="cb3-41"><a href="#cb3-41" aria-hidden="true" tabindex="-1"></a><span class="do">## Accuracy was used to select the optimal model using the largest value.</span></span>
-<span id="cb3-42"><a href="#cb3-42" aria-hidden="true" tabindex="-1"></a><span class="do">## The final values used for the model were n.trees = 150, interaction.depth =</span></span>
-<span id="cb3-43"><a href="#cb3-43" aria-hidden="true" tabindex="-1"></a><span class="do">##  3, shrinkage = 0.1 and n.minobsinnode = 10.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 网格搜索,首先设定超参数范围</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>gbmGrid <span class="ot">&lt;-</span>  <span class="fu">expand.grid</span>(<span class="at">interaction.depth =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>), </span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>                        <span class="at">n.trees =</span> (<span class="dv">1</span><span class="sc">:</span><span class="dv">30</span>)<span class="sc">*</span><span class="dv">50</span>, </span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>                        <span class="at">shrinkage =</span> <span class="fl">0.1</span>,</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>                        <span class="at">n.minobsinnode =</span> <span class="dv">20</span>)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="fu">nrow</span>(gbmGrid)</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 90</span></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(gbmGrid)</span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   interaction.depth n.trees shrinkage n.minobsinnode</span></span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1                 1      50       0.1             20</span></span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 2                 5      50       0.1             20</span></span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 3                 9      50       0.1             20</span></span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 4                 1     100       0.1             20</span></span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 5                 5     100       0.1             20</span></span>
+<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 6                 9     100       0.1             20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>结果很详细,就不做解释了。</p>
-<p>上面的例子也展示了<code>caret</code>包建模的基本语法,就是一个<code>train()</code>就可以了,<code>method</code>参数选择模型,<code>trControl</code>选择重抽样方法,<code>preProcess</code>选择数据预处理方法(上面这个例子没有进行数据预处理)。</p>
-</section>
-<section id="超参数调整" class="level2" data-number="49.3">
-<h2 data-number="49.3" class="anchored" data-anchor-id="超参数调整"><span class="header-section-number">49.3</span> 超参数调整</h2>
-<p>上面是交叉验证的例子,并没有加入超参数调优的环节,下面将加入超参数调优的过程。</p>
-<p>但是说实话<code>caret</code>虽然是一个整合包,但是对于每一种算法,它支持调整的超参数都很有限!</p>
+<p>设置<code>boosted tree</code>模型的重抽样方法:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 网格搜索,首先设定超参数范围</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>gbmGrid <span class="ot">&lt;-</span>  <span class="fu">expand.grid</span>(<span class="at">interaction.depth =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>), </span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>                        <span class="at">n.trees =</span> (<span class="dv">1</span><span class="sc">:</span><span class="dv">30</span>)<span class="sc">*</span><span class="dv">50</span>, </span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>                        <span class="at">shrinkage =</span> <span class="fl">0.1</span>,</span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>                        <span class="at">n.minobsinnode =</span> <span class="dv">20</span>)</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="fu">nrow</span>(gbmGrid)</span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 90</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(gbmGrid)</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   interaction.depth n.trees shrinkage n.minobsinnode</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1                 1      50       0.1             20</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 2                 5      50       0.1             20</span></span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 3                 9      50       0.1             20</span></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 4                 1     100       0.1             20</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 5                 5     100       0.1             20</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 6                 9     100       0.1             20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># trainControl函数用来设置非常多的东西,重复10次的10折交叉验证</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>fitControl <span class="ot">&lt;-</span> <span class="fu">trainControl</span>(<span class="at">method =</span> <span class="st">"repeatedcv"</span>,</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>                           <span class="at">number =</span> <span class="dv">10</span>,</span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>                           <span class="at">repeats =</span> <span class="dv">10</span>,</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>                           <span class="at">classProbs =</span> <span class="cn">TRUE</span>, <span class="co"># 计算概率</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>                           <span class="at">summaryFunction =</span> twoClassSummary <span class="co"># 二分类指标</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>                           )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>选择好之后开始拟合模型(及超参数调优):</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 设置种子数,进行建模</span></span>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择好之后开始调优</span></span>
 <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>gbmFit2 <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>gbmFit3 <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
 <span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> training, </span>
 <span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">method =</span> <span class="st">"gbm"</span>, </span>
 <span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">trControl =</span> fitControl, </span>
 <span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                 <span class="at">verbose =</span> <span class="cn">FALSE</span>, </span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>                 <span class="at">tuneGrid =</span> gbmGrid <span class="co"># 设定网格范围</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>                 )</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>gbmFit2</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(gbmFit2,file = "./datasets/gbmFit2.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>上面这个结果非常详细。</p>
-<p>除了网格搜索,还提供常见的其他方法,大家感兴趣的自己探索即可,我这里只是简单演示基本用法。</p>
-<p>在探索这个结果之前,让我们先看看<code>caret</code>强大的模型结果的可视化功能。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 展示不同参数下的模型性能</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(gbmFit2)  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 更改性能指标</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(gbmFit2, <span class="at">metric =</span> <span class="st">"Kappa"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>                 <span class="at">tuneGrid =</span> gbmGrid,</span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>                 <span class="at">metric =</span> <span class="st">"ROC"</span> <span class="co"># 选择指标</span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>                 )</span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>gbmFit3</span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(gbmFit3,file = "./datasets/gbmFit3.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co">#?plot.train 获取更多细节!</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(gbmFit2, <span class="at">metric =</span> <span class="st">"Kappa"</span>, <span class="at">plotType =</span> <span class="st">"level"</span>,</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">scales =</span> <span class="fu">list</span>(<span class="at">x =</span> <span class="fu">list</span>(<span class="at">rot =</span> <span class="dv">90</span>)))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 支持ggplot2</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(gbmFit2)<span class="sc">+</span><span class="fu">theme_bw</span>()  <span class="co"># ?xyplot.train</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p><code>trainControl()</code>可用来选择重抽样方法,选择是否需要计算概率(分类数据)等,这个函数非常重要,可以使用<code>?trainControl</code>查看细节。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># trainControl函数用来设置非常多的东西,很重要</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>fitControl <span class="ot">&lt;-</span> <span class="fu">trainControl</span>(<span class="at">method =</span> <span class="st">"repeatedcv"</span>,</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>                           <span class="at">number =</span> <span class="dv">10</span>,</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>                           <span class="at">repeats =</span> <span class="dv">10</span>,</span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>                           <span class="at">classProbs =</span> <span class="cn">TRUE</span>, <span class="co"># 计算概率</span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>                           <span class="at">summaryFunction =</span> twoClassSummary <span class="co"># 二分类变量指标</span></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>                           )</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择好之后开始调优</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>gbmFit3 <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> training, </span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>                 <span class="at">method =</span> <span class="st">"gbm"</span>, </span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>                 <span class="at">trControl =</span> fitControl, </span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>                 <span class="at">verbose =</span> <span class="cn">FALSE</span>, </span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>                 <span class="at">tuneGrid =</span> gbmGrid,</span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>                 <span class="at">metric =</span> <span class="st">"ROC"</span> <span class="co"># 选择指标</span></span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a>                 )</span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a>gbmFit3</span>
-<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(gbmFit3,file = "./datasets/gbmFit3.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p><code>train()</code>函数中的<code>metric</code>参数可以指定调优的指标,默认分类模型是accuracy和Kappa,回归模型是RMSE/R^2/MAE。</p>
+<p>上面的例子展示了<code>caret</code>包建模的基本语法,就是一个<code>train()</code>就可以了,<code>method</code>参数选择模型,<code>trControl</code>选择重抽样方法,<code>preProcess</code>选择数据预处理方法(上面这个例子没有进行数据预处理)。</p>
+<p><code>train()</code>函数中的<code>metric</code>参数可以指定调优的指标,默认分类模型是accuracy和Kappa,回归模型是RMSE/R<sup>2</sup>/MAE。</p>
 <p><code>trainControl()</code>中的<code>summaryFunction</code>参数还提供了额外的调优指标选项,比如上面这个<code>twoClassSummary</code>,内含3种指标:敏感度、特异度、ROC。</p>
-</section>
-<section id="选择最终模型" class="level2" data-number="49.4">
-<h2 data-number="49.4" class="anchored" data-anchor-id="选择最终模型"><span class="header-section-number">49.4</span> 选择最终模型</h2>
-<p>其实经过上面的<code>train()</code>训练后得到的<code>gbmFit3</code>就已经包含了我们最终的模型,如果你不需要额外的操作,那现在这个<code>gbmFit3</code>就可以直接用于测试集了。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit3, <span class="at">newdata =</span> <span class="fu">head</span>(testing), <span class="at">type =</span> <span class="st">"prob"</span>)</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="do">##              M            R</span></span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 3.215213e-02 9.678479e-01</span></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 1.000000e+00 3.965815e-08</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 6.996088e-13 1.000000e+00</span></span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 9.070652e-01 9.293483e-02</span></span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 2.029754e-03 9.979702e-01</span></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 9.999662e-01 3.377548e-05</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit3, <span class="at">newdata =</span> <span class="fu">head</span>(testing))</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] R M R M R M</span></span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Levels: M R</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>同时你也可以用<code>$</code>符号查看各种结果,比如:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>gbmFit3<span class="sc">$</span>finalModel <span class="co"># 最终模型</span></span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>gbmFit3<span class="sc">$</span>bestTune <span class="co"># 选择的超参数</span></span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>gbmFit3<span class="sc">$</span>results <span class="co"># 包含各种指标的详细结果</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>除此之外,<code>caret</code>还提供了另外3个函数帮助你自定义选择最终的模型: - <code>best</code>:根据某一指标选择,选择使某个指标最大或最小的模型 - <code>oneSE</code>:使用1倍标准差法选择最终模型 - <code>tolerance</code>:根据某一指标选择最简单的模型</p>
-<p>下面是一个<code>tolerance</code>的演示,其他两个也是一样的使用方法:</p>
+<p>然后再建立一个<strong>支持向量机</strong>模型和<strong>正则化的判别分析</strong>模型。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>whichTwoPct <span class="ot">&lt;-</span> <span class="fu">tolerance</span>(gbmFit3<span class="sc">$</span>results, </span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>                         <span class="at">metric =</span> <span class="st">"ROC"</span>, </span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>                         <span class="at">tol =</span> <span class="dv">2</span>, <span class="co"># 这个参数是tolerance函数特有的</span></span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>                         <span class="at">maximize =</span> <span class="cn">TRUE</span>) </span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>gbmFit3<span class="sc">$</span>results[whichTwoPct,<span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>]</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    shrinkage interaction.depth n.minobsinnode n.trees       ROC      Sens</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 32       0.1                 5             20     100 0.9139707 0.8645833</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择重抽样方法,重复10次的10折交叉验证</span></span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>fitControl <span class="ot">&lt;-</span> <span class="fu">trainControl</span>(<span class="at">method =</span> <span class="st">"repeatedcv"</span>, <span class="co">#默认是simple boost</span></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                           <span class="at">number =</span> <span class="dv">10</span>,</span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>                           <span class="at">repeats =</span> <span class="dv">10</span>,</span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>                           <span class="at">classProbs =</span> T <span class="co"># 计算概率</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>                           )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-</section>
-<section id="应用于测试集" class="level2" data-number="49.5">
-<h2 data-number="49.5" class="anchored" data-anchor-id="应用于测试集"><span class="header-section-number">49.5</span> 应用于测试集</h2>
-<p>上面已经介绍过了,直接使用即可。</p>
-<p><code>caret</code>对<code>predict()</code>函数进行了优化,<code>type=prob</code>计算概率,<code>type=class</code>计算类别。<code>tidymodels</code>完整继承了这个优点。</p>
+<p>开始拟合模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit3, <span class="at">newdata =</span> <span class="fu">head</span>(testing))</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] R M R M R M</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Levels: M R</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit3, <span class="at">newdata =</span> <span class="fu">head</span>(testing), <span class="at">type =</span> <span class="st">"prob"</span>)</span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">##              M            R</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 3.215213e-02 9.678479e-01</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 1.000000e+00 3.965815e-08</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 6.996088e-13 1.000000e+00</span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 9.070652e-01 9.293483e-02</span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 2.029754e-03 9.979702e-01</span></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 9.999662e-01 3.377548e-05</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 支持向量机,高斯径向基核</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>svmFit <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> training, </span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"svmRadial"</span>, </span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">trControl =</span> fitControl, </span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>                <span class="at">preProc =</span> <span class="fu">c</span>(<span class="st">"center"</span>, <span class="st">"scale"</span>),</span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>                <span class="at">tuneLength =</span> <span class="dv">8</span>,</span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>                <span class="at">metric =</span> <span class="st">"ROC"</span>)</span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 正则化的判别分析</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>rdaFit <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> training, </span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"rda"</span>, </span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">trControl =</span> fitControl, </span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>                <span class="at">tuneLength =</span> <span class="dv">4</span>,</span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a>                <span class="at">metric =</span> <span class="st">"ROC"</span>)</span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="co">#save(svmFit, rdaFit,file = "./datasets/svm_rda_fit.rdata")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>这样我们就建立好了3个模型。</p>
 </section>
-<section id="多个模型的比较" class="level2" data-number="49.6">
-<h2 data-number="49.6" class="anchored" data-anchor-id="多个模型的比较"><span class="header-section-number">49.6</span> 多个模型的比较</h2>
-<section id="多建立几个模型" class="level3" data-number="49.6.1">
-<h3 data-number="49.6.1" class="anchored" data-anchor-id="多建立几个模型"><span class="header-section-number">49.6.1</span> 多建立几个模型</h3>
+<section id="结果查看" class="level2" data-number="41.3">
+<h2 data-number="41.3" class="anchored" data-anchor-id="结果查看"><span class="header-section-number">41.3</span> 结果查看</h2>
+<p>可以单独查看每个模型的结果,直击打印即可:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>svmFit <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> training, </span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"svmRadial"</span>, </span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>                <span class="at">trControl =</span> fitControl, </span>
-<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">preProc =</span> <span class="fu">c</span>(<span class="st">"center"</span>, <span class="st">"scale"</span>),</span>
-<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a>                <span class="at">tuneLength =</span> <span class="dv">8</span>,</span>
-<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a>                <span class="at">metric =</span> <span class="st">"ROC"</span>)</span>
-<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a>rdaFit <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
-<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">data =</span> training, </span>
-<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> <span class="st">"rda"</span>, </span>
-<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">trControl =</span> fitControl, </span>
-<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">tuneLength =</span> <span class="dv">4</span>,</span>
-<span id="cb15-16"><a href="#cb15-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">metric =</span> <span class="st">"ROC"</span>)</span>
-<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a><span class="co">#save(svmFit, rdaFit,file = "./datasets/svm_rda_fit.rdata")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 比如查看gbm模型</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>gbmFit3</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>Stochastic Gradient Boosting </span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="dv">157</span> samples</span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a> <span class="dv">60</span> predictor</span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="dv">2</span> classes<span class="sc">:</span> <span class="st">'M'</span>, <span class="st">'R'</span> </span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>No pre<span class="sc">-</span>processing</span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>Resampling<span class="sc">:</span> Cross<span class="sc">-</span><span class="fu">Validated</span> (<span class="dv">10</span> fold, repeated <span class="dv">10</span> times) </span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>Summary of sample sizes<span class="sc">:</span> <span class="dv">141</span>, <span class="dv">142</span>, <span class="dv">141</span>, <span class="dv">142</span>, <span class="dv">141</span>, <span class="dv">142</span>, ... </span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>Resampling results across tuning parameters<span class="sc">:</span></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a>  interaction.depth  n.trees  ROC        Sens       Spec     </span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a>  <span class="dv">1</span>                    <span class="dv">50</span>     <span class="fl">0.8634003</span>  <span class="fl">0.8631944</span>  <span class="fl">0.6905357</span></span>
+<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a>  <span class="dv">1</span>                   <span class="dv">100</span>     <span class="fl">0.8844097</span>  <span class="fl">0.8486111</span>  <span class="fl">0.7544643</span></span>
+<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">##省略一部分,太长了</span></span>
+<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a>  <span class="dv">9</span>                  <span class="dv">1500</span>     <span class="fl">0.9181721</span>  <span class="fl">0.8805556</span>  <span class="fl">0.8039286</span></span>
+<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a>Tuning parameter <span class="st">'shrinkage'</span> was held constant at a value of <span class="fl">0.1</span></span>
+<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a>Tuning parameter <span class="st">'n.minobsinnode'</span> was held constant at a value of <span class="dv">20</span></span>
+<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a>ROC was used to select the optimal model using the largest value.</span>
+<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a>The final values used <span class="cf">for</span> the model were n.trees <span class="ot">=</span></span>
+<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a> <span class="dv">1450</span>, interaction.depth <span class="ot">=</span> <span class="dv">5</span>, shrinkage <span class="ot">=</span> <span class="fl">0.1</span> and n.minobsinnode <span class="ot">=</span> <span class="fl">20.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>一起放入<code>resamples()</code>函数里面:</p>
+<p>结果没什么难度,我就不帮大家翻译了。</p>
+<p>也可以一起放入<code>resamples()</code>函数里面,可以得到每个模型的指标的统计值,比如ROC的最大值、最小值、均值、中位数等:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>resamps <span class="ot">&lt;-</span> <span class="fu">resamples</span>(<span class="fu">list</span>(<span class="at">GBM =</span> gbmFit3,</span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>                          <span class="at">SVM =</span> svmFit,</span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>                          <span class="at">RDA =</span> rdaFit))</span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>resamps</span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a><span class="do">## resamples.default(x = list(GBM = gbmFit3, SVM = svmFit, RDA = rdaFit))</span></span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Models: GBM, SVM, RDA </span></span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of resamples: 100 </span></span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Performance metrics: ROC, Sens, Spec </span></span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Time estimates for: everything, final model fit</span></span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(resamps)</span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb16-16"><a href="#cb16-16" aria-hidden="true" tabindex="-1"></a><span class="do">## summary.resamples(object = resamps)</span></span>
-<span id="cb16-17"><a href="#cb16-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-18"><a href="#cb16-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Models: GBM, SVM, RDA </span></span>
-<span id="cb16-19"><a href="#cb16-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of resamples: 100 </span></span>
-<span id="cb16-20"><a href="#cb16-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-21"><a href="#cb16-21" aria-hidden="true" tabindex="-1"></a><span class="do">## ROC </span></span>
-<span id="cb16-22"><a href="#cb16-22" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.  1st Qu.    Median      Mean   3rd Qu. Max. NA's</span></span>
-<span id="cb16-23"><a href="#cb16-23" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.6964286 0.874504 0.9454365 0.9216468 0.9821429    1    0</span></span>
-<span id="cb16-24"><a href="#cb16-24" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.7321429 0.905878 0.9464286 0.9339658 0.9821429    1    0</span></span>
-<span id="cb16-25"><a href="#cb16-25" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.5625000 0.812500 0.8750000 0.8698115 0.9392361    1    0</span></span>
-<span id="cb16-26"><a href="#cb16-26" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-27"><a href="#cb16-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Sens </span></span>
-<span id="cb16-28"><a href="#cb16-28" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.   1st Qu.    Median      Mean 3rd Qu. Max. NA's</span></span>
-<span id="cb16-29"><a href="#cb16-29" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.5555556 0.7777778 0.8750000 0.8787500       1    1    0</span></span>
-<span id="cb16-30"><a href="#cb16-30" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.5000000 0.7777778 0.8888889 0.8730556       1    1    0</span></span>
-<span id="cb16-31"><a href="#cb16-31" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.4444444 0.7777778 0.8750000 0.8604167       1    1    0</span></span>
-<span id="cb16-32"><a href="#cb16-32" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb16-33"><a href="#cb16-33" aria-hidden="true" tabindex="-1"></a><span class="do">## Spec </span></span>
-<span id="cb16-34"><a href="#cb16-34" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.   1st Qu.    Median      Mean   3rd Qu. Max. NA's</span></span>
-<span id="cb16-35"><a href="#cb16-35" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.4285714 0.7142857 0.8571429 0.8119643 1.0000000    1    0</span></span>
-<span id="cb16-36"><a href="#cb16-36" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.4285714 0.7142857 0.8571429 0.8205357 0.9062500    1    0</span></span>
-<span id="cb16-37"><a href="#cb16-37" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.1428571 0.5714286 0.7142857 0.6941071 0.8571429    1    0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>resamps <span class="ot">&lt;-</span> <span class="fu">resamples</span>(<span class="fu">list</span>(<span class="at">GBM =</span> gbmFit3,</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>                          <span class="at">SVM =</span> svmFit,</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>                          <span class="at">RDA =</span> rdaFit))</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co">#resamps</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(resamps)</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## summary.resamples(object = resamps)</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Models: GBM, SVM, RDA </span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of resamples: 100 </span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">## ROC </span></span>
+<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.  1st Qu.    Median      Mean   3rd Qu. Max. NA's</span></span>
+<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.6964286 0.874504 0.9454365 0.9216468 0.9821429    1    0</span></span>
+<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.7321429 0.905878 0.9464286 0.9339658 0.9821429    1    0</span></span>
+<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.5625000 0.812500 0.8750000 0.8698115 0.9392361    1    0</span></span>
+<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Sens </span></span>
+<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.   1st Qu.    Median      Mean 3rd Qu. Max. NA's</span></span>
+<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.5555556 0.7777778 0.8750000 0.8787500       1    1    0</span></span>
+<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.5000000 0.7777778 0.8888889 0.8730556       1    1    0</span></span>
+<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.4444444 0.7777778 0.8750000 0.8604167       1    1    0</span></span>
+<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Spec </span></span>
+<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">##          Min.   1st Qu.    Median      Mean   3rd Qu. Max. NA's</span></span>
+<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM 0.4285714 0.7142857 0.8571429 0.8119643 1.0000000    1    0</span></span>
+<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.4285714 0.7142857 0.8571429 0.8205357 0.9062500    1    0</span></span>
+<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.1428571 0.5714286 0.7142857 0.6941071 0.8571429    1    0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>结果就很强!分别给出了3种指标下的每种模型的统计值。</p>
 </section>
-<section id="多个模型可视化" class="level3" data-number="49.6.2">
-<h3 data-number="49.6.2" class="anchored" data-anchor-id="多个模型可视化"><span class="header-section-number">49.6.2</span> 多个模型可视化</h3>
-<p>喜闻乐见的结果可视化也是必不可少的。主要包括以下几种:density plots, box-whisker plots, scatterplot matrices and scatterplots</p>
+<section id="结果可视化" class="level2" data-number="41.4">
+<h2 data-number="41.4" class="anchored" data-anchor-id="结果可视化"><span class="header-section-number">41.4</span> 结果可视化</h2>
+<p>喜闻乐见的结果可视化也是必不可少的。主要包括以下几种(都是基于<code>lattice</code>的):</p>
+<ul>
+<li>density plots,</li>
+<li>box-whisker plots,</li>
+<li>scatterplot matrices,</li>
+<li>scatterplots</li>
+</ul>
+<p>箱线图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 设主题</span></span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>theme1 <span class="ot">&lt;-</span> <span class="fu">trellis.par.get</span>()</span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.symbol<span class="sc">$</span>col <span class="ot">=</span> <span class="fu">rgb</span>(.<span class="dv">2</span>, .<span class="dv">2</span>, .<span class="dv">2</span>, .<span class="dv">4</span>)</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.symbol<span class="sc">$</span>pch <span class="ot">=</span> <span class="dv">16</span></span>
-<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.line<span class="sc">$</span>col <span class="ot">=</span> <span class="fu">rgb</span>(<span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>, .<span class="dv">7</span>)</span>
-<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.line<span class="sc">$</span>lwd <span class="ot">&lt;-</span> <span class="dv">2</span></span>
-<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图,箱线图</span></span>
-<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
-<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a><span class="fu">bwplot</span>(resamps, <span class="at">layout =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 设主题</span></span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>theme1 <span class="ot">&lt;-</span> <span class="fu">trellis.par.get</span>()</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.symbol<span class="sc">$</span>col <span class="ot">=</span> <span class="fu">rgb</span>(.<span class="dv">2</span>, .<span class="dv">2</span>, .<span class="dv">2</span>, .<span class="dv">4</span>)</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.symbol<span class="sc">$</span>pch <span class="ot">=</span> <span class="dv">16</span></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.line<span class="sc">$</span>col <span class="ot">=</span> <span class="fu">rgb</span>(<span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>, .<span class="dv">7</span>)</span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>theme1<span class="sc">$</span>plot.line<span class="sc">$</span>lwd <span class="ot">&lt;-</span> <span class="dv">2</span></span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图,箱线图</span></span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="fu">bwplot</span>(resamps, <span class="at">layout =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
+</div>
+<p>密度图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 密度图</span></span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a><span class="fu">densityplot</span>(resamps)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 密度图</span></span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">densityplot</span>(resamps)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-21-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+<p>换个指标,点线图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 换个指标,点线图</span></span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="fu">dotplot</span>(resamps, <span class="at">metric =</span> <span class="st">"ROC"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 换个指标,点线图</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="fu">dotplot</span>(resamps, <span class="at">metric =</span> <span class="st">"ROC"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+<p>散点图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 散点图</span></span>
-<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
-<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="fu">xyplot</span>(resamps, <span class="at">what =</span> <span class="st">"BlandAltman"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 散点图</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="fu">xyplot</span>(resamps, <span class="at">what =</span> <span class="st">"BlandAltman"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-23-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
+</div>
+<p>散点图矩阵:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 散点图矩阵</span></span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a><span class="fu">splom</span>(resamps)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 散点图矩阵</span></span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="fu">splom</span>(resamps)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-24-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="多个模型的显著性检验" class="level3" data-number="49.6.3">
-<h3 data-number="49.6.3" class="anchored" data-anchor-id="多个模型的显著性检验"><span class="header-section-number">49.6.3</span> 多个模型的显著性检验</h3>
-<p>除此之外,我们还可以对不同模型之间的差异进行显著性检验,比如t检验。</p>
+<section id="显著性检验" class="level2" data-number="41.5">
+<h2 data-number="41.5" class="anchored" data-anchor-id="显著性检验"><span class="header-section-number">41.5</span> 显著性检验</h2>
+<p>除此之外,我们还可以对不同模型之间的差异进行显著性检验,比如t检验,结果会给出多重校正检验(bonferroni法)的p值,非常高大上:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>difValues <span class="ot">&lt;-</span> <span class="fu">diff</span>(resamps)</span>
-<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>difValues</span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="do">## diff.resamples(x = resamps)</span></span>
-<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Models: GBM, SVM, RDA </span></span>
-<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Metrics: ROC, Sens, Spec </span></span>
-<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of differences: 3 </span></span>
-<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="do">## p-value adjustment: bonferroni</span></span>
-<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(difValues)</span>
-<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a><span class="do">## summary.diff.resamples(object = difValues)</span></span>
-<span id="cb22-15"><a href="#cb22-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-16"><a href="#cb22-16" aria-hidden="true" tabindex="-1"></a><span class="do">## p-value adjustment: bonferroni </span></span>
-<span id="cb22-17"><a href="#cb22-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Upper diagonal: estimates of the difference</span></span>
-<span id="cb22-18"><a href="#cb22-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Lower diagonal: p-value for H0: difference = 0</span></span>
-<span id="cb22-19"><a href="#cb22-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-20"><a href="#cb22-20" aria-hidden="true" tabindex="-1"></a><span class="do">## ROC </span></span>
-<span id="cb22-21"><a href="#cb22-21" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM       SVM       RDA     </span></span>
-<span id="cb22-22"><a href="#cb22-22" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM           -0.01232   0.05184</span></span>
-<span id="cb22-23"><a href="#cb22-23" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.3408               0.06415</span></span>
-<span id="cb22-24"><a href="#cb22-24" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 5.356e-07 2.638e-10         </span></span>
-<span id="cb22-25"><a href="#cb22-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-26"><a href="#cb22-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Sens </span></span>
-<span id="cb22-27"><a href="#cb22-27" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM    SVM      RDA     </span></span>
-<span id="cb22-28"><a href="#cb22-28" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM        0.005694 0.018333</span></span>
-<span id="cb22-29"><a href="#cb22-29" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 1.0000          0.012639</span></span>
-<span id="cb22-30"><a href="#cb22-30" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.4253 1.0000           </span></span>
-<span id="cb22-31"><a href="#cb22-31" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb22-32"><a href="#cb22-32" aria-hidden="true" tabindex="-1"></a><span class="do">## Spec </span></span>
-<span id="cb22-33"><a href="#cb22-33" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM       SVM       RDA      </span></span>
-<span id="cb22-34"><a href="#cb22-34" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM           -0.008571  0.117857</span></span>
-<span id="cb22-35"><a href="#cb22-35" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 1                    0.126429</span></span>
-<span id="cb22-36"><a href="#cb22-36" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 8.230e-07 1.921e-10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>difValues <span class="ot">&lt;-</span> <span class="fu">diff</span>(resamps)</span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>difValues</span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a><span class="do">## diff.resamples(x = resamps)</span></span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Models: GBM, SVM, RDA </span></span>
+<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Metrics: ROC, Sens, Spec </span></span>
+<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of differences: 3 </span></span>
+<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="do">## p-value adjustment: bonferroni</span></span>
+<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(difValues)</span>
+<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a><span class="do">## summary.diff.resamples(object = difValues)</span></span>
+<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-16"><a href="#cb15-16" aria-hidden="true" tabindex="-1"></a><span class="do">## p-value adjustment: bonferroni </span></span>
+<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Upper diagonal: estimates of the difference</span></span>
+<span id="cb15-18"><a href="#cb15-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Lower diagonal: p-value for H0: difference = 0</span></span>
+<span id="cb15-19"><a href="#cb15-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-20"><a href="#cb15-20" aria-hidden="true" tabindex="-1"></a><span class="do">## ROC </span></span>
+<span id="cb15-21"><a href="#cb15-21" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM       SVM       RDA     </span></span>
+<span id="cb15-22"><a href="#cb15-22" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM           -0.01232   0.05184</span></span>
+<span id="cb15-23"><a href="#cb15-23" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 0.3408               0.06415</span></span>
+<span id="cb15-24"><a href="#cb15-24" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 5.356e-07 2.638e-10         </span></span>
+<span id="cb15-25"><a href="#cb15-25" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-26"><a href="#cb15-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Sens </span></span>
+<span id="cb15-27"><a href="#cb15-27" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM    SVM      RDA     </span></span>
+<span id="cb15-28"><a href="#cb15-28" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM        0.005694 0.018333</span></span>
+<span id="cb15-29"><a href="#cb15-29" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 1.0000          0.012639</span></span>
+<span id="cb15-30"><a href="#cb15-30" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 0.4253 1.0000           </span></span>
+<span id="cb15-31"><a href="#cb15-31" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb15-32"><a href="#cb15-32" aria-hidden="true" tabindex="-1"></a><span class="do">## Spec </span></span>
+<span id="cb15-33"><a href="#cb15-33" aria-hidden="true" tabindex="-1"></a><span class="do">##     GBM       SVM       RDA      </span></span>
+<span id="cb15-34"><a href="#cb15-34" aria-hidden="true" tabindex="-1"></a><span class="do">## GBM           -0.008571  0.117857</span></span>
+<span id="cb15-35"><a href="#cb15-35" aria-hidden="true" tabindex="-1"></a><span class="do">## SVM 1                    0.126429</span></span>
+<span id="cb15-36"><a href="#cb15-36" aria-hidden="true" tabindex="-1"></a><span class="do">## RDA 8.230e-07 1.921e-10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>结果的可视化:</p>
+<p>这个结果展示的是不同模型之间的差异和t检验的p值。比如第一个矩阵(ROC的这个),先横着看,GBM和GBM是一个,不用比,GBM和SVM比,平均ROC的差异是-0.01232,GBM和RDA比,平均ROC的差异是0.05184;再顺着看,GBM和SVM的t检验的p值是0.3408,说明无统计学差异,GBM和RDA的t检验的p值是5.356e-07,有统计学差异。</p>
+<p>结果的可视化,使用箱线图,同时展示3种指标,这个图展示的是不同模型之间性能指标的差异分布情况:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
-<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a><span class="fu">bwplot</span>(difValues, <span class="at">layout =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(theme1)</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="fu">bwplot</span>(difValues, <span class="at">layout =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-27-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+<p>下面这个图展示的是不同模型性能指标差异的95%可信区间,如果通过了0,说明没差异,这个图的结果和上面统计检验的结果是相同的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
-<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="fu">dotplot</span>(difValues)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">trellis.par.set</span>(<span class="fu">caretTheme</span>())</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">dotplot</span>(difValues)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-28-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_caret_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>是不是很强!</p>
-</section>
-</section>
-<section id="使用默认超参数" class="level2" data-number="49.7">
-<h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><span class="header-section-number">49.7</span> 使用默认超参数</h2>
-<p>直接提供超参数的值,这种情况不能进行重抽样,把超参数的值直接提供给<code>tuneGrid</code>参数即可。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>fitControl <span class="ot">&lt;-</span> <span class="fu">trainControl</span>(<span class="at">method =</span> <span class="st">"none"</span>, <span class="at">classProbs =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">825</span>)</span>
-<span id="cb25-4"><a href="#cb25-4" aria-hidden="true" tabindex="-1"></a>gbmFit4 <span class="ot">&lt;-</span> <span class="fu">train</span>(Class <span class="sc">~</span> ., </span>
-<span id="cb25-5"><a href="#cb25-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> training, </span>
-<span id="cb25-6"><a href="#cb25-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">method =</span> <span class="st">"gbm"</span>, </span>
-<span id="cb25-7"><a href="#cb25-7" aria-hidden="true" tabindex="-1"></a>                 <span class="at">trControl =</span> fitControl, </span>
-<span id="cb25-8"><a href="#cb25-8" aria-hidden="true" tabindex="-1"></a>                 <span class="at">verbose =</span> <span class="cn">FALSE</span>, </span>
-<span id="cb25-9"><a href="#cb25-9" aria-hidden="true" tabindex="-1"></a>                 <span class="co"># 直接提供超参数的值</span></span>
-<span id="cb25-10"><a href="#cb25-10" aria-hidden="true" tabindex="-1"></a>                 <span class="at">tuneGrid =</span> <span class="fu">data.frame</span>(<span class="at">interaction.depth =</span> <span class="dv">4</span>,</span>
-<span id="cb25-11"><a href="#cb25-11" aria-hidden="true" tabindex="-1"></a>                                       <span class="at">n.trees =</span> <span class="dv">100</span>,</span>
-<span id="cb25-12"><a href="#cb25-12" aria-hidden="true" tabindex="-1"></a>                                       <span class="at">shrinkage =</span> .<span class="dv">1</span>,</span>
-<span id="cb25-13"><a href="#cb25-13" aria-hidden="true" tabindex="-1"></a>                                       <span class="at">n.minobsinnode =</span> <span class="dv">20</span>),</span>
-<span id="cb25-14"><a href="#cb25-14" aria-hidden="true" tabindex="-1"></a>                 <span class="at">metric =</span> <span class="st">"ROC"</span>)</span>
-<span id="cb25-15"><a href="#cb25-15" aria-hidden="true" tabindex="-1"></a>gbmFit4</span>
-<span id="cb25-16"><a href="#cb25-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb25-17"><a href="#cb25-17" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit4, <span class="at">newdata =</span> <span class="fu">head</span>(testing))</span>
-<span id="cb25-18"><a href="#cb25-18" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(gbmFit4, <span class="at">newdata =</span> <span class="fu">head</span>(testing), <span class="at">type =</span> <span class="st">"prob"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>以上就是<code>caret</code>典型使用的演示,更多的例子我们慢慢介绍,逐渐深入。</p>
+<p>是不是很强!</p>
+<p>这里介绍的<code>caret</code>的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复<code>caret</code>获取合集。</p>
 
 
 </section>
@@ -1041,18 +906,7 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1084,11 +938,50 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1098,8 +991,17 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1111,7 +1013,130 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1155,6 +1180,7 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1180,6 +1206,32 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1241,27 +1293,32 @@ <h2 data-number="49.7" class="anchored" data-anchor-id="使用默认超参数"><
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./model-compare_mlr3.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span>
+      <a href="./model-compare_mlr3.html" class="pagination-link" aria-label="mlr3实现多模型比较">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./data-preprocess.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./BMJ预测模型样本量计算.html" class="pagination-link" aria-label="开发预测模型样本量计算">
+        <span class="nav-page-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-10-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-10-1.png
deleted file mode 100644
index 5384981..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-10-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-11-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-11-1.png
new file mode 100644
index 0000000..0f0e264
Binary files /dev/null and b/docs/model-compare_caret_files/figure-html/unnamed-chunk-11-1.png differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-12-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-12-1.png
new file mode 100644
index 0000000..d70771e
Binary files /dev/null and b/docs/model-compare_caret_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-22-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-13-1.png
similarity index 100%
rename from docs/model-compare_caret_files/figure-html/unnamed-chunk-22-1.png
rename to docs/model-compare_caret_files/figure-html/unnamed-chunk-13-1.png
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-23-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-14-1.png
similarity index 100%
rename from docs/model-compare_caret_files/figure-html/unnamed-chunk-23-1.png
rename to docs/model-compare_caret_files/figure-html/unnamed-chunk-14-1.png
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-24-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-15-1.png
similarity index 100%
rename from docs/model-compare_caret_files/figure-html/unnamed-chunk-24-1.png
rename to docs/model-compare_caret_files/figure-html/unnamed-chunk-15-1.png
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-18-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-18-1.png
new file mode 100644
index 0000000..b537464
Binary files /dev/null and b/docs/model-compare_caret_files/figure-html/unnamed-chunk-18-1.png differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-28-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-19-1.png
similarity index 100%
rename from docs/model-compare_caret_files/figure-html/unnamed-chunk-28-1.png
rename to docs/model-compare_caret_files/figure-html/unnamed-chunk-19-1.png
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-20-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-20-1.png
deleted file mode 100644
index 782cd90..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-20-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-21-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-21-1.png
deleted file mode 100644
index c09725b..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-21-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-27-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-27-1.png
deleted file mode 100644
index e51e741..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-27-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-7-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index a0313a0..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-8-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-8-1.png
deleted file mode 100644
index 93c7774..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-8-1.png and /dev/null differ
diff --git a/docs/model-compare_caret_files/figure-html/unnamed-chunk-9-1.png b/docs/model-compare_caret_files/figure-html/unnamed-chunk-9-1.png
deleted file mode 100644
index d0e7844..0000000
Binary files a/docs/model-compare_caret_files/figure-html/unnamed-chunk-9-1.png and /dev/null differ
diff --git a/docs/model-compare_mlr3.html b/docs/model-compare_mlr3.html
index 77c6956..571e536 100644
--- a/docs/model-compare_mlr3.html
+++ b/docs/model-compare_mlr3.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 48&nbsp; mlr3实现多模型比较</title>
+<title>40&nbsp; mlr3实现多模型比较 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./model-compare_tidymodels.html">模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_mlr3.html"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_mlr3.html"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,31 +493,31 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载r包" id="toc-加载r包" class="nav-link active" data-scroll-target="#加载r包"><span class="header-section-number">48.1</span> 加载R包</a></li>
-  <li><a href="#建立任务" id="toc-建立任务" class="nav-link" data-scroll-target="#建立任务"><span class="header-section-number">48.2</span> 建立任务</a></li>
-  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">48.3</span> 数据预处理</a></li>
-  <li><a href="#选择多个模型" id="toc-选择多个模型" class="nav-link" data-scroll-target="#选择多个模型"><span class="header-section-number">48.4</span> 选择多个模型</a></li>
-  <li><a href="#建立benchmark_grid" id="toc-建立benchmark_grid" class="nav-link" data-scroll-target="#建立benchmark_grid"><span class="header-section-number">48.5</span> 建立benchmark_grid</a></li>
-  <li><a href="#开始计算" id="toc-开始计算" class="nav-link" data-scroll-target="#开始计算"><span class="header-section-number">48.6</span> 开始计算</a></li>
-  <li><a href="#查看模型表现" id="toc-查看模型表现" class="nav-link" data-scroll-target="#查看模型表现"><span class="header-section-number">48.7</span> 查看模型表现</a></li>
-  <li><a href="#结果可视化" id="toc-结果可视化" class="nav-link" data-scroll-target="#结果可视化"><span class="header-section-number">48.8</span> 结果可视化</a></li>
-  <li><a href="#选择最好的模型用于测试集" id="toc-选择最好的模型用于测试集" class="nav-link" data-scroll-target="#选择最好的模型用于测试集"><span class="header-section-number">48.9</span> 选择最好的模型用于测试集</a></li>
+  <li><a href="#加载r包" id="toc-加载r包" class="nav-link active" data-scroll-target="#加载r包"><span class="header-section-number">40.1</span> 加载R包</a></li>
+  <li><a href="#建立任务" id="toc-建立任务" class="nav-link" data-scroll-target="#建立任务"><span class="header-section-number">40.2</span> 建立任务</a></li>
+  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">40.3</span> 数据预处理</a></li>
+  <li><a href="#选择多个模型" id="toc-选择多个模型" class="nav-link" data-scroll-target="#选择多个模型"><span class="header-section-number">40.4</span> 选择多个模型</a></li>
+  <li><a href="#建立benchmark_grid" id="toc-建立benchmark_grid" class="nav-link" data-scroll-target="#建立benchmark_grid"><span class="header-section-number">40.5</span> 建立benchmark_grid</a></li>
+  <li><a href="#开始计算" id="toc-开始计算" class="nav-link" data-scroll-target="#开始计算"><span class="header-section-number">40.6</span> 开始计算</a></li>
+  <li><a href="#查看模型表现" id="toc-查看模型表现" class="nav-link" data-scroll-target="#查看模型表现"><span class="header-section-number">40.7</span> 查看模型表现</a></li>
+  <li><a href="#结果可视化" id="toc-结果可视化" class="nav-link" data-scroll-target="#结果可视化"><span class="header-section-number">40.8</span> 结果可视化</a></li>
+  <li><a href="#选择最好的模型用于测试集" id="toc-选择最好的模型用于测试集" class="nav-link" data-scroll-target="#选择最好的模型用于测试集"><span class="header-section-number">40.9</span> 选择最好的模型用于测试集</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_mlr3.html"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></h1>
+<h1 class="title"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></h1>
 </div>
 
 
@@ -548,36 +530,27 @@ <h1 class="title"><span class="chapter-number">48</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<div class="callout callout-style-default callout-tip callout-titled" title="注意">
-<div class="callout-header d-flex align-content-center">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<div class="callout-title-container flex-fill">
-注意
-</div>
-</div>
-<div class="callout-body-container callout-body">
-<p>这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的信息,可参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">机器学习合集</a></p>
-</div>
-</div>
+
+<blockquote class="blockquote">
+<p>该方法基于<code>mlr3</code>实现,<code>mlr3</code>是目前R语言里做机器学习和预测模型的当红辣子鸡之一(另一个是<code>tidymodels</code>),公众号后台回复<strong>mlr3</strong>即可获取<code>mlr3</code>合集链接,带你全面了解<code>mlr3</code>。</p>
+</blockquote>
 <p>前面介绍了使用<code>tidymodels</code>进行二分类资料的模型评价和比较,不知道大家学会了没?</p>
 <p>我之前详细介绍过<code>mlr3</code>这个包,也是目前R语言机器学习领域比较火的R包了,今天说下这么用<code>mlr3</code>进行二分类资料多个模型的评价和比较。</p>
-<section id="加载r包" class="level2" data-number="48.1">
-<h2 data-number="48.1" class="anchored" data-anchor-id="加载r包"><span class="header-section-number">48.1</span> 加载R包</h2>
+<section id="加载r包" class="level2" data-number="40.1">
+<h2 data-number="40.1" class="anchored" data-anchor-id="加载r包"><span class="header-section-number">40.1</span> 加载R包</h2>
 <p>首先还是加载数据和R包,和之前的数据一样的。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3verse)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: mlr3</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3pipelines)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3filters)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3pipelines)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mlr3filters)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="建立任务" class="level2" data-number="48.2">
-<h2 data-number="48.2" class="anchored" data-anchor-id="建立任务"><span class="header-section-number">48.2</span> 建立任务</h2>
+<section id="建立任务" class="level2" data-number="40.2">
+<h2 data-number="40.2" class="anchored" data-anchor-id="建立任务"><span class="header-section-number">40.2</span> 建立任务</h2>
 <p>然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的<code>tidymodels</code>进行比较,这里使用的数据和预处理步骤都是和之前一样的。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 读取数据</span></span>
@@ -593,8 +566,8 @@ <h2 data-number="48.2" class="anchored" data-anchor-id="建立任务"><span clas
 <span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>task_test <span class="ot">&lt;-</span> pbp_task<span class="sc">$</span><span class="fu">clone</span>()<span class="sc">$</span><span class="fu">filter</span>(split_task<span class="sc">$</span>test)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="数据预处理" class="level2" data-number="48.3">
-<h2 data-number="48.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">48.3</span> 数据预处理</h2>
+<section id="数据预处理" class="level2" data-number="40.3">
+<h2 data-number="40.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">40.3</span> 数据预处理</h2>
 <p>建立任务后就是建立数据预处理步骤,这里采用和上篇推文<code>tidymodels</code>中一样的预处理步骤:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据预处理</span></span>
@@ -610,7 +583,7 @@ <h2 data-number="48.3" class="anchored" data-anchor-id="数据预处理"><span c
 <span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"scale"</span>, <span class="at">scale =</span> F) <span class="sc">%&gt;&gt;%</span> <span class="co"># 中心化</span></span>
 <span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">po</span>(<span class="st">"removeconstants"</span>) <span class="co"># 去掉零方差变量</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>可以看到<code>mlr3</code>的数据预处理与<code>tidymodels</code>相比,在语法上确实是有些复杂了,而且由于使用的<code>R6</code>,很多语法看起来很别扭,文档也说的不清楚,对于新手来说还是<code>tidymodels</code>更好些。目前来说最大的优势可能就是速度了吧。。。</p>
+<p>可以看到<code>mlr3</code>的数据预处理与<code>tidymodels</code>相比,在语法上确实是有些复杂了,而且由于使用的<code>R6</code>,很多语法看起来很别扭,文档也说的不清楚,对于新手来说还是<code>tidymodels</code>更好些。</p>
 <p>如果你想把预处理步骤应用于数据,得到预处理之后的数据,可以用以下代码:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>task_prep <span class="ot">&lt;-</span> pbp_prep<span class="sc">$</span><span class="fu">clone</span>()<span class="sc">$</span><span class="fu">train</span>(task_train)[[<span class="dv">1</span>]]</span>
@@ -618,31 +591,33 @@ <h2 data-number="48.3" class="anchored" data-anchor-id="数据预处理"><span c
 <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 68982    26</span></span>
 <span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>task_prep<span class="sc">$</span>feature_types</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">##                             id    type</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  1:                    defteam  factor</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  2:              defteam_score numeric</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  3: defteam_timeouts_remaining  factor</span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  4:                       down ordered</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  5:                 goal_to_go  factor</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  6:                in_fg_range  factor</span></span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  7:                in_red_zone  factor</span></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  8:                  no_huddle  factor</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  9:                    posteam  factor</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 10:              posteam_score numeric</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 11: posteam_timeouts_remaining  factor</span></span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 12:              previous_play  factor</span></span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 13:                        qtr ordered</span></span>
-<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 14:         score_differential numeric</span></span>
-<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 15:                    shotgun  factor</span></span>
-<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 16:                 total_pass numeric</span></span>
-<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 17:              two_min_drill  factor</span></span>
-<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 18:               yardline_100 numeric</span></span>
-<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 19:                    ydstogo numeric</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Key: &lt;id&gt;</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">##                             id    type</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">##                         &lt;char&gt;  &lt;char&gt;</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1:                    defteam  factor</span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2:              defteam_score numeric</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3: defteam_timeouts_remaining  factor</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4:                       down ordered</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5:                 goal_to_go  factor</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6:                in_fg_range  factor</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7:                in_red_zone  factor</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8:                  no_huddle  factor</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9:                    posteam  factor</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10:              posteam_score numeric</span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 11: posteam_timeouts_remaining  factor</span></span>
+<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 12:              previous_play  factor</span></span>
+<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 13:                        qtr ordered</span></span>
+<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 14:         score_differential numeric</span></span>
+<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 15:                    shotgun  factor</span></span>
+<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 16:                 total_pass numeric</span></span>
+<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 17:              two_min_drill  factor</span></span>
+<span id="cb4-26"><a href="#cb4-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 18:               yardline_100 numeric</span></span>
+<span id="cb4-27"><a href="#cb4-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 19:                    ydstogo numeric</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>这样就得到了处理好的数据,但是对于<code>mlr3pipelines</code>来说,这一步做不做都可以。</p>
 </section>
-<section id="选择多个模型" class="level2" data-number="48.4">
-<h2 data-number="48.4" class="anchored" data-anchor-id="选择多个模型"><span class="header-section-number">48.4</span> 选择多个模型</h2>
+<section id="选择多个模型" class="level2" data-number="40.4">
+<h2 data-number="40.4" class="anchored" data-anchor-id="选择多个模型"><span class="header-section-number">40.4</span> 选择多个模型</h2>
 <p>还是选择和之前一样的4个模型:逻辑回归、随机森林、决策树、k最近邻:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 随机森林</span></span>
@@ -662,8 +637,8 @@ <h2 data-number="48.4" class="anchored" data-anchor-id="选择多个模型"><spa
 <span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>kknn_glr<span class="sc">$</span>id <span class="ot">&lt;-</span> <span class="st">"kknn"</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="建立benchmark_grid" class="level2" data-number="48.5">
-<h2 data-number="48.5" class="anchored" data-anchor-id="建立benchmark_grid"><span class="header-section-number">48.5</span> 建立benchmark_grid</h2>
+<section id="建立benchmark_grid" class="level2" data-number="40.5">
+<h2 data-number="40.5" class="anchored" data-anchor-id="建立benchmark_grid"><span class="header-section-number">40.5</span> 建立benchmark_grid</h2>
 <p>类似于<code>tidymodels</code>中的<code>workflow_set</code>。</p>
 <p>选择10折交叉验证,建立多个模型,语法也是很简单了。</p>
 <div class="cell">
@@ -681,10 +656,10 @@ <h2 data-number="48.5" class="anchored" data-anchor-id="建立benchmark_grid"><s
 <span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>  <span class="at">resampling =</span> cv</span>
 <span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>在训练集中,使用10折交叉验证,运行4个模型,看这语法是不是也很简单清稀?</p>
+<p>在训练集中,使用10折交叉验证,运行4个模型,看这语法是不是也很简单清晰?</p>
 </section>
-<section id="开始计算" class="level2" data-number="48.6">
-<h2 data-number="48.6" class="anchored" data-anchor-id="开始计算"><span class="header-section-number">48.6</span> 开始计算</h2>
+<section id="开始计算" class="level2" data-number="40.6">
+<h2 data-number="40.6" class="anchored" data-anchor-id="开始计算"><span class="header-section-number">40.6</span> 开始计算</h2>
 <p>下面就是开始计算,和<code>tidymodels</code>相比,这一块语法更加简单一点,就是建立<code>benchmark_grid</code>,然后使用<code>benchmark()</code>函数即可。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加速</span></span>
@@ -702,53 +677,63 @@ <h2 data-number="48.6" class="anchored" data-anchor-id="开始计算"><span clas
 <span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>bmr</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="查看模型表现" class="level2" data-number="48.7">
-<h2 data-number="48.7" class="anchored" data-anchor-id="查看模型表现"><span class="header-section-number">48.7</span> 查看模型表现</h2>
-<p>查看结果,也是支持同时查看多个结果的:</p>
+<section id="查看模型表现" class="level2" data-number="40.7">
+<h2 data-number="40.7" class="anchored" data-anchor-id="查看模型表现"><span class="header-section-number">40.7</span> 查看模型表现</h2>
+<p>查看结果,也是支持同时查看多个指标的:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 默认结果</span></span>
 <span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>bmr<span class="sc">$</span><span class="fu">aggregate</span>()</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##    nr   task_id   learner_id resampling_id iters classif.ce</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:  1 all_plays randomForest            cv    10  0.2696791</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:  2 all_plays     logistic            cv    10  0.2768839</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:  3 all_plays decisionTree            cv    10  0.2801601</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:  4 all_plays         kknn            cv    10  0.3227799</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Hidden columns: resample_result</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##       nr   task_id   learner_id resampling_id iters classif.ce</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;int&gt;    &lt;char&gt;       &lt;char&gt;        &lt;char&gt; &lt;int&gt;      &lt;num&gt;</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:     1 all_plays randomForest            cv    10  0.2658084</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:     2 all_plays     logistic            cv    10  0.2744774</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:     3 all_plays decisionTree            cv    10  0.2784204</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:     4 all_plays         kknn            cv    10  0.3192138</span></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Hidden columns: resample_result</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看多个结果</span></span>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看多个指标</span></span>
 <span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>measures <span class="ot">&lt;-</span> <span class="fu">msrs</span>(<span class="fu">c</span>(<span class="st">"classif.auc"</span>,<span class="st">"classif.acc"</span>,<span class="st">"classif.bbrier"</span>))</span>
 <span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>bmr_res <span class="ot">&lt;-</span> bmr<span class="sc">$</span><span class="fu">aggregate</span>(measures)</span>
 <span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>bmr_res[,<span class="fu">c</span>(<span class="dv">4</span>,<span class="dv">7</span><span class="sc">:</span><span class="dv">9</span>)]</span>
 <span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">##      learner_id classif.auc classif.acc classif.bbrier</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1: randomForest   0.7983164   0.7303209      0.1789120</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:     logistic   0.7801990   0.7231161      0.1864776</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 3: decisionTree   0.7038680   0.7198399      0.2003211</span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:         kknn   0.7311780   0.6772201      0.2215549</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">##          &lt;char&gt;       &lt;num&gt;       &lt;num&gt;          &lt;num&gt;</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1: randomForest   0.8002649   0.7341916      0.1779652</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:     logistic   0.7826407   0.7255226      0.1853956</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3: decisionTree   0.7055902   0.7215796      0.1995955</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:         kknn   0.7349490   0.6807862      0.2193700</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="结果可视化" class="level2" data-number="48.8">
-<h2 data-number="48.8" class="anchored" data-anchor-id="结果可视化"><span class="header-section-number">48.8</span> 结果可视化</h2>
+<section id="结果可视化" class="level2" data-number="40.8">
+<h2 data-number="40.8" class="anchored" data-anchor-id="结果可视化"><span class="header-section-number">40.8</span> 结果可视化</h2>
 <p>支持<code>ggplot2</code>语法,使用起来和<code>tidymodels</code>差不多,也是对结果直接<code>autoplot()</code>即可。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
 <span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(bmr)<span class="sc">+</span><span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">45</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>喜闻乐见的ROC曲线:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(bmr,<span class="at">type =</span> <span class="st">"roc"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="选择最好的模型用于测试集" class="level2" data-number="48.9">
-<h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用于测试集"><span class="header-section-number">48.9</span> 选择最好的模型用于测试集</h2>
-<p>通过比较结果可以发现还是随机森林效果最好~,下面选择随机森林,在训练集上训练,在测试集上测试结果。</p>
+<section id="选择最好的模型用于测试集" class="level2" data-number="40.9">
+<h2 data-number="40.9" class="anchored" data-anchor-id="选择最好的模型用于测试集"><span class="header-section-number">40.9</span> 选择最好的模型用于测试集</h2>
+<p>通过比较结果可以发现还是随机森林效果最好,下面选择随机森林,在训练集上训练,在测试集上测试结果。</p>
 <p>这一步并没有使用10折交叉验证,如果你想用,也是可以的~</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 训练</span></span>
@@ -759,43 +744,53 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
 <div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 测试</span></span>
 <span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>prediction <span class="ot">&lt;-</span> rf_glr<span class="sc">$</span><span class="fu">predict</span>(task_test)</span>
 <span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(<span class="fu">as.data.table</span>(prediction))</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    row_ids truth response prob.pass  prob.run</span></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:       3   run     pass 0.8161656 0.1838344</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:       4   run     pass 0.7097711 0.2902289</span></span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:      10   run      run 0.3917451 0.6082549</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:      12  pass     pass 0.5781400 0.4218600</span></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5:      19  pass     pass 0.5834923 0.4165077</span></span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6:      22   run     pass 0.7099366 0.2900634</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    row_ids  truth response prob.pass   prob.run</span></span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="do">##      &lt;int&gt; &lt;fctr&gt;   &lt;fctr&gt;     &lt;num&gt;      &lt;num&gt;</span></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1:       1   pass      run 0.2689853 0.73101473</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2:       5   pass     pass 0.8206669 0.17933307</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3:       6    run      run 0.3900934 0.60990661</span></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4:      11   pass     pass 0.6096455 0.39035449</span></span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5:      13    run     pass 0.9583785 0.04162154</span></span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6:      14   pass     pass 0.7942447 0.20575526</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>混淆矩阵:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>prediction<span class="sc">$</span>confusion</span>
 <span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">##         truth</span></span>
 <span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">## response  pass   run</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">##     pass 10570  3265</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">##     run   3014  6145</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">##     pass 10671  3239</span></span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">##     run   2913  6171</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>混淆矩阵可视化:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(prediction)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>查看其他结果:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>prediction<span class="sc">$</span><span class="fu">score</span>(<span class="fu">msrs</span>(<span class="fu">c</span>(<span class="st">"classif.auc"</span>,<span class="st">"classif.acc"</span>,<span class="st">"classif.bbrier"</span>)))</span>
 <span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="do">##    classif.auc    classif.acc classif.bbrier </span></span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="do">##      0.7955435      0.7269288      0.1801018</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="do">##      0.8013743      0.7324519      0.1774763</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>喜闻乐见ROC曲线:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(prediction,<span class="at">type =</span> <span class="st">"roc"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>简单吗?</p>
+<p>这里介绍的<code>mlr3</code>的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复<code>mlr3</code>获取合集。</p>
 
 
 </section>
@@ -836,18 +831,7 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -879,11 +863,50 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -893,8 +916,17 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -906,7 +938,130 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -950,6 +1105,7 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -975,6 +1131,32 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1036,27 +1218,32 @@ <h2 data-number="48.9" class="anchored" data-anchor-id="选择最好的模型用
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./model-compare_workflow.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span>
+      <a href="./model-compare_workflow.html" class="pagination-link" aria-label="tidymodels实现多模型比较">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./model-compare_caret.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./model-compare_caret.html" class="pagination-link" aria-label="caret实现多模型比较">
+        <span class="nav-page-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png
index 5f505ce..c245ec9 100644
Binary files a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png and b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-11-1.png differ
diff --git a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png
index 06c5cce..e74eb73 100644
Binary files a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png and b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png
index edeb036..a8191a0 100644
Binary files a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png and b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-16-1.png differ
diff --git a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png
index 3fbd3e1..d928200 100644
Binary files a/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png and b/docs/model-compare_mlr3_files/figure-html/unnamed-chunk-18-1.png differ
diff --git a/docs/model-compare_tidymodels.html b/docs/model-compare_tidymodels.html
deleted file mode 100644
index f93c93e..0000000
--- a/docs/model-compare_tidymodels.html
+++ /dev/null
@@ -1,1361 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 46&nbsp; tidymodels实现多模型比较</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./model-compare_workflow.html" rel="next">
-<link href="./校准曲线和决策曲线的概率.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./model-compare_tidymodels.html">模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_tidymodels.html"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">46.1</span> 加载数据和R包</a></li>
-  <li><a href="#数据划分" id="toc-数据划分" class="nav-link" data-scroll-target="#数据划分"><span class="header-section-number">46.2</span> 数据划分</a></li>
-  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">46.3</span> 数据预处理</a></li>
-  <li><a href="#建立多个模型" id="toc-建立多个模型" class="nav-link" data-scroll-target="#建立多个模型"><span class="header-section-number">46.4</span> 建立多个模型</a>
-  <ul class="collapse">
-  <li><a href="#logistic" id="toc-logistic" class="nav-link" data-scroll-target="#logistic"><span class="header-section-number">46.4.1</span> logistic</a></li>
-  <li><a href="#knn" id="toc-knn" class="nav-link" data-scroll-target="#knn"><span class="header-section-number">46.4.2</span> knn</a></li>
-  <li><a href="#随机森林" id="toc-随机森林" class="nav-link" data-scroll-target="#随机森林"><span class="header-section-number">46.4.3</span> 随机森林</a></li>
-  <li><a href="#决策树" id="toc-决策树" class="nav-link" data-scroll-target="#决策树"><span class="header-section-number">46.4.4</span> 决策树</a></li>
-  </ul></li>
-  <li><a href="#交叉验证" id="toc-交叉验证" class="nav-link" data-scroll-target="#交叉验证"><span class="header-section-number">46.5</span> 交叉验证</a></li>
-  <li><a href="#roc曲线画一起" id="toc-roc曲线画一起" class="nav-link" data-scroll-target="#roc曲线画一起"><span class="header-section-number">46.6</span> ROC曲线画一起</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<div class="callout callout-style-default callout-tip callout-titled" title="注意">
-<div class="callout-header d-flex align-content-center">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<div class="callout-title-container flex-fill">
-注意
-</div>
-</div>
-<div class="callout-body-container callout-body">
-<p>这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的信息,可参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">机器学习合集</a></p>
-</div>
-</div>
-<p>前面介绍了很多二分类资料的模型评价内容,用到了很多R包,虽然达到了目的,但是内容太多了,不太容易记住。</p>
-<p>今天给大家介绍很厉害的R包:<code>tidymodels</code>,一个R包搞定二分类资料的模型评价和比较。</p>
-<p>一看这个名字就知道,和<code>tidyverse</code>系列师出同门,包的作者是大佬Max Kuhn,大佬的上一个作品是<code>caret</code>,现在加盟rstudio了,开发了新的机器学习R包,也就是今天要介绍的<code>tidymodels</code>。</p>
-<p>给大家看看如何用优雅的方式建立、评价、比较多个模型!</p>
-<section id="加载数据和r包" class="level2" data-number="46.1">
-<h2 data-number="46.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">46.1</span> 加载数据和R包</h2>
-<p>没有安装的R包的自己安装下~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidyverse))</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidymodels))</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">tidymodels_prefer</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>由于要做演示用,肯定要一份比较好的数据才能说明问题,今天用的这份数据,结果变量是一个二分类的。</p>
-<p>一共有91976行,26列,其中<code>play_type</code>是结果变量,因子型,其余列都是预测变量。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>all_plays <span class="ot">&lt;-</span> <span class="fu">read_rds</span>(<span class="st">"./datasets/all_plays.rds"</span>)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(all_plays)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 91,976</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 26</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam                    &lt;chr&gt; "NE", "NE", "NE", "NE", "NE", "NE", "NE", "…</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam                    &lt;chr&gt; "KC", "KC", "KC", "KC", "KC", "KC", "KC", "…</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …</span></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…</span></span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…</span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…</span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…</span></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…</span></span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…</span></span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …</span></span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…</span></span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…</span></span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据划分" class="level2" data-number="46.2">
-<h2 data-number="46.2" class="anchored" data-anchor-id="数据划分"><span class="header-section-number">46.2</span> 数据划分</h2>
-<p>把75%的数据用于训练集,剩下的做测试集。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据划分,根据play_type分层</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>split_pbp <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(all_plays, <span class="fl">0.75</span>, <span class="at">strata =</span> play_type)</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>train_data <span class="ot">&lt;-</span> <span class="fu">training</span>(split_pbp) <span class="co"># 训练集</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>test_data <span class="ot">&lt;-</span> <span class="fu">testing</span>(split_pbp) <span class="co"># 测试集</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="数据预处理" class="level2" data-number="46.3">
-<h2 data-number="46.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">46.3</span> 数据预处理</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>pbp_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(play_type <span class="sc">~</span> ., <span class="at">data =</span> train_data)  <span class="sc">%&gt;%</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_rm</span>(half_seconds_remaining,yards_gained, game_id) <span class="sc">%&gt;%</span> <span class="co"># 移除这3列</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_string2factor</span>(posteam, defteam) <span class="sc">%&gt;%</span>  <span class="co"># 变为因子类型</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="co">#update_role(yards_gained, game_id, new_role = "ID") %&gt;% </span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 去掉高度相关的变量</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_corr</span>(<span class="fu">all_numeric</span>(), <span class="at">threshold =</span> <span class="fl">0.7</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_center</span>(<span class="fu">all_numeric</span>()) <span class="sc">%&gt;%</span>  <span class="co"># 中心化</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_zv</span>(<span class="fu">all_predictors</span>())  <span class="co"># 去掉零方差变量</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="建立多个模型" class="level2" data-number="46.4">
-<h2 data-number="46.4" class="anchored" data-anchor-id="建立多个模型"><span class="header-section-number">46.4</span> 建立多个模型</h2>
-<section id="logistic" class="level3" data-number="46.4.1">
-<h3 data-number="46.4.1" class="anchored" data-anchor-id="logistic"><span class="header-section-number">46.4.1</span> logistic</h3>
-<p>选择模型,连接数据预处理步骤。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>lm_spec <span class="ot">&lt;-</span> <span class="fu">logistic_reg</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"glm"</span>)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>lm_wflow <span class="ot">&lt;-</span> <span class="fu">workflow</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_recipe</span>(pbp_rec) <span class="sc">%&gt;%</span> </span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_model</span>(lm_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>建立模型:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>fit_lm <span class="ot">&lt;-</span> lm_wflow <span class="sc">%&gt;%</span> <span class="fu">fit</span>(<span class="at">data =</span> train_data)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>应用于测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="ot">&lt;-</span> <span class="fu">select</span>(test_data, play_type) <span class="sc">%&gt;%</span> </span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_lm, test_data, <span class="at">type =</span> <span class="st">"prob"</span>)) <span class="sc">%&gt;%</span> </span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_lm, test_data))</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>pred_lm</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 22,995 × 4</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    play_type .pred_pass .pred_run .pred_class</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      </span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 pass           0.399     0.601 run        </span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 pass           0.817     0.183 pass       </span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 pass           0.754     0.246 pass       </span></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 pass           0.683     0.317 pass       </span></span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 run            0.327     0.673 run        </span></span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 run            0.615     0.385 pass       </span></span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 pass           0.591     0.409 pass       </span></span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 run            0.669     0.331 pass       </span></span>
-<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 pass           0.767     0.233 pass       </span></span>
-<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 pass           0.437     0.563 run        </span></span>
-<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="do">## # ℹ 22,985 more rows</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看模型表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择多种评价指标</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.724</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.423</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.416</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>大家最喜欢的AUC:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(<span class="at">truth =</span> play_type, .pred_pass)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.781</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>可视化结果,首先是大家喜闻乐见的ROC曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>pr曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">pr_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>gain_curve:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">gain_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>lift_curve:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> <span class="fu">lift_curve</span>(<span class="at">truth =</span> play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>混淆矩阵:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>pred_lm <span class="sc">%&gt;%</span> </span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">conf_mat</span>(play_type,.pred_class) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="knn" class="level3" data-number="46.4.2">
-<h3 data-number="46.4.2" class="anchored" data-anchor-id="knn"><span class="header-section-number">46.4.2</span> knn</h3>
-<p>k最近邻法,和上面的逻辑回归一模一样的流程。</p>
-<p>首先也是选择模型,连接数据预处理步骤:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>knn_spec <span class="ot">&lt;-</span> <span class="fu">nearest_neighbor</span>(<span class="at">mode =</span> <span class="st">"classification"</span>, <span class="at">engine =</span> <span class="st">"kknn"</span>)</span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>knn_wflow <span class="ot">&lt;-</span> <span class="fu">workflow</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_recipe</span>(pbp_rec) <span class="sc">%&gt;%</span> </span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_model</span>(knn_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>建立模型:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(kknn)</span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>fit_knn <span class="ot">&lt;-</span> knn_wflow <span class="sc">%&gt;%</span> </span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">fit</span>(train_data)</span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(fit_knn,file = "datasets/fit_knn.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>应用于测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>pred_knn <span class="ot">&lt;-</span> test_data <span class="sc">%&gt;%</span> <span class="fu">select</span>(play_type) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_knn, test_data, <span class="at">type =</span> <span class="st">"prob"</span>)) <span class="sc">%&gt;%</span> </span>
-<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_knn, test_data, <span class="at">type =</span> <span class="st">"class"</span>))</span>
-<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(pred_knn, file="./datasets/pred_knn.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看模型表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>pred_knn <span class="sc">%&gt;%</span> <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.672</span></span>
-<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.317</span></span>
-<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.727</span></span>
-<span id="cb18-10"><a href="#cb18-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.315</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>pred_knn <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(play_type, .pred_pass)</span>
-<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.718</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>可视化模型的部分就不说了,和上面的一模一样!</p>
-</section>
-<section id="随机森林" class="level3" data-number="46.4.3">
-<h3 data-number="46.4.3" class="anchored" data-anchor-id="随机森林"><span class="header-section-number">46.4.3</span> 随机森林</h3>
-<p>同样的流程来第3遍!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>rf_spec <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">mode =</span> <span class="st">"classification"</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">set_engine</span>(<span class="st">"ranger"</span>,<span class="at">importance =</span> <span class="st">"permutation"</span>)</span>
-<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a>rf_wflow <span class="ot">&lt;-</span> <span class="fu">workflow</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_recipe</span>(pbp_rec) <span class="sc">%&gt;%</span> </span>
-<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_model</span>(rf_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>建立模型:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a>fit_rf <span class="ot">&lt;-</span> rf_wflow <span class="sc">%&gt;%</span> </span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">fit</span>(train_data)</span>
-<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(fit_rf,file = "datasets/fit_rf.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>应用于测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="ot">&lt;-</span> test_data <span class="sc">%&gt;%</span> <span class="fu">select</span>(play_type) <span class="sc">%&gt;%</span> </span>
-<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_rf, test_data, <span class="at">type =</span> <span class="st">"prob"</span>)) <span class="sc">%&gt;%</span> </span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_rf, test_data, <span class="at">type =</span> <span class="st">"class"</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看模型表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb23-5"><a href="#cb23-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731</span></span>
-<span id="cb23-6"><a href="#cb23-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.441</span></span>
-<span id="cb23-7"><a href="#cb23-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
-<span id="cb23-8"><a href="#cb23-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.439</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">conf_mat</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="do">##           Truth</span></span>
-<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Prediction  pass   run</span></span>
-<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a><span class="do">##       pass 10622  3226</span></span>
-<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a><span class="do">##       run   2962  6185</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(play_type, .pred_pass)</span>
-<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb25-4"><a href="#cb25-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb25-5"><a href="#cb25-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.799</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>下面给大家手动画一个<em>校准曲线</em>。</p>
-<p>两种画法,差别不大,主要是分组方法不一样,第2种分组方法是大家常见的哦~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>calibration_df <span class="ot">&lt;-</span> pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a>   <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(play_type <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a>          <span class="at">pred_rnd =</span> <span class="fu">round</span>(.pred_pass, <span class="dv">2</span>)</span>
-<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a>          ) <span class="sc">%&gt;%</span> </span>
-<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(pred_rnd) <span class="sc">%&gt;%</span> </span>
-<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarize</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(.pred_pass),</span>
-<span id="cb26-7"><a href="#cb26-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass),</span>
-<span id="cb26-8"><a href="#cb26-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">n =</span> <span class="fu">n</span>()</span>
-<span id="cb26-9"><a href="#cb26-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb26-10"><a href="#cb26-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb26-11"><a href="#cb26-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(calibration_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb26-12"><a href="#cb26-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">size =</span> n), <span class="at">alpha =</span> <span class="fl">0.5</span>)<span class="sc">+</span></span>
-<span id="cb26-13"><a href="#cb26-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb26-14"><a href="#cb26-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-29-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>第2种方法:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>cali_df <span class="ot">&lt;-</span> pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">arrange</span>(.pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">pass =</span> <span class="fu">if_else</span>(play_type <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb27-4"><a href="#cb27-4" aria-hidden="true" tabindex="-1"></a>         <span class="at">group =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">249</span>,<span class="at">each=</span><span class="dv">92</span>), <span class="fu">rep</span>(<span class="dv">250</span>,<span class="dv">87</span>))</span>
-<span id="cb27-5"><a href="#cb27-5" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb27-6"><a href="#cb27-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(group) <span class="sc">%&gt;%</span> </span>
-<span id="cb27-7"><a href="#cb27-7" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarise</span>(<span class="at">mean_pred =</span> <span class="fu">mean</span>(.pred_pass),</span>
-<span id="cb27-8"><a href="#cb27-8" aria-hidden="true" tabindex="-1"></a>            <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass)</span>
-<span id="cb27-9"><a href="#cb27-9" aria-hidden="true" tabindex="-1"></a>            )</span>
-<span id="cb27-10"><a href="#cb27-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb27-11"><a href="#cb27-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb27-12"><a href="#cb27-12" aria-hidden="true" tabindex="-1"></a>cali_plot <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(cali_df, <span class="fu">aes</span>(mean_pred, mean_obs))<span class="sc">+</span> </span>
-<span id="cb27-13"><a href="#cb27-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="at">alpha =</span> <span class="fl">0.5</span>)<span class="sc">+</span></span>
-<span id="cb27-14"><a href="#cb27-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>)<span class="sc">+</span></span>
-<span id="cb27-15"><a href="#cb27-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span>
-<span id="cb27-16"><a href="#cb27-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb27-17"><a href="#cb27-17" aria-hidden="true" tabindex="-1"></a>cali_plot</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-30-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>随机森林这种方法是可以计算变量重要性的,当然也是能把结果可视化的。</p>
-<p>给大家演示下如何可视化随机森林结果的变量重要性:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(vip)</span>
-<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a>fit_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb28-4"><a href="#cb28-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">extract_fit_parsnip</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb28-5"><a href="#cb28-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">vip</span>(<span class="at">num_features =</span> <span class="dv">10</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-31-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="决策树" class="level3" data-number="46.4.4">
-<h3 data-number="46.4.4" class="anchored" data-anchor-id="决策树"><span class="header-section-number">46.4.4</span> 决策树</h3>
-<p>同样的流程来第4遍!不知道你看懂了没有。。。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a>tree_spec <span class="ot">&lt;-</span> <span class="fu">decision_tree</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"rpart"</span>)</span>
-<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a>tree_wflow <span class="ot">&lt;-</span> <span class="fu">workflow</span>() <span class="sc">%&gt;%</span> </span>
-<span id="cb29-3"><a href="#cb29-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_recipe</span>(pbp_rec) <span class="sc">%&gt;%</span> </span>
-<span id="cb29-4"><a href="#cb29-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">add_model</span>(tree_spec)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>建立模型:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a>fit_tree <span class="ot">&lt;-</span> tree_wflow <span class="sc">%&gt;%</span> </span>
-<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">fit</span>(train_data)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>应用于测试集:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a>pred_tree <span class="ot">&lt;-</span> test_data <span class="sc">%&gt;%</span> <span class="fu">select</span>(play_type) <span class="sc">%&gt;%</span> </span>
-<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_tree, test_data, <span class="at">type =</span> <span class="st">"prob"</span>)) <span class="sc">%&gt;%</span> </span>
-<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(<span class="fu">predict</span>(fit_tree, test_data, <span class="at">type =</span> <span class="st">"class"</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看结果:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a>pred_tree <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(play_type, .pred_pass)</span>
-<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.706</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb33"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a>pred_tree <span class="sc">%&gt;%</span> <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb33-2"><a href="#cb33-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb33-3"><a href="#cb33-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb33-4"><a href="#cb33-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb33-5"><a href="#cb33-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.721</span></span>
-<span id="cb33-6"><a href="#cb33-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.417</span></span>
-<span id="cb33-7"><a href="#cb33-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.770</span></span>
-<span id="cb33-8"><a href="#cb33-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.411</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-</section>
-<section id="交叉验证" class="level2" data-number="46.5">
-<h2 data-number="46.5" class="anchored" data-anchor-id="交叉验证"><span class="header-section-number">46.5</span> 交叉验证</h2>
-<p>交叉验证也是大家喜闻乐见的,就用随机森林给大家顺便演示下交叉验证。</p>
-<p>首先要选择重抽样方法,这里我们选择10折交叉验证:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb34"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb34-1"><a href="#cb34-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb34-2"><a href="#cb34-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb34-3"><a href="#cb34-3" aria-hidden="true" tabindex="-1"></a>folds <span class="ot">&lt;-</span> <span class="fu">vfold_cv</span>(train_data, <span class="at">v =</span> <span class="dv">10</span>)</span>
-<span id="cb34-4"><a href="#cb34-4" aria-hidden="true" tabindex="-1"></a>folds</span>
-<span id="cb34-5"><a href="#cb34-5" aria-hidden="true" tabindex="-1"></a><span class="do">## #  10-fold cross-validation </span></span>
-<span id="cb34-6"><a href="#cb34-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 10 × 2</span></span>
-<span id="cb34-7"><a href="#cb34-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    splits               id    </span></span>
-<span id="cb34-8"><a href="#cb34-8" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;list&gt;               &lt;chr&gt; </span></span>
-<span id="cb34-9"><a href="#cb34-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 &lt;split [62082/6899]&gt; Fold01</span></span>
-<span id="cb34-10"><a href="#cb34-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 &lt;split [62083/6898]&gt; Fold02</span></span>
-<span id="cb34-11"><a href="#cb34-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 &lt;split [62083/6898]&gt; Fold03</span></span>
-<span id="cb34-12"><a href="#cb34-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 &lt;split [62083/6898]&gt; Fold04</span></span>
-<span id="cb34-13"><a href="#cb34-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 &lt;split [62083/6898]&gt; Fold05</span></span>
-<span id="cb34-14"><a href="#cb34-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 &lt;split [62083/6898]&gt; Fold06</span></span>
-<span id="cb34-15"><a href="#cb34-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 &lt;split [62083/6898]&gt; Fold07</span></span>
-<span id="cb34-16"><a href="#cb34-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 &lt;split [62083/6898]&gt; Fold08</span></span>
-<span id="cb34-17"><a href="#cb34-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 &lt;split [62083/6898]&gt; Fold09</span></span>
-<span id="cb34-18"><a href="#cb34-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 &lt;split [62083/6898]&gt; Fold10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后就是让模型在训练集上跑起来:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb35"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" aria-hidden="true" tabindex="-1"></a>keep_pred <span class="ot">&lt;-</span> <span class="fu">control_resamples</span>(<span class="at">save_pred =</span> T, <span class="at">verbose =</span> T)</span>
-<span id="cb35-2"><a href="#cb35-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-3"><a href="#cb35-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb35-4"><a href="#cb35-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-5"><a href="#cb35-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(doParallel)</span>
-<span id="cb35-6"><a href="#cb35-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-7"><a href="#cb35-7" aria-hidden="true" tabindex="-1"></a>cl <span class="ot">&lt;-</span> <span class="fu">makePSOCKcluster</span>(<span class="dv">12</span>) <span class="co"># 加速,用12个线程</span></span>
-<span id="cb35-8"><a href="#cb35-8" aria-hidden="true" tabindex="-1"></a><span class="fu">registerDoParallel</span>(cl)</span>
-<span id="cb35-9"><a href="#cb35-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-10"><a href="#cb35-10" aria-hidden="true" tabindex="-1"></a>rf_res <span class="ot">&lt;-</span> <span class="fu">fit_resamples</span>(rf_wflow, <span class="at">resamples =</span> folds, <span class="at">control =</span> keep_pred)</span>
-<span id="cb35-11"><a href="#cb35-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-12"><a href="#cb35-12" aria-hidden="true" tabindex="-1"></a><span class="fu">stopCluster</span>(cl)</span>
-<span id="cb35-13"><a href="#cb35-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb35-14"><a href="#cb35-14" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(rf_res,file = "datasets/rf_res.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看模型表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb36"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb36-1"><a href="#cb36-1" aria-hidden="true" tabindex="-1"></a>rf_res <span class="sc">%&gt;%</span> </span>
-<span id="cb36-2"><a href="#cb36-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">collect_metrics</span>(<span class="at">summarize =</span> T)</span>
-<span id="cb36-3"><a href="#cb36-3" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 2 × 6</span></span>
-<span id="cb36-4"><a href="#cb36-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator  mean     n std_err .config             </span></span>
-<span id="cb36-5"><a href="#cb36-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt; &lt;chr&gt;               </span></span>
-<span id="cb36-6"><a href="#cb36-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary     0.732    10 0.00157 Preprocessor1_Model1</span></span>
-<span id="cb36-7"><a href="#cb36-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc  binary     0.799    10 0.00193 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看具体的结果:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb37"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" aria-hidden="true" tabindex="-1"></a>rf_res <span class="sc">%&gt;%</span> <span class="fu">collect_predictions</span>()</span>
-<span id="cb37-2"><a href="#cb37-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 68,981 × 7</span></span>
-<span id="cb37-3"><a href="#cb37-3" aria-hidden="true" tabindex="-1"></a><span class="do">##    id     .pred_pass .pred_run  .row .pred_class play_type .config             </span></span>
-<span id="cb37-4"><a href="#cb37-4" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt; &lt;int&gt; &lt;fct&gt;       &lt;fct&gt;     &lt;chr&gt;               </span></span>
-<span id="cb37-5"><a href="#cb37-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 Fold01      0.572    0.428      6 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-6"><a href="#cb37-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 Fold01      0.470    0.530      8 run         pass      Preprocessor1_Model1</span></span>
-<span id="cb37-7"><a href="#cb37-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 Fold01      0.898    0.102     22 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-8"><a href="#cb37-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 Fold01      0.915    0.0847    69 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-9"><a href="#cb37-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 Fold01      0.841    0.159     97 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-10"><a href="#cb37-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 Fold01      0.931    0.0688   112 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-11"><a href="#cb37-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 Fold01      0.727    0.273    123 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-12"><a href="#cb37-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 Fold01      0.640    0.360    129 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-13"><a href="#cb37-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 Fold01      0.740    0.260    136 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-14"><a href="#cb37-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 Fold01      0.902    0.0979   143 pass        pass      Preprocessor1_Model1</span></span>
-<span id="cb37-15"><a href="#cb37-15" aria-hidden="true" tabindex="-1"></a><span class="do">## # ℹ 68,971 more rows</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>可视化结果也是和上面的一模一样,就不一一介绍了,简单说下训练集的校准曲线画法,其实也是和上面一样的~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb38"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" aria-hidden="true" tabindex="-1"></a>res_calib_plot <span class="ot">&lt;-</span> <span class="fu">collect_predictions</span>(rf_res) <span class="sc">%&gt;%</span> </span>
-<span id="cb38-2"><a href="#cb38-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(</span>
-<span id="cb38-3"><a href="#cb38-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">pass =</span> <span class="fu">if_else</span>(play_type <span class="sc">==</span> <span class="st">"pass"</span>, <span class="dv">1</span>, <span class="dv">0</span>),</span>
-<span id="cb38-4"><a href="#cb38-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">pred_rnd =</span> <span class="fu">round</span>(.pred_pass, <span class="dv">2</span>)</span>
-<span id="cb38-5"><a href="#cb38-5" aria-hidden="true" tabindex="-1"></a>    ) <span class="sc">%&gt;%</span> </span>
-<span id="cb38-6"><a href="#cb38-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(pred_rnd) <span class="sc">%&gt;%</span></span>
-<span id="cb38-7"><a href="#cb38-7" aria-hidden="true" tabindex="-1"></a>  dplyr<span class="sc">::</span><span class="fu">summarize</span>(</span>
-<span id="cb38-8"><a href="#cb38-8" aria-hidden="true" tabindex="-1"></a>    <span class="at">mean_pred =</span> <span class="fu">mean</span>(.pred_pass),</span>
-<span id="cb38-9"><a href="#cb38-9" aria-hidden="true" tabindex="-1"></a>    <span class="at">mean_obs =</span> <span class="fu">mean</span>(pass),</span>
-<span id="cb38-10"><a href="#cb38-10" aria-hidden="true" tabindex="-1"></a>    <span class="at">n =</span> <span class="fu">n</span>()</span>
-<span id="cb38-11"><a href="#cb38-11" aria-hidden="true" tabindex="-1"></a>    ) <span class="sc">%&gt;%</span> </span>
-<span id="cb38-12"><a href="#cb38-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> mean_pred, <span class="at">y =</span> mean_obs)) <span class="sc">+</span></span>
-<span id="cb38-13"><a href="#cb38-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="st">"dashed"</span>) <span class="sc">+</span></span>
-<span id="cb38-14"><a href="#cb38-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">size =</span> n), <span class="at">alpha =</span> <span class="fl">0.5</span>) <span class="sc">+</span></span>
-<span id="cb38-15"><a href="#cb38-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>() <span class="sc">+</span></span>
-<span id="cb38-16"><a href="#cb38-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(</span>
-<span id="cb38-17"><a href="#cb38-17" aria-hidden="true" tabindex="-1"></a>    <span class="at">x =</span> <span class="st">"Predicted Pass"</span>, </span>
-<span id="cb38-18"><a href="#cb38-18" aria-hidden="true" tabindex="-1"></a>    <span class="at">y =</span> <span class="st">"Observed Pass"</span></span>
-<span id="cb38-19"><a href="#cb38-19" aria-hidden="true" tabindex="-1"></a>    ) <span class="sc">+</span></span>
-<span id="cb38-20"><a href="#cb38-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_cartesian</span>(</span>
-<span id="cb38-21"><a href="#cb38-21" aria-hidden="true" tabindex="-1"></a>    <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>), <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>)</span>
-<span id="cb38-22"><a href="#cb38-22" aria-hidden="true" tabindex="-1"></a>    )</span>
-<span id="cb38-23"><a href="#cb38-23" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb38-24"><a href="#cb38-24" aria-hidden="true" tabindex="-1"></a>res_calib_plot</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-42-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>然后就是应用于测试集,并查看测试集上的表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb39"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb39-1"><a href="#cb39-1" aria-hidden="true" tabindex="-1"></a>rf_last_fit <span class="ot">&lt;-</span> <span class="fu">last_fit</span>(rf_wflow, split_pbp)</span>
-<span id="cb39-2"><a href="#cb39-2" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(rf_last_fit,file = "./datasets/rf_last_fit.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>查看测试集表现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb40"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" aria-hidden="true" tabindex="-1"></a>rf_test_res <span class="ot">&lt;-</span> rf_last_fit <span class="sc">%&gt;%</span> </span>
-<span id="cb40-2"><a href="#cb40-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">collect_metrics</span>()</span>
-<span id="cb40-3"><a href="#cb40-3" aria-hidden="true" tabindex="-1"></a>rf_test_res</span>
-<span id="cb40-4"><a href="#cb40-4" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 2 × 4</span></span>
-<span id="cb40-5"><a href="#cb40-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate .config             </span></span>
-<span id="cb40-6"><a href="#cb40-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               </span></span>
-<span id="cb40-7"><a href="#cb40-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.730 Preprocessor1_Model1</span></span>
-<span id="cb40-8"><a href="#cb40-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc  binary         0.799 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>多种指标:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb41"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb41-1"><a href="#cb41-1" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
-<span id="cb41-2"><a href="#cb41-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb41-3"><a href="#cb41-3" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rf_last_fit) <span class="sc">%&gt;%</span> </span>
-<span id="cb41-4"><a href="#cb41-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb41-5"><a href="#cb41-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb41-6"><a href="#cb41-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb41-7"><a href="#cb41-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb41-8"><a href="#cb41-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.730</span></span>
-<span id="cb41-9"><a href="#cb41-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.439</span></span>
-<span id="cb41-10"><a href="#cb41-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
-<span id="cb41-11"><a href="#cb41-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.437</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="roc曲线画一起" class="level2" data-number="46.6">
-<h2 data-number="46.6" class="anchored" data-anchor-id="roc曲线画一起"><span class="header-section-number">46.6</span> ROC曲线画一起</h2>
-<p>其实非常简单,就是把结果拼在一起画个图就行了~</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb42"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb42-1"><a href="#cb42-1" aria-hidden="true" tabindex="-1"></a>roc_lm <span class="ot">&lt;-</span> pred_lm <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb42-2"><a href="#cb42-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">model =</span> <span class="st">"logistic"</span>)</span>
-<span id="cb42-3"><a href="#cb42-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-4"><a href="#cb42-4" aria-hidden="true" tabindex="-1"></a>roc_knn <span class="ot">&lt;-</span> pred_knn <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb42-5"><a href="#cb42-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">model =</span> <span class="st">"kknn"</span>)</span>
-<span id="cb42-6"><a href="#cb42-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-7"><a href="#cb42-7" aria-hidden="true" tabindex="-1"></a>roc_rf <span class="ot">&lt;-</span> pred_rf <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb42-8"><a href="#cb42-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">model =</span> <span class="st">"randomforest"</span>)</span>
-<span id="cb42-9"><a href="#cb42-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-10"><a href="#cb42-10" aria-hidden="true" tabindex="-1"></a>roc_tree <span class="ot">&lt;-</span> pred_tree <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(play_type, .pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb42-11"><a href="#cb42-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">model =</span> <span class="st">"decision tree"</span>)</span>
-<span id="cb42-12"><a href="#cb42-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-13"><a href="#cb42-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-14"><a href="#cb42-14" aria-hidden="true" tabindex="-1"></a>rocs <span class="ot">&lt;-</span> <span class="fu">bind_rows</span>(roc_lm,roc_knn,roc_rf,roc_tree) <span class="sc">%&gt;%</span> </span>
-<span id="cb42-15"><a href="#cb42-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> <span class="dv">1</span> <span class="sc">-</span> specificity, <span class="at">y =</span> sensitivity, <span class="at">color =</span> model))<span class="sc">+</span></span>
-<span id="cb42-16"><a href="#cb42-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">lwd =</span> <span class="fl">1.2</span>, <span class="at">alpha =</span> <span class="fl">0.6</span>)<span class="sc">+</span></span>
-<span id="cb42-17"><a href="#cb42-17" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">lty =</span> <span class="dv">3</span>)<span class="sc">+</span></span>
-<span id="cb42-18"><a href="#cb42-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_fixed</span>()<span class="sc">+</span></span>
-<span id="cb42-19"><a href="#cb42-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>)<span class="sc">+</span></span>
-<span id="cb42-20"><a href="#cb42-20" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>()</span>
-<span id="cb42-21"><a href="#cb42-21" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb42-22"><a href="#cb42-22" aria-hidden="true" tabindex="-1"></a>rocs</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="model-compare_tidymodels_files/figure-html/unnamed-chunk-47-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>是不是很简单呢?二分类资料常见的各种评价指标都有了,图也有了,还比较了多个模型,一举多得,<code>tidymodels</code>,你值得拥有!</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./校准曲线和决策曲线的概率.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./model-compare_workflow.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-10-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-10-1.png
deleted file mode 100644
index bbd1ec4..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-10-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-11-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index da056ce..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-12-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-12-1.png
deleted file mode 100644
index 0711762..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-12-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-13-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-13-1.png
deleted file mode 100644
index 7aa059a..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-13-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-14-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-14-1.png
deleted file mode 100644
index 53844a6..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-14-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-29-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-29-1.png
deleted file mode 100644
index ce7b984..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-29-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-30-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-30-1.png
deleted file mode 100644
index 481b9e7..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-30-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-31-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-31-1.png
deleted file mode 100644
index da8a7b2..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-31-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-42-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-42-1.png
deleted file mode 100644
index e4a806c..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-42-1.png and /dev/null differ
diff --git a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-47-1.png b/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-47-1.png
deleted file mode 100644
index 8546344..0000000
Binary files a/docs/model-compare_tidymodels_files/figure-html/unnamed-chunk-47-1.png and /dev/null differ
diff --git a/docs/model-compare_workflow.html b/docs/model-compare_workflow.html
index 61f3e11..c3a68ab 100644
--- a/docs/model-compare_workflow.html
+++ b/docs/model-compare_workflow.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 47&nbsp; workflow实现多模型比较</title>
+<title>39&nbsp; tidymodels实现多模型比较 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./model-compare_mlr3.html" rel="next">
-<link href="./model-compare_tidymodels.html" rel="prev">
+<link href="./多模型比较.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./model-compare_tidymodels.html">模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_workflow.html"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_workflow.html"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,31 +493,33 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">47.1</span> 加载数据和R包</a></li>
-  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">47.2</span> 数据预处理</a></li>
-  <li><a href="#选择模型" id="toc-选择模型" class="nav-link" data-scroll-target="#选择模型"><span class="header-section-number">47.3</span> 选择模型</a></li>
-  <li><a href="#选择重抽样方法" id="toc-选择重抽样方法" class="nav-link" data-scroll-target="#选择重抽样方法"><span class="header-section-number">47.4</span> 选择重抽样方法</a></li>
-  <li><a href="#构建workflow" id="toc-构建workflow" class="nav-link" data-scroll-target="#构建workflow"><span class="header-section-number">47.5</span> 构建workflow</a></li>
-  <li><a href="#运行模型" id="toc-运行模型" class="nav-link" data-scroll-target="#运行模型"><span class="header-section-number">47.6</span> 运行模型</a></li>
-  <li><a href="#查看结果" id="toc-查看结果" class="nav-link" data-scroll-target="#查看结果"><span class="header-section-number">47.7</span> 查看结果</a></li>
-  <li><a href="#可视化结果" id="toc-可视化结果" class="nav-link" data-scroll-target="#可视化结果"><span class="header-section-number">47.8</span> 可视化结果</a></li>
-  <li><a href="#选择最好的模型用于测试集" id="toc-选择最好的模型用于测试集" class="nav-link" data-scroll-target="#选择最好的模型用于测试集"><span class="header-section-number">47.9</span> 选择最好的模型用于测试集</a></li>
+  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">39.1</span> 加载数据和R包</a></li>
+  <li><a href="#数据划分" id="toc-数据划分" class="nav-link" data-scroll-target="#数据划分"><span class="header-section-number">39.2</span> 数据划分</a></li>
+  <li><a href="#数据预处理" id="toc-数据预处理" class="nav-link" data-scroll-target="#数据预处理"><span class="header-section-number">39.3</span> 数据预处理</a></li>
+  <li><a href="#选择模型" id="toc-选择模型" class="nav-link" data-scroll-target="#选择模型"><span class="header-section-number">39.4</span> 选择模型</a></li>
+  <li><a href="#选择重抽样方法" id="toc-选择重抽样方法" class="nav-link" data-scroll-target="#选择重抽样方法"><span class="header-section-number">39.5</span> 选择重抽样方法</a></li>
+  <li><a href="#构建workflow" id="toc-构建workflow" class="nav-link" data-scroll-target="#构建workflow"><span class="header-section-number">39.6</span> 构建workflow</a></li>
+  <li><a href="#同时拟合多个模型" id="toc-同时拟合多个模型" class="nav-link" data-scroll-target="#同时拟合多个模型"><span class="header-section-number">39.7</span> 同时拟合多个模型</a></li>
+  <li><a href="#查看结果" id="toc-查看结果" class="nav-link" data-scroll-target="#查看结果"><span class="header-section-number">39.8</span> 查看结果</a></li>
+  <li><a href="#可视化结果" id="toc-可视化结果" class="nav-link" data-scroll-target="#可视化结果"><span class="header-section-number">39.9</span> 可视化结果</a></li>
+  <li><a href="#显著性检验" id="toc-显著性检验" class="nav-link" data-scroll-target="#显著性检验"><span class="header-section-number">39.10</span> 显著性检验</a></li>
+  <li><a href="#选择最好的模型用于测试集" id="toc-选择最好的模型用于测试集" class="nav-link" data-scroll-target="#选择最好的模型用于测试集"><span class="header-section-number">39.11</span> 选择最好的模型用于测试集</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li><li class="breadcrumb-item"><a href="./model-compare_workflow.html"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></h1>
+<h1 class="title"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></h1>
 </div>
 
 
@@ -548,236 +532,332 @@ <h1 class="title"><span class="chapter-number">47</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<div class="callout callout-style-default callout-tip callout-titled" title="注意">
-<div class="callout-header d-flex align-content-center">
-<div class="callout-icon-container">
-<i class="callout-icon"></i>
-</div>
-<div class="callout-title-container flex-fill">
-注意
-</div>
-</div>
-<div class="callout-body-container callout-body">
-<p>这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的信息,可参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">机器学习合集</a></p>
-</div>
-</div>
-<p>前面给大家介绍了使用<code>tidymodels</code>搞定二分类资料的模型评价和比较。</p>
-<p>简介的语法、统一的格式、优雅的操作,让人欲罢不能!</p>
-<p>但是太费事儿了,同样的流程来了4遍,那要是选择10个模型,就得来10遍!无聊,非常的无聊。</p>
-<p>所以个大家介绍简便方法,不用重复写代码,一次搞定多个模型!使用<code>tidymodels</code>中的<code>workflow</code>即可。</p>
-<p>这个<code>工作流</code>的概念我们也介绍过:<a href="https://mp.weixin.qq.com/s/PFp-RmyIXM1asEYrF2BawA">tidymodels工作流:workflow</a></p>
-<section id="加载数据和r包" class="level2" data-number="47.1">
-<h2 data-number="47.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">47.1</span> 加载数据和R包</h2>
-<p>首先还是加载数据和R包,和前面的一模一样的操作,数据也没变。</p>
+
+<blockquote class="blockquote">
+<p>该方法基于<code>tidymodels</code>实现,<code>tidymodels</code>是目前R语言里做机器学习和预测模型的当红辣子鸡之一(另一个是<code>mlr3</code>),公众号后台回复<strong>tidymodels</strong>即可获取<code>tidymodels</code>合集链接,带你全面了解<code>tidymodels</code>。另外,我翻译的《tidy modeling with R》中文版-《R语言整洁建模》,也已开卖,感兴趣的朋友不要错过。</p>
+</blockquote>
+<p>在实际操作临床预测模型的建立时,有很多时候我们是要同时建立多个模型的。如果每个模型都写一遍代码,就会非常的费事儿,比如你要建立4个模型,那么就需要把相同的流程写4遍代码,那要是选择10个模型,就得来10遍!无聊,非常的无聊。</p>
+<p>所以这里给大家介绍简便方法,不用重复写代码,一次搞定多个模型!使用<code>tidymodels</code>中的<code>workflow</code>即可。</p>
+<p>这个”工作流”的概念请参考<a href="https://mp.weixin.qq.com/s/PFp-RmyIXM1asEYrF2BawA">tidymodels工作流:workflow</a>,这个工具十分强大,下面用一个示例进行展示。</p>
+<section id="加载数据和r包" class="level2" data-number="39.1">
+<h2 data-number="39.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">39.1</span> 加载数据和R包</h2>
+<p>今天用的这份数据,结果变量是一个二分类的。一共有91976行,26列,其中<code>play_type</code>是结果变量,因子型,其余列都是预测变量。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidyverse))</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidymodels))</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse)</span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidymodels)</span>
 <span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(kknn)</span>
 <span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">tidymodels_prefer</span>()</span>
 <span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>all_plays <span class="ot">&lt;-</span> <span class="fu">read_rds</span>(<span class="st">"./datasets/all_plays.rds"</span>)</span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>split_pbp <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(all_plays, <span class="fl">0.75</span>, <span class="at">strata =</span> play_type)</span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>train_data <span class="ot">&lt;-</span> <span class="fu">training</span>(split_pbp)</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>test_data <span class="ot">&lt;-</span> <span class="fu">testing</span>(split_pbp)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载数据</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>all_plays <span class="ot">&lt;-</span> <span class="fu">read_rds</span>(<span class="st">"./datasets/all_plays.rds"</span>)</span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(all_plays)</span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 91,976</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 26</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam                    &lt;chr&gt; "NE", "NE", "NE", "NE", "NE", "NE", "NE", "…</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…</span></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…</span></span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…</span></span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam                    &lt;chr&gt; "KC", "KC", "KC", "KC", "KC", "KC", "KC", "…</span></span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…</span></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…</span></span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…</span></span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…</span></span>
+<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…</span></span>
+<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…</span></span>
+<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…</span></span>
+<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…</span></span>
+<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="do">## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…</span></span>
+<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a><span class="do">## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …</span></span>
+<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…</span></span>
+<span id="cb1-36"><a href="#cb1-36" aria-hidden="true" tabindex="-1"></a><span class="do">## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…</span></span>
+<span id="cb1-37"><a href="#cb1-37" aria-hidden="true" tabindex="-1"></a><span class="do">## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="数据预处理" class="level2" data-number="47.2">
-<h2 data-number="47.2" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">47.2</span> 数据预处理</h2>
+<section id="数据划分" class="level2" data-number="39.2">
+<h2 data-number="39.2" class="anchored" data-anchor-id="数据划分"><span class="header-section-number">39.2</span> 数据划分</h2>
+<p>把75%的数据用于训练集,剩下的做测试集。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>pbp_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(play_type <span class="sc">~</span> ., <span class="at">data =</span> train_data)  <span class="sc">%&gt;%</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_rm</span>(half_seconds_remaining,yards_gained, game_id) <span class="sc">%&gt;%</span> </span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_string2factor</span>(posteam, defteam) <span class="sc">%&gt;%</span>  </span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_corr</span>(<span class="fu">all_numeric</span>(), <span class="at">threshold =</span> <span class="fl">0.7</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_center</span>(<span class="fu">all_numeric</span>()) <span class="sc">%&gt;%</span>  </span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_zv</span>(<span class="fu">all_predictors</span>())  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 数据划分,根据play_type分层</span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>split_pbp <span class="ot">&lt;-</span> <span class="fu">initial_split</span>(all_plays, <span class="fl">0.75</span>, <span class="at">strata =</span> play_type)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>train_data <span class="ot">&lt;-</span> <span class="fu">training</span>(split_pbp) <span class="co"># 训练集</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>test_data <span class="ot">&lt;-</span> <span class="fu">testing</span>(split_pbp) <span class="co"># 测试集</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(train_data)</span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 68981    26</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(test_data)</span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 22995    26</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="选择模型" class="level2" data-number="47.3">
-<h2 data-number="47.3" class="anchored" data-anchor-id="选择模型"><span class="header-section-number">47.3</span> 选择模型</h2>
+<section id="数据预处理" class="level2" data-number="39.3">
+<h2 data-number="39.3" class="anchored" data-anchor-id="数据预处理"><span class="header-section-number">39.3</span> 数据预处理</h2>
+<p>我们对这个数据进行一些简单的预处理:</p>
+<ul>
+<li>去掉一些没用的变量</li>
+<li>把一些变量从字符型变成因子型</li>
+<li>去掉高度相关的变量</li>
+<li>数值型变量进行中心化</li>
+<li>去掉零方差变量</li>
+</ul>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>pbp_rec <span class="ot">&lt;-</span> <span class="fu">recipe</span>(play_type <span class="sc">~</span> ., <span class="at">data =</span> train_data)  <span class="sc">%&gt;%</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_rm</span>(half_seconds_remaining,yards_gained, game_id) <span class="sc">%&gt;%</span> </span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_string2factor</span>(posteam, defteam) <span class="sc">%&gt;%</span>  </span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_corr</span>(<span class="fu">all_numeric</span>(), <span class="at">threshold =</span> <span class="fl">0.7</span>) <span class="sc">%&gt;%</span> </span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_center</span>(<span class="fu">all_numeric</span>()) <span class="sc">%&gt;%</span>  </span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">step_zv</span>(<span class="fu">all_predictors</span>())  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+</section>
+<section id="选择模型" class="level2" data-number="39.4">
+<h2 data-number="39.4" class="anchored" data-anchor-id="选择模型"><span class="header-section-number">39.4</span> 选择模型</h2>
 <p>直接选择4个模型,你想选几个都是可以的。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>lm_mod <span class="ot">&lt;-</span> <span class="fu">logistic_reg</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"glm"</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>knn_mod <span class="ot">&lt;-</span> <span class="fu">nearest_neighbor</span>(<span class="at">mode =</span> <span class="st">"classification"</span>, <span class="at">engine =</span> <span class="st">"kknn"</span>)</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>rf_mod <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">mode =</span> <span class="st">"classification"</span>, <span class="at">engine =</span> <span class="st">"ranger"</span>)</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>tree_mod <span class="ot">&lt;-</span> <span class="fu">decision_tree</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"rpart"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 逻辑回归模型</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>lm_mod <span class="ot">&lt;-</span> <span class="fu">logistic_reg</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"glm"</span>)</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co"># K最近邻模型</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>knn_mod <span class="ot">&lt;-</span> <span class="fu">nearest_neighbor</span>(<span class="at">mode =</span> <span class="st">"classification"</span>, <span class="at">engine =</span> <span class="st">"kknn"</span>)</span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 随机森林模型</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>rf_mod <span class="ot">&lt;-</span> <span class="fu">rand_forest</span>(<span class="at">mode =</span> <span class="st">"classification"</span>, <span class="at">engine =</span> <span class="st">"ranger"</span>)</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 决策树模型</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>tree_mod <span class="ot">&lt;-</span> <span class="fu">decision_tree</span>(<span class="at">mode =</span> <span class="st">"classification"</span>,<span class="at">engine =</span> <span class="st">"rpart"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="选择重抽样方法" class="level2" data-number="47.4">
-<h2 data-number="47.4" class="anchored" data-anchor-id="选择重抽样方法"><span class="header-section-number">47.4</span> 选择重抽样方法</h2>
+<section id="选择重抽样方法" class="level2" data-number="39.5">
+<h2 data-number="39.5" class="anchored" data-anchor-id="选择重抽样方法"><span class="header-section-number">39.5</span> 选择重抽样方法</h2>
+<p>我们选择内部重抽样方法为10折交叉验证:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>folds <span class="ot">&lt;-</span> <span class="fu">vfold_cv</span>(train_data, <span class="at">v =</span> <span class="dv">10</span>)</span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>folds</span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## #  10-fold cross-validation </span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 10 × 2</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    splits               id    </span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;list&gt;               &lt;chr&gt; </span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 &lt;split [62082/6899]&gt; Fold01</span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 &lt;split [62083/6898]&gt; Fold02</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 &lt;split [62083/6898]&gt; Fold03</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 &lt;split [62083/6898]&gt; Fold04</span></span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 &lt;split [62083/6898]&gt; Fold05</span></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 &lt;split [62083/6898]&gt; Fold06</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 &lt;split [62083/6898]&gt; Fold07</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 &lt;split [62083/6898]&gt; Fold08</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 &lt;split [62083/6898]&gt; Fold09</span></span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 &lt;split [62083/6898]&gt; Fold10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220520</span>)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>folds <span class="ot">&lt;-</span> <span class="fu">vfold_cv</span>(train_data, <span class="at">v =</span> <span class="dv">10</span>)</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>folds</span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## #  10-fold cross-validation </span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 10 × 2</span></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    splits               id    </span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;list&gt;               &lt;chr&gt; </span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 &lt;split [62082/6899]&gt; Fold01</span></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 &lt;split [62083/6898]&gt; Fold02</span></span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 &lt;split [62083/6898]&gt; Fold03</span></span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 &lt;split [62083/6898]&gt; Fold04</span></span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 &lt;split [62083/6898]&gt; Fold05</span></span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 &lt;split [62083/6898]&gt; Fold06</span></span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 &lt;split [62083/6898]&gt; Fold07</span></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 &lt;split [62083/6898]&gt; Fold08</span></span>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 &lt;split [62083/6898]&gt; Fold09</span></span>
+<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 &lt;split [62083/6898]&gt; Fold10</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="构建workflow" class="level2" data-number="47.5">
-<h2 data-number="47.5" class="anchored" data-anchor-id="构建workflow"><span class="header-section-number">47.5</span> 构建workflow</h2>
+<section id="构建workflow" class="level2" data-number="39.6">
+<h2 data-number="39.6" class="anchored" data-anchor-id="构建workflow"><span class="header-section-number">39.6</span> 构建workflow</h2>
 <p>这一步就是不用重复写代码的关键,把所有模型和数据预处理步骤自动连接起来。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(workflowsets)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>four_mods <span class="ot">&lt;-</span> <span class="fu">workflow_set</span>(<span class="fu">list</span>(<span class="at">rec =</span> pbp_rec), </span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                          <span class="fu">list</span>(<span class="at">lm =</span> lm_mod,</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                               <span class="at">knn =</span> knn_mod,</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                               <span class="at">rf =</span> rf_mod,</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                               <span class="at">tree =</span> tree_mod</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>                               ),</span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>                          <span class="at">cross =</span> T</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>                          )</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>four_mods</span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## # A workflow set/tibble: 4 × 4</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   wflow_id info             option    result    </span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;list&gt;           &lt;list&gt;    &lt;list&gt;    </span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 rec_lm   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 rec_knn  &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 rec_rf   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 rec_tree &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(workflowsets)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>four_mods <span class="ot">&lt;-</span> <span class="fu">workflow_set</span>(<span class="fu">list</span>(<span class="at">rec =</span> pbp_rec), <span class="co"># 预处理</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>                          <span class="fu">list</span>(<span class="at">lm =</span> lm_mod,    <span class="co"># 模型</span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>                               <span class="at">knn =</span> knn_mod,</span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>                               <span class="at">rf =</span> rf_mod,</span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>                               <span class="at">tree =</span> tree_mod</span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>                               ),</span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>                          <span class="at">cross =</span> T</span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>                          )</span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>four_mods</span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="do">## # A workflow set/tibble: 4 × 4</span></span>
+<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   wflow_id info             option    result    </span></span>
+<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;list&gt;           &lt;list&gt;    &lt;list&gt;    </span></span>
+<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 rec_lm   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 rec_knn  &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 rec_rf   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span>
+<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 rec_tree &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>而且你会发现我们虽然设置了预处理步骤,但是并没有进行预处理,展示因为当我们建立工作流之后,它会自动进行这一步,不需要我们提前处理好。这个概念一定要理解。</p>
 </section>
-<section id="运行模型" class="level2" data-number="47.6">
-<h2 data-number="47.6" class="anchored" data-anchor-id="运行模型"><span class="header-section-number">47.6</span> 运行模型</h2>
+<section id="同时拟合多个模型" class="level2" data-number="39.7">
+<h2 data-number="39.7" class="anchored" data-anchor-id="同时拟合多个模型"><span class="header-section-number">39.7</span> 同时拟合多个模型</h2>
 <p>首先是一些运行过程中的参数设置:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>keep_pred <span class="ot">&lt;-</span> <span class="fu">control_resamples</span>(<span class="at">save_pred =</span> T, <span class="at">verbose =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 保存中间的结果</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>keep_pred <span class="ot">&lt;-</span> <span class="fu">control_resamples</span>(<span class="at">save_pred =</span> T, <span class="at">verbose =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>然后就是运行4个模型(目前一直是在训练集中),我们给它加速一下:</p>
+<p>然后就是同时运行4个模型(目前一直是在训练集中),我们给它加速一下:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(doParallel) </span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>cl <span class="ot">&lt;-</span> <span class="fu">makePSOCKcluster</span>(<span class="dv">12</span>) <span class="co"># 加速,用12个线程</span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="fu">registerDoParallel</span>(cl)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>four_fits <span class="ot">&lt;-</span> four_mods <span class="sc">%&gt;%</span> </span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">workflow_map</span>(<span class="st">"fit_resamples"</span>,</span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">seed =</span> <span class="dv">0520</span>,</span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">verbose =</span> T,</span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">resamples =</span> folds,</span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">control =</span> keep_pred</span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>i <span class="dv">1</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_lm</span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">1</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_lm</span> (<span class="fl">26.6</span>s)</span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>i <span class="dv">2</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_knn</span>
-<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">2</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_knn</span> (3m <span class="fl">44.1</span>s)</span>
-<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a>i <span class="dv">3</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_rf</span>
-<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">3</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_rf</span> (1m <span class="fl">10.9</span>s)</span>
-<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a>i <span class="dv">4</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_tree</span>
-<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">4</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_tree</span> (<span class="fl">4.5</span>s)</span>
-<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(four_fits,file="datasets/four_fits.rds")</span></span>
-<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a><span class="fu">stopCluster</span>(cl)</span>
-<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a>four_fits</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(doParallel) </span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>cl <span class="ot">&lt;-</span> <span class="fu">makePSOCKcluster</span>(<span class="dv">12</span>) <span class="co"># 加速,用12个线程</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">registerDoParallel</span>(cl)</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>four_fits <span class="ot">&lt;-</span> four_mods <span class="sc">%&gt;%</span> </span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">workflow_map</span>(<span class="st">"fit_resamples"</span>,</span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">seed =</span> <span class="dv">0520</span>,</span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">verbose =</span> T,</span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">resamples =</span> folds,</span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">control =</span> keep_pred</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>               )</span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>i <span class="dv">1</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_lm</span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">1</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_lm</span> (<span class="fl">26.6</span>s)</span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a>i <span class="dv">2</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_knn</span>
+<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">2</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_knn</span> (<span class="dv">3</span>m <span class="fl">44.1</span>s)</span>
+<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a>i <span class="dv">3</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_rf</span>
+<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">3</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_rf</span> (<span class="dv">1</span>m <span class="fl">10.9</span>s)</span>
+<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a>i <span class="dv">4</span> of <span class="dv">4</span> resampling<span class="sc">:</span> rec_tree</span>
+<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a>✔ <span class="dv">4</span> of <span class="dv">4</span> resampling<span class="sc">:</span> <span class="fu">rec_tree</span> (<span class="fl">4.5</span>s)</span>
+<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(four_fits,file="datasets/four_fits.rds")</span></span>
+<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="fu">stopCluster</span>(cl)</span>
+<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a>four_fits</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>需要很长时间!大家笔记本如果内存不够可能会失败哦~</p>
+<p>需要很长时间!大家笔记本如果内存不够可能会失败哦,而且运行完之后R会变得非常卡!</p>
 </section>
-<section id="查看结果" class="level2" data-number="47.7">
-<h2 data-number="47.7" class="anchored" data-anchor-id="查看结果"><span class="header-section-number">47.7</span> 查看结果</h2>
-<p>查看模型在训练集中的表现:</p>
+<section id="查看结果" class="level2" data-number="39.8">
+<h2 data-number="39.8" class="anchored" data-anchor-id="查看结果"><span class="header-section-number">39.8</span> 查看结果</h2>
+<p>查看模型在训练集中的表现(也就是看各种指标):</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(four_fits)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 8 × 9</span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   wflow_id .config          preproc model .metric .estimator  mean     n std_err</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;            &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt;</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 rec_lm   Preprocessor1_M… recipe  logi… accura… binary     0.724    10 1.91e-3</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 rec_lm   Preprocessor1_M… recipe  logi… roc_auc binary     0.781    10 1.88e-3</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 rec_knn  Preprocessor1_M… recipe  near… accura… binary     0.671    10 7.31e-4</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 rec_knn  Preprocessor1_M… recipe  near… roc_auc binary     0.716    10 1.28e-3</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 rec_rf   Preprocessor1_M… recipe  rand… accura… binary     0.732    10 1.48e-3</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 rec_rf   Preprocessor1_M… recipe  rand… roc_auc binary     0.799    10 1.90e-3</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 7 rec_tree Preprocessor1_M… recipe  deci… accura… binary     0.720    10 1.97e-3</span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 8 rec_tree Preprocessor1_M… recipe  deci… roc_auc binary     0.704    10 2.01e-3</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(four_fits)</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 8 × 9</span></span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   wflow_id .config          preproc model .metric .estimator  mean     n std_err</span></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;            &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt;</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 rec_lm   Preprocessor1_M… recipe  logi… accura… binary     0.724    10 1.91e-3</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 rec_lm   Preprocessor1_M… recipe  logi… roc_auc binary     0.781    10 1.88e-3</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 rec_knn  Preprocessor1_M… recipe  near… accura… binary     0.671    10 7.31e-4</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 rec_knn  Preprocessor1_M… recipe  near… roc_auc binary     0.716    10 1.28e-3</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 rec_rf   Preprocessor1_M… recipe  rand… accura… binary     0.732    10 1.48e-3</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 rec_rf   Preprocessor1_M… recipe  rand… roc_auc binary     0.799    10 1.90e-3</span></span>
+<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 7 rec_tree Preprocessor1_M… recipe  deci… accura… binary     0.720    10 1.97e-3</span></span>
+<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 8 rec_tree Preprocessor1_M… recipe  deci… roc_auc binary     0.704    10 2.01e-3</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>结果中给出了每个模型的AUC值和准确率,哪个大就说明哪个好。</p>
 <p>查看每一个预测结果,这个就不运行了,毕竟好几万行,太多了。。。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(four_fits)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(four_fits)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="可视化结果" class="level2" data-number="47.8">
-<h2 data-number="47.8" class="anchored" data-anchor-id="可视化结果"><span class="header-section-number">47.8</span> 可视化结果</h2>
+<section id="可视化结果" class="level2" data-number="39.9">
+<h2 data-number="39.9" class="anchored" data-anchor-id="可视化结果"><span class="header-section-number">39.9</span> 可视化结果</h2>
 <p>直接可视化4个模型的结果,感觉比ROC曲线更好看,还给出了可信区间。</p>
 <p>这个图可以自己用<code>ggplot2</code>语法修改。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>four_fits <span class="sc">%&gt;%</span> <span class="fu">autoplot</span>(<span class="at">metric =</span> <span class="st">"roc_auc"</span>)<span class="sc">+</span><span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>four_fits <span class="sc">%&gt;%</span> <span class="fu">autoplot</span>(<span class="at">metric =</span> <span class="st">"roc_auc"</span>)<span class="sc">+</span><span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
+</div>
+<p>从这个图中来看,随机森林模型是最好的,决策树最差。</p>
 </section>
-<section id="选择最好的模型用于测试集" class="level2" data-number="47.9">
-<h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用于测试集"><span class="header-section-number">47.9</span> 选择最好的模型用于测试集</h2>
-<p>选择表现最好的应用于测试集:</p>
+<section id="显著性检验" class="level2" data-number="39.10">
+<h2 data-number="39.10" class="anchored" data-anchor-id="显著性检验"><span class="header-section-number">39.10</span> 显著性检验</h2>
+<p>只看大小的话肯定是随机森林最好,但是这种差异有没有统计学意义呢?这就需要专门的统计检验方法了,比如t检验。</p>
+<p>在此之前,我们先看看4个模型的AUC之间的相关性如何,也就是计算相关系数:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>auc_indiv_estimates <span class="ot">&lt;-</span> </span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">collect_metrics</span>(four_fits, <span class="at">summarize =</span> <span class="cn">FALSE</span>) <span class="sc">%&gt;%</span> </span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(.metric <span class="sc">==</span> <span class="st">"roc_auc"</span>) </span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>auc_wider <span class="ot">&lt;-</span> </span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>  auc_indiv_estimates <span class="sc">%&gt;%</span> </span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(wflow_id, .estimate, id) <span class="sc">%&gt;%</span> </span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(<span class="at">id_cols =</span> <span class="st">"id"</span>, <span class="at">names_from =</span> <span class="st">"wflow_id"</span>, <span class="at">values_from =</span> <span class="st">".estimate"</span>)</span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>corrr<span class="sc">::</span><span class="fu">correlate</span>(auc_wider <span class="sc">%&gt;%</span> <span class="fu">select</span>(<span class="sc">-</span>id), <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 5</span></span>
+<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   term     rec_lm rec_knn rec_rf rec_tree</span></span>
+<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;     &lt;dbl&gt;   &lt;dbl&gt;  &lt;dbl&gt;    &lt;dbl&gt;</span></span>
+<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 rec_lm   NA       0.505  0.933    0.940</span></span>
+<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 rec_knn   0.505  NA      0.577    0.298</span></span>
+<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 rec_rf    0.933   0.577 NA        0.860</span></span>
+<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 rec_tree  0.940   0.298  0.860   NA</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>上面是一个相关系数矩阵,可以看出线性模型和随机森林以及决策树的AUC相关性很高,随机森林和决策树的AUC相关性也很高,其他模型之间的相关性很低。</p>
+<p>下面给大家使用t检验计算一下线性模型和随机森林模型的p值,看看是否有统计学显著性。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>rand_res <span class="ot">&lt;-</span> <span class="fu">last_fit</span>(rf_mod,pbp_rec,split_pbp)</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">saveRDS</span>(rand_res,<span class="at">file =</span> <span class="st">"./datasets/rand_res.rds"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 配对t检验</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>auc_wider <span class="sc">%&gt;%</span> </span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">with</span>(<span class="fu">t.test</span>(rec_lm, rec_rf, <span class="at">paired =</span> <span class="cn">TRUE</span>) ) <span class="sc">%&gt;%</span></span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">tidy</span>() <span class="sc">%&gt;%</span> </span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(estimate, p.value, <span class="fu">starts_with</span>(<span class="st">"conf"</span>))</span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 4</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   estimate  p.value conf.low conf.high</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">##      &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;     &lt;dbl&gt;</span></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  -0.0186 6.74e-10  -0.0202   -0.0170</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>查看在测试集的模型表现:</p>
+<p>结果表明p值是小于0.0001的,具有统计学显著性,说明随机森林模型确实比线性回归好。</p>
+</section>
+<section id="选择最好的模型用于测试集" class="level2" data-number="39.11">
+<h2 data-number="39.11" class="anchored" data-anchor-id="选择最好的模型用于测试集"><span class="header-section-number">39.11</span> 选择最好的模型用于测试集</h2>
+<p>选择表现最好的模型(随机森林)应用于测试集:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>rand_res <span class="ot">&lt;-</span> <span class="fu">readRDS</span>(<span class="at">file =</span> <span class="st">"./datasets/rand_res.rds"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>rand_res <span class="ot">&lt;-</span> <span class="fu">last_fit</span>(rf_mod,pbp_rec,split_pbp)</span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co">#saveRDS(rand_res,file = "./datasets/rand_res.rds")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>查看模型在测试集的模型表现:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(rand_res) <span class="co"># test 中的模型表现</span></span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 2 × 4</span></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate .config             </span></span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               </span></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731 Preprocessor1_Model1</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc  binary         0.799 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_metrics</span>(rand_res) <span class="co"># test 中的模型表现</span></span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 2 × 4</span></span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate .config             </span></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               </span></span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731 Preprocessor1_Model1</span></span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 roc_auc  binary         0.799 Preprocessor1_Model1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>使用其他指标查看模型表现:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731</span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.440</span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.438</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>metricsets <span class="ot">&lt;-</span> <span class="fu">metric_set</span>(accuracy, mcc, f_meas, j_index)</span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
+<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">metricsets</span>(<span class="at">truth =</span> play_type, <span class="at">estimate =</span> .pred_class)</span>
+<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 4 × 3</span></span>
+<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
+<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
+<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy binary         0.731</span></span>
+<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 mcc      binary         0.440</span></span>
+<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 f_meas   binary         0.774</span></span>
+<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 j_index  binary         0.438</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>可视化结果,喜闻乐见的混淆矩阵:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">conf_mat</span>(play_type,.pred_class) <span class="sc">%&gt;%</span> </span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">conf_mat</span>(play_type,.pred_class) <span class="sc">%&gt;%</span> </span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-19-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>喜闻乐见的ROC曲线:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">roc_curve</span>(play_type,.pred_pass) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">collect_predictions</span>(rand_res) <span class="sc">%&gt;%</span> </span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">roc_curve</span>(play_type,.pred_pass) <span class="sc">%&gt;%</span> </span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="model-compare_workflow_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>还有非常多曲线和评价指标可选,大家可以看我之前的介绍推文~</p>
+<p>还有非常多曲线和评价指标可选,大家可以看我之前的介绍推文。</p>
+<p>这里介绍的<code>tidymodels</code>的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复<code>tidymodels</code>获取合集。</p>
 
 
 </section>
@@ -818,18 +898,7 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -861,11 +930,50 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -875,8 +983,17 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -888,7 +1005,130 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -932,6 +1172,7 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -957,6 +1198,32 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1018,27 +1285,32 @@ <h2 data-number="47.9" class="anchored" data-anchor-id="选择最好的模型用
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./model-compare_tidymodels.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span>
+      <a href="./多模型比较.html" class="pagination-link" aria-label="多模型比较">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">多模型比较</span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./model-compare_mlr3.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./model-compare_mlr3.html" class="pagination-link" aria-label="mlr3实现多模型比较">
+        <span class="nav-page-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/model-compare_workflow_files/figure-html/unnamed-chunk-11-1.png b/docs/model-compare_workflow_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index 8471fa0..0000000
Binary files a/docs/model-compare_workflow_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/model-compare_workflow_files/figure-html/unnamed-chunk-12-1.png b/docs/model-compare_workflow_files/figure-html/unnamed-chunk-12-1.png
new file mode 100644
index 0000000..9867f1f
Binary files /dev/null and b/docs/model-compare_workflow_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/model-compare_workflow_files/figure-html/unnamed-chunk-16-1.png b/docs/model-compare_workflow_files/figure-html/unnamed-chunk-19-1.png
similarity index 100%
rename from docs/model-compare_workflow_files/figure-html/unnamed-chunk-16-1.png
rename to docs/model-compare_workflow_files/figure-html/unnamed-chunk-19-1.png
diff --git a/docs/model-compare_workflow_files/figure-html/unnamed-chunk-17-1.png b/docs/model-compare_workflow_files/figure-html/unnamed-chunk-20-1.png
similarity index 100%
rename from docs/model-compare_workflow_files/figure-html/unnamed-chunk-17-1.png
rename to docs/model-compare_workflow_files/figure-html/unnamed-chunk-20-1.png
diff --git a/docs/nomogram-colorfulbar.html b/docs/nomogram-colorfulbar.html
index 9ec359a..8fb694e 100644
--- a/docs/nomogram-colorfulbar.html
+++ b/docs/nomogram-colorfulbar.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 8&nbsp; 列线图添加彩色风险分层</title>
+<title>13&nbsp; 列线图添加彩色风险分层 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-colorfulbar.html"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-colorfulbar.html"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,26 +493,26 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">8.1</span> 加载数据和R包</a></li>
-  <li><a href="#传统列线图" id="toc-传统列线图" class="nav-link" data-scroll-target="#传统列线图"><span class="header-section-number">8.2</span> 传统列线图</a></li>
-  <li><a href="#新型列线图" id="toc-新型列线图" class="nav-link" data-scroll-target="#新型列线图"><span class="header-section-number">8.3</span> 新型列线图</a></li>
-  <li><a href="#继续改进" id="toc-继续改进" class="nav-link" data-scroll-target="#继续改进"><span class="header-section-number">8.4</span> 继续改进</a></li>
+  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">13.1</span> 加载数据和R包</a></li>
+  <li><a href="#传统列线图" id="toc-传统列线图" class="nav-link" data-scroll-target="#传统列线图"><span class="header-section-number">13.2</span> 传统列线图</a></li>
+  <li><a href="#新型列线图" id="toc-新型列线图" class="nav-link" data-scroll-target="#新型列线图"><span class="header-section-number">13.3</span> 新型列线图</a></li>
+  <li><a href="#继续改进" id="toc-继续改进" class="nav-link" data-scroll-target="#继续改进"><span class="header-section-number">13.4</span> 继续改进</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-colorfulbar.html"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></h1>
+<h1 class="title"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></h1>
 </div>
 
 
@@ -543,52 +525,45 @@ <h1 class="title"><span class="chapter-number">8</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>列线图可以用图形化的方式展示逻辑回归和Cox回归,是临床预测模型的重要方法之一,咱们公众号在之前已经给大家介绍过非常多关于列线图的知识了:</p>
+
+<p>列线图可以用图形化的方式展示逻辑回归和Cox回归,是临床预测模型的重要方法之一,咱们在之前已经给大家介绍过非常多关于列线图的知识了:</p>
 <ul>
 <li><a href="https://mp.weixin.qq.com/s/o9OlvPjl6nP_9gVKasvY5Q">Cox回归列线图(nomogram)的4种绘制方法</a></li>
 <li><a href="https://mp.weixin.qq.com/s/rkkwleErUjL8dHiM2V2xsw">Logistic回归列线图的4种绘制方法</a></li>
 <li><a href="https://mp.weixin.qq.com/s/5SG3aApWePBEhAeL-_TlLg">限制性立方样条(RCS)的列线图怎么画?</a></li>
 <li><a href="https://mp.weixin.qq.com/s/PkHy2aMCFo8on2oK4BxwrA">竞争风险模型列线图绘制</a></li>
 <li><a href="https://mp.weixin.qq.com/s/F50cHgAnSch5nvU4HAKe9A">列线图的本质</a></li>
-<li><a href="https://mp.weixin.qq.com/s/q04OeFQsd346tvHDlCMAJQ">lasso回归列线图绘制</a></li>
 </ul>
-<p>最近在群里发现有朋友发了这样一张列线图,非常新颖:</p>
+<p>下面给大家介绍如何绘制带有彩色风险条的列线图:</p>
 <p><img src="figs/Snipaste_2023-10-10_16-36-58.png" class="img-fluid"></p>
 <p>在传统列线图的底部添加一条彩色条带,展示不同的风险分层,一下子就让原本死板的列线图变得生动活泼了有木有?</p>
 <p>今天我们就学习一下这个图。</p>
-<section id="加载数据和r包" class="level2" data-number="8.1">
-<h2 data-number="8.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">8.1</span> 加载数据和R包</h2>
+<section id="加载数据和r包" class="level2" data-number="13.1">
+<h2 data-number="13.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">13.1</span> 加载数据和R包</h2>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="传统列线图" class="level2" data-number="8.2">
-<h2 data-number="8.2" class="anchored" data-anchor-id="传统列线图"><span class="header-section-number">8.2</span> 传统列线图</h2>
+<section id="传统列线图" class="level2" data-number="13.2">
+<h2 data-number="13.2" class="anchored" data-anchor-id="传统列线图"><span class="header-section-number">13.2</span> 传统列线图</h2>
 <p>大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
@@ -597,21 +572,20 @@ <h2 data-number="8.2" class="anchored" data-anchor-id="传统列线图"><span cl
 <p>构建cox比例风险模型:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">maxscale =</span> <span class="dv">100</span>,</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">surv =</span> T)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">maxscale =</span> <span class="dv">100</span>,</span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后就是默认的画图,没有任何难度:</p>
 <div class="cell">
@@ -628,12 +602,16 @@ <h2 data-number="8.2" class="anchored" data-anchor-id="传统列线图"><span cl
 <span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.axis =</span> <span class="dv">1</span>, <span class="co"># 坐标轴字体大小</span></span>
 <span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid =</span> <span class="fu">gray</span>(<span class="fu">c</span>(<span class="fl">0.8</span>, <span class="fl">0.95</span>))) <span class="co"># 竖线颜色</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-colorfulbar_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-colorfulbar_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="新型列线图" class="level2" data-number="8.3">
-<h2 data-number="8.3" class="anchored" data-anchor-id="新型列线图"><span class="header-section-number">8.3</span> 新型列线图</h2>
+<section id="新型列线图" class="level2" data-number="13.3">
+<h2 data-number="13.3" class="anchored" data-anchor-id="新型列线图"><span class="header-section-number">13.3</span> 新型列线图</h2>
 <p>如何给列线图添加风险分层条带呢?其实思路是很简单的,只要<strong>在合适的位置插入颜色条</strong>即可。</p>
 <p>为了达到这个目的,需要你对<code>base r</code>的绘图语法足够熟悉。</p>
 <p>直接用<code>rect</code>即可在原图形继续添加矩形区域,然后给它一个颜色即可,除此之外,我们还可以用<code>text</code>函数在底部添加文字提示,让这个图形看上去更加美观实用。</p>
@@ -666,8 +644,8 @@ <h2 data-number="8.3" class="anchored" data-anchor-id="新型列线图"><span cl
 <p>但是这个图现在还是有点问题的,主要是左侧遗留了一个<code>-1</code>,没办法去掉。</p>
 <p>当然了,你也可以直接把传统列线图保存为PDF,然后用AI等软件编辑,更加自由!</p>
 </section>
-<section id="继续改进" class="level2" data-number="8.4">
-<h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class="header-section-number">8.4</span> 继续改进</h2>
+<section id="继续改进" class="level2" data-number="13.4">
+<h2 data-number="13.4" class="anchored" data-anchor-id="继续改进"><span class="header-section-number">13.4</span> 继续改进</h2>
 <p>我又去pubmed以及google使用关键词<code>nomogram</code>继续搜索,果然又搜到一篇带有彩色条带的列线图,而且我感觉这个图更加好看!</p>
 <p><img src="figs/Snipaste_2023-10-10_16-37-42.png" class="img-fluid"></p>
 <p>文献DOI:10.1093/eurheartj/ehab294</p>
@@ -704,7 +682,7 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
 </div>
 <p><img src="figs/Snipaste_2023-10-10_19-36-41.png" class="img-fluid"></p>
 <p>彩色箭头如何添加?一模一样的思路,选择一个你想展示的病人,然后计算它每一项的分数,然后使用<code>arrows</code>函数在合适的位置绘制箭头即可。</p>
-<p>下面随便展示下,我这里并没有认真计算这个人的各项分数。如果你需要展示,可以用<code>nomogramformula</code>包计算,或者等我们下次演示。</p>
+<p>下面随便展示下,我这里并没有认真计算这个人的各项分数。如果你需要展示,可以用<code>nomogramformula</code>包计算,或者看下一篇文章演示。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co">#pdf("nomogram.pdf")</span></span>
 <span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom, </span>
@@ -745,8 +723,6 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
 </div>
 <p><img src="figs/Snipaste_2023-10-10_19-38-49.png" class="img-fluid"></p>
 <p>这样一个非常漂亮的列线图就画好了,层次分明,细节满满,让人耳目一新,大家赶紧用起来吧!</p>
-<p>但是目前这样画太费劲了,需要不断调整位置才能得到最终的效果,我在想,能不能写成一个函数,帮大家简化这件事?</p>
-<p>如果有大佬知道成熟的方法,也欢迎告诉我,这样我就不用重复造轮子了。</p>
 
 
 </section>
@@ -787,18 +763,7 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -830,11 +795,50 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -844,8 +848,17 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -857,7 +870,130 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -901,6 +1037,7 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -926,6 +1063,32 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -987,27 +1150,32 @@ <h2 data-number="8.4" class="anchored" data-anchor-id="继续改进"><span class
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-lasso.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span>
+      <a href="./nomogram-lasso.html" class="pagination-link" aria-label="lasso回归列线图绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-points.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-points.html" class="pagination-link" aria-label="计算列线图得分及危险分层">
+        <span class="nav-page-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-compete-risk.html b/docs/nomogram-compete-risk.html
index 54aed43..83264a7 100644
--- a/docs/nomogram-compete-risk.html
+++ b/docs/nomogram-compete-risk.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 6&nbsp; 竞争风险模型列线图绘制</title>
+<title>11&nbsp; 竞争风险模型列线图绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-compete-risk.html"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-compete-risk.html"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,30 +493,25 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">6.1</span> 加载数据和R包</a></li>
-  <li><a href="#fine-gray检验单因素分析" id="toc-fine-gray检验单因素分析" class="nav-link" data-scroll-target="#fine-gray检验单因素分析"><span class="header-section-number">6.2</span> Fine-Gray检验(单因素分析)</a>
-  <ul class="collapse">
-  <li><a href="#图形展示结果" id="toc-图形展示结果" class="nav-link" data-scroll-target="#图形展示结果"><span class="header-section-number">6.2.1</span> 图形展示结果</a></li>
-  <li><a href="#ggplot2" id="toc-ggplot2" class="nav-link" data-scroll-target="#ggplot2"><span class="header-section-number">6.2.2</span> ggplot2</a></li>
-  </ul></li>
-  <li><a href="#竞争风险模型多因素分析" id="toc-竞争风险模型多因素分析" class="nav-link" data-scroll-target="#竞争风险模型多因素分析"><span class="header-section-number">6.3</span> 竞争风险模型(多因素分析)</a></li>
-  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">6.4</span> 列线图</a></li>
+  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">11.1</span> 加载数据和R包</a></li>
+  <li><a href="#竞争风险模型多因素分析" id="toc-竞争风险模型多因素分析" class="nav-link" data-scroll-target="#竞争风险模型多因素分析"><span class="header-section-number">11.2</span> 竞争风险模型(多因素分析)</a></li>
+  <li><a href="#列线图" id="toc-列线图" class="nav-link" data-scroll-target="#列线图"><span class="header-section-number">11.3</span> 列线图</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-compete-risk.html"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></h1>
+<h1 class="title"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></h1>
 </div>
 
 
@@ -547,14 +524,17 @@ <h1 class="title"><span class="chapter-number">6</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
+
 <p>竞争风险模型(Competing Risk Model)适用于多个终点的生存数据,传统的生存分析(survival analysis) 一般只关心一个终点事件(即研究者感兴趣的结局)。将其他事件均按删失数据(Censored Data)处理,要求个体删失情况与个体终点事件相互独立,结局不存在竞争风险。</p>
 <p>竞争风险模型(Competing Risk Model) : 指的是在观察队列中,存在某种已知事件可能会影响另一种事件发生的概率或者是完全阻碍其发生,则可认为前者与后者存在竞争风险。</p>
 <p>比如我们研究某药物和肠癌复发的关系,感兴趣事件是<strong>肠癌复发</strong>,但是研究过程中病人因为心梗死了,这样就观察不到感兴趣事件了,那<strong>心梗死亡</strong>就可以被叫做竞争风险事件。</p>
-<p>竞争风险模型的列线图和校准曲线还有专门的R包实现,这部分内容请参考<a href="calibration-qhscrnomo.html">Chapter&nbsp;<span>38</span></a>。</p>
-<section id="加载数据和r包" class="level2" data-number="6.1">
-<h2 data-number="6.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">6.1</span> 加载数据和R包</h2>
+<p>下面介绍下如何通过间接的方法绘制竞争缝线模型的列线图。</p>
+<p>竞争风险模型的列线图和校准曲线还有专门的R包实现,这部分内容请参考<a href="calibration-qhscrnomo.html" class="quarto-xref">Chapter&nbsp;<span>32</span></a>:竞争缝线模型的列线图和校准曲线。</p>
+<section id="加载数据和r包" class="level2" data-number="11.1">
+<h2 data-number="11.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">11.1</span> 加载数据和R包</h2>
 <p>探讨骨髓移植和血液移植治疗白血病的疗效,结局事件定义为<strong>复发</strong>,某些患者因为移植不良反应死亡,定义为<strong>竞争风险事件</strong>。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
@@ -581,252 +561,156 @@ <h2 data-number="6.1" class="anchored" data-anchor-id="加载数据和r包"><spa
 </ul>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 竞争风险分析需要用的R包</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(cmprsk)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: survival</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="fine-gray检验单因素分析" class="level2" data-number="6.2">
-<h2 data-number="6.2" class="anchored" data-anchor-id="fine-gray检验单因素分析"><span class="header-section-number">6.2</span> Fine-Gray检验(单因素分析)</h2>
-<p>在普通的生存分析中,可以用log-rank检验做单因素分析,在竞争风险模型中,使用Fine-Gray检验进行单因素分析。</p>
-<p><img src="figs/Snipaste_2023-04-01_21-09-04.png" class="img-fluid"></p>
-<p>比如现在我们想要比较不同疾病类型(D)有没有差异,可以进行Fine-Gray检验:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>Status <span class="ot">&lt;-</span> <span class="fu">factor</span>(bmtcrr<span class="sc">$</span>Status)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="fu">cuminc</span>(bmtcrr<span class="sc">$</span>ftime, bmtcrr<span class="sc">$</span>Status, bmtcrr<span class="sc">$</span>D)</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>f</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Tests:</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">##        stat         pv df</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 2.8623325 0.09067592  1</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 0.4481279 0.50322531  1</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Estimates and Variances:</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $est</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##              20        40        60        80       100       120</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## ALL 1 0.3713851 0.3875571 0.3875571 0.3875571 0.3875571 0.3875571</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">## AML 1 0.2414530 0.2663827 0.2810390 0.2810390 0.2810390        NA</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">## ALL 2 0.3698630 0.3860350 0.3860350 0.3860350 0.3860350 0.3860350</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## AML 2 0.4439103 0.4551473 0.4551473 0.4551473 0.4551473        NA</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## $var</span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">##                20          40          60          80         100         120</span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">## ALL 1 0.003307032 0.003405375 0.003405375 0.003405375 0.003405375 0.003405375</span></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">## AML 1 0.001801156 0.001995487 0.002130835 0.002130835 0.002130835          NA</span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">## ALL 2 0.003268852 0.003373130 0.003373130 0.003373130 0.003373130 0.003373130</span></span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">## AML 2 0.002430406 0.002460425 0.002460425 0.002460425 0.002460425          NA</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>结果中<code>1代表复发,2代表竞争风险事件</code>。</p>
-<p>第一行统计量=2.8623325, P=0.09067592,表示在控制了竞争风险事件(即第二行计算的统计量和P值)后,两种疾病类型<code>ALL</code>和<code>AML</code>的<code>累计复发风险</code>无统计学差异P=0.09067592。</p>
-<p>第2行说明<code>ALL</code>和<code>AML</code>的<code>累计竞争风险</code>无统计学差异。</p>
-<p><code>$est</code>表示估计的各时间点<code>ALL</code>和<code>AML</code>组的累计复发率与与累计竞争风险事件发生率(分别用1和2来区分,与第一行第二行一致)。</p>
-<p><code>$var</code>表示估计的各时间点<code>ALL</code>和<code>AML</code>组的累计复发率与与累计竞争风险事件发生率的方差(分别用1和2来区分,与第一行第二行一致)。</p>
-<section id="图形展示结果" class="level3" data-number="6.2.1">
-<h3 data-number="6.2.1" class="anchored" data-anchor-id="图形展示结果"><span class="header-section-number">6.2.1</span> 图形展示结果</h3>
-<p>对于上述结果可以使用图形展示:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(f,<span class="at">xlab =</span> <span class="st">'Month'</span>, <span class="at">ylab =</span> <span class="st">'CIF'</span>,<span class="at">lwd=</span><span class="dv">2</span>,<span class="at">lty=</span><span class="dv">1</span>,</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">col =</span> <span class="fu">c</span>(<span class="st">'red'</span>,<span class="st">'blue'</span>,<span class="st">'black'</span>,<span class="st">'forestgreen'</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="nomogram-compete-risk_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>图形解读:</p>
-<p>纵坐标表示累计发生率CIF,横坐标是时间。我们从<code>ALL1</code>对应的红色曲线和<code>AML1</code>对应的蓝色曲线可以得出,<code>ALL</code>组的复发风险较<code>AML</code> 组高,但无统计学意义,P=0.09067592。同理,<code>ALL2</code>对应的黑色曲线在<code>AML2</code>对应的草绿色曲线下方,我们可以得出,<code>ALL</code>组的竞争风险事件发生率较<code>AML</code>组低,同样无统计学意义,P=0.50322531。</p>
-<p>简单来讲,这个图可以用一句话来概括:在控制了竞争风险事件后,<code>ALL</code>和<code>AML</code>累计复发风险无统计学差异P=0.09067592。</p>
-</section>
-<section id="ggplot2" class="level3" data-number="6.2.2">
-<h3 data-number="6.2.2" class="anchored" data-anchor-id="ggplot2"><span class="header-section-number">6.2.2</span> ggplot2</h3>
-<p>这个图不好看,非常的不<code>ggplot</code>,所以我们要用<code>ggplot2</code>重新画它!所以首先要提取数据,因为<strong>数就是图,图就是数</strong>。但是万能的<code>broom</code>包竟然没有不能提取这个对象的数据,只能手动来,太不优雅了!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 提取数据</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>ALL1 <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">ALL1_t =</span> f[[<span class="dv">1</span>]][[<span class="dv">1</span>]], <span class="at">ALL1_C =</span> f[[<span class="dv">1</span>]][[<span class="dv">2</span>]])</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>AML1 <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">AML1_t =</span> f[[<span class="dv">2</span>]][[<span class="dv">1</span>]], <span class="at">AML1_C =</span> f[[<span class="dv">2</span>]][[<span class="dv">2</span>]])</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>ALL2 <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">ALL2_t =</span> f[[<span class="dv">3</span>]][[<span class="dv">1</span>]], <span class="at">ALL2_C =</span> f[[<span class="dv">3</span>]][[<span class="dv">2</span>]])</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>AML2 <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">AML2_t =</span> f[[<span class="dv">4</span>]][[<span class="dv">1</span>]], <span class="at">AML2_C =</span> f[[<span class="dv">4</span>]][[<span class="dv">2</span>]])</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>()<span class="sc">+</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">data =</span> ALL1, <span class="fu">aes</span>(ALL1_t,ALL1_C))<span class="sc">+</span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">data =</span> ALL2, <span class="fu">aes</span>(ALL2_t,ALL2_C))<span class="sc">+</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">data =</span> AML1, <span class="fu">aes</span>(AML1_t,AML1_C))<span class="sc">+</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="at">data =</span> AML2, <span class="fu">aes</span>(AML2_t,AML2_C))<span class="sc">+</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x=</span><span class="st">"month"</span>,<span class="at">y=</span><span class="st">"cif"</span>)<span class="sc">+</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="nomogram-compete-risk_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>但是这种不好上色,所以我们美化一下,变成长数据再画图即可。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>tmp <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">month =</span> <span class="fu">c</span>(ALL1<span class="sc">$</span>ALL1_t,AML1<span class="sc">$</span>AML1_t,ALL2<span class="sc">$</span>ALL2_t,AML2<span class="sc">$</span>AML2_t),</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>                  <span class="at">cif =</span> <span class="fu">c</span>(ALL1<span class="sc">$</span>ALL1_C,AML1<span class="sc">$</span>AML1_C,ALL2<span class="sc">$</span>ALL2_C,AML2<span class="sc">$</span>AML2_C),</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">type =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="st">"ALL1"</span>,<span class="st">"AML1"</span>,<span class="st">"ALL2"</span>,<span class="st">"AML2"</span>), <span class="fu">c</span>(<span class="dv">58</span>,<span class="dv">58</span>,<span class="dv">58</span>,<span class="dv">88</span>))</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>                  )</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(tmp, <span class="fu">aes</span>(month, cif))<span class="sc">+</span></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">color=</span>type, <span class="at">group=</span>type),<span class="at">size=</span><span class="fl">1.2</span>)<span class="sc">+</span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()<span class="sc">+</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="st">"top"</span>)</span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.</span></span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="do">## ℹ Please use `linewidth` instead.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="nomogram-compete-risk_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(cmprsk)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-</section>
-<section id="竞争风险模型多因素分析" class="level2" data-number="6.3">
-<h2 data-number="6.3" class="anchored" data-anchor-id="竞争风险模型多因素分析"><span class="header-section-number">6.3</span> 竞争风险模型(多因素分析)</h2>
+<section id="竞争风险模型多因素分析" class="level2" data-number="11.2">
+<h2 data-number="11.2" class="anchored" data-anchor-id="竞争风险模型多因素分析"><span class="header-section-number">11.2</span> 竞争风险模型(多因素分析)</h2>
 <p>做完了单因素分析,再看看竞争风险模型的多因素分析。</p>
 <p>首先要把自变量单独放在一个数据框里,使用中发现一个问题,这里如果把分类变量变为因子型不会自动进行哑变量编码,所以<strong>需要手动进行哑变量编码!</strong></p>
 <p><strong>但是我这里偷懒了,并没有进行哑变量设置!实际中是需要的哦!!</strong></p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>covs <span class="ot">&lt;-</span> <span class="fu">subset</span>(bmtcrr, <span class="at">select =</span> <span class="sc">-</span> <span class="fu">c</span>(ftime,Status))</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>covs[,<span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>,<span class="dv">5</span>)] <span class="ot">&lt;-</span> <span class="fu">lapply</span>(covs[,<span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>,<span class="dv">5</span>)],as.integer)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(covs)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  5 variables:</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : int  2 1 2 1 1 2 2 1 2 1 ...</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : int  1 2 1 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : int  4 2 3 2 2 4 1 1 1 4 ...</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: int  1 1 1 1 1 1 1 1 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>covs <span class="ot">&lt;-</span> <span class="fu">subset</span>(bmtcrr, <span class="at">select =</span> <span class="sc">-</span> <span class="fu">c</span>(ftime,Status))</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>covs[,<span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>,<span class="dv">5</span>)] <span class="ot">&lt;-</span> <span class="fu">lapply</span>(covs[,<span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>,<span class="dv">5</span>)],as.integer)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(covs)</span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  5 variables:</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : int  2 1 2 1 1 2 2 1 2 1 ...</span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : int  1 2 1 1 1 1 1 1 1 1 ...</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : int  4 2 3 2 2 4 1 1 1 4 ...</span></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: int  1 1 1 1 1 1 1 1 1 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>指定<code>failcode=1</code>, <code>cencode=0</code>, 分别代表结局事件1与截尾0,其他默认为竞争风险事件2。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建竞争风险模型</span></span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>f2 <span class="ot">&lt;-</span> <span class="fu">crr</span>(bmtcrr<span class="sc">$</span>ftime, bmtcrr<span class="sc">$</span>Status, covs, <span class="at">failcode=</span><span class="dv">1</span>, <span class="at">cencode=</span><span class="dv">0</span>)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(f2)</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Competing Risks Regression</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## crr(ftime = bmtcrr$ftime, fstatus = bmtcrr$Status, cov1 = covs, </span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     failcode = 1, cencode = 0)</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##           coef exp(coef) se(coef)      z p-value</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Sex     0.0494     1.051   0.2867  0.172 0.86000</span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## D      -0.4860     0.615   0.3040 -1.599 0.11000</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase   0.4144     1.514   0.1194  3.470 0.00052</span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Age    -0.0174     0.983   0.0118 -1.465 0.14000</span></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Source  0.9526     2.592   0.5469  1.742 0.08200</span></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">##        exp(coef) exp(-coef)  2.5% 97.5%</span></span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Sex        1.051      0.952 0.599  1.84</span></span>
-<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="do">## D          0.615      1.626 0.339  1.12</span></span>
-<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase      1.514      0.661 1.198  1.91</span></span>
-<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Age        0.983      1.018 0.960  1.01</span></span>
-<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Source     2.592      0.386 0.888  7.57</span></span>
-<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Num. cases = 177</span></span>
-<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Pseudo Log-likelihood = -267 </span></span>
-<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Pseudo likelihood ratio test = 23.6  on 5 df,</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建竞争风险模型</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>f2 <span class="ot">&lt;-</span> <span class="fu">crr</span>(bmtcrr<span class="sc">$</span>ftime, bmtcrr<span class="sc">$</span>Status, covs, <span class="at">failcode=</span><span class="dv">1</span>, <span class="at">cencode=</span><span class="dv">0</span>)</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(f2)</span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Competing Risks Regression</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="do">## crr(ftime = bmtcrr$ftime, fstatus = bmtcrr$Status, cov1 = covs, </span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     failcode = 1, cencode = 0)</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##           coef exp(coef) se(coef)      z p-value</span></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Sex     0.0494     1.051   0.2867  0.172 0.86000</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">## D      -0.4860     0.615   0.3040 -1.599 0.11000</span></span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase   0.4144     1.514   0.1194  3.470 0.00052</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Age    -0.0174     0.983   0.0118 -1.465 0.14000</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Source  0.9526     2.592   0.5469  1.742 0.08200</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##        exp(coef) exp(-coef)  2.5% 97.5%</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Sex        1.051      0.952 0.599  1.84</span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">## D          0.615      1.626 0.339  1.12</span></span>
+<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase      1.514      0.661 1.198  1.91</span></span>
+<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Age        0.983      1.018 0.960  1.01</span></span>
+<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Source     2.592      0.386 0.888  7.57</span></span>
+<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Num. cases = 177</span></span>
+<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Pseudo Log-likelihood = -267 </span></span>
+<span id="cb4-26"><a href="#cb4-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Pseudo likelihood ratio test = 23.6  on 5 df,</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>结果解读:在控制了竞争分险事件后,<code>phase</code>变量,即疾病所处阶段是患者复发的独立影响因素(p =0.00052)。</p>
 </section>
-<section id="列线图" class="level2" data-number="6.4">
-<h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="header-section-number">6.4</span> 列线图</h2>
+<section id="列线图" class="level2" data-number="11.3">
+<h2 data-number="11.3" class="anchored" data-anchor-id="列线图"><span class="header-section-number">11.3</span> 列线图</h2>
 <p><code>regplot</code>包绘制列线图。但是它目前只适用<code>coxph()</code>、<code>lm()</code>和<code>glm()</code>返回的对象。</p>
 <p>因此我们需要对原数据集加权创建一个新数据集用于为竞争风险模型分析,使用<code>mstate</code>包中的<code>crprep()</code>创建加权数据集,然后使用<code>coxph()</code>对加权数据集进行竞争风险模型拟合,这样就可以画列线图了。</p>
 <p>首先是加载数据和R包:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"bmtcrr"</span>,<span class="at">package =</span> <span class="st">"casebase"</span>) <span class="co"># 还是这个数据</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mstate) <span class="co"># 加权用到的R包</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>id <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(bmtcrr) <span class="co"># 创建id</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co"># phase变为2分类,不然列线图不好解释</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>Phase <span class="ot">&lt;-</span> <span class="fu">factor</span>(<span class="fu">ifelse</span>(bmtcrr<span class="sc">$</span>Phase<span class="sc">==</span><span class="st">"Relapse"</span>,<span class="dv">1</span>,<span class="dv">0</span>)) </span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr)</span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  8 variables:</span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : Factor w/ 2 levels "F","M": 2 1 2 1 1 2 2 1 2 1 ...</span></span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : Factor w/ 2 levels "ALL","AML": 1 2 1 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : Factor w/ 2 levels "0","1": 2 1 1 1 1 2 1 1 1 2 ...</span></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...</span></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: Factor w/ 2 levels "BM+PB","PB": 1 1 1 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...</span></span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"bmtcrr"</span>,<span class="at">package =</span> <span class="st">"casebase"</span>) <span class="co"># 还是这个数据</span></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mstate) <span class="co"># 加权用到的R包</span></span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>id <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(bmtcrr) <span class="co"># 创建id</span></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="co"># phase变为2分类,不然列线图不好解释</span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>bmtcrr<span class="sc">$</span>Phase <span class="ot">&lt;-</span> <span class="fu">factor</span>(<span class="fu">ifelse</span>(bmtcrr<span class="sc">$</span>Phase<span class="sc">==</span><span class="st">"Relapse"</span>,<span class="dv">1</span>,<span class="dv">0</span>)) </span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(bmtcrr)</span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    177 obs. of  8 variables:</span></span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Sex   : Factor w/ 2 levels "F","M": 2 1 2 1 1 2 2 1 2 1 ...</span></span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ D     : Factor w/ 2 levels "ALL","AML": 1 2 1 1 1 1 1 1 1 1 ...</span></span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Phase : Factor w/ 2 levels "0","1": 2 1 1 1 1 2 1 1 1 2 ...</span></span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...</span></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...</span></span>
+<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ Source: Factor w/ 2 levels "BM+PB","PB": 1 1 1 1 1 1 1 1 1 1 ...</span></span>
+<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...</span></span>
+<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后是对原数据进行加权:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>df.w <span class="ot">&lt;-</span> <span class="fu">crprep</span>(<span class="st">"ftime"</span>, <span class="st">"Status"</span>,</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">data=</span>bmtcrr, </span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">trans=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>),<span class="co"># 要加权的变量,1表示结局事件,2表示竞争风险事件</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">cens=</span><span class="dv">0</span>, <span class="co"># 删失</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">id=</span><span class="st">"id"</span>,</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>               </span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>               <span class="co"># 要保留的协变量</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">keep=</span><span class="fu">c</span>(<span class="st">"Age"</span>,<span class="st">"Sex"</span>,<span class="st">"D"</span>,<span class="st">"Source"</span>,<span class="st">"Phase"</span>))</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(df.w)</span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   id Tstart Tstop status weight.cens Age Sex   D Source Phase count failcode</span></span>
-<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  1   0.00  0.67      2   1.0000000  48   M ALL  BM+PB     1     1        1</span></span>
-<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  1   0.67  9.50      2   1.0000000  48   M ALL  BM+PB     1     2        1</span></span>
-<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  1   9.50 13.07      2   0.9679938  48   M ALL  BM+PB     1     3        1</span></span>
-<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  1  13.07 17.23      2   0.8730924  48   M ALL  BM+PB     1     4        1</span></span>
-<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  1  17.23 20.83      2   0.8536904  48   M ALL  BM+PB     1     5        1</span></span>
-<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 6  1  20.83 28.53      2   0.8120469  48   M ALL  BM+PB     1     6        1</span></span>
-<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a>df.w<span class="sc">$</span>T<span class="ot">&lt;-</span> df.w<span class="sc">$</span>Tstop <span class="sc">-</span> df.w<span class="sc">$</span>Tstart</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>df.w <span class="ot">&lt;-</span> <span class="fu">crprep</span>(<span class="st">"ftime"</span>, <span class="st">"Status"</span>,</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">data=</span>bmtcrr, </span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">trans=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">2</span>),<span class="co"># 要加权的变量,1表示结局事件,2表示竞争风险事件</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">cens=</span><span class="dv">0</span>, <span class="co"># 删失</span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">id=</span><span class="st">"id"</span>,</span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>               </span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>               <span class="co"># 要保留的协变量</span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">keep=</span><span class="fu">c</span>(<span class="st">"Age"</span>,<span class="st">"Sex"</span>,<span class="st">"D"</span>,<span class="st">"Source"</span>,<span class="st">"Phase"</span>))</span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(df.w)</span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   id Tstart Tstop status weight.cens Age Sex   D Source Phase count failcode</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  1   0.00  0.67      2   1.0000000  48   M ALL  BM+PB     1     1        1</span></span>
+<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  1   0.67  9.50      2   1.0000000  48   M ALL  BM+PB     1     2        1</span></span>
+<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  1   9.50 13.07      2   0.9679938  48   M ALL  BM+PB     1     3        1</span></span>
+<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  1  13.07 17.23      2   0.8730924  48   M ALL  BM+PB     1     4        1</span></span>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  1  17.23 20.83      2   0.8536904  48   M ALL  BM+PB     1     5        1</span></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 6  1  20.83 28.53      2   0.8120469  48   M ALL  BM+PB     1     6        1</span></span>
+<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>df.w<span class="sc">$</span>T<span class="ot">&lt;-</span> df.w<span class="sc">$</span>Tstop <span class="sc">-</span> df.w<span class="sc">$</span>Tstart</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>上述代码已经创建一个加权数据集df.w,此时还需要选择<code>failcode == 1</code>的行,然后我们才可以在此数据集上使用coxph()函数进行竞争风险分析,不然最后画列线图会报错。</p>
+<p>上述代码已经创建一个加权数据集df.w,此时还需要选择<code>failcode==1</code>的行,然后我们才可以在此数据集上使用coxph()函数进行竞争风险分析,不然最后画列线图会报错。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 参考资料</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="co"># https://blog.csdn.net/zhongkeyuanchongqing/article/details/124086113</span></span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>df.w2 <span class="ot">&lt;-</span> df.w[df.w<span class="sc">$</span>failcode <span class="sc">==</span> <span class="dv">1</span>,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 参考资料</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="co"># https://blog.csdn.net/zhongkeyuanchongqing/article/details/124086113</span></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>df.w2 <span class="ot">&lt;-</span> df.w[df.w<span class="sc">$</span>failcode <span class="sc">==</span> <span class="dv">1</span>,]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建cox模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>m.crr<span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(T,status<span class="sc">==</span><span class="dv">1</span>)<span class="sc">~</span>Age<span class="sc">+</span>Sex<span class="sc">+</span>D<span class="sc">+</span>Source<span class="sc">+</span>Phase,</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>             <span class="at">data=</span>df.w2,</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>             <span class="at">weight=</span>weight.cens,</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>             <span class="at">subset=</span>failcode<span class="sc">==</span><span class="dv">1</span>)</span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.crr)</span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="do">## coxph(formula = Surv(T, status == 1) ~ Age + Sex + D + Source + </span></span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     Phase, data = df.w2, weights = weight.cens, subset = failcode == </span></span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     1)</span></span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   n= 686, number of events= 56 </span></span>
-<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="do">##              coef exp(coef) se(coef) robust se      z Pr(&gt;|z|)    </span></span>
-<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Age      -0.02174   0.97850  0.01172   0.01208 -1.800 0.071914 .  </span></span>
-<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a><span class="do">## SexM      0.10551   1.11128  0.27981   0.29571  0.357 0.721247    </span></span>
-<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a><span class="do">## DAML     -0.53163   0.58764  0.29917   0.30613 -1.737 0.082450 .  </span></span>
-<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a><span class="do">## SourcePB  1.06564   2.90269  0.53453   0.56000  1.903 0.057051 .  </span></span>
-<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase1    1.06140   2.89040  0.27870   0.28129  3.773 0.000161 ***</span></span>
-<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
-<span id="cb12-20"><a href="#cb12-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
-<span id="cb12-21"><a href="#cb12-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb12-22"><a href="#cb12-22" aria-hidden="true" tabindex="-1"></a><span class="do">##          exp(coef) exp(-coef) lower .95 upper .95</span></span>
-<span id="cb12-23"><a href="#cb12-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Age         0.9785     1.0220    0.9556     1.002</span></span>
-<span id="cb12-24"><a href="#cb12-24" aria-hidden="true" tabindex="-1"></a><span class="do">## SexM        1.1113     0.8999    0.6225     1.984</span></span>
-<span id="cb12-25"><a href="#cb12-25" aria-hidden="true" tabindex="-1"></a><span class="do">## DAML        0.5876     1.7017    0.3225     1.071</span></span>
-<span id="cb12-26"><a href="#cb12-26" aria-hidden="true" tabindex="-1"></a><span class="do">## SourcePB    2.9027     0.3445    0.9686     8.699</span></span>
-<span id="cb12-27"><a href="#cb12-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase1      2.8904     0.3460    1.6654     5.016</span></span>
-<span id="cb12-28"><a href="#cb12-28" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb12-29"><a href="#cb12-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Concordance= 0.737  (se = 0.037 )</span></span>
-<span id="cb12-30"><a href="#cb12-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Likelihood ratio test= 28.33  on 5 df,   p=3e-05</span></span>
-<span id="cb12-31"><a href="#cb12-31" aria-hidden="true" tabindex="-1"></a><span class="do">## Wald test            = 27.27  on 5 df,   p=5e-05</span></span>
-<span id="cb12-32"><a href="#cb12-32" aria-hidden="true" tabindex="-1"></a><span class="do">## Score (logrank) test = 30.49  on 5 df,   p=1e-05,   Robust = 20.2  p=0.001</span></span>
-<span id="cb12-33"><a href="#cb12-33" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb12-34"><a href="#cb12-34" aria-hidden="true" tabindex="-1"></a><span class="do">##   (Note: the likelihood ratio and score tests assume independence of</span></span>
-<span id="cb12-35"><a href="#cb12-35" aria-hidden="true" tabindex="-1"></a><span class="do">##      observations within a cluster, the Wald and robust score tests do not).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>m.crr<span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(T,status<span class="sc">==</span><span class="dv">1</span>)<span class="sc">~</span>Age<span class="sc">+</span>Sex<span class="sc">+</span>D<span class="sc">+</span>Source<span class="sc">+</span>Phase,</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>             <span class="at">data=</span>df.w2,</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>             <span class="at">weight=</span>weight.cens,</span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>             <span class="at">subset=</span>failcode<span class="sc">==</span><span class="dv">1</span>)</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.crr)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## coxph(formula = Surv(T, status == 1) ~ Age + Sex + D + Source + </span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     Phase, data = df.w2, weights = weight.cens, subset = failcode == </span></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     1)</span></span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   n= 686, number of events= 56 </span></span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">##              coef exp(coef) se(coef) robust se      z Pr(&gt;|z|)    </span></span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Age      -0.02174   0.97850  0.01172   0.01208 -1.800 0.071914 .  </span></span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">## SexM      0.10551   1.11128  0.27981   0.29571  0.357 0.721247    </span></span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">## DAML     -0.53163   0.58764  0.29917   0.30613 -1.737 0.082450 .  </span></span>
+<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">## SourcePB  1.06564   2.90269  0.53453   0.56000  1.903 0.057051 .  </span></span>
+<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase1    1.06140   2.89040  0.27870   0.28129  3.773 0.000161 ***</span></span>
+<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="do">## ---</span></span>
+<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</span></span>
+<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a><span class="do">##          exp(coef) exp(-coef) lower .95 upper .95</span></span>
+<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Age         0.9785     1.0220    0.9556     1.002</span></span>
+<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="do">## SexM        1.1113     0.8999    0.6225     1.984</span></span>
+<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a><span class="do">## DAML        0.5876     1.7017    0.3225     1.071</span></span>
+<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a><span class="do">## SourcePB    2.9027     0.3445    0.9686     8.699</span></span>
+<span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="do">## Phase1      2.8904     0.3460    1.6654     5.016</span></span>
+<span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb8-29"><a href="#cb8-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Concordance= 0.737  (se = 0.037 )</span></span>
+<span id="cb8-30"><a href="#cb8-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Likelihood ratio test= 28.33  on 5 df,   p=3e-05</span></span>
+<span id="cb8-31"><a href="#cb8-31" aria-hidden="true" tabindex="-1"></a><span class="do">## Wald test            = 27.27  on 5 df,   p=5e-05</span></span>
+<span id="cb8-32"><a href="#cb8-32" aria-hidden="true" tabindex="-1"></a><span class="do">## Score (logrank) test = 30.49  on 5 df,   p=1e-05,   Robust = 20.2  p=0.001</span></span>
+<span id="cb8-33"><a href="#cb8-33" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="do">##   (Note: the likelihood ratio and score tests assume independence of</span></span>
+<span id="cb8-35"><a href="#cb8-35" aria-hidden="true" tabindex="-1"></a><span class="do">##      observations within a cluster, the Wald and robust score tests do not).</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>接下来,我们可以使用<code>regplot()</code>函数绘制nomogram。其实你可以绘制多种不同的列线图,可以参考之前的推文:<a href="https://mp.weixin.qq.com/s/o9OlvPjl6nP_9gVKasvY5Q">生存资料列线图的4种绘制方法</a></p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(regplot)</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="fu">regplot</span>(m.crr,</span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation=</span>df.w2[df.w2<span class="sc">$</span>id<span class="sc">==</span><span class="dv">25</span><span class="sc">&amp;</span>df.w2<span class="sc">$</span>failcode<span class="sc">==</span><span class="dv">1</span>,],</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">failtime =</span> <span class="fu">c</span>(<span class="dv">36</span>, <span class="dv">60</span>), </span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">prfail =</span> T, </span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines=</span>T)</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="do">## "observation" has &gt;1 row. The first  row provides plotted values</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Regression  m.crr coxph formula:</span></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Surv(T, status == 1) `~` Age + Sex + D + Source + Phase</span></span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Replicate integer weights assumed</span></span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Note: non-integer weights have been floored</span></span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "note: points tables not constructed unless points=TRUE "</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(regplot)</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">regplot</span>(m.crr,</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation=</span>df.w2[df.w2<span class="sc">$</span>id<span class="sc">==</span><span class="dv">25</span><span class="sc">&amp;</span>df.w2<span class="sc">$</span>failcode<span class="sc">==</span><span class="dv">1</span>,],</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">failtime =</span> <span class="fu">c</span>(<span class="dv">36</span>, <span class="dv">60</span>), </span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">prfail =</span> T, </span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines=</span>T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p><img src="figs/Snipaste_2023-10-10_19-52-40.png" class="img-fluid"></p>
 <p>在这个列线图中,将数据集中id=25的患者各协变量的取值映射到相应的得分,并计算总得分,并分别计算其在36个月和60个月的累计复发概率,此概率即为控制了竞争风险的累计复发概率,分别为:0.134和0.146。</p>
@@ -870,18 +754,7 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -913,11 +786,50 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -927,8 +839,17 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -940,7 +861,130 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -984,6 +1028,7 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1009,6 +1054,32 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1070,27 +1141,32 @@ <h2 data-number="6.4" class="anchored" data-anchor-id="列线图"><span class="h
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-rcs.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span>
+      <a href="./nomogram-rcs.html" class="pagination-link" aria-label="样条回归列线图绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-lasso.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-lasso.html" class="pagination-link" aria-label="lasso回归列线图绘制">
+        <span class="nav-page-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-5-1.png b/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-5-1.png
deleted file mode 100644
index e58e3cf..0000000
Binary files a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-5-1.png and /dev/null differ
diff --git a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-6-1.png b/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 4b268bc..0000000
Binary files a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-7-1.png b/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index 50b2eef..0000000
Binary files a/docs/nomogram-compete-risk_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/nomogram-cox.html b/docs/nomogram-cox.html
index 42bc4d5..16c87ad 100644
--- a/docs/nomogram-cox.html
+++ b/docs/nomogram-cox.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 3&nbsp; Cox回归列线图绘制</title>
+<title>8&nbsp; Cox回归列线图绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./nomogram-essential.html" rel="next">
+<link href="./nomogram-原理.html" rel="next">
 <link href="./nomogram-logistic.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-cox.html"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-cox.html"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,27 +493,25 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载数据和r包" id="toc-加载数据和r包" class="nav-link active" data-scroll-target="#加载数据和r包"><span class="header-section-number">3.1</span> 加载数据和R包</a></li>
-  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">3.2</span> 方法1:rms</a></li>
-  <li><a href="#方法2dynnom" id="toc-方法2dynnom" class="nav-link" data-scroll-target="#方法2dynnom"><span class="header-section-number">3.3</span> 方法2:DynNom</a></li>
-  <li><a href="#方法3regplot" id="toc-方法3regplot" class="nav-link" data-scroll-target="#方法3regplot"><span class="header-section-number">3.4</span> 方法3:regplot</a></li>
-  <li><a href="#方法4vrpm" id="toc-方法4vrpm" class="nav-link" data-scroll-target="#方法4vrpm"><span class="header-section-number">3.5</span> 方法4:VRPM</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">8.1</span> 准备数据</a></li>
+  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">8.2</span> 方法1:rms</a></li>
+  <li><a href="#方法2regplot" id="toc-方法2regplot" class="nav-link" data-scroll-target="#方法2regplot"><span class="header-section-number">8.3</span> 方法2:regplot</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-cox.html"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></h1>
+<h1 class="title"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></h1>
 </div>
 
 
@@ -544,17 +524,14 @@ <h1 class="title"><span class="chapter-number">3</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>Cox比例风险模型也是多因素回归模型的一种,在考虑结局时,还加入了时间因素的影响。</p>
-<p>列线图(Alignment Diagram),又称诺莫图(Nomogram图),用来把多因素回归分析结果(logistic回归和cox回归)用图形方式表现出来,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。</p>
-<p>根据模型中各个影响因素对结局变量的贡献程度(回归系数的大小),给每个影响因素的每个取值水平进行赋分,然后再将各个评分相加得到总评分,最后通过总评分与结局事件发生概率之间的函数转换关系,从而计算出该个体结局事件的预测值。</p>
-<p>简单地说,就是把你的模型用图形化的方式展示出来。</p>
-<p>列线图无论是在单纯的临床预测模型类文章、还是和生信数据挖掘结合的预测模型类文章中,都是标配。</p>
-<p>下面给大家介绍<strong>4种cox回归列线图的绘制方法</strong>。</p>
-<section id="加载数据和r包" class="level2" data-number="3.1">
-<h2 data-number="3.1" class="anchored" data-anchor-id="加载数据和r包"><span class="header-section-number">3.1</span> 加载数据和R包</h2>
-<p>Cox回归模型在医学统计中是一个很重要的统计方法,关于Cox比例风险模型,我写过一些实现方法的推文,大家可以参考:</p>
+
+<p>下面给大家介绍几种cox回归列线图的绘制方法。</p>
+<section id="准备数据" class="level2" data-number="8.1">
+<h2 data-number="8.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">8.1</span> 准备数据</h2>
+<p>Cox回归模型在医学统计中是一个很重要的统计方法,关于Cox比例风险模型的构建和结果解读,我写过一些实现方法以及细节解读的推文,大家可以参考:</p>
 <ul>
 <li><a href="https://mp.weixin.qq.com/s/eeQ8PJQZunYzQmssGTimNA">R语言生存分析:Cox回归</a></li>
 <li><a href="https://mp.weixin.qq.com/s/2pjYAuf3U_zP1yiqmiIwpw">R语言时依系数和时依协变量Cox回归</a></li>
@@ -562,202 +539,123 @@ <h2 data-number="3.1" class="anchored" data-anchor-id="加载数据和r包"><spa
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载需要的R包和数据</span></span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>这个是关于肺癌的生存数据,一共有228行,10列,其中<code>time</code>是生存时间,单位是天,<code>status</code>是生存状态,1是删失,2是死亡。其余变量是自变量,意义如下:</p>
+<ul>
+<li><code>inst</code>:机构代码,对于我们这次建模没啥用</li>
+<li><code>age</code>:年龄</li>
+<li><code>sex</code>:1是男性,2是女性</li>
+<li><code>ph.ecog</code>:ECOG评分。0=无症状,1=有症状但完全可以走动,2=每天&lt;50%的时间在床上,3=在床上&gt;50%的时间但没有卧床,4=卧床不起</li>
+<li><code>ph.karno</code>:医生评的KPS评分,范围是0-100,得分越高,健康状况越好,越能忍受治疗给身体带来的副作用。</li>
+<li><code>pat.karno</code>:患者自己评的KPS评分</li>
+<li><code>meal.cal</code>:用餐时消耗的卡路里</li>
+<li><code>wt.loss</code>:过去6个月的体重减少量,单位是磅</li>
+</ul>
 </section>
-<section id="方法1rms" class="level2" data-number="3.2">
-<h2 data-number="3.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">3.2</span> 方法1:rms</h2>
+<section id="方法1rms" class="level2" data-number="8.2">
+<h2 data-number="8.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">8.2</span> 方法1:rms</h2>
 <p>大多数情况下都是使用1代表死亡,0代表删失,下面这个演示数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用rms包需要对数据进行“打包”操作</span></span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用rms包需要对数据进行“打包”操作</span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建cox比例风险模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">maxscale =</span> <span class="dv">100</span>,</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 选择部分变量演示</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age<span class="sc">+</span>sex<span class="sc">+</span>ph.ecog<span class="sc">+</span>ph.karno<span class="sc">+</span>pat.karno,</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>              )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>然后就是画图:</p>
+<p>指定你要计算哪一年的生存率:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom, </span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">lplabel=</span><span class="st">"Linear Predictor"</span>,</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xfrac =</span> <span class="fl">0.2</span>, <span class="co"># 左侧标签距离坐标轴的距离</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>     <span class="co">#varname.label = TRUE, </span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">tcl =</span> <span class="sc">-</span><span class="fl">0.2</span>, <span class="co"># 刻度长短和方向 </span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">lmgp =</span> <span class="fl">0.1</span>, <span class="co"># 坐标轴标签距离坐标轴远近</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">points.label =</span><span class="st">'Points'</span>, </span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">total.points.label =</span> <span class="st">'Total Points'</span>,</span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">cap.labels =</span> <span class="cn">FALSE</span>,</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.var =</span> <span class="dv">1</span>, <span class="co"># 左侧标签字体大小</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.axis =</span> <span class="dv">1</span>, <span class="co"># 坐标轴字体大小</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid =</span> <span class="fu">gray</span>(<span class="fu">c</span>(<span class="fl">0.8</span>, <span class="fl">0.95</span>))) <span class="co"># 竖线颜色</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="nomogram-cox_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="768"></p>
-</div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-</section>
-<section id="方法2dynnom" class="level2" data-number="3.3">
-<h2 data-number="3.3" class="anchored" data-anchor-id="方法2dynnom"><span class="header-section-number">3.3</span> 方法2:DynNom</h2>
-<p>使用这种方法会在你的Rstudio中弹出一个窗口,你可以自由调节其中给出的选项。</p>
+<p>构建列线图数据:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(DynNom)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="fu">DynNom</span>(coxfit,</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>       <span class="at">DNxlab =</span> <span class="st">"Survival probability"</span>,</span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>       <span class="at">KMtitle=</span><span class="st">"Kaplan-Meier plot"</span>, </span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>       <span class="at">KMxlab =</span> <span class="st">"Time (Days)"</span>, </span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>       <span class="at">KMylab =</span> <span class="st">"Survival probability"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建列线图数据</span></span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>选择好你的参数,点击<code>Predict</code>即可出图:</p>
-<p><img src="figs/Snipaste_2023-04-01_17-54-26.png" class="img-fluid"></p>
-<p>仔细看上面这个图其实有错误,<code>sex</code>作为性别,只有2种可能:男或女,所以只能是1或者2,不可能为小数,这就提醒我们在建立模型时需要把这样的变量先因子化。</p>
-</section>
-<section id="方法3regplot" class="level2" data-number="3.4">
-<h2 data-number="3.4" class="anchored" data-anchor-id="方法3regplot"><span class="header-section-number">3.4</span> 方法3:regplot</h2>
-<p>使用<code>regplot</code>包实现,这个包很强大,以后还会经常用到。</p>
+<p>然后就是画图:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(regplot)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="fu">regplot</span>(coxfit,</span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>        <span class="co">#连续性变量形状,"no plot""density""boxes""ecdf"</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>        <span class="co">#"bars""boxplot""violin""bean" "spikes";</span></span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>        <span class="co">#分类变量的形状,可选"no plot" "boxes" "bars" "spikes"</span></span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>        <span class="at">plots =</span> <span class="fu">c</span>(<span class="st">"violin"</span>, <span class="st">"boxes"</span>), </span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation =</span> lung[<span class="dv">1</span>,], <span class="co">#用哪行观测,或者T F</span></span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">center =</span> T, <span class="co"># 对齐变量</span></span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">subticks =</span> T,</span>
-<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines =</span> T,<span class="co">#是否画竖线</span></span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">title =</span> <span class="st">"nomogram"</span>,</span>
-<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">points =</span> T, <span class="co"># 截距项显示为0-100</span></span>
-<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>        <span class="at">odds =</span> T, <span class="co"># 是否显示OR值</span></span>
-<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a>        <span class="at">showP =</span> T, <span class="co"># 是否显示变量的显著性标记</span></span>
-<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a>        <span class="at">rank =</span> <span class="st">"sd"</span>, <span class="co"># 根据sd给变量排序</span></span>
-<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a>        <span class="at">interval=</span><span class="st">"confidence"</span>, <span class="co"># 展示可信区间</span></span>
-<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a>        <span class="at">clickable =</span> F <span class="co"># 是否可以交互</span></span>
-<span id="cb6-23"><a href="#cb6-23" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb6-24"><a href="#cb6-24" aria-hidden="true" tabindex="-1"></a><span class="do">## Regression  coxfit cph formula:</span></span>
-<span id="cb6-25"><a href="#cb6-25" aria-hidden="true" tabindex="-1"></a><span class="do">## Surv(time, status) `~` age + sex + ph.ecog + ph.karno + pat.karno</span></span>
-<span id="cb6-26"><a href="#cb6-26" aria-hidden="true" tabindex="-1"></a><span class="do">## CI: 0.931(4.82,57.5)</span></span>
-<span id="cb6-27"><a href="#cb6-27" aria-hidden="true" tabindex="-1"></a><span class="do">## [[1]]</span></span>
-<span id="cb6-28"><a href="#cb6-28" aria-hidden="true" tabindex="-1"></a><span class="do">##   pat.karno Points</span></span>
-<span id="cb6-29"><a href="#cb6-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 1        30     61</span></span>
-<span id="cb6-30"><a href="#cb6-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 2        50     49</span></span>
-<span id="cb6-31"><a href="#cb6-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 3        70     37</span></span>
-<span id="cb6-32"><a href="#cb6-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 4        90     25</span></span>
-<span id="cb6-33"><a href="#cb6-33" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-34"><a href="#cb6-34" aria-hidden="true" tabindex="-1"></a><span class="do">## [[2]]</span></span>
-<span id="cb6-35"><a href="#cb6-35" aria-hidden="true" tabindex="-1"></a><span class="do">##   ph.karno Points</span></span>
-<span id="cb6-36"><a href="#cb6-36" aria-hidden="true" tabindex="-1"></a><span class="do">## 1       50      1</span></span>
-<span id="cb6-37"><a href="#cb6-37" aria-hidden="true" tabindex="-1"></a><span class="do">## 2       60     11</span></span>
-<span id="cb6-38"><a href="#cb6-38" aria-hidden="true" tabindex="-1"></a><span class="do">## 3       70     20</span></span>
-<span id="cb6-39"><a href="#cb6-39" aria-hidden="true" tabindex="-1"></a><span class="do">## 4       80     29</span></span>
-<span id="cb6-40"><a href="#cb6-40" aria-hidden="true" tabindex="-1"></a><span class="do">## 5       90     39</span></span>
-<span id="cb6-41"><a href="#cb6-41" aria-hidden="true" tabindex="-1"></a><span class="do">## 6      100     48</span></span>
-<span id="cb6-42"><a href="#cb6-42" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-43"><a href="#cb6-43" aria-hidden="true" tabindex="-1"></a><span class="do">## [[3]]</span></span>
-<span id="cb6-44"><a href="#cb6-44" aria-hidden="true" tabindex="-1"></a><span class="do">##   ph.ecog Points</span></span>
-<span id="cb6-45"><a href="#cb6-45" aria-hidden="true" tabindex="-1"></a><span class="do">## 1     0.0      0</span></span>
-<span id="cb6-46"><a href="#cb6-46" aria-hidden="true" tabindex="-1"></a><span class="do">## 2     0.5     17</span></span>
-<span id="cb6-47"><a href="#cb6-47" aria-hidden="true" tabindex="-1"></a><span class="do">## 3     1.0     33</span></span>
-<span id="cb6-48"><a href="#cb6-48" aria-hidden="true" tabindex="-1"></a><span class="do">## 4     1.5     50</span></span>
-<span id="cb6-49"><a href="#cb6-49" aria-hidden="true" tabindex="-1"></a><span class="do">## 5     2.0     67</span></span>
-<span id="cb6-50"><a href="#cb6-50" aria-hidden="true" tabindex="-1"></a><span class="do">## 6     2.5     83</span></span>
-<span id="cb6-51"><a href="#cb6-51" aria-hidden="true" tabindex="-1"></a><span class="do">## 7     3.0    100</span></span>
-<span id="cb6-52"><a href="#cb6-52" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-53"><a href="#cb6-53" aria-hidden="true" tabindex="-1"></a><span class="do">## [[4]]</span></span>
-<span id="cb6-54"><a href="#cb6-54" aria-hidden="true" tabindex="-1"></a><span class="do">##   sex Points</span></span>
-<span id="cb6-55"><a href="#cb6-55" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 1.0     45</span></span>
-<span id="cb6-56"><a href="#cb6-56" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 1.4     31</span></span>
-<span id="cb6-57"><a href="#cb6-57" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 1.8     18</span></span>
-<span id="cb6-58"><a href="#cb6-58" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-59"><a href="#cb6-59" aria-hidden="true" tabindex="-1"></a><span class="do">## [[5]]</span></span>
-<span id="cb6-60"><a href="#cb6-60" aria-hidden="true" tabindex="-1"></a><span class="do">##   age Points</span></span>
-<span id="cb6-61"><a href="#cb6-61" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  35     13</span></span>
-<span id="cb6-62"><a href="#cb6-62" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  45     20</span></span>
-<span id="cb6-63"><a href="#cb6-63" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  55     26</span></span>
-<span id="cb6-64"><a href="#cb6-64" aria-hidden="true" tabindex="-1"></a><span class="do">## 4  65     33</span></span>
-<span id="cb6-65"><a href="#cb6-65" aria-hidden="true" tabindex="-1"></a><span class="do">## 5  75     40</span></span>
-<span id="cb6-66"><a href="#cb6-66" aria-hidden="true" tabindex="-1"></a><span class="do">## 6  85     47</span></span>
-<span id="cb6-67"><a href="#cb6-67" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-68"><a href="#cb6-68" aria-hidden="true" tabindex="-1"></a><span class="do">## [[6]]</span></span>
-<span id="cb6-69"><a href="#cb6-69" aria-hidden="true" tabindex="-1"></a><span class="do">##    Total Points Pr( time &lt; 267 )</span></span>
-<span id="cb6-70"><a href="#cb6-70" aria-hidden="true" tabindex="-1"></a><span class="do">## 1            60           0.0889</span></span>
-<span id="cb6-71"><a href="#cb6-71" aria-hidden="true" tabindex="-1"></a><span class="do">## 2            80           0.1225</span></span>
-<span id="cb6-72"><a href="#cb6-72" aria-hidden="true" tabindex="-1"></a><span class="do">## 3           100           0.1676</span></span>
-<span id="cb6-73"><a href="#cb6-73" aria-hidden="true" tabindex="-1"></a><span class="do">## 4           120           0.2271</span></span>
-<span id="cb6-74"><a href="#cb6-74" aria-hidden="true" tabindex="-1"></a><span class="do">## 5           140           0.3034</span></span>
-<span id="cb6-75"><a href="#cb6-75" aria-hidden="true" tabindex="-1"></a><span class="do">## 6           160           0.3981</span></span>
-<span id="cb6-76"><a href="#cb6-76" aria-hidden="true" tabindex="-1"></a><span class="do">## 7           180           0.5097</span></span>
-<span id="cb6-77"><a href="#cb6-77" aria-hidden="true" tabindex="-1"></a><span class="do">## 8           200           0.6324</span></span>
-<span id="cb6-78"><a href="#cb6-78" aria-hidden="true" tabindex="-1"></a><span class="do">## 9           220           0.7546</span></span>
-<span id="cb6-79"><a href="#cb6-79" aria-hidden="true" tabindex="-1"></a><span class="do">## 10          240           0.8609</span></span>
-<span id="cb6-80"><a href="#cb6-80" aria-hidden="true" tabindex="-1"></a><span class="do">## 11          260           0.9373</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom, </span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">lplabel=</span><span class="st">"Linear Predictor"</span>,</span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">xfrac =</span> <span class="fl">0.2</span>, <span class="co"># 左侧标签距离坐标轴的距离</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>     <span class="co">#varname.label = TRUE, </span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">tcl =</span> <span class="sc">-</span><span class="fl">0.2</span>, <span class="co"># 刻度长短和方向 </span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">lmgp =</span> <span class="fl">0.1</span>, <span class="co"># 坐标轴标签距离坐标轴远近</span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>     <span class="at">points.label =</span><span class="st">'Points'</span>, </span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">total.points.label =</span> <span class="st">'Total Points'</span>,</span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">cap.labels =</span> <span class="cn">FALSE</span>,</span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.var =</span> <span class="dv">1</span>, <span class="co"># 左侧标签字体大小</span></span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.axis =</span> <span class="dv">1</span>, <span class="co"># 坐标轴字体大小</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid =</span> <span class="fu">gray</span>(<span class="fu">c</span>(<span class="fl">0.8</span>, <span class="fl">0.95</span>))) <span class="co"># 竖线颜色</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="nomogram-cox_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
+</div>
 </div>
-<p><img src="figs/Snipaste_2023-04-01_14-24-25.png" class="img-fluid"></p>
+<p>这个图的解读方式和逻辑回归的列线图一模一样,这里就不再重复了,大家看逻辑回归的那篇。</p>
 </section>
-<section id="方法4vrpm" class="level2" data-number="3.5">
-<h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class="header-section-number">3.5</span> 方法4:VRPM</h2>
+<section id="方法2regplot" class="level2" data-number="8.3">
+<h2 data-number="8.3" class="anchored" data-anchor-id="方法2regplot"><span class="header-section-number">8.3</span> 方法2:regplot</h2>
+<p>使用<code>regplot</code>包实现。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(VRPM)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>cox_fit <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">data =</span> lung,</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">model =</span> T)</span>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(regplot)</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立cox回归模型</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age<span class="sc">+</span>sex<span class="sc">+</span>ph.ecog<span class="sc">+</span>ph.karno<span class="sc">+</span>pat.karno,</span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>              )</span>
 <span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 图片保存在你的目录下</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="fu">colplot</span>(cox_fit,<span class="at">coloroptions =</span> <span class="dv">3</span>,<span class="at">filename =</span> <span class="st">"cox.png"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图即可</span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">regplot</span>(coxfit,</span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>        <span class="co">#连续性变量形状,"no plot""density""boxes""ecdf"</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>        <span class="co">#"bars""boxplot""violin""bean" "spikes";</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>        <span class="co">#分类变量的形状,可选"no plot" "boxes" "bars" "spikes"</span></span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">plots =</span> <span class="fu">c</span>(<span class="st">"violin"</span>, <span class="st">"boxes"</span>), </span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation =</span> lung[<span class="dv">1</span>,], <span class="co">#用哪行观测,或者T F</span></span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>        <span class="at">center =</span> T, <span class="co"># 对齐变量</span></span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">subticks =</span> T,</span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines =</span> T,<span class="co">#是否画竖线</span></span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a>        <span class="at">title =</span> <span class="st">"nomogram"</span>,</span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a>        <span class="at">points =</span> T, <span class="co"># 截距项显示为0-100</span></span>
+<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a>        <span class="at">odds =</span> T, <span class="co"># 是否显示OR值</span></span>
+<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a>        <span class="at">showP =</span> T, <span class="co"># 是否显示变量的显著性标记</span></span>
+<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a>        <span class="at">rank =</span> <span class="st">"sd"</span>, <span class="co"># 根据sd给变量排序</span></span>
+<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a>        <span class="at">interval=</span><span class="st">"confidence"</span>, <span class="co"># 展示可信区间</span></span>
+<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a>        <span class="at">clickable =</span> F <span class="co"># 是否可以交互</span></span>
+<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p><img src="figs/Snipaste_2023-04-01_17-55-23.png" class="img-fluid"></p>
-<p>以上就是4种Cox回归列线图绘制的方法,其中方法1和3是最常用的。</p>
+<p>除了以上两种方法外,之前还有另外两个R包可以使用:<code>VRPM</code>和<code>DynNom</code>,但是这两个包太老了,很久没更新了,所以目前只能通过下载安装包本地安装。目前不推荐使用了,如果你一定要用,可参考:<a href="https://mp.weixin.qq.com/s/o9OlvPjl6nP_9gVKasvY5Q">Cox回归列线图(nomogram)的4种绘制方法</a></p>
 
 
 </section>
@@ -798,18 +696,7 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -841,11 +728,50 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -855,8 +781,17 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -868,7 +803,130 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -912,6 +970,7 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -937,6 +996,32 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -998,27 +1083,32 @@ <h2 data-number="3.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-logistic.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span>
+      <a href="./nomogram-logistic.html" class="pagination-link" aria-label="逻辑回归列线图绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-essential.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-原理.html" class="pagination-link" aria-label="列线图的本质">
+        <span class="nav-page-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-cox_files/figure-html/unnamed-chunk-4-1.png b/docs/nomogram-cox_files/figure-html/unnamed-chunk-6-1.png
similarity index 100%
rename from docs/nomogram-cox_files/figure-html/unnamed-chunk-4-1.png
rename to docs/nomogram-cox_files/figure-html/unnamed-chunk-6-1.png
diff --git a/docs/nomogram-lasso.html b/docs/nomogram-lasso.html
index 4e25565..fde1bd9 100644
--- a/docs/nomogram-lasso.html
+++ b/docs/nomogram-lasso.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 7&nbsp; lasso回归列线图绘制</title>
+<title>12&nbsp; lasso回归列线图绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -37,17 +37,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -56,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -70,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-lasso.html"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-lasso.html"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -85,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -109,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -281,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -477,17 +459,17 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar zindex-bottom">
         
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-lasso.html"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></h1>
+<h1 class="title"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></h1>
 </div>
 
 
@@ -500,9 +482,11 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>lasso回归的列线图绘制请参考<a href="calibration-lasso.html">Chapter&nbsp;<span>39</span></a>。</p>
+
+<p>lasso回归的列线图绘制请参考<a href="calibration-lasso.html" class="quarto-xref">Chapter&nbsp;<span>33</span></a>:lasso回归列线图、校准曲线、内外部验证。</p>
 
 
 
@@ -542,18 +526,7 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -585,11 +558,50 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -599,8 +611,17 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -612,7 +633,130 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -656,6 +800,7 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -681,6 +826,32 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -742,27 +913,32 @@ <h1 class="title"><span class="chapter-number">7</span>&nbsp; <span class="chapt
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-compete-risk.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span>
+      <a href="./nomogram-compete-risk.html" class="pagination-link" aria-label="竞争风险模型列线图绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-colorfulbar.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-colorfulbar.html" class="pagination-link" aria-label="列线图添加彩色风险分层">
+        <span class="nav-page-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    <div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-logistic.html b/docs/nomogram-logistic.html
index 00fc733..9043118 100644
--- a/docs/nomogram-logistic.html
+++ b/docs/nomogram-logistic.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 2&nbsp; logistic回归列线图绘制</title>
+<title>7&nbsp; 逻辑回归列线图绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./nomogram-cox.html" rel="next">
-<link href="./clinmodel-definition.html" rel="prev">
+<link href="./data-preprocess.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-logistic.html"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-logistic.html"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,27 +493,25 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#准备r包和数据" id="toc-准备r包和数据" class="nav-link active" data-scroll-target="#准备r包和数据"><span class="header-section-number">2.1</span> 准备R包和数据</a></li>
-  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">2.2</span> 方法1:rms</a></li>
-  <li><a href="#方法2dynnom" id="toc-方法2dynnom" class="nav-link" data-scroll-target="#方法2dynnom"><span class="header-section-number">2.3</span> 方法2:DynNom</a></li>
-  <li><a href="#方法3regplot" id="toc-方法3regplot" class="nav-link" data-scroll-target="#方法3regplot"><span class="header-section-number">2.4</span> 方法3:regplot</a></li>
-  <li><a href="#方法4vrpm" id="toc-方法4vrpm" class="nav-link" data-scroll-target="#方法4vrpm"><span class="header-section-number">2.5</span> 方法4:VRPM</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">7.1</span> 准备数据</a></li>
+  <li><a href="#方法1rms" id="toc-方法1rms" class="nav-link" data-scroll-target="#方法1rms"><span class="header-section-number">7.2</span> 方法1:rms</a></li>
+  <li><a href="#方法2regplot" id="toc-方法2regplot" class="nav-link" data-scroll-target="#方法2regplot"><span class="header-section-number">7.3</span> 方法2:regplot</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-logistic.html"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></h1>
+<h1 class="title"><span id="sec-nomologistic" class="quarto-section-identifier"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></h1>
 </div>
 
 
@@ -544,266 +524,238 @@ <h1 class="title"><span class="chapter-number">2</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>列线图(Alignment Diagram),又称诺莫图(Nomogram图),用来把多因素回归分析结果(logistic回归和cox回归)用图形方式表现出来,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。</p>
-<p>根据模型中各个影响因素对结局变量的贡献程度(回归系数的大小),给每个影响因素的每个取值水平进行赋分,然后再将各个评分相加得到总评分,最后通过总评分与结局事件发生概率之间的函数转换关系,从而计算出该个体结局事件的预测值。</p>
-<p>简单地说,就是把你的模型用图形化的方式展示出来。</p>
-<p>列线图无论是在单纯的临床预测模型类文章、还是和生信数据挖掘结合的预测模型类文章中,都是标配。</p>
-<p>下面给大家介绍<strong>4种logistic回归列线图的绘制方法</strong>。</p>
-<section id="准备r包和数据" class="level2" data-number="2.1">
-<h2 data-number="2.1" class="anchored" data-anchor-id="准备r包和数据"><span class="header-section-number">2.1</span> 准备R包和数据</h2>
+
+<p>首先给大家介绍逻辑回归的列线图绘制,下面给大家介绍2种方法,我在之前还介绍过其他方法,但是有些方法(R包)已经太久不更新了,文献中用的也不多,这里就不介绍了。</p>
+<p>我两年前写的推文:<a href="https://mp.weixin.qq.com/s/rkkwleErUjL8dHiM2V2xsw">Logistic回归列线图的4种绘制方法</a>,虽然方法没错,但是很多细节有问题,所以这里重新整理下。</p>
+<section id="准备数据" class="level2" data-number="7.1">
+<h2 data-number="7.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">7.1</span> 准备数据</h2>
+<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,共有565行,10列。其中<em>dead</em>这一列是结果变量,0代表存活,1代表死亡,其余列都是预测变量。</p>
+<p>获取<code>lowbirth</code>数据请在公众号:医学和生信笔记,后台回复<em>20220520</em>。或者到粉丝QQ群文件自取。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"rms"</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"DynNom"</span>)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"regplot"</span>)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_local</span>(<span class="st">"D:/R/R包/VRPM_1.2.tar.gz"</span>) <span class="co"># 需要下载压缩包本地安装</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>使用<code>lowbirth</code>数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中<em>dead</em>这一列是结果变量,0代表存活,1代表死亡,其余列都是预测变量。</p>
-<blockquote class="blockquote">
-<p>注意:需要把分类变量因子化,对于无序分类变量,需要设置哑变量!</p>
-</blockquote>
+<p>查看一下数据:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>lowbirth <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="st">"./datasets/lowbirth.csv"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lowbirth) <span class="co"># 565行,10列</span></span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 565  10</span></span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth) </span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : chr  "white" "black" "black" "black" ...</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: chr  "abdominal" "vaginal" "vaginal" "abdominal" ...</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : chr  "female" "female" "male" "female" ...</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>查看一下数据:</p>
+<p>数据中有很多分类变量,比如<code>race</code>、<code>delivery</code>、<code>sex</code>、<code>vent</code>,但是类型是<code>chr</code>或者<code>int</code>,通常在R语言中需要把分类变量变成<code>factor</code>,也就是因子型。</p>
+<p>除此之外,<code>race</code>这个变量一共有4个类别:其中<code>oriental</code>和<code>native American</code>这两个类别太少了,这样在建立模型的时候会导致不可靠的结果,所以我们需要对这个变量进行一些转换。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lowbirth) <span class="co"># 565行,10列</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 565  10</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lowbirth) </span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : chr  "white" "black" "black" "black" ...</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: chr  "abdominal" "vaginal" "vaginal" "abdominal" ...</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : chr  "female" "female" "male" "female" ...</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">table</span>(lowbirth<span class="sc">$</span>race)</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">##           black native American        oriental           white </span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##             325              14               4             222</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>简单的把人种分为白色和黑色人种(无序分类变量需要设置哑变量),再去掉<code>race</code>这一列,然后其余分类变量因子化。</p>
+<p>还有就是,有些模型(比如逻辑回归)要求分类变量先进行哑变量(或者其他方法)转换,但是你如果把分类变量变成了因子型,R语言内部会自动帮你转换,不需要手动进行,相关知识我详细介绍过,可以参考<a href="https://mp.weixin.qq.com/s/8j0e3-PpbvTqGDnkPWRFyA">分类变量进行回归分析时的编码方案</a></p>
+<p>对于分类型的因变量,通常需要也变成<code>factor</code>类型,虽然很多R包支持不同类型,但是我建议你转换。</p>
+<p>下面就是用代码实现两步预处理:</p>
+<ul>
+<li>分类变量(包括因变量)因子化</li>
+<li>把<code>oriental</code>和<code>native American</code>这两个类别合并成一个类别,就叫<code>other</code></li>
+</ul>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>tmp <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
 <span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor),</span>
 <span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>         <span class="at">vent =</span> <span class="fu">factor</span>(vent),</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>         <span class="at">black =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"black"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>         <span class="at">white =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"white"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>         <span class="at">other =</span> <span class="fu">ifelse</span>(race <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>),<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span> race)</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>         <span class="at">dead =</span> <span class="fu">factor</span>(dead),</span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>         <span class="at">race =</span> <span class="fu">case_when</span>(race <span class="sc">%in%</span> </span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>                            <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>) <span class="sc">~</span> <span class="st">"other"</span>,</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>                          <span class="at">.default =</span> race),</span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>         <span class="at">race =</span> <span class="fu">factor</span>(race))</span>
 <span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(tmp)</span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 565</span></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 12</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…</span></span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…</span></span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…</span></span>
-<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…</span></span>
-<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…</span></span>
-<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…</span></span>
-<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…</span></span>
-<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…</span></span>
-<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a><span class="do">## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…</span></span>
-<span id="cb4-26"><a href="#cb4-26" aria-hidden="true" tabindex="-1"></a><span class="do">## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(tmp)</span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  10 variables:</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ race    : Factor w/ 3 levels "black","other",..: 3 1 1 1 1 1 3 1 3 3 ...</span></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
+<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 2 ...</span></span>
+<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
+<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 1 1 2 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="方法1rms" class="level2" data-number="2.2">
-<h2 data-number="2.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">2.2</span> 方法1:rms</h2>
+<section id="方法1rms" class="level2" data-number="7.2">
+<h2 data-number="7.2" class="anchored" data-anchor-id="方法1rms"><span class="header-section-number">7.2</span> 方法1:rms</h2>
+<p>这个R包非常强大,以后在很多场景中都会用到,是目前<strong>唯一</strong>能胜任临床预测模型所有步骤的R包。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:dplyr':</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     src, summarize</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>然后是打包数据,这一步对于<code>rms</code>包来说是必须的:</p>
+<p>首先是打包数据,这一步对于<code>rms</code>包来说是必须的:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(tmp)</span>
 <span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>构建模型:</p>
+<p>构建逻辑回归模型,我们只使用其中的部分变量进行演示:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> delivery <span class="sc">+</span> apg1 <span class="sc">+</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>            vent <span class="sc">+</span> sex <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead<span class="sc">==</span><span class="dv">1</span> <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp)</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co">#fit1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>接下来就是构建列线图模型,然后画图。</p>
+<p>上面使用了<code>dead==1</code>表示要计算死亡的概率,这里指定一下不容易出错。</p>
+<blockquote class="blockquote">
+<p><code>lrm()</code>做逻辑回归应该是默认计算排序靠后的类别的概率。</p>
+</blockquote>
+<p>接下来就是构建列线图,然后画图。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>nom1 <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(fit1, <span class="at">fun=</span>plogis,</span>
 <span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>                 <span class="at">fun.at=</span><span class="fu">c</span>(<span class="fl">0.001</span>,<span class="fl">0.1</span>,<span class="fl">0.25</span>,<span class="fl">0.5</span>,<span class="fl">0.75</span>,<span class="fl">0.9</span>,<span class="fl">0.99</span>),</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>                 <span class="at">lp=</span>T, <span class="co"># 是否显示线性概率</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">funlabel=</span><span class="st">"Risk of Death"</span>)  </span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom1) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>                 <span class="at">lp=</span>T, <span class="co"># 是否显示线性预测值</span></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">maxscale =</span> <span class="dv">100</span>, <span class="co"># 最大得分数</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">conf.int =</span> F, <span class="co"># 添加置信区间,很难看,可以不要</span></span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">funlabel=</span><span class="st">"Risk of Death"</span>)  </span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom1) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" style="width:70.0%"></p>
+</figure>
 </div>
 </div>
-<p>从这个图来看,<em>sex</em>、<em>delivery</em>、<em>apg1</em>对模型的贡献很小,几乎可以忽略不计,下面我们去掉这两个变量再看看。</p>
+</div>
+<p>还可以进行一些美化,这个函数的参数非常多,大家可以通过帮助文档自己学习:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>nom2 <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(fit2, <span class="at">fun=</span>plogis,</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">fun.at=</span><span class="fu">c</span>(<span class="fl">0.001</span>,<span class="fl">0.01</span>,<span class="fl">0.1</span>,<span class="fl">0.25</span>,<span class="fl">0.5</span>,<span class="fl">0.75</span>,<span class="fl">0.9</span>,<span class="fl">0.99</span>),</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">lp=</span>T, </span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">maxscale =</span> <span class="dv">100</span>, <span class="co"># 最大得分数</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>                 <span class="at">conf.int =</span> F, <span class="co"># 添加置信区间,很难看,可以不要</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>                 <span class="at">funlabel=</span><span class="st">"Dead"</span>)  </span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom2,</span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid=</span><span class="fu">c</span>(<span class="st">"tomato"</span>,<span class="st">"grey"</span>)</span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>     <span class="co">#conf.space = c(0.3,0.5) # 置信区间位置</span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>     ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom1,</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid=</span><span class="fu">c</span>(<span class="st">"tomato"</span>,<span class="st">"grey"</span>)</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>     <span class="co">#conf.space = c(0.3,0.5) # 置信区间位置</span></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>     ) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
 </div>
 </div>
-</section>
-<section id="方法2dynnom" class="level2" data-number="2.3">
-<h2 data-number="2.3" class="anchored" data-anchor-id="方法2dynnom"><span class="header-section-number">2.3</span> 方法2:DynNom</h2>
-<p>使用这种方法会在你的Rstudio中弹出一个窗口,你可以自由调节其中给出的选项。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(DynNom)</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp, <span class="at">family =</span> binomial)</span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="fu">DynNom</span>(fit2,<span class="at">DNtitle =</span> <span class="st">"nomogram"</span>,<span class="at">DNxlab =</span> <span class="st">"probability"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>选择好你的参数,点击<code>Predict</code>即可出图:</p>
-<p><img src="figs/Snipaste_2023-04-01_14-21-06.png" class="img-fluid"></p>
-<div class="callout callout-style-default callout-caution callout-titled" title="注意">
+<p>这个图形展示的是不同变量的取值对应的得分情况,最上面一行是每个变量对应的得分。</p>
+<p>假如有一个患者:</p>
+<ul>
+<li>他的<code>birth</code>是87.5,那么对应得分就是0分(看下面的示意图);</li>
+<li>他的<code>lowph</code>是6.5,那么对应的得分是100;</li>
+<li>他的<code>pltct</code>是50,那么对应的得分是20分;</li>
+<li>他的<code>bwt</code>是920(大约),那么对应的得分是40;</li>
+<li>他的<code>vent</code>是1,那么对应的得分是60;</li>
+<li>他的<code>race</code>是black,那么对应的得分是27(大约)</li>
+</ul>
+<p><img src="figs/PixPin_2024-06-03_19-15-43.png" class="img-fluid"></p>
+<p>这样一来你就可以得到这个患者的总得分是:100+20+40+60+27=247,这样你就可以在<code>Total Points</code>这一行找到247,然后对应线性预测值(Linear Predictor)就是2,对应的死亡风险是0.85(大约)。</p>
+<p>列线图就是这么看的,不管有多么的花里胡哨都是这么看的,没有任何区别。</p>
+<p>实际在计算每个患者得分时有专门的R包实现,不用自己算,后面的章节会介绍。</p>
+<div class="callout callout-style-default callout-note callout-titled">
 <div class="callout-header d-flex align-content-center">
 <div class="callout-icon-container">
 <i class="callout-icon"></i>
 </div>
 <div class="callout-title-container flex-fill">
-注意
+注释
 </div>
 </div>
 <div class="callout-body-container callout-body">
-<p>仔细看上面这个图其实有错误,<code>black</code>和<code>white</code>作为性别,只有2种可能,不可能为小数,这就提醒我们在建立模型时需要把这样的<strong>变量先因子化</strong>。</p>
+<p>下面给大家展示下“先做哑变量处理再画列线图”是什么样的效果。就以<code>race</code>这个变量为例。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>tmp0 <span class="ot">&lt;-</span> lowbirth <span class="sc">%&gt;%</span> </span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character),as.factor),</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>         <span class="at">vent =</span> <span class="fu">factor</span>(vent),</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>         <span class="at">dead =</span> <span class="fu">factor</span>(dead),</span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>         <span class="co"># 下面是对race做哑变量处理</span></span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>         <span class="at">black =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"black"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>         <span class="at">white =</span> <span class="fu">ifelse</span>(race <span class="sc">==</span> <span class="st">"white"</span>,<span class="dv">1</span>,<span class="dv">0</span>),</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>         <span class="at">other =</span> <span class="fu">ifelse</span>(race <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"native American"</span>,<span class="st">"oriental"</span>),<span class="dv">1</span>,<span class="dv">0</span>)</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>         ) <span class="sc">%&gt;%</span> </span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">select</span>(<span class="sc">-</span> race)</span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="co"># race一列变3列了,这个哑变量怎么看,请参考</span></span>
+<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="co"># [分类变量进行回归分析时的编码方案]</span></span>
+<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(tmp0)</span>
+<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    565 obs. of  12 variables:</span></span>
+<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...</span></span>
+<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...</span></span>
+<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...</span></span>
+<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...</span></span>
+<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ delivery: Factor w/ 2 levels "abdominal","vaginal": 1 2 2 1 2 1 2 2 1 2 ...</span></span>
+<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...</span></span>
+<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ vent    : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 2 ...</span></span>
+<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 2 2 1 ...</span></span>
+<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ dead    : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 1 1 2 ...</span></span>
+<span id="cb10-25"><a href="#cb10-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ black   : num  0 1 1 1 1 1 0 1 0 0 ...</span></span>
+<span id="cb10-26"><a href="#cb10-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ white   : num  1 0 0 0 0 0 1 0 1 1 ...</span></span>
+<span id="cb10-27"><a href="#cb10-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ other   : num  0 0 0 0 0 0 0 0 0 0 ...</span></span>
+<span id="cb10-28"><a href="#cb10-28" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-29"><a href="#cb10-29" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(tmp0)</span>
+<span id="cb10-30"><a href="#cb10-30" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist=</span><span class="st">"dd"</span>)</span>
+<span id="cb10-31"><a href="#cb10-31" aria-hidden="true" tabindex="-1"></a><span class="co"># 以other这个类别为参考</span></span>
+<span id="cb10-32"><a href="#cb10-32" aria-hidden="true" tabindex="-1"></a>fit0 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead<span class="sc">==</span><span class="dv">1</span> <span class="sc">~</span> birth<span class="sc">+</span>lowph<span class="sc">+</span>pltct<span class="sc">+</span>bwt<span class="sc">+</span>vent<span class="sc">+</span>black<span class="sc">+</span>white,<span class="at">data =</span> tmp0)</span>
+<span id="cb10-33"><a href="#cb10-33" aria-hidden="true" tabindex="-1"></a>nom0 <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(fit0, <span class="at">fun=</span>plogis,</span>
+<span id="cb10-34"><a href="#cb10-34" aria-hidden="true" tabindex="-1"></a>                 <span class="at">fun.at=</span><span class="fu">c</span>(<span class="fl">0.001</span>,<span class="fl">0.1</span>,<span class="fl">0.25</span>,<span class="fl">0.5</span>,<span class="fl">0.75</span>,<span class="fl">0.9</span>,<span class="fl">0.99</span>),</span>
+<span id="cb10-35"><a href="#cb10-35" aria-hidden="true" tabindex="-1"></a>                 <span class="at">funlabel=</span><span class="st">"Risk of Death"</span>)  </span>
+<span id="cb10-36"><a href="#cb10-36" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom0,<span class="at">col.grid=</span><span class="fu">c</span>(<span class="st">"tomato"</span>,<span class="st">"grey"</span>)) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="nomogram-logistic_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>看到不同了吗?black和white是两列,other是参考,所以不用写在公式里,当black和white都是0的时候就表示other,当black是1的时候就表示black,white和other此时必为0(不信你可以查看tmp0这个数据),white为1的时候就表示white,此时black和other比为0。</p>
+<p>但是你再仔细观察,你会发现这个图里的black和white对应的分数和上面的列线图是一样的,神奇吗?所以你不需要先自己进行哑变量处理(R会自动处理),虽然画出来的图不一样,但是得分、概率啥的都是一样的,就只是图不一样而已。</p>
 </div>
 </div>
 </section>
-<section id="方法3regplot" class="level2" data-number="2.4">
-<h2 data-number="2.4" class="anchored" data-anchor-id="方法3regplot"><span class="header-section-number">2.4</span> 方法3:regplot</h2>
+<section id="方法2regplot" class="level2" data-number="7.3">
+<h2 data-number="7.3" class="anchored" data-anchor-id="方法2regplot"><span class="header-section-number">7.3</span> 方法2:regplot</h2>
+<p>这个R包也非常强大,也是做临床预测模型必须要学习的包。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(regplot)</span>
 <span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp,<span class="at">x=</span>T,<span class="at">y=</span>T)</span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="fu">regplot</span>(fit2,</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>        <span class="co">#连续性变量形状,"no plot""density""boxes""ecdf"</span></span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>        <span class="co">#"bars""boxplot""violin""bean" "spikes";</span></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>        <span class="co">#分类变量的形状,可选"no plot" "boxes" "bars" "spikes"</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>        <span class="at">plots =</span> <span class="fu">c</span>(<span class="st">"violin"</span>, <span class="st">"boxes"</span>),   </span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation =</span> tmp[<span class="dv">1</span>,], <span class="co">#用哪行观测,或者T F</span></span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>        <span class="at">center =</span> T, <span class="co"># 对齐变量</span></span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">subticks =</span> T,</span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines =</span> T,<span class="co">#是否画竖线</span></span>
-<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">title =</span> <span class="st">"nomogram"</span>,</span>
-<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>        <span class="at">points =</span> T, <span class="co"># 截距项显示为0-100</span></span>
-<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">odds =</span> T, <span class="co"># 是否显示OR值</span></span>
-<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">showP =</span> T, <span class="co"># 是否显示变量的显著性标记</span></span>
-<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a>        <span class="at">rank =</span> <span class="st">"sd"</span>, <span class="co"># 根据sd给变量排序</span></span>
-<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a>        <span class="at">interval=</span><span class="st">"confidence"</span>, <span class="co"># 展示可信区间</span></span>
-<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a>        <span class="at">clickable =</span> F <span class="co"># 是否可以交互</span></span>
-<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a>        )</span>
-<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Regression  fit2 lrm formula:</span></span>
-<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a><span class="do">## dead `~` birth + lowph + pltct + bwt + vent + black + white</span></span>
-<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a><span class="do">## CI: 0.00496(0.00106,0.0233)</span></span>
-<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a><span class="do">## [[1]]</span></span>
-<span id="cb11-26"><a href="#cb11-26" aria-hidden="true" tabindex="-1"></a><span class="do">##   white Points</span></span>
-<span id="cb11-27"><a href="#cb11-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0.0     26</span></span>
-<span id="cb11-28"><a href="#cb11-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   0.4     34</span></span>
-<span id="cb11-29"><a href="#cb11-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   0.8     42</span></span>
-<span id="cb11-30"><a href="#cb11-30" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-31"><a href="#cb11-31" aria-hidden="true" tabindex="-1"></a><span class="do">## [[2]]</span></span>
-<span id="cb11-32"><a href="#cb11-32" aria-hidden="true" tabindex="-1"></a><span class="do">##   black Points</span></span>
-<span id="cb11-33"><a href="#cb11-33" aria-hidden="true" tabindex="-1"></a><span class="do">## 1   0.0     17</span></span>
-<span id="cb11-34"><a href="#cb11-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   0.4     29</span></span>
-<span id="cb11-35"><a href="#cb11-35" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   0.8     40</span></span>
-<span id="cb11-36"><a href="#cb11-36" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-37"><a href="#cb11-37" aria-hidden="true" tabindex="-1"></a><span class="do">## [[3]]</span></span>
-<span id="cb11-38"><a href="#cb11-38" aria-hidden="true" tabindex="-1"></a><span class="do">##       vent Points</span></span>
-<span id="cb11-39"><a href="#cb11-39" aria-hidden="true" tabindex="-1"></a><span class="do">## vent1    0     34</span></span>
-<span id="cb11-40"><a href="#cb11-40" aria-hidden="true" tabindex="-1"></a><span class="do">## vent2    1     99</span></span>
-<span id="cb11-41"><a href="#cb11-41" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-42"><a href="#cb11-42" aria-hidden="true" tabindex="-1"></a><span class="do">## [[4]]</span></span>
-<span id="cb11-43"><a href="#cb11-43" aria-hidden="true" tabindex="-1"></a><span class="do">##    bwt Points</span></span>
-<span id="cb11-44"><a href="#cb11-44" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  400     87</span></span>
-<span id="cb11-45"><a href="#cb11-45" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  600     72</span></span>
-<span id="cb11-46"><a href="#cb11-46" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  800     57</span></span>
-<span id="cb11-47"><a href="#cb11-47" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 1000     42</span></span>
-<span id="cb11-48"><a href="#cb11-48" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 1200     27</span></span>
-<span id="cb11-49"><a href="#cb11-49" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 1400     12</span></span>
-<span id="cb11-50"><a href="#cb11-50" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-51"><a href="#cb11-51" aria-hidden="true" tabindex="-1"></a><span class="do">## [[5]]</span></span>
-<span id="cb11-52"><a href="#cb11-52" aria-hidden="true" tabindex="-1"></a><span class="do">##   pltct Points</span></span>
-<span id="cb11-53"><a href="#cb11-53" aria-hidden="true" tabindex="-1"></a><span class="do">## 1     0     42</span></span>
-<span id="cb11-54"><a href="#cb11-54" aria-hidden="true" tabindex="-1"></a><span class="do">## 2   300     30</span></span>
-<span id="cb11-55"><a href="#cb11-55" aria-hidden="true" tabindex="-1"></a><span class="do">## 3   600     18</span></span>
-<span id="cb11-56"><a href="#cb11-56" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-57"><a href="#cb11-57" aria-hidden="true" tabindex="-1"></a><span class="do">## [[6]]</span></span>
-<span id="cb11-58"><a href="#cb11-58" aria-hidden="true" tabindex="-1"></a><span class="do">##    lowph Points</span></span>
-<span id="cb11-59"><a href="#cb11-59" aria-hidden="true" tabindex="-1"></a><span class="do">## 1    6.5    103</span></span>
-<span id="cb11-60"><a href="#cb11-60" aria-hidden="true" tabindex="-1"></a><span class="do">## 2    6.6     93</span></span>
-<span id="cb11-61"><a href="#cb11-61" aria-hidden="true" tabindex="-1"></a><span class="do">## 3    6.7     83</span></span>
-<span id="cb11-62"><a href="#cb11-62" aria-hidden="true" tabindex="-1"></a><span class="do">## 4    6.8     74</span></span>
-<span id="cb11-63"><a href="#cb11-63" aria-hidden="true" tabindex="-1"></a><span class="do">## 5    6.9     64</span></span>
-<span id="cb11-64"><a href="#cb11-64" aria-hidden="true" tabindex="-1"></a><span class="do">## 6    7.0     54</span></span>
-<span id="cb11-65"><a href="#cb11-65" aria-hidden="true" tabindex="-1"></a><span class="do">## 7    7.1     44</span></span>
-<span id="cb11-66"><a href="#cb11-66" aria-hidden="true" tabindex="-1"></a><span class="do">## 8    7.2     34</span></span>
-<span id="cb11-67"><a href="#cb11-67" aria-hidden="true" tabindex="-1"></a><span class="do">## 9    7.3     25</span></span>
-<span id="cb11-68"><a href="#cb11-68" aria-hidden="true" tabindex="-1"></a><span class="do">## 10   7.4     15</span></span>
-<span id="cb11-69"><a href="#cb11-69" aria-hidden="true" tabindex="-1"></a><span class="do">## 11   7.5      5</span></span>
-<span id="cb11-70"><a href="#cb11-70" aria-hidden="true" tabindex="-1"></a><span class="do">## 12   7.6     -5</span></span>
-<span id="cb11-71"><a href="#cb11-71" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-72"><a href="#cb11-72" aria-hidden="true" tabindex="-1"></a><span class="do">## [[7]]</span></span>
-<span id="cb11-73"><a href="#cb11-73" aria-hidden="true" tabindex="-1"></a><span class="do">##   birth Points</span></span>
-<span id="cb11-74"><a href="#cb11-74" aria-hidden="true" tabindex="-1"></a><span class="do">## 1  81.5     43</span></span>
-<span id="cb11-75"><a href="#cb11-75" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  84.5     34</span></span>
-<span id="cb11-76"><a href="#cb11-76" aria-hidden="true" tabindex="-1"></a><span class="do">## 3  87.5     26</span></span>
-<span id="cb11-77"><a href="#cb11-77" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb11-78"><a href="#cb11-78" aria-hidden="true" tabindex="-1"></a><span class="do">## [[8]]</span></span>
-<span id="cb11-79"><a href="#cb11-79" aria-hidden="true" tabindex="-1"></a><span class="do">##   Total Points    Pr(  )</span></span>
-<span id="cb11-80"><a href="#cb11-80" aria-hidden="true" tabindex="-1"></a><span class="do">## 1          100 3.798e-05</span></span>
-<span id="cb11-81"><a href="#cb11-81" aria-hidden="true" tabindex="-1"></a><span class="do">## 2          150 3.144e-04</span></span>
-<span id="cb11-82"><a href="#cb11-82" aria-hidden="true" tabindex="-1"></a><span class="do">## 3          200 2.598e-03</span></span>
-<span id="cb11-83"><a href="#cb11-83" aria-hidden="true" tabindex="-1"></a><span class="do">## 4          250 2.112e-02</span></span>
-<span id="cb11-84"><a href="#cb11-84" aria-hidden="true" tabindex="-1"></a><span class="do">## 5          300 1.516e-01</span></span>
-<span id="cb11-85"><a href="#cb11-85" aria-hidden="true" tabindex="-1"></a><span class="do">## 6          350 5.967e-01</span></span>
-<span id="cb11-86"><a href="#cb11-86" aria-hidden="true" tabindex="-1"></a><span class="do">## 7          400 9.245e-01</span></span>
-<span id="cb11-87"><a href="#cb11-87" aria-hidden="true" tabindex="-1"></a><span class="do">## 8          450 9.902e-01</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p><img src="figs/Snipaste_2023-04-01_14-24-25.png" class="img-fluid"></p>
-</section>
-<section id="方法4vrpm" class="level2" data-number="2.5">
-<h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class="header-section-number">2.5</span> 方法4:VRPM</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(VRPM)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">glm</span>(dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> white,</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp, <span class="at">family =</span> binomial)</span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 图片保存在你的目录下</span></span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="fu">colplot</span>(fit2,<span class="at">coloroptions =</span> <span class="dv">3</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立模型,这里使用glm也可以</span></span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot">&lt;-</span> <span class="fu">lrm</span>(dead<span class="sc">==</span><span class="dv">1</span> <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race,</span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> tmp)</span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 绘图</span></span>
+<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>aa <span class="ot">&lt;-</span> <span class="fu">regplot</span>(fit2,</span>
+<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>        <span class="co">#连续性变量形状,"no plot""density""boxes""ecdf"</span></span>
+<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>        <span class="co">#"bars""boxplot""violin""bean" "spikes";</span></span>
+<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>        <span class="co">#分类变量的形状,可选"no plot" "boxes" "bars" "spikes"</span></span>
+<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">plots =</span> <span class="fu">c</span>(<span class="st">"violin"</span>, <span class="st">"boxes"</span>),   </span>
+<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">observation =</span> tmp[<span class="dv">1</span>,], <span class="co">#用哪行观测,或者T F</span></span>
+<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">center =</span> T, <span class="co"># 对齐变量</span></span>
+<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>        <span class="at">subticks =</span> T,</span>
+<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">droplines =</span> T,<span class="co">#是否画竖线</span></span>
+<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">title =</span> <span class="st">"nomogram"</span>,</span>
+<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a>        <span class="at">points =</span> T, <span class="co"># 截距项显示为0-100</span></span>
+<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a>        <span class="at">odds =</span> T, <span class="co"># 是否显示OR值</span></span>
+<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a>        <span class="at">showP =</span> T, <span class="co"># 是否显示变量的显著性标记</span></span>
+<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a>        <span class="at">rank =</span> <span class="st">"sd"</span>, <span class="co"># 根据sd给变量排序</span></span>
+<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a>        <span class="at">interval=</span><span class="st">"confidence"</span>, <span class="co"># 展示可信区间</span></span>
+<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a>        <span class="at">clickable =</span> F <span class="co"># 是否可以交互</span></span>
+<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p><img src="figs/Snipaste_2023-04-01_14-25-12.png" class="img-fluid"></p>
-<p>以上就是4种Cox回归列线图绘制的方法,其中方法1和3是最常用的。</p>
-<p>获取<code>lowbirth</code>数据请在公众号:医学和生信笔记 后台回复<em>20220520</em>。</p>
+<p>这个图看起来更加的花里胡哨,但是图的解读还是和上面一样的,而且我们还有代码专门展示了第一个患者的得分情况。</p>
+<p>唯一不同就是在图中添加了各种图形用来展示各个变量的数据分布情况。</p>
+<p>仔细看你会发现,同样的数据同样的模型和变量,但是画出来的列线图细节确有很多地方不一样!都是正确的哈,写文章时把R包的参考文献加进去即可,别纠结。</p>
+<p>除了以上两种方法外,之前还有另外两个R包可以使用:<code>VRPM</code>和<code>DynNom</code>,但是这两个包太老了,很久没更新了,所以目前只能通过下载安装包本地安装。目前不推荐使用了,如果你一定要用,可参考:<a href="https://mp.weixin.qq.com/s/rkkwleErUjL8dHiM2V2xsw">Logistic回归列线图的4种绘制方法</a></p>
 
 
 </section>
@@ -844,18 +796,7 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -887,11 +828,50 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -901,8 +881,17 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -914,7 +903,130 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -958,6 +1070,7 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -983,6 +1096,32 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1044,27 +1183,32 @@ <h2 data-number="2.5" class="anchored" data-anchor-id="方法4vrpm"><span class=
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./clinmodel-definition.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span>
+      <a href="./data-preprocess.html" class="pagination-link" aria-label="常见的数据预处理方法">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-cox.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-cox.html" class="pagination-link" aria-label="Cox回归列线图绘制">
+        <span class="nav-page-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-logistic_files/figure-html/unnamed-chunk-10-1.png b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-10-1.png
new file mode 100644
index 0000000..88083e7
Binary files /dev/null and b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png
index f5e32b4..184298d 100644
Binary files a/docs/nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png and b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png
index b119e7e..44abd89 100644
Binary files a/docs/nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png and b/docs/nomogram-logistic_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/nomogram-points.html b/docs/nomogram-points.html
index 204900f..cebf344 100644
--- a/docs/nomogram-points.html
+++ b/docs/nomogram-points.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 9&nbsp; 计算列线图得分及危险分层</title>
+<title>14&nbsp; 计算列线图得分及危险分层 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-points.html"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-points.html"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,27 +493,28 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">9.1</span> 准备数据</a></li>
-  <li><a href="#建立模型和列线图" id="toc-建立模型和列线图" class="nav-link" data-scroll-target="#建立模型和列线图"><span class="header-section-number">9.2</span> 建立模型和列线图</a></li>
-  <li><a href="#计算分数" id="toc-计算分数" class="nav-link" data-scroll-target="#计算分数"><span class="header-section-number">9.3</span> 计算分数</a></li>
-  <li><a href="#分层" id="toc-分层" class="nav-link" data-scroll-target="#分层"><span class="header-section-number">9.4</span> 分层</a></li>
-  <li><a href="#扩展" id="toc-扩展" class="nav-link" data-scroll-target="#扩展"><span class="header-section-number">9.5</span> 扩展</a></li>
+  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">14.1</span> 准备数据</a></li>
+  <li><a href="#建立模型和列线图" id="toc-建立模型和列线图" class="nav-link" data-scroll-target="#建立模型和列线图"><span class="header-section-number">14.2</span> 建立模型和列线图</a></li>
+  <li><a href="#计算分数" id="toc-计算分数" class="nav-link" data-scroll-target="#计算分数"><span class="header-section-number">14.3</span> 计算分数</a></li>
+  <li><a href="#分层" id="toc-分层" class="nav-link" data-scroll-target="#分层"><span class="header-section-number">14.4</span> 分层</a></li>
+  <li><a href="#外部验证集" id="toc-外部验证集" class="nav-link" data-scroll-target="#外部验证集"><span class="header-section-number">14.5</span> 外部验证集</a></li>
+  <li><a href="#扩展" id="toc-扩展" class="nav-link" data-scroll-target="#扩展"><span class="header-section-number">14.6</span> 扩展</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-points.html"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></h1>
+<h1 class="title"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></h1>
 </div>
 
 
@@ -544,59 +527,46 @@ <h1 class="title"><span class="chapter-number">9</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>列线图是模型的图形化表达方式,通过列线图可以计算直观的看出某个患者的得分,方便分析患者的风险。关于列线图,我们介绍过很多次了,公众号后台回复<strong>列线图</strong>即可获取合集链接:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/o9OlvPjl6nP_9gVKasvY5Q">Cox回归列线图(nomogram)的4种绘制方法</a></li>
-<li><a href="https://mp.weixin.qq.com/s/rkkwleErUjL8dHiM2V2xsw">Logistic回归列线图的4种绘制方法</a></li>
-<li><a href="https://mp.weixin.qq.com/s/5SG3aApWePBEhAeL-_TlLg">限制性立方样条(RCS)的列线图怎么画?</a></li>
-<li><a href="https://mp.weixin.qq.com/s/F50cHgAnSch5nvU4HAKe9A">列线图的本质</a></li>
-<li><a href="https://mp.weixin.qq.com/s/PkHy2aMCFo8on2oK4BxwrA">Fine-Gray检验、竞争风险模型、列线图绘制</a></li>
-<li><a href="https://mp.weixin.qq.com/s/OO8HmWCuv4igB_nOnzq7eg">列线图增加彩色风险分层条带</a></li>
-</ul>
-<p>有粉丝问如何根据列线图得分进行危险分层,其实思路很简单,先计算每个患者的得分,然后根据<strong>最佳截断值</strong>进行分层即可。这个最佳截断值,我们也介绍过非常多的方法了,公众号后台回复<strong>最佳截点</strong>,即可获取合集链接:</p>
+
+<p>列线图是模型的图形化表达方式,通过列线图可以计算直观的看出某个患者的得分,方便分析患者的风险。关于列线图,我们介绍过很多次了,公众号后台回复<strong>列线图</strong>即可获取合集链接。</p>
+<p>前面一篇介绍了<a href="https://mp.weixin.qq.com/s/OO8HmWCuv4igB_nOnzq7eg">列线图增加彩色风险分层条带</a></p>
+<p>那么,如何根据列线图得分进行危险分层?其实思路很简单,先计算每个患者的得分,然后根据<strong>最佳截断值</strong>进行分层即可。这个最佳截断值,我们也介绍过非常多的方法了,公众号后台回复<strong>最佳截点</strong>,即可获取合集链接:</p>
 <ul>
 <li><a href="https://mp.weixin.qq.com/s/bVmWQ0QoRoLeX7QG14ut9A">R语言生存分析的实现</a></li>
 <li><a href="https://mp.weixin.qq.com/s/pOgbzHZNQC8z7KdrrrNd1A">生存分析最佳截断值的确定</a></li>
 <li><a href="https://mp.weixin.qq.com/s/b9jHsD6VTB0ZZCfQ0pPhMQ">最佳截断值之cutoff</a></li>
 <li><a href="https://mp.weixin.qq.com/s/E3U1dx5FqqrOz5fKZ5DfdQ">ROC曲线最佳截点</a></li>
 </ul>
-<section id="准备数据" class="level2" data-number="9.1">
-<h2 data-number="9.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">9.1</span> 准备数据</h2>
+<section id="准备数据" class="level2" data-number="14.1">
+<h2 data-number="14.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">14.1</span> 准备数据</h2>
 <p>使用R包自带数据。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: Hmisc</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'Hmisc'</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:base':</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##     format.pval, units</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(lung)</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 228  10</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(lung)</span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    228 obs. of  10 variables:</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time     : num  306 455 1010 210 883 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ meal.cal : num  1175 1225 NA 1150 NA ...</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="建立模型和列线图" class="level2" data-number="9.2">
-<h2 data-number="9.2" class="anchored" data-anchor-id="建立模型和列线图"><span class="header-section-number">9.2</span> 建立模型和列线图</h2>
+<section id="建立模型和列线图" class="level2" data-number="14.2">
+<h2 data-number="14.2" class="anchored" data-anchor-id="建立模型和列线图"><span class="header-section-number">14.2</span> 建立模型和列线图</h2>
 <p>使用<code>rms</code>包构建模型和列线图。</p>
 <p>大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!</p>
 <div class="cell">
@@ -606,21 +576,20 @@ <h2 data-number="9.2" class="anchored" data-anchor-id="建立模型和列线图"
 <p>构建cox比例风险模型:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">maxscale =</span> <span class="dv">100</span>,</span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung ,<span class="at">surv =</span> T)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>),</span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">maxscale =</span> <span class="dv">100</span>,</span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun.at =</span> <span class="fu">c</span>(<span class="fl">0.95</span>,<span class="fl">0.9</span>,<span class="fl">0.8</span>,<span class="fl">0.7</span>,<span class="fl">0.6</span>,<span class="fl">0.5</span>,<span class="fl">0.4</span>,<span class="fl">0.3</span>,<span class="fl">0.2</span>,<span class="fl">0.1</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后就是画图:</p>
 <div class="cell">
@@ -637,23 +606,27 @@ <h2 data-number="9.2" class="anchored" data-anchor-id="建立模型和列线图"
 <span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>     <span class="at">cex.axis =</span> <span class="dv">1</span>, <span class="co"># 坐标轴字体大小</span></span>
 <span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>     <span class="at">col.grid =</span> <span class="fu">gray</span>(<span class="fu">c</span>(<span class="fl">0.8</span>, <span class="fl">0.95</span>))) <span class="co"># 竖线颜色</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-points_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="768"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-points_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="768"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>到这里都很简单。</p>
 </section>
-<section id="计算分数" class="level2" data-number="9.3">
-<h2 data-number="9.3" class="anchored" data-anchor-id="计算分数"><span class="header-section-number">9.3</span> 计算分数</h2>
+<section id="计算分数" class="level2" data-number="14.3">
+<h2 data-number="14.3" class="anchored" data-anchor-id="计算分数"><span class="header-section-number">14.3</span> 计算分数</h2>
 <p>使用<code>nomogramFormula</code>计算每个患者的列线图得分。</p>
-<p>两种方法,其中是使用<code>formula_lp</code>根据线性预测值计算,另一种是使用<code>formula_rd</code>根据原始数据(raw_data)计算,两种方法结果差不多,任选一种即可。</p>
+<p>两种方法,一种是使用<code>formula_lp</code>根据线性预测值计算,另一种是使用<code>formula_rd</code>根据原始数据(raw_data)计算,两种方法结果差不多,任选一种即可。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(nomogramFormula)</span>
 <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>results <span class="ot">&lt;-</span> <span class="fu">formula_lp</span>(<span class="at">nomogram =</span> nom)</span>
 <span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>points1 <span class="ot">&lt;-</span> <span class="fu">points_cal</span>(<span class="at">formula =</span> results<span class="sc">$</span>formula, <span class="at">lp =</span> coxfit<span class="sc">$</span>linear.predictors)</span>
 <span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co">#或者</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="co">#results &lt;- formula_rd(nomogram = nom2)</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="co">#points1 &lt;- points_cal(formula = results$formula, rd = tmp)</span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="co">#results &lt;- formula_rd(nomogram = nom)</span></span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="co">#points1 &lt;- points_cal(formula = results$formula, rd = lung)</span></span>
 <span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(points1)</span>
 <span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 223</span></span>
@@ -661,12 +634,12 @@ <h2 data-number="9.3" class="anchored" data-anchor-id="计算分数"><span class
 <span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">##         1         2         3         4         5         6 </span></span>
 <span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 129.96853  98.56938  90.51815 142.40181 102.54570 104.51291</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>根据这个分数就可以分成高风险组/低风险组了。</p>
+<p>这样每个人都根据列线图得到一个分数,根据这个分数就可以把所有患者分成高风险组/低风险组了。</p>
 </section>
-<section id="分层" class="level2" data-number="9.4">
-<h2 data-number="9.4" class="anchored" data-anchor-id="分层"><span class="header-section-number">9.4</span> 分层</h2>
-<p>假如我们想根据列线图得分进行分层,分层后两组的K-M生存分析的p值最小,方法很多,任选一种即可,我这里就用<code>surv_cutpoint</code>演示。</p>
-<p>但是计算出来的分数223个,原始数据是228个,因为数据有缺失值,在建立模型时有5个样本被删了,这时候你回过去找不一定找得到缺失值在哪(我能找到),所以建议一开始就把缺失值处理掉。</p>
+<section id="分层" class="level2" data-number="14.4">
+<h2 data-number="14.4" class="anchored" data-anchor-id="分层"><span class="header-section-number">14.4</span> 分层</h2>
+<p>假如我们想根据列线图得分进行分层,使得分层后两组的K-M生存分析的p值最小,方法很多,任选一种即可,我这里就用<code>surv_cutpoint</code>演示。</p>
+<p>但是计算出来的分数有223个,原始数据是228个,因为数据有缺失值,在建立模型时有5个样本被删了,这时候你回过去找不一定找得到缺失值在哪(我能找到),所以建议一开始就把缺失值处理掉。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
 <span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survminer)</span>
@@ -679,37 +652,93 @@ <h2 data-number="9.4" class="anchored" data-anchor-id="分层"><span class="head
 <span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span>
 <span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>tmp<span class="sc">$</span>points <span class="ot">&lt;-</span> points1</span>
 <span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 分层</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 确定最佳截点,然后根据最佳截点分层</span></span>
 <span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>res.cut <span class="ot">&lt;-</span> <span class="fu">surv_cutpoint</span>(tmp, <span class="at">time =</span> <span class="st">"time"</span>, <span class="at">event =</span> <span class="st">"status"</span>,</span>
 <span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>                         <span class="at">variables =</span> <span class="st">"points"</span></span>
 <span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>                         )</span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>res.cat <span class="ot">&lt;-</span> <span class="fu">surv_categorize</span>(res.cut)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="co"># 查看最佳分割点</span></span>
+<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>res.cut[[<span class="st">"cutpoint"</span>]][[<span class="st">"cutpoint"</span>]]</span>
+<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 109.2188</span></span>
+<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a><span class="co"># 根据最佳截点分层</span></span>
+<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a>res.cat <span class="ot">&lt;-</span> <span class="fu">surv_categorize</span>(res.cut)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>绘制生存曲线:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"survival"</span>)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">survfit</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span>points, <span class="at">data =</span> res.cat)</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">survfit</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> points, <span class="at">data =</span> res.cat)</span>
 <span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ggsurvplot</span>(fit, <span class="at">data =</span> res.cat, <span class="at">pval =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-points_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-points_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>中间的数据展示省略了很多,还不熟悉这一套流程的可以一步一步的看,结合之前的文章。</p>
+</section>
+<section id="外部验证集" class="level2" data-number="14.5">
+<h2 data-number="14.5" class="anchored" data-anchor-id="外部验证集"><span class="header-section-number">14.5</span> 外部验证集</h2>
+<p>大家一定要学会变通啊,学会R语言的基础知识,才好举一反三。</p>
+<p>外部验证集的分数计算直接使用<code>formula_rd()</code>函数就可以了(不管训练集还是外部验证集我都推荐使用这个,前面为了演示没用这个函数),<code>rd</code>参数提供外部验证集即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 假设这是外部验证集</span></span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>valdf <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(lung[<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,])</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算分数</span></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>results <span class="ot">&lt;-</span> <span class="fu">formula_rd</span>(<span class="at">nomogram =</span> nom)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>points_val <span class="ot">&lt;-</span> <span class="fu">points_cal</span>(<span class="at">formula =</span> results<span class="sc">$</span>formula, </span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>                         <span class="at">rd =</span> valdf) <span class="co"># 外部验证集</span></span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(points_val)</span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 74</span></span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(points_val)</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">## [1]  98.56934 142.40178 104.51289 131.33431 112.08372 109.11084</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>前面我们计算的最佳截点是109.2188,现在就根据这个截点对外部验证集分组,高于这个值就是高风险,低于这个值就是低风险:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>valdf<span class="sc">$</span>points <span class="ot">&lt;-</span> points_val</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>valdf<span class="sc">$</span>groups <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(valdf<span class="sc">$</span>points<span class="sc">&gt;</span><span class="fl">109.2188</span>,<span class="st">"high"</span>,<span class="st">"low"</span>)</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(valdf[,<span class="dv">11</span><span class="sc">:</span><span class="dv">12</span>])</span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">##      points groups</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 2  98.56934    low</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 142.40178   high</span></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 104.51289    low</span></span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 7 131.33431   high</span></span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 8 112.08372   high</span></span>
+<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 9 109.11084    low</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>绘制外部验证集的生存曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"survival"</span>)</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">survfit</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> groups, <span class="at">data =</span> valdf)</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ggsurvplot</span>(fit, <span class="at">data =</span> valdf, <span class="at">pval =</span> T)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="nomogram-points_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>中间的数据展示省略了很多,还不熟悉这一套流程的可以一步一步的看,结合之前的推文。</p>
+<p>是不是一样的简单?</p>
 </section>
-<section id="扩展" class="level2" data-number="9.5">
-<h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="header-section-number">9.5</span> 扩展</h2>
-<p>这里是根据列线图的得分进行分层的,其实也可以直击根据模型得到的线性预测值进行分层,就是直接使用<code>predict</code>即可:</p>
+<section id="扩展" class="level2" data-number="14.6">
+<h2 data-number="14.6" class="anchored" data-anchor-id="扩展"><span class="header-section-number">14.6</span> 扩展</h2>
+<p>这里是根据列线图的得分进行分层的,其实也可以直接根据模型得到的线性预测值进行分层,就是直接使用<code>predict</code>即可:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(coxfit,<span class="fu">head</span>(tmp))</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">##          1          2          3          4          5          6 </span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.3113300 -0.2213878 -0.3579849  0.5222729 -0.1539256 -0.1205499</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">predict</span>(coxfit,<span class="fu">head</span>(lung))</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="do">##          1          2          3          4          5          6 </span></span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.3113300 -0.2213878 -0.3579849  0.5222729 -0.1539256 -0.1205499</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>这个东西就是大家常见的<strong>risk-score</strong>,当然这只是其中一种计算方式,不同的模型计算方法略有不同。</p>
-<p>而且cox回归得到的这个线性预测值又叫做<strong>预后指数(prognosis index, PI)</strong>。</p>
+<p>而且cox回归得到的这个线性预测值又叫做<strong>预后指数</strong>(prognosis index, PI),这个值在统计学中是有明确含义的,根据这个值进行危险分层也是完全没问题的。</p>
 <blockquote class="blockquote">
-<p>预后指数越大,患者风险越大,预后越差。–孙振球医学统计学第4版P293</p>
+<p>预后指数越大,患者风险越大,预后越差。–孙振球《医学统计学》第4版P293</p>
 </blockquote>
-<p>最早的建模类文章都是这么干的,现在也不少见。优点就是少了计算分数那一步,缺点嘛暂时没发现,毕竟都是模仿,你发文章只要把你的故事说清楚即可~</p>
+<p>最早的建模类文章都是这么干的,现在也不少见。优点就是少了计算分数那一步,缺点嘛暂时没发现,毕竟都是模仿,你发文章只要把你的故事说清楚即可。</p>
 
 
 </section>
@@ -750,18 +779,7 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -793,11 +811,50 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -807,8 +864,17 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -820,7 +886,130 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -864,6 +1053,7 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -889,6 +1079,32 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -950,27 +1166,32 @@ <h2 data-number="9.5" class="anchored" data-anchor-id="扩展"><span class="head
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-colorfulbar.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span>
+      <a href="./nomogram-colorfulbar.html" class="pagination-link" aria-label="列线图添加彩色风险分层">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./feature-selection.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./feature-selection.html" class="pagination-link" aria-label="常见的变量选择方法">
+        <span class="nav-page-text">常见的变量选择方法</span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-points_files/figure-html/unnamed-chunk-10-1.png b/docs/nomogram-points_files/figure-html/unnamed-chunk-10-1.png
new file mode 100644
index 0000000..268707a
Binary files /dev/null and b/docs/nomogram-points_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/nomogram-points_files/figure-html/unnamed-chunk-7-1.png b/docs/nomogram-points_files/figure-html/unnamed-chunk-7-1.png
index 04174e3..ae21f2b 100644
Binary files a/docs/nomogram-points_files/figure-html/unnamed-chunk-7-1.png and b/docs/nomogram-points_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/docs/nomogram-points_files/figure-pdf/unnamed-chunk-4-1.pdf b/docs/nomogram-points_files/figure-pdf/unnamed-chunk-4-1.pdf
deleted file mode 100644
index f6ac848..0000000
Binary files a/docs/nomogram-points_files/figure-pdf/unnamed-chunk-4-1.pdf and /dev/null differ
diff --git a/docs/nomogram-points_files/figure-pdf/unnamed-chunk-7-1.pdf b/docs/nomogram-points_files/figure-pdf/unnamed-chunk-7-1.pdf
deleted file mode 100644
index 1eef7be..0000000
Binary files a/docs/nomogram-points_files/figure-pdf/unnamed-chunk-7-1.pdf and /dev/null differ
diff --git a/docs/nomogram-rcs.html b/docs/nomogram-rcs.html
index 54e790c..370d7ff 100644
--- a/docs/nomogram-rcs.html
+++ b/docs/nomogram-rcs.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 5&nbsp; 样条回归列线图绘制</title>
+<title>10&nbsp; 样条回归列线图绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./nomogram-compete-risk.html" rel="next">
-<link href="./nomogram-essential.html" rel="prev">
+<link href="./nomogram-原理.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-rcs.html"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-rcs.html"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +493,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#建立logistic模型" id="toc-建立logistic模型" class="nav-link active" data-scroll-target="#建立logistic模型"><span class="header-section-number">5.1</span> 建立logistic模型</a></li>
-  <li><a href="#画列线图" id="toc-画列线图" class="nav-link" data-scroll-target="#画列线图"><span class="header-section-number">5.2</span> 画列线图</a></li>
-  <li><a href="#cox回归rcs的列线图" id="toc-cox回归rcs的列线图" class="nav-link" data-scroll-target="#cox回归rcs的列线图"><span class="header-section-number">5.3</span> COX回归RCS的列线图</a></li>
+  <li><a href="#逻辑回归的rcs列线图" id="toc-逻辑回归的rcs列线图" class="nav-link active" data-scroll-target="#逻辑回归的rcs列线图"><span class="header-section-number">10.1</span> 逻辑回归的RCS列线图</a></li>
+  <li><a href="#cox回归rcs的列线图" id="toc-cox回归rcs的列线图" class="nav-link" data-scroll-target="#cox回归rcs的列线图"><span class="header-section-number">10.2</span> COX回归RCS的列线图</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-rcs.html"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></h1>
+<h1 class="title"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></h1>
 </div>
 
 
@@ -542,98 +523,94 @@ <h1 class="title"><span class="chapter-number">5</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>前面详细介绍了二分类资料和生存资料的列线图绘制,下面这篇推文来自群友提问,<strong>RCS(限制性立方样条)的列线图怎么画?</strong></p>
-<p>其实很简单,直接用<code>rms</code>包即可搞定。</p>
-<p>下面分别演示logistic和COX的RCS的列线图绘制。</p>
-<section id="建立logistic模型" class="level2" data-number="5.1">
-<h2 data-number="5.1" class="anchored" data-anchor-id="建立logistic模型"><span class="header-section-number">5.1</span> 建立logistic模型</h2>
+
+<p>前面详细介绍了二分类资料和生存资料的列线图绘制,下面给大家介绍<strong>RCS(限制性立方样条)的列线图怎么画</strong></p>
+<p>限制性立方样条在实际使用时只是作为一种对变量进行转换的方法,所以不管是逻辑回归还是cox回归都是可以使用RCS这种方法的。</p>
+<p>为了给大家介绍限制性立方样条这个方法,我之前给大家介绍了4篇推文:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/keQCz937GNFmDMQpE5N1Ew">样条回归(之一)——为什么要用样条回归</a></li>
+<li><a href="https://mp.weixin.qq.com/s/vuJzwnQHqO8Sgjnu1ufylQ">样条回归(之二)——样条回归通俗介绍</a></li>
+<li><a href="https://mp.weixin.qq.com/s/DTaEQv_WGOYBp3UOzy7h1w">R语言非线性拟合之多项式回归</a></li>
+<li><a href="https://mp.weixin.qq.com/s/7vz8pFba8s5dqxOLqHqxKg">R语言限制性立方样条回归</a></li>
+</ul>
+<p>RCS的列线图其实很简单,直接用<code>rms</code>包即可搞定,只要是<code>rms</code>支持的模型,都是可以绘制列线图的!</p>
+<p>下面分别演示逻辑回归和COX回归的RCS的列线图绘制。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rms)</span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># 逻辑回归数据</span></span>
 <span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="co">#getHdata(titanic3)</span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co">#save(titanic3, file = "./datasets/titanic3.rdata")</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/titanic3.rdata"</span>)</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用rms前先把数据打包</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(titanic3); <span class="fu">options</span>(<span class="at">datadist=</span><span class="st">'dd'</span>)</span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 逻辑回归的立方样条</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="fu">lrm</span>(survived <span class="sc">~</span> <span class="fu">rcs</span>(<span class="fu">sqrt</span>(age),<span class="dv">5</span>) <span class="sc">+</span> sex, <span class="at">data=</span>titanic3)</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>f</span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Frequencies of Missing Values Due to Each Variable</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">## survived      age      sex </span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##        0      263        0 </span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Logistic Regression Model</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## lrm(formula = survived ~ rcs(sqrt(age), 5) + sex, data = titanic3)</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##                        Model Likelihood      Discrimination    Rank Discrim.    </span></span>
-<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##                              Ratio Test             Indexes          Indexes    </span></span>
-<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Obs          1046    LR chi2     328.06      R2       0.363    C       0.794    </span></span>
-<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  0            619    d.f.             5     R2(5,1046)0.266    Dxy     0.587    </span></span>
-<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  1            427    Pr(&gt; chi2) &lt;0.0001    R2(5,758.1)0.347    gamma   0.593    </span></span>
-<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">## max |deriv| 2e-07                            Brier    0.168    tau-a   0.284    </span></span>
-<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##           Coef     S.E.    Wald Z Pr(&gt;|Z|)</span></span>
-<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">## Intercept   3.0936  0.5428   5.70 &lt;0.0001 </span></span>
-<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">## age        -0.6383  0.1771  -3.60 0.0003  </span></span>
-<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="do">## age'        1.5544  0.6527   2.38 0.0172  </span></span>
-<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">## age''     -12.1583  8.8925  -1.37 0.1715  </span></span>
-<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="do">## age'''     15.8326 16.9397   0.93 0.3500  </span></span>
-<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a><span class="do">## sex=male   -2.4944  0.1549 -16.10 &lt;0.0001</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co">#save(titanic3, file = "./datasets/titanic3.rdata")</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<section id="逻辑回归的rcs列线图" class="level2" data-number="10.1">
+<h2 data-number="10.1" class="anchored" data-anchor-id="逻辑回归的rcs列线图"><span class="header-section-number">10.1</span> 逻辑回归的RCS列线图</h2>
+<p>建立逻辑回归模型:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载数据</span></span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/titanic3.rdata"</span>)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用rms前先把数据打包</span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(titanic3); <span class="fu">options</span>(<span class="at">datadist=</span><span class="st">'dd'</span>)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 逻辑回归的立方样条,对age这个变量做样条变换</span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="fu">lrm</span>(survived <span class="sc">~</span> <span class="fu">rcs</span>(<span class="fu">sqrt</span>(age),<span class="dv">5</span>) <span class="sc">+</span> sex, <span class="at">data=</span>titanic3)</span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="co">#f</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-</section>
-<section id="画列线图" class="level2" data-number="5.2">
-<h2 data-number="5.2" class="anchored" data-anchor-id="画列线图"><span class="header-section-number">5.2</span> 画列线图</h2>
 <p>下面直接画图即可,没有任何难度,因为<code>rms</code>这个包把一切都给你做好了,不用自己操心,如果你做临床预测模型,是不可能绕开这个包的。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(f, <span class="at">fun=</span>plogis,</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>                 <span class="at">lp=</span>T,</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>                 <span class="at">funlabel=</span><span class="st">"Risk of Death"</span>)  </span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(f, <span class="at">fun=</span>plogis, <span class="at">funlabel=</span><span class="st">"Risk of Death"</span>)  </span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-rcs_files/figure-html/unnamed-chunk-2-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-rcs_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>这样RCS的列线图就画好了,关于一些参数的意义和细节的美化,可以参考前面的推文,这里就不多说了。</p>
-<p>既然logistic回归没问题,那COX回归自然也是没问题的!</p>
+<p>这样RCS的列线图就画好了,关于一些参数的意义和细节的美化,可以参考前面的文章,这里就不多说了。在图中Age这个变量的线条有一些拥挤,这就是样条变换的原因,它需要给你计算分数,所以就挤到一起了,这是<code>rms</code>自动帮你搞的,很方便。</p>
+<p>既然逻辑回归没问题,那COX回归自然也是没问题的!</p>
 </section>
-<section id="cox回归rcs的列线图" class="level2" data-number="5.3">
-<h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"><span class="header-section-number">5.3</span> COX回归RCS的列线图</h2>
+<section id="cox回归rcs的列线图" class="level2" data-number="10.2">
+<h2 data-number="10.2" class="anchored" data-anchor-id="cox回归rcs的列线图"><span class="header-section-number">10.2</span> COX回归RCS的列线图</h2>
+<p>准备一个生存数据,就用<code>survival</code>自带的肺癌数据:<code>lung</code></p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 打包数据</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(lung)</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建cox比例风险模型:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="fu">rcs</span>(<span class="fu">sqrt</span>(age),<span class="dv">5</span>) <span class="sc">+</span> sex,</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>              )</span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,注意你的最大生存时间</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit,</span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>                <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">lp =</span> T,</span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>                         <span class="st">'2-year survival Probability'</span>)</span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>                )</span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>coxfit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> <span class="fu">rcs</span>(<span class="fu">sqrt</span>(age),<span class="dv">5</span>) <span class="sc">+</span> sex,</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>              <span class="at">data =</span> lung, <span class="at">x=</span>T,<span class="at">y=</span>T,<span class="at">surv =</span> T</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>              )</span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建生存函数,计算生存率,注意你的最大生存时间</span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>surv <span class="ot">&lt;-</span> <span class="fu">Survival</span>(coxfit) </span>
+<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>surv1 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span>,x) <span class="co"># 1年OS</span></span>
+<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>surv2 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) <span class="fu">surv</span>(<span class="dv">365</span><span class="sc">*</span><span class="dv">2</span>,x) <span class="co"># 2年OS</span></span>
+<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 画图</span></span>
+<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>nom <span class="ot">&lt;-</span> <span class="fu">nomogram</span>(coxfit, <span class="at">fun =</span> <span class="fu">list</span>(surv1,surv2),</span>
+<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">funlabel =</span> <span class="fu">c</span>(<span class="st">'1-year survival Probability'</span>,</span>
+<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>                             <span class="st">'2-year survival Probability'</span>)</span>
+<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>                )</span>
+<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(nom)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="nomogram-rcs_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="nomogram-rcs_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>这就是COX回归RCS的列线图,关于一些参数的意义和细节的美化,可以参考前面的推文,这里就不多说了。</p>
-<p>是不是很简单?</p>
-<p>因为是演示数据,所以画出来的图不是很美观,但是实现方法就是这么简单!</p>
+</div>
+<p>这就是COX回归RCS的列线图,是不是很简单?</p>
+<p>因为是演示数据,所以画出来的图不是很美观,但是实现方法就是这么简单!只要是<code>rms</code>包支持的方法,都可以绘制列线图。</p>
 
 
 </section>
@@ -674,18 +651,7 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -717,11 +683,50 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -731,8 +736,17 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -744,7 +758,130 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -788,6 +925,7 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -813,6 +951,32 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -874,27 +1038,32 @@ <h2 data-number="5.3" class="anchored" data-anchor-id="cox回归rcs的列线图"
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-essential.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span>
+      <a href="./nomogram-原理.html" class="pagination-link" aria-label="列线图的本质">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-compete-risk.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-compete-risk.html" class="pagination-link" aria-label="竞争风险模型列线图绘制">
+        <span class="nav-page-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nomogram-rcs_files/figure-html/unnamed-chunk-2-1.png b/docs/nomogram-rcs_files/figure-html/unnamed-chunk-3-1.png
similarity index 100%
rename from docs/nomogram-rcs_files/figure-html/unnamed-chunk-2-1.png
rename to docs/nomogram-rcs_files/figure-html/unnamed-chunk-3-1.png
diff --git a/docs/nomogram-rcs_files/figure-html/unnamed-chunk-4-1.png b/docs/nomogram-rcs_files/figure-html/unnamed-chunk-5-1.png
similarity index 100%
rename from docs/nomogram-rcs_files/figure-html/unnamed-chunk-4-1.png
rename to docs/nomogram-rcs_files/figure-html/unnamed-chunk-5-1.png
diff --git a/docs/nomogram-essential.html "b/docs/nomogram-\345\216\237\347\220\206.html"
similarity index 67%
rename from docs/nomogram-essential.html
rename to "docs/nomogram-\345\216\237\347\220\206.html"
index 2b66eae..6bd6d12 100644
--- a/docs/nomogram-essential.html
+++ "b/docs/nomogram-\345\216\237\347\220\206.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 4&nbsp; 列线图的本质</title>
+<title>9&nbsp; 列线图的本质 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -71,17 +71,23 @@
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./nomogram-essential.html"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-原理.html"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,28 +493,28 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#列线图与模型的关系" id="toc-列线图与模型的关系" class="nav-link active" data-scroll-target="#列线图与模型的关系"><span class="header-section-number">4.1</span> 列线图与模型的关系</a></li>
-  <li><a href="#列线图分数的计算方法" id="toc-列线图分数的计算方法" class="nav-link" data-scroll-target="#列线图分数的计算方法"><span class="header-section-number">4.2</span> 列线图分数的计算方法</a>
+  <li><a href="#列线图与模型的关系" id="toc-列线图与模型的关系" class="nav-link active" data-scroll-target="#列线图与模型的关系"><span class="header-section-number">9.1</span> 列线图与模型的关系</a></li>
+  <li><a href="#列线图分数的计算方法" id="toc-列线图分数的计算方法" class="nav-link" data-scroll-target="#列线图分数的计算方法"><span class="header-section-number">9.2</span> 列线图分数的计算方法</a>
   <ul class="collapse">
-  <li><a href="#分类变量分数的计算" id="toc-分类变量分数的计算" class="nav-link" data-scroll-target="#分类变量分数的计算"><span class="header-section-number">4.2.1</span> 分类变量分数的计算</a></li>
-  <li><a href="#连续性变量分数的计算" id="toc-连续性变量分数的计算" class="nav-link" data-scroll-target="#连续性变量分数的计算"><span class="header-section-number">4.2.2</span> 连续性变量分数的计算</a></li>
+  <li><a href="#分类变量分数的计算" id="toc-分类变量分数的计算" class="nav-link" data-scroll-target="#分类变量分数的计算"><span class="header-section-number">9.2.1</span> 分类变量分数的计算</a></li>
+  <li><a href="#连续性变量分数的计算" id="toc-连续性变量分数的计算" class="nav-link" data-scroll-target="#连续性变量分数的计算"><span class="header-section-number">9.2.2</span> 连续性变量分数的计算</a></li>
   </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li><li class="breadcrumb-item"><a href="./nomogram-原理.html"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></h1>
+<h1 class="title"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></h1>
 </div>
 
 
@@ -545,18 +527,20 @@ <h1 class="title"><span class="chapter-number">4</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<section id="列线图与模型的关系" class="level2" data-number="4.1">
-<h2 data-number="4.1" class="anchored" data-anchor-id="列线图与模型的关系"><span class="header-section-number">4.1</span> 列线图与模型的关系</h2>
-<p>列线图又叫诺莫图,nomogram plot,前面我们展示了绘制二分类变量(logistic)和生存资料(Cox)列线图的多种方法,不知道大家有没有考虑过,其他模型可以绘制列线图吗?例如lasso回归、随机森林等。这就涉及到列线图到底是怎么绘制出来的。</p>
+
+<section id="列线图与模型的关系" class="level2" data-number="9.1">
+<h2 data-number="9.1" class="anchored" data-anchor-id="列线图与模型的关系"><span class="header-section-number">9.1</span> 列线图与模型的关系</h2>
+<p>前面我们展示了绘制逻辑回归和cox回归列线图的多种方法,不知道大家有没有考虑过,其他模型可以绘制列线图吗?例如lasso回归、随机森林等(不行哈,理论可行,实际不行)。这就涉及到列线图到底是怎么绘制出来的。</p>
 <p>对于一个含有多个自变量和1个因变量的逻辑回归来说,回归方程可以写成类似 <strong>y=a + b1x1 + b2x2 + b3x3</strong> 这种形式,其中b是回归系数。<strong>列线图就是把回归方程用图形的方式展现出来,线段的长短(分数)根据回归系数计算。</strong></p>
 </section>
-<section id="列线图分数的计算方法" class="level2" data-number="4.2">
-<h2 data-number="4.2" class="anchored" data-anchor-id="列线图分数的计算方法"><span class="header-section-number">4.2</span> 列线图分数的计算方法</h2>
+<section id="列线图分数的计算方法" class="level2" data-number="9.2">
+<h2 data-number="9.2" class="anchored" data-anchor-id="列线图分数的计算方法"><span class="header-section-number">9.2</span> 列线图分数的计算方法</h2>
 <p>以下面这个列线图为例:</p>
 <p><img src="figs/Snipaste_2023-04-01_17-57-15.png" class="img-fluid"></p>
-<p>上面这个列线图是一个逻辑回归的(之前logistic回归列线图推文中的fit2),它的逻辑回归的结果是这样的:</p>
+<p>上面这个列线图是一个逻辑回归的,它的逻辑回归的结果是这样的:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lrm</span>(<span class="at">formula =</span> dead <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> black <span class="sc">+</span> </span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>     white, <span class="at">data =</span> tmp, <span class="at">x =</span> T, <span class="at">y =</span> T)                    </span>
@@ -569,115 +553,116 @@ <h2 data-number="4.2" class="anchored" data-anchor-id="列线图分数的计算
 <span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> bwt       <span class="sc">-</span><span class="fl">0.0031</span>  <span class="fl">0.0006</span> <span class="sc">-</span><span class="fl">5.14</span>  <span class="sc">&lt;</span><span class="fl">0.0001</span> </span>
 <span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> vent<span class="ot">=</span><span class="dv">1</span>     <span class="fl">2.7526</span>  <span class="fl">0.7436</span>  <span class="fl">3.70</span>  <span class="fl">0.0002</span>  </span>
 <span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a> black      <span class="fl">1.1974</span>  <span class="fl">0.8448</span>  <span class="fl">1.42</span>  <span class="fl">0.1564</span>  </span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> white      <span class="fl">0.8597</span>  <span class="fl">0.8655</span>  <span class="fl">0.99</span>  <span class="fl">0.3206</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> white      <span class="fl">0.8597</span>  <span class="fl">0.8655</span>  <span class="fl">0.99</span>  <span class="fl">0.3206</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a> </span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 新的</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="fu">lrm</span>(<span class="at">formula =</span> dead <span class="sc">==</span> <span class="dv">1</span> <span class="sc">~</span> birth <span class="sc">+</span> lowph <span class="sc">+</span> pltct <span class="sc">+</span> bwt <span class="sc">+</span> vent <span class="sc">+</span> race, <span class="at">data =</span> tmp)</span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a>           Coef    S.E.    Wald Z <span class="fu">Pr</span>(<span class="sc">&gt;</span><span class="er">|</span>Z<span class="sc">|</span>)</span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a>Intercept  <span class="fl">39.5788</span> <span class="fl">11.0070</span>  <span class="fl">3.60</span>  <span class="fl">0.0003</span>  </span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a>birth      <span class="sc">-</span><span class="fl">0.1201</span>  <span class="fl">0.0914</span> <span class="sc">-</span><span class="fl">1.31</span>  <span class="fl">0.1890</span>  </span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>lowph      <span class="sc">-</span><span class="fl">4.1451</span>  <span class="fl">1.1881</span> <span class="sc">-</span><span class="fl">3.49</span>  <span class="fl">0.0005</span>  </span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a>pltct      <span class="sc">-</span><span class="fl">0.0017</span>  <span class="fl">0.0019</span> <span class="sc">-</span><span class="fl">0.91</span>  <span class="fl">0.3644</span>  </span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a>bwt        <span class="sc">-</span><span class="fl">0.0031</span>  <span class="fl">0.0006</span> <span class="sc">-</span><span class="fl">5.14</span>  <span class="sc">&lt;</span><span class="fl">0.0001</span> </span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a>vent<span class="ot">=</span><span class="dv">1</span>      <span class="fl">2.7526</span>  <span class="fl">0.7436</span>  <span class="fl">3.70</span>  <span class="fl">0.0002</span>  </span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a>race<span class="ot">=</span>other <span class="sc">-</span><span class="fl">1.1974</span>  <span class="fl">0.8448</span> <span class="sc">-</span><span class="fl">1.42</span>  <span class="fl">0.1564</span>  </span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>race<span class="ot">=</span>white <span class="sc">-</span><span class="fl">0.3377</span>  <span class="fl">0.2953</span> <span class="sc">-</span><span class="fl">1.14</span>  <span class="fl">0.2529</span>  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>在最下面列出了每个自变量的回归系数,我们首先 <strong>把回归系数绝对值最大的设置为100分,在这个例子中是<code>lowph</code>,它的回归系数绝对值是4.1451,也就是对应的是100分,然后其他自变量都是根据<code>lowph</code>进行转换</strong> ,即可算出其他自变量对应的得分!</p>
+<p>在最下面列出了每个自变量的回归系数,我们首先<strong>把回归系数绝对值最大的设置为100分,在这个例子中是<code>lowph</code>,它的回归系数绝对值是4.1451,也就是对应的是100分,然后其他自变量都是根据<code>lowph</code>进行转换</strong>,即可算出其他自变量对应的得分!</p>
 <p>然后根据这个表达式得到的列线图的结果是这样的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>nom2</span>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>nom1</span>
 <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>Points per unit of linear predictor<span class="sc">:</span> <span class="fl">21.93145</span> </span>
 <span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>Linear predictor units per point   <span class="sc">:</span> <span class="fl">0.04559661</span> </span>
 <span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> birth Points</span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> <span class="fl">81.5</span>  <span class="dv">16</span>    </span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> <span class="fl">82.0</span>  <span class="dv">14</span>    </span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> <span class="fl">82.5</span>  <span class="dv">13</span>    </span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a> <span class="fl">83.0</span>  <span class="dv">12</span>    </span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="fl">83.5</span>  <span class="dv">11</span>    </span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="fl">84.0</span>   <span class="dv">9</span>    </span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="fl">84.5</span>   <span class="dv">8</span>    </span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a> <span class="fl">85.0</span>   <span class="dv">7</span>    </span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a> <span class="fl">85.5</span>   <span class="dv">5</span>    </span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a> <span class="fl">86.0</span>   <span class="dv">4</span>    </span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a> <span class="fl">86.5</span>   <span class="dv">3</span>    </span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a> <span class="fl">87.0</span>   <span class="dv">1</span>    </span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a> <span class="fl">87.5</span>   <span class="dv">0</span>    </span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a> lowph Points</span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.5</span>   <span class="dv">100</span>   </span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.6</span>    <span class="dv">91</span>   </span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.7</span>    <span class="dv">82</span>   </span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.8</span>    <span class="dv">73</span>   </span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.9</span>    <span class="dv">64</span>   </span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.0</span>    <span class="dv">55</span>   </span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.1</span>    <span class="dv">45</span>   </span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.2</span>    <span class="dv">36</span>   </span>
-<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.3</span>    <span class="dv">27</span>   </span>
-<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.4</span>    <span class="dv">18</span>   </span>
-<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.5</span>     <span class="dv">9</span>   </span>
-<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.6</span>     <span class="dv">0</span>   </span>
-<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a> pltct Points</span>
-<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a>   <span class="dv">0</span>   <span class="dv">22</span>    </span>
-<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a>  <span class="dv">50</span>   <span class="dv">20</span>    </span>
-<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a> <span class="dv">100</span>   <span class="dv">18</span>    </span>
-<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a> <span class="dv">150</span>   <span class="dv">17</span>    </span>
-<span id="cb2-42"><a href="#cb2-42" aria-hidden="true" tabindex="-1"></a> <span class="dv">200</span>   <span class="dv">15</span>    </span>
-<span id="cb2-43"><a href="#cb2-43" aria-hidden="true" tabindex="-1"></a> <span class="dv">250</span>   <span class="dv">13</span>    </span>
-<span id="cb2-44"><a href="#cb2-44" aria-hidden="true" tabindex="-1"></a> <span class="dv">300</span>   <span class="dv">11</span>    </span>
-<span id="cb2-45"><a href="#cb2-45" aria-hidden="true" tabindex="-1"></a> <span class="dv">350</span>    <span class="dv">9</span>    </span>
-<span id="cb2-46"><a href="#cb2-46" aria-hidden="true" tabindex="-1"></a> <span class="dv">400</span>    <span class="dv">7</span>    </span>
-<span id="cb2-47"><a href="#cb2-47" aria-hidden="true" tabindex="-1"></a> <span class="dv">450</span>    <span class="dv">6</span>    </span>
-<span id="cb2-48"><a href="#cb2-48" aria-hidden="true" tabindex="-1"></a> <span class="dv">500</span>    <span class="dv">4</span>    </span>
-<span id="cb2-49"><a href="#cb2-49" aria-hidden="true" tabindex="-1"></a> <span class="dv">550</span>    <span class="dv">2</span>    </span>
-<span id="cb2-50"><a href="#cb2-50" aria-hidden="true" tabindex="-1"></a> <span class="dv">600</span>    <span class="dv">0</span>    </span>
-<span id="cb2-51"><a href="#cb2-51" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-52"><a href="#cb2-52" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-53"><a href="#cb2-53" aria-hidden="true" tabindex="-1"></a> bwt  Points</span>
-<span id="cb2-54"><a href="#cb2-54" aria-hidden="true" tabindex="-1"></a>  <span class="dv">400</span> <span class="dv">76</span>    </span>
-<span id="cb2-55"><a href="#cb2-55" aria-hidden="true" tabindex="-1"></a>  <span class="dv">500</span> <span class="dv">69</span>    </span>
-<span id="cb2-56"><a href="#cb2-56" aria-hidden="true" tabindex="-1"></a>  <span class="dv">600</span> <span class="dv">62</span>    </span>
-<span id="cb2-57"><a href="#cb2-57" aria-hidden="true" tabindex="-1"></a>  <span class="dv">700</span> <span class="dv">55</span>    </span>
-<span id="cb2-58"><a href="#cb2-58" aria-hidden="true" tabindex="-1"></a>  <span class="dv">800</span> <span class="dv">48</span>    </span>
-<span id="cb2-59"><a href="#cb2-59" aria-hidden="true" tabindex="-1"></a>  <span class="dv">900</span> <span class="dv">41</span>    </span>
-<span id="cb2-60"><a href="#cb2-60" aria-hidden="true" tabindex="-1"></a> <span class="dv">1000</span> <span class="dv">34</span>    </span>
-<span id="cb2-61"><a href="#cb2-61" aria-hidden="true" tabindex="-1"></a> <span class="dv">1100</span> <span class="dv">27</span>    </span>
-<span id="cb2-62"><a href="#cb2-62" aria-hidden="true" tabindex="-1"></a> <span class="dv">1200</span> <span class="dv">21</span>    </span>
-<span id="cb2-63"><a href="#cb2-63" aria-hidden="true" tabindex="-1"></a> <span class="dv">1300</span> <span class="dv">14</span>    </span>
-<span id="cb2-64"><a href="#cb2-64" aria-hidden="true" tabindex="-1"></a> <span class="dv">1400</span>  <span class="dv">7</span>    </span>
-<span id="cb2-65"><a href="#cb2-65" aria-hidden="true" tabindex="-1"></a> <span class="dv">1500</span>  <span class="dv">0</span>    </span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a> birth Points</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> <span class="fl">81.5</span>  <span class="dv">16</span>    </span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> <span class="fl">82.0</span>  <span class="dv">14</span>    </span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> <span class="fl">82.5</span>  <span class="dv">13</span>    </span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> <span class="fl">83.0</span>  <span class="dv">12</span>    </span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a> <span class="fl">83.5</span>  <span class="dv">11</span>    </span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a> <span class="fl">84.0</span>   <span class="dv">9</span>    </span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="fl">84.5</span>   <span class="dv">8</span>    </span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="fl">85.0</span>   <span class="dv">7</span>    </span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a> <span class="fl">85.5</span>   <span class="dv">5</span>    </span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a> <span class="fl">86.0</span>   <span class="dv">4</span>    </span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a> <span class="fl">86.5</span>   <span class="dv">3</span>    </span>
+<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a> <span class="fl">87.0</span>   <span class="dv">1</span>    </span>
+<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a> <span class="fl">87.5</span>   <span class="dv">0</span>    </span>
+<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a> lowph Points</span>
+<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.5</span>   <span class="dv">100</span>   </span>
+<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.6</span>    <span class="dv">91</span>   </span>
+<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.7</span>    <span class="dv">82</span>   </span>
+<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.8</span>    <span class="dv">73</span>   </span>
+<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a> <span class="fl">6.9</span>    <span class="dv">64</span>   </span>
+<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.0</span>    <span class="dv">55</span>   </span>
+<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.1</span>    <span class="dv">45</span>   </span>
+<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.2</span>    <span class="dv">36</span>   </span>
+<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.3</span>    <span class="dv">27</span>   </span>
+<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.4</span>    <span class="dv">18</span>   </span>
+<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.5</span>     <span class="dv">9</span>   </span>
+<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a> <span class="fl">7.6</span>     <span class="dv">0</span>   </span>
+<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a> pltct Points</span>
+<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a>   <span class="dv">0</span>   <span class="dv">22</span>    </span>
+<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a>  <span class="dv">50</span>   <span class="dv">20</span>    </span>
+<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a> <span class="dv">100</span>   <span class="dv">18</span>    </span>
+<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a> <span class="dv">150</span>   <span class="dv">17</span>    </span>
+<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a> <span class="dv">200</span>   <span class="dv">15</span>    </span>
+<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a> <span class="dv">250</span>   <span class="dv">13</span>    </span>
+<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a> <span class="dv">300</span>   <span class="dv">11</span>    </span>
+<span id="cb2-42"><a href="#cb2-42" aria-hidden="true" tabindex="-1"></a> <span class="dv">350</span>    <span class="dv">9</span>    </span>
+<span id="cb2-43"><a href="#cb2-43" aria-hidden="true" tabindex="-1"></a> <span class="dv">400</span>    <span class="dv">7</span>    </span>
+<span id="cb2-44"><a href="#cb2-44" aria-hidden="true" tabindex="-1"></a> <span class="dv">450</span>    <span class="dv">6</span>    </span>
+<span id="cb2-45"><a href="#cb2-45" aria-hidden="true" tabindex="-1"></a> <span class="dv">500</span>    <span class="dv">4</span>    </span>
+<span id="cb2-46"><a href="#cb2-46" aria-hidden="true" tabindex="-1"></a> <span class="dv">550</span>    <span class="dv">2</span>    </span>
+<span id="cb2-47"><a href="#cb2-47" aria-hidden="true" tabindex="-1"></a> <span class="dv">600</span>    <span class="dv">0</span>    </span>
+<span id="cb2-48"><a href="#cb2-48" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-49"><a href="#cb2-49" aria-hidden="true" tabindex="-1"></a> bwt  Points</span>
+<span id="cb2-50"><a href="#cb2-50" aria-hidden="true" tabindex="-1"></a>  <span class="dv">400</span> <span class="dv">76</span>    </span>
+<span id="cb2-51"><a href="#cb2-51" aria-hidden="true" tabindex="-1"></a>  <span class="dv">500</span> <span class="dv">69</span>    </span>
+<span id="cb2-52"><a href="#cb2-52" aria-hidden="true" tabindex="-1"></a>  <span class="dv">600</span> <span class="dv">62</span>    </span>
+<span id="cb2-53"><a href="#cb2-53" aria-hidden="true" tabindex="-1"></a>  <span class="dv">700</span> <span class="dv">55</span>    </span>
+<span id="cb2-54"><a href="#cb2-54" aria-hidden="true" tabindex="-1"></a>  <span class="dv">800</span> <span class="dv">48</span>    </span>
+<span id="cb2-55"><a href="#cb2-55" aria-hidden="true" tabindex="-1"></a>  <span class="dv">900</span> <span class="dv">41</span>    </span>
+<span id="cb2-56"><a href="#cb2-56" aria-hidden="true" tabindex="-1"></a> <span class="dv">1000</span> <span class="dv">34</span>    </span>
+<span id="cb2-57"><a href="#cb2-57" aria-hidden="true" tabindex="-1"></a> <span class="dv">1100</span> <span class="dv">27</span>    </span>
+<span id="cb2-58"><a href="#cb2-58" aria-hidden="true" tabindex="-1"></a> <span class="dv">1200</span> <span class="dv">21</span>    </span>
+<span id="cb2-59"><a href="#cb2-59" aria-hidden="true" tabindex="-1"></a> <span class="dv">1300</span> <span class="dv">14</span>    </span>
+<span id="cb2-60"><a href="#cb2-60" aria-hidden="true" tabindex="-1"></a> <span class="dv">1400</span>  <span class="dv">7</span>    </span>
+<span id="cb2-61"><a href="#cb2-61" aria-hidden="true" tabindex="-1"></a> <span class="dv">1500</span>  <span class="dv">0</span>    </span>
+<span id="cb2-62"><a href="#cb2-62" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-63"><a href="#cb2-63" aria-hidden="true" tabindex="-1"></a> vent Points</span>
+<span id="cb2-64"><a href="#cb2-64" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>     <span class="dv">0</span>    </span>
+<span id="cb2-65"><a href="#cb2-65" aria-hidden="true" tabindex="-1"></a> <span class="dv">1</span>    <span class="dv">60</span>    </span>
 <span id="cb2-66"><a href="#cb2-66" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-67"><a href="#cb2-67" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-68"><a href="#cb2-68" aria-hidden="true" tabindex="-1"></a> vent Points</span>
-<span id="cb2-69"><a href="#cb2-69" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>     <span class="dv">0</span>    </span>
-<span id="cb2-70"><a href="#cb2-70" aria-hidden="true" tabindex="-1"></a> <span class="dv">1</span>    <span class="dv">60</span>    </span>
+<span id="cb2-67"><a href="#cb2-67" aria-hidden="true" tabindex="-1"></a> race  Points</span>
+<span id="cb2-68"><a href="#cb2-68" aria-hidden="true" tabindex="-1"></a> black <span class="dv">26</span>    </span>
+<span id="cb2-69"><a href="#cb2-69" aria-hidden="true" tabindex="-1"></a> other  <span class="dv">0</span>    </span>
+<span id="cb2-70"><a href="#cb2-70" aria-hidden="true" tabindex="-1"></a> white <span class="dv">19</span>    </span>
 <span id="cb2-71"><a href="#cb2-71" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-72"><a href="#cb2-72" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-73"><a href="#cb2-73" aria-hidden="true" tabindex="-1"></a> black Points</span>
-<span id="cb2-74"><a href="#cb2-74" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>      <span class="dv">0</span>    </span>
-<span id="cb2-75"><a href="#cb2-75" aria-hidden="true" tabindex="-1"></a> <span class="dv">1</span>     <span class="dv">26</span>    </span>
-<span id="cb2-76"><a href="#cb2-76" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-77"><a href="#cb2-77" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-78"><a href="#cb2-78" aria-hidden="true" tabindex="-1"></a> white Points</span>
-<span id="cb2-79"><a href="#cb2-79" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>      <span class="dv">0</span>    </span>
-<span id="cb2-80"><a href="#cb2-80" aria-hidden="true" tabindex="-1"></a> <span class="dv">1</span>     <span class="dv">19</span>    </span>
-<span id="cb2-81"><a href="#cb2-81" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-82"><a href="#cb2-82" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-83"><a href="#cb2-83" aria-hidden="true" tabindex="-1"></a> Total Points  Dead</span>
-<span id="cb2-84"><a href="#cb2-84" aria-hidden="true" tabindex="-1"></a>           <span class="dv">53</span> <span class="fl">0.001</span></span>
-<span id="cb2-85"><a href="#cb2-85" aria-hidden="true" tabindex="-1"></a>          <span class="dv">104</span> <span class="fl">0.010</span></span>
-<span id="cb2-86"><a href="#cb2-86" aria-hidden="true" tabindex="-1"></a>          <span class="dv">157</span> <span class="fl">0.100</span></span>
-<span id="cb2-87"><a href="#cb2-87" aria-hidden="true" tabindex="-1"></a>          <span class="dv">181</span> <span class="fl">0.250</span></span>
-<span id="cb2-88"><a href="#cb2-88" aria-hidden="true" tabindex="-1"></a>          <span class="dv">205</span> <span class="fl">0.500</span></span>
-<span id="cb2-89"><a href="#cb2-89" aria-hidden="true" tabindex="-1"></a>          <span class="dv">229</span> <span class="fl">0.750</span></span>
-<span id="cb2-90"><a href="#cb2-90" aria-hidden="true" tabindex="-1"></a>          <span class="dv">253</span> <span class="fl">0.900</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-72"><a href="#cb2-72" aria-hidden="true" tabindex="-1"></a> Total Points  Dead</span>
+<span id="cb2-73"><a href="#cb2-73" aria-hidden="true" tabindex="-1"></a>           <span class="dv">53</span> <span class="fl">0.001</span></span>
+<span id="cb2-74"><a href="#cb2-74" aria-hidden="true" tabindex="-1"></a>          <span class="dv">104</span> <span class="fl">0.010</span></span>
+<span id="cb2-75"><a href="#cb2-75" aria-hidden="true" tabindex="-1"></a>          <span class="dv">157</span> <span class="fl">0.100</span></span>
+<span id="cb2-76"><a href="#cb2-76" aria-hidden="true" tabindex="-1"></a>          <span class="dv">181</span> <span class="fl">0.250</span></span>
+<span id="cb2-77"><a href="#cb2-77" aria-hidden="true" tabindex="-1"></a>          <span class="dv">205</span> <span class="fl">0.500</span></span>
+<span id="cb2-78"><a href="#cb2-78" aria-hidden="true" tabindex="-1"></a>          <span class="dv">229</span> <span class="fl">0.750</span></span>
+<span id="cb2-79"><a href="#cb2-79" aria-hidden="true" tabindex="-1"></a>          <span class="dv">253</span> <span class="fl">0.900</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>上面的 <strong>Linear predictor units per point: 0.04559661 </strong> 意思是每一个小刻度代表的分数是0.04559661分,这实际上是最大回归系数的1/100(这里应该是4.1451/100=0.041451,实际上会有偏差!)。</p>
-<section id="分类变量分数的计算" class="level3" data-number="4.2.1">
-<h3 data-number="4.2.1" class="anchored" data-anchor-id="分类变量分数的计算"><span class="header-section-number">4.2.1</span> 分类变量分数的计算</h3>
+<section id="分类变量分数的计算" class="level3" data-number="9.2.1">
+<h3 data-number="9.2.1" class="anchored" data-anchor-id="分类变量分数的计算"><span class="header-section-number">9.2.1</span> 分类变量分数的计算</h3>
 <p>以<code>vent</code>为例,vent=1的时候,它的回归系数是2.7526,那么它对应的分数应该是 2.7526/0.04559661 * 100 ≈ 60,上面得到的结果是60分,一样的!<code>black</code>应该是 1.1974/0.04559661 * 100 ≈ 26,也和我们算的差不多!</p>
 <p>这就是分类变量分数的计算。</p>
 </section>
-<section id="连续性变量分数的计算" class="level3" data-number="4.2.2">
-<h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数的计算"><span class="header-section-number">4.2.2</span> 连续性变量分数的计算</h3>
+<section id="连续性变量分数的计算" class="level3" data-number="9.2.2">
+<h3 data-number="9.2.2" class="anchored" data-anchor-id="连续性变量分数的计算"><span class="header-section-number">9.2.2</span> 连续性变量分数的计算</h3>
 <p>连续性自变量需要考虑取值范围,它的解释应该是每增加一个单位,因变量变化多少,对于<code>pltct</code>来说,系数是-0.0017,就是每增加1各单位,因变量减少0.0017。</p>
 <p><code>pltct</code>是600,对应的分数是0分,那么如果是100,对应的分数就是 (600-100)* (0.0017/0.04559661) ≈ 18。</p>
 <p>这就是连续性变量分数的计算。</p>
 <p>了解了列线图的分数计算方法,即使没有R语言,你也可以通过手动计算算出来,这样你可以自己画图!(理论上可行,但实际上很难,至少我还没见到过…)</p>
-<p>根据这个思路,理论上凡是有回归系数的、有变量重要性的,都可以画列线图展示出来,并不局限于logistic和cox,但是模型在临床中的解释就很难了。</p>
 
 
 </section>
@@ -719,18 +704,7 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -762,11 +736,50 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -776,8 +789,17 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -789,7 +811,130 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -833,6 +978,7 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -858,6 +1004,32 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -919,27 +1091,32 @@ <h3 data-number="4.2.2" class="anchored" data-anchor-id="连续性变量分数
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./nomogram-cox.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span>
+      <a href="./nomogram-cox.html" class="pagination-link" aria-label="Cox回归列线图绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-rcs.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./nomogram-rcs.html" class="pagination-link" aria-label="样条回归列线图绘制">
+        <span class="nav-page-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/nri.html b/docs/nri.html
index 43a5f5c..72bbb87 100644
--- a/docs/nri.html
+++ b/docs/nri.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 29&nbsp; NRI净重新分类指数</title>
+<title>27&nbsp; 净重分类指数NRI – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./idi.html" rel="next">
-<link href="./conf_matrix-3d.html" rel="prev">
+<link href="./cindex-compare.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./nri.html"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./nri.html"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,32 +493,32 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#logistic的nri" id="toc-logistic的nri" class="nav-link active" data-scroll-target="#logistic的nri"><span class="header-section-number">29.1</span> logistic的NRI</a>
+  <li><a href="#二分类模型的nri" id="toc-二分类模型的nri" class="nav-link active" data-scroll-target="#二分类模型的nri"><span class="header-section-number">27.1</span> 二分类模型的NRI</a>
   <ul class="collapse">
-  <li><a href="#nricens包" id="toc-nricens包" class="nav-link" data-scroll-target="#nricens包"><span class="header-section-number">29.1.1</span> nricens包</a></li>
-  <li><a href="#predictabel包" id="toc-predictabel包" class="nav-link" data-scroll-target="#predictabel包"><span class="header-section-number">29.1.2</span> PredictABEL包</a></li>
+  <li><a href="#nricens" id="toc-nricens" class="nav-link" data-scroll-target="#nricens"><span class="header-section-number">27.1.1</span> nricens</a></li>
+  <li><a href="#predictabel" id="toc-predictabel" class="nav-link" data-scroll-target="#predictabel"><span class="header-section-number">27.1.2</span> PredictABEL</a></li>
   </ul></li>
-  <li><a href="#生存资料的nri" id="toc-生存资料的nri" class="nav-link" data-scroll-target="#生存资料的nri"><span class="header-section-number">29.2</span> 生存资料的NRI</a>
+  <li><a href="#生存模型的nri" id="toc-生存模型的nri" class="nav-link" data-scroll-target="#生存模型的nri"><span class="header-section-number">27.2</span> 生存模型的NRI</a>
   <ul class="collapse">
-  <li><a href="#nricens包-1" id="toc-nricens包-1" class="nav-link" data-scroll-target="#nricens包-1"><span class="header-section-number">29.2.1</span> nricens包</a></li>
-  <li><a href="#survnri包" id="toc-survnri包" class="nav-link" data-scroll-target="#survnri包"><span class="header-section-number">29.2.2</span> survNRI包</a></li>
+  <li><a href="#nricens-1" id="toc-nricens-1" class="nav-link" data-scroll-target="#nricens-1"><span class="header-section-number">27.2.1</span> nricens</a></li>
+  <li><a href="#survnri" id="toc-survnri" class="nav-link" data-scroll-target="#survnri"><span class="header-section-number">27.2.2</span> survNRI</a></li>
   </ul></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./nri.html"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></h1>
+<h1 class="title"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></h1>
 </div>
 
 
@@ -549,153 +531,226 @@ <h1 class="title"><span class="chapter-number">29</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>NRI,net reclassification index,净重新分类指数,是用来比较模型准确度的,这个概念有点难理解,但是非常重要,在临床研究中非常常见,是评价模型的一大利器!</p>
-<p>在R语言中有很多包可以计算NRI,但是能同时计算logistic回归和cox回归的只有<code>nricens</code>包,<code>PredictABEL</code>可以计算logistic模型的净重分类指数,<code>survNRI</code>可以计算cox模型的净重分类指数。</p>
-<section id="logistic的nri" class="level2" data-number="29.1">
-<h2 data-number="29.1" class="anchored" data-anchor-id="logistic的nri"><span class="header-section-number">29.1</span> logistic的NRI</h2>
-<section id="nricens包" class="level3" data-number="29.1.1">
-<h3 data-number="29.1.1" class="anchored" data-anchor-id="nricens包"><span class="header-section-number">29.1.1</span> nricens包</h3>
+
+<p>净重分类指数(net reclassification index,NRI),是用来比较两个模型的分类准确度的,相关概念的解读请参考“临床预测模型的评价”一章。本文主要介绍如何通过R语言计算NRI。</p>
+<p>在R语言中有很多包可以计算NRI,但是能同时计算二分类模型和生存模型NRI的只有<code>nricens</code>包,除此之外,<code>PredictABEL</code>可以计算logistic模型的净重分类指数,<code>survNRI</code>可以计算cox模型的净重分类指数。</p>
+<p>对于NRI和IDI的计算,以下是常见的R包总结:</p>
+<table class="caption-top">
+<thead>
+<tr>
+<th>R包</th>
+<th>NRI</th>
+<th>IDI</th>
+<th>二分类模型</th>
+<th>生存模型</th>
+<th>机器学习模型</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td>nricens</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>支持</td>
+<td>支持</td>
+</tr>
+<tr>
+<td>PredictABEL</td>
+<td>支持</td>
+<td>支持</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+</tr>
+<tr>
+<td>survNRI</td>
+<td>支持</td>
+<td>不支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>不支持</td>
+</tr>
+<tr>
+<td>survIDINRI</td>
+<td>支持</td>
+<td>支持</td>
+<td>不支持</td>
+<td>支持</td>
+<td>不支持</td>
+</tr>
+</tbody>
+</table>
+<section id="二分类模型的nri" class="level2" data-number="27.1">
+<h2 data-number="27.1" class="anchored" data-anchor-id="二分类模型的nri"><span class="header-section-number">27.1</span> 二分类模型的NRI</h2>
+<section id="nricens" class="level3" data-number="27.1.1">
+<h3 data-number="27.1.1" class="anchored" data-anchor-id="nricens"><span class="header-section-number">27.1.1</span> nricens</h3>
+<p>首先我们加载R包和数据。</p>
+<p>使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示分类模型,只要不使用<code>time</code>这一列就可以了。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co">#install.packages("nricens") # 安装R包</span></span>
 <span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(nricens)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: survival</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示logistic回归,只要不使用time这一列就可以了。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 只使用部分数据</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">=</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,] </span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">=</span> dat[ dat<span class="sc">$</span>time <span class="sc">&gt;</span> <span class="dv">2000</span> <span class="sc">|</span> (dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>), ]</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat) <span class="co"># 数据长这样</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    232 obs. of  20 variables:</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...</span></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...</span></span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...</span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...</span></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...</span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 944 ...</span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...</span></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...</span></span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...</span></span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...</span></span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...</span></span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dat) <span class="co"># 232 20</span></span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 232  20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 只使用部分数据</span></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,] </span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> dat[dat<span class="sc">$</span>time <span class="sc">&gt;</span> <span class="dv">2000</span> <span class="sc">|</span> (dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>), ]</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(dat) <span class="co"># 数据长这样</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    232 obs. of  20 variables:</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...</span></span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...</span></span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...</span></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...</span></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...</span></span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...</span></span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...</span></span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...</span></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alk.phos: num  1718 7395 516 6122 944 ...</span></span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...</span></span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...</span></span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...</span></span>
+<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...</span></span>
+<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...</span></span>
+<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(dat) <span class="co"># 232 20</span></span>
+<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 232  20</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后就是准备计算NRI所需要的各个参数。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 定义结局事件,0是存活,1是死亡</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>event <span class="ot">=</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个模型</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">=</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">=</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">family =</span> <span class="fu">binomial</span>(), <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出模型预测概率</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">=</span> mstd<span class="sc">$</span>fitted.values</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">=</span> mnew<span class="sc">$</span>fitted.values</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 定义结局事件,0是存活,1是死亡</span></span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>event <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> dat<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个模型用于比较</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">&lt;-</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">family =</span> <span class="fu">binomial</span>(), </span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">&lt;-</span> <span class="fu">glm</span>(event <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">family =</span> <span class="fu">binomial</span>(), </span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>            <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出模型预测概率</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">&lt;-</span> mstd<span class="sc">$</span>fitted.values</span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">&lt;-</span> mnew<span class="sc">$</span>fitted.values</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<div class="callout callout-style-default callout-tip callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+提示
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>在建立模型时可以选择任何能够计算概率的模型,并不一定需要是逻辑回归模型,随机森林、支持向量机等机器学习模型也都可以的。</p>
+</div>
 </div>
-<p>然后就是计算NRI,对于二分类变量,使用<code>nribin()</code>函数,这个函数提供了3种参数使用组合,任选一种都可以计算出来(结果一样),以下3组参数任选1组即可。 mdl.std, mdl.new 或者 event, z.std, z.new 或者 event, p.std, p.new。</p>
+<p>然后就是计算NRI,对于二分类变量,使用<code>nribin()</code>函数,这个函数提供了3种参数使用组合,任选一种都可以计算出来(结果一样),以下3组参数任选1组即可。 - <code>mdl.std</code>和<code>mdl.new</code> - <code>event</code>, <code>z.std</code>, <code>z.new</code> - <code>event</code>, <code>p.std</code>, <code>p.new</code></p>
+<p>我个人更推荐使用第3组参数,只需要提供结局变量和模型的预测概率即可,适用范围更广,其他模型(比如随机森林、支持向量机等)的概率也可以用。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 这3种方法算出来都是一样的结果</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个模型</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">mdl.std =</span> mstd, <span class="at">mdl.new =</span> mnew, </span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 结果变量 + 两个只有预测变量的矩阵</span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">event =</span> event, <span class="at">z.std =</span> z.std, <span class="at">z.new =</span> z.new, </span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 结果变量 + 两个模型得到的预测概率</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">event =</span> event, <span class="at">p.std =</span> p.std, <span class="at">p.new =</span> p.new, </span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 这3种方法算出来都是一样的结果</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个模型</span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">mdl.std =</span> mstd, <span class="at">mdl.new =</span> mnew, </span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 结果变量 + 两个只有预测变量的矩阵</span></span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">event =</span> event, <span class="at">z.std =</span> z.std, <span class="at">z.new =</span> z.new, </span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 结果变量 + 两个模型得到的预测概率</span></span>
+<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">event =</span> event, <span class="at">p.std =</span> p.std, <span class="at">p.new =</span> p.new, </span>
+<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
+<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
+<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>其中,<code>cut</code>是判断风险高低的阈值,我们使用了<code>0.3,0.7</code>,代表0-0.3是低风险,0.3-0.7是中风险,0.7-1是高风险,这个阈值是自己设置的,大家根据经验或者文献设置即可。</p>
-<p><code>niter</code>是使用bootstrap法进行重抽样的次数,默认是1000,大家可以自己设置。</p>
-<p><code>updown</code>参数,当设置为<code>category</code>时,表示低、中、高风险这种方式;当设置为<code>diff</code>时,此时<code>cut</code>的取值只能设置1个,比如设置0.2,即表示当新模型预测的风险和旧模型相差20%时,认为是重新分类。</p>
+<p><code>niter</code>是使用bootstrap法进行重抽样的次数,默认是1000。</p>
+<p><code>updown</code>参数,当设置为<code>category</code>时,表示使用低、中、高风险这种方式;当设置为<code>diff</code>时,此时<code>cut</code>的取值只能设置1个,比如设置0.2,即表示当新模型预测的风险和旧模型相差20%时,认为是重新分类。</p>
 <p>上面的代码运行后结果是这样的:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>UP and DOWN calculation<span class="sc">:</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#of total, case, and control subjects at t0:  232 88 144</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> all subjects<span class="sc">:</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">135</span>     <span class="dv">4</span>      <span class="dv">0</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">1</span>    <span class="dv">31</span>      <span class="dv">4</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">2</span>     <span class="dv">55</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> case<span class="sc">:</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>     <span class="dv">14</span>     <span class="dv">0</span>      <span class="dv">0</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">0</span>    <span class="dv">18</span>      <span class="dv">3</span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">1</span>     <span class="dv">52</span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> control<span class="sc">:</span></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">121</span>     <span class="dv">4</span>      <span class="dv">0</span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">1</span>    <span class="dv">13</span>      <span class="dv">1</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">1</span>      <span class="dv">3</span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a>NRI estimation<span class="sc">:</span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a>Point estimates<span class="sc">:</span></span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a>                  Estimate</span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a>NRI            <span class="fl">0.001893939</span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>           <span class="fl">0.022727273</span></span>
-<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="sc">-</span><span class="fl">0.020833333</span></span>
-<span id="cb5-31"><a href="#cb5-31" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)    <span class="fl">0.034090909</span></span>
-<span id="cb5-32"><a href="#cb5-32" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case)  <span class="fl">0.011363636</span></span>
-<span id="cb5-33"><a href="#cb5-33" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl)  <span class="fl">0.013888889</span></span>
-<span id="cb5-34"><a href="#cb5-34" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)    <span class="fl">0.034722222</span></span>
-<span id="cb5-35"><a href="#cb5-35" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-36"><a href="#cb5-36" aria-hidden="true" tabindex="-1"></a>Now <span class="cf">in</span> bootstrap..</span>
-<span id="cb5-37"><a href="#cb5-37" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-38"><a href="#cb5-38" aria-hidden="true" tabindex="-1"></a>Point <span class="sc">&amp;</span> Interval estimates<span class="sc">:</span></span>
-<span id="cb5-39"><a href="#cb5-39" aria-hidden="true" tabindex="-1"></a>                  Estimate   Std.Error        Lower       Upper</span>
-<span id="cb5-40"><a href="#cb5-40" aria-hidden="true" tabindex="-1"></a>NRI            <span class="fl">0.001893939</span> <span class="fl">0.027816095</span> <span class="sc">-</span><span class="fl">0.053995513</span> <span class="fl">0.055354449</span></span>
-<span id="cb5-41"><a href="#cb5-41" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>           <span class="fl">0.022727273</span> <span class="fl">0.021564394</span> <span class="sc">-</span><span class="fl">0.019801980</span> <span class="fl">0.065789474</span></span>
-<span id="cb5-42"><a href="#cb5-42" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="sc">-</span><span class="fl">0.020833333</span> <span class="fl">0.017312438</span> <span class="sc">-</span><span class="fl">0.058823529</span> <span class="fl">0.007518797</span></span>
-<span id="cb5-43"><a href="#cb5-43" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)    <span class="fl">0.034090909</span> <span class="fl">0.019007629</span>  <span class="fl">0.000000000</span> <span class="fl">0.072164948</span></span>
-<span id="cb5-44"><a href="#cb5-44" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case)  <span class="fl">0.011363636</span> <span class="fl">0.010924271</span>  <span class="fl">0.000000000</span> <span class="fl">0.039603960</span></span>
-<span id="cb5-45"><a href="#cb5-45" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl)  <span class="fl">0.013888889</span> <span class="fl">0.009334685</span>  <span class="fl">0.000000000</span> <span class="fl">0.035211268</span></span>
-<span id="cb5-46"><a href="#cb5-46" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)    <span class="fl">0.034722222</span> <span class="fl">0.014716046</span>  <span class="fl">0.006993007</span> <span class="fl">0.066176471</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>UP and DOWN calculation<span class="sc">:</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#of total, case, and control subjects at t0:  232 88 144</span></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> all subjects<span class="sc">:</span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">135</span>     <span class="dv">4</span>      <span class="dv">0</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">1</span>    <span class="dv">31</span>      <span class="dv">4</span></span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">2</span>     <span class="dv">55</span></span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> case<span class="sc">:</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>     <span class="dv">14</span>     <span class="dv">0</span>      <span class="dv">0</span></span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">0</span>    <span class="dv">18</span>      <span class="dv">3</span></span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">1</span>     <span class="dv">52</span></span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> control<span class="sc">:</span></span>
+<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">121</span>     <span class="dv">4</span>      <span class="dv">0</span></span>
+<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">1</span>    <span class="dv">13</span>      <span class="dv">1</span></span>
+<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">1</span>      <span class="dv">3</span></span>
+<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a>NRI estimation<span class="sc">:</span></span>
+<span id="cb4-26"><a href="#cb4-26" aria-hidden="true" tabindex="-1"></a>Point estimates<span class="sc">:</span></span>
+<span id="cb4-27"><a href="#cb4-27" aria-hidden="true" tabindex="-1"></a>                  Estimate</span>
+<span id="cb4-28"><a href="#cb4-28" aria-hidden="true" tabindex="-1"></a>NRI            <span class="fl">0.001893939</span></span>
+<span id="cb4-29"><a href="#cb4-29" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>           <span class="fl">0.022727273</span></span>
+<span id="cb4-30"><a href="#cb4-30" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="sc">-</span><span class="fl">0.020833333</span></span>
+<span id="cb4-31"><a href="#cb4-31" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)    <span class="fl">0.034090909</span></span>
+<span id="cb4-32"><a href="#cb4-32" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case)  <span class="fl">0.011363636</span></span>
+<span id="cb4-33"><a href="#cb4-33" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl)  <span class="fl">0.013888889</span></span>
+<span id="cb4-34"><a href="#cb4-34" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)    <span class="fl">0.034722222</span></span>
+<span id="cb4-35"><a href="#cb4-35" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-36"><a href="#cb4-36" aria-hidden="true" tabindex="-1"></a>Now <span class="cf">in</span> bootstrap..</span>
+<span id="cb4-37"><a href="#cb4-37" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-38"><a href="#cb4-38" aria-hidden="true" tabindex="-1"></a>Point <span class="sc">&amp;</span> Interval estimates<span class="sc">:</span></span>
+<span id="cb4-39"><a href="#cb4-39" aria-hidden="true" tabindex="-1"></a>                  Estimate   Std.Error        Lower       Upper</span>
+<span id="cb4-40"><a href="#cb4-40" aria-hidden="true" tabindex="-1"></a>NRI            <span class="fl">0.001893939</span> <span class="fl">0.027816095</span> <span class="sc">-</span><span class="fl">0.053995513</span> <span class="fl">0.055354449</span></span>
+<span id="cb4-41"><a href="#cb4-41" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>           <span class="fl">0.022727273</span> <span class="fl">0.021564394</span> <span class="sc">-</span><span class="fl">0.019801980</span> <span class="fl">0.065789474</span></span>
+<span id="cb4-42"><a href="#cb4-42" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="sc">-</span><span class="fl">0.020833333</span> <span class="fl">0.017312438</span> <span class="sc">-</span><span class="fl">0.058823529</span> <span class="fl">0.007518797</span></span>
+<span id="cb4-43"><a href="#cb4-43" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)    <span class="fl">0.034090909</span> <span class="fl">0.019007629</span>  <span class="fl">0.000000000</span> <span class="fl">0.072164948</span></span>
+<span id="cb4-44"><a href="#cb4-44" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case)  <span class="fl">0.011363636</span> <span class="fl">0.010924271</span>  <span class="fl">0.000000000</span> <span class="fl">0.039603960</span></span>
+<span id="cb4-45"><a href="#cb4-45" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl)  <span class="fl">0.013888889</span> <span class="fl">0.009334685</span>  <span class="fl">0.000000000</span> <span class="fl">0.035211268</span></span>
+<span id="cb4-46"><a href="#cb4-46" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)    <span class="fl">0.034722222</span> <span class="fl">0.014716046</span>  <span class="fl">0.006993007</span> <span class="fl">0.066176471</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>首先是3个混淆矩阵,第一个是全体的,第2个是case(结局为1)组的,第3个是control(结局为2)组的,有了这3个矩阵,我们可以自己计算净重分类指数。</p>
-<p>看case组:</p>
-<p>净重分类指数 = ((0+3)-(0+1)) / 88 ≈ 0.022727273</p>
-<p>再看control组:</p>
-<p>净重分类指数 = ((1+1)-(4+1)) / 144 ≈ -0.020833333</p>
-<p>相加净重分类指数 = case组净重分类指数 + control组净重分类指数 = 2/88 - 3/144 ≈ 0.000315657</p>
-<p>再往下是不做bootstrap时得到的估计值,其中NRI就是绝对净重分类指数,NRI+是case组的净重分类指数,NRI-是control组的净重分类指数(和我们计算的一样哦),最后是做了500次bootstrap后得到的估计值,并且有标准误和可信区间。</p>
+<p>首先是3个重分类表格,第一个是所有患者的,第2个是case(结局为1)组的,第3个是control(结局为2)组的,有了这3个表格,我们可以根据之前的介绍,自己计算NRI。</p>
+<pre><code>case组(n=88):
+
+重新分对的:3个
+重新分错的:1个
+净重分类:3-1=2
+净重分类的比例是:2/88=0.022727273
+
+control组(n=144):
+
+重新分对的:2个
+重新分错的:5个
+净重分类:2-5=-3
+净重分类的比例是:-3/144=-0.020833333</code></pre>
+<p>相加NRI=2/88 + (-3/144) = 0.001893939 绝对NRI=(2-3)/232=-0.000431</p>
+<p>这个结果和上面的结果(也就是中间的Point-estimates部分)是完全一样的,而且上面的结果只给出了相加NRI,没有绝对NRI。</p>
+<p>最后是做了500次bootstrap后得到的估计值,并且有标准误和可信区间。</p>
 <p>最后还会得到一张图:</p>
 <p><img src="figs/Snipaste_2023-04-01_18-56-49.png" class="img-fluid"></p>
-<p>这张图中的虚线对应的坐标,就是我们在<code>cut</code>中设置的阈值,这张图对应的是上面结果中的第一个混淆矩阵,反应的是总体的情况,<strong>case是结果为1的组,也就是发生结局的组,control是结果为0的组,也就是未发生结局的组</strong>。</p>
+<p>这张图中的虚线对应的坐标,就是我们在<code>cut</code>中设置的阈值,这张图对应的是上面结果中的第一个重分类表格,反应的是总体的情况,<strong>case是结果为1的组,也就是发生结局的组,control是结果为0的组,也就是未发生结局的组</strong>。</p>
 <p>P值没有直接给出,但是可以自己计算。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算P值</span></span>
@@ -704,194 +759,258 @@ <h3 data-number="29.1.1" class="anchored" data-anchor-id="nricens包"><span clas
 <span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>p</span>
 <span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9457157</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-</section>
-<section id="predictabel包" class="level3" data-number="29.1.2">
-<h3 data-number="29.1.2" class="anchored" data-anchor-id="predictabel包"><span class="header-section-number">29.1.2</span> PredictABEL包</h3>
+<p>以上是训练集的NRI,那么<strong>测试集(验证集,外部验证集)的NRI</strong>如何实现呢?很简单,只要拿到测试集(验证集,外部验证集)的概率即可。</p>
+<p>我们先随机建立一个测试集(验证集,外部验证集):</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co">#install.packages("PredictABEL") #安装R包</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(PredictABEL)  </span>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 取前100行作为测试集,这个方法是不正规的哈</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>testset <span class="ot">&lt;-</span> dat[<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,]</span>
 <span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出模型预测概率,这个包只能用预测概率计算</span></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">=</span> mstd<span class="sc">$</span>fitted.values</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">=</span> mnew<span class="sc">$</span>fitted.values </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算测试集的概率</span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>p.std_test <span class="ot">&lt;-</span> <span class="fu">predict</span>(mstd, <span class="at">newdata =</span> testset,<span class="at">type =</span> <span class="st">"response"</span>)</span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>p.new_test <span class="ot">&lt;-</span> <span class="fu">predict</span>(mnew, <span class="at">newdata =</span> testset,<span class="at">type =</span> <span class="st">"response"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>然后准备下测试集(验证集,外部验证集)的结果变量,就可以计算NRI了:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>event_test <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(testset<span class="sc">$</span>time <span class="sc">&lt;</span> <span class="dv">2000</span> <span class="sc">&amp;</span> testset<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 结果变量 + 两个模型得到的预测概率</span></span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">nribin</span>(<span class="at">event =</span> event_test, <span class="at">p.std =</span> p.std_test, <span class="at">p.new =</span> p.new_test, </span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>       <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>,<span class="fl">0.7</span>), </span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">niter =</span> <span class="dv">500</span>, </span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>       <span class="at">updown =</span> <span class="st">'category'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>结果就不展示了,结果解读也是和测试集(验证集,外部验证集)完全一样的。</p>
+</section>
+<section id="predictabel" class="level3" data-number="27.1.2">
+<h3 data-number="27.1.2" class="anchored" data-anchor-id="predictabel"><span class="header-section-number">27.1.2</span> PredictABEL</h3>
+<p><code>PredictABEL</code>只能计算二分类模型的NRI,除此之外,它还会自动给出IDI。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co">#install.packages("PredictABEL") #安装R包</span></span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(PredictABEL)  </span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 取出模型预测概率,这个包只能用预测概率计算</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">=</span> mstd<span class="sc">$</span>fitted.values</span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">=</span> mnew<span class="sc">$</span>fitted.values </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后就是计算NRI:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>event <span class="ot">&lt;-</span> event</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">reclassification</span>(<span class="at">data =</span> dat,</span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cOutcome =</span> <span class="dv">21</span>, <span class="co"># 结果变量在哪一列</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk1 =</span> p.std,</span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk2 =</span> p.new,</span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cutoff =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.3</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>                 )</span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">##      Reclassification table    </span></span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: absent </span></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)       121         4       0               3</span></span>
-<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       1        13       1              13</span></span>
-<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1       3              25</span></span>
-<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
-<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: present </span></span>
-<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
-<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
-<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
-<span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)        14         0       0               0</span></span>
-<span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       0        18       3              14</span></span>
-<span id="cb8-29"><a href="#cb8-29" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1      52               2</span></span>
-<span id="cb8-30"><a href="#cb8-30" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-31"><a href="#cb8-31" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
-<span id="cb8-32"><a href="#cb8-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  Combined Data </span></span>
-<span id="cb8-33"><a href="#cb8-33" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
-<span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
-<span id="cb8-35"><a href="#cb8-35" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
-<span id="cb8-36"><a href="#cb8-36" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)       135         4       0               3</span></span>
-<span id="cb8-37"><a href="#cb8-37" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       1        31       4              14</span></span>
-<span id="cb8-38"><a href="#cb8-38" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         2      55               4</span></span>
-<span id="cb8-39"><a href="#cb8-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
-<span id="cb8-40"><a href="#cb8-40" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-41"><a href="#cb8-41" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 </span></span>
-<span id="cb8-42"><a href="#cb8-42" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 </span></span>
-<span id="cb8-43"><a href="#cb8-43" aria-hidden="true" tabindex="-1"></a><span class="do">##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>event <span class="ot">&lt;-</span> event</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">reclassification</span>(<span class="at">data =</span> dat,</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cOutcome =</span> <span class="dv">21</span>, <span class="co"># 结果变量在哪一列</span></span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk1 =</span> p.std,</span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>                 <span class="at">predrisk2 =</span> p.new,</span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cutoff =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.3</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>                 )</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">##      Reclassification table    </span></span>
+<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: absent </span></span>
+<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)       121         4       0               3</span></span>
+<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       1        13       1              13</span></span>
+<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1       3              25</span></span>
+<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  Outcome: present </span></span>
+<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb10-25"><a href="#cb10-25" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb10-26"><a href="#cb10-26" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb10-27"><a href="#cb10-27" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)        14         0       0               0</span></span>
+<span id="cb10-28"><a href="#cb10-28" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       0        18       3              14</span></span>
+<span id="cb10-29"><a href="#cb10-29" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         1      52               2</span></span>
+<span id="cb10-30"><a href="#cb10-30" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-31"><a href="#cb10-31" aria-hidden="true" tabindex="-1"></a><span class="do">##  </span></span>
+<span id="cb10-32"><a href="#cb10-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  Combined Data </span></span>
+<span id="cb10-33"><a href="#cb10-33" aria-hidden="true" tabindex="-1"></a><span class="do">##   </span></span>
+<span id="cb10-34"><a href="#cb10-34" aria-hidden="true" tabindex="-1"></a><span class="do">##              Updated Model</span></span>
+<span id="cb10-35"><a href="#cb10-35" aria-hidden="true" tabindex="-1"></a><span class="do">## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified</span></span>
+<span id="cb10-36"><a href="#cb10-36" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0,0.3)       135         4       0               3</span></span>
+<span id="cb10-37"><a href="#cb10-37" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.3,0.7)       1        31       4              14</span></span>
+<span id="cb10-38"><a href="#cb10-38" aria-hidden="true" tabindex="-1"></a><span class="do">##     [0.7,1]         0         2      55               4</span></span>
+<span id="cb10-39"><a href="#cb10-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  _________________________________________</span></span>
+<span id="cb10-40"><a href="#cb10-40" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb10-41"><a href="#cb10-41" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 </span></span>
+<span id="cb10-42"><a href="#cb10-42" aria-hidden="true" tabindex="-1"></a><span class="do">##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 </span></span>
+<span id="cb10-43"><a href="#cb10-43" aria-hidden="true" tabindex="-1"></a><span class="do">##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>结果得到的是相加净重分类指数,还给出了IDI和P值。两个包算是各有优劣吧,大家可以自由选择。</p>
+<p>这个结果首先也是3个重分类表格,下面是NRI和IDI,第一行<code>NRI(Categorical)</code>的结果和<code>nricens</code>的结果是一样的,也是相加净重分类指数,也同时给出了P值。最后一行还给出了IDI和P值。</p>
+<p>测试集的计算毫无难度,也是只要提供测试集数据以及相应的概率即可,这里就不再重复演示了。</p>
+<p>两个包算是各有优劣吧,大家可以自由选择。</p>
 </section>
 </section>
-<section id="生存资料的nri" class="level2" data-number="29.2">
-<h2 data-number="29.2" class="anchored" data-anchor-id="生存资料的nri"><span class="header-section-number">29.2</span> 生存资料的NRI</h2>
-<p>还是使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这次要构建cox回归模型,因此我们要使用<code>time</code>这一列了。</p>
-<section id="nricens包-1" class="level3" data-number="29.2.1">
-<h3 data-number="29.2.1" class="anchored" data-anchor-id="nricens包-1"><span class="header-section-number">29.2.1</span> nricens包</h3>
+<section id="生存模型的nri" class="level2" data-number="27.2">
+<h2 data-number="27.2" class="anchored" data-anchor-id="生存模型的nri"><span class="header-section-number">27.2</span> 生存模型的NRI</h2>
+<p>还是使用<code>survival</code>包中的<code>pbc</code>数据集用于演示,这次要构建生存分析模型,因此我们要使用<code>time</code>这一列了。</p>
+<section id="nricens-1" class="level3" data-number="27.2.1">
+<h3 data-number="27.2.1" class="anchored" data-anchor-id="nricens-1"><span class="header-section-number">27.2.1</span> nricens</h3>
+<p>加载数据和R包:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(nricens)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(nricens)</span>
+<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
+<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>然后准备所需参数:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">=</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个cox模型</span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time,status) <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time,status) <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算在2000天的模型预测概率,这一步不要也行,看你使用哪些参数</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">&lt;-</span> <span class="fu">get.risk.coxph</span>(mstd, <span class="at">t0=</span><span class="dv">2000</span>)</span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">&lt;-</span> <span class="fu">get.risk.coxph</span>(mnew, <span class="at">t0=</span><span class="dv">2000</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 两个只由预测变量组成的矩阵</span></span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>z.std <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin)))</span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>z.new <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(<span class="fu">subset</span>(dat, <span class="at">select =</span> <span class="fu">c</span>(age, bili, albumin, protime)))</span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 建立2个cox模型,建立其他模型也可以,只要能计算概率就行</span></span>
+<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>mstd <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time,status) <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin, <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>mnew <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time,status) <span class="sc">~</span> age <span class="sc">+</span> bili <span class="sc">+</span> albumin <span class="sc">+</span> protime, <span class="at">data =</span> dat, <span class="at">x=</span><span class="cn">TRUE</span>)</span>
+<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 计算在2000天的模型预测的生存概率</span></span>
+<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>p.std <span class="ot">&lt;-</span> <span class="fu">get.risk.coxph</span>(mstd, <span class="at">t0=</span><span class="dv">2000</span>)</span>
+<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>p.new <span class="ot">&lt;-</span> <span class="fu">get.risk.coxph</span>(mnew, <span class="at">t0=</span><span class="dv">2000</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<div class="callout callout-style-default callout-tip callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
 </div>
-<p>计算NRI:</p>
+<div class="callout-title-container flex-fill">
+提示
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>在建立模型时可以选择任何能够计算概率的模型,并不一定需要是cox回归模型,<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2699591889800560640&amp;from_itemidx=1&amp;from_msgid=2247500351&amp;scene=173&amp;subscene=&amp;sessionid=svr_82b5810c95e&amp;enterid=1715386535&amp;count=3&amp;nolastread=1#wechat_redirect">随机生存森林</a>、<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3212521253916540928&amp;from_itemidx=1&amp;from_msgid=2247501946#wechat_redirect">生存支持向量机</a>等机器学习模型也都可以的。</p>
+</div>
+</div>
+<p>然后就是计算NRI,但是要注意,生存模型的NRI<strong>只能选择计算某一个时间点的NRI</strong>,比如计算1年的NRI,计算3年的NRI这种。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">nricens</span>(<span class="at">mdl.std=</span> mstd, <span class="at">mdl.new =</span> mnew, </span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">t0 =</span> <span class="dv">2000</span>, </span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="fl">0.7</span>),</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">niter =</span> <span class="dv">1000</span>, </span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">updown =</span> <span class="st">'category'</span>)</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>UP and DOWN calculation<span class="sc">:</span></span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>  <span class="co">#of total, case, and control subjects at t0:  312 88 144</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> all subjects<span class="sc">:</span></span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">202</span>     <span class="dv">7</span>      <span class="dv">0</span></span>
-<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>     <span class="dv">13</span>    <span class="dv">53</span>      <span class="dv">6</span></span>
-<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>     <span class="dv">31</span></span>
-<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> case<span class="sc">:</span></span>
-<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>     <span class="dv">19</span>     <span class="dv">3</span>      <span class="dv">0</span></span>
-<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">3</span>    <span class="dv">32</span>      <span class="dv">4</span></span>
-<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>     <span class="dv">27</span></span>
-<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> control<span class="sc">:</span></span>
-<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a>        New</span>
-<span id="cb11-26"><a href="#cb11-26" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
-<span id="cb11-27"><a href="#cb11-27" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">126</span>     <span class="dv">3</span>      <span class="dv">0</span></span>
-<span id="cb11-28"><a href="#cb11-28" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">5</span>     <span class="dv">7</span>      <span class="dv">2</span></span>
-<span id="cb11-29"><a href="#cb11-29" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>      <span class="dv">1</span></span>
-<span id="cb11-30"><a href="#cb11-30" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-31"><a href="#cb11-31" aria-hidden="true" tabindex="-1"></a>NRI estimation by KM estimator<span class="sc">:</span></span>
-<span id="cb11-32"><a href="#cb11-32" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-33"><a href="#cb11-33" aria-hidden="true" tabindex="-1"></a>Point estimates<span class="sc">:</span></span>
-<span id="cb11-34"><a href="#cb11-34" aria-hidden="true" tabindex="-1"></a>                Estimate</span>
-<span id="cb11-35"><a href="#cb11-35" aria-hidden="true" tabindex="-1"></a>NRI           <span class="fl">0.05377635</span></span>
-<span id="cb11-36"><a href="#cb11-36" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>          <span class="fl">0.03748660</span></span>
-<span id="cb11-37"><a href="#cb11-37" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="fl">0.01628974</span></span>
-<span id="cb11-38"><a href="#cb11-38" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)   <span class="fl">0.07708938</span></span>
-<span id="cb11-39"><a href="#cb11-39" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case) <span class="fl">0.03960278</span></span>
-<span id="cb11-40"><a href="#cb11-40" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl) <span class="fl">0.04256352</span></span>
-<span id="cb11-41"><a href="#cb11-41" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)   <span class="fl">0.02627378</span></span>
-<span id="cb11-42"><a href="#cb11-42" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-43"><a href="#cb11-43" aria-hidden="true" tabindex="-1"></a>Now <span class="cf">in</span> bootstrap..</span>
-<span id="cb11-44"><a href="#cb11-44" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-45"><a href="#cb11-45" aria-hidden="true" tabindex="-1"></a>Point <span class="sc">&amp;</span> Interval estimates<span class="sc">:</span></span>
-<span id="cb11-46"><a href="#cb11-46" aria-hidden="true" tabindex="-1"></a>                Estimate        Lower      Upper</span>
-<span id="cb11-47"><a href="#cb11-47" aria-hidden="true" tabindex="-1"></a>NRI           <span class="fl">0.05377635</span> <span class="sc">-</span><span class="fl">0.082230381</span> <span class="fl">0.16058172</span></span>
-<span id="cb11-48"><a href="#cb11-48" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>          <span class="fl">0.03748660</span> <span class="sc">-</span><span class="fl">0.084245197</span> <span class="fl">0.13231776</span></span>
-<span id="cb11-49"><a href="#cb11-49" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="fl">0.01628974</span> <span class="sc">-</span><span class="fl">0.030861213</span> <span class="fl">0.06753616</span></span>
-<span id="cb11-50"><a href="#cb11-50" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)   <span class="fl">0.07708938</span>  <span class="fl">0.000000000</span> <span class="fl">0.19102291</span></span>
-<span id="cb11-51"><a href="#cb11-51" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case) <span class="fl">0.03960278</span>  <span class="fl">0.000000000</span> <span class="fl">0.15236016</span></span>
-<span id="cb11-52"><a href="#cb11-52" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl) <span class="fl">0.04256352</span>  <span class="fl">0.004671535</span> <span class="fl">0.09863170</span></span>
-<span id="cb11-53"><a href="#cb11-53" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)   <span class="fl">0.02627378</span>  <span class="fl">0.006400463</span> <span class="fl">0.05998424</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">nricens</span>(<span class="at">mdl.std=</span> mstd, <span class="at">mdl.new =</span> mnew, </span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">t0 =</span> <span class="dv">2000</span>, </span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="fl">0.7</span>),</span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">niter =</span> <span class="dv">1000</span>, </span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">updown =</span> <span class="st">'category'</span>)</span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>UP and DOWN calculation<span class="sc">:</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>  <span class="co">#of total, case, and control subjects at t0:  312 88 144</span></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> all subjects<span class="sc">:</span></span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">202</span>     <span class="dv">7</span>      <span class="dv">0</span></span>
+<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>     <span class="dv">13</span>    <span class="dv">53</span>      <span class="dv">6</span></span>
+<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>     <span class="dv">31</span></span>
+<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> case<span class="sc">:</span></span>
+<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>     <span class="dv">19</span>     <span class="dv">3</span>      <span class="dv">0</span></span>
+<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">3</span>    <span class="dv">32</span>      <span class="dv">4</span></span>
+<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>     <span class="dv">27</span></span>
+<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a>  Reclassification Table <span class="cf">for</span> control<span class="sc">:</span></span>
+<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a>        New</span>
+<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a>Standard <span class="sc">&lt;</span> <span class="fl">0.3</span> <span class="sc">&lt;</span> <span class="fl">0.7</span> <span class="sc">&gt;=</span> <span class="fl">0.7</span></span>
+<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.3</span>    <span class="dv">126</span>     <span class="dv">3</span>      <span class="dv">0</span></span>
+<span id="cb13-28"><a href="#cb13-28" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&lt;</span> <span class="fl">0.7</span>      <span class="dv">5</span>     <span class="dv">7</span>      <span class="dv">2</span></span>
+<span id="cb13-29"><a href="#cb13-29" aria-hidden="true" tabindex="-1"></a>  <span class="sc">&gt;=</span> <span class="fl">0.7</span>     <span class="dv">0</span>     <span class="dv">0</span>      <span class="dv">1</span></span>
+<span id="cb13-30"><a href="#cb13-30" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-31"><a href="#cb13-31" aria-hidden="true" tabindex="-1"></a>NRI estimation by KM estimator<span class="sc">:</span></span>
+<span id="cb13-32"><a href="#cb13-32" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-33"><a href="#cb13-33" aria-hidden="true" tabindex="-1"></a>Point estimates<span class="sc">:</span></span>
+<span id="cb13-34"><a href="#cb13-34" aria-hidden="true" tabindex="-1"></a>                Estimate</span>
+<span id="cb13-35"><a href="#cb13-35" aria-hidden="true" tabindex="-1"></a>NRI           <span class="fl">0.05377635</span></span>
+<span id="cb13-36"><a href="#cb13-36" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>          <span class="fl">0.03748660</span></span>
+<span id="cb13-37"><a href="#cb13-37" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="fl">0.01628974</span></span>
+<span id="cb13-38"><a href="#cb13-38" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)   <span class="fl">0.07708938</span></span>
+<span id="cb13-39"><a href="#cb13-39" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case) <span class="fl">0.03960278</span></span>
+<span id="cb13-40"><a href="#cb13-40" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl) <span class="fl">0.04256352</span></span>
+<span id="cb13-41"><a href="#cb13-41" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)   <span class="fl">0.02627378</span></span>
+<span id="cb13-42"><a href="#cb13-42" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-43"><a href="#cb13-43" aria-hidden="true" tabindex="-1"></a>Now <span class="cf">in</span> bootstrap..</span>
+<span id="cb13-44"><a href="#cb13-44" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-45"><a href="#cb13-45" aria-hidden="true" tabindex="-1"></a>Point <span class="sc">&amp;</span> Interval estimates<span class="sc">:</span></span>
+<span id="cb13-46"><a href="#cb13-46" aria-hidden="true" tabindex="-1"></a>                Estimate        Lower      Upper</span>
+<span id="cb13-47"><a href="#cb13-47" aria-hidden="true" tabindex="-1"></a>NRI           <span class="fl">0.05377635</span> <span class="sc">-</span><span class="fl">0.082230381</span> <span class="fl">0.16058172</span></span>
+<span id="cb13-48"><a href="#cb13-48" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">+</span>          <span class="fl">0.03748660</span> <span class="sc">-</span><span class="fl">0.084245197</span> <span class="fl">0.13231776</span></span>
+<span id="cb13-49"><a href="#cb13-49" aria-hidden="true" tabindex="-1"></a>NRI<span class="sc">-</span>          <span class="fl">0.01628974</span> <span class="sc">-</span><span class="fl">0.030861213</span> <span class="fl">0.06753616</span></span>
+<span id="cb13-50"><a href="#cb13-50" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Case)   <span class="fl">0.07708938</span>  <span class="fl">0.000000000</span> <span class="fl">0.19102291</span></span>
+<span id="cb13-51"><a href="#cb13-51" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Case) <span class="fl">0.03960278</span>  <span class="fl">0.000000000</span> <span class="fl">0.15236016</span></span>
+<span id="cb13-52"><a href="#cb13-52" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Down<span class="sc">|</span>Ctrl) <span class="fl">0.04256352</span>  <span class="fl">0.004671535</span> <span class="fl">0.09863170</span></span>
+<span id="cb13-53"><a href="#cb13-53" aria-hidden="true" tabindex="-1"></a><span class="fu">Pr</span>(Up<span class="sc">|</span>Ctrl)   <span class="fl">0.02627378</span>  <span class="fl">0.006400463</span> <span class="fl">0.05998424</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p><img src="figs/Snipaste_2023-04-01_18-57-48.png" class="img-fluid"></p>
-<p>结果的解读和logistic的一模一样。</p>
+<p>结果的解读以及和分类模型的一模一样,这里就不再重复了。</p>
+<p><strong>测试集</strong>(验证集,外部验证集)也是只要拿到概率就好了,下面演示下。</p>
+<p>首先随机建立一个测试集:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 取前100行作为测试集,这个方法并不正规哈</span></span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>testset <span class="ot">&lt;-</span> dat[<span class="dv">1</span><span class="sc">:</span><span class="dv">100</span>,]</span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 获取测试集在2000天时的生存概率</span></span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>p.std_test <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">-</span><span class="fu">c</span>((<span class="fu">summary</span>(<span class="fu">survfit</span>(mstd, <span class="at">newdata=</span>testset), <span class="at">times=</span><span class="dv">2000</span>)<span class="sc">$</span>surv))</span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>p.new_test <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">-</span><span class="fu">c</span>((<span class="fu">summary</span>(<span class="fu">survfit</span>(mnew, <span class="at">newdata=</span>testset), <span class="at">times=</span><span class="dv">2000</span>)<span class="sc">$</span>surv))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>然后计算NRI即可:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">nricens</span>(<span class="at">time =</span> testset<span class="sc">$</span>time, <span class="at">event =</span> testset<span class="sc">$</span>status,</span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">p.std =</span> p.std_test, <span class="at">p.new =</span> p.new_test,</span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">t0 =</span> <span class="dv">2000</span>, </span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">cut =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="fl">0.7</span>),</span>
+<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">niter =</span> <span class="dv">1000</span>, </span>
+<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>        <span class="at">updown =</span> <span class="st">'category'</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>结果解读是一模一样的,所以就不重复了。</p>
 </section>
-<section id="survnri包" class="level3" data-number="29.2.2">
-<h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span class="header-section-number">29.2.2</span> survNRI包</h3>
+<section id="survnri" class="level3" data-number="27.2.2">
+<h3 data-number="27.2.2" class="anchored" data-anchor-id="survnri"><span class="header-section-number">27.2.2</span> survNRI</h3>
+<p><code>survNRI</code>不在CRAN上,可以通过github安装或者下载到本地安装,这个包的作者和<code>rmda</code>的作者是同一个人。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包</span></span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"mdbrown/survNRI"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 安装R包</span></span>
+<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"mdbrown/survNRI"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>加载R包并使用,还是用上面的<code>pbc</code>数据集。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survNRI)</span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: MASS</span></span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用部分数据</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">survNRI</span>(<span class="at">time  =</span> <span class="st">"time"</span>, <span class="at">event =</span> <span class="st">"status"</span>, </span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>        <span class="at">model1 =</span> <span class="fu">c</span>(<span class="st">"age"</span>, <span class="st">"bili"</span>, <span class="st">"albumin"</span>), <span class="co"># 模型1的自变量</span></span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>        <span class="at">model2 =</span> <span class="fu">c</span>(<span class="st">"age"</span>, <span class="st">"bili"</span>, <span class="st">"albumin"</span>, <span class="st">"protime"</span>), <span class="co"># 模型2的自变量</span></span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>        <span class="at">data =</span> dat, </span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>        <span class="at">predict.time =</span> <span class="dv">2000</span>, <span class="co"># 预测的时间点</span></span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>        <span class="at">method =</span> <span class="st">"all"</span>, </span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>        <span class="at">bootMethod =</span> <span class="st">"normal"</span>,  </span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">bootstraps =</span> <span class="dv">500</span>, </span>
-<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">alpha =</span> .<span class="dv">05</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survNRI)</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 使用部分数据</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>dat <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>dat<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(dat<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>) <span class="co"># 0表示活着,1表示死亡</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+</div>
+<p>下面就是计算NRI,时间点我们选择2000天,你可以任意选择你感兴趣的时间点。注意这个包计算NRI就不能只提供概率了,所以对于随机生存森林这种<strong>机器学习模型就不行</strong>了。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">survNRI</span>(<span class="at">time  =</span> <span class="st">"time"</span>, <span class="at">event =</span> <span class="st">"status"</span>, </span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>        <span class="at">model1 =</span> <span class="fu">c</span>(<span class="st">"age"</span>, <span class="st">"bili"</span>, <span class="st">"albumin"</span>), <span class="co"># 模型1的自变量</span></span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>        <span class="at">model2 =</span> <span class="fu">c</span>(<span class="st">"age"</span>, <span class="st">"bili"</span>, <span class="st">"albumin"</span>, <span class="st">"protime"</span>), <span class="co"># 模型2的自变量</span></span>
+<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>        <span class="at">data =</span> dat, </span>
+<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>        <span class="at">predict.time =</span> <span class="dv">2000</span>, <span class="co"># 预测的时间点</span></span>
+<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>        <span class="at">method =</span> <span class="st">"all"</span>, <span class="co"># 所有方法都计算</span></span>
+<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a>        <span class="at">bootMethod =</span> <span class="st">"normal"</span>,  </span>
+<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a>        <span class="at">bootstraps =</span> <span class="dv">500</span>, <span class="co"># 重抽样次数</span></span>
+<span id="cb18-9"><a href="#cb18-9" aria-hidden="true" tabindex="-1"></a>        <span class="at">alpha =</span> .<span class="dv">05</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>查看结果,<code>$estimates</code>给出了不同组的NRI以及总的NRI,包括了使用不同方法(KM/IPW/SmoothIPW/SEM/Combined)得到的结果;<code>$CI</code>给出了可信区间。</p>
+<p>下面是查看结果,这个结果很清晰,给出了5种方法得到的相加NRI,并且以表格的方式呈现。分别给出了死亡组和生存组的NRI以及总的NRI,并且也有可信区间:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print.survNRI</span>(res)</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  Net Reclassification Improvement at time t = 2000</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   with 95% bootstrap confidence intervals based on normal approximation.</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  method     |  event NRI              non-event NRI             NRI </span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="do">## -------------------------------------------------------------------------------</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   KM        |  0.204 (-0.024,0.433)   0.319 (0.122,0.720)   0.523 (-0.046,0.888)   </span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   IPW       |  0.224 (-0.006,0.454)   0.327 (0.129,0.750)   0.552 (-0.042,0.921)   </span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   SmoothIPW |  0.196 (-0.031,0.424)   0.314 (0.118,0.707)   0.511 (-0.050,0.875)   </span></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   SEM       |  0.075 (-0.117,0.266)   0.263 (0.080,0.521)   0.338 (-0.044,0.646)   </span></span>
-<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   Combined  |  0.196 (-0.032,0.424)   0.314 (0.118,0.707)   0.511 (-0.050,0.875)   </span></span>
-<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="do">## -------------------------------------------------------------------------------</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print.survNRI</span>(res)</span>
+<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  Net Reclassification Improvement at time t = 2000</span></span>
+<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   with 95% bootstrap confidence intervals based on normal approximation.</span></span>
+<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  method     |  event NRI              non-event NRI             NRI </span></span>
+<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a><span class="do">## -------------------------------------------------------------------------------</span></span>
+<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   KM        |  0.204 (-0.034,0.443)   0.319 (0.132,0.710)   0.523 (-0.046,0.888)   </span></span>
+<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   IPW       |  0.224 (-0.014,0.463)   0.327 (0.141,0.738)   0.552 (-0.036,0.915)   </span></span>
+<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   SmoothIPW |  0.196 (-0.041,0.434)   0.314 (0.129,0.696)   0.511 (-0.047,0.873)   </span></span>
+<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a><span class="do">##   SEM       |  0.075 (-0.116,0.266)   0.263 (0.084,0.518)   0.338 (-0.047,0.649)   </span></span>
+<span id="cb19-12"><a href="#cb19-12" aria-hidden="true" tabindex="-1"></a><span class="do">##   Combined  |  0.196 (-0.041,0.434)   0.314 (0.129,0.696)   0.511 (-0.048,0.873)   </span></span>
+<span id="cb19-13"><a href="#cb19-13" aria-hidden="true" tabindex="-1"></a><span class="do">## -------------------------------------------------------------------------------</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>OK,这就是NRI的计算,除此之外,随机森林、决策树、lasso回归、SVM等,这些模型,都是可以计算的NRI的,大家可以关注公众号查看相关内容。</p>
+<p>这个包在计算可信区间时有两种方法:正态近似法和分位数法,默认正态近似法。</p>
+<p>上面给出的5种方法,其实是估计生存概率的方法,并不是计算NRI的方法,NRI的计算方法都是一样的,无非就是相加NRI和绝对NRI。</p>
+<p>但是这个函数无法计算测试集(或者叫验证集、外部验证集都可以)的IDI,因为它不支持使用概率,如果你提供测试集的数据给它,也只是在测试集重新拟合模型而已,这样就不是原来的模型了。如果大家知道其他R包,欢迎告诉我。</p>
+<p>但是在实际使用时,NRI和IDI都是作为比较最终模型准确性的,所以通常都是只做一遍就可以了,不需要在训练集、验证集各来一遍。</p>
 
 
 </section>
@@ -933,18 +1052,7 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -976,11 +1084,50 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -990,8 +1137,17 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1003,7 +1159,130 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1047,6 +1326,7 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1072,6 +1352,32 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1133,27 +1439,32 @@ <h3 data-number="29.2.2" class="anchored" data-anchor-id="survnri包"><span clas
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./conf_matrix-3d.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span>
+      <a href="./cindex-compare.html" class="pagination-link" aria-label="C-index的比较">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./idi.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./idi.html" class="pagination-link" aria-label="综合判别改善指数IDI">
+        <span class="nav-page-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/roc-attention.html b/docs/roc-attention.html
deleted file mode 100644
index 69ca4da..0000000
--- a/docs/roc-attention.html
+++ /dev/null
@@ -1,957 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 22&nbsp; R语言计算AUC(ROC)注意事项</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./roc-many.html" rel="next">
-<link href="./roc-compare.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-attention.html"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">22.1</span> 准备数据</a></li>
-  <li><a href="#rocr" id="toc-rocr" class="nav-link" data-scroll-target="#rocr"><span class="header-section-number">22.2</span> ROCR</a></li>
-  <li><a href="#proc" id="toc-proc" class="nav-link" data-scroll-target="#proc"><span class="header-section-number">22.3</span> pROC</a></li>
-  <li><a href="#yardstick" id="toc-yardstick" class="nav-link" data-scroll-target="#yardstick"><span class="header-section-number">22.4</span> yardstick</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>上面的文章中介绍了ROC曲线的本质以及两面性,并详细介绍了如何手动计算真阳性率/假阳性率,以及怎样计算多个,并把点连接成线,变成ROC曲线。</p>
-<p>这些现在都有成熟的R包可以帮我们搞定,不需要我们手动计算。</p>
-<p>不过这些包在计算AUC时,默认是计算阳性结果的AUC,这在实际情况中有时会遇到问题,大家在使用时最好手动指定,到底是计算谁的AUC,关于ROC的两面性,可以参考上面的推文。</p>
-<p>这里以我最常用的<code>ROCR</code>和<code>pROC</code>进行演示。</p>
-<section id="准备数据" class="level2" data-number="22.1">
-<h2 data-number="22.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">22.1</span> 准备数据</h2>
-<p>假如我们要用ca125的值预测患者是不是癌症,虚构一个数据:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">20220840</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>ca125_1 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="fu">rnorm</span>(<span class="dv">10</span>,<span class="dv">80</span>,<span class="dv">20</span>),<span class="fu">rnorm</span>(<span class="dv">20</span>,<span class="dv">50</span>,<span class="dv">10</span>))</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>ca125_2 <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="fu">rnorm</span>(<span class="dv">10</span>,<span class="dv">20</span>,<span class="dv">20</span>),<span class="fu">rnorm</span>(<span class="dv">20</span>,<span class="dv">70</span>,<span class="dv">10</span>))</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>class<span class="ot">=</span><span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">0</span>,<span class="fu">c</span>(<span class="dv">10</span>,<span class="dv">20</span>)))</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>tumor <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="fu">c</span>(<span class="st">"癌症"</span>,<span class="st">"非癌症"</span>),<span class="fu">c</span>(<span class="dv">10</span>,<span class="dv">20</span>)))</span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="st">`</span><span class="at">class</span><span class="st">`</span><span class="ot">=</span>class,<span class="st">`</span><span class="at">ca125_1</span><span class="st">`</span><span class="ot">=</span>ca125_1,<span class="st">`</span><span class="at">ca125_2</span><span class="st">`</span><span class="ot">=</span>ca125_2,</span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>                 <span class="st">`</span><span class="at">tumor</span><span class="st">`</span><span class="ot">=</span>tumor</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>                 )</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>psych<span class="sc">::</span><span class="fu">headTail</span>(df)</span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##     class ca125_1 ca125_2  tumor</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 1       1   51.88    5.96   癌症</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 2       1   82.46   10.59   癌症</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 3       1  113.67  -19.22   癌症</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 4       1   63.49    6.08   癌症</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## ...   ...     ...     ...   &lt;NA&gt;</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 27      0   53.33   74.34 非癌症</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 28      0   59.92   51.11 非癌症</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 29      0   46.46   64.21 非癌症</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">## 30      0   30.03    66.5 非癌症</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="rocr" class="level2" data-number="22.2">
-<h2 data-number="22.2" class="anchored" data-anchor-id="rocr"><span class="header-section-number">22.2</span> ROCR</h2>
-<p><code>ROCR</code>的使用非常简单,两步完成,需要提供用来预测结果的指标以及真实结果。</p>
-<p>关于这个包计算的阳性结果的AUC还是阴性结果的AUC,它的规则是这样的:</p>
-<p><strong><code>ROCR</code>默认计算顺序靠后的类别的AUC。如果提供给<code>labels</code>的值是有序因子型变量,排在前面的默认是阴性结果(negtive),排在后面的默认是阳性结果(positive),默认计算阳性结果(排序靠后)的AUC。如果是无序因子、数值、字符、逻辑型变量,会按照R语言的默认排序,比如按照数字大小、首字母顺序等,也是计算排序靠后的类别的AUC。</strong></p>
-<p>比如我们这个<code>df</code>数据集,其中的<code>tumor</code>这一列是字符型,默认的顺序是:癌症,非癌症,是按照首字母顺序排列的,因此在计算AUC时,默认是计算的非癌症的AUC。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ROCR)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(<span class="at">predictions =</span> ca125_1, <span class="co"># 预测指标</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels =</span> tumor <span class="co"># 真实结果</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>                   )</span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]]</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.075</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>但是大多数时候我们需要的都是阳性结果(比如这里我们想计算癌症的AUC,而不是非癌症)的AUC,所以我建议大家在使用R包计算AUC或者画ROC曲线时,手动指定顺序!</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(<span class="at">predictions =</span> ca125_1, <span class="co"># 预测指标</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>                   <span class="at">labels =</span> tumor <span class="co"># 真实结果</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>                   ,<span class="at">label.ordering =</span> <span class="fu">c</span>(<span class="st">"非癌症"</span>,<span class="st">"癌症"</span>) <span class="co"># 此时就是计算癌症的AUC</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>                   )</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]]</span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.925</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="proc" class="level2" data-number="22.3">
-<h2 data-number="22.3" class="anchored" data-anchor-id="proc"><span class="header-section-number">22.3</span> pROC</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p><code>pROC</code>包计算AUC也需要:用来预测结果的指标以及真实结果。</p>
-<p>这个包计算<code>pROC</code>略有不同,它是根据中位数来的,谁的中位数大,就计算谁的AUC,比如我们的这个例子,计算下中位数看看:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 把ca125_1按照tumor的两个类别进行分组,然后分别计算中位数</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">tapply</span>(ca125_1, tumor, median)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">##     癌症   非癌症 </span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 81.34426 49.99926</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>结果是癌症组的中位数>非癌症组的中位数,所以是计算癌症的AUC。</p>
-<p>计算AUC:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(<span class="at">response=</span>tumor, <span class="at">predictor=</span>ca125_1)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = 癌症, case = 非癌症</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &gt; cases</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = tumor, predictor = ca125_1)</span></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: ca125_1 in 10 controls (tumor 癌症) &gt; 20 cases (tumor 非癌症).</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.925</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>再来看看ca125_2这一列指标:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 把ca125_2按照tumor的两个类别进行分组,然后分别计算中位数</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">tapply</span>(ca125_2, tumor, median)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">##     癌症   非癌症 </span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 13.52771 69.69272</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>结果是癌症组的中位数<非癌症组,所以是计算非癌症的AUC。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(<span class="at">response=</span>tumor, <span class="at">predictor=</span>ca125_2)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = 癌症, case = 非癌症</span></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = tumor, predictor = ca125_2)</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: ca125_2 in 10 controls (tumor 癌症) &lt; 20 cases (tumor 非癌症).</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.9</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>如果想要手动指定,需要设置<code>levels</code>和<code>direction</code>:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 此时计算的就是癌症的AUC</span></span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(<span class="at">response=</span>tumor, <span class="at">predictor=</span>ca125_2,</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>    <span class="at">levels=</span><span class="fu">c</span>(<span class="st">"非癌症"</span>, <span class="st">"癌症"</span>), <span class="co"># 这个顺序随便设定,重要的是direction</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>    <span class="at">direction =</span> <span class="st">"&lt;"</span> <span class="co"># 手动设定非癌症 &lt; 癌症</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>    )</span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = tumor, predictor = ca125_2, levels = c("非癌症",     "癌症"), direction = "&lt;")</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: ca125_2 in 20 controls (tumor 非癌症) &lt; 10 cases (tumor 癌症).</span></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.1</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="yardstick" class="level2" data-number="22.4">
-<h2 data-number="22.4" class="anchored" data-anchor-id="yardstick"><span class="header-section-number">22.4</span> yardstick</h2>
-<p>最后给大家演示下<code>yardstick</code>包的做法,其中<code>truth</code>必须提供因子型,使用<code>event_level</code>指定到底是计算谁的AUC:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>df<span class="sc">$</span>tumor <span class="ot">&lt;-</span> <span class="fu">factor</span>(df<span class="sc">$</span>tumor,<span class="at">levels =</span> <span class="fu">c</span>(<span class="st">"癌症"</span>,<span class="st">"非癌症"</span>))</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(yardstick)</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_auc</span>(<span class="at">data =</span> df, </span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>        tumor,</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>        ca125_1,</span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>        <span class="at">event_level=</span><span class="st">"first"</span>)</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.925</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>画ROC曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>yardstick<span class="sc">::</span><span class="fu">roc_curve</span>(df, <span class="at">truth=</span>tumor,</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>                   ca125_1,</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>                   <span class="at">event_level=</span><span class="st">"first"</span>) <span class="sc">|&gt;</span> </span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>  ggplot2<span class="sc">::</span><span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-attention_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>R语言中的ROC曲线R包都有这样的<strong>潜规则</strong>,大家在使用的时候一定要注意哦~</p>
-<p>示例数据还提供了用数值表示的结果变量<code>class</code>,感兴趣的可以试试看,是不是和我说的一样!</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./roc-compare.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./roc-many.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/roc-attention_files/figure-html/unnamed-chunk-11-1.png b/docs/roc-attention_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index 499d9c5..0000000
Binary files a/docs/roc-attention_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/roc-bestcut.html b/docs/roc-bestcut.html
deleted file mode 100644
index 003a902..0000000
--- a/docs/roc-bestcut.html
+++ /dev/null
@@ -1,1026 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 19&nbsp; ROC曲线的最佳截点</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./roc-smooth.html" rel="next">
-<link href="./roc-survive.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-bestcut.html"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#proc" id="toc-proc" class="nav-link active" data-scroll-target="#proc"><span class="header-section-number">19.1</span> pROC</a></li>
-  <li><a href="#cutoff" id="toc-cutoff" class="nav-link" data-scroll-target="#cutoff"><span class="header-section-number">19.2</span> cutoff</a></li>
-  <li><a href="#optimalcutpoints" id="toc-optimalcutpoints" class="nav-link" data-scroll-target="#optimalcutpoints"><span class="header-section-number">19.3</span> optimalcutpoints</a></li>
-  <li><a href="#cutpointr" id="toc-cutpointr" class="nav-link" data-scroll-target="#cutpointr"><span class="header-section-number">19.4</span> cutpointr</a></li>
-  <li><a href="#survavalroc" id="toc-survavalroc" class="nav-link" data-scroll-target="#survavalroc"><span class="header-section-number">19.5</span> survavalROC</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>前面我们介绍了超多可用于确定连续性变量最佳截点的R包,比如<code>surv_cutpoint()</code>、<code>x-tile</code>、<code>cutoff</code>等,这些方法主要是为了在做生存分析时获得最小的P值:</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/bVmWQ0QoRoLeX7QG14ut9A">R语言生存分析的实现</a></li>
-<li><a href="https://mp.weixin.qq.com/s/pOgbzHZNQC8z7KdrrrNd1A">生存分析最佳截断值的确定</a></li>
-<li><a href="https://mp.weixin.qq.com/s/b9jHsD6VTB0ZZCfQ0pPhMQ">最佳截断值之cutoff</a></li>
-</ul>
-<p>ROC曲线一般用在诊断实验中,ROC的最佳截点,通常是要ROC曲线下面积最大(或者最大敏感性、最大特异性等),也就是基于约登指数。今天介绍一些常见的可以用于确定ROC曲线最佳截点的R包,同时包含了二分类数据和生存数据,有一些包我们在之前的推文中也介绍过。</p>
-<section id="proc" class="level2" data-number="19.1">
-<h2 data-number="19.1" class="anchored" data-anchor-id="proc"><span class="header-section-number">19.1</span> pROC</h2>
-<p>只能用于二分类数据,不能用于生存数据。</p>
-<p>使用<code>pROC</code>包需要注意,一定要指定<em>direction</em>,否则可能会得出错误的结果。</p>
-<p>这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC,在计算时千万要注意!</p>
-<p>关于这个包的详细介绍,请参考文章:<a href="https://mp.weixin.qq.com/s/gDxReThIVOU45t74VQM92Q">用pROC实现ROC曲线分析</a></p>
-<p>使用<code>pROC</code>包的<code>aSAH</code>数据,其中<code>outcome</code>列是结果变量,1代表Good,2代表Poor。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Type 'citation("pROC")' for a citation.</span></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'pROC'</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     cov, smooth, var</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(aSAH)</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 113   7</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>计算AUC及可信区间:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> pROC<span class="sc">::</span><span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome,aSAH<span class="sc">$</span>s100b,<span class="at">ci=</span>T,<span class="at">auc=</span>T)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>res</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.7314</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 95% CI: 0.6301-0.8326 (DeLong)</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>显示最佳截点,比如AUC最大的点:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(res,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">legacy.axes =</span> <span class="cn">TRUE</span>,</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">thresholds=</span><span class="st">"best"</span>, <span class="co"># AUC最大的点</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">print.thres=</span><span class="st">"best"</span>) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-bestcut_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>最佳截点是0.205,特异度是0.806,敏感度是0.634。</p>
-</section>
-<section id="cutoff" class="level2" data-number="19.2">
-<h2 data-number="19.2" class="anchored" data-anchor-id="cutoff"><span class="header-section-number">19.2</span> cutoff</h2>
-<p><code>cutoff</code>包中的<code>roc</code>函数也可以用于确定二分类数据ROC曲线的最佳截点,这个R包还可以用于连续性变量最佳截点的计算,之前专门介绍过:<a href="https://mp.weixin.qq.com/s/b9jHsD6VTB0ZZCfQ0pPhMQ">最佳截断值确定之cutoff</a></p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(cutoff)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'cutoff'</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked from 'package:pROC':</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="do">##     roc</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>cutoff<span class="sc">::</span><span class="fu">roc</span>(aSAH<span class="sc">$</span>s100b, aSAH<span class="sc">$</span>outcome)</span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##                      type  auc cutoff sensitivity specificity</span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 positive classification 0.73   0.22   0.6341463   0.8055556</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>该包给出的最佳截点是0.22,敏感度是0.6341463,特异度是0.8055556。和<code>pROC</code>的结果有一点点差别,问题不大。</p>
-</section>
-<section id="optimalcutpoints" class="level2" data-number="19.3">
-<h2 data-number="19.3" class="anchored" data-anchor-id="optimalcutpoints"><span class="header-section-number">19.3</span> optimalcutpoints</h2>
-<p><code>OptimalCutpoints</code>包也是用于二分类数据ROC曲线的最佳截点,不能用于生存数据。</p>
-<p>该包中最重要的函数是<code>optimal.cutpoints()</code>、<code>control.cutpoints()</code>、<code>summary.optimal.cutpoints()</code>和<code>plot.optimal.cutpoints()</code>函数。<code>optimal.cutpoints()</code>函数根据所选的准则计算最佳切点以及其准确性度量。可以选择多个准则来选择最佳切点。<code>control.cutpoints()</code>函数用于设置每种方法特定的几个参数,例如成本值或诊断准确性度量的最小值。<code>summary.optimal.cutpoints()</code>和<code>plot.optimal.cutpoints()</code>函数分别生成数值和图形输出。数值输出包括有关最佳切点的信息,包括选择最佳值的方法,以及最佳切点的数量(在某些情况下可能有多个值)和最佳切点及其准确性度量的估计值。</p>
-<p>使用起来也是非常简单,没有难度:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(OptimalCutpoints)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>oc_youden <span class="ot">&lt;-</span> <span class="fu">optimal.cutpoints</span>(<span class="at">X=</span><span class="st">"s100b"</span>,</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                               <span class="at">status =</span> <span class="st">"outcome"</span>,</span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                               <span class="at">tag.healthy=</span><span class="st">"Good"</span>,</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                               <span class="at">method=</span><span class="st">"Youden"</span>,<span class="co">#支持的标准超多</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                               <span class="at">data=</span>aSAH</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>                               )</span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(oc_youden)</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## optimal.cutpoints.default(X = "s100b", status = "outcome", tag.healthy = "Good", </span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##     methods = "Youden", data = aSAH)</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the ROC curve (AUC):  0.731 (0.63, 0.833) </span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## CRITERION: Youden</span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Number of optimal cutoffs: 1</span></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">##                     Estimate</span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">## cutoff             0.2200000</span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Se                 0.6341463</span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Sp                 0.8055556</span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a><span class="do">## PPV                0.6500000</span></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">## NPV                0.7945205</span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">## DLR.Positive       3.2613240</span></span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a><span class="do">## DLR.Negative       0.4541632</span></span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a><span class="do">## FP                14.0000000</span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a><span class="do">## FN                15.0000000</span></span>
-<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Optimal criterion  0.4397019</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>给出的结果也是和<code>pROC</code>以及<code>cutoff</code>包是一致的。</p>
-<p>画出来的图也是和<code>pROC</code>一样的:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(oc_youden)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-bestcut_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-<pre><code>## Press return for next page....</code></pre>
-<div class="cell-output-display">
-<p><img src="roc-bestcut_files/figure-html/unnamed-chunk-6-2.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>除此之外,这个包还可以指定协变量,还可以使用最大化敏感度/特异度等指标确定最佳截点,大家可以去查看帮助文档。</p>
-</section>
-<section id="cutpointr" class="level2" data-number="19.4">
-<h2 data-number="19.4" class="anchored" data-anchor-id="cutpointr"><span class="header-section-number">19.4</span> cutpointr</h2>
-<p><code>cutpointr</code>是一个用于整洁计算“最佳”切点的R包。它支持多种计算切点的方法,并包括几个可以通过选择切点来最大化或最小化的度量标准。<code>cutpointr</code>可以自动通过自助法计算最佳切点的变异性,并返回各种性能指标的袋外估计值。</p>
-<p>支持支二分类数据不支持生存数据。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"cutpointr"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个包也支持多种标准,使用时也要注意方向。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(cutpointr)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'cutpointr'</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">## The following object is masked from 'package:cutoff':</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">##     roc</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:pROC':</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">##     auc, roc</span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>cp <span class="ot">&lt;-</span> <span class="fu">cutpointr</span>(<span class="at">data=</span>aSAH, </span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>                <span class="at">x=</span>s100b, </span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a>                <span class="at">class=</span>outcome, </span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a>                <span class="at">method =</span> maximize_metric, <span class="co"># 最大化指标</span></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>                <span class="at">metric =</span> youden) <span class="co"># 选择指标</span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Assuming the positive class is Poor</span></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">## Assuming the positive class has higher x values</span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(cp)</span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">## Method: maximize_metric </span></span>
-<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Predictor: s100b </span></span>
-<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Outcome: outcome </span></span>
-<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">## Direction: &gt;= </span></span>
-<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">##     AUC   n n_pos n_neg</span></span>
-<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  0.7314 113    41    72</span></span>
-<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a><span class="do">##  optimal_cutpoint youden    acc sensitivity specificity tp fn fp tn</span></span>
-<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a><span class="do">##              0.22 0.4397 0.7434      0.6341      0.8056 26 15 14 58</span></span>
-<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a><span class="do">## Predictor summary: </span></span>
-<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a><span class="do">##     Data Min.    5% 1st Qu. Median      Mean 3rd Qu.   95% Max.        SD NAs</span></span>
-<span id="cb9-32"><a href="#cb9-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  Overall 0.03 0.046    0.09   0.14 0.2469912    0.33 0.722 2.07 0.2721603   0</span></span>
-<span id="cb9-33"><a href="#cb9-33" aria-hidden="true" tabindex="-1"></a><span class="do">##     Good 0.04 0.040    0.08   0.11 0.1615278    0.17 0.470 0.50 0.1308548   0</span></span>
-<span id="cb9-34"><a href="#cb9-34" aria-hidden="true" tabindex="-1"></a><span class="do">##     Poor 0.03 0.070    0.12   0.30 0.3970732    0.56 0.860 2.07 0.3751949   0</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>画图:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(cp)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-bestcut_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>除此之外,还有很多其他函数没介绍,大家可以参考github:https://github.com/Thie1e/cutpointr</p>
-</section>
-<section id="survavalroc" class="level2" data-number="19.5">
-<h2 data-number="19.5" class="anchored" data-anchor-id="survavalroc"><span class="header-section-number">19.5</span> survavalROC</h2>
-<p>能做time-dependent-ROC分析的R包不多,找了好久也没发现一个R包可以完成time-dependent-ROC的所有分析,<code>timeROC</code>是比较全能的了,但是不能计算最佳截点,<code>survavalROC</code>可以计算最佳截点,但是又不能同时计算多个时间点的ROC曲线。</p>
-<p>所以最佳截点我们可以通过<code>survivalROC</code>包实现。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/timeROC.RData"</span>)</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survivalROC)</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 1年的最佳截点</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>roc1 <span class="ot">&lt;-</span> <span class="fu">survivalROC</span>(<span class="at">Stime =</span> df<span class="sc">$</span>futime,</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>                   <span class="at">status =</span> df<span class="sc">$</span>event,</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>                   <span class="at">marker =</span> df<span class="sc">$</span>riskScore,</span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>                   <span class="at">method =</span> <span class="st">"KM"</span>,</span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>                   <span class="at">predict.time =</span> <span class="dv">1</span> <span class="co"># 时间选1年</span></span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>                   )</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>roc1<span class="sc">$</span>cut.values[<span class="fu">which.max</span>(roc1<span class="sc">$</span>TP <span class="sc">-</span> roc1<span class="sc">$</span>FP)] <span class="co"># 最佳截点的值,基于约登指数计算出来</span></span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] -0.07986499</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>最佳截点是-0.07986499,就是这么简单,下面就是画图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(roc1<span class="sc">$</span>FP, roc1<span class="sc">$</span>TP, <span class="at">type=</span><span class="st">"l"</span>, <span class="at">xlim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>), <span class="at">ylim=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>),   </span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">xlab=</span><span class="fu">paste</span>( <span class="st">"FP"</span>, <span class="st">"</span><span class="sc">\n</span><span class="st">"</span>, <span class="st">"AUC = "</span>,<span class="fu">round</span>(roc1<span class="sc">$</span>AUC,<span class="dv">3</span>)), </span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">ylab=</span><span class="st">"TP"</span>)</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-bestcut_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>除了以上介绍的R包,还有<code>ThresholdROC</code>也是同样的用法,这里就不介绍了,大家感兴趣的自己学习一下。</p>
-<p>公众号后台回复<strong>ROC</strong>即可获取ROC曲线合集,回复<strong>最佳截点</strong>即可获取最佳截断值相关推文合集。</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./roc-survive.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./roc-smooth.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/roc-bestcut_files/figure-html/unnamed-chunk-11-1.png b/docs/roc-bestcut_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index cff4be3..0000000
Binary files a/docs/roc-bestcut_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-1.png b/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index 8765bcc..0000000
Binary files a/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-2.png b/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-2.png
deleted file mode 100644
index 037cce7..0000000
Binary files a/docs/roc-bestcut_files/figure-html/unnamed-chunk-6-2.png and /dev/null differ
diff --git a/docs/roc-bestcut_files/figure-html/unnamed-chunk-9-1.png b/docs/roc-bestcut_files/figure-html/unnamed-chunk-9-1.png
deleted file mode 100644
index 670e97a..0000000
Binary files a/docs/roc-bestcut_files/figure-html/unnamed-chunk-9-1.png and /dev/null differ
diff --git a/docs/roc-binominal.html b/docs/roc-binominal.html
index 5b721c0..a151436 100644
--- a/docs/roc-binominal.html
+++ b/docs/roc-binominal.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 17&nbsp; 二分类资料ROC曲线绘制</title>
+<title>21&nbsp; 二分类ROC曲线绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -65,23 +65,29 @@
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
 <link href="./roc-survive.html" rel="next">
-<link href="./clinmodel-evalution.html" rel="prev">
+<link href="./conf_matrix-3d.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-binominal.html"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-binominal.html"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +493,26 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#方法1proc" id="toc-方法1proc" class="nav-link active" data-scroll-target="#方法1proc"><span class="header-section-number">17.1</span> 方法1:pROC</a></li>
-  <li><a href="#方法2rocr" id="toc-方法2rocr" class="nav-link" data-scroll-target="#方法2rocr"><span class="header-section-number">17.2</span> 方法2:ROCR</a></li>
-  <li><a href="#方法3tidymodels" id="toc-方法3tidymodels" class="nav-link" data-scroll-target="#方法3tidymodels"><span class="header-section-number">17.3</span> 方法3:tidymodels</a></li>
+  <li><a href="#方法1proc" id="toc-方法1proc" class="nav-link active" data-scroll-target="#方法1proc"><span class="header-section-number">21.1</span> 方法1:pROC</a></li>
+  <li><a href="#方法2rocr" id="toc-方法2rocr" class="nav-link" data-scroll-target="#方法2rocr"><span class="header-section-number">21.2</span> 方法2:ROCR</a></li>
+  <li><a href="#方法3yardstick" id="toc-方法3yardstick" class="nav-link" data-scroll-target="#方法3yardstick"><span class="header-section-number">21.3</span> 方法3:yardstick</a></li>
+  <li><a href="#推荐阅读" id="toc-推荐阅读" class="nav-link" data-scroll-target="#推荐阅读"><span class="header-section-number">21.4</span> 推荐阅读</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-binominal.html"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></h1>
+<h1 class="title"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></h1>
 </div>
 
 
@@ -542,258 +525,273 @@ <h1 class="title"><span class="chapter-number">17</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>ROC曲线是评价模型的重要工具,曲线下面积AUC可能是大家最常见的模型评价指标之一,无论是在临床预测模型,还是在机器学习/医学统计中,都是非常重要的内容。</p>
-<p>如果你还不太了解关于ROC曲线中的各种指标,请看下面这两张图,有你需要的一切(建议保存):</p>
-<p>首先是混淆矩阵以及由混下矩阵计算的各种指标:</p>
-<p><img src="figs/Snipaste_2023-04-01_18-19-50.png" class="img-fluid"></p>
-<p>然后是各种常见指标的计算方法:</p>
-<p><img src="figs/Snipaste_2023-04-01_18-20-16.png" class="img-fluid"></p>
-<p>R语言中有非常多的方法可以实现ROC曲线,但是基本上都是至少需要2列数据,一列是真实结果,另一列是预测值,有了这两列数据,就可以轻松使用各种方法画出ROC曲线并计算AUC。</p>
+
+<p>R语言中有非常多的R包可以绘制ROC曲线,但是基本上都是至少需要2列数据,一列是真实结果,另一列是预测值,有了这两列数据,就可以轻松使用各种方法画出ROC曲线并计算AUC。</p>
 <p>这篇文章带大家介绍最常见的并且好用的二分类变量的ROC曲线画法。</p>
-<section id="方法1proc" class="level2" data-number="17.1">
-<h2 data-number="17.1" class="anchored" data-anchor-id="方法1proc"><span class="header-section-number">17.1</span> 方法1:pROC</h2>
-<p>使用<code>pROC</code>包,不过使用这个包需要注意,一定要指定<em>direction</em>,否则可能会得出错误的结果。</p>
-<p>这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC,在计算时千万要注意!</p>
-<p>关于这个R包的详细使用,请参考文章:<a href="https://mp.weixin.qq.com/s/gDxReThIVOU45t74VQM92Q">用pROC实现ROC曲线分析</a></p>
-<p>使用<code>pROC</code>包的<code>aSAH</code>数据,其中<code>outcome</code>列是结果变量,1代表Good,2代表Poor。</p>
+<section id="方法1proc" class="level2" data-number="21.1">
+<h2 data-number="21.1" class="anchored" data-anchor-id="方法1proc"><span class="header-section-number">21.1</span> 方法1:pROC</h2>
+<p>使用<code>pROC</code>包,这个R包的功能非常强大,我这里只演示它的绘制ROC曲线以及计算AUC的功能,关于这个R包的详细使用,请参考文章:<a href="https://mp.weixin.qq.com/s/gDxReThIVOU45t74VQM92Q">用pROC实现ROC曲线分析</a>,关于<code>pROC</code>的使用在最后一章有详细介绍。</p>
+<p>这个包的使用有一些注意点如下:</p>
+<ul>
+<li>一定要指定<em>direction</em>,否则可能会得出错误的结果。</li>
+<li>这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC。</li>
+<li>它可以绘制带有置信区间的ROC,但是并不是大家想要的那一种,具体请参考上面的文章</li>
+</ul>
+<p>使用<code>pROC</code>包的<code>aSAH</code>数据,其中<code>outcome</code>列是结果变量,1代表Good,2代表Poor。这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:</p>
+<ul>
+<li><code>gos6</code>:格拉斯哥量表评分</li>
+<li><code>outcome</code>:结果变量</li>
+<li><code>gender</code>:性别</li>
+<li><code>age</code>:年龄</li>
+<li><code>wfns</code>:世界神经外科医师联合会公认的神经学量表评分</li>
+<li><code>s100b</code>:生物标志物</li>
+<li><code>ndka</code>:生物标志物</li>
+</ul>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Type 'citation("pROC")' for a citation.</span></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'pROC'</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     cov, smooth, var</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(aSAH)</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 113   7</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(aSAH)</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 113   7</span></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>计算AUC及可信区间:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome,aSAH<span class="sc">$</span>s100b,<span class="at">ci=</span>T,<span class="at">auc=</span>T)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>res</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.7314</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 95% CI: 0.6301-0.8326 (DeLong)</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>res</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)</span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.7314</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 95% CI: 0.6301-0.8326 (DeLong)</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<div class="cell" data-fig.asp="1">
+<p>绘制ROC曲线:</p>
+<div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(res,<span class="at">legacy.axes =</span> <span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
-<p>可以显示最佳截点,比如AUC最大的点:</p>
-<div class="cell" data-fig.asp="1">
+<p>可以显示最佳截点(最佳截点的问题后续章节会详细介绍),比如AUC最大的点:</p>
+<div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(res,</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">legacy.axes =</span> <span class="cn">TRUE</span>,</span>
 <span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">thresholds=</span><span class="st">"best"</span>, <span class="co"># AUC最大的点</span></span>
 <span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">print.thres=</span><span class="st">"best"</span>) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
-<p>可以显示AUC的可信区间:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>rocobj <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100b,</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>                   <span class="at">main=</span><span class="st">"Confidence intervals"</span>, </span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>                   <span class="at">percent=</span><span class="cn">TRUE</span>,<span class="at">ci=</span><span class="cn">TRUE</span>, </span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                   <span class="at">print.auc=</span><span class="cn">TRUE</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                   ) </span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>ciobj <span class="ot">&lt;-</span> <span class="fu">ci.se</span>(rocobj,</span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">specificities=</span><span class="fu">seq</span>(<span class="dv">0</span>, <span class="dv">100</span>, <span class="dv">5</span>)</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ciobj, <span class="at">type=</span><span class="st">"shape"</span>, <span class="at">col=</span><span class="st">"#1c61b6AA"</span>)</span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(<span class="fu">ci</span>(rocobj, <span class="at">of=</span><span class="st">"thresholds"</span>, <span class="at">thresholds=</span><span class="st">"best"</span>)) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
 </div>
 </div>
 <p>多条ROC曲线画在一起:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>rocobj1 <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100,<span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#1c61b6"</span>)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>rocobj1 <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100,<span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#1c61b6"</span>)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), </span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>两条ROC曲线的比较,可以添加P值:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>rocobj1 <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100,<span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#1c61b6"</span>)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>testobj <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(rocobj1, rocobj2)</span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">50</span>, <span class="dv">50</span>, <span class="at">labels=</span><span class="fu">paste</span>(<span class="st">"p-value ="</span>, <span class="fu">format.pval</span>(testobj<span class="sc">$</span>p.value)), <span class="at">adj=</span><span class="fu">c</span>(<span class="dv">0</span>, .<span class="dv">5</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>rocobj1 <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100,<span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#1c61b6"</span>)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), </span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>testobj <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(rocobj1, rocobj2)</span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">50</span>, <span class="dv">50</span>, <span class="at">labels=</span><span class="fu">paste</span>(<span class="st">"p-value ="</span>,<span class="fu">format.pval</span>(testobj<span class="sc">$</span>p.value)), </span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">adj=</span><span class="fu">c</span>(<span class="dv">0</span>, .<span class="dv">5</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="方法2rocr" class="level2" data-number="17.2">
-<h2 data-number="17.2" class="anchored" data-anchor-id="方法2rocr"><span class="header-section-number">17.2</span> 方法2:ROCR</h2>
+<section id="方法2rocr" class="level2" data-number="21.2">
+<h2 data-number="21.2" class="anchored" data-anchor-id="方法2rocr"><span class="header-section-number">21.2</span> 方法2:ROCR</h2>
 <p>使用<code>ROCR</code>,如果你只是为了画一条ROC曲线,这是我最推荐的方法了,美观又简单!</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ROCR)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ROCR)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>使用非常简单,3句代码,其中第2句是关键,可以更改各种参数,然后就可以画出各种不同的图形:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(aSAH<span class="sc">$</span>s100b,aSAH<span class="sc">$</span>outcome)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"tpr"</span>,<span class="st">"fpr"</span>)</span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>auc <span class="ot">&lt;-</span> <span class="fu">round</span>(<span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]],<span class="at">digits =</span> <span class="dv">4</span>)</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,<span class="at">lwd=</span><span class="dv">2</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">lty=</span><span class="dv">2</span>)</span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="st">"AUC of s100b: 0.7314"</span>, <span class="at">col=</span><span class="st">"tomato"</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">prediction</span>(aSAH<span class="sc">$</span>s100b,aSAH<span class="sc">$</span>outcome)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"tpr"</span>,<span class="st">"fpr"</span>)</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>auc <span class="ot">&lt;-</span> <span class="fu">round</span>(<span class="fu">performance</span>(pred, <span class="st">"auc"</span>)<span class="sc">@</span>y.values[[<span class="dv">1</span>]],<span class="at">digits =</span> <span class="dv">4</span>)</span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,<span class="at">lwd=</span><span class="dv">2</span>,<span class="at">col=</span><span class="st">"tomato"</span>)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="fu">abline</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="at">lty=</span><span class="dv">2</span>)</span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="st">"AUC of s100b: 0.7314"</span>, </span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="st">"tomato"</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>添加箱线图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"tpr"</span>, <span class="st">"fpr"</span>)</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>perf</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="do">## A performance instance</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   with 51 data points</span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">avg=</span><span class="st">"threshold"</span>,</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">spread.estimate=</span><span class="st">"boxplot"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"tpr"</span>, <span class="st">"fpr"</span>)</span>
+<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>perf</span>
+<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="do">## A performance instance</span></span>
+<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')</span></span>
+<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   with 51 data points</span></span>
+<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
+<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">avg=</span><span class="st">"threshold"</span>,</span>
+<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">spread.estimate=</span><span class="st">"boxplot"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>还可以绘制PR曲线,召回率recall为横坐标,精确率precision 为纵坐标:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"prec"</span>, <span class="st">"rec"</span>)</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">avg=</span> <span class="st">"threshold"</span>,</span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">colorize=</span><span class="cn">TRUE</span>,</span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">lwd=</span> <span class="dv">3</span>,</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">main=</span> <span class="st">"Precision-Recall plot"</span>)</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">lty=</span><span class="dv">3</span>,</span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">col=</span><span class="st">"grey78"</span>,</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">add=</span><span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"prec"</span>, <span class="st">"rec"</span>)</span>
+<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
+<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">avg=</span> <span class="st">"threshold"</span>,</span>
+<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">colorize=</span><span class="cn">TRUE</span>,</span>
+<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">lwd=</span> <span class="dv">3</span>,</span>
+<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">main=</span> <span class="st">"Precision-Recall plot"</span>)</span>
+<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
+<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">lty=</span><span class="dv">3</span>,</span>
+<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">col=</span><span class="st">"grey78"</span>,</span>
+<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">add=</span><span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
-</div>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
-<p>还可以把特异度为横坐标,灵敏度为纵坐标:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>perf <span class="ot">&lt;-</span> <span class="fu">performance</span>(pred, <span class="st">"sens"</span>, <span class="st">"spec"</span>)</span>
-<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
-<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">avg=</span> <span class="st">"threshold"</span>,</span>
-<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">colorize=</span><span class="cn">TRUE</span>,</span>
-<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>     <span class="at">lwd=</span> <span class="dv">3</span>,</span>
-<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">main=</span><span class="st">"Sensitivity/Specificity plots"</span>)</span>
-<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(perf,</span>
-<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>     <span class="at">lty=</span><span class="dv">3</span>,</span>
-<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">col=</span><span class="st">"grey78"</span>,</span>
-<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">add=</span><span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid" width="672"></p>
 </div>
 </div>
 <p>这个包还可以计算非常多其他的指标,各种图都能画,大家可以自己探索。</p>
 </section>
-<section id="方法3tidymodels" class="level2" data-number="17.3">
-<h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span class="header-section-number">17.3</span> 方法3:tidymodels</h2>
-<p>使用<code>tidymodels</code>。这个包很有来头,它是R中专门做机器学习的,可以到公众号:医学和生信笔记中查看更多关于它的教程,它也是目前R语言机器学习领域两大当红辣子鸡之一!另一个是<code>mlr3</code>。</p>
+<section id="方法3yardstick" class="level2" data-number="21.3">
+<h2 data-number="21.3" class="anchored" data-anchor-id="方法3yardstick"><span class="header-section-number">21.3</span> 方法3:yardstick</h2>
+<p>使用<code>yardstick</code>,它是<code>tidymodels</code>的核心R包之一,<code>tidymodels</code>是R中专门做机器学习和统计建模的,可以到公众号:医学和生信笔记,后台回复tidymodels查看更多关于它的教程,它也是目前R语言机器学习领域两大当红辣子鸡之一!另一个是<code>mlr3</code>。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressPackageStartupMessages</span>(<span class="fu">library</span>(tidymodels))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(yardstick)</span>
+<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>它很优雅,如果你要计算AUC,那么就是<code>roc_auc()</code>函数:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>aSAH <span class="sc">%&gt;%</span> <span class="fu">roc_auc</span>(outcome, s100b,<span class="at">event_level=</span><span class="st">"second"</span>)</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.731</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>aSAH <span class="sc">|&gt;</span> <span class="fu">roc_auc</span>(outcome, s100b,<span class="at">event_level=</span><span class="st">"second"</span>)</span>
+<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
+<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
+<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
+<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc binary         0.731</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>如果你是要画ROC曲线,那么就是<code>roc_curve()</code>函数:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>aSAH <span class="sc">%&gt;%</span> <span class="fu">roc_curve</span>(outcome, s100b,<span class="at">event_level=</span><span class="st">"second"</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> <span class="dv">1</span> <span class="sc">-</span> specificity, <span class="at">y =</span> sensitivity)) <span class="sc">+</span></span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">size=</span><span class="fl">1.2</span>,<span class="at">color=</span><span class="st">"firebrick"</span>) <span class="sc">+</span></span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">lty =</span> <span class="dv">3</span>) <span class="sc">+</span></span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_equal</span>() <span class="sc">+</span></span>
-<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>aSAH <span class="sc">|&gt;</span> <span class="fu">roc_curve</span>(outcome, s100b,<span class="at">event_level=</span><span class="st">"second"</span>) <span class="sc">|&gt;</span> </span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> <span class="dv">1</span> <span class="sc">-</span> specificity, <span class="at">y =</span> sensitivity)) <span class="sc">+</span></span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">size=</span><span class="fl">1.2</span>,<span class="at">color=</span><span class="st">"firebrick"</span>) <span class="sc">+</span></span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">lty =</span> <span class="dv">3</span>) <span class="sc">+</span></span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_equal</span>() <span class="sc">+</span></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-binominal_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-binominal_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
 </div>
 </div>
-<p>还有太多方法可以画ROC了,不过<code>pROC</code>和<code>ROCR</code>基本上技能解决99%的问题了。</p>
+</div>
+<p>还有太多方法可以画ROC了,不过<code>pROC</code>和<code>ROCR</code>基本上能解决99%的问题了。</p>
 <p>最后,给大家看看cran中比较常见的画ROC曲线的包,大家有兴趣可以自己探索:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pkgsearch) </span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>rocPkg <span class="ot">&lt;-</span>  <span class="fu">pkg_search</span>(<span class="at">query=</span><span class="st">"ROC"</span>,<span class="at">size=</span><span class="dv">200</span>)</span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>rocPkgShort <span class="ot">&lt;-</span> rocPkg <span class="sc">%&gt;%</span> </span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>               <span class="fu">filter</span>(maintainer_name <span class="sc">!=</span> <span class="st">"ORPHANED"</span>) <span class="sc">%&gt;%</span></span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>               <span class="fu">select</span>(score, package, downloads_last_month) <span class="sc">%&gt;%</span></span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>               <span class="fu">arrange</span>(<span class="fu">desc</span>(downloads_last_month))</span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(rocPkgShort,<span class="dv">20</span>)</span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a><span class="do">## # A data frame: 20 × 3</span></span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a><span class="do">##      score package         downloads_last_month</span></span>
-<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  *   &lt;dbl&gt; &lt;chr&gt;                          &lt;int&gt;</span></span>
-<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 12333.  pROC                          208519</span></span>
-<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  2  4487.  caTools                       105907</span></span>
-<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  3   990.  ROCR                           53779</span></span>
-<span id="cb16-16"><a href="#cb16-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  4   404.  riskRegression                 12677</span></span>
-<span id="cb16-17"><a href="#cb16-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  5  2637.  PRROC                           9912</span></span>
-<span id="cb16-18"><a href="#cb16-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  6  1833.  plotROC                         3783</span></span>
-<span id="cb16-19"><a href="#cb16-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  7  2303.  cvAUC                           3657</span></span>
-<span id="cb16-20"><a href="#cb16-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  8   346.  mlr3viz                         3110</span></span>
-<span id="cb16-21"><a href="#cb16-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  9   385.  PresenceAbsence                 2653</span></span>
-<span id="cb16-22"><a href="#cb16-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 10  1881.  survivalROC                     2612</span></span>
-<span id="cb16-23"><a href="#cb16-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 11  1801.  precrec                         2547</span></span>
-<span id="cb16-24"><a href="#cb16-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 12  1838.  timeROC                         2371</span></span>
-<span id="cb16-25"><a href="#cb16-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 13   117.  RcmdrPlugin.EZR                 2196</span></span>
-<span id="cb16-26"><a href="#cb16-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 14   460.  ROCit                           1956</span></span>
-<span id="cb16-27"><a href="#cb16-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 15   180.  WVPlots                         1940</span></span>
-<span id="cb16-28"><a href="#cb16-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 16   213.  logcondens                      1800</span></span>
-<span id="cb16-29"><a href="#cb16-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 17   152.  PredictABEL                     1208</span></span>
-<span id="cb16-30"><a href="#cb16-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 18   151.  MLeval                           960</span></span>
-<span id="cb16-31"><a href="#cb16-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 19    51.7 wrProteo                         877</span></span>
-<span id="cb16-32"><a href="#cb16-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 20  1446.  plotwidgets                      637</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pkgsearch) </span>
+<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
+<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>rocPkg <span class="ot">&lt;-</span>  <span class="fu">pkg_search</span>(<span class="at">query=</span><span class="st">"ROC"</span>,<span class="at">size=</span><span class="dv">200</span>)</span>
+<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>rocPkgShort <span class="ot">&lt;-</span> rocPkg <span class="sc">|&gt;</span> </span>
+<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>               <span class="fu">filter</span>(maintainer_name <span class="sc">!=</span> <span class="st">"ORPHANED"</span>) <span class="sc">|&gt;</span></span>
+<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>               <span class="fu">select</span>(score, package, downloads_last_month) <span class="sc">|&gt;</span></span>
+<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>               <span class="fu">arrange</span>(<span class="fu">desc</span>(downloads_last_month))</span>
+<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(rocPkgShort,<span class="dv">20</span>)</span>
+<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">## # A data frame: 20 × 3</span></span>
+<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="do">##     score package              downloads_last_month</span></span>
+<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  *  &lt;dbl&gt; &lt;chr&gt;                               &lt;int&gt;</span></span>
+<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 12743. pROC                               151995</span></span>
+<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  2   961. ROCR                                57388</span></span>
+<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  3  2866. PRROC                               12230</span></span>
+<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  4   432. riskRegression                       8820</span></span>
+<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  5   410. PresenceAbsence                      3378</span></span>
+<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  6  1992. plotROC                              3155</span></span>
+<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  7  2291. cvAUC                                2955</span></span>
+<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  8   526. ROCit                                2663</span></span>
+<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  9  2021. survivalROC                          2661</span></span>
+<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a><span class="do">## 10  1818. timeROC                              2653</span></span>
+<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 11  2024. precrec                              1859</span></span>
+<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a><span class="do">## 12   218. logcondens                           1829</span></span>
+<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 13   190. WVPlots                              1583</span></span>
+<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a><span class="do">## 14   164. PredictABEL                           869</span></span>
+<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 15   190. RISCA                                 706</span></span>
+<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a><span class="do">## 16   220. hmeasure                              681</span></span>
+<span id="cb14-30"><a href="#cb14-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 17   159. cubfits                               659</span></span>
+<span id="cb14-31"><a href="#cb14-31" aria-hidden="true" tabindex="-1"></a><span class="do">## 18  1599. plotwidgets                           654</span></span>
+<span id="cb14-32"><a href="#cb14-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 19   137. ThresholdROCsurvival                  649</span></span>
+<span id="cb14-33"><a href="#cb14-33" aria-hidden="true" tabindex="-1"></a><span class="do">## 20  1000. ROCnReg                               643</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p><code>pROC</code>高居榜首,遥遥领先!</p>
+</section>
+<section id="推荐阅读" class="level2" data-number="21.4">
+<h2 data-number="21.4" class="anchored" data-anchor-id="推荐阅读"><span class="header-section-number">21.4</span> 推荐阅读</h2>
+<p>ROC曲线的其他问题可参考以下推文:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/np7r7njHUZJplu0bxCelRw">多时间点和多指标的ROC曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/BB9lEgrSaGtKffxuhWRSJA">临床预测模型之二分类资料ROC曲线的绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/MJ_FQE3CtVx3ZO9L_ixOSg">临床预测模型之生存资料ROC曲线的绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/Tikll6gUzU2Bg9mJQpqXww">ROC曲线(AUC)的显著性检验</a></li>
+<li><a href="https://mp.weixin.qq.com/s/BKRRRzBO2qcJsBoaXPFlwg">生存资料ROC曲线的最佳截点和平滑曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/sEkuSSYaj3TSGsFS6Y1S7A">ROC曲线纯手工绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/dZgkOUPSL2Qt7Sl7LOMzZA">R语言计算AUC(ROC曲线)的注意事项</a></li>
+<li><a href="https://mp.weixin.qq.com/s/WX0LZ2nkKMxv6JTDnQamCQ">ROC阴性结果还是阳性结果</a></li>
+<li><a href="https://mp.weixin.qq.com/s/eGkRU0GrDiT2fW91RkxqMg">多指标联合诊断的ROC曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/E3U1dx5FqqrOz5fKZ5DfdQ">ROC曲线最佳截点</a></li>
+<li><a href="https://mp.weixin.qq.com/s/hjXFgLxtegyfx_SD437m2Q">bootstrap ROC/AUC</a></li>
+<li><a href="https://mp.weixin.qq.com/s/bBXDHRgTHnuVce62T-91cg">R语言多分类ROC曲线绘制</a></li>
+</ul>
+<p>公众号后台回复<strong>ROC</strong>即可获取以上合集链接。</p>
 
 
 </section>
@@ -834,18 +832,7 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -877,11 +864,50 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -891,8 +917,17 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -904,7 +939,130 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -948,6 +1106,7 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -973,6 +1132,32 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1034,27 +1219,32 @@ <h2 data-number="17.3" class="anchored" data-anchor-id="方法3tidymodels"><span
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./clinmodel-evalution.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span>
+      <a href="./conf_matrix-3d.html" class="pagination-link" aria-label="三维混淆矩阵">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./roc-survive.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./roc-survive.html" class="pagination-link" aria-label="生存数据ROC曲线绘制">
+        <span class="nav-page-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-10-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-10-1.png
new file mode 100644
index 0000000..2632945
Binary files /dev/null and b/docs/roc-binominal_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-11-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index 45b2149..0000000
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-12-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-12-1.png
deleted file mode 100644
index 3bae4e4..0000000
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-12-1.png and /dev/null differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-13-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-13-1.png
index 2632945..1ee7e0d 100644
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-13-1.png and b/docs/roc-binominal_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-14-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-14-1.png
deleted file mode 100644
index 0f062e4..0000000
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-14-1.png and /dev/null differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-17-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-17-1.png
deleted file mode 100644
index 1ee7e0d..0000000
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-17-1.png and /dev/null differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-3-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-3-1.png
new file mode 100644
index 0000000..4970589
Binary files /dev/null and b/docs/roc-binominal_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/docs/roc-bestcut_files/figure-html/unnamed-chunk-3-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-4-1.png
similarity index 100%
rename from docs/roc-bestcut_files/figure-html/unnamed-chunk-3-1.png
rename to docs/roc-binominal_files/figure-html/unnamed-chunk-4-1.png
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-5-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-5-1.png
index 4970589..51bfeb2 100644
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-5-1.png and b/docs/roc-binominal_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-6-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-6-1.png
index ed22206..fab5b92 100644
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-6-1.png and b/docs/roc-binominal_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-7-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-7-1.png
deleted file mode 100644
index fd99a33..0000000
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-7-1.png and /dev/null differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-8-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-8-1.png
index 51bfeb2..45b2149 100644
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-8-1.png and b/docs/roc-binominal_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/roc-binominal_files/figure-html/unnamed-chunk-9-1.png b/docs/roc-binominal_files/figure-html/unnamed-chunk-9-1.png
index fab5b92..3bae4e4 100644
Binary files a/docs/roc-binominal_files/figure-html/unnamed-chunk-9-1.png and b/docs/roc-binominal_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/roc-bootstrap.html b/docs/roc-bootstrap.html
index 971f23d..4300f51 100644
--- a/docs/roc-bootstrap.html
+++ b/docs/roc-bootstrap.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 24&nbsp; bootstrap ROC/AUC</title>
+<title>24&nbsp; bootstrap ROC/AUC – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./多分类数据的ROC曲线.html" rel="next">
-<link href="./roc-many.html" rel="prev">
+<link href="./cindex.html" rel="next">
+<link href="./roc-compare.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-bootstrap.html"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-bootstrap.html"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link active">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,7 +493,7 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
@@ -523,12 +505,12 @@ <h2 id="toc-title">目录</h2>
   <li><a href="#base-r" id="toc-base-r" class="nav-link" data-scroll-target="#base-r"><span class="header-section-number">24.3</span> base R</a></li>
   <li><a href="#boot" id="toc-boot" class="nav-link" data-scroll-target="#boot"><span class="header-section-number">24.4</span> boot</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-bootstrap.html"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></a></li></ol></nav>
 <div class="quarto-title">
 <h1 class="title"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></h1>
 </div>
@@ -543,9 +525,11 @@ <h1 class="title"><span class="chapter-number">24</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>前段时间有群友问有没有<strong>bootstrap ROC</strong>的代码,当时没有,但是实现起来很简单,今天给大家介绍4种方法。</p>
+
+<p>今天给大家介绍4种方法实现bootstrap ROC/AUC。</p>
 <p>这几种都是通用的方法,包括但不限于单纯二分类数据的bootstrap ROC/AUC及可信区间,模型内部验证/外部验证获取的各种指标的bootstrap可信区间(或ROC/AUC)</p>
 <p>在演示前,先说一下这个<strong>bootstrap ROC/AUC</strong>的思路。首先你要知道<a href="https://mp.weixin.qq.com/s/sUioO8DJS8b0ahs8p55AhA">什么是bootstrap</a>,然后你要知道<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=3157190853568921605&amp;scene=173&amp;from_msgid=2247496131&amp;from_itemidx=1&amp;count=3&amp;nolastread=1#wechat_redirect">在R中如何绘制ROC曲线</a>。</p>
 <p>假如是做1000次bootstrap,那就会得到1000个自助集,在每一个自助集都进行1次ROC分析并绘制1条ROC曲线,获取1个AUC值,把这1000条ROC曲线画在一起,就是bootstrap ROC了,通过这1000个AUC就可以计算AUC的置信区间了。</p>
@@ -576,8 +560,7 @@ <h1 class="title"><span class="chapter-number">24</span>&nbsp; <span class="chap
 <h2 data-number="24.1" class="anchored" data-anchor-id="fbroc"><span class="header-section-number">24.1</span> fbroc</h2>
 <p>先介绍一个最简单的,用<code>fbroc</code>这个包实现,因为你在必应或者谷歌搜索<strong>bootstrap ROC in R</strong>,前几个结果中就是这个包。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(fbroc)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: ggplot2</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(fbroc)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>这个包在使用时需要把结果变量变为逻辑型:</p>
 <div class="cell">
@@ -612,10 +595,14 @@ <h2 data-number="24.1" class="anchored" data-anchor-id="fbroc"><span class="head
 <span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.625 0.824</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>把这1000条ROC曲线画在一起,就得到bootstrap ROC了:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(result.boot)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>这个是我目前找到的最简单的方法。</p>
@@ -653,7 +640,11 @@ <h2 data-number="24.2" class="anchored" data-anchor-id="tidyverse"><span class="
 <div class="cell">
 <div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">autoplot</span>(roc_data)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>接下来只要使用bootstrap生成1000个自助集就可以很方便的绘制1000条ROC曲线了。</p>
@@ -705,7 +696,7 @@ <h2 data-number="24.2" class="anchored" data-anchor-id="tidyverse"><span class="
 <span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 Bootstrap0001       0.08      0.312        0.944</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>最后把1000条ROC曲线画在一起即可:也就是大家需要的bootstrap ROC:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>()<span class="sc">+</span></span>
 <span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="co"># 自助集的ROC曲线,共1000条</span></span>
 <span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="at">data =</span> plot_data,</span>
@@ -715,7 +706,11 @@ <h2 data-number="24.2" class="anchored" data-anchor-id="tidyverse"><span class="
 <span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>            <span class="at">color=</span><span class="st">"blue"</span>, <span class="at">linewidth=</span><span class="fl">1.5</span>)<span class="sc">+</span></span>
 <span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>由于我们已经进行了1000次ROC分析,那自然就可以获得1000个AUC,所以根据这1000个AUC,就可以计算均值、标准差、标准误、可信区间。</p>
@@ -745,7 +740,11 @@ <h2 data-number="24.2" class="anchored" data-anchor-id="tidyverse"><span class="
 <div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(boot_auc, <span class="fu">aes</span>(<span class="at">x=</span>.estimate))<span class="sc">+</span></span>
 <span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_density</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>计算置信区间,公式如下(数学知识和统计知识,网络搜索或者看课本都可以):</p>
@@ -823,23 +822,23 @@ <h2 data-number="24.3" class="anchored" data-anchor-id="base-r"><span class="hea
 <span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a>}</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画1000条ROC曲线,还是通过<code>for</code>循环实现:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 提供一个画布</span></span>
 <span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(<span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100b),<span class="at">col=</span><span class="st">"blue"</span>)</span>
-<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a><span class="co"># 画1000条ROC曲线</span></span>
-<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">1000</span>){</span>
-<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">lines.roc</span>(rocs[[i]],<span class="at">col=</span><span class="st">"grey"</span>)</span>
-<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a>}</span>
-<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 画完1000条把原来的挡住了,重新画一条</span></span>
-<span id="cb22-12"><a href="#cb22-12" aria-hidden="true" tabindex="-1"></a><span class="fu">lines.roc</span>(<span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100b),<span class="at">col=</span><span class="st">"blue"</span>)</span>
-<span id="cb22-13"><a href="#cb22-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb22-14"><a href="#cb22-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 画1000条ROC曲线</span></span>
+<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">1000</span>){</span>
+<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">lines.roc</span>(rocs[[i]],<span class="at">col=</span><span class="st">"grey"</span>)</span>
+<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a>}</span>
+<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a><span class="co"># 画完1000条把原来的挡住了,重新画一条</span></span>
+<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="fu">lines.roc</span>(<span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100b),<span class="at">col=</span><span class="st">"blue"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-23-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-23-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>然后是计算1000个AUC的置信区间,和tidy的方法一样的。</p>
@@ -920,26 +919,29 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
 <div class="cell">
 <div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ba)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-30-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-bootstrap_files/figure-html/unnamed-chunk-30-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>获取这1000个AUC的置信区间,默认会给出95%的置信区间,并包含4种计算方法的结果:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="fu">boot.ci</span>(ba)</span>
-<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in boot.ci(ba): bootstrap variances needed for studentized intervals</span></span>
-<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a><span class="do">## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS</span></span>
-<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Based on 1000 bootstrap replicates</span></span>
-<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a><span class="do">## CALL : </span></span>
-<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a><span class="do">## boot.ci(boot.out = ba)</span></span>
-<span id="cb30-8"><a href="#cb30-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb30-9"><a href="#cb30-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Intervals : </span></span>
-<span id="cb30-10"><a href="#cb30-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Level      Normal              Basic         </span></span>
-<span id="cb30-11"><a href="#cb30-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 95%   ( 0.6261,  0.8364 )   ( 0.6314,  0.8479 )  </span></span>
-<span id="cb30-12"><a href="#cb30-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb30-13"><a href="#cb30-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Level     Percentile            BCa          </span></span>
-<span id="cb30-14"><a href="#cb30-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 95%   ( 0.6148,  0.8313 )   ( 0.6048,  0.8228 )  </span></span>
-<span id="cb30-15"><a href="#cb30-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Calculations and Intervals on Original Scale</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a><span class="do">## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS</span></span>
+<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Based on 1000 bootstrap replicates</span></span>
+<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a><span class="do">## CALL : </span></span>
+<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a><span class="do">## boot.ci(boot.out = ba)</span></span>
+<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb30-8"><a href="#cb30-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Intervals : </span></span>
+<span id="cb30-9"><a href="#cb30-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Level      Normal              Basic         </span></span>
+<span id="cb30-10"><a href="#cb30-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 95%   ( 0.6261,  0.8364 )   ( 0.6314,  0.8479 )  </span></span>
+<span id="cb30-11"><a href="#cb30-11" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb30-12"><a href="#cb30-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Level     Percentile            BCa          </span></span>
+<span id="cb30-13"><a href="#cb30-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 95%   ( 0.6148,  0.8313 )   ( 0.6048,  0.8228 )  </span></span>
+<span id="cb30-14"><a href="#cb30-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Calculations and Intervals on Original Scale</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>4种计算方法的置信区间都有了。</p>
 <p>OVER!</p>
@@ -983,18 +985,7 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -1026,11 +1017,50 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -1040,8 +1070,17 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -1053,7 +1092,130 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -1097,6 +1259,7 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -1122,6 +1285,32 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -1183,27 +1372,32 @@ <h2 data-number="24.4" class="anchored" data-anchor-id="boot"><span class="heade
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./roc-many.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span>
+      <a href="./roc-compare.html" class="pagination-link" aria-label="ROC曲线的显著性检验">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./多分类数据的ROC曲线.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./cindex.html" class="pagination-link" aria-label="C-index的计算">
+        <span class="nav-page-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png b/docs/roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png
index f730788..41c6feb 100644
Binary files a/docs/roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png and b/docs/roc-bootstrap_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/roc-compare.html b/docs/roc-compare.html
index 66526af..147ba53 100644
--- a/docs/roc-compare.html
+++ b/docs/roc-compare.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 21&nbsp; ROC曲线的显著性检验</title>
+<title>23&nbsp; ROC曲线的显著性检验 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./roc-attention.html" rel="next">
-<link href="./roc-smooth.html" rel="prev">
+<link href="./roc-bootstrap.html" rel="next">
+<link href="./roc-survive.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-compare.html"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-compare.html"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,24 +493,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#二分类资料的roc比较" id="toc-二分类资料的roc比较" class="nav-link active" data-scroll-target="#二分类资料的roc比较"><span class="header-section-number">21.1</span> 二分类资料的ROC比较</a></li>
-  <li><a href="#生存资料roc的比较" id="toc-生存资料roc的比较" class="nav-link" data-scroll-target="#生存资料roc的比较"><span class="header-section-number">21.2</span> 生存资料ROC的比较</a></li>
+  <li><a href="#二分类资料的roc比较" id="toc-二分类资料的roc比较" class="nav-link active" data-scroll-target="#二分类资料的roc比较"><span class="header-section-number">23.1</span> 二分类资料的ROC比较</a></li>
+  <li><a href="#生存资料roc的比较" id="toc-生存资料roc的比较" class="nav-link" data-scroll-target="#生存资料roc的比较"><span class="header-section-number">23.2</span> 生存资料ROC的比较</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-compare.html"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span id="sec-ROCCOMPARE" class="quarto-section-identifier"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></h1>
+<h1 class="title"><span id="sec-ROCCOMPARE" class="quarto-section-identifier"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></h1>
 </div>
 
 
@@ -541,85 +523,87 @@ <h1 class="title"><span id="sec-ROCCOMPARE" class="quarto-section-identifier"><s
   </div>
   
 
+
 </header>
 
+
 <p>今天说一说ROC(AUC)的比较。</p>
-<section id="二分类资料的roc比较" class="level2" data-number="21.1">
-<h2 data-number="21.1" class="anchored" data-anchor-id="二分类资料的roc比较"><span class="header-section-number">21.1</span> 二分类资料的ROC比较</h2>
+<section id="二分类资料的roc比较" class="level2" data-number="23.1">
+<h2 data-number="23.1" class="anchored" data-anchor-id="二分类资料的roc比较"><span class="header-section-number">23.1</span> 二分类资料的ROC比较</h2>
 <p>可以通过<code>pROC</code>包实现的,使用其中<code>roc.test()</code>函数可实现两个ROC的<code>Delong</code>检验。</p>
-<p>使用<code>pROC</code>包的<code>aSAH</code>数据,其中<code>outcome</code>列是结果变量,1代表Good,2代表Poor。</p>
+<p>使用<code>pROC</code>包的<code>aSAH</code>数据,其中<code>outcome</code>列是结果变量,1代表Good,2代表Poor。这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:</p>
+<ul>
+<li><code>gos6</code>:格拉斯哥量表评分</li>
+<li><code>outcome</code>:结果变量</li>
+<li><code>gender</code>:性别</li>
+<li><code>age</code>:年龄</li>
+<li><code>wfns</code>:世界神经外科医师联合会公认的神经学量表评分</li>
+<li><code>s100b</code>:生物标志物</li>
+<li><code>ndka</code>:生物标志物</li>
+</ul>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Type 'citation("pROC")' for a citation.</span></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'pROC'</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     cov, smooth, var</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(aSAH)</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 113   7</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
-<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
-<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
-<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(aSAH)</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 113   7</span></span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>构建两个ROC对象,然后直接比较即可:</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>roc1 <span class="ot">&lt;-</span> <span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome,aSAH<span class="sc">$</span>s100b)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>roc2 <span class="ot">&lt;-</span> <span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome,aSAH<span class="sc">$</span>ndka)</span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(roc1,roc2)</span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>res</span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  DeLong's test for two correlated ROC curves</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## data:  roc1 and roc2</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Z = 1.3908, p-value = 0.1643</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## alternative hypothesis: true difference in AUC is not equal to 0</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 95 percent confidence interval:</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  -0.04887061  0.28769174</span></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">## sample estimates:</span></span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">## AUC of roc1 AUC of roc2 </span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.7313686   0.6119580</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>roc2 <span class="ot">&lt;-</span> <span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome,aSAH<span class="sc">$</span>ndka)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>res <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(roc1,roc2)</span>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>res</span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  DeLong's test for two correlated ROC curves</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## data:  roc1 and roc2</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Z = 1.3908, p-value = 0.1643</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## alternative hypothesis: true difference in AUC is not equal to 0</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 95 percent confidence interval:</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  -0.04887061  0.28769174</span></span>
+<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## sample estimates:</span></span>
+<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">## AUC of roc1 AUC of roc2 </span></span>
+<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##   0.7313686   0.6119580</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>这个函数里面有个<code>method</code>参数:<code>delong/bootstrap/venkatraman</code>,默认是<code>delong</code>,<code>delong</code>和<code>bootstrap</code>用于比较AUC,如果只是ROC曲线的比较,需要用<code>venkatraman</code>。关于这几种方法的具体原理,大家可以去翻相关的论文~</p>
 <p><code>roc.test</code>只能用于两个ROC的比较,如果是多个比较,可以使用<code>MedCalc</code>软件,这个是和SPSS类似的软件,只要点点点即可。</p>
 <p>当然也是可以直接画在图里的:</p>
-<div class="cell" data-fig.asp="1">
+<div class="cell">
 <div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>rocobj1 <span class="ot">&lt;-</span> <span class="fu">plot.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>s100,<span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#1c61b6"</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>testobj <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(rocobj1, rocobj2)</span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">50</span>, <span class="dv">50</span>, <span class="at">labels=</span><span class="fu">paste</span>(<span class="st">"p-value ="</span>, <span class="fu">format.pval</span>(testobj<span class="sc">$</span>p.value)), <span class="at">adj=</span><span class="fu">c</span>(<span class="dv">0</span>, .<span class="dv">5</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>rocobj2 <span class="ot">&lt;-</span> <span class="fu">lines.roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>ndka, <span class="at">percent=</span><span class="cn">TRUE</span>, <span class="at">col=</span><span class="st">"#008600"</span>)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>, <span class="at">legend=</span><span class="fu">c</span>(<span class="st">"S100B"</span>, <span class="st">"NDKA"</span>), </span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#1c61b6"</span>, <span class="st">"#008600"</span>), <span class="at">lwd=</span><span class="dv">2</span>)</span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>testobj <span class="ot">&lt;-</span> <span class="fu">roc.test</span>(rocobj1, rocobj2)</span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="fu">text</span>(<span class="dv">50</span>, <span class="dv">50</span>, <span class="at">labels=</span><span class="fu">paste</span>(<span class="st">"p-value ="</span>,<span class="fu">format.pval</span>(testobj<span class="sc">$</span>p.value)), </span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>     <span class="at">adj=</span><span class="fu">c</span>(<span class="dv">0</span>, .<span class="dv">5</span>))</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-compare_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-compare_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 <p>当然你也可以用其他非参数检验的方法进行比较,比如<code>mann whitney u</code>检验。</p>
 </section>
-<section id="生存资料roc的比较" class="level2" data-number="21.2">
-<h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较"><span class="header-section-number">21.2</span> 生存资料ROC的比较</h2>
-<p>使用<code>timeROC</code>包实现。</p>
-<p>还是用之前推文中用过的例子,获取数据请翻看之前的推文~</p>
+<section id="生存资料roc的比较" class="level2" data-number="23.2">
+<h2 data-number="23.2" class="anchored" data-anchor-id="生存资料roc的比较"><span class="header-section-number">23.2</span> 生存资料ROC的比较</h2>
+<p>使用<code>timeROC</code>包实现。还是用之前用过的例子。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
 <span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(timeROC)</span>
@@ -706,6 +690,7 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
 <span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="do">## [2,] 0.7750774 1.0000000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>画图就不演示了,可以参考前面的内容。</p>
+<p>但是要注意,如果两条ROC曲线比较得到的结果是P&gt;0.05的,只能说两者没有统计学意义,并不能直接说这两个ROC曲线的效能是一样的!</p>
 
 
 </section>
@@ -746,18 +731,7 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -789,11 +763,50 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -803,8 +816,17 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -816,7 +838,130 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -860,6 +1005,7 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -885,6 +1031,32 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -946,27 +1118,32 @@ <h2 data-number="21.2" class="anchored" data-anchor-id="生存资料roc的比较
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./roc-smooth.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span>
+      <a href="./roc-survive.html" class="pagination-link" aria-label="生存数据ROC曲线绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./roc-attention.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./roc-bootstrap.html" class="pagination-link" aria-label="bootstrap ROC/AUC">
+        <span class="nav-page-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/roc-many_files/figure-html/unnamed-chunk-4-1.png b/docs/roc-many_files/figure-html/unnamed-chunk-4-1.png
deleted file mode 100644
index 50b34e0..0000000
Binary files a/docs/roc-many_files/figure-html/unnamed-chunk-4-1.png and /dev/null differ
diff --git a/docs/roc-smooth.html b/docs/roc-smooth.html
deleted file mode 100644
index 25c1551..0000000
--- a/docs/roc-smooth.html
+++ /dev/null
@@ -1,1042 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 20&nbsp; 平滑ROC曲线</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./roc-compare.html" rel="next">
-<link href="./roc-bestcut.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-smooth.html"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#二分类资料的平滑roc曲线" id="toc-二分类资料的平滑roc曲线" class="nav-link active" data-scroll-target="#二分类资料的平滑roc曲线"><span class="header-section-number">20.1</span> 二分类资料的平滑ROC曲线</a></li>
-  <li><a href="#生存资料的平滑roc曲线" id="toc-生存资料的平滑roc曲线" class="nav-link" data-scroll-target="#生存资料的平滑roc曲线"><span class="header-section-number">20.2</span> 生存资料的平滑ROC曲线</a>
-  <ul class="collapse">
-  <li><a href="#方法1ggplot2" id="toc-方法1ggplot2" class="nav-link" data-scroll-target="#方法1ggplot2"><span class="header-section-number">20.2.1</span> 方法1:ggplot2</a></li>
-  <li><a href="#方法2risksetroc" id="toc-方法2risksetroc" class="nav-link" data-scroll-target="#方法2risksetroc"><span class="header-section-number">20.2.2</span> 方法2:risksetROC</a></li>
-  </ul></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>通常大家画出来的ROC曲线都是曲折的,但是也有很多方法可以实现平滑的ROC曲线,观感上更加好看,但其实我觉得实用价值不是很大,而且虽然做到了平滑,但实际上是牺牲了一些准确度的。</p>
-<section id="二分类资料的平滑roc曲线" class="level2" data-number="20.1">
-<h2 data-number="20.1" class="anchored" data-anchor-id="二分类资料的平滑roc曲线"><span class="header-section-number">20.1</span> 二分类资料的平滑ROC曲线</h2>
-<p>直接通过<code>pROC</code>即可实现,这个包详细使用请参考:<a href="https://mp.weixin.qq.com/s/gDxReThIVOU45t74VQM92Q">用pROC实现ROC曲线分析</a></p>
-<p><code>pROC</code>包中提供了一个<code>aSAH</code>数据集,这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:</p>
-<ul>
-<li><code>gos6</code>:格拉斯哥量表评分</li>
-<li><code>outcome</code>:结果变量</li>
-<li><code>gender</code>:性别</li>
-<li><code>age</code>:年龄</li>
-<li><code>wfns</code>:世界神经外科医师联合会公认的神经学量表评分</li>
-<li><code>s100b</code>:生物标志物</li>
-<li><code>ndka</code>:生物标志物</li>
-</ul>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(<span class="st">"aSAH"</span>)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>可以直接在<code>roc</code>函数中指定,也可以使用<code>smooth</code>函数:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>wfns, <span class="at">smooth =</span> T)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Call:</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="do">## roc.default(response = aSAH$outcome, predictor = aSAH$wfns, smooth = T)</span></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Data: aSAH$wfns in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## Smoothing: binormal </span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Area under the curve: 0.8454</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="co"># 或者</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>rr <span class="ot">&lt;-</span> <span class="fu">roc</span>(aSAH<span class="sc">$</span>outcome, aSAH<span class="sc">$</span>wfns)</span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting levels: control = Good, case = Poor</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">## Setting direction: controls &lt; cases</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>rrs <span class="ot">&lt;-</span> <span class="fu">smooth</span>(rr)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>画图:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(rrs,<span class="at">auc.polygon=</span>T,<span class="at">auc.polygon.col=</span><span class="st">"steelblue"</span>,</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">print.auc=</span>T,</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">print.auc.x=</span><span class="dv">1</span>,<span class="at">print.auc.y=</span><span class="fl">0.9</span>,<span class="at">print.auc.col=</span><span class="st">"firebrick"</span>,</span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">print.auc.cex=</span><span class="dv">2</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-smooth_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="生存资料的平滑roc曲线" class="level2" data-number="20.2">
-<h2 data-number="20.2" class="anchored" data-anchor-id="生存资料的平滑roc曲线"><span class="header-section-number">20.2</span> 生存资料的平滑ROC曲线</h2>
-<p>不考虑时间因素的ROC曲线可以使用<code>pROC</code>包中的<code>smooth</code>参数实现平滑版的曲线。time-dependent ROC目前还没发现比较好的方法可以直接实现,只能使用<code>ggplot2</code>曲线救国了。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(timeROC)</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/timeROC.RData"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<section id="方法1ggplot2" class="level3" data-number="20.2.1">
-<h3 data-number="20.2.1" class="anchored" data-anchor-id="方法1ggplot2"><span class="header-section-number">20.2.1</span> 方法1:ggplot2</h3>
-<p>首先看一下数据结构,对于多个时间点的ROC,需要3列数据:time, event, marker(比如你计算得到的risk score)</p>
-<p>首先还是借助<code>timeROC</code>包构建多个时间点的ROC对象:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>ROC <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T =</span> df<span class="sc">$</span>futime,   </span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>               <span class="at">delta =</span> df<span class="sc">$</span>event,   </span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>               <span class="at">marker =</span> df<span class="sc">$</span>riskScore,   </span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">cause =</span> <span class="dv">1</span>,                </span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">weighting =</span> <span class="st">"marginal"</span>,   </span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">times =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>),       </span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">iid =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>ROC   <span class="co">#查看模型变量信息</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). </span></span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a><span class="do">##     Cases Survivors Censored AUC (%)   se</span></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="do">## t=1    57       203       37   71.02 3.68</span></span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">## t=2    66       106      125   69.23 3.94</span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## t=3    68        74      155   65.53 4.85</span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## Method used for estimating IPCW:marginal </span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Total computation time : 0.08  secs.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>默认的画出来也还可以,但是就是觉得可以更好看一点。</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC, </span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">1</span>, <span class="at">col=</span><span class="st">"red"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">title =</span> <span class="st">""</span>)   <span class="co">#time是时间点,col是线条颜色</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC,</span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"blue"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)    <span class="co">#add指是否添加在上一张图中</span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC,</span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">3</span>, <span class="at">col=</span><span class="st">"orange"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)</span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co">#添加标签信息</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>,</span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"AUC at 1 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">1</span>],<span class="dv">2</span>)), </span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 2 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 3 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">3</span>],<span class="dv">2</span>))),</span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"red"</span>, <span class="st">"blue"</span>, <span class="st">"orange"</span>),</span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty=</span><span class="dv">1</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>)   </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-smooth_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>下面使用<code>ggplot2</code>画图。</p>
-<p>首先是提取数据,这个提取数据比起<code>lasso</code>的真的是很简单了,不过现在提取lasso的数据也很简单。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>df_plot <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">tpr =</span> <span class="fu">as.numeric</span>(ROC<span class="sc">$</span>TP),</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>                 <span class="at">fpr =</span> <span class="fu">as.numeric</span>(ROC<span class="sc">$</span>FP),</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                 <span class="at">year =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="st">"1-year"</span>,<span class="st">"2-year"</span>,<span class="st">"3-year"</span>),<span class="at">each =</span> <span class="fu">nrow</span>(ROC<span class="sc">$</span>TP)))</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(df_plot)</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="do">##          tpr         fpr   year</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 0.00000000 0.000000000 1-year</span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 0.00000000 0.004926108 1-year</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 0.01809868 0.004926108 1-year</span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 0.03681243 0.004926108 1-year</span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 0.03681243 0.009852217 1-year</span></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 0.05425138 0.009852217 1-year</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>下面是画图代码,平滑曲线,说简单确实简单,如果对<code>ggplot2</code>不熟悉,确实也很难想到:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>p <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(df_plot, <span class="fu">aes</span>(fpr, tpr, <span class="at">color =</span> year)) <span class="sc">+</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_smooth</span>(<span class="at">se=</span><span class="cn">FALSE</span>, <span class="at">linewidth=</span><span class="fl">1.2</span>)<span class="sc">+</span> <span class="co"># 这就是平滑曲线的关键</span></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="dv">1</span>, <span class="at">intercept =</span> <span class="dv">0</span>, <span class="at">color =</span> <span class="st">"grey10"</span>,<span class="at">linetype =</span> <span class="dv">2</span>) <span class="sc">+</span></span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">scale_color_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">"#E41A1C"</span>,<span class="st">"#377EB8"</span>,<span class="st">"#4DAF4A"</span>),</span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>                     <span class="at">name =</span> <span class="cn">NULL</span>, </span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>                     <span class="at">labels =</span> <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"AUC at 1 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">1</span>],<span class="dv">2</span>)), </span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>                                <span class="fu">paste0</span>(<span class="st">"AUC at 2 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>                                <span class="fu">paste0</span>(<span class="st">"AUC at 3 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">3</span>],<span class="dv">2</span>)))</span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>                     ) <span class="sc">+</span> </span>
-<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>  <span class="fu">coord_fixed</span>(<span class="at">ratio =</span> <span class="dv">1</span>) <span class="sc">+</span></span>
-<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">"1 - Specificity"</span>, <span class="at">y =</span> <span class="st">"Sensitivity"</span>) <span class="sc">+</span></span>
-<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_minimal</span>(<span class="at">base_size =</span> <span class="dv">14</span>, <span class="at">base_family =</span> <span class="st">"sans"</span>) <span class="sc">+</span></span>
-<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.7</span>,<span class="fl">0.15</span>), </span>
-<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a>        <span class="at">panel.border =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="cn">NA</span>),</span>
-<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a>        <span class="at">axis.text =</span> <span class="fu">element_text</span>(<span class="at">color =</span> <span class="st">"black"</span>))</span>
-<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a>p</span>
-<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="do">## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-smooth_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="方法2risksetroc" class="level3" data-number="20.2.2">
-<h3 data-number="20.2.2" class="anchored" data-anchor-id="方法2risksetroc"><span class="header-section-number">20.2.2</span> 方法2:risksetROC</h3>
-<p>使用<code>risksetROC</code>包实现。</p>
-<p>使用<code>survival</code>包中的<code>pbc</code>数据集。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(risksetROC)</span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Loading required package: MASS</span></span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(pbc)</span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(pbc)</span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    418 obs. of  20 variables:</span></span>
-<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...</span></span>
-<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ fudays  : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...</span></span>
-<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ status  : int  2 0 2 2 1 2 0 2 2 2 ...</span></span>
-<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ drug    : int  1 1 1 1 2 2 2 2 1 2 ...</span></span>
-<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age     : int  21464 20617 25594 19994 13918 24201 20284 19379 15526 25772 ...</span></span>
-<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sex     : int  1 1 0 1 1 1 1 1 1 1 ...</span></span>
-<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...</span></span>
-<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ hepatom : int  1 1 0 1 1 1 1 0 0 0 ...</span></span>
-<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...</span></span>
-<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...</span></span>
-<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...</span></span>
-<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...</span></span>
-<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...</span></span>
-<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...</span></span>
-<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ alkphos : num  1718 7395 516 6122 671 ...</span></span>
-<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ sgot    : num  137.9 113.5 96.1 60.6 113.2 ...</span></span>
-<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...</span></span>
-<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...</span></span>
-<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...</span></span>
-<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>做一些准备工作。只使用前312行数据,生存状态用1表示终点事件,0表示删失,然后建立cox模型,计算出线性预测值作为<code>marker</code>:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>pbc1 <span class="ot">&lt;-</span> pbc[<span class="dv">1</span><span class="sc">:</span><span class="dv">312</span>,]</span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>survival.status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(pbc1<span class="sc">$</span>status<span class="sc">==</span><span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>survival.time <span class="ot">&lt;-</span> pbc1<span class="sc">$</span>fudays</span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>pbc1<span class="sc">$</span>status1 <span class="ot">&lt;-</span> survival.status</span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(survival.time, status1) <span class="sc">~</span> <span class="fu">log</span>(bili)<span class="sc">+</span></span>
-<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>               <span class="fu">log</span>(protime)<span class="sc">+</span>edema<span class="sc">+</span>albumin<span class="sc">+</span>age,</span>
-<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>             <span class="at">data =</span> pbc1</span>
-<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>             )</span>
-<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>eta <span class="ot">&lt;-</span> fit<span class="sc">$</span>linear.predictors</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>使用方法和<code>timeROC</code>以及<code>survivalROC</code>基本上是一样的:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>nobs <span class="ot">&lt;-</span> <span class="fu">length</span>(survival.time[survival.status<span class="sc">==</span><span class="dv">1</span>])</span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>span <span class="ot">&lt;-</span> <span class="fl">1.0</span><span class="sc">*</span>(nobs<span class="sc">^</span>(<span class="sc">-</span><span class="fl">0.2</span>))</span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 3种方法都试一下,然后画在一起</span></span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>ROC.CC90 <span class="ot">&lt;-</span> <span class="fu">risksetROC</span>(<span class="at">Stime =</span> survival.time, <span class="at">status =</span> survival.status,</span>
-<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>                       <span class="at">marker =</span> eta, <span class="at">predict.time =</span> <span class="dv">90</span>, <span class="at">method =</span> <span class="st">"Cox"</span>,</span>
-<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>                       <span class="at">main=</span><span class="st">"time-denpendent ROC with riksetROC"</span>,</span>
-<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>                       <span class="at">lty=</span><span class="dv">2</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">col=</span><span class="st">"red"</span></span>
-<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>                       )</span>
-<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>ROC.SS90 <span class="ot">&lt;-</span> <span class="fu">risksetROC</span>(<span class="at">Stime =</span> survival.time, <span class="at">status =</span> survival.status,</span>
-<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>                       <span class="at">marker =</span> eta, <span class="at">predict.time =</span> <span class="dv">90</span>, <span class="at">method =</span> <span class="st">"Schoenfeld"</span>,</span>
-<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>                       <span class="at">plot =</span> F, <span class="at">span =</span> span</span>
-<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>                       )</span>
-<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>ROC.LL90 <span class="ot">&lt;-</span> <span class="fu">risksetROC</span>(<span class="at">Stime =</span> survival.time, <span class="at">status =</span> survival.status,</span>
-<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>                       <span class="at">marker =</span> eta, <span class="at">predict.time =</span> <span class="dv">90</span>, <span class="at">method =</span> <span class="st">"LocalCox"</span>,</span>
-<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>                       <span class="at">plot =</span> F, <span class="at">span =</span> span</span>
-<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>                       )</span>
-<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(ROC.SS90<span class="sc">$</span>FP, ROC.SS90<span class="sc">$</span>TP, <span class="at">lty=</span><span class="dv">3</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"darkblue"</span>)</span>
-<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a><span class="fu">lines</span>(ROC.LL90<span class="sc">$</span>FP, ROC.LL90<span class="sc">$</span>TP, <span class="at">lty=</span><span class="dv">4</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"green"</span>)</span>
-<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="fl">0.6</span>,<span class="fl">0.25</span>, <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">3</span>,<span class="dv">4</span>),<span class="at">col =</span> <span class="fu">c</span>(<span class="st">"red"</span>,<span class="st">"darkblue"</span>,<span class="st">"green"</span>),</span>
-<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">legend =</span> <span class="fu">c</span>(<span class="st">"Cox"</span>,<span class="st">"Schoenfeld"</span>,<span class="st">"LocalCox"</span>), <span class="at">bty =</span> <span class="st">"n"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-smooth_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>完美的平滑曲线,不用自己实现。</p>
-
-
-</section>
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./roc-bestcut.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./roc-compare.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/roc-smooth_files/figure-html/unnamed-chunk-11-1.png b/docs/roc-smooth_files/figure-html/unnamed-chunk-11-1.png
deleted file mode 100644
index 1b2a211..0000000
Binary files a/docs/roc-smooth_files/figure-html/unnamed-chunk-11-1.png and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-html/unnamed-chunk-3-1.png b/docs/roc-smooth_files/figure-html/unnamed-chunk-3-1.png
deleted file mode 100644
index 2d15d34..0000000
Binary files a/docs/roc-smooth_files/figure-html/unnamed-chunk-3-1.png and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-html/unnamed-chunk-6-1.png b/docs/roc-smooth_files/figure-html/unnamed-chunk-6-1.png
deleted file mode 100644
index fcd22cf..0000000
Binary files a/docs/roc-smooth_files/figure-html/unnamed-chunk-6-1.png and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-html/unnamed-chunk-8-1.png b/docs/roc-smooth_files/figure-html/unnamed-chunk-8-1.png
deleted file mode 100644
index f126455..0000000
Binary files a/docs/roc-smooth_files/figure-html/unnamed-chunk-8-1.png and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-11-1.pdf b/docs/roc-smooth_files/figure-pdf/unnamed-chunk-11-1.pdf
deleted file mode 100644
index 568fc3f..0000000
Binary files a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-11-1.pdf and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-3-1.pdf b/docs/roc-smooth_files/figure-pdf/unnamed-chunk-3-1.pdf
deleted file mode 100644
index 95f32f9..0000000
Binary files a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-3-1.pdf and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-6-1.pdf b/docs/roc-smooth_files/figure-pdf/unnamed-chunk-6-1.pdf
deleted file mode 100644
index 5b7c6af..0000000
Binary files a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-6-1.pdf and /dev/null differ
diff --git a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-8-1.pdf b/docs/roc-smooth_files/figure-pdf/unnamed-chunk-8-1.pdf
deleted file mode 100644
index 2d5ae3d..0000000
Binary files a/docs/roc-smooth_files/figure-pdf/unnamed-chunk-8-1.pdf and /dev/null differ
diff --git a/docs/roc-survive.html b/docs/roc-survive.html
index 6853a5c..0b6e702 100644
--- a/docs/roc-survive.html
+++ b/docs/roc-survive.html
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 18&nbsp; 生存资料ROC曲线绘制</title>
+<title>22&nbsp; 生存数据ROC曲线绘制 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -22,7 +22,7 @@
 }
 /* CSS for syntax highlighting */
 pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span { line-height: 1.25; }
 pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
 code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -33,7 +33,7 @@
 }
 @media print {
 pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
   { counter-reset: source-line 0; }
@@ -64,24 +64,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./roc-bestcut.html" rel="next">
+<link href="./roc-compare.html" rel="next">
 <link href="./roc-binominal.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +96,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +112,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-survive.html"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-survive.html"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +127,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +151,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +334,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +493,26 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#加载r包和数据" id="toc-加载r包和数据" class="nav-link active" data-scroll-target="#加载r包和数据"><span class="header-section-number">18.1</span> 加载R包和数据</a></li>
-  <li><a href="#多个时间点roc" id="toc-多个时间点roc" class="nav-link" data-scroll-target="#多个时间点roc"><span class="header-section-number">18.2</span> 多个时间点ROC</a></li>
-  <li><a href="#多指标roc" id="toc-多指标roc" class="nav-link" data-scroll-target="#多指标roc"><span class="header-section-number">18.3</span> 多指标ROC</a></li>
+  <li><a href="#加载数据" id="toc-加载数据" class="nav-link active" data-scroll-target="#加载数据"><span class="header-section-number">22.1</span> 加载数据</a></li>
+  <li><a href="#多个时间点roc" id="toc-多个时间点roc" class="nav-link" data-scroll-target="#多个时间点roc"><span class="header-section-number">22.2</span> 多个时间点ROC</a></li>
+  <li><a href="#多指标roc" id="toc-多指标roc" class="nav-link" data-scroll-target="#多指标roc"><span class="header-section-number">22.3</span> 多指标ROC</a></li>
+  <li><a href="#推荐阅读" id="toc-推荐阅读" class="nav-link" data-scroll-target="#推荐阅读"><span class="header-section-number">22.4</span> 推荐阅读</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li><li class="breadcrumb-item"><a href="./roc-survive.html"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></h1>
+<h1 class="title"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></h1>
 </div>
 
 
@@ -542,172 +525,223 @@ <h1 class="title"><span class="chapter-number">18</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>生存资料的ROC曲线考虑了时间因素,在画ROC时,需要指定是哪个时间点的ROC。</p>
+
+<p>不管是生存数据还是分类数据,绘制ROC曲线的原理都是一样的(详见第一章)。对于生存分析来说,由于它加入了时间因素,所以我们在绘制ROC曲线时,需要指定一个具体的时间点,在这个具体的时间点上,我们可以计算具体的生存状态以及对应的对应的概率,也就是可以把生存问题转换为二分类问题,这样才能绘制ROC曲线。</p>
 <p>生存资料的ROC曲线绘制,最常见的那肯定是<code>timeROC</code>和<code>survivalROC</code>了,这两个包非常像,我比较喜欢用<code>timeROC</code>。</p>
-<section id="加载r包和数据" class="level2" data-number="18.1">
-<h2 data-number="18.1" class="anchored" data-anchor-id="加载r包和数据"><span class="header-section-number">18.1</span> 加载R包和数据</h2>
+<section id="加载数据" class="level2" data-number="22.1">
+<h2 data-number="22.1" class="anchored" data-anchor-id="加载数据"><span class="header-section-number">22.1</span> 加载数据</h2>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(timeROC)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/timeROC.RData"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/timeROC.RData"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 </section>
-<section id="多个时间点roc" class="level2" data-number="18.2">
-<h2 data-number="18.2" class="anchored" data-anchor-id="多个时间点roc"><span class="header-section-number">18.2</span> 多个时间点ROC</h2>
-<p>首先看一下数据结构,对于多个时间点的ROC,需要3列数据:time, event, marker(比如你计算得到的risk score)。</p>
-<p>看一下画图所需的数据长什么样子,event这一列,0代表living,1代表dead,futime这一列单位是年,也可以改成其他的。</p>
+<section id="多个时间点roc" class="level2" data-number="22.2">
+<h2 data-number="22.2" class="anchored" data-anchor-id="多个时间点roc"><span class="header-section-number">22.2</span> 多个时间点ROC</h2>
+<p>计算生存数据的ROC曲线以及AUC值,需要3列数据:生存时间,生存状态,以及你的分类依据(也就是你根据什么把样本分成生存还是死亡),在具体执行时,还必须指定时间点。</p>
+<p>看一下画图所需的数据长什么样子,<code>event</code>这一列是生存状态,0代表living,1代表dead,<code>futime</code>这一列是生存时间,单位是年,<code>riskScore</code>这一列是分类依据。</p>
 <div class="cell">
 <div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(df)</span>
 <span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    297 obs. of  3 variables:</span></span>
 <span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...</span></span>
 <span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...</span></span>
+<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(df)</span>
+<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   event    riskScore   futime</span></span>
+<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 1     0 -0.249325687 3.027500</span></span>
+<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 2     0 -0.511105679 1.155833</span></span>
+<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 3     1 -0.211305578 1.819167</span></span>
+<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 4     0 -0.427056800 1.516667</span></span>
+<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 5     0  0.278585747 1.344167</span></span>
+<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 7     1 -0.006760815 0.050000</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
+<p>下面我们使用<code>timeROC</code>包中的<code>timeROC()</code>函数计算不同时间点的AUC值。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建timeroc</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>ROC <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df<span class="sc">$</span>futime,   </span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">delta=</span>df<span class="sc">$</span>event,   </span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>               <span class="at">marker=</span>df<span class="sc">$</span>riskScore,   </span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>               <span class="at">cause=</span><span class="dv">1</span>,                <span class="co">#阳性结局指标数值</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">weighting=</span><span class="st">"marginal"</span>,   <span class="co">#计算方法,默认为marginal</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>),       <span class="co">#时间点,选取1年,3年和5年的生存率</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>ROC   <span class="co">#查看模型变量信息</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). </span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##     Cases Survivors Censored AUC (%)   se</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## t=1    57       203       37   71.02 3.68</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## t=2    66       106      125   69.23 3.94</span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">## t=3    68        74      155   65.53 4.85</span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">## Method used for estimating IPCW:marginal </span></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">## Total computation time : 0.08  secs.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 加载R包</span></span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(timeROC)</span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 构建timeroc</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>ROC <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df<span class="sc">$</span>futime,   </span>
+<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>               <span class="at">delta=</span>df<span class="sc">$</span>event,   </span>
+<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>               <span class="at">marker=</span>df<span class="sc">$</span>riskScore,   </span>
+<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">cause=</span><span class="dv">1</span>,                <span class="co">#阳性结局指标数值</span></span>
+<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a>               <span class="at">weighting=</span><span class="st">"marginal"</span>,   <span class="co">#计算方法,默认为marginal</span></span>
+<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a>               <span class="at">times=</span><span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>),       <span class="co">#时间点,选取1年2年3年</span></span>
+<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a>               <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a>ROC   <span class="co">#查看模型变量信息</span></span>
+<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). </span></span>
+<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">##     Cases Survivors Censored AUC (%)   se</span></span>
+<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## t=1    57       203       37   71.02 3.68</span></span>
+<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">## t=2    66       106      125   69.23 3.94</span></span>
+<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">## t=3    68        74      155   65.53 4.85</span></span>
+<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">## Method used for estimating IPCW:marginal </span></span>
+<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
+<span id="cb3-23"><a href="#cb3-23" aria-hidden="true" tabindex="-1"></a><span class="do">## Total computation time : 0.07  secs.</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>画图很简单:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC, </span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">1</span>, <span class="at">col=</span><span class="st">"red"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">title =</span> <span class="st">""</span>)   <span class="co">#time是时间点,col是线条颜色</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC,</span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"blue"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)    <span class="co">#add指是否添加在上一张图中</span></span>
+<p>结果中给出了时间点在1年、2年、3年是的AUC值以及标准误(se)</p>
+<p>然后我们就可以根据这个结果绘制ROC曲线了。</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 第1年的</span></span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC, </span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">1</span>, <span class="at">col=</span><span class="st">"red"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">title =</span> <span class="st">""</span>)   <span class="co">#time是时间点,col是线条颜色</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># 第2年的</span></span>
 <span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC,</span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">3</span>, <span class="at">col=</span><span class="st">"orange"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)</span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="co">#添加标签信息</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>,</span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"AUC at 1 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">1</span>],<span class="dv">2</span>)), </span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 2 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 3 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">3</span>],<span class="dv">2</span>))),</span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"red"</span>, <span class="st">"blue"</span>, <span class="st">"orange"</span>),</span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty=</span><span class="dv">1</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">2</span>, <span class="at">col=</span><span class="st">"blue"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)    <span class="co">#add指是否添加在上一张图中</span></span>
+<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="co"># 第3年的</span></span>
+<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC,</span>
+<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>     <span class="at">time=</span><span class="dv">3</span>, <span class="at">col=</span><span class="st">"orange"</span>, <span class="at">add=</span><span class="cn">TRUE</span>, <span class="at">lwd=</span><span class="dv">2</span>)</span>
+<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="co">#添加图例信息</span></span>
+<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>,</span>
+<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"AUC at 1 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">1</span>],<span class="dv">2</span>)), </span>
+<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 2 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
+<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"AUC at 3 year: "</span>,<span class="fu">round</span>(ROC[[<span class="st">"AUC"</span>]][<span class="dv">3</span>],<span class="dv">2</span>))),</span>
+<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"red"</span>, <span class="st">"blue"</span>, <span class="st">"orange"</span>),</span>
+<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty=</span><span class="dv">1</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>) </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-survive_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-survive_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
+</div>
+</div>
+<p>如果你想绘制其他时间点的AUC以及ROC曲线,只需要在<code>timeROC()</code>函数中更改时间点即可。</p>
+<p>由于我们使用了不同的时间点,每一个时间点都有一个AUC值,所以我们可以很简单的就画出time-dependent-AUC曲线:</p>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plotAUCcurve</span>(ROC, <span class="at">conf.int =</span> T, <span class="at">col =</span> <span class="st">"firebrick"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell-output-display">
+<div>
+<figure class="figure">
+<p><img src="roc-survive_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
 </section>
-<section id="多指标roc" class="level2" data-number="18.3">
-<h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span class="header-section-number">18.3</span> 多指标ROC</h2>
-<p>首先也是看一下所需要的数据结构,其中futime和event是必须的,另外的几列是你想要用来画ROC曲线图的指标,可以自己添加,在这里我使用了riskScore, gender, TNM分期。 在gender这一列,1是female,2是male,t,n,m这3列,数字代表不同的分期</p>
+<section id="多指标roc" class="level2" data-number="22.3">
+<h2 data-number="22.3" class="anchored" data-anchor-id="多指标roc"><span class="header-section-number">22.3</span> 多指标ROC</h2>
+<p>大家在文献中也可能见到过多个指标的ROC曲线绘制在一张图上。下面给大家演示。</p>
+<p>首先也是看一下所需要的数据结构,其中<code>futime</code>和<code>event</code>是必须的,另外的几列是你想要用来画ROC曲线的指标,在这里我使用了<code>riskScore</code>,<code>gender</code>,<code>age</code>,TNM分期。</p>
+<p>在<code>gender</code>这一列,1是female,2是male,<code>t</code>,<code>n</code>,<code>m</code>这3列,数字代表不同的分期。</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(df2)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    297 obs. of  8 variables:</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...</span></span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...</span></span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(df2)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    297 obs. of  8 variables:</span></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...</span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...</span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...</span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...</span></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>多指标的ROC曲线非常简单,就是构建多个ROC,依次添加即可:</p>
+<p>多指标的ROC曲线非常简单,就是构建多个ROC,依次添加即可,时间点我们统一选择3年:</p>
 <div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># riskScore的ROC曲线</span></span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>ROC.risk <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,</span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a>                    <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>                    <span class="at">marker=</span>df2<span class="sc">$</span>riskScore,   </span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>                    <span class="at">cause=</span><span class="dv">1</span>,                </span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a>                    <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>                    <span class="at">times=</span><span class="dv">3</span>,   </span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>                    <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="co"># gender的ROC曲线</span></span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>ROC.gender <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
-<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a>                      <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
-<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>                      <span class="at">marker=</span>df2<span class="sc">$</span>gender,   </span>
-<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>                      <span class="at">cause=</span><span class="dv">1</span>,   </span>
-<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>                      <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
-<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>                      <span class="at">times=</span><span class="dv">3</span>,   </span>
-<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>                      <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a><span class="co"># age的ROC曲线</span></span>
-<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a>ROC.age <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
-<span id="cb6-23"><a href="#cb6-23" aria-hidden="true" tabindex="-1"></a>                   <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
-<span id="cb6-24"><a href="#cb6-24" aria-hidden="true" tabindex="-1"></a>                   <span class="at">marker=</span>df2<span class="sc">$</span>age,   </span>
-<span id="cb6-25"><a href="#cb6-25" aria-hidden="true" tabindex="-1"></a>                   <span class="at">cause=</span><span class="dv">1</span>,   </span>
-<span id="cb6-26"><a href="#cb6-26" aria-hidden="true" tabindex="-1"></a>                   <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
-<span id="cb6-27"><a href="#cb6-27" aria-hidden="true" tabindex="-1"></a>                   <span class="at">times=</span><span class="dv">3</span>,   </span>
-<span id="cb6-28"><a href="#cb6-28" aria-hidden="true" tabindex="-1"></a>                   <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb6-29"><a href="#cb6-29" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-30"><a href="#cb6-30" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-31"><a href="#cb6-31" aria-hidden="true" tabindex="-1"></a><span class="co"># T分期的ROC曲线</span></span>
-<span id="cb6-32"><a href="#cb6-32" aria-hidden="true" tabindex="-1"></a>ROC.T <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,</span>
-<span id="cb6-33"><a href="#cb6-33" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,  </span>
-<span id="cb6-34"><a href="#cb6-34" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>t,   </span>
-<span id="cb6-35"><a href="#cb6-35" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>, </span>
-<span id="cb6-36"><a href="#cb6-36" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>, </span>
-<span id="cb6-37"><a href="#cb6-37" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>, </span>
-<span id="cb6-38"><a href="#cb6-38" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb6-39"><a href="#cb6-39" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-40"><a href="#cb6-40" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-41"><a href="#cb6-41" aria-hidden="true" tabindex="-1"></a><span class="co"># N分期的ROC曲线</span></span>
-<span id="cb6-42"><a href="#cb6-42" aria-hidden="true" tabindex="-1"></a>ROC.N <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
-<span id="cb6-43"><a href="#cb6-43" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
-<span id="cb6-44"><a href="#cb6-44" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>n,   </span>
-<span id="cb6-45"><a href="#cb6-45" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>,   </span>
-<span id="cb6-46"><a href="#cb6-46" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
-<span id="cb6-47"><a href="#cb6-47" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>,   </span>
-<span id="cb6-48"><a href="#cb6-48" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
-<span id="cb6-49"><a href="#cb6-49" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-50"><a href="#cb6-50" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb6-51"><a href="#cb6-51" aria-hidden="true" tabindex="-1"></a><span class="co"># M分期的ROC曲线</span></span>
-<span id="cb6-52"><a href="#cb6-52" aria-hidden="true" tabindex="-1"></a>ROC.M <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
-<span id="cb6-53"><a href="#cb6-53" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
-<span id="cb6-54"><a href="#cb6-54" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>m,   </span>
-<span id="cb6-55"><a href="#cb6-55" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>,   </span>
-<span id="cb6-56"><a href="#cb6-56" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
-<span id="cb6-57"><a href="#cb6-57" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>,   </span>
-<span id="cb6-58"><a href="#cb6-58" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># riskScore的ROC曲线</span></span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>ROC.risk <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,</span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                    <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                    <span class="at">marker=</span>df2<span class="sc">$</span>riskScore,   </span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                    <span class="at">cause=</span><span class="dv">1</span>,                </span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                    <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>                    <span class="at">times=</span><span class="dv">3</span>,   </span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>                    <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="co"># gender的ROC曲线</span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>ROC.gender <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>                      <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
+<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>                      <span class="at">marker=</span>df2<span class="sc">$</span>gender,   </span>
+<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>                      <span class="at">cause=</span><span class="dv">1</span>,   </span>
+<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>                      <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
+<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>                      <span class="at">times=</span><span class="dv">3</span>,   </span>
+<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a>                      <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a><span class="co"># age的ROC曲线</span></span>
+<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a>ROC.age <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
+<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a>                   <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
+<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a>                   <span class="at">marker=</span>df2<span class="sc">$</span>age,   </span>
+<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a>                   <span class="at">cause=</span><span class="dv">1</span>,   </span>
+<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a>                   <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
+<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a>                   <span class="at">times=</span><span class="dv">3</span>,   </span>
+<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a>                   <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-28"><a href="#cb7-28" aria-hidden="true" tabindex="-1"></a><span class="co"># T分期的ROC曲线</span></span>
+<span id="cb7-29"><a href="#cb7-29" aria-hidden="true" tabindex="-1"></a>ROC.T <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,</span>
+<span id="cb7-30"><a href="#cb7-30" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,  </span>
+<span id="cb7-31"><a href="#cb7-31" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>t,   </span>
+<span id="cb7-32"><a href="#cb7-32" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>, </span>
+<span id="cb7-33"><a href="#cb7-33" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>, </span>
+<span id="cb7-34"><a href="#cb7-34" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>, </span>
+<span id="cb7-35"><a href="#cb7-35" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb7-36"><a href="#cb7-36" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-37"><a href="#cb7-37" aria-hidden="true" tabindex="-1"></a><span class="co"># N分期的ROC曲线</span></span>
+<span id="cb7-38"><a href="#cb7-38" aria-hidden="true" tabindex="-1"></a>ROC.N <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
+<span id="cb7-39"><a href="#cb7-39" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
+<span id="cb7-40"><a href="#cb7-40" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>n,   </span>
+<span id="cb7-41"><a href="#cb7-41" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>,   </span>
+<span id="cb7-42"><a href="#cb7-42" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
+<span id="cb7-43"><a href="#cb7-43" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>,   </span>
+<span id="cb7-44"><a href="#cb7-44" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span>
+<span id="cb7-45"><a href="#cb7-45" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb7-46"><a href="#cb7-46" aria-hidden="true" tabindex="-1"></a><span class="co"># M分期的ROC曲线</span></span>
+<span id="cb7-47"><a href="#cb7-47" aria-hidden="true" tabindex="-1"></a>ROC.M <span class="ot">&lt;-</span> <span class="fu">timeROC</span>(<span class="at">T=</span>df2<span class="sc">$</span>futime,   </span>
+<span id="cb7-48"><a href="#cb7-48" aria-hidden="true" tabindex="-1"></a>                 <span class="at">delta=</span>df2<span class="sc">$</span>event,   </span>
+<span id="cb7-49"><a href="#cb7-49" aria-hidden="true" tabindex="-1"></a>                 <span class="at">marker=</span>df2<span class="sc">$</span>m,   </span>
+<span id="cb7-50"><a href="#cb7-50" aria-hidden="true" tabindex="-1"></a>                 <span class="at">cause=</span><span class="dv">1</span>,   </span>
+<span id="cb7-51"><a href="#cb7-51" aria-hidden="true" tabindex="-1"></a>                 <span class="at">weighting=</span><span class="st">"marginal"</span>,   </span>
+<span id="cb7-52"><a href="#cb7-52" aria-hidden="true" tabindex="-1"></a>                 <span class="at">times=</span><span class="dv">3</span>,   </span>
+<span id="cb7-53"><a href="#cb7-53" aria-hidden="true" tabindex="-1"></a>                 <span class="at">iid=</span><span class="cn">TRUE</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>把每个曲线拼在一起即可,添加一个图例:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.risk, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#E41A1C"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">title =</span> <span class="st">""</span>)</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.gender, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#A65628"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.age, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#4DAF4A"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.T, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#377EB8"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.N, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#984EA3"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.M, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#FFFF33"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>,</span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"Risk score: "</span>,<span class="fu">round</span>(ROC.risk[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"gender: "</span>,<span class="fu">round</span>(ROC.gender[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"age: "</span>,<span class="fu">round</span>(ROC.age[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"T: "</span>,<span class="fu">round</span>(ROC.T[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"N: "</span>,<span class="fu">round</span>(ROC.N[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
-<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"M: "</span>,<span class="fu">round</span>(ROC.M[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>))</span>
-<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>         ),</span>
-<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#E41A1C"</span>, <span class="st">"#A65628"</span>, <span class="st">"#4DAF4A"</span>,<span class="st">"#377EB8"</span>,<span class="st">"#984EA3"</span>,<span class="st">"#FFFF33"</span>),</span>
-<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty=</span><span class="dv">1</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>)  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="cell">
+<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.risk, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#E41A1C"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">title =</span> <span class="st">""</span>)</span>
+<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.gender, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#A65628"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
+<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.age, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#4DAF4A"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
+<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.T, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#377EB8"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
+<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.N, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#984EA3"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
+<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(ROC.M, <span class="at">time =</span> <span class="dv">3</span>, <span class="at">col=</span><span class="st">"#FFFF33"</span>, <span class="at">lwd=</span><span class="dv">2</span>, <span class="at">add =</span> T)</span>
+<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"bottomright"</span>,</span>
+<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>       <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="st">"Risk score: "</span>,<span class="fu">round</span>(ROC.risk[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
+<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"gender: "</span>,<span class="fu">round</span>(ROC.gender[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)), </span>
+<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"age: "</span>,<span class="fu">round</span>(ROC.age[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
+<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"T: "</span>,<span class="fu">round</span>(ROC.T[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
+<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"N: "</span>,<span class="fu">round</span>(ROC.N[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>)),</span>
+<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>         <span class="fu">paste0</span>(<span class="st">"M: "</span>,<span class="fu">round</span>(ROC.M[[<span class="st">"AUC"</span>]][<span class="dv">2</span>],<span class="dv">2</span>))</span>
+<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>         ),</span>
+<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a>       <span class="at">col=</span><span class="fu">c</span>(<span class="st">"#E41A1C"</span>, <span class="st">"#A65628"</span>, <span class="st">"#4DAF4A"</span>,<span class="st">"#377EB8"</span>,<span class="st">"#984EA3"</span>,<span class="st">"#FFFF33"</span>),</span>
+<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a>       <span class="at">lty=</span><span class="dv">1</span>, <span class="at">lwd=</span><span class="dv">2</span>,<span class="at">bty =</span> <span class="st">"n"</span>)  </span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
-<p><img src="roc-survive_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
+<div>
+<figure class="figure">
+<p><img src="roc-survive_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
+</figure>
+</div>
 </div>
 </div>
+</section>
+<section id="推荐阅读" class="level2" data-number="22.4">
+<h2 data-number="22.4" class="anchored" data-anchor-id="推荐阅读"><span class="header-section-number">22.4</span> 推荐阅读</h2>
+<p>ROC曲线的其他问题可参考以下推文:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/np7r7njHUZJplu0bxCelRw">多时间点和多指标的ROC曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/BB9lEgrSaGtKffxuhWRSJA">临床预测模型之二分类资料ROC曲线的绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/MJ_FQE3CtVx3ZO9L_ixOSg">临床预测模型之生存资料ROC曲线的绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/Tikll6gUzU2Bg9mJQpqXww">ROC曲线(AUC)的显著性检验</a></li>
+<li><a href="https://mp.weixin.qq.com/s/BKRRRzBO2qcJsBoaXPFlwg">生存资料ROC曲线的最佳截点和平滑曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/sEkuSSYaj3TSGsFS6Y1S7A">ROC曲线纯手工绘制</a></li>
+<li><a href="https://mp.weixin.qq.com/s/dZgkOUPSL2Qt7Sl7LOMzZA">R语言计算AUC(ROC曲线)的注意事项</a></li>
+<li><a href="https://mp.weixin.qq.com/s/WX0LZ2nkKMxv6JTDnQamCQ">ROC阴性结果还是阳性结果</a></li>
+<li><a href="https://mp.weixin.qq.com/s/eGkRU0GrDiT2fW91RkxqMg">多指标联合诊断的ROC曲线</a></li>
+<li><a href="https://mp.weixin.qq.com/s/E3U1dx5FqqrOz5fKZ5DfdQ">ROC曲线最佳截点</a></li>
+<li><a href="https://mp.weixin.qq.com/s/hjXFgLxtegyfx_SD437m2Q">bootstrap ROC/AUC</a></li>
+<li><a href="https://mp.weixin.qq.com/s/bBXDHRgTHnuVce62T-91cg">R语言多分类ROC曲线绘制</a></li>
+</ul>
+<p>公众号后台回复<strong>ROC</strong>即可获取以上合集链接。</p>
 
 
 </section>
@@ -748,18 +782,7 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -791,11 +814,50 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -805,8 +867,17 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -818,7 +889,130 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -862,6 +1056,7 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -887,6 +1082,32 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -948,27 +1169,32 @@ <h2 data-number="18.3" class="anchored" data-anchor-id="多指标roc"><span clas
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./roc-binominal.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span>
+      <a href="./roc-binominal.html" class="pagination-link" aria-label="二分类ROC曲线绘制">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./roc-bestcut.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./roc-compare.html" class="pagination-link" aria-label="ROC曲线的显著性检验">
+        <span class="nav-page-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/roc-survive_files/figure-html/unnamed-chunk-5-1.png b/docs/roc-survive_files/figure-html/unnamed-chunk-5-1.png
new file mode 100644
index 0000000..900e2f6
Binary files /dev/null and b/docs/roc-survive_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/roc-survive_files/figure-html/unnamed-chunk-7-1.png b/docs/roc-survive_files/figure-html/unnamed-chunk-8-1.png
similarity index 100%
rename from docs/roc-survive_files/figure-html/unnamed-chunk-7-1.png
rename to docs/roc-survive_files/figure-html/unnamed-chunk-8-1.png
diff --git a/docs/search.json b/docs/search.json
index 08733ce..50780d0 100644
--- a/docs/search.json
+++ b/docs/search.json
@@ -4,1672 +4,2635 @@
     "href": "index.html",
     "title": "R语言实战临床预测模型",
     "section": "",
-    "text": "前言\n谨以此书献给我不务正业的研究生生涯。"
+    "text": "前言\n谨以此书纪念我不务正业的研究生生涯。",
+    "crumbs": [
+      "前言"
+    ]
   },
   {
     "objectID": "index.html#本书缘起",
     "href": "index.html#本书缘起",
     "title": "R语言实战临床预测模型",
     "section": "本书缘起",
-    "text": "本书缘起\n我在2019年接触到R语言和临床预测模型,彼时还是“简单的纯生信也能随便发SCI的上古时代”,当时的临床预测模型并不像现在这么火爆,连培训班也只有零星的几个,收费不过1000块左右。\n然而随着大家愈加内卷,各种各样的培训班也越来越多,价格也是水涨船高,竟然都要3000+,甚至8000+了,真是离谱!但是内容并没有什么新意,无非就是列线图/ROC曲线/C-index/NRI/IDI/校准曲线/决策曲线等等。\n回想自己的学习经历,这些东西无非就是各种R语言操作而已,本人的公众号也一直向大家免费提供这些教程。这部分内容已经积累了几十篇推文,是时候做个总结了,我把这些内容整理在一起,方便有需要的人学习。\n本书github地址:https://github.com/ayueme/R_clinical_model"
+    "text": "本书缘起\n我在2019年接触到R语言和临床预测模型,彼时还是“简单的纯生信也能随便发SCI的上古时代”,当时的临床预测模型并不像现在这么火爆,连培训班也只有零星的几个,收费不过1000块左右。\n然而随着大家愈加内卷,各种各样的培训班也越来越多,价格也是水涨船高,竟然都要3000+,甚至8000+了,更让人匪夷所思的是竟然还有付费订阅制软件!离谱!魔幻!但是内容并没有什么新意,无非就是列线图/ROC曲线/C-index/NRI/IDI/校准曲线/决策曲线等等。\n回想自己的学习经历,这些东西无非就是各种R语言操作而已,本人的公众号也一直向大家免费提供这些教程。这部分内容已经积累了近百篇推文,是时候做个总结了,我把这些内容整理在一起,方便有需要的人学习。\n\n本书在线阅读地址:https://ayueme.github.io/R_clinical_model/\n本书github地址:https://github.com/ayueme/R_clinical_model",
+    "crumbs": [
+      "前言"
+    ]
   },
   {
     "objectID": "index.html#书籍简介",
     "href": "index.html#书籍简介",
     "title": "R语言实战临床预测模型",
     "section": "书籍简介",
-    "text": "书籍简介\n本书主要介绍R语言在临床预测模型中的应用,重实践,少理论,全书只有少量内容是理论,其余部分都是R语言实操。\n临床预测模型和统计学以及机器学习交叉很多,本书虽然是R语言实现临床预测模型的入门书籍,但在阅读本书前,还需要你已经对临床预测模型、统计学、机器学习具有一定的了解。\n\n\n\n\n\n\n提醒\n\n\n\n本书不适合R语言零基础的人。\n如果你是刚入门的小白,我首先推荐你了解下R语言的基础知识,比如R语言和R包安装(初学者可参考附录)、Rstudio的界面、R语言中数据类型(向量、矩阵、数据框、列表等)、R语言中的数据导入导出、R语言的基础数据操作等。\n对于医学生/医生,我比较推荐先看《R语言实战》,再看《R数据科学》,无需全部了解,只需要熟悉其中的基础知识即可。\n\n\n本书内容主要涉及模型建立、模型评价、模型比较3部分内容,其中模型建立和模型评价内容占比较多,模型比较部分主要是几个综合性R包的使用,简化多模型比较的流程。变量筛选内容较多,我把它单独放在一个章节中。对于临床预测模型中常见的列线图、C-index、ROC曲线、校准曲线、决策曲线、临床影响曲线、NRI、IDI等内容,皆进行了详细的操作演示,同时提供多种实现方法。\n对于一些比较火爆的机器学习方法,如随机生存森林、生存支持向量机、提升法、神经网络等内容,本书并未进行介绍,公众号会逐步更新这部分内容(随机生存森林、生存支持向量机已完结),需要的朋友可关注公众号:医学和生信笔记。\n\n\n\n\n\n\n注意\n\n\n\n本书实际上是我公众号历史推文的整理和汇总(部分内容有改动),书中涉及的所有数据都可以在相关历史推文中免费获取!推文合集链接:临床预测模型\n我也准备了一个PDF版合集,内容和网页版一致,只是打包了所有的数据,付费获取(10元),介意勿扰!PDF版合集获取链接:R语言实战临床预测模型\n\n\n限于本人水平等问题,难免会有一些错误,欢迎大家以各种方式批评指正,比如公众号留言、粉丝QQ群、github、个人微信等。\n本书会不定期更新,内容和格式都会不断完善。\n更新日志:\n\n20231230:优化内容结构和章节,增加变量筛选;增加列线图和决策曲线相关内容等\n20231015:首次上传"
+    "text": "书籍简介\n本书主要介绍R语言在临床预测模型中的应用,重实践,少理论,全书多数内容都是R语言实操,但是对于每一种方法和概念都进行了详细的解释。\n临床预测模型和统计学以及机器学习交叉很多,本书虽然是R语言实现临床预测模型的入门书籍,但在阅读本书前,还需要你已经对临床预测模型、统计学、机器学习具有一定的了解。\n\n\n\n\n\n\n提醒\n\n\n\n本书不适合R语言零基础的人。 如果你是刚入门的小白,我首先推荐你了解下R语言的基础知识,比如R语言和R包安装、Rstudio的界面、R语言中数据类型(向量、矩阵、数据框、列表等)、R语言中的数据导入导出、R语言的基础数据操作等。\n\n\n我结合自己学习R语言时的经验,也专门为编程零基础的医学生/医生等群体录制了R语言零基础入门的视频教程,已放在B站,且配套文档、数据都是免费的,无任何套路。各种在初学R时遇到的“坑”,我都替你踩过了,并且也在视频中指出来了。强烈建议没接触过R语言的朋友先去了解下基础知识,切勿直接上手实操!\n本书内容主要涉及模型建立、模型评价、模型比较3部分内容,其中模型建立和模型评价内容占比较多,模型比较部分主要是几个综合性R包的使用,简化多模型比较的流程。变量筛选内容较多,我把它单独放在一个章节中。对于临床预测模型中常见的列线图、C-index、ROC曲线、校准曲线、决策曲线、临床影响曲线、NRI、IDI等内容,皆进行了详细的操作演示(包括训练集、内部验证、外部验证),同时提供多种实现方法。\n本书并未对机器学习方法(如:随机森林、支持向量机、决策树、xgboost、岭回归/lasso回归、knn、GBM等)进行介绍,因为这又是一个全新的领域,虽然目前临床预测模型中经常会用到机器学习方法,但是都比较初级,使用也不规范。对于机器学习,我也专门出了一个合集进行介绍:R语言实战机器学习\n对于一些比较火爆的机器学习方法,如随机生存森林、生存支持向量机、提升法、神经网络等内容,本书也未进行介绍,公众号已更新这部分内容,需要的朋友可关注公众号:医学和生信笔记,并使用关键词搜索历史推文即可。\n\n\n\n\n\n\n注意\n\n\n\n本书是我基于公众号历史推文的重新整理和汇总,书中涉及的所有数据都可以在相关历史推文中免费获取!推文合集链接:临床预测模型。本书自上线以来一直在不断更新中,内容相较于原推文已经发生了较大变化,部分内容在公众号中可能没有。\n我也准备了一个PDF版合集,内容和网页版一致,只是打包了所有的数据,付费获取(10元),介意勿扰!PDF版合集获取链接:R语言实战临床预测模型\n\n\n限于本人水平等问题,难免会有一些错误,欢迎大家以各种方式批评指正,比如公众号留言、粉丝QQ群、github、个人微信等。\n本书会不定期更新,内容和格式都会不断完善。\n更新日志:\n\n20241108:这是一次比较大的更新。(1)修改各个章节内容和顺序,增加大量解释说明的内容和基础知识,合并一些内容,放在同一章节里,并适当精简一些内容;(2)模型评价部分增加新的评价内容,训练集和测试集分别演示;(3)增加tidymodels的使用以及内部验证/外部验证的内容;(4)每个指标和图形都增加解释内容,方便初学者理解;(5)增加样本量计算和缺失值插补相关内容;(6)增加模型比较的内容;(7)增加文献学习内容。\n20231230:优化内容结构和章节,增加变量筛选;增加列线图和决策曲线相关内容等\n20231015:首次上传",
+    "crumbs": [
+      "前言"
+    ]
   },
   {
     "objectID": "index.html#作者简介",
     "href": "index.html#作者简介",
     "title": "R语言实战临床预测模型",
     "section": "作者简介",
-    "text": "作者简介\n\n阿越,外科医生,R语言爱好者,长期分享R语言和医学统计学、临床预测模型、生信数据挖掘、R语言机器学习等知识。\n公众号:医学和生信笔记\n知乎:医学和生信笔记\nCSDN:医学和生信笔记\n哔哩哔哩:阿越就是我\nGithub:ayueme"
+    "text": "作者简介\n\n阿越,外科医生,R语言爱好者,长期分享R语言和医学统计学、临床预测模型、生信数据挖掘、R语言机器学习等知识。\n哔哩哔哩:阿越就是我\nGithub:ayueme\n公众号:医学和生信笔记,欢迎扫码关注:",
+    "crumbs": [
+      "前言"
+    ]
   },
   {
-    "objectID": "clinmodel-definition.html#简单理解",
-    "href": "clinmodel-definition.html#简单理解",
+    "objectID": "临床预测模型概念.html",
+    "href": "临床预测模型概念.html",
     "title": "1  什么是临床预测模型?",
-    "section": "1.1 简单理解",
-    "text": "1.1 简单理解\n临床预测模型,初听这个名字,或许会觉得很高大上,其实没那么复杂,你可以理解成一种方法,这种方法可以预测一个人到底是有病还是没病,或者预测一个人一段时间后会不会死,或者预测一个人的某种疾病会不会复发,又或者是预测一个样本到底是肿瘤还是正常组织……\n再直白一点,临床预测模型是一个公式,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!\n目前很多疾病都需要做磁共振、做CT、病理才能确诊,假如你发现了一个公式,只要验个血,得到几个生化指标,就能根据你的公式算出来这个人到底是有病还是没病!这不比CT、磁共振、病理简单多了?值得推广。\n所以,临床预测模型的本质是一种分类方法。通过这种方法,你可以对很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。\n既然是一种方法,那肯定就有准确和不准确,看名字也能知道,这只是一种预测,或者叫:猜(有根据的猜)! 如果你这种方法能和金标准相提并论,那说明你的方法很牛,如果恰好你的方法更加简单方便、经济适用,那你的方法真是太厉害了,非常有希望成为新的金标准!\n那如何评价你的方法好还是不好呢?这就是临床预测模型的评价,通过各种指标(后面会详细介绍)、从各种不同的角度评价。\n说了这么多,我怎么才能得到我的模型(或者叫方法)呢?这就是临床预测模型的另一个主要内容:临床预测模型的建立。\n前面说过,临床预测模型本质上就是一个公式而已!说个最简单的,逻辑回归(logistic),大家应该都知道怎么构建逻辑回归吧?不就是自变量和因变量吗。给你几个自变量,一个二分类的因变量,大家通过SPSS点点点,就可以得到各个自变量的系数,然后就能写出逻辑回归方程了。你的这个逻辑回归方程,这就是一个临床预测模型了!给你几个自变量的值,根据这个方程,你就可以算出因变量的值,然后就可以分类了!\n说到这里,相信你应该明白很多了!但是这还不够,你可能还听过什么机器学习、lasso、随机森林、支持向量机等等,别慌,这就是我们接下来要说的:临床预测模型和机器学习的关系。"
+    "section": "",
+    "text": "1.1 简单理解\n临床预测模型,初听这个名字,或许会觉得很高大上,其实没那么复杂,你可以理解成一种方法,这种方法可以预测一个人到底是有病还是没病,或者预测一个人一段时间后会不会死,或者预测一个人的某种疾病会不会复发,又或者是预测一个样本到底是肿瘤还是正常组织……\n再直白一点,临床预测模型是一个数学公式,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!\n目前很多疾病都需要做磁共振、做CT、病理才能确诊,假如你发现了一个公式,只要验个血,得到几个生化指标,就能根据你的公式算出来这个人到底是有病还是没病!这不比CT、磁共振、病理简单多了?值得推广。\n所以,临床预测模型的本质是一种分类方法。通过这种方法,你可以对临床中的很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。\n既然是一种方法,那肯定就有准确和不准确,看名字也能知道,这只是一种预测,或者叫:猜(有根据的猜)! 如果你这种方法能和金标准相提并论,那说明你的方法很牛,如果恰好你的方法更加简单方便、经济适用,那你的方法真是太厉害了,非常有希望成为新的金标准!\n那如何评价你的方法好还是不好呢?这就是临床预测模型的评价,通过各种指标(后面会详细介绍)、从各种不同的角度评价。\n说了这么多,我怎么才能得到我的模型(或者叫方法)呢?这就是临床预测模型的另一个主要内容:临床预测模型的建立。\n前面说过,临床预测模型本质上就是一个公式而已!说个最简单的,逻辑回归(logistic),大家应该都知道怎么构建逻辑回归吧?不就是自变量和因变量吗。给你几个自变量,一个二分类的因变量,大家通过SPSS点点点,就可以得到各个自变量的系数,然后就能写出逻辑回归方程了。你的这个逻辑回归方程,这就是一个临床预测模型了!给你几个自变量的值,根据这个方程,你就可以算出因变量的值,然后就可以分类了!\n说到这里,相信你应该明白很多了!但是这还不够,你可能还听过什么机器学习、lasso、随机森林、支持向量机等等,别慌,这就是我们接下来要说的:临床预测模型和机器学习的关系。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>1</span>  <span class='chapter-title'>什么是临床预测模型?</span>"
+    ]
   },
   {
-    "objectID": "clinmodel-definition.html#临床预测模型和机器学习",
-    "href": "clinmodel-definition.html#临床预测模型和机器学习",
+    "objectID": "临床预测模型概念.html#临床预测模型和机器学习",
+    "href": "临床预测模型概念.html#临床预测模型和机器学习",
     "title": "1  什么是临床预测模型?",
     "section": "1.2 临床预测模型和机器学习",
-    "text": "1.2 临床预测模型和机器学习\n机器学习,是不是听上去也高大上,但是对于学习临床医学的我们来说,不需要知道的太彻底,大概明白是什么就够了。\n逻辑回归也是机器学习的一种,随机森林、决策树、支持向量机、lasso、岭回归、弹性网络、xgboost等等,这些都是和逻辑回归一样,就是不同的方法而已!\n学过医学统计学的都知道(没学过可能也知道),如果因变量是连续性变量,那么我们就用多元线性回归,如果因变量是二分类变量,就用logistic回归(分类)。回归和分类,刚好就是机器学习的两个主要任务。很多方法,比如随机森林,既可以做回归,又可以做分类,而且准确度还很高,这就是为什么大家喜欢用其他方法的原因,主要是为了提高准确性。\n临床预测模型,只是机器学习在医学领域的应用之一,回归和分类,适用于各行各业,所以在很多领域你都听过机器学习这几个字。此外,还有深度学习、人工智能等等,这些都可以简单的理解为更加牛逼的方法!\n这些不同的方法都有各自适合的场景,在合适的场景下才能得到最好的表现,如何让模型表现的更好,那就需要学习一些机器学习的基本知识了,这些东西在bilibili一搜一大堆,大家可以自行学习,不过千万不要太沉迷哟!\n但是你一搜机器学习教程,出来的都是推荐你吴恩达、西瓜书等内容,我是不太推荐的,这些东西不是给生物医药领域的人看的,你看这些,可能就是听天书,毕竟很多医学生,连高数都是不学的!我比较推荐statquest,b站也可以搜到,这是一个国外的生物统计教授的课程,他的风格更适合我们。不过在学习这些这些之前,希望你已经学会了书本中常见的医学统计知识。"
+    "text": "1.2 临床预测模型和机器学习\n机器学习,是不是听上去也高大上,但是对于学习临床医学的我们来说,不需要知道的太彻底,大概明白是什么就够了。\n逻辑回归也是机器学习的一种,随机森林、决策树、支持向量机、lasso、岭回归、弹性网络、xgboost等等,这些都是和逻辑回归一样,只是不同的方法而已!\n学过医学统计学的都知道(没学过可能也知道),如果因变量是连续性变量,那么我们就用多元线性回归,如果因变量是二分类变量,就用logistic回归(分类)。回归和分类,刚好就是机器学习的两个主要任务。很多方法,比如随机森林,既可以做回归,又可以做分类,而且准确度还很高,这就是为什么大家喜欢用其他方法的原因,主要是为了提高准确性。\n临床预测模型,只是机器学习在医学领域的应用之一,回归和分类,适用于各行各业,所以在很多领域你都听过机器学习这几个字。此外,还有深度学习、人工智能等等,这些都可以简单的理解为更加牛逼的方法!\n这些不同的方法都有各自适合的场景,在合适的场景下才能得到最好的表现,如何让模型表现的更好,那就需要学习一些机器学习的基本知识了,这些东西在bilibili一搜一大堆,大家可以自行学习,不过千万不要太沉迷哟!\n但是你一搜机器学习教程,出来的都是推荐你吴恩达、西瓜书等内容,我是不太推荐的,这些东西不是给医学生/医生看的,你看这些,可能就是看天书,毕竟很多医学生,连高数都是不学的!我比较推荐statquest,b站也可以搜到,这是一个国外的生物统计教授的课程,他的风格更适合我们。不过在学习这些这些之前,希望你已经学会了书本中常见的医学统计知识。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>1</span>  <span class='chapter-title'>什么是临床预测模型?</span>"
+    ]
   },
   {
-    "objectID": "clinmodel-definition.html#临床预测模型和统计学",
-    "href": "clinmodel-definition.html#临床预测模型和统计学",
+    "objectID": "临床预测模型概念.html#临床预测模型和统计学",
+    "href": "临床预测模型概念.html#临床预测模型和统计学",
     "title": "1  什么是临床预测模型?",
     "section": "1.3 临床预测模型和统计学",
-    "text": "1.3 临床预测模型和统计学\n我们学过的医学统计学,在某些方面和机器学习是有交集的。比如,逻辑回归、多元线性回归,既是统计学方法,也是机器学习算法,这并不冲突,就像一个人在不同场合有不同身份一样。\n在谈临床预测模型时,我们可能是偏向于机器学习多一点的,毕竟用到的很多方法,都是来自于机器学习领域。\n你可能见到在很多生信文章中,使用一个模型并没有提前检验各种条件,直接就用了。但在医学统计学中,很多方法都是有适用条件的,符合条件才能用。哪种才是正确的呢?\n其实不用纠结,别人能用你也能用,多看文章,你能发现各种用法,但是别人依然发了SCI,你也可以。如果非要说区别,这就涉及到频率学派和贝叶斯学派这些东西了,咱也不是很懂了,如果你有兴趣,可以自己探索。如果就是为了发文章,那就别搞这些没用的了,多看几篇高分SCI,跟着里面的思路模仿吧!\n读到这里,你应该大致了解临床预测模型,不致于云里雾里了。但是光说不练是假把式,还是希望你能多读几篇相关的文献。"
+    "text": "1.3 临床预测模型和统计学\n我们学过的医学统计学,在某些方面和机器学习是有交集的。比如,逻辑回归、多元线性回归,既是统计学方法,也是机器学习算法,这并不冲突,就像一个人在不同场合有不同身份一样。\n在谈临床预测模型时,我们可能是偏向于机器学习多一点的,毕竟用到的很多方法和理论,都是来自于机器学习领域。但是随着临床预测模型的愈加火爆,它隐隐有成为一个单独细分领域的趋势。\n你可能见到在很多生信文章中,使用一个模型并没有提前检验各种条件,直接就用了。但在医学统计学中,很多方法都是有适用条件的,符合条件才能用。哪种才是正确的呢?\n其实不用纠结,别人能用你也能用,多看文章,你能发现各种用法,但是别人依然发了SCI,你也可以。如果非要说区别,这就涉及到频率学派和贝叶斯学派这些东西了,咱也不是很懂了,如果你有兴趣,可以自己探索。如果就是为了发文章,那就别搞这些没用的了,多看几篇高分SCI,跟着里面的思路模仿吧!\n读到这里,你应该大致解临床预测模型,不致于云里雾里了。但是光说不练是假把式,还是希望你能多读几篇相关的文献。我也会在后面的章节中给大家介绍一些临床预测模型领域的经典文献。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>1</span>  <span class='chapter-title'>什么是临床预测模型?</span>"
+    ]
   },
   {
-    "objectID": "nomogram-logistic.html#准备r包和数据",
-    "href": "nomogram-logistic.html#准备r包和数据",
-    "title": "2  logistic回归列线图绘制",
-    "section": "2.1 准备R包和数据",
-    "text": "2.1 准备R包和数据\n\ninstall.packages(\"rms\")\ninstall.packages(\"DynNom\")\ninstall.packages(\"regplot\")\ndevtools::install_local(\"D:/R/R包/VRPM_1.2.tar.gz\") # 需要下载压缩包本地安装\n\n使用lowbirth数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中dead这一列是结果变量,0代表存活,1代表死亡,其余列都是预测变量。\n\n注意:需要把分类变量因子化,对于无序分类变量,需要设置哑变量!\n\n\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n\n查看一下数据:\n\ndim(lowbirth) # 565行,10列\n## [1] 565  10\nstr(lowbirth) \n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : chr  \"white\" \"black\" \"black\" \"black\" ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: chr  \"abdominal\" \"vaginal\" \"vaginal\" \"abdominal\" ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : chr  \"female\" \"female\" \"male\" \"female\" ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n\n简单的把人种分为白色和黑色人种(无序分类变量需要设置哑变量),再去掉race这一列,然后其余分类变量因子化。\n\nlibrary(dplyr)\n\ntmp &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         black = ifelse(race == \"black\",1,0),\n         white = ifelse(race == \"white\",1,0),\n         other = ifelse(race %in% c(\"native American\",\"oriental\"),1,0)\n         ) %&gt;% \n  select(- race)\n\nglimpse(tmp)\n## Rows: 565\n## Columns: 12\n## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…\n## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…\n## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…\n## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…\n## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…\n## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…\n## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…\n## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…\n## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…\n## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…\n## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…\n## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…"
+    "objectID": "临床预测模型建立的一般步骤.html",
+    "href": "临床预测模型建立的一般步骤.html",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "",
+    "text": "2.1 明确研究目的\n首先要明确你的研究目的。\n不同的研究目的需要使用不同的模型,对应的模型评价方法、预处理方法、模型比较方法都不一样,不能生搬硬套。\n以上四个问题其实可以分为三类,刚好对应着模型的三种用途:\n如果你的结果变量(或者叫应变量、因变量)是数值型的,比如血糖、血压、血钾这种,那么你需要选择一个可以做回归分析的模型(大部分机器学习方法都是既支持回归也支持分类),此时你选择逻辑回归必然是不行的。\n如果你的结果变量是分类型的,比如生存/死亡,tumor/normal,治愈/有效/无效,患病/不患病,那么你需要选择一个可以做分类分析的模型。\n以上两种类型的模型通常会被大家称为诊断模型。\n如果你的数据涉及到时间问题,那么你需要选择一个可以做生存分析的模型。这种模型通常被大家称为预后模型。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
   },
   {
-    "objectID": "nomogram-logistic.html#方法1rms",
-    "href": "nomogram-logistic.html#方法1rms",
-    "title": "2  logistic回归列线图绘制",
-    "section": "2.2 方法1:rms",
-    "text": "2.2 方法1:rms\n\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:dplyr':\n## \n##     src, summarize\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\n然后是打包数据,这一步对于rms包来说是必须的:\n\ndd &lt;- datadist(tmp)\noptions(datadist=\"dd\")\n\n构建模型:\n\nfit1 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + delivery + apg1 +\n            vent + sex + black + white,\n            data = tmp,x=T,y=T)\n\n接下来就是构建列线图模型,然后画图。\n\nnom1 &lt;- nomogram(fit1, fun=plogis,\n                 fun.at=c(0.001,0.1,0.25,0.5,0.75,0.9,0.99),\n                 lp=T, # 是否显示线性概率\n                 funlabel=\"Risk of Death\")  \nplot(nom1) \n\n\n\n\n从这个图来看,sex、delivery、apg1对模型的贡献很小,几乎可以忽略不计,下面我们去掉这两个变量再看看。\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\nnom2 &lt;- nomogram(fit2, fun=plogis,\n                 fun.at=c(0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99),\n                 lp=T, \n                 maxscale = 100, # 最大得分数\n                 conf.int = F, # 添加置信区间,很难看,可以不要\n                 funlabel=\"Dead\")  \nplot(nom2,\n     col.grid=c(\"tomato\",\"grey\")\n     #conf.space = c(0.3,0.5) # 置信区间位置\n     )"
+    "objectID": "临床预测模型建立的一般步骤.html#明确研究目的",
+    "href": "临床预测模型建立的一般步骤.html#明确研究目的",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "",
+    "text": "你是要预测某个患者在10年后的生存状态吗?\n你还是要判断某个病理标本是tumor还是normal?\n你是要计算患者在使用某个药物后的空腹血糖水平吗?\n你还是要预测心梗患者的死亡风险?\n\n\n\n\n分类\n回归\n生存分析",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型建立的一般步骤.html#探索数据",
+    "href": "临床预测模型建立的一般步骤.html#探索数据",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "2.2 探索数据",
+    "text": "2.2 探索数据\n探索数据的过程非常重要,充分了解你的数据,这个过程有个专业的名词叫**探索性数据分析(exploratory-data-analysis,EDA),主要包括以下几个方面:\n\n共有多少行?多少列?\n哪些是自变量,哪些是因变量?\n每个变量的含义是什么?\n有没有缺失值?离群值?异常值?需不需要处理?\n有没有偏态分布?需不需要处理?\n每个变量是数值型还是分类型?需要转换吗?\n各个变量的单位是否需要转换?需要归一化吗?\n各个变量之间有没有相关性?共线性?零方差?需要处理吗?\n……\n\n每一个问题都很重要,都要搞清楚!不同的模型对数据的要求是不一样的,有的要求不能有缺失值,有的模型要求数据必须归一化等等,这些问题对开发一个准确的、高性能的模型是必须的。\n有些人连自己的数据是啥都不了解,就开始生搬硬套代码,最后得到shit一样的结果,然后到处问:为什么我的模型这么垃圾?滑稽。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型建立的一般步骤.html#数据预处理和变量筛选",
+    "href": "临床预测模型建立的一般步骤.html#数据预处理和变量筛选",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "2.3 数据预处理和变量筛选",
+    "text": "2.3 数据预处理和变量筛选\n探索完你的数据之后,你就要根据自己选择的模型进行相应的预处理,而且不同的预处理步骤有一定的顺序。\n这一步需要你有一定的专业知识、统计学知识、机器学习知识,其实很难,大家可以遇到了具体问题具体搜索。\n下面是对不同模型推荐的预处理步骤(推荐,不是必需一定要按这个来!!):\n\n名词解释:\n\ndummy:对分类变量进行哑变量处理,或者进行其他重编码\nzv:去除方差为0(zero-variance)或者近似为0的变量\nimpute:对缺失值进行插补\ndecorrelate:处理有共线性或者高度相关的变量\nnormalize:对数据进行标准化\ntransform:对变量进行转换,比如log、取对数、分箱等\n\n变量选择(又叫特征选择,feature-selection),是机器学习和统计建模领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论其实非常复杂。\n比如有个数据共有26个自变量,可能其中只有几个是重要的,其他的有没有都不重要或者对模型影响不大,这时候就要把不重要的变量筛掉。\n在传统的临床预测模型中,比较常见的变量筛选方法有:\n\n先单因素后多因素\n最优子集(全子集回归)\n逐步选择法\nlasso回归筛选变量\n随机森林筛选变量\n…",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型建立的一般步骤.html#建立模型",
+    "href": "临床预测模型建立的一般步骤.html#建立模型",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "2.4 建立模型",
+    "text": "2.4 建立模型\n这一步其实是大家遇到的最多的一步,可能也是大多数人的第一步。这里的“建立模型”其实是狭义的,就是单指“在训练集拟合模型”这一步,广义的“建立模型”包括本文所说的所有步骤。\n这一步涉及到的主要知识点是各种重抽样方法的选择,比如boostrap(自助法,也有人翻译成拔靴法)、交叉验证、嵌套重抽样等。\n但是写代码时其实就是1行代码而已,没有难度,需要大家理解每一种重抽样方法。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型建立的一般步骤.html#评价模型",
+    "href": "临床预测模型建立的一般步骤.html#评价模型",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "2.5 评价模型",
+    "text": "2.5 评价模型\n这一步其实是最复杂的,因为从第二步(探索数据)到这一步其实是一个不断重复循环的过程,可能你建立一个模型之后发现这个模型表现很烂,那么你需要重新审视之前的每一个过程,因为每一步都会对模型表现产生影响,你就需要不断对之前的步骤进行调整,也就是不断地重复之前的过程。通常你可能需要重复好多次之后才能得到满意的结果。\n而且模型的评价现在需要在不同的数据集中分别评价,比如:训练集、测试集、外部验证集等。有时候你的训练集模型表现很好但是测试集不一定好,那你是不是得找原因?如果你没有超级强大的知识储备,对你来说最简单的可行方案就是挨个试(对高手来说这一步也必不可少,只是写论文不需要写这个过程)。\n除此之外,对于不同的研究目的和不同的模型需要选择不同的评价指标。对于分类问题你需要选择能够评价分类问题的指标,对于回归问题你需要选能够择评价回归问题的指标,对于生存问题你需要选择能够评价生存问题的指标。不能混用,不然必报错!\n同样是分类问题,研究目的不同使用的指标也不一样,比如:你是想获得更大的敏感度还是更大的特异度?换个说法就是:你想要更高的误诊率还是更大的漏诊率?类别的不平衡对某些指标影响很大,你的研究能忽略这种问题吗?不能的话就要选择适合评价类不平衡数据的指标。诸如此类的问题,都和指标选择有关。\n当你通过一通操作确定了最终的模型之后,你就可以画个列线图展示你的模型了,除此之外还可以根据列线图得分进行分组,做生存分析、亚组分析等。\n如果你还想更加高大上一点,你还可以用shiny做个网页计算器。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型建立的一般步骤.html#结果报告和写作",
+    "href": "临床预测模型建立的一般步骤.html#结果报告和写作",
+    "title": "2  临床预测模型建立的一般步骤",
+    "section": "2.6 结果报告和写作",
+    "text": "2.6 结果报告和写作\n全都搞定之后就可以写文章了,不会写的话就pubmed关键词搜一搜,模仿一下即可。除此之外还有一个TRIPOD指南,上面也有建议你需要写哪些东西。\n\n\n\n\n\n\n注释\n\n\n\n本合集并不是按照以上顺序编排的,本合集是模块化的,把这么多步骤分成不同的部分,每个部分都做详细介绍,方便大家学习。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>2</span>  <span class='chapter-title'>临床预测模型建立的一般步骤</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html",
+    "href": "临床预测模型和机器学习.html",
+    "title": "3  临床预测模型和机器学习",
+    "section": "",
+    "text": "3.1 从医学统计到机器学习\n机器学习离医学生/医生很遥远吗?\n并不是,其实大家都学过。\n结合我们的医学背景讲,机器学习是能够帮我们决策的工具。机器学习中的部分内容我们并不陌生。\n医学统计学中都学过多元线性回归、logistic回归、判别分析、聚类分析等,这些都是机器学习的范畴,都属于机器学习的方法。只不过是所处的情境不同,就像一个人可以有多种身份。\n在logistic回归中,我们通过多个自变量建立logistic回归方程,由此来判断因变量的状态,比如患病/不患病,肿瘤/非肿瘤,死亡/生存等;在多元线性回归中,我们可以通过多个自变量预测患者的血糖水平。\n这些问题在医学统计学中,我们的目的是探寻自变量和因变量的关系,在机器学习中也是一样的用法,不过此时的目的更偏向于预测结果。除此之外,机器学习面向的主要是大样本量的数据,而医学统计学在使用这些方法时,通常是样本量不大的。\n除了我们学习过的多元线性回归、logistic回归等,还有一些医学统计学中没有讲到的内容,比如大家经常见到的:随机森林,lasso/ridge/elastic net,支持向量机,knn等,都属于机器学习的内容,都是类似的用法,用多个自变量预测一个因变量。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
   },
   {
-    "objectID": "nomogram-logistic.html#方法2dynnom",
-    "href": "nomogram-logistic.html#方法2dynnom",
-    "title": "2  logistic回归列线图绘制",
-    "section": "2.3 方法2:DynNom",
-    "text": "2.3 方法2:DynNom\n使用这种方法会在你的Rstudio中弹出一个窗口,你可以自由调节其中给出的选项。\n\nlibrary(DynNom)\n\nfit2 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp, family = binomial)\nDynNom(fit2,DNtitle = \"nomogram\",DNxlab = \"probability\")\n\n选择好你的参数,点击Predict即可出图:\n\n\n\n\n\n\n\n注意\n\n\n\n仔细看上面这个图其实有错误,black和white作为性别,只有2种可能,不可能为小数,这就提醒我们在建立模型时需要把这样的变量先因子化。"
+    "objectID": "临床预测模型和机器学习.html#从医学统计到机器学习",
+    "href": "临床预测模型和机器学习.html#从医学统计到机器学习",
+    "title": "3  临床预测模型和机器学习",
+    "section": "",
+    "text": "医学统计学是一门运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。–孙振球,徐勇勇《医学统计学》第4版\n\n\n机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。–百度百科",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#机器学习在临床中的应用",
+    "href": "临床预测模型和机器学习.html#机器学习在临床中的应用",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.2 机器学习在临床中的应用",
+    "text": "3.2 机器学习在临床中的应用\n机器学习在很多领域应用广泛,在医学领域,大家经常接触的主要是以下几个方面:\n\n影像组学\n生信数据挖掘\n临床预测模型\n……\n\n这里面我认为最简单的就是临床预测模型。\n另外两个需要额外学习的背景知识太多,对于医学生/医生,尤其是临床医学、中医学等,不亚于从0开始学习一门技能。\n今天我们简单介绍下机器学习和临床预测模型的应用。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#机器学习和临床预测模型有什么关系",
+    "href": "临床预测模型和机器学习.html#机器学习和临床预测模型有什么关系",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.3 机器学习和临床预测模型有什么关系?",
+    "text": "3.3 机器学习和临床预测模型有什么关系?\n首先大家要明确,临床预测模型是什么?\n\n临床预测模型的本质是一种分类方法。通过这种方法,你可以对很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。\n再直白一点,临床预测模型是一个公式,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!–《简单易懂:什么是临床预测模型》\n\n你看这个过程是不是和我们上面建立多元线性回归、logistic回归的过程一模一样?也是多个自变量和一个因变量的故事。\n所以,临床预测模型的各种实现,都是通过机器学习的方法完成的(你非说是通过统计学的方法也可以,因为二者本来就没有清晰的界限)。这其中比较简单的也是比较常见的是logistic回归、cox回归这些,其他方法,如随机森林、SVM、各种提升算法等,也都逐渐开始使用。\n除此之外,大家常见的各种重抽样方法,比如bootstrap、cross validation、holdout(train/test split)等,都是机器学习中常见的基本内容。\n各种对变量的处理,比如:中心化、标准化、缺失值插补、样条回归、boxcox、向前/向后/逐步选择、最优子集,等,也都是机器学习的基础内容。\n唯一不同且是最重要的一点:临床预测模型更加注重结合临床背景进行解释。\n不同于机器学习中变量重要性(随机森林)这种解释,我们更喜欢OR/HR/RR这种解释,自变量每增加一个单位,因变量的危险增加多少、大于60岁的人相比于小于60岁的人,患某病的风险增加多少。\n临床预测模型必须不能脱离临床,单纯的数字游戏没有任何意义。\n\n很多讲临床预测模型的课程,涉及的机器学习基本方法太少,指南里的东西大家都知道,满足不了大家发文章的需求。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#当我们谈论临床预测模型时我们在谈些什么",
+    "href": "临床预测模型和机器学习.html#当我们谈论临床预测模型时我们在谈些什么",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.4 当我们谈论临床预测模型时,我们在谈些什么?",
+    "text": "3.4 当我们谈论临床预测模型时,我们在谈些什么?\n这个答案大家应该都很感兴趣:文章!SCI!\n临床预测模型本质上应该是为医务人员提供新的诊疗工具、决策工具,开发更为快捷、简便、性价比高的量化工具。比较熟悉并且十分成功的案例:肿瘤的TNM分期。\n但是目前来看,主要作用是为大家提供新的发文方式!\n\n\n绝大多数临床预测模型类文章都没有实用价值。",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#机器学习与临床预测模型需要哪些知识",
+    "href": "临床预测模型和机器学习.html#机器学习与临床预测模型需要哪些知识",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.5 机器学习与临床预测模型需要哪些知识",
+    "text": "3.5 机器学习与临床预测模型需要哪些知识\n\n3.5.1 统计学知识\n这块知识对于大家应该不陌生,很好上手。\n医学统计学,特别是多元线性回归、logistic回归、Cox回归,需要重点掌握。\n除此之外,需要学习一些课本上没有的、但是文献中经常见的统计学方法和指标。\n灵活使用,举一反三,不能还停留在t检验、方差分析的阶段,需重点掌握结果的解释。\n\n\n3.5.2 机器学习基础\n这部分内容需要重新学习,但是不需要掌握复杂的原理,数学公式推导等,需要学会:\n\n常见的数据预处理方法:Garbage In, Garbage Out\n\n对数值型变量的处理\n\n中心化、标准化、零方差/近零方差、共线性、分箱、样条变换、等\n\n对分类变量的处理:哑变量/独热编码等\n对因变量的处理:类不平衡\n缺失值处理:删除、插补\n\n特征工程:特征选择\n超参数调优\n\n存在的问题:处理后不管是单位还是尺度都已变化,怎么解释?\n除此之外,还需学习常见的机器学习算法:\n\n线性回归\nlogistic回归\nlasso/ridge/elastic net\n决策树\n集成算法:随机森林、梯度提升树等\nKNN\nSVM\n和生存分析相关的机器学习算法:正则化Cox、随机生存森林、survival SVM、Coxboost等\n聚类分析、主成分分分析、因子分析\n……\n\n对于以上算法,只需学会使用即可,知道哪些算法可以用于什么样的数据、需要哪些数据预处理,结果如何解读等。\n\n\n3.5.3 统计软件和编程\n\nSPSS,简单方便\nR语言,必学!\n\n我是医学生,R和python我应该学哪一个?\n\npython,影像组学建议学\nLinux,生信数据挖掘建议学\n\n\n\n3.5.4 附:如果你要学习生信数据挖掘\n下游分析需要掌握的基础知识:\n以上所有,外加:\n什么是芯片,常用的芯片平台有哪些? 什么是GEO?表达矩阵,探针id转换?\n什么是一代测序,二代测序,三代测序? 什么是counts,tpm, fpkm? 什么是TCGA? TCGA包含哪些数据? 什么是编码基因?mRNA, lncRNA, miRNA, circRNA等? 生信常见的各种数据库id, hgnc gene symbol, entrez id, ensembl id等? 中心法则? 表观遗传涉及哪些内容? 什么是甲基化?单核苷酸多态性SNP, 拷贝数变异CVN?\n什么是gtf, gff, 参考基因组,基因组注释文件? 常见的生信数据存放格式?fastp, fastq, bam, sam,\n氨基酸缩写? 人类染色体命名规则?\n常见的生信下游分析方法?差异分析,生存分析,富集分析,WGCNA,免疫相关分析,治疗相关分析等,在不同数据类型(转录组、甲基化等)中?\n…\n上游分析需要的知识也很多。\n\n我的主要学习阵地:哔哩哔哩!解决你80%的问题",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#临床预测模型常见发文类型",
+    "href": "临床预测模型和机器学习.html#临床预测模型常见发文类型",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.6 临床预测模型常见发文类型",
+    "text": "3.6 临床预测模型常见发文类型\n临床预测模型类文章主要内容是3个部分:\n\n模型的建立-各种算法,logistic、决策树等等\n模型的评价-各种指标和图表,ROC、C-index、校准曲线、决策曲线等等\n模型的解释:临床预测模型必须不能脱离临床,单纯的数字游戏没有任何意义。\n\n\n3.6.1 比较简单的\n\n算法不复杂,步骤也不复杂。只需要logistic回归、Cox回归、Lasso即可。\n\n\n诺莫图预测 转移性去势抵抗性前列腺癌经过 Lu177-PSMA 治疗后 的预后\n\n收集一些病人,监测一些指标,建立cox回归,评价模型,解释模型。\n  \n\n\n3.6.2 更加典型的案例\n\n训练集+测试集,各来一遍,各种图、指标都用上:nomogram、ROC曲线、校准曲线、决策曲线、K-M生存曲线、C-index等。\n\n\n临床预测模型评估COVID-19患者的风险\n\n收集一些病人,监测一些指标,建立模型,评价模型,解释模型\n\n\n\n3.6.3 机器学习方法的使用\n\n随机森林、决策树\n\n\n老年人跌倒损伤的预测模型\n\n收集一些病人,监测一些指标,建立随机森林模型,评价模型,解释模型\n\n\nCross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model\n\n\n胃切除术后90天死亡率的风险预测模型\n\n收集一些病人,监测一些指标,建立多种模型,评价模型,解释模型\n\n\n随机生存森林\n\n\n预测肝癌术后早期复发,的机器学习模型",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#临床预测模型和生信数据挖掘结合",
+    "href": "临床预测模型和机器学习.html#临床预测模型和生信数据挖掘结合",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.7 临床预测模型和生信数据挖掘结合",
+    "text": "3.7 临床预测模型和生信数据挖掘结合\n也可以认为是机器学习和生信挖掘领域的结合,基本思路和常规的临床预测模型差不多,比上面介绍的临床预测模型内容更多,主要是两个方面:\n\n变量的选择\n指标的评价\n\n有了生信的加持,可以玩出更多花样!扩展性极大提高!工作量也成倍增加,通常此类文章机器学习只是其中一部分内容。\n\n3.7.1 生信数据挖掘,到底在挖什么?\n\n本质是通过各种方法得到一小撮分子,再通过各种方法证明这些分子很重要!\n\n寻找分子的过程通常也属于变量选择的过程,因为高通量最不缺的就是变量! 这些分子通常是mRNA/lncRNA/miRNA等。\n一些常见的方法:\n\n差异分析\n生存分析\nWGCNA\n免疫浸润\nhub gene\n多种方法取交集等\n……\n\n然后建立模型,这部分内容和临床预测模型差不多,也是建立各种机器学习算法:\n\nlasso\ncox\nlogistic\n随机森林/随机生存森林\n决策树\nSVM\nKNN\n神经网络\n……\n\n评价模型,和临床预测模型相似的内容:\n\n列线图\n校准曲线\n决策曲线\nROC曲线\n生存曲线\nC-index/AUC\n……\n\n除此之外,还有一些生信数据挖掘特有的部分:必须和治疗/预后扯上关系\n\n和免疫浸润结合\n和富集分析结合\n和免疫治疗结合\n和其他signature/模型/指标比较\n各种分子分型\n……\n\n\n生信数据挖掘文章还有一个特点:紧跟热点\n\n铁死亡、铜死亡、细胞凋亡、内质网应激、肿瘤干性、缺氧、m6A、上皮-间质转化、凝血、血管生成、……\n理论上你去GO或者KEGG的官网,所有的分子集合都可以挖一遍;所有病理生理过程涉及的分子也都可以挖一遍(离子通道)。\n\n生信数据挖掘典型花里胡哨图:\n\n\n\n\n3.7.2 比较简单的\n最早期的临床预测模型和生信数据挖掘结合的思路:\n\ngene signature、基因家族等\n\n通过各种方法找几个基因构建模型(早期,硬筛)\n\n2022年了,这种远古套路依然可以发!因为他加了实验……\n\n铁死亡相关的gene signature(某个病理生理过程相关的分子)\n\n\n思路不新,也没有实验,但是疾病没人挖掘:儿童败血性休克,机器学习只占一小部分内容,主要是寻找分子以及说明重要性:\n\n\n\n3.7.3 复杂的\n\n超级复杂的工作量、泛癌、单细胞、实验验证\n\n\n细胞衰老和肿瘤微环境:机器学习内容是其中一小部分,但是不可或缺。\n\n\n恐怖的工作量:单是机器学习部分就有10种机器学习算法的101种组合(非常火爆的101种组合算法就是来自这篇文章!)!以及和其他已发表的模型进行比较!",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "临床预测模型和机器学习.html#总结",
+    "href": "临床预测模型和机器学习.html#总结",
+    "title": "3  临床预测模型和机器学习",
+    "section": "3.8 总结",
+    "text": "3.8 总结\n\n常用的方法就那么几个,只要认真学习,都能学会!\n对一些细节的处理、结果的解释、好的思路和想法更加重要!用工具解决一个问题是最简单的层面\n医学中的机器学习更加强调结合医学背景的解释,并不单单是得到更好的模型表现即可,得到模型后结合背景知识进行更加深入的谈论是必不可少的内容,也是和传统机器学习领域最大的不同之处。\n\n感谢大家,祝大家百发百中!",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>临床预测模型和机器学习</span>"
+    ]
+  },
+  {
+    "objectID": "文献学习.html",
+    "href": "文献学习.html",
+    "title": "4  文献学习",
+    "section": "",
+    "text": "4.1 文献学习\n相关文献解读,点击直达:",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>4</span>  <span class='chapter-title'>文献学习</span>"
+    ]
   },
   {
-    "objectID": "nomogram-logistic.html#方法3regplot",
-    "href": "nomogram-logistic.html#方法3regplot",
-    "title": "2  logistic回归列线图绘制",
-    "section": "2.4 方法3:regplot",
-    "text": "2.4 方法3:regplot\n\nlibrary(regplot)\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\nregplot(fit2,\n        #连续性变量形状,\"no plot\"\"density\"\"boxes\"\"ecdf\"\n        #\"bars\"\"boxplot\"\"violin\"\"bean\" \"spikes\";\n        #分类变量的形状,可选\"no plot\" \"boxes\" \"bars\" \"spikes\"\n        plots = c(\"violin\", \"boxes\"),   \n        observation = tmp[1,], #用哪行观测,或者T F\n        center = T, # 对齐变量\n        subticks = T,\n        droplines = T,#是否画竖线\n        title = \"nomogram\",\n        points = T, # 截距项显示为0-100\n        odds = T, # 是否显示OR值\n        showP = T, # 是否显示变量的显著性标记\n        rank = \"sd\", # 根据sd给变量排序\n        interval=\"confidence\", # 展示可信区间\n        clickable = F # 是否可以交互\n        )\n## Regression  fit2 lrm formula:\n## dead `~` birth + lowph + pltct + bwt + vent + black + white\n## CI: 0.00496(0.00106,0.0233)\n## [[1]]\n##   white Points\n## 1   0.0     26\n## 2   0.4     34\n## 3   0.8     42\n## \n## [[2]]\n##   black Points\n## 1   0.0     17\n## 2   0.4     29\n## 3   0.8     40\n## \n## [[3]]\n##       vent Points\n## vent1    0     34\n## vent2    1     99\n## \n## [[4]]\n##    bwt Points\n## 1  400     87\n## 2  600     72\n## 3  800     57\n## 4 1000     42\n## 5 1200     27\n## 6 1400     12\n## \n## [[5]]\n##   pltct Points\n## 1     0     42\n## 2   300     30\n## 3   600     18\n## \n## [[6]]\n##    lowph Points\n## 1    6.5    103\n## 2    6.6     93\n## 3    6.7     83\n## 4    6.8     74\n## 5    6.9     64\n## 6    7.0     54\n## 7    7.1     44\n## 8    7.2     34\n## 9    7.3     25\n## 10   7.4     15\n## 11   7.5      5\n## 12   7.6     -5\n## \n## [[7]]\n##   birth Points\n## 1  81.5     43\n## 2  84.5     34\n## 3  87.5     26\n## \n## [[8]]\n##   Total Points    Pr(  )\n## 1          100 3.798e-05\n## 2          150 3.144e-04\n## 3          200 2.598e-03\n## 4          250 2.112e-02\n## 5          300 1.516e-01\n## 6          350 5.967e-01\n## 7          400 9.245e-01\n## 8          450 9.902e-01"
+    "objectID": "文献学习.html#文献学习",
+    "href": "文献学习.html#文献学习",
+    "title": "4  文献学习",
+    "section": "",
+    "text": "机器学习算法识别结直肠癌中的免疫相关lncRNA signature\n文献学习:机器学习帮助临床决策\n文献学习:机器学习方法帮助缩短就诊时间\nSEER数据库+临床预测模型,一篇中规中矩的高分文献学习(IF:16)\n新鲜出炉的lancet-oncology(IF:51)预测模型文章:列线图预测黑色素瘤患者的预后(含全部代码)\n文献学习:MIMIC-IV+eICU+临床预测模型\nmeta分析+临床预测模型,简单可学习的IF=4.7文章学习",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>4</span>  <span class='chapter-title'>文献学习</span>"
+    ]
+  },
+  {
+    "objectID": "文献学习.html#经典文献",
+    "href": "文献学习.html#经典文献",
+    "title": "4  文献学习",
+    "section": "4.2 经典文献",
+    "text": "4.2 经典文献\n除此之外,对于临床预测模型还有一些经典的指导性文献,部分内容已在本书介绍,还有很多建议大家自己学习,这些文献都是经典,这里给大家找了十几篇超级无敌经典的相关文献,每一篇都是经典,涉及:\n\n模型建立的步骤、\n模型评价、\n缺失值处理、\n样本量计算、\n数据划分(内外部验证、bootstrap等)\n论文写作等多个方面。\n\n17篇文献的详细信息如下所示,为了方便大家学习,我已经把这17篇文献整理好了,公众号后台回复20240608即可获取全部文献。\n\nCollins G S, Moons K G M, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods[J]. BMJ (Clinical research ed.), 2024, 385: e078378. DOI:10.1136/bmj-2023-078378.\nCollins G S, Reitsma J B, Altman D G, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. British Medical Journal, 2015, 350(jan07 4): g7594–g7594. DOI:10.1136/bmj.g7594.\nSteyerberg E W, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation[J]. European Heart Journal, 2014, 35(29): 1925–1931. DOI:10.1093/eurheartj/ehu207.\nVan Calster B, Wynants L, Verbeek J F M, et al. Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators[J]. European Urology, 2018, 74(6): 796–804. DOI:10.1016/j.eururo.2018.08.038.\nBalachandran V P, Gonen M, Smith J J, et al. Nomograms in Oncology – More than Meets the Eye[J]. The Lancet. Oncology, 2015, 16(4): e173–e180. DOI:10.1016/S1470-2045(14)71116-7.\nSterne J A C, White I R, Carlin J B, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls[J]. BMJ (Clinical research ed.), 2009, 338: b2393. DOI:10.1136/bmj.b2393.\nArcher L, Snell K I E, Ensor J, et al. Minimum sample size for external validation of a clinical prediction model with a continuous outcome[J]. Statistics in Medicine, 2021, 40(1): 133–146. DOI:10.1002/sim.8766.\nRiley R D, Debray T P A, Collins G S, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome[J]. Statistics in Medicine, 2021, 40(19): 4230–4251. DOI:10.1002/sim.9025.\nRiley R D, Collins G S, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome[J]. Statistics in Medicine, 2022, 41(7): 1280–1295. DOI:10.1002/sim.9275.\nRiley R D, Snell K I E, Archer L, et al. Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study[J]. British Medical Journal, 2024, 384: e074821. DOI:10.1136/bmj-2023-074821.\nRiley R D, Archer L, Snell K I E, et al. Evaluation of clinical prediction models (part 2): how to undertake an external validation study[J]. British Medical Journal, 2024, 384: e074820. DOI:10.1136/bmj-2023-074820.\nCollins G S, Dhiman P, Ma J, et al. Evaluation of clinical prediction models (part 1): from development to external validation[J]. British Medical Journal, 2024, 384: e074819. DOI:10.1136/bmj-2023-074819.\nAlba A C, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature[J]. JAMA, 2017, 318(14): 1377–1384. DOI:10.1001/jama.2017.12126.\nStrandberg R, Jepsen P, Hagström H. Developing and validating clinical prediction models in hepatology—An overview for clinicians[J]. Journal of Hepatology, 2024: S0168-8278(24)00213–7. DOI:10.1016/j.jhep.2024.03.030.\nFitzgerald M, Saville B R, Lewis R J. Decision curve analysis[J]. JAMA, 2015, 313(4): 409–410. DOI:10.1001/jama.2015.37.\nRd R, J E, Kie S, et al. Calculating the sample size required for developing a clinical prediction model[J]. British Medical Journal, BMJ, 2020, 368. DOI:10.1136/bmj.m441.\nEfthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G. Developing clinical prediction models: a step-by-step guide. BMJ. 2024 Sep 3;386:e078276. doi: 10.1136/bmj-2023-078276. PMID: 39227063; PMCID: PMC11369751.",
+    "crumbs": [
+      "基础知识",
+      "<span class='chapter-number'>4</span>  <span class='chapter-title'>文献学习</span>"
+    ]
+  },
+  {
+    "objectID": "data-split.html",
+    "href": "data-split.html",
+    "title": "5  常见的数据划分方法",
+    "section": "",
+    "text": "5.1 留出法(holdout)\n大家最常使用的,把数据集随机划分为训练集(train)/测试集(test)的做法就是holdout,其中训练集用于建模,测试集用于评估模型表现。测试集有时也被称为验证集(validation)。\n如果你的数据样本量足够大,大到几乎不可能产生错误的结果,那你可以大胆放心用这种方法,否则一般都不推荐只使用这种方法。\n通常的做法是把数据集划分为训练集/测试集后,在训练集中建立模型,当确定最终的模型后,我们会让模型对测试集进行预测,以评估模型最终的表现。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-logistic.html#方法4vrpm",
-    "href": "nomogram-logistic.html#方法4vrpm",
-    "title": "2  logistic回归列线图绘制",
-    "section": "2.5 方法4:VRPM",
-    "text": "2.5 方法4:VRPM\n\nlibrary(VRPM)\n\nfit2 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp, family = binomial)\n\n# 图片保存在你的目录下\ncolplot(fit2,coloroptions = 3)\n\n\n以上就是4种Cox回归列线图绘制的方法,其中方法1和3是最常用的。\n获取lowbirth数据请在公众号:医学和生信笔记 后台回复20220520。"
+    "objectID": "data-split.html#交叉验证cross-validation",
+    "href": "data-split.html#交叉验证cross-validation",
+    "title": "5  常见的数据划分方法",
+    "section": "5.2 交叉验证(cross validation)",
+    "text": "5.2 交叉验证(cross validation)\n交叉验证,意思就是一份数据既用作训练,也用作验证,互相交叉,主要有以下几种:\nK折交叉验证(K fold cross validation),就是把数据集随机分为K个样本量基本相同的子数据集。比如5折交叉验证,就是把数据集分为5个子集(比如分成A,B,C,D,E,5份),在建模时,首先会使用其中A,B,C,D,4份数据进行建模,然后用剩下的E数据评估模型表现,接下来使用A,B,C,E,4份数据建模,用剩下的D评估模型表现。这样依次进行5个循环,每份数据都会用来评估模型表现。这样就会得到5个模型,就会有5个结果,最后将得到的5个模型表现结果进行汇总作为最终的结果。\n下面是一个5折交叉验证的示意图,我们把所有数据分为训练集和测试集,然后在训练集建立模型,建立模型时,对训练集使用了5折交叉验证的方法:\n\n留一交叉验证(LOOCV, leave one out cross validation),是K折交叉验证的特例。每次都只留1个样本用于评估模型表现,所以这里的K其实就等于样本量,每一个样本都会被用来评估模型表现。\n重复交叉验证(repeated cross validation),也是K折交叉验证的扩展版本,比如,重复10次的5折交叉验证,就是把5折交叉验证这个过程重复10遍。\n蒙特卡洛交叉验证(Monte Carlo cross validation),也是交叉验证的一个变种。留出法是将数据集划分1次,而蒙特卡洛交叉验证就是将留出法进行多次。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-cox.html#加载数据和r包",
-    "href": "nomogram-cox.html#加载数据和r包",
-    "title": "3  Cox回归列线图绘制",
-    "section": "3.1 加载数据和R包",
-    "text": "3.1 加载数据和R包\nCox回归模型在医学统计中是一个很重要的统计方法,关于Cox比例风险模型,我写过一些实现方法的推文,大家可以参考:\n\nR语言生存分析:Cox回归\nR语言时依系数和时依协变量Cox回归\n\n\n# 加载需要的R包和数据\nlibrary(survival)\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ..."
+    "objectID": "data-split.html#bootstrap",
+    "href": "data-split.html#bootstrap",
+    "title": "5  常见的数据划分方法",
+    "section": "5.3 bootstrap",
+    "text": "5.3 bootstrap\n自助法,即有放回的随机抽样法。具体做法如下:\n比如,一个数据集有100个样本,每次随机抽取1个,然后放回去,再随机抽取1个,再放回去,这样的过程重复100次,就得到了一个和原数据集样本量相等的抽样数据集,这个抽样数据集就叫做自助集或自助样本。\n由于每次都是有放回然后再随机抽取,所以一个自助集中可能有多个同一样本!所以就有可能在100次随机抽取中,有一些没被抽中过的样本,这些样本就被称为袋外样本(out-of-bag,OOB),其中被抽中的样本(也就是自助集)用于训练模型,袋外样本用来评估模型表现。\n如果设置bootstrap的次数是10,就是抽取10个自助集,10个袋外样本,在每个自助集中训练一个模型,并在相应的袋外样本中评估模型,这样就会得到10个模型表现,对它们取平均值,就是最终的模型表现。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-cox.html#方法1rms",
-    "href": "nomogram-cox.html#方法1rms",
-    "title": "3  Cox回归列线图绘制",
-    "section": "3.2 方法1:rms",
-    "text": "3.2 方法1:rms\n大多数情况下都是使用1代表死亡,0代表删失,下面这个演示数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\n# 使用rms包需要对数据进行“打包”操作\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                maxscale = 100,\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是画图:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色"
+    "objectID": "data-split.html#其他方法",
+    "href": "data-split.html#其他方法",
+    "title": "5  常见的数据划分方法",
+    "section": "5.4 其他方法",
+    "text": "5.4 其他方法\n除了以上方法,其实还有非常多没有介绍,比如在mlr3中经常使用的嵌套重抽样,这些大家感兴趣可以自行了解。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-split.html#内部验证外部验证",
+    "href": "data-split.html#内部验证外部验证",
+    "title": "5  常见的数据划分方法",
+    "section": "5.5 内部验证/外部验证",
+    "text": "5.5 内部验证/外部验证\n临床预测模型中会有内部验证/外部验证的说法,内部验证又叫内部重抽样,其实没有任何特殊的地方,只是换个说法而已。\n一个数据集被随机划分为训练集和测试集,在训练集建立模型时,我们可能会对训练集使用K折交叉验证或者bootstrap等方法,这样可以使我们的模型更加稳健,避免出现极坏或者极好的结果。在训练集中使用K折交叉验证或者bootstrap等方法,就被叫做内部验证或者内部重抽样。在测试集(指建模时未使用过的数据)测试模型的表现,就叫做外部验证。\n下图是《R语言整洁建模》中的典型数据划分方法示意图,非常贴合临床预测模型的数据划分方法。\n\n\n\n典型的数据划分方法\n\n\n首先我们会把所有数据划分为训练集和测试集,然后在训练集中建立模型,这个过程会对训练集使用另一种重抽样方法(比如交叉验证或者bootstrap等),每一次重抽样我们都会使用其中一部分数据用于拟合模型,另一部分数据用于评估模型,用于拟合模型的这部分数据被称为分析集,用于评估模型的数据被称为评估集。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-split.html#重抽样的目的",
+    "href": "data-split.html#重抽样的目的",
+    "title": "5  常见的数据划分方法",
+    "section": "5.6 重抽样的目的",
+    "text": "5.6 重抽样的目的\n经常有粉丝问我:为什么我用了各种方法,10折交叉验证、10折重复交叉验证、自助法,都用过了,为什么最后模型的表现还是很差?\n看到类似的问题,我想这部分朋友可能把重抽样的目的搞错了,重抽样的目的不是为了提高模型表现,重抽样也确实不能提高模型表现!开头我已说过,重抽样技术是为了让模型更好的认识数据而已,这样能够得到更加稳健、无偏的结果,但是对于提高模型表现没有直接的影响哦~\n你可以这么理解,如果你不重抽样,可能某一次结果的AUC是0.9,再做一次可能就变成0.5了,而你重抽样10次,得到的结果是10次的平均,这样的结果很明显是更加稳健的、误差小的。\n模型表现好不好首先是数据原因,一个牛逼的数据不需要复杂的模型也能有很好的结果,数据预处理对数据影响很大,大家可以参考下一章内容。另外还和模型本身的性质有关,比如模型的超参数、模型本身的上限等,这些都会影响模型的表现。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-split.html#为什么要单独划分",
+    "href": "data-split.html#为什么要单独划分",
+    "title": "5  常见的数据划分方法",
+    "section": "5.7 为什么要单独划分",
+    "text": "5.7 为什么要单独划分\n通常我们建立模型时,会把数据集A划分为A1和A2两份,A1用来训练模型,A2用来测试模型,在训练模型的过程中,完全不用使用到A2这部分数据。有些人不理解,把这种方法和嵌套重抽样混为一谈。其实这两个有着本质的区别。\n嵌套重抽样是在训练模型时使用的,把两份数据集全都用到了,而且两份数据集都会再叠加其他重抽样方法。\n但我们划分数据的目的是什么呢?我们是为了测试最终的模型表现。临床问题数据很珍贵,通常都只有1份,这种情况下我把这份数据全都用于训练模型,那我用什么测试训练出来的模型好坏呢?有的人喜欢把训练好的模型作用于用来训练模型的数据上,发现结果竟然很好,这样是不对的,这叫数据泄露,你的数据模型已经学习过了,这不是作弊吗?这样的模型结果能说明什么问题呢?\n所以一开始把数据就划分为2份是一个很好的解决方法。如果你有很多个数据集,你完全可以在其中1个数据集中使用各种方法建模。比如,你的临床试验有多个分中心,你完全可以使用其中1个或几个中心的数据建立模型,然后在其余中心的数据中评估最终的模型。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-split.html#方法选择建议",
+    "href": "data-split.html#方法选择建议",
+    "title": "5  常见的数据划分方法",
+    "section": "5.8 方法选择建议",
+    "text": "5.8 方法选择建议\n以上就是一些常见的重抽样方法,可以看到每种方法都强调一个问题,那就是随机!,只有随机,才能保证模型学习到这个数据集中的更多信息,才能获得稳健的模型表现!\n以下是一些方法选择建议:\n\n没有哪一种方法好,哪一种方法不好!!只有合不合适,没有好不好!\n如果样本量较小,建议选择重复10折交叉验证;\n如果样本量足够大,比如几万,几十万这种,随便选,都可以;\n如果目的不是得到最好的模型表现,而是为了在不同模型间进行选择,建议使用bootstrap;\n如果还不知道怎么选,建议都试一试,喜欢哪个选哪个",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>5</span>  <span class='chapter-title'>常见的数据划分方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html",
+    "href": "data-preprocess.html",
+    "title": "6  常见的数据预处理方法",
+    "section": "",
+    "text": "6.1 加载R包和数据\nlibrary(AppliedPredictiveModeling)\nlibrary(caret)\n\ndata(\"segmentationOriginal\")\n\nsegData &lt;- subset(segmentationOriginal, Case == \"Train\")\ncellID &lt;- segData$Cell\ncalss &lt;- segData$Class\ncase &lt;- segData$Case\nsegData &lt;- segData[ ,  -(1:3)]\nstatusColNum &lt;- grep(\"Status\", names(segData))\nstatusColNum\n##  [1]   2   4   9  10  11  12  14  16  20  21  22  26  27  28  30  32  34  36  38\n## [20]  40  43  44  46  48  51  52  55  56  59  60  63  64  68  69  70  72  73  74\n## [39]  76  78  80  82  84  86  88  92  93  94  97  98 103 104 105 106 110 111 112\n## [58] 114\n\nsegData &lt;- segData[ , -statusColNum]\n\nstr(segData)\n## 'data.frame':    1009 obs. of  58 variables:\n##  $ AngleCh1               : num  133.8 106.6 69.2 109.4 104.3 ...\n##  $ AreaCh1                : int  819 431 298 256 258 358 158 315 246 223 ...\n##  $ AvgIntenCh1            : num  31.9 28 19.5 18.8 17.6 ...\n##  $ AvgIntenCh2            : num  206 115 101 126 124 ...\n##  $ AvgIntenCh3            : num  69.9 63.9 28.2 13.6 22.5 ...\n##  $ AvgIntenCh4            : num  164.2 106.7 31 46.8 71.2 ...\n##  $ ConvexHullAreaRatioCh1 : num  1.26 1.05 1.2 1.08 1.08 ...\n##  $ ConvexHullPerimRatioCh1: num  0.797 0.935 0.866 0.92 0.931 ...\n##  $ DiffIntenDensityCh1    : num  31.9 32.5 26.7 28 27.9 ...\n##  $ DiffIntenDensityCh3    : num  43.1 36 22.9 14.9 16.1 ...\n##  $ DiffIntenDensityCh4    : num  79.3 51.4 26.4 32.7 36.2 ...\n##  $ EntropyIntenCh1        : num  6.09 5.88 5.42 5.38 5.18 ...\n##  $ EntropyIntenCh3        : num  6.64 6.68 5.44 4.15 5.49 ...\n##  $ EntropyIntenCh4        : num  7.88 7.14 5.78 6.19 6.62 ...\n##  $ EqCircDiamCh1          : num  32.3 23.4 19.5 18.1 18.2 ...\n##  $ EqEllipseLWRCh1        : num  1.56 1.38 3.39 1.38 1.62 ...\n##  $ EqEllipseOblateVolCh1  : num  2233 802 725 368 404 ...\n##  $ EqEllipseProlateVolCh1 : num  1433 583 214 267 250 ...\n##  $ EqSphereAreaCh1        : num  3279 1727 1195 1027 1036 ...\n##  $ EqSphereVolCh1         : num  17654 6751 3884 3096 3134 ...\n##  $ FiberAlign2Ch3         : num  0.488 0.301 0.22 0.364 0.359 ...\n##  $ FiberAlign2Ch4         : num  0.352 0.522 0.733 0.481 0.244 ...\n##  $ FiberLengthCh1         : num  64.3 21.1 43.1 22.3 26.5 ...\n##  $ FiberWidthCh1          : num  13.2 21.1 7.4 12.1 10.2 ...\n##  $ IntenCoocASMCh3        : num  0.02805 0.00686 0.03096 0.10816 0.01303 ...\n##  $ IntenCoocASMCh4        : num  0.01259 0.00614 0.01103 0.00995 0.00896 ...\n##  $ IntenCoocContrastCh3   : num  8.23 14.45 7.3 6.16 9.4 ...\n##  $ IntenCoocContrastCh4   : num  6.98 16.7 13.39 10.59 10.3 ...\n##  $ IntenCoocEntropyCh3    : num  6.82 7.58 6.31 5.04 6.96 ...\n##  $ IntenCoocEntropyCh4    : num  7.1 7.67 7.2 7.13 7.14 ...\n##  $ IntenCoocMaxCh3        : num  0.1532 0.0284 0.1628 0.3153 0.0739 ...\n##  $ IntenCoocMaxCh4        : num  0.0739 0.0232 0.0775 0.0586 0.0348 ...\n##  $ KurtIntenCh1           : num  -0.249 -0.293 0.626 -0.365 -0.556 ...\n##  $ KurtIntenCh3           : num  -0.331 1.051 0.128 1.083 -0.512 ...\n##  $ KurtIntenCh4           : num  -0.265 0.151 -0.347 -0.626 -0.647 ...\n##  $ LengthCh1              : num  47.2 28.1 37.9 23.1 26.3 ...\n##  $ NeighborAvgDistCh1     : num  174 158 206 264 231 ...\n##  $ NeighborMinDistCh1     : num  30.1 34.9 33.1 38.4 29.8 ...\n##  $ NeighborVarDistCh1     : num  81.4 90.4 116.9 88.5 103.5 ...\n##  $ PerimCh1               : num  154.9 84.6 101.1 68.7 73.4 ...\n##  $ ShapeBFRCh1            : num  0.54 0.724 0.589 0.635 0.557 ...\n##  $ ShapeLWRCh1            : num  1.47 1.33 2.83 1.31 1.49 ...\n##  $ ShapeP2ACh1            : num  2.26 1.27 2.55 1.4 1.59 ...\n##  $ SkewIntenCh1           : num  0.399 0.472 0.882 0.547 0.443 ...\n##  $ SkewIntenCh3           : num  0.62 0.971 1 1.432 0.556 ...\n##  $ SkewIntenCh4           : num  0.527 0.325 0.604 0.704 0.137 ...\n##  $ SpotFiberCountCh3      : int  4 2 4 0 1 1 4 2 2 2 ...\n##  $ SpotFiberCountCh4      : int  11 6 7 5 4 5 4 2 5 1 ...\n##  $ TotalIntenCh1          : int  24964 11552 5545 4613 4340 14461 4743 88725 136957 79885 ...\n##  $ TotalIntenCh2          : int  160997 47510 28869 30855 30719 74259 15434 148012 57421 62235 ...\n##  $ TotalIntenCh3          : int  54675 26344 8042 3332 5548 14474 6265 58224 20304 23878 ...\n##  $ TotalIntenCh4          : int  128368 43959 8843 11466 17588 23099 17534 120536 15482 98948 ...\n##  $ VarIntenCh1            : num  18.8 17.3 13.8 13.9 12.3 ...\n##  $ VarIntenCh3            : num  56.7 37.7 30 18.6 17.7 ...\n##  $ VarIntenCh4            : num  118.4 49.5 24.7 40.3 41.9 ...\n##  $ WidthCh1               : num  32.2 21.2 13.4 17.5 17.7 ...\n##  $ XCentroid              : int  215 371 487 211 172 276 239 95 438 386 ...\n##  $ YCentroid              : int  347 252 295 495 207 385 404 95 16 14 ...",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#中心化和标准化",
+    "href": "data-preprocess.html#中心化和标准化",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.2 中心化和标准化",
+    "text": "6.2 中心化和标准化\n某些算法对预测变量是有要求的,比如需要预测变量具有相同的尺度,如果有的预测变量范围是0.10.2,但是有的却是1000020000,这种变量间的绝大差距会影像某些模型的稳定性,所以需要想办法把它们变成差不多的范围(有个专有名词:无量纲化)。\n中心化和标准化可以解决这样的问题。\n中心化是将所有变量减去其均值,其结果是变换后的变量均值为0;标准化是将每个变量除以其自身的标准差,标准化迫使变量的标准差为1。\nR语言中scale()函数可实现中心化和标准化,就不多做介绍了。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#偏度问题",
+    "href": "data-preprocess.html#偏度问题",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.3 偏度问题",
+    "text": "6.3 偏度问题\n无偏分布类似我们常说的正态分布,有偏分布又分为右偏和左偏,分别类似正偏态分布和负偏态分布。\n一个判断数据有偏的黄金标准:如果最大值与最小值的比例超过20,那么我们认为数据有偏。\n可以通过计算偏度统计量来衡量偏度。如果预测变量分布是大致对称的,那么偏度将接近于0,右偏分布偏度大于0,越大说明偏的越厉害;左偏分布偏度小于0,越小说明偏的越厉害。\n计算偏度的包很多。\n使用e1071包查看变量的偏度:\n\nlibrary(e1071)\n# 查看偏度\nskewness(segData$AngleCh1)\n## [1] -0.02426252\n## [1] -0.02426252\n\n# 查看每一列的偏度\nskewValues &lt;- apply(segData, 2, skewness)\nhead(skewValues)\n##    AngleCh1     AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4 \n## -0.02426252  3.52510745  2.95918524  0.84816033  2.20234214  1.90047128\n\n也可以通过psych包查看:\n\npsych::skew(segData$AngleCh1) # 偏度\n## [1] -0.02426252\n\npsych::kurtosi(segData$AngleCh1) # 峰度\n## [1] -0.8594789\n\n通过对数据进行变换可以一定程度解决偏度的问题,常用的方法有:取对数(log),平方根,倒数,Box&Cox法等。\nlog、平方根、倒数这些很简单,就不演示了,下面演示下BoxCox变换。\n\n# 准备对数据进行BoxCox变换\nCh1AreaTrans &lt;- BoxCoxTrans(segData$AreaCh1)\nCh1AreaTrans\n## Box-Cox Transformation\n## \n## 1009 data points used to estimate Lambda\n## \n## Input data summary:\n##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. \n##   150.0   194.0   256.0   325.1   376.0  2186.0 \n## \n## Largest/Smallest: 14.6 \n## Sample Skewness: 3.53 \n## \n## Estimated Lambda: -0.9\n\n# 进行变换\nAreaCh1_transed &lt;- predict(Ch1AreaTrans, segData$AreaCh1)\n\n# 查看变换前、后的数据\nhead(segData$AreaCh1)\n## [1] 819 431 298 256 258 358\nhead(AreaCh1_transed)\n## [1] 1.108458 1.106383 1.104520 1.103554 1.103607 1.105523\n\n这里可以看到caret对数据预处理的方式,首先是选择方法,然后使用predict()函数把变换应用到具体的变量上。这是caret的基本操作,大家一定要记住!\n对于变换前后的数据变化,只看数字没有直观的感受,下面给大家画图演示。\n\n# 画图看变换前后\nopar &lt;- par(mfrow=c(1,2))\nhist(segData$AreaCh1)\nhist(AreaCh1_transed)\n\n\n\n\n\n\n\npar(opar)\n\n可以明显看到变换前是右偏分布,变换后基本接近无偏,可以再次计算偏度看看:\n\npsych::skew(AreaCh1_transed)\n## [1] 0.0976087\n\n下面是BoxCox变换的一点点扩展,不看也影响不大。\nBoxCox变换需要一个参数lambda,这个参数需要我们计算并指定,如上使用caret进行变换时,它会自动帮我们处理好,其中一句代码显示Estimated Lambda: -0.9,也就是lambda=0.9。\n还有很多R包可以实现BoxCox变换,其中比较简单的是forecast,简单演示如下:\n\nlibrary(forecast)\n\nbest.lambda &lt;- BoxCox.lambda(segData$AreaCh1) # 计算lambda\nbest.lambda\n## [1] -0.9999264\n\nAreaCh1.transformed &lt;- BoxCox(segData$AreaCh1, lambda = best.lambda) # 变换\nhead(AreaCh1.transformed)\n## [1] 0.9988519 0.9977522 0.9967163 0.9961655 0.9961958 0.9972789\n\ny0 &lt;- InvBoxCox(AreaCh1.transformed,lambda=best.lambda) # 还原",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#解决离群值",
+    "href": "data-preprocess.html#解决离群值",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.4 解决离群值",
+    "text": "6.4 解决离群值\n离群值其实是有明确定义的,通常我们会选择直接删除离群值,但是还是要根据实际情况来看,有的离群值是非常有意义的,这样的离群值不能直接删除。\n\n有的离群值可能是数据录入时不小心输错了,比如错把收缩压132mmHg录成了 -132mmHg,只需要改正即可;\n在样本量较小时,不宜直接删除离群值,有的离群值可能是因为数据来自一个明显有偏的分布,只是因为我们的样本量太小无法观测到这个偏度;\n有些离群值可能来自一个特殊的子集,只是这个子集才刚开始被收集到。\n\n有些模型对离群值很敏感,比如线性模型,这样是需要处理的,一个常见的方法是空间表示变换,该变换将预测变量取值映射到高纬的球上,它会把所有样本变换到离球心相等的球面上。在caret中可以实现。关于它的具体数学运算过程,感兴趣的自己了解即可,我不太感兴趣。\n在进行空间表示变换前,最好先进行中心化和标准化,这也和它的数学计算有关,我也不太感兴趣。\n查看变换前的图形:\n\n# 变换前的图形\ndata(mdrr)\ntransparentTheme(trans = .4)\n\nplotSubset &lt;- data.frame(scale(mdrrDescr[, c(\"nC\", \"X4v\")])) \nxyplot(nC ~ X4v,\n       data = plotSubset,\n       groups = mdrrClass, \n       auto.key = list(columns = 2))\n\n\n\n\n\n\n\n\n查看变换后的图形:\n\n# 变换后的图形\ntransformed &lt;- spatialSign(plotSubset)\ntransformed &lt;- as.data.frame(transformed)\nxyplot(nC ~ X4v, \n       data = transformed, \n       groups = mdrrClass, \n       auto.key = list(columns = 2)) \n\n\n\n\n\n\n\n\n是不是很神奇?",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#降维和特征提取",
+    "href": "data-preprocess.html#降维和特征提取",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.5 降维和特征提取",
+    "text": "6.5 降维和特征提取\n有很多方法,比如PCA,ICA,PLS,UMAP等,最流行的还是PCA,主要是它给出的主成分是彼此不相关的,这恰好符合一些模型的需求。\n对数据进行PCA变换之前,最好先解决偏度问题,然后进行中心化和标准化,和它的数学计算过程有关,感兴趣的自己了解。\n可视化前后不同:\n\n# 主成分分析,可参考我之前的推文\npr &lt;- prcomp(~ AvgIntenCh1 + EntropyIntenCh1, \n             data = segData, \n             scale. = TRUE)\n\n# 可视化前后图形\nlibrary(ggplot2)\n\np1 &lt;- ggplot(segData, aes(AvgIntenCh1,EntropyIntenCh1))+\n  geom_point()+\n  labs(x=\"Channel 1 Fiber Width\",y=\"Intensity Entropy Channel 1\")+\n  theme_bw()\np2 &lt;- ggplot(as.data.frame(pr$x), aes(PC1,PC2))+\n  geom_point()+\n  theme_bw()\ncowplot::plot_grid(p1,p2)",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#处理缺失值",
+    "href": "data-preprocess.html#处理缺失值",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.6 处理缺失值",
+    "text": "6.6 处理缺失值\n缺失值处理是一个宏大的话题,首先要了解缺失值的类型:\n\n完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据 为完全随机缺失(MCAR)。注意,如果每个有缺失值的变量都是MCAR,那么可以将数据完整的实例看作对更大数据集的一个简单随机抽样。\n随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关, 则数据为随机缺失(MAR)。\n非随机缺失:若缺失数据不属于MCAR和MAR,则数据为非随机缺失(NMAR)。\n\n大部分处理缺失数据的方法都假定数据是MCAR或MAR。缺失值的处理方法非常多,理论也非常复杂,下面是一些常见的缺失值处理方法:\n\n缺失值探索\n缺失值插补之simputation包\n我常用的缺失值插补方法\nmice多重插补",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "data-preprocess.html#过滤",
+    "href": "data-preprocess.html#过滤",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.7 过滤",
+    "text": "6.7 过滤\n这里的过滤和解决共线性,其实部分属于特征选择的范围,就是大家常见的自变量选择问题,这个问题在以后的推文中还会详细介绍。\n\n冗余的变量通常增加了模型的复杂度而非信息量\n\n主要是过滤两种变量:(近)零方差变量和高度相关变量。\n如果一个变量只有1个值,那么这个变量的方差为0;如果一个变量只有少量不重复的取值,这种变量称为近零方差变量;这2种变量包含的信息太少了,应当过滤;\n检测近零方差变量的准则是:\n\n不重复取值的数目与样本量的比值低(比如10%);\n最高频数和次高频数的比值高(比如20%)\n\n如果两个变量相关性太高,那么它们携带的信息可能很多是重叠的,会对某些模型产生较大的影响,应当解决。\n移除共线变量的方法如下:\n\n计算预测变量的相关系数矩阵\n找出相关系数绝对值最大的那对预测变量(记为变量A和B)\n分别计算A和B和其他预测变量的相关系数\n如果A的平均相关系数更大,移除A,否则移除B\n重复步骤2-4,直至所有相关系数的绝对值都低于设定的阈值\n\ncaret可以轻松实现以上过程。\n使用mdrr数据集演示。其中一列nR11大部分都是501,这种变量方差是很小的!\n\ndata(mdrr)\ntable(mdrrDescr$nR11) # 大部分值都是0\n## \n##   0   1   2 \n## 501   4  23\n\nsd(mdrrDescr$nR11)^2 # 方差很小!\n## [1] 0.1731787\n\n使用nearZeroVar()找出零方差和近零方差变量,结果中会给出zeroVar和nzv两列,用逻辑值表示是不是近零方差变量或者零方差变量。\n\nnzv &lt;- nearZeroVar(mdrrDescr, saveMetrics= TRUE)\nnzv[nzv$nzv,][1:10,]\n##        freqRatio percentUnique zeroVar  nzv\n## nTB     23.00000     0.3787879   FALSE TRUE\n## nBR    131.00000     0.3787879   FALSE TRUE\n## nI     527.00000     0.3787879   FALSE TRUE\n## nR03   527.00000     0.3787879   FALSE TRUE\n## nR08   527.00000     0.3787879   FALSE TRUE\n## nR11    21.78261     0.5681818   FALSE TRUE\n## nR12    57.66667     0.3787879   FALSE TRUE\n## D.Dr03 527.00000     0.3787879   FALSE TRUE\n## D.Dr07 123.50000     5.8712121   FALSE TRUE\n## D.Dr08 527.00000     0.3787879   FALSE TRUE\n\n去掉近零方差变量:\n\ndim(mdrrDescr)\n## [1] 528 342\n\nnzv &lt;- nearZeroVar(mdrrDescr)\nfilteredDescr &lt;- mdrrDescr[, -nzv]\ndim(filteredDescr)\n## [1] 528 297\n\n下面是处理高度相关的变量。\n\n# 相关系数矩阵\ncorrelations &lt;- cor(segData)\ndim(correlations)\n## [1] 58 58\n\n# 可视化相关系数矩阵,中间几个颜色深的就是高度相关的变量\nlibrary(corrplot)\ncorrplot(correlations, order = \"hclust\",tl.col = \"black\")\n\n\n\n\n\n\n\n\n去掉高度相关的变量:\n\n# 阈值设为0.75\nhighCorr &lt;- findCorrelation(correlations, cutoff = 0.75)\nlength(highCorr)\n## [1] 32\nhead(highCorr)\n## [1] 23 40 43 36  7 15\n\n# 去掉高度相关的变量\nfilteredSegData &lt;- segData[, -highCorr]",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-cox.html#方法2dynnom",
-    "href": "nomogram-cox.html#方法2dynnom",
-    "title": "3  Cox回归列线图绘制",
-    "section": "3.3 方法2:DynNom",
-    "text": "3.3 方法2:DynNom\n使用这种方法会在你的Rstudio中弹出一个窗口,你可以自由调节其中给出的选项。\n\nlibrary(DynNom)\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\nDynNom(coxfit,\n       DNxlab = \"Survival probability\",\n       KMtitle=\"Kaplan-Meier plot\", \n       KMxlab = \"Time (Days)\", \n       KMylab = \"Survival probability\")\n\n选择好你的参数,点击Predict即可出图:\n\n仔细看上面这个图其实有错误,sex作为性别,只有2种可能:男或女,所以只能是1或者2,不可能为小数,这就提醒我们在建立模型时需要把这样的变量先因子化。"
+    "objectID": "data-preprocess.html#共线性",
+    "href": "data-preprocess.html#共线性",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.8 共线性",
+    "text": "6.8 共线性\n假设一个下面这种的数据,其中第2列和第3列的值加起来和第1列一样,第4,5,6列的值起来也和第1列一样。这种数据的某些变量间是有高度共线性的。\n\nltfrDesign &lt;- matrix(0, nrow=6, ncol=6)\nltfrDesign[,1] &lt;- c(1, 1, 1, 1, 1, 1)\nltfrDesign[,2] &lt;- c(1, 1, 1, 0, 0, 0)\nltfrDesign[,3] &lt;- c(0, 0, 0, 1, 1, 1)\nltfrDesign[,4] &lt;- c(1, 0, 0, 1, 0, 0)\nltfrDesign[,5] &lt;- c(0, 1, 0, 0, 1, 0)\nltfrDesign[,6] &lt;- c(0, 0, 1, 0, 0, 1)\n\nltfrDesign\n##      [,1] [,2] [,3] [,4] [,5] [,6]\n## [1,]    1    1    0    1    0    0\n## [2,]    1    1    0    0    1    0\n## [3,]    1    1    0    0    0    1\n## [4,]    1    0    1    1    0    0\n## [5,]    1    0    1    0    1    0\n## [6,]    1    0    1    0    0    1\n\nfindLinearCombos()可以通过算法给出需要去除的变量,关于具体的方法可以官网查看。\n\ncomboInfo &lt;- findLinearCombos(ltfrDesign)\ncomboInfo\n## $linearCombos\n## $linearCombos[[1]]\n## [1] 3 1 2\n## \n## $linearCombos[[2]]\n## [1] 6 1 4 5\n## \n## \n## $remove\n## [1] 3 6\n\n结果给出了需要去除的变量是第3列和第6列。\n\n# 去除第3列和第6列\nltfrDesign[, -comboInfo$remove]\n##      [,1] [,2] [,3] [,4]\n## [1,]    1    1    1    0\n## [2,]    1    1    0    1\n## [3,]    1    1    0    0\n## [4,]    1    0    1    0\n## [5,]    1    0    0    1\n## [6,]    1    0    0    0",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-cox.html#方法3regplot",
-    "href": "nomogram-cox.html#方法3regplot",
-    "title": "3  Cox回归列线图绘制",
-    "section": "3.4 方法3:regplot",
-    "text": "3.4 方法3:regplot\n使用regplot包实现,这个包很强大,以后还会经常用到。\n\nlibrary(regplot)\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\nregplot(coxfit,\n        #连续性变量形状,\"no plot\"\"density\"\"boxes\"\"ecdf\"\n        #\"bars\"\"boxplot\"\"violin\"\"bean\" \"spikes\";\n        #分类变量的形状,可选\"no plot\" \"boxes\" \"bars\" \"spikes\"\n        plots = c(\"violin\", \"boxes\"), \n        observation = lung[1,], #用哪行观测,或者T F\n        center = T, # 对齐变量\n        subticks = T,\n        droplines = T,#是否画竖线\n        title = \"nomogram\",\n        points = T, # 截距项显示为0-100\n        odds = T, # 是否显示OR值\n        showP = T, # 是否显示变量的显著性标记\n        rank = \"sd\", # 根据sd给变量排序\n        interval=\"confidence\", # 展示可信区间\n        clickable = F # 是否可以交互\n        )\n## Regression  coxfit cph formula:\n## Surv(time, status) `~` age + sex + ph.ecog + ph.karno + pat.karno\n## CI: 0.931(4.82,57.5)\n## [[1]]\n##   pat.karno Points\n## 1        30     61\n## 2        50     49\n## 3        70     37\n## 4        90     25\n## \n## [[2]]\n##   ph.karno Points\n## 1       50      1\n## 2       60     11\n## 3       70     20\n## 4       80     29\n## 5       90     39\n## 6      100     48\n## \n## [[3]]\n##   ph.ecog Points\n## 1     0.0      0\n## 2     0.5     17\n## 3     1.0     33\n## 4     1.5     50\n## 5     2.0     67\n## 6     2.5     83\n## 7     3.0    100\n## \n## [[4]]\n##   sex Points\n## 1 1.0     45\n## 2 1.4     31\n## 3 1.8     18\n## \n## [[5]]\n##   age Points\n## 1  35     13\n## 2  45     20\n## 3  55     26\n## 4  65     33\n## 5  75     40\n## 6  85     47\n## \n## [[6]]\n##    Total Points Pr( time &lt; 267 )\n## 1            60           0.0889\n## 2            80           0.1225\n## 3           100           0.1676\n## 4           120           0.2271\n## 5           140           0.3034\n## 6           160           0.3981\n## 7           180           0.5097\n## 8           200           0.6324\n## 9           220           0.7546\n## 10          240           0.8609\n## 11          260           0.9373"
+    "objectID": "data-preprocess.html#构建虚拟变量",
+    "href": "data-preprocess.html#构建虚拟变量",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.9 构建虚拟变量",
+    "text": "6.9 构建虚拟变量\n最常见的回归分析中的哑变量设置,可以参考之前的推文,详细介绍了常见的分类变量的编码方式:分类变量进行回归分析时的编码方案\n这里介绍下独热编码(one-hot encoding),和哑变量编码稍有不同,哑变量是变成k-1个变量,独热编码是变成k个变量。\n使用以下数据进行演示:\n\ndata(\"cars\", package = \"caret\")\nhead(cars)\n##      Price Mileage Cylinder Doors Cruise Sound Leather Buick Cadillac Chevy\n## 1 22661.05   20105        6     4      1     0       0     1        0     0\n## 2 21725.01   13457        6     2      1     1       0     0        0     1\n## 3 29142.71   31655        4     2      1     1       1     0        0     0\n## 4 30731.94   22479        4     2      1     0       0     0        0     0\n## 5 33358.77   17590        4     2      1     1       1     0        0     0\n## 6 30315.17   23635        4     2      1     0       0     0        0     0\n##   Pontiac Saab Saturn convertible coupe hatchback sedan wagon\n## 1       0    0      0           0     0         0     1     0\n## 2       0    0      0           0     1         0     0     0\n## 3       0    1      0           1     0         0     0     0\n## 4       0    1      0           1     0         0     0     0\n## 5       0    1      0           1     0         0     0     0\n## 6       0    1      0           1     0         0     0     0\n\ntype &lt;- c(\"convertible\", \"coupe\", \"hatchback\", \"sedan\", \"wagon\")\ncars$Type &lt;- factor(apply(cars[, 14:18], 1, function(x) type[which(x == 1)]))\n\ncarSubset &lt;- cars[sample(1:nrow(cars), 20), c(1, 2, 19)]\n\n# 上面是数据生成过程,不重要,记住下面这个数据的样子即可!!\nhead(carSubset)\n##        Price Mileage  Type\n## 627 36332.89   25153 sedan\n## 692 15233.16   32535 sedan\n## 548 27714.05    5379 sedan\n## 49  29844.20   23143 sedan\n## 295 13688.95   21611 sedan\n## 523 19116.13   26252 sedan\nlevels(carSubset$Type) # Type是一个因子型变量\n## [1] \"convertible\" \"coupe\"       \"hatchback\"   \"sedan\"       \"wagon\"\n\n现在把Type这个变量进行独热编码。\n使用dummyVars构建虚拟变量:\n\nsimpleMod &lt;- dummyVars(~Mileage + Type, # 用mileage和Type对价格进行预测\n                       data = carSubset,\n                       levelsOnly = TRUE) # 从列名中移除因子变量的名称\nsimpleMod\n## Dummy Variable Object\n## \n## Formula: ~Mileage + Type\n## 2 variables, 1 factors\n## Factor variable names will be removed\n## A less than full rank encoding is used\n\n接下来就可以使用predict和simpleMod对训练集进行生成虚拟变量的操作了:\n\npredict(simpleMod, head(carSubset))\n##     Mileage convertible coupe hatchback sedan wagon\n## 627   25153           0     0         0     1     0\n## 692   32535           0     0         0     1     0\n## 548    5379           0     0         0     1     0\n## 49    23143           0     0         0     1     0\n## 295   21611           0     0         0     1     0\n## 523   26252           0     0         0     1     0\n\n可以看到Type变量没有了,完成了虚拟变量的转换。\n假如你认为车型和里程有交互影响,则可以使用:表示:\n\nwithInteraction &lt;- dummyVars(~Mileage + Type + Mileage:Type,\n                             data = carSubset,\n                             levelsOnly = TRUE)\nwithInteraction\n## Dummy Variable Object\n## \n## Formula: ~Mileage + Type + Mileage:Type\n## 2 variables, 1 factors\n## Factor variable names will be removed\n## A less than full rank encoding is used\n\n应用于新的数据集:\n\npredict(withInteraction, head(carSubset))\n##     Mileage convertible coupe hatchback sedan wagon Mileage:Typeconvertible\n## 627   25153           0     0         0     1     0                       0\n## 692   32535           0     0         0     1     0                       0\n## 548    5379           0     0         0     1     0                       0\n## 49    23143           0     0         0     1     0                       0\n## 295   21611           0     0         0     1     0                       0\n## 523   26252           0     0         0     1     0                       0\n##     Mileage:Typecoupe Mileage:Typehatchback Mileage:Typesedan Mileage:Typewagon\n## 627                 0                     0             25153                 0\n## 692                 0                     0             32535                 0\n## 548                 0                     0              5379                 0\n## 49                  0                     0             23143                 0\n## 295                 0                     0             21611                 0\n## 523                 0                     0             26252                 0",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-cox.html#方法4vrpm",
-    "href": "nomogram-cox.html#方法4vrpm",
-    "title": "3  Cox回归列线图绘制",
-    "section": "3.5 方法4:VRPM",
-    "text": "3.5 方法4:VRPM\n\nlibrary(VRPM)\nlibrary(survival)\n\ncox_fit &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                 data = lung,\n                 model = T)\n\n# 图片保存在你的目录下\ncolplot(cox_fit,coloroptions = 3,filename = \"cox.png\")\n\n\n以上就是4种Cox回归列线图绘制的方法,其中方法1和3是最常用的。"
+    "objectID": "data-preprocess.html#区间化预测变量",
+    "href": "data-preprocess.html#区间化预测变量",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.10 区间化预测变量",
+    "text": "6.10 区间化预测变量\n主要是为了好解释结果,比如把血压分为高血压1级、2级、3级,把贫血分为轻中重极重等,这样比如你做logistic回归,可以说血压每增高一个等级,因变量的风险增加多少,但是你如果说血压值每增加1mmHg,因变量增加多少倍,这就有点扯了。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
   },
   {
-    "objectID": "nomogram-essential.html#列线图与模型的关系",
-    "href": "nomogram-essential.html#列线图与模型的关系",
-    "title": "4  列线图的本质",
-    "section": "4.1 列线图与模型的关系",
-    "text": "4.1 列线图与模型的关系\n列线图又叫诺莫图,nomogram plot,前面我们展示了绘制二分类变量(logistic)和生存资料(Cox)列线图的多种方法,不知道大家有没有考虑过,其他模型可以绘制列线图吗?例如lasso回归、随机森林等。这就涉及到列线图到底是怎么绘制出来的。\n对于一个含有多个自变量和1个因变量的逻辑回归来说,回归方程可以写成类似 y=a + b1x1 + b2x2 + b3x3 这种形式,其中b是回归系数。列线图就是把回归方程用图形的方式展现出来,线段的长短(分数)根据回归系数计算。"
+    "objectID": "data-preprocess.html#多个预处理步骤放一起",
+    "href": "data-preprocess.html#多个预处理步骤放一起",
+    "title": "6  常见的数据预处理方法",
+    "section": "6.11 多个预处理步骤放一起",
+    "text": "6.11 多个预处理步骤放一起\n在caret中是通过preProcess()函数里面的method参数实现的,把不同的预处理步骤按照顺序写好即可。\n\nlibrary(AppliedPredictiveModeling)\ndata(schedulingData)\nstr(schedulingData)\n## 'data.frame':    4331 obs. of  8 variables:\n##  $ Protocol   : Factor w/ 14 levels \"A\",\"C\",\"D\",\"E\",..: 4 4 4 4 4 4 4 4 4 4 ...\n##  $ Compounds  : num  997 97 101 93 100 100 105 98 101 95 ...\n##  $ InputFields: num  137 103 75 76 82 82 88 95 91 92 ...\n##  $ Iterations : num  20 20 10 20 20 20 20 20 20 20 ...\n##  $ NumPending : num  0 0 0 0 0 0 0 0 0 0 ...\n##  $ Hour       : num  14 13.8 13.8 10.1 10.4 ...\n##  $ Day        : Factor w/ 7 levels \"Mon\",\"Tue\",\"Wed\",..: 2 2 4 5 5 3 5 5 5 3 ...\n##  $ Class      : Factor w/ 4 levels \"VF\",\"F\",\"M\",\"L\": 2 1 1 1 1 1 1 1 1 1 ...\n\n# 中心化、标准化、YeoJohnson变换\npp_hpc &lt;- preProcess(schedulingData[, -8], \n                     method = c(\"center\", \"scale\", \"YeoJohnson\"))\npp_hpc\n## Created from 4331 samples and 7 variables\n## \n## Pre-processing:\n##   - centered (5)\n##   - ignored (2)\n##   - scaled (5)\n##   - Yeo-Johnson transformation (5)\n## \n## Lambda estimates for Yeo-Johnson transformation:\n## -0.08, -0.03, -1.05, -1.1, 1.44\n\n# 应用于数据\ntransformed &lt;- predict(pp_hpc, newdata = schedulingData[, -8])\nhead(transformed)\n##   Protocol  Compounds InputFields Iterations NumPending         Hour Day\n## 1        E  1.2289592  -0.6324580 -0.0615593  -0.554123  0.004586516 Tue\n## 2        E -0.6065826  -0.8120473 -0.0615593  -0.554123 -0.043733201 Tue\n## 3        E -0.5719534  -1.0131504 -2.7894869  -0.554123 -0.034967177 Thu\n## 4        E -0.6427737  -1.0047277 -0.0615593  -0.554123 -0.964170752 Fri\n## 5        E -0.5804713  -0.9564504 -0.0615593  -0.554123 -0.902085020 Fri\n## 6        E -0.5804713  -0.9564504 -0.0615593  -0.554123  0.698108782 Wed\n\nmean(schedulingData$NumPending == 0)\n## [1] 0.7561764\n\n# 进行中心化、标准化、YeoJohnson、nzv\npp_no_nzv &lt;- preProcess(schedulingData[, -8], \n                        method = c(\"center\", \"scale\", \"YeoJohnson\", \"nzv\"))\npp_no_nzv\n## Created from 4331 samples and 7 variables\n## \n## Pre-processing:\n##   - centered (4)\n##   - ignored (2)\n##   - removed (1)\n##   - scaled (4)\n##   - Yeo-Johnson transformation (4)\n## \n## Lambda estimates for Yeo-Johnson transformation:\n## -0.08, -0.03, -1.05, 1.44\n\npredict(pp_no_nzv, newdata = schedulingData[1:6, -8])\n##   Protocol  Compounds InputFields Iterations         Hour Day\n## 1        E  1.2289592  -0.6324580 -0.0615593  0.004586516 Tue\n## 2        E -0.6065826  -0.8120473 -0.0615593 -0.043733201 Tue\n## 3        E -0.5719534  -1.0131504 -2.7894869 -0.034967177 Thu\n## 4        E -0.6427737  -1.0047277 -0.0615593 -0.964170752 Fri\n## 5        E -0.5804713  -0.9564504 -0.0615593 -0.902085020 Fri\n## 6        E -0.5804713  -0.9564504 -0.0615593  0.698108782 Wed\n\n如果你用过tidymodels,那你应该知道里面的数据预处理步骤是通过recipes包完成的,每一步都是step_xx,说实话我觉得caret的这种方式更加简洁易懂!\n以上就是数据预处理的一般过程,一个caret包可以解决上面所有的问题,有兴趣的小伙伴可以自行学习。\n数据预处理是一个非常系统且专业的过程,如同开头说的那样:最有效的编码数据的方法来自于建模者对数据的理解,而不是通过任何数学方法,在对数据进行预处理之前,一定要仔细理解自己的数据哦,结果导向的思维是不对的哦!\n本文简单介绍了常见的数据预处理方法和简单的实现方法,并且大量使用了caret包,但是目前在R中实现数据预处理有更好的方法了,那就是tidymodels和mlr3,这部分内容可参考:\n\nmlr3数据预处理\ntidymodels菜谱:数据预处理\nR语言机器学习caret-02:数据预处理",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>6</span>  <span class='chapter-title'>常见的数据预处理方法</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-logistic.html",
+    "href": "nomogram-logistic.html",
+    "title": "7  逻辑回归列线图绘制",
+    "section": "",
+    "text": "7.1 准备数据\n使用lowbirth数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,共有565行,10列。其中dead这一列是结果变量,0代表存活,1代表死亡,其余列都是预测变量。\n获取lowbirth数据请在公众号:医学和生信笔记,后台回复20220520。或者到粉丝QQ群文件自取。\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n查看一下数据:\ndim(lowbirth) # 565行,10列\n## [1] 565  10\nstr(lowbirth) \n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : chr  \"white\" \"black\" \"black\" \"black\" ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: chr  \"abdominal\" \"vaginal\" \"vaginal\" \"abdominal\" ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : chr  \"female\" \"female\" \"male\" \"female\" ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n数据中有很多分类变量,比如race、delivery、sex、vent,但是类型是chr或者int,通常在R语言中需要把分类变量变成factor,也就是因子型。\n除此之外,race这个变量一共有4个类别:其中oriental和native American这两个类别太少了,这样在建立模型的时候会导致不可靠的结果,所以我们需要对这个变量进行一些转换。\ntable(lowbirth$race)\n## \n##           black native American        oriental           white \n##             325              14               4             222\n还有就是,有些模型(比如逻辑回归)要求分类变量先进行哑变量(或者其他方法)转换,但是你如果把分类变量变成了因子型,R语言内部会自动帮你转换,不需要手动进行,相关知识我详细介绍过,可以参考分类变量进行回归分析时的编码方案\n对于分类型的因变量,通常需要也变成factor类型,虽然很多R包支持不同类型,但是我建议你转换。\n下面就是用代码实现两步预处理:\nlibrary(dplyr)\n\ntmp &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         dead = factor(dead),\n         race = case_when(race %in% \n                            c(\"native American\",\"oriental\") ~ \"other\",\n                          .default = race),\n         race = factor(race))\n\nstr(tmp)\n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : Factor w/ 3 levels \"black\",\"other\",..: 3 1 1 1 1 1 3 1 3 3 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : Factor w/ 2 levels \"0\",\"1\": 1 2 1 2 1 1 2 1 1 2 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : Factor w/ 2 levels \"0\",\"1\": 1 2 1 2 1 1 1 1 1 2 ...",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>7</span>  <span class='chapter-title'>逻辑回归列线图绘制</span>"
+    ]
   },
   {
-    "objectID": "nomogram-essential.html#列线图分数的计算方法",
-    "href": "nomogram-essential.html#列线图分数的计算方法",
-    "title": "4  列线图的本质",
-    "section": "4.2 列线图分数的计算方法",
-    "text": "4.2 列线图分数的计算方法\n以下面这个列线图为例:\n\n上面这个列线图是一个逻辑回归的(之前logistic回归列线图推文中的fit2),它的逻辑回归的结果是这样的:\n\nlrm(formula = dead ~ birth + lowph + pltct + bwt + vent + black + \n     white, data = tmp, x = T, y = T)                    \n \n           Coef    S.E.    Wald Z Pr(&gt;|Z|)\n Intercept 38.3815 11.0303  3.48  0.0005  \n birth     -0.1201  0.0914 -1.31  0.1890  \n lowph     -4.1451  1.1881 -3.49  0.0005  \n pltct     -0.0017  0.0019 -0.91  0.3644  \n bwt       -0.0031  0.0006 -5.14  &lt;0.0001 \n vent=1     2.7526  0.7436  3.70  0.0002  \n black      1.1974  0.8448  1.42  0.1564  \n white      0.8597  0.8655  0.99  0.3206\n\n在最下面列出了每个自变量的回归系数,我们首先 把回归系数绝对值最大的设置为100分,在这个例子中是lowph,它的回归系数绝对值是4.1451,也就是对应的是100分,然后其他自变量都是根据lowph进行转换 ,即可算出其他自变量对应的得分!\n然后根据这个表达式得到的列线图的结果是这样的:\n\nnom2\nPoints per unit of linear predictor: 21.93145 \nLinear predictor units per point   : 0.04559661 \n\n\n birth Points\n 81.5  16    \n 82.0  14    \n 82.5  13    \n 83.0  12    \n 83.5  11    \n 84.0   9    \n 84.5   8    \n 85.0   7    \n 85.5   5    \n 86.0   4    \n 86.5   3    \n 87.0   1    \n 87.5   0    \n\n\n lowph Points\n 6.5   100   \n 6.6    91   \n 6.7    82   \n 6.8    73   \n 6.9    64   \n 7.0    55   \n 7.1    45   \n 7.2    36   \n 7.3    27   \n 7.4    18   \n 7.5     9   \n 7.6     0   \n\n\n pltct Points\n   0   22    \n  50   20    \n 100   18    \n 150   17    \n 200   15    \n 250   13    \n 300   11    \n 350    9    \n 400    7    \n 450    6    \n 500    4    \n 550    2    \n 600    0    \n\n\n bwt  Points\n  400 76    \n  500 69    \n  600 62    \n  700 55    \n  800 48    \n  900 41    \n 1000 34    \n 1100 27    \n 1200 21    \n 1300 14    \n 1400  7    \n 1500  0    \n\n\n vent Points\n 0     0    \n 1    60    \n\n\n black Points\n 0      0    \n 1     26    \n\n\n white Points\n 0      0    \n 1     19    \n\n\n Total Points  Dead\n           53 0.001\n          104 0.010\n          157 0.100\n          181 0.250\n          205 0.500\n          229 0.750\n          253 0.900\n\n上面的 Linear predictor units per point: 0.04559661  意思是每一个小刻度代表的分数是0.04559661分,这实际上是最大回归系数的1/100(这里应该是4.1451/100=0.041451,实际上会有偏差!)。\n\n4.2.1 分类变量分数的计算\n以vent为例,vent=1的时候,它的回归系数是2.7526,那么它对应的分数应该是 2.7526/0.04559661 * 100 ≈ 60,上面得到的结果是60分,一样的!black应该是 1.1974/0.04559661 * 100 ≈ 26,也和我们算的差不多!\n这就是分类变量分数的计算。\n\n\n4.2.2 连续性变量分数的计算\n连续性自变量需要考虑取值范围,它的解释应该是每增加一个单位,因变量变化多少,对于pltct来说,系数是-0.0017,就是每增加1各单位,因变量减少0.0017。\npltct是600,对应的分数是0分,那么如果是100,对应的分数就是 (600-100)* (0.0017/0.04559661) ≈ 18。\n这就是连续性变量分数的计算。\n了解了列线图的分数计算方法,即使没有R语言,你也可以通过手动计算算出来,这样你可以自己画图!(理论上可行,但实际上很难,至少我还没见到过…)\n根据这个思路,理论上凡是有回归系数的、有变量重要性的,都可以画列线图展示出来,并不局限于logistic和cox,但是模型在临床中的解释就很难了。"
+    "objectID": "nomogram-logistic.html#准备数据",
+    "href": "nomogram-logistic.html#准备数据",
+    "title": "7  逻辑回归列线图绘制",
+    "section": "",
+    "text": "分类变量(包括因变量)因子化\n把oriental和native American这两个类别合并成一个类别,就叫other",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>7</span>  <span class='chapter-title'>逻辑回归列线图绘制</span>"
+    ]
   },
   {
-    "objectID": "nomogram-rcs.html#建立logistic模型",
-    "href": "nomogram-rcs.html#建立logistic模型",
-    "title": "5  样条回归列线图绘制",
-    "section": "5.1 建立logistic模型",
-    "text": "5.1 建立logistic模型\n\nlibrary(rms)\n# 逻辑回归数据\n#getHdata(titanic3)\n#save(titanic3, file = \"./datasets/titanic3.rdata\")\nload(file = \"./datasets/titanic3.rdata\")\n# 使用rms前先把数据打包\ndd &lt;- datadist(titanic3); options(datadist='dd')\n\n# 逻辑回归的立方样条\nf &lt;- lrm(survived ~ rcs(sqrt(age),5) + sex, data=titanic3)\nf\n## Frequencies of Missing Values Due to Each Variable\n## survived      age      sex \n##        0      263        0 \n## \n## Logistic Regression Model\n## \n## lrm(formula = survived ~ rcs(sqrt(age), 5) + sex, data = titanic3)\n## \n## \n##                        Model Likelihood      Discrimination    Rank Discrim.    \n##                              Ratio Test             Indexes          Indexes    \n## Obs          1046    LR chi2     328.06      R2       0.363    C       0.794    \n##  0            619    d.f.             5     R2(5,1046)0.266    Dxy     0.587    \n##  1            427    Pr(&gt; chi2) &lt;0.0001    R2(5,758.1)0.347    gamma   0.593    \n## max |deriv| 2e-07                            Brier    0.168    tau-a   0.284    \n## \n##           Coef     S.E.    Wald Z Pr(&gt;|Z|)\n## Intercept   3.0936  0.5428   5.70 &lt;0.0001 \n## age        -0.6383  0.1771  -3.60 0.0003  \n## age'        1.5544  0.6527   2.38 0.0172  \n## age''     -12.1583  8.8925  -1.37 0.1715  \n## age'''     15.8326 16.9397   0.93 0.3500  \n## sex=male   -2.4944  0.1549 -16.10 &lt;0.0001"
+    "objectID": "nomogram-logistic.html#方法1rms",
+    "href": "nomogram-logistic.html#方法1rms",
+    "title": "7  逻辑回归列线图绘制",
+    "section": "7.2 方法1:rms",
+    "text": "7.2 方法1:rms\n这个R包非常强大,以后在很多场景中都会用到,是目前唯一能胜任临床预测模型所有步骤的R包。\n\nlibrary(rms)\n\n首先是打包数据,这一步对于rms包来说是必须的:\n\ndd &lt;- datadist(tmp)\noptions(datadist=\"dd\")\n\n构建逻辑回归模型,我们只使用其中的部分变量进行演示:\n\nfit1 &lt;- lrm(dead==1 ~ birth + lowph + pltct + bwt + vent + race,\n            data = tmp)\n#fit1\n\n上面使用了dead==1表示要计算死亡的概率,这里指定一下不容易出错。\n\nlrm()做逻辑回归应该是默认计算排序靠后的类别的概率。\n\n接下来就是构建列线图,然后画图。\n\nnom1 &lt;- nomogram(fit1, fun=plogis,\n                 fun.at=c(0.001,0.1,0.25,0.5,0.75,0.9,0.99),\n                 lp=T, # 是否显示线性预测值\n                 maxscale = 100, # 最大得分数\n                 conf.int = F, # 添加置信区间,很难看,可以不要\n                 funlabel=\"Risk of Death\")  \nplot(nom1) \n\n\n\n\n\n\n\n\n还可以进行一些美化,这个函数的参数非常多,大家可以通过帮助文档自己学习:\n\nplot(nom1,\n     col.grid=c(\"tomato\",\"grey\")\n     #conf.space = c(0.3,0.5) # 置信区间位置\n     ) \n\n\n\n\n\n\n\n\n这个图形展示的是不同变量的取值对应的得分情况,最上面一行是每个变量对应的得分。\n假如有一个患者:\n\n他的birth是87.5,那么对应得分就是0分(看下面的示意图);\n他的lowph是6.5,那么对应的得分是100;\n他的pltct是50,那么对应的得分是20分;\n他的bwt是920(大约),那么对应的得分是40;\n他的vent是1,那么对应的得分是60;\n他的race是black,那么对应的得分是27(大约)\n\n\n这样一来你就可以得到这个患者的总得分是:100+20+40+60+27=247,这样你就可以在Total Points这一行找到247,然后对应线性预测值(Linear Predictor)就是2,对应的死亡风险是0.85(大约)。\n列线图就是这么看的,不管有多么的花里胡哨都是这么看的,没有任何区别。\n实际在计算每个患者得分时有专门的R包实现,不用自己算,后面的章节会介绍。\n\n\n\n\n\n\n注释\n\n\n\n下面给大家展示下“先做哑变量处理再画列线图”是什么样的效果。就以race这个变量为例。\n\ntmp0 &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         dead = factor(dead),\n         # 下面是对race做哑变量处理\n         black = ifelse(race == \"black\",1,0),\n         white = ifelse(race == \"white\",1,0),\n         other = ifelse(race %in% c(\"native American\",\"oriental\"),1,0)\n         ) %&gt;% \n  select(- race)\n\n# race一列变3列了,这个哑变量怎么看,请参考\n# [分类变量进行回归分析时的编码方案]\nstr(tmp0)\n## 'data.frame':    565 obs. of  12 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : Factor w/ 2 levels \"0\",\"1\": 1 2 1 2 1 1 2 1 1 2 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : Factor w/ 2 levels \"0\",\"1\": 1 2 1 2 1 1 1 1 1 2 ...\n##  $ black   : num  0 1 1 1 1 1 0 1 0 0 ...\n##  $ white   : num  1 0 0 0 0 0 1 0 1 1 ...\n##  $ other   : num  0 0 0 0 0 0 0 0 0 0 ...\n\ndd &lt;- datadist(tmp0)\noptions(datadist=\"dd\")\n# 以other这个类别为参考\nfit0 &lt;- lrm(dead==1 ~ birth+lowph+pltct+bwt+vent+black+white,data = tmp0)\nnom0 &lt;- nomogram(fit0, fun=plogis,\n                 fun.at=c(0.001,0.1,0.25,0.5,0.75,0.9,0.99),\n                 funlabel=\"Risk of Death\")  \nplot(nom0,col.grid=c(\"tomato\",\"grey\")) \n\n\n\n\n\n\n\n\n看到不同了吗?black和white是两列,other是参考,所以不用写在公式里,当black和white都是0的时候就表示other,当black是1的时候就表示black,white和other此时必为0(不信你可以查看tmp0这个数据),white为1的时候就表示white,此时black和other比为0。\n但是你再仔细观察,你会发现这个图里的black和white对应的分数和上面的列线图是一样的,神奇吗?所以你不需要先自己进行哑变量处理(R会自动处理),虽然画出来的图不一样,但是得分、概率啥的都是一样的,就只是图不一样而已。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>7</span>  <span class='chapter-title'>逻辑回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-logistic.html#方法2regplot",
+    "href": "nomogram-logistic.html#方法2regplot",
+    "title": "7  逻辑回归列线图绘制",
+    "section": "7.3 方法2:regplot",
+    "text": "7.3 方法2:regplot\n这个R包也非常强大,也是做临床预测模型必须要学习的包。\n\nlibrary(regplot)\n\n# 建立模型,这里使用glm也可以\nfit2 &lt;- lrm(dead==1 ~ birth + lowph + pltct + bwt + vent + race,\n            data = tmp)\n\n# 绘图\naa &lt;- regplot(fit2,\n        #连续性变量形状,\"no plot\"\"density\"\"boxes\"\"ecdf\"\n        #\"bars\"\"boxplot\"\"violin\"\"bean\" \"spikes\";\n        #分类变量的形状,可选\"no plot\" \"boxes\" \"bars\" \"spikes\"\n        plots = c(\"violin\", \"boxes\"),   \n        observation = tmp[1,], #用哪行观测,或者T F\n        center = T, # 对齐变量\n        subticks = T,\n        droplines = T,#是否画竖线\n        title = \"nomogram\",\n        points = T, # 截距项显示为0-100\n        odds = T, # 是否显示OR值\n        showP = T, # 是否显示变量的显著性标记\n        rank = \"sd\", # 根据sd给变量排序\n        interval=\"confidence\", # 展示可信区间\n        clickable = F # 是否可以交互\n        )\n\n这个图看起来更加的花里胡哨,但是图的解读还是和上面一样的,而且我们还有代码专门展示了第一个患者的得分情况。\n唯一不同就是在图中添加了各种图形用来展示各个变量的数据分布情况。\n仔细看你会发现,同样的数据同样的模型和变量,但是画出来的列线图细节确有很多地方不一样!都是正确的哈,写文章时把R包的参考文献加进去即可,别纠结。\n除了以上两种方法外,之前还有另外两个R包可以使用:VRPM和DynNom,但是这两个包太老了,很久没更新了,所以目前只能通过下载安装包本地安装。目前不推荐使用了,如果你一定要用,可参考:Logistic回归列线图的4种绘制方法",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>7</span>  <span class='chapter-title'>逻辑回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-cox.html",
+    "href": "nomogram-cox.html",
+    "title": "8  Cox回归列线图绘制",
+    "section": "",
+    "text": "8.1 准备数据\nCox回归模型在医学统计中是一个很重要的统计方法,关于Cox比例风险模型的构建和结果解读,我写过一些实现方法以及细节解读的推文,大家可以参考:\n# 加载需要的R包和数据\nlibrary(survival)\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n这个是关于肺癌的生存数据,一共有228行,10列,其中time是生存时间,单位是天,status是生存状态,1是删失,2是死亡。其余变量是自变量,意义如下:",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>8</span>  <span class='chapter-title'>Cox回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-cox.html#准备数据",
+    "href": "nomogram-cox.html#准备数据",
+    "title": "8  Cox回归列线图绘制",
+    "section": "",
+    "text": "R语言生存分析:Cox回归\nR语言时依系数和时依协变量Cox回归\n\n\n\n\ninst:机构代码,对于我们这次建模没啥用\nage:年龄\nsex:1是男性,2是女性\nph.ecog:ECOG评分。0=无症状,1=有症状但完全可以走动,2=每天&lt;50%的时间在床上,3=在床上&gt;50%的时间但没有卧床,4=卧床不起\nph.karno:医生评的KPS评分,范围是0-100,得分越高,健康状况越好,越能忍受治疗给身体带来的副作用。\npat.karno:患者自己评的KPS评分\nmeal.cal:用餐时消耗的卡路里\nwt.loss:过去6个月的体重减少量,单位是磅",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>8</span>  <span class='chapter-title'>Cox回归列线图绘制</span>"
+    ]
   },
   {
-    "objectID": "nomogram-rcs.html#画列线图",
-    "href": "nomogram-rcs.html#画列线图",
-    "title": "5  样条回归列线图绘制",
-    "section": "5.2 画列线图",
-    "text": "5.2 画列线图\n下面直接画图即可,没有任何难度,因为rms这个包把一切都给你做好了,不用自己操心,如果你做临床预测模型,是不可能绕开这个包的。\n\nnom &lt;- nomogram(f, fun=plogis,\n                 lp=T,\n                 funlabel=\"Risk of Death\")  \nplot(nom) \n\n\n\n\n这样RCS的列线图就画好了,关于一些参数的意义和细节的美化,可以参考前面的推文,这里就不多说了。\n既然logistic回归没问题,那COX回归自然也是没问题的!"
+    "objectID": "nomogram-cox.html#方法1rms",
+    "href": "nomogram-cox.html#方法1rms",
+    "title": "8  Cox回归列线图绘制",
+    "section": "8.2 方法1:rms",
+    "text": "8.2 方法1:rms\n大多数情况下都是使用1代表死亡,0代表删失,下面这个演示数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\nlibrary(rms)\n# 使用rms包需要对数据进行“打包”操作\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\n# 选择部分变量演示\ncoxfit &lt;- cph(Surv(time, status) ~ age+sex+ph.ecog+ph.karno+pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\n指定你要计算哪一年的生存率:\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\n构建列线图数据:\n\n# 构建列线图数据\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是画图:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\n\n\n\n\n\n\n\n\n这个图的解读方式和逻辑回归的列线图一模一样,这里就不再重复了,大家看逻辑回归的那篇。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>8</span>  <span class='chapter-title'>Cox回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-cox.html#方法2regplot",
+    "href": "nomogram-cox.html#方法2regplot",
+    "title": "8  Cox回归列线图绘制",
+    "section": "8.3 方法2:regplot",
+    "text": "8.3 方法2:regplot\n使用regplot包实现。\n\nlibrary(regplot)\n\n# 建立cox回归模型\ncoxfit &lt;- cph(Surv(time, status) ~ age+sex+ph.ecog+ph.karno+pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 画图即可\naa &lt;- regplot(coxfit,\n        #连续性变量形状,\"no plot\"\"density\"\"boxes\"\"ecdf\"\n        #\"bars\"\"boxplot\"\"violin\"\"bean\" \"spikes\";\n        #分类变量的形状,可选\"no plot\" \"boxes\" \"bars\" \"spikes\"\n        plots = c(\"violin\", \"boxes\"), \n        observation = lung[1,], #用哪行观测,或者T F\n        center = T, # 对齐变量\n        subticks = T,\n        droplines = T,#是否画竖线\n        title = \"nomogram\",\n        points = T, # 截距项显示为0-100\n        odds = T, # 是否显示OR值\n        showP = T, # 是否显示变量的显著性标记\n        rank = \"sd\", # 根据sd给变量排序\n        interval=\"confidence\", # 展示可信区间\n        clickable = F # 是否可以交互\n        )\n\n除了以上两种方法外,之前还有另外两个R包可以使用:VRPM和DynNom,但是这两个包太老了,很久没更新了,所以目前只能通过下载安装包本地安装。目前不推荐使用了,如果你一定要用,可参考:Cox回归列线图(nomogram)的4种绘制方法",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>8</span>  <span class='chapter-title'>Cox回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-原理.html",
+    "href": "nomogram-原理.html",
+    "title": "9  列线图的本质",
+    "section": "",
+    "text": "9.1 列线图与模型的关系\n前面我们展示了绘制逻辑回归和cox回归列线图的多种方法,不知道大家有没有考虑过,其他模型可以绘制列线图吗?例如lasso回归、随机森林等(不行哈,理论可行,实际不行)。这就涉及到列线图到底是怎么绘制出来的。\n对于一个含有多个自变量和1个因变量的逻辑回归来说,回归方程可以写成类似 y=a + b1x1 + b2x2 + b3x3 这种形式,其中b是回归系数。列线图就是把回归方程用图形的方式展现出来,线段的长短(分数)根据回归系数计算。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>9</span>  <span class='chapter-title'>列线图的本质</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-原理.html#列线图分数的计算方法",
+    "href": "nomogram-原理.html#列线图分数的计算方法",
+    "title": "9  列线图的本质",
+    "section": "9.2 列线图分数的计算方法",
+    "text": "9.2 列线图分数的计算方法\n以下面这个列线图为例:\n\n上面这个列线图是一个逻辑回归的,它的逻辑回归的结果是这样的:\n\nlrm(formula = dead ~ birth + lowph + pltct + bwt + vent + black + \n     white, data = tmp, x = T, y = T)                    \n \n           Coef    S.E.    Wald Z Pr(&gt;|Z|)\n Intercept 38.3815 11.0303  3.48  0.0005  \n birth     -0.1201  0.0914 -1.31  0.1890  \n lowph     -4.1451  1.1881 -3.49  0.0005  \n pltct     -0.0017  0.0019 -0.91  0.3644  \n bwt       -0.0031  0.0006 -5.14  &lt;0.0001 \n vent=1     2.7526  0.7436  3.70  0.0002  \n black      1.1974  0.8448  1.42  0.1564  \n white      0.8597  0.8655  0.99  0.3206\n \n## 新的\nlrm(formula = dead == 1 ~ birth + lowph + pltct + bwt + vent + race, data = tmp)\n\n           Coef    S.E.    Wald Z Pr(&gt;|Z|)\nIntercept  39.5788 11.0070  3.60  0.0003  \nbirth      -0.1201  0.0914 -1.31  0.1890  \nlowph      -4.1451  1.1881 -3.49  0.0005  \npltct      -0.0017  0.0019 -0.91  0.3644  \nbwt        -0.0031  0.0006 -5.14  &lt;0.0001 \nvent=1      2.7526  0.7436  3.70  0.0002  \nrace=other -1.1974  0.8448 -1.42  0.1564  \nrace=white -0.3377  0.2953 -1.14  0.2529  \n\n在最下面列出了每个自变量的回归系数,我们首先把回归系数绝对值最大的设置为100分,在这个例子中是lowph,它的回归系数绝对值是4.1451,也就是对应的是100分,然后其他自变量都是根据lowph进行转换,即可算出其他自变量对应的得分!\n然后根据这个表达式得到的列线图的结果是这样的:\n\nnom1\nPoints per unit of linear predictor: 21.93145 \nLinear predictor units per point   : 0.04559661 \n\n birth Points\n 81.5  16    \n 82.0  14    \n 82.5  13    \n 83.0  12    \n 83.5  11    \n 84.0   9    \n 84.5   8    \n 85.0   7    \n 85.5   5    \n 86.0   4    \n 86.5   3    \n 87.0   1    \n 87.5   0    \n\n lowph Points\n 6.5   100   \n 6.6    91   \n 6.7    82   \n 6.8    73   \n 6.9    64   \n 7.0    55   \n 7.1    45   \n 7.2    36   \n 7.3    27   \n 7.4    18   \n 7.5     9   \n 7.6     0   \n\n pltct Points\n   0   22    \n  50   20    \n 100   18    \n 150   17    \n 200   15    \n 250   13    \n 300   11    \n 350    9    \n 400    7    \n 450    6    \n 500    4    \n 550    2    \n 600    0    \n\n bwt  Points\n  400 76    \n  500 69    \n  600 62    \n  700 55    \n  800 48    \n  900 41    \n 1000 34    \n 1100 27    \n 1200 21    \n 1300 14    \n 1400  7    \n 1500  0    \n\n vent Points\n 0     0    \n 1    60    \n\n race  Points\n black 26    \n other  0    \n white 19    \n\n Total Points  Dead\n           53 0.001\n          104 0.010\n          157 0.100\n          181 0.250\n          205 0.500\n          229 0.750\n          253 0.900\n\n上面的 Linear predictor units per point: 0.04559661  意思是每一个小刻度代表的分数是0.04559661分,这实际上是最大回归系数的1/100(这里应该是4.1451/100=0.041451,实际上会有偏差!)。\n\n9.2.1 分类变量分数的计算\n以vent为例,vent=1的时候,它的回归系数是2.7526,那么它对应的分数应该是 2.7526/0.04559661 * 100 ≈ 60,上面得到的结果是60分,一样的!black应该是 1.1974/0.04559661 * 100 ≈ 26,也和我们算的差不多!\n这就是分类变量分数的计算。\n\n\n9.2.2 连续性变量分数的计算\n连续性自变量需要考虑取值范围,它的解释应该是每增加一个单位,因变量变化多少,对于pltct来说,系数是-0.0017,就是每增加1各单位,因变量减少0.0017。\npltct是600,对应的分数是0分,那么如果是100,对应的分数就是 (600-100)* (0.0017/0.04559661) ≈ 18。\n这就是连续性变量分数的计算。\n了解了列线图的分数计算方法,即使没有R语言,你也可以通过手动计算算出来,这样你可以自己画图!(理论上可行,但实际上很难,至少我还没见到过…)",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>9</span>  <span class='chapter-title'>列线图的本质</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-rcs.html",
+    "href": "nomogram-rcs.html",
+    "title": "10  样条回归列线图绘制",
+    "section": "",
+    "text": "10.1 逻辑回归的RCS列线图\n建立逻辑回归模型:\n# 加载数据\nload(file = \"./datasets/titanic3.rdata\")\n# 使用rms前先把数据打包\ndd &lt;- datadist(titanic3); options(datadist='dd')\n\n# 逻辑回归的立方样条,对age这个变量做样条变换\nf &lt;- lrm(survived ~ rcs(sqrt(age),5) + sex, data=titanic3)\n#f\n下面直接画图即可,没有任何难度,因为rms这个包把一切都给你做好了,不用自己操心,如果你做临床预测模型,是不可能绕开这个包的。\nnom &lt;- nomogram(f, fun=plogis, funlabel=\"Risk of Death\")  \nplot(nom)\n这样RCS的列线图就画好了,关于一些参数的意义和细节的美化,可以参考前面的文章,这里就不多说了。在图中Age这个变量的线条有一些拥挤,这就是样条变换的原因,它需要给你计算分数,所以就挤到一起了,这是rms自动帮你搞的,很方便。\n既然逻辑回归没问题,那COX回归自然也是没问题的!",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>10</span>  <span class='chapter-title'>样条回归列线图绘制</span>"
+    ]
   },
   {
     "objectID": "nomogram-rcs.html#cox回归rcs的列线图",
     "href": "nomogram-rcs.html#cox回归rcs的列线图",
-    "title": "5  样条回归列线图绘制",
-    "section": "5.3 COX回归RCS的列线图",
-    "text": "5.3 COX回归RCS的列线图\n\nlibrary(survival)\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ rcs(sqrt(age),5) + sex,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability')\n                )\n\nplot(nom)\n\n\n\n\n这就是COX回归RCS的列线图,关于一些参数的意义和细节的美化,可以参考前面的推文,这里就不多说了。\n是不是很简单?\n因为是演示数据,所以画出来的图不是很美观,但是实现方法就是这么简单!"
+    "title": "10  样条回归列线图绘制",
+    "section": "10.2 COX回归RCS的列线图",
+    "text": "10.2 COX回归RCS的列线图\n准备一个生存数据,就用survival自带的肺癌数据:lung\n\nrm(list = ls())\nlibrary(survival)\n\n# 打包数据\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ rcs(sqrt(age),5) + sex,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 构建生存函数,计算生存率,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\n# 画图\nnom &lt;- nomogram(coxfit, fun = list(surv1,surv2),\n                funlabel = c('1-year survival Probability',\n                             '2-year survival Probability')\n                )\n\nplot(nom)\n\n\n\n\n\n\n\n\n这就是COX回归RCS的列线图,是不是很简单?\n因为是演示数据,所以画出来的图不是很美观,但是实现方法就是这么简单!只要是rms包支持的方法,都可以绘制列线图。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>10</span>  <span class='chapter-title'>样条回归列线图绘制</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-compete-risk.html",
+    "href": "nomogram-compete-risk.html",
+    "title": "11  竞争风险模型列线图绘制",
+    "section": "",
+    "text": "11.1 加载数据和R包\n探讨骨髓移植和血液移植治疗白血病的疗效,结局事件定义为复发,某些患者因为移植不良反应死亡,定义为竞争风险事件。\nrm(list = ls())\ndata(\"bmtcrr\",package = \"casebase\")\nstr(bmtcrr)\n## 'data.frame':    177 obs. of  7 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 4 levels \"CR1\",\"CR2\",\"CR3\",..: 4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...\n这个数据一共7个变量,177行。\n# 竞争风险分析需要用的R包\nlibrary(cmprsk)",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>竞争风险模型列线图绘制</span>"
+    ]
   },
   {
     "objectID": "nomogram-compete-risk.html#加载数据和r包",
     "href": "nomogram-compete-risk.html#加载数据和r包",
-    "title": "6  竞争风险模型列线图绘制",
-    "section": "6.1 加载数据和R包",
-    "text": "6.1 加载数据和R包\n探讨骨髓移植和血液移植治疗白血病的疗效,结局事件定义为复发,某些患者因为移植不良反应死亡,定义为竞争风险事件。\n\nrm(list = ls())\ndata(\"bmtcrr\",package = \"casebase\")\nstr(bmtcrr)\n## 'data.frame':    177 obs. of  7 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 4 levels \"CR1\",\"CR2\",\"CR3\",..: 4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...\n\n这个数据一共7个变量,177行。\n\nSex: 性别,F是女,M是男\nD: 疾病类型,ALL是急性淋巴细胞白血病,AML是急性髓系细胞白血病。\nPhase: 不同阶段,4个水平,CR1,CR2,CR3,Relapse。\nAge: 年龄。\nStatus: 结局变量,0=删失,1=复发,2=竞争风险事件。\nSource: 因子变量,2个水平:BM+PB(骨髓移植+血液移植),PB(血液移植)。\nftime: 生存时间。\n\n\n# 竞争风险分析需要用的R包\nlibrary(cmprsk)\n## Loading required package: survival"
-  },
-  {
-    "objectID": "nomogram-compete-risk.html#fine-gray检验单因素分析",
-    "href": "nomogram-compete-risk.html#fine-gray检验单因素分析",
-    "title": "6  竞争风险模型列线图绘制",
-    "section": "6.2 Fine-Gray检验(单因素分析)",
-    "text": "6.2 Fine-Gray检验(单因素分析)\n在普通的生存分析中,可以用log-rank检验做单因素分析,在竞争风险模型中,使用Fine-Gray检验进行单因素分析。\n\n比如现在我们想要比较不同疾病类型(D)有没有差异,可以进行Fine-Gray检验:\n\nbmtcrr$Status &lt;- factor(bmtcrr$Status)\nf &lt;- cuminc(bmtcrr$ftime, bmtcrr$Status, bmtcrr$D)\nf\n## Tests:\n##        stat         pv df\n## 1 2.8623325 0.09067592  1\n## 2 0.4481279 0.50322531  1\n## Estimates and Variances:\n## $est\n##              20        40        60        80       100       120\n## ALL 1 0.3713851 0.3875571 0.3875571 0.3875571 0.3875571 0.3875571\n## AML 1 0.2414530 0.2663827 0.2810390 0.2810390 0.2810390        NA\n## ALL 2 0.3698630 0.3860350 0.3860350 0.3860350 0.3860350 0.3860350\n## AML 2 0.4439103 0.4551473 0.4551473 0.4551473 0.4551473        NA\n## \n## $var\n##                20          40          60          80         100         120\n## ALL 1 0.003307032 0.003405375 0.003405375 0.003405375 0.003405375 0.003405375\n## AML 1 0.001801156 0.001995487 0.002130835 0.002130835 0.002130835          NA\n## ALL 2 0.003268852 0.003373130 0.003373130 0.003373130 0.003373130 0.003373130\n## AML 2 0.002430406 0.002460425 0.002460425 0.002460425 0.002460425          NA\n\n结果中1代表复发,2代表竞争风险事件。\n第一行统计量=2.8623325, P=0.09067592,表示在控制了竞争风险事件(即第二行计算的统计量和P值)后,两种疾病类型ALL和AML的累计复发风险无统计学差异P=0.09067592。\n第2行说明ALL和AML的累计竞争风险无统计学差异。\n$est表示估计的各时间点ALL和AML组的累计复发率与与累计竞争风险事件发生率(分别用1和2来区分,与第一行第二行一致)。\n$var表示估计的各时间点ALL和AML组的累计复发率与与累计竞争风险事件发生率的方差(分别用1和2来区分,与第一行第二行一致)。\n\n6.2.1 图形展示结果\n对于上述结果可以使用图形展示:\n\nplot(f,xlab = 'Month', ylab = 'CIF',lwd=2,lty=1,\n     col = c('red','blue','black','forestgreen'))\n\n\n\n\n图形解读:\n纵坐标表示累计发生率CIF,横坐标是时间。我们从ALL1对应的红色曲线和AML1对应的蓝色曲线可以得出,ALL组的复发风险较AML 组高,但无统计学意义,P=0.09067592。同理,ALL2对应的黑色曲线在AML2对应的草绿色曲线下方,我们可以得出,ALL组的竞争风险事件发生率较AML组低,同样无统计学意义,P=0.50322531。\n简单来讲,这个图可以用一句话来概括:在控制了竞争风险事件后,ALL和AML累计复发风险无统计学差异P=0.09067592。\n\n\n6.2.2 ggplot2\n这个图不好看,非常的不ggplot,所以我们要用ggplot2重新画它!所以首先要提取数据,因为数就是图,图就是数。但是万能的broom包竟然没有不能提取这个对象的数据,只能手动来,太不优雅了!\n\n# 提取数据\nALL1 &lt;- data.frame(ALL1_t = f[[1]][[1]], ALL1_C = f[[1]][[2]])\nAML1 &lt;- data.frame(AML1_t = f[[2]][[1]], AML1_C = f[[2]][[2]])\nALL2 &lt;- data.frame(ALL2_t = f[[3]][[1]], ALL2_C = f[[3]][[2]])\nAML2 &lt;- data.frame(AML2_t = f[[4]][[1]], AML2_C = f[[4]][[2]])\n\nlibrary(ggplot2)\n\nggplot()+\n  geom_line(data = ALL1, aes(ALL1_t,ALL1_C))+\n  geom_line(data = ALL2, aes(ALL2_t,ALL2_C))+\n  geom_line(data = AML1, aes(AML1_t,AML1_C))+\n  geom_line(data = AML2, aes(AML2_t,AML2_C))+\n  labs(x=\"month\",y=\"cif\")+\n  theme_bw()\n\n\n\n\n但是这种不好上色,所以我们美化一下,变成长数据再画图即可。\n\ntmp &lt;- data.frame(month = c(ALL1$ALL1_t,AML1$AML1_t,ALL2$ALL2_t,AML2$AML2_t),\n                  cif = c(ALL1$ALL1_C,AML1$AML1_C,ALL2$ALL2_C,AML2$AML2_C),\n                  type = rep(c(\"ALL1\",\"AML1\",\"ALL2\",\"AML2\"), c(58,58,58,88))\n                  )\n\nggplot(tmp, aes(month, cif))+\n  geom_line(aes(color=type, group=type),size=1.2)+\n  theme_bw()+\n  theme(legend.position = \"top\")\n## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.\n## ℹ Please use `linewidth` instead."
+    "title": "11  竞争风险模型列线图绘制",
+    "section": "",
+    "text": "Sex: 性别,F是女,M是男\nD: 疾病类型,ALL是急性淋巴细胞白血病,AML是急性髓系细胞白血病。\nPhase: 不同阶段,4个水平,CR1,CR2,CR3,Relapse。\nAge: 年龄。\nStatus: 结局变量,0=删失,1=复发,2=竞争风险事件。\nSource: 因子变量,2个水平:BM+PB(骨髓移植+血液移植),PB(血液移植)。\nftime: 生存时间。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>竞争风险模型列线图绘制</span>"
+    ]
   },
   {
     "objectID": "nomogram-compete-risk.html#竞争风险模型多因素分析",
     "href": "nomogram-compete-risk.html#竞争风险模型多因素分析",
-    "title": "6  竞争风险模型列线图绘制",
-    "section": "6.3 竞争风险模型(多因素分析)",
-    "text": "6.3 竞争风险模型(多因素分析)\n做完了单因素分析,再看看竞争风险模型的多因素分析。\n首先要把自变量单独放在一个数据框里,使用中发现一个问题,这里如果把分类变量变为因子型不会自动进行哑变量编码,所以需要手动进行哑变量编码!\n但是我这里偷懒了,并没有进行哑变量设置!实际中是需要的哦!!\n\ncovs &lt;- subset(bmtcrr, select = - c(ftime,Status))\ncovs[,c(1:3,5)] &lt;- lapply(covs[,c(1:3,5)],as.integer)\n\nstr(covs)\n## 'data.frame':    177 obs. of  5 variables:\n##  $ Sex   : int  2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : int  1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : int  4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Source: int  1 1 1 1 1 1 1 1 1 1 ...\n\n指定failcode=1, cencode=0, 分别代表结局事件1与截尾0,其他默认为竞争风险事件2。\n\n# 构建竞争风险模型\nf2 &lt;- crr(bmtcrr$ftime, bmtcrr$Status, covs, failcode=1, cencode=0)\nsummary(f2)\n## Competing Risks Regression\n## \n## Call:\n## crr(ftime = bmtcrr$ftime, fstatus = bmtcrr$Status, cov1 = covs, \n##     failcode = 1, cencode = 0)\n## \n##           coef exp(coef) se(coef)      z p-value\n## Sex     0.0494     1.051   0.2867  0.172 0.86000\n## D      -0.4860     0.615   0.3040 -1.599 0.11000\n## Phase   0.4144     1.514   0.1194  3.470 0.00052\n## Age    -0.0174     0.983   0.0118 -1.465 0.14000\n## Source  0.9526     2.592   0.5469  1.742 0.08200\n## \n##        exp(coef) exp(-coef)  2.5% 97.5%\n## Sex        1.051      0.952 0.599  1.84\n## D          0.615      1.626 0.339  1.12\n## Phase      1.514      0.661 1.198  1.91\n## Age        0.983      1.018 0.960  1.01\n## Source     2.592      0.386 0.888  7.57\n## \n## Num. cases = 177\n## Pseudo Log-likelihood = -267 \n## Pseudo likelihood ratio test = 23.6  on 5 df,\n\n结果解读:在控制了竞争分险事件后,phase变量,即疾病所处阶段是患者复发的独立影响因素(p =0.00052)。"
+    "title": "11  竞争风险模型列线图绘制",
+    "section": "11.2 竞争风险模型(多因素分析)",
+    "text": "11.2 竞争风险模型(多因素分析)\n做完了单因素分析,再看看竞争风险模型的多因素分析。\n首先要把自变量单独放在一个数据框里,使用中发现一个问题,这里如果把分类变量变为因子型不会自动进行哑变量编码,所以需要手动进行哑变量编码!\n但是我这里偷懒了,并没有进行哑变量设置!实际中是需要的哦!!\n\ncovs &lt;- subset(bmtcrr, select = - c(ftime,Status))\ncovs[,c(1:3,5)] &lt;- lapply(covs[,c(1:3,5)],as.integer)\n\nstr(covs)\n## 'data.frame':    177 obs. of  5 variables:\n##  $ Sex   : int  2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : int  1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : int  4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Source: int  1 1 1 1 1 1 1 1 1 1 ...\n\n指定failcode=1, cencode=0, 分别代表结局事件1与截尾0,其他默认为竞争风险事件2。\n\n# 构建竞争风险模型\nf2 &lt;- crr(bmtcrr$ftime, bmtcrr$Status, covs, failcode=1, cencode=0)\nsummary(f2)\n## Competing Risks Regression\n## \n## Call:\n## crr(ftime = bmtcrr$ftime, fstatus = bmtcrr$Status, cov1 = covs, \n##     failcode = 1, cencode = 0)\n## \n##           coef exp(coef) se(coef)      z p-value\n## Sex     0.0494     1.051   0.2867  0.172 0.86000\n## D      -0.4860     0.615   0.3040 -1.599 0.11000\n## Phase   0.4144     1.514   0.1194  3.470 0.00052\n## Age    -0.0174     0.983   0.0118 -1.465 0.14000\n## Source  0.9526     2.592   0.5469  1.742 0.08200\n## \n##        exp(coef) exp(-coef)  2.5% 97.5%\n## Sex        1.051      0.952 0.599  1.84\n## D          0.615      1.626 0.339  1.12\n## Phase      1.514      0.661 1.198  1.91\n## Age        0.983      1.018 0.960  1.01\n## Source     2.592      0.386 0.888  7.57\n## \n## Num. cases = 177\n## Pseudo Log-likelihood = -267 \n## Pseudo likelihood ratio test = 23.6  on 5 df,\n\n结果解读:在控制了竞争分险事件后,phase变量,即疾病所处阶段是患者复发的独立影响因素(p =0.00052)。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>竞争风险模型列线图绘制</span>"
+    ]
   },
   {
     "objectID": "nomogram-compete-risk.html#列线图",
     "href": "nomogram-compete-risk.html#列线图",
-    "title": "6  竞争风险模型列线图绘制",
-    "section": "6.4 列线图",
-    "text": "6.4 列线图\nregplot包绘制列线图。但是它目前只适用coxph()、lm()和glm()返回的对象。\n因此我们需要对原数据集加权创建一个新数据集用于为竞争风险模型分析,使用mstate包中的crprep()创建加权数据集,然后使用coxph()对加权数据集进行竞争风险模型拟合,这样就可以画列线图了。\n首先是加载数据和R包:\n\nrm(list = ls())\ndata(\"bmtcrr\",package = \"casebase\") # 还是这个数据\n\nlibrary(mstate) # 加权用到的R包\n\nbmtcrr$id &lt;- 1:nrow(bmtcrr) # 创建id\n\n# phase变为2分类,不然列线图不好解释\nbmtcrr$Phase &lt;- factor(ifelse(bmtcrr$Phase==\"Relapse\",1,0)) \nstr(bmtcrr)\n## 'data.frame':    177 obs. of  8 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 2 levels \"0\",\"1\": 2 1 1 1 1 2 1 1 1 2 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...\n##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...\n\n然后是对原数据进行加权:\n\ndf.w &lt;- crprep(\"ftime\", \"Status\",\n               data=bmtcrr, \n               trans=c(1,2),# 要加权的变量,1表示结局事件,2表示竞争风险事件\n               cens=0, # 删失\n               id=\"id\",\n               \n               # 要保留的协变量\n               keep=c(\"Age\",\"Sex\",\"D\",\"Source\",\"Phase\"))\n\nhead(df.w)\n##   id Tstart Tstop status weight.cens Age Sex   D Source Phase count failcode\n## 1  1   0.00  0.67      2   1.0000000  48   M ALL  BM+PB     1     1        1\n## 2  1   0.67  9.50      2   1.0000000  48   M ALL  BM+PB     1     2        1\n## 3  1   9.50 13.07      2   0.9679938  48   M ALL  BM+PB     1     3        1\n## 4  1  13.07 17.23      2   0.8730924  48   M ALL  BM+PB     1     4        1\n## 5  1  17.23 20.83      2   0.8536904  48   M ALL  BM+PB     1     5        1\n## 6  1  20.83 28.53      2   0.8120469  48   M ALL  BM+PB     1     6        1\ndf.w$T&lt;- df.w$Tstop - df.w$Tstart\n\n上述代码已经创建一个加权数据集df.w,此时还需要选择failcode == 1的行,然后我们才可以在此数据集上使用coxph()函数进行竞争风险分析,不然最后画列线图会报错。\n\n# 参考资料\n# https://blog.csdn.net/zhongkeyuanchongqing/article/details/124086113\ndf.w2 &lt;- df.w[df.w$failcode == 1,]\n\n构建cox模型:\n\nm.crr&lt;- coxph(Surv(T,status==1)~Age+Sex+D+Source+Phase,\n             data=df.w2,\n             weight=weight.cens,\n             subset=failcode==1)\nsummary(m.crr)\n## Call:\n## coxph(formula = Surv(T, status == 1) ~ Age + Sex + D + Source + \n##     Phase, data = df.w2, weights = weight.cens, subset = failcode == \n##     1)\n## \n##   n= 686, number of events= 56 \n## \n##              coef exp(coef) se(coef) robust se      z Pr(&gt;|z|)    \n## Age      -0.02174   0.97850  0.01172   0.01208 -1.800 0.071914 .  \n## SexM      0.10551   1.11128  0.27981   0.29571  0.357 0.721247    \n## DAML     -0.53163   0.58764  0.29917   0.30613 -1.737 0.082450 .  \n## SourcePB  1.06564   2.90269  0.53453   0.56000  1.903 0.057051 .  \n## Phase1    1.06140   2.89040  0.27870   0.28129  3.773 0.000161 ***\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n##          exp(coef) exp(-coef) lower .95 upper .95\n## Age         0.9785     1.0220    0.9556     1.002\n## SexM        1.1113     0.8999    0.6225     1.984\n## DAML        0.5876     1.7017    0.3225     1.071\n## SourcePB    2.9027     0.3445    0.9686     8.699\n## Phase1      2.8904     0.3460    1.6654     5.016\n## \n## Concordance= 0.737  (se = 0.037 )\n## Likelihood ratio test= 28.33  on 5 df,   p=3e-05\n## Wald test            = 27.27  on 5 df,   p=5e-05\n## Score (logrank) test = 30.49  on 5 df,   p=1e-05,   Robust = 20.2  p=0.001\n## \n##   (Note: the likelihood ratio and score tests assume independence of\n##      observations within a cluster, the Wald and robust score tests do not).\n\n接下来,我们可以使用regplot()函数绘制nomogram。其实你可以绘制多种不同的列线图,可以参考之前的推文:生存资料列线图的4种绘制方法\n\nlibrary(regplot)\nregplot(m.crr,\n        observation=df.w2[df.w2$id==25&df.w2$failcode==1,],\n        failtime = c(36, 60), \n        prfail = T, \n        droplines=T)\n## \"observation\" has &gt;1 row. The first  row provides plotted values\n## Regression  m.crr coxph formula:\n## Surv(T, status == 1) `~` Age + Sex + D + Source + Phase\n## Replicate integer weights assumed\n## Note: non-integer weights have been floored\n## [1] \"note: points tables not constructed unless points=TRUE \"\n\n\n在这个列线图中,将数据集中id=25的患者各协变量的取值映射到相应的得分,并计算总得分,并分别计算其在36个月和60个月的累计复发概率,此概率即为控制了竞争风险的累计复发概率,分别为:0.134和0.146。"
+    "title": "11  竞争风险模型列线图绘制",
+    "section": "11.3 列线图",
+    "text": "11.3 列线图\nregplot包绘制列线图。但是它目前只适用coxph()、lm()和glm()返回的对象。\n因此我们需要对原数据集加权创建一个新数据集用于为竞争风险模型分析,使用mstate包中的crprep()创建加权数据集,然后使用coxph()对加权数据集进行竞争风险模型拟合,这样就可以画列线图了。\n首先是加载数据和R包:\n\nrm(list = ls())\ndata(\"bmtcrr\",package = \"casebase\") # 还是这个数据\n\nlibrary(mstate) # 加权用到的R包\n\nbmtcrr$id &lt;- 1:nrow(bmtcrr) # 创建id\n\n# phase变为2分类,不然列线图不好解释\nbmtcrr$Phase &lt;- factor(ifelse(bmtcrr$Phase==\"Relapse\",1,0)) \nstr(bmtcrr)\n## 'data.frame':    177 obs. of  8 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 2 levels \"0\",\"1\": 2 1 1 1 1 2 1 1 1 2 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...\n##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...\n\n然后是对原数据进行加权:\n\ndf.w &lt;- crprep(\"ftime\", \"Status\",\n               data=bmtcrr, \n               trans=c(1,2),# 要加权的变量,1表示结局事件,2表示竞争风险事件\n               cens=0, # 删失\n               id=\"id\",\n               \n               # 要保留的协变量\n               keep=c(\"Age\",\"Sex\",\"D\",\"Source\",\"Phase\"))\n\nhead(df.w)\n##   id Tstart Tstop status weight.cens Age Sex   D Source Phase count failcode\n## 1  1   0.00  0.67      2   1.0000000  48   M ALL  BM+PB     1     1        1\n## 2  1   0.67  9.50      2   1.0000000  48   M ALL  BM+PB     1     2        1\n## 3  1   9.50 13.07      2   0.9679938  48   M ALL  BM+PB     1     3        1\n## 4  1  13.07 17.23      2   0.8730924  48   M ALL  BM+PB     1     4        1\n## 5  1  17.23 20.83      2   0.8536904  48   M ALL  BM+PB     1     5        1\n## 6  1  20.83 28.53      2   0.8120469  48   M ALL  BM+PB     1     6        1\ndf.w$T&lt;- df.w$Tstop - df.w$Tstart\n\n上述代码已经创建一个加权数据集df.w,此时还需要选择failcode==1的行,然后我们才可以在此数据集上使用coxph()函数进行竞争风险分析,不然最后画列线图会报错。\n\n# 参考资料\n# https://blog.csdn.net/zhongkeyuanchongqing/article/details/124086113\ndf.w2 &lt;- df.w[df.w$failcode == 1,]\n\n构建cox模型:\n\nm.crr&lt;- coxph(Surv(T,status==1)~Age+Sex+D+Source+Phase,\n             data=df.w2,\n             weight=weight.cens,\n             subset=failcode==1)\nsummary(m.crr)\n## Call:\n## coxph(formula = Surv(T, status == 1) ~ Age + Sex + D + Source + \n##     Phase, data = df.w2, weights = weight.cens, subset = failcode == \n##     1)\n## \n##   n= 686, number of events= 56 \n## \n##              coef exp(coef) se(coef) robust se      z Pr(&gt;|z|)    \n## Age      -0.02174   0.97850  0.01172   0.01208 -1.800 0.071914 .  \n## SexM      0.10551   1.11128  0.27981   0.29571  0.357 0.721247    \n## DAML     -0.53163   0.58764  0.29917   0.30613 -1.737 0.082450 .  \n## SourcePB  1.06564   2.90269  0.53453   0.56000  1.903 0.057051 .  \n## Phase1    1.06140   2.89040  0.27870   0.28129  3.773 0.000161 ***\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n##          exp(coef) exp(-coef) lower .95 upper .95\n## Age         0.9785     1.0220    0.9556     1.002\n## SexM        1.1113     0.8999    0.6225     1.984\n## DAML        0.5876     1.7017    0.3225     1.071\n## SourcePB    2.9027     0.3445    0.9686     8.699\n## Phase1      2.8904     0.3460    1.6654     5.016\n## \n## Concordance= 0.737  (se = 0.037 )\n## Likelihood ratio test= 28.33  on 5 df,   p=3e-05\n## Wald test            = 27.27  on 5 df,   p=5e-05\n## Score (logrank) test = 30.49  on 5 df,   p=1e-05,   Robust = 20.2  p=0.001\n## \n##   (Note: the likelihood ratio and score tests assume independence of\n##      observations within a cluster, the Wald and robust score tests do not).\n\n接下来,我们可以使用regplot()函数绘制nomogram。其实你可以绘制多种不同的列线图,可以参考之前的推文:生存资料列线图的4种绘制方法\n\nlibrary(regplot)\naa &lt;- regplot(m.crr,\n        observation=df.w2[df.w2$id==25&df.w2$failcode==1,],\n        failtime = c(36, 60), \n        prfail = T, \n        droplines=T)\n\n\n在这个列线图中,将数据集中id=25的患者各协变量的取值映射到相应的得分,并计算总得分,并分别计算其在36个月和60个月的累计复发概率,此概率即为控制了竞争风险的累计复发概率,分别为:0.134和0.146。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>竞争风险模型列线图绘制</span>"
+    ]
   },
   {
     "objectID": "nomogram-lasso.html",
     "href": "nomogram-lasso.html",
-    "title": "7  lasso回归列线图绘制",
+    "title": "12  lasso回归列线图绘制",
     "section": "",
-    "text": "lasso回归的列线图绘制请参考Chapter 39。"
+    "text": "lasso回归的列线图绘制请参考Chapter 33:lasso回归列线图、校准曲线、内外部验证。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>12</span>  <span class='chapter-title'>lasso回归列线图绘制</span>"
+    ]
   },
   {
-    "objectID": "nomogram-colorfulbar.html#加载数据和r包",
-    "href": "nomogram-colorfulbar.html#加载数据和r包",
-    "title": "8  列线图添加彩色风险分层",
-    "section": "8.1 加载数据和R包",
-    "text": "8.1 加载数据和R包\n\nlibrary(survival)\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ..."
+    "objectID": "nomogram-colorfulbar.html",
+    "href": "nomogram-colorfulbar.html",
+    "title": "13  列线图添加彩色风险分层",
+    "section": "",
+    "text": "13.1 加载数据和R包\nlibrary(survival)\nlibrary(rms)\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>13</span>  <span class='chapter-title'>列线图添加彩色风险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-colorfulbar.html#传统列线图",
     "href": "nomogram-colorfulbar.html#传统列线图",
-    "title": "8  列线图添加彩色风险分层",
-    "section": "8.2 传统列线图",
-    "text": "8.2 传统列线图\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                maxscale = 100,\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是默认的画图,没有任何难度:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色"
+    "title": "13  列线图添加彩色风险分层",
+    "section": "13.2 传统列线图",
+    "text": "13.2 传统列线图\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, surv = T)\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                maxscale = 100,\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是默认的画图,没有任何难度:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>13</span>  <span class='chapter-title'>列线图添加彩色风险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-colorfulbar.html#新型列线图",
     "href": "nomogram-colorfulbar.html#新型列线图",
-    "title": "8  列线图添加彩色风险分层",
-    "section": "8.3 新型列线图",
-    "text": "8.3 新型列线图\n如何给列线图添加风险分层条带呢?其实思路是很简单的,只要在合适的位置插入颜色条即可。\n为了达到这个目的,需要你对base r的绘图语法足够熟悉。\n直接用rect即可在原图形继续添加矩形区域,然后给它一个颜色即可,除此之外,我们还可以用text函数在底部添加文字提示,让这个图形看上去更加美观实用。\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.20,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.20,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.20,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.18,\"Low\")\ntext(0.6,0.18,\"Medium\")\ntext(0.83,0.18,\"High\")\n#dev.off()\n\n\n这样一个新型的带颜色条的列线图就绘制好了。是不是很简单呢?\n我说说我的具体思路,首先用rect函数添加3个彩色条带,其用法是rect(min(x),min(y),max(x),max(y)),前四个参数确定位置。然后使用text函数在合适的位置添加文字即可。\n这个彩色条带刚好覆盖在原来的Linear Predictor的位置,当然这个位置需要你不断的尝试才能确定,而且我这里的风险分层为了演示是随便选的,你需要根据自己的实际情况确定到底什么分数段属于什么分层,然后不断调整位置直到你满意为止。\n但是这个图现在还是有点问题的,主要是左侧遗留了一个-1,没办法去掉。\n当然了,你也可以直接把传统列线图保存为PDF,然后用AI等软件编辑,更加自由!"
+    "title": "13  列线图添加彩色风险分层",
+    "section": "13.3 新型列线图",
+    "text": "13.3 新型列线图\n如何给列线图添加风险分层条带呢?其实思路是很简单的,只要在合适的位置插入颜色条即可。\n为了达到这个目的,需要你对base r的绘图语法足够熟悉。\n直接用rect即可在原图形继续添加矩形区域,然后给它一个颜色即可,除此之外,我们还可以用text函数在底部添加文字提示,让这个图形看上去更加美观实用。\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.20,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.20,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.20,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.18,\"Low\")\ntext(0.6,0.18,\"Medium\")\ntext(0.83,0.18,\"High\")\n#dev.off()\n\n\n这样一个新型的带颜色条的列线图就绘制好了。是不是很简单呢?\n我说说我的具体思路,首先用rect函数添加3个彩色条带,其用法是rect(min(x),min(y),max(x),max(y)),前四个参数确定位置。然后使用text函数在合适的位置添加文字即可。\n这个彩色条带刚好覆盖在原来的Linear Predictor的位置,当然这个位置需要你不断的尝试才能确定,而且我这里的风险分层为了演示是随便选的,你需要根据自己的实际情况确定到底什么分数段属于什么分层,然后不断调整位置直到你满意为止。\n但是这个图现在还是有点问题的,主要是左侧遗留了一个-1,没办法去掉。\n当然了,你也可以直接把传统列线图保存为PDF,然后用AI等软件编辑,更加自由!",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>13</span>  <span class='chapter-title'>列线图添加彩色风险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-colorfulbar.html#继续改进",
     "href": "nomogram-colorfulbar.html#继续改进",
-    "title": "8  列线图添加彩色风险分层",
-    "section": "8.4 继续改进",
-    "text": "8.4 继续改进\n我又去pubmed以及google使用关键词nomogram继续搜索,果然又搜到一篇带有彩色条带的列线图,而且我感觉这个图更加好看!\n\n文献DOI:10.1093/eurheartj/ehab294\n上面这个图不仅有彩色条带展示分层,而且还增加了彩色箭头标识,并在最底部也增加了彩色线条标识。\n下面我们继续学习这个列线图怎么画,思路和上面基本是一样的。\n首先是再添加一个颜色条:\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",#名字就不改了\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.245,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.245,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.245,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.28,\"Low\")\ntext(0.6,0.28,\"Medium\")\ntext(0.83,0.28,\"High\")\n\n#在底部再增加3个彩色条带,高度错开,显得有层次感\nrect(0.37,0.14,0.5,0.144,col = \"#01847F\")\nrect(0.5,0.144,0.7,0.148,col = \"#FBD26A\")\nrect(0.7,0.148,0.835,0.152,col = \"#F40002\")\n#如果你还要继续添加文字说明也可以,我这里就不加了\n#dev.off()\n\n\n彩色箭头如何添加?一模一样的思路,选择一个你想展示的病人,然后计算它每一项的分数,然后使用arrows函数在合适的位置绘制箭头即可。\n下面随便展示下,我这里并没有认真计算这个人的各项分数。如果你需要展示,可以用nomogramformula包计算,或者等我们下次演示。\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",#名字就不改了\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.245,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.245,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.245,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.28,\"Low\")\ntext(0.6,0.28,\"Medium\")\ntext(0.83,0.28,\"High\")\n\n#在底部再增加3个彩色条带,高度错开,显得有层次感\nrect(0.37,0.14,0.5,0.144,col = \"#01847F\")\nrect(0.5,0.144,0.7,0.148,col = \"#FBD26A\")\nrect(0.7,0.148,0.835,0.152,col = \"#F40002\")\n#如果你还要继续添加文字说明也可以,我这里就不加了\n\n# 添加箭头\narrows(0.205,0.86,0.205,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.4,0.76,0.4,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.68,0.655,0.68,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.28,0.55,0.28,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.47,0.45,0.47,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\n\n# 总分箭头,加起来可能不对,单纯演示下\narrows(0.84,0.40,0.84,0.35,col = \"#F40002\",lwd = 4,length = 0.1)\n#dev.off()\n\n\n这样一个非常漂亮的列线图就画好了,层次分明,细节满满,让人耳目一新,大家赶紧用起来吧!\n但是目前这样画太费劲了,需要不断调整位置才能得到最终的效果,我在想,能不能写成一个函数,帮大家简化这件事?\n如果有大佬知道成熟的方法,也欢迎告诉我,这样我就不用重复造轮子了。"
-  },
-  {
-    "objectID": "nomogram-points.html#准备数据",
-    "href": "nomogram-points.html#准备数据",
-    "title": "9  计算列线图得分及危险分层",
-    "section": "9.1 准备数据",
-    "text": "9.1 准备数据\n使用R包自带数据。\n\nlibrary(survival)\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ..."
+    "title": "13  列线图添加彩色风险分层",
+    "section": "13.4 继续改进",
+    "text": "13.4 继续改进\n我又去pubmed以及google使用关键词nomogram继续搜索,果然又搜到一篇带有彩色条带的列线图,而且我感觉这个图更加好看!\n\n文献DOI:10.1093/eurheartj/ehab294\n上面这个图不仅有彩色条带展示分层,而且还增加了彩色箭头标识,并在最底部也增加了彩色线条标识。\n下面我们继续学习这个列线图怎么画,思路和上面基本是一样的。\n首先是再添加一个颜色条:\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",#名字就不改了\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.245,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.245,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.245,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.28,\"Low\")\ntext(0.6,0.28,\"Medium\")\ntext(0.83,0.28,\"High\")\n\n#在底部再增加3个彩色条带,高度错开,显得有层次感\nrect(0.37,0.14,0.5,0.144,col = \"#01847F\")\nrect(0.5,0.144,0.7,0.148,col = \"#FBD26A\")\nrect(0.7,0.148,0.835,0.152,col = \"#F40002\")\n#如果你还要继续添加文字说明也可以,我这里就不加了\n#dev.off()\n\n\n彩色箭头如何添加?一模一样的思路,选择一个你想展示的病人,然后计算它每一项的分数,然后使用arrows函数在合适的位置绘制箭头即可。\n下面随便展示下,我这里并没有认真计算这个人的各项分数。如果你需要展示,可以用nomogramformula包计算,或者看下一篇文章演示。\n\n#pdf(\"nomogram.pdf\")\nplot(nom, \n     lplabel=\"Risk Stratification\",#名字就不改了\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\nrect(0.29,0.245,0.5,0.26,col = \"#01847F\") # 添加彩色条带\nrect(0.5,0.245,0.7,0.26,col = \"#FBD26A\")\nrect(0.7,0.245,0.935,0.26,col = \"#F40002\")\ntext(0.4,0.28,\"Low\")\ntext(0.6,0.28,\"Medium\")\ntext(0.83,0.28,\"High\")\n\n#在底部再增加3个彩色条带,高度错开,显得有层次感\nrect(0.37,0.14,0.5,0.144,col = \"#01847F\")\nrect(0.5,0.144,0.7,0.148,col = \"#FBD26A\")\nrect(0.7,0.148,0.835,0.152,col = \"#F40002\")\n#如果你还要继续添加文字说明也可以,我这里就不加了\n\n# 添加箭头\narrows(0.205,0.86,0.205,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.4,0.76,0.4,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.68,0.655,0.68,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.28,0.55,0.28,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\narrows(0.47,0.45,0.47,0.96,col = \"steelblue\",lwd = 4,length = 0.1)\n\n# 总分箭头,加起来可能不对,单纯演示下\narrows(0.84,0.40,0.84,0.35,col = \"#F40002\",lwd = 4,length = 0.1)\n#dev.off()\n\n\n这样一个非常漂亮的列线图就画好了,层次分明,细节满满,让人耳目一新,大家赶紧用起来吧!",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>13</span>  <span class='chapter-title'>列线图添加彩色风险分层</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-points.html",
+    "href": "nomogram-points.html",
+    "title": "14  计算列线图得分及危险分层",
+    "section": "",
+    "text": "14.1 准备数据\n使用R包自带数据。\nlibrary(survival)\nlibrary(rms)\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-points.html#建立模型和列线图",
     "href": "nomogram-points.html#建立模型和列线图",
-    "title": "9  计算列线图得分及危险分层",
-    "section": "9.2 建立模型和列线图",
-    "text": "9.2 建立模型和列线图\n使用rms包构建模型和列线图。\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung, x=T,y=T,surv = T\n              )\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                maxscale = 100,\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是画图:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\n\n\n\n\n到这里都很简单。"
+    "title": "14  计算列线图得分及危险分层",
+    "section": "14.2 建立模型和列线图",
+    "text": "14.2 建立模型和列线图\n使用rms包构建模型和列线图。\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。在这里没有影响,但有的R包会报错,需要注意!\n\ndd &lt;- datadist(lung)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\ncoxfit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung ,surv = T)\n\n# 构建生存函数,注意你的最大生存时间\nsurv &lt;- Survival(coxfit) \nsurv1 &lt;- function(x) surv(365,x) # 1年OS\nsurv2 &lt;- function(x) surv(365*2,x) # 2年OS\n\nnom &lt;- nomogram(coxfit,\n                fun = list(surv1,surv2),\n                lp = T,\n                funlabel = c('1-year survival Probability',\n                         '2-year survival Probability'),\n                maxscale = 100,\n                fun.at = c(0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1))\n\n然后就是画图:\n\nplot(nom, \n     lplabel=\"Linear Predictor\",\n     xfrac = 0.2, # 左侧标签距离坐标轴的距离\n     #varname.label = TRUE, \n     tcl = -0.2, # 刻度长短和方向 \n     lmgp = 0.1, # 坐标轴标签距离坐标轴远近\n     points.label ='Points', \n     total.points.label = 'Total Points',\n     cap.labels = FALSE,\n     cex.var = 1, # 左侧标签字体大小\n     cex.axis = 1, # 坐标轴字体大小\n     col.grid = gray(c(0.8, 0.95))) # 竖线颜色\n\n\n\n\n\n\n\n\n到这里都很简单。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-points.html#计算分数",
     "href": "nomogram-points.html#计算分数",
-    "title": "9  计算列线图得分及危险分层",
-    "section": "9.3 计算分数",
-    "text": "9.3 计算分数\n使用nomogramFormula计算每个患者的列线图得分。\n两种方法,其中是使用formula_lp根据线性预测值计算,另一种是使用formula_rd根据原始数据(raw_data)计算,两种方法结果差不多,任选一种即可。\n\nlibrary(nomogramFormula)\nresults &lt;- formula_lp(nomogram = nom)\npoints1 &lt;- points_cal(formula = results$formula, lp = coxfit$linear.predictors)\n\n#或者\n#results &lt;- formula_rd(nomogram = nom2)\n#points1 &lt;- points_cal(formula = results$formula, rd = tmp)\n\nlength(points1)\n## [1] 223\nhead(points1)\n##         1         2         3         4         5         6 \n## 129.96853  98.56938  90.51815 142.40181 102.54570 104.51291\n\n根据这个分数就可以分成高风险组/低风险组了。"
+    "title": "14  计算列线图得分及危险分层",
+    "section": "14.3 计算分数",
+    "text": "14.3 计算分数\n使用nomogramFormula计算每个患者的列线图得分。\n两种方法,一种是使用formula_lp根据线性预测值计算,另一种是使用formula_rd根据原始数据(raw_data)计算,两种方法结果差不多,任选一种即可。\n\nlibrary(nomogramFormula)\nresults &lt;- formula_lp(nomogram = nom)\npoints1 &lt;- points_cal(formula = results$formula, lp = coxfit$linear.predictors)\n\n#或者\n#results &lt;- formula_rd(nomogram = nom)\n#points1 &lt;- points_cal(formula = results$formula, rd = lung)\n\nlength(points1)\n## [1] 223\nhead(points1)\n##         1         2         3         4         5         6 \n## 129.96853  98.56938  90.51815 142.40181 102.54570 104.51291\n\n这样每个人都根据列线图得到一个分数,根据这个分数就可以把所有患者分成高风险组/低风险组了。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-points.html#分层",
     "href": "nomogram-points.html#分层",
-    "title": "9  计算列线图得分及危险分层",
-    "section": "9.4 分层",
-    "text": "9.4 分层\n假如我们想根据列线图得分进行分层,分层后两组的K-M生存分析的p值最小,方法很多,任选一种即可,我这里就用surv_cutpoint演示。\n但是计算出来的分数223个,原始数据是228个,因为数据有缺失值,在建立模型时有5个样本被删了,这时候你回过去找不一定找得到缺失值在哪(我能找到),所以建议一开始就把缺失值处理掉。\n\nlibrary(tidyr)\nlibrary(survminer)\n\n# 去掉缺失值\ntmp &lt;- lung %&gt;% \n  drop_na(ph.ecog,ph.karno,pat.karno)\ndim(tmp)\n## [1] 223  10\n\ntmp$points &lt;- points1\n\n# 分层\nres.cut &lt;- surv_cutpoint(tmp, time = \"time\", event = \"status\",\n                         variables = \"points\"\n                         )\nres.cat &lt;- surv_categorize(res.cut)\n\n绘制生存曲线:\n\nlibrary(\"survival\")\nfit &lt;- survfit(Surv(time, status) ~points, data = res.cat)\nggsurvplot(fit, data = res.cat, pval = T)\n\n\n\n\n中间的数据展示省略了很多,还不熟悉这一套流程的可以一步一步的看,结合之前的推文。"
+    "title": "14  计算列线图得分及危险分层",
+    "section": "14.4 分层",
+    "text": "14.4 分层\n假如我们想根据列线图得分进行分层,使得分层后两组的K-M生存分析的p值最小,方法很多,任选一种即可,我这里就用surv_cutpoint演示。\n但是计算出来的分数有223个,原始数据是228个,因为数据有缺失值,在建立模型时有5个样本被删了,这时候你回过去找不一定找得到缺失值在哪(我能找到),所以建议一开始就把缺失值处理掉。\n\nlibrary(tidyr)\nlibrary(survminer)\n\n# 去掉缺失值\ntmp &lt;- lung %&gt;% \n  drop_na(ph.ecog,ph.karno,pat.karno)\ndim(tmp)\n## [1] 223  10\n\ntmp$points &lt;- points1\n\n# 确定最佳截点,然后根据最佳截点分层\nres.cut &lt;- surv_cutpoint(tmp, time = \"time\", event = \"status\",\n                         variables = \"points\"\n                         )\n\n# 查看最佳分割点\nres.cut[[\"cutpoint\"]][[\"cutpoint\"]]\n## [1] 109.2188\n\n# 根据最佳截点分层\nres.cat &lt;- surv_categorize(res.cut)\n\n绘制生存曲线:\n\nlibrary(\"survival\")\nfit &lt;- survfit(Surv(time, status) ~ points, data = res.cat)\nggsurvplot(fit, data = res.cat, pval = T)\n\n\n\n\n\n\n\n\n中间的数据展示省略了很多,还不熟悉这一套流程的可以一步一步的看,结合之前的文章。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
+  },
+  {
+    "objectID": "nomogram-points.html#外部验证集",
+    "href": "nomogram-points.html#外部验证集",
+    "title": "14  计算列线图得分及危险分层",
+    "section": "14.5 外部验证集",
+    "text": "14.5 外部验证集\n大家一定要学会变通啊,学会R语言的基础知识,才好举一反三。\n外部验证集的分数计算直接使用formula_rd()函数就可以了(不管训练集还是外部验证集我都推荐使用这个,前面为了演示没用这个函数),rd参数提供外部验证集即可:\n\n# 假设这是外部验证集\nvaldf &lt;- na.omit(lung[1:100,])\n\n# 计算分数\nresults &lt;- formula_rd(nomogram = nom)\npoints_val &lt;- points_cal(formula = results$formula, \n                         rd = valdf) # 外部验证集\n\nlength(points_val)\n## [1] 74\nhead(points_val)\n## [1]  98.56934 142.40178 104.51289 131.33431 112.08372 109.11084\n\n前面我们计算的最佳截点是109.2188,现在就根据这个截点对外部验证集分组,高于这个值就是高风险,低于这个值就是低风险:\n\nvaldf$points &lt;- points_val\nvaldf$groups &lt;- ifelse(valdf$points&gt;109.2188,\"high\",\"low\")\nhead(valdf[,11:12])\n##      points groups\n## 2  98.56934    low\n## 4 142.40178   high\n## 6 104.51289    low\n## 7 131.33431   high\n## 8 112.08372   high\n## 9 109.11084    low\n\n绘制外部验证集的生存曲线:\n\nlibrary(\"survival\")\nfit &lt;- survfit(Surv(time, status) ~ groups, data = valdf)\nggsurvplot(fit, data = valdf, pval = T)\n\n\n\n\n\n\n\n\n是不是一样的简单?",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
   },
   {
     "objectID": "nomogram-points.html#扩展",
     "href": "nomogram-points.html#扩展",
-    "title": "9  计算列线图得分及危险分层",
-    "section": "9.5 扩展",
-    "text": "9.5 扩展\n这里是根据列线图的得分进行分层的,其实也可以直击根据模型得到的线性预测值进行分层,就是直接使用predict即可:\n\npredict(coxfit,head(tmp))\n##          1          2          3          4          5          6 \n##  0.3113300 -0.2213878 -0.3579849  0.5222729 -0.1539256 -0.1205499\n\n这个东西就是大家常见的risk-score,当然这只是其中一种计算方式,不同的模型计算方法略有不同。\n而且cox回归得到的这个线性预测值又叫做预后指数(prognosis index, PI)。\n\n预后指数越大,患者风险越大,预后越差。–孙振球医学统计学第4版P293\n\n最早的建模类文章都是这么干的,现在也不少见。优点就是少了计算分数那一步,缺点嘛暂时没发现,毕竟都是模仿,你发文章只要把你的故事说清楚即可~"
-  },
-  {
-    "objectID": "feature-selection.html#常见方法简介",
-    "href": "feature-selection.html#常见方法简介",
-    "title": "10  常见的变量选择方法",
-    "section": "10.1 常见方法简介",
-    "text": "10.1 常见方法简介\n变量选择(特征选择,feature selection),是机器学习领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论非常复杂,实在不是一个临床医生能完全掌握的,以下简单介绍下,感兴趣的自己看书,后续会推一些相关R包的使用教程。\n在传统的临床预测模型中,比较常见的变量筛选方法有:\n\n先单因素后多因素\n最优子集(全子集回归)\n逐步选择法\nlasso回归筛选变量\n随机森林筛选变量\n…\n\n本文介绍的机器学习中的变量筛选方法(并没有包含在本书中,可在公众号医学和生信笔记后台回复变量筛选获取相关合集)虽然可以用在临床预测模型中,但是和大家常见的“先单因素后多因素”这种完全不是一个概念,虽然它们的目的相同,都是为了提高模型表现。\n当数据的维度增加时,决定模型最终使用哪些预测变量是很关键的问题。数据的维度就是自变量(预测变量)\n特征选择是特征工程中非常重要的一部分内容,特征选择的方法非常多,主要可以分为以下3类,每个大类下又会细分为好多具体的方法,有机会慢慢介绍…\n\n过滤法(filter)\n\n缺失值比例、方差、相关系数、方差分析/t检验/卡方检验、ROC等\n信息增益 information gain\n最小冗余最大相关性mrmr,Minimum Redundancy Maximum Relevance\n…\n\n包装法(wrapper)\n\n向前、向后、逐步\n递归特征消除rfe(也属于向后)\n模拟退火\n遗传算法\n…\n\n嵌入法(embeded)\n\n随机森林\nMARS\nlasso\nGBDT\n…\n\n\n大家经常使用的逐步选择法(step/stepAIC),也属于包装法的一种,在之前的推文中已有介绍:R语言逻辑回归的细节解读,但是并不局限于逻辑回归。\n3种方法的简单解释如下,以后单独演示时会专门再解释:\n\n过滤法:进行变量选择时不考虑模型表现和变量重要性等,只是通过变量自身的情况、变量间的关系进行选择。\n包装法:变量选择考虑到了模型表现和变量重要性等信息,属于是对每一个模型进行“量身定制”的变量\n嵌入法:变量选择的过程就在模型训练的过程之中"
-  },
-  {
-    "objectID": "feature-selection.html#r语言中的实现",
-    "href": "feature-selection.html#r语言中的实现",
-    "title": "10  常见的变量选择方法",
-    "section": "10.2 R语言中的实现",
-    "text": "10.2 R语言中的实现\n后续主要介绍3个包:caret、mlr3、tidymodels\n在caret包中主要可以实现包装法和过滤法。\ncaret包中的封装法有递归特征消除(recursive feature elimination,rfe)算法,遗传算法(genetic algorithms,ga)和模拟退火(Simulated annealing,sa)算法。\n过滤法通过sbf函数实现,但其实部分数据预处理方法属于过滤法的内容。\nmlr3中的变量选择主要包括两种:过滤法和包装法。不过和caret的实现方法略有不同。\n\n\n\n\n\n\n注意\n\n\n\n目前mlr3已经实现了对嵌入法的支持,可以说是R语言中对变量筛选做的最好的综合性R包了。\n\n\n过滤法通过mlr3filters包实现,包装法通过mlr3fselect包实现,关于这两种方法的具体实现,早已在之前的推文介绍过,大家可以参考之前的推文mlr3特征选择\n不过随着mlr3的更新,部分细节稍有不同,以后再给大家慢慢演示。\ntidymodels中的特征选择很不完善,不如mlr3做得好,也不如caret做得好!\n部分过滤法包含在recipes中,部分包装法和嵌入法现在并不成熟,没有完整的实现,部分可通过colina包实现,但是这个包并不属于tidymodels,而是个人开发者贡献的R包。\n已经看到tidymodels的开发者有计划增加特征选择的这部分特性,但不知何时实现…\n总的来说,想要在R中完整实现以上三种方法,一言难尽……"
-  },
-  {
-    "objectID": "feature-selection_unimulti.html#准备数据",
-    "href": "feature-selection_unimulti.html#准备数据",
-    "title": "11  变量筛选之先单后多",
-    "section": "11.1 准备数据",
-    "text": "11.1 准备数据\n我们使用TCGA-BLCA的lncRNA数据,其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\n先简单处理一下数据(数据已放在粉丝QQ群文件):\n\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin1 &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin1 &lt;- lnc_expr_clin1[lnc_expr_clin1$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin1[,c(72:73,1:59)]\ndim(dat.cox)\n## [1] 297  61\ndat.cox[1:4,1:6]\n##   event time_months   PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33 0.15064007 0.2642238  0.0000000  0.1547768\n## 2     0       13.87 0.06309362 0.1666554  0.3105983  0.2436603\n## 3     1       21.83 2.16399508 3.5662920  2.2454129  2.0073496\n## 4     0       18.20 2.73075081 1.7314314  0.8609916  0.7323014\n\n现在这个数据一共59个自变量,我们先对每一个自变量都做一遍单因素COX回归,但是要注意,这里的59个自变量都是连续型的,通常基因表达量增加1,死亡风险增加xx倍这种情况是不可能发生的,这样的结果解释也是不合理的,所以我们需要先把这样的变量重新分箱,比如根据中位数分成两组,再进行单因素COX回归。\n\ndat_cox &lt;- dat.cox\ndat_cox[,c(3:ncol(dat_cox))] &lt;- sapply(dat_cox[,c(3:ncol(dat_cox))],function(x){\n  ifelse(x&gt;median(x),\"high\",\"low\")\n})\ndat_cox[,c(3:ncol(dat_cox))] &lt;- lapply(dat_cox[,c(3:ncol(dat_cox))],factor)\ndat_cox[1:4,1:6]\n##   event time_months PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33     high       low        low        low\n## 2     0       13.87      low       low       high       high\n## 3     1       21.83     high      high       high       high\n## 4     0       18.20     high      high       high       high"
+    "title": "14  计算列线图得分及危险分层",
+    "section": "14.6 扩展",
+    "text": "14.6 扩展\n这里是根据列线图的得分进行分层的,其实也可以直接根据模型得到的线性预测值进行分层,就是直接使用predict即可:\n\npredict(coxfit,head(lung))\n##          1          2          3          4          5          6 \n##  0.3113300 -0.2213878 -0.3579849  0.5222729 -0.1539256 -0.1205499\n\n这个东西就是大家常见的risk-score,当然这只是其中一种计算方式,不同的模型计算方法略有不同。\n而且cox回归得到的这个线性预测值又叫做预后指数(prognosis index, PI),这个值在统计学中是有明确含义的,根据这个值进行危险分层也是完全没问题的。\n\n预后指数越大,患者风险越大,预后越差。–孙振球《医学统计学》第4版P293\n\n最早的建模类文章都是这么干的,现在也不少见。优点就是少了计算分数那一步,缺点嘛暂时没发现,毕竟都是模仿,你发文章只要把你的故事说清楚即可。",
+    "crumbs": [
+      "模型建立和可视化",
+      "<span class='chapter-number'>14</span>  <span class='chapter-title'>计算列线图得分及危险分层</span>"
+    ]
+  },
+  {
+    "objectID": "feature-selection_unimulti.html",
+    "href": "feature-selection_unimulti.html",
+    "title": "15  变量选择之先单后多",
+    "section": "",
+    "text": "15.1 准备数据\n我们使用TCGA-BLCA的lncRNA数据,其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\n先简单处理一下数据(数据已放在粉丝QQ群文件):\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin1 &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin1 &lt;- lnc_expr_clin1[lnc_expr_clin1$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin1[,c(72:73,1:59)]\ndim(dat.cox)\n## [1] 297  61\ndat.cox[1:4,1:6]\n##   event time_months   PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33 0.15064007 0.2642238  0.0000000  0.1547768\n## 2     0       13.87 0.06309362 0.1666554  0.3105983  0.2436603\n## 3     1       21.83 2.16399508 3.5662920  2.2454129  2.0073496\n## 4     0       18.20 2.73075081 1.7314314  0.8609916  0.7323014\n现在这个数据一共59个自变量,我们先对每一个自变量都做一遍单因素COX回归,但是要注意,这里的59个自变量都是连续型的,通常基因表达量增加1,死亡风险增加xx倍这种情况是不可能发生的,这样的结果解释也是不合理的,所以我们需要先把这样的变量重新分箱,比如根据中位数分成两组,再进行单因素COX回归。\ndat_cox &lt;- dat.cox\ndat_cox[,c(3:ncol(dat_cox))] &lt;- sapply(dat_cox[,c(3:ncol(dat_cox))],function(x){\n  ifelse(x&gt;median(x),\"high\",\"low\")\n})\ndat_cox[,c(3:ncol(dat_cox))] &lt;- lapply(dat_cox[,c(3:ncol(dat_cox))],factor)\ndat_cox[1:4,1:6]\n##   event time_months PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33     high       low        low        low\n## 2     0       13.87      low       low       high       high\n## 3     1       21.83     high      high       high       high\n## 4     0       18.20     high      high       high       high",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>15</span>  <span class='chapter-title'>变量选择之先单后多</span>"
+    ]
   },
   {
     "objectID": "feature-selection_unimulti.html#批量单因素cox",
     "href": "feature-selection_unimulti.html#批量单因素cox",
-    "title": "11  变量筛选之先单后多",
-    "section": "11.2 批量单因素cox",
-    "text": "11.2 批量单因素cox\n然后就可以对每个变量进行单因素COX分析了:\n\nlibrary(survival)\n\ngene &lt;- colnames(dat_cox)[-c(1:2)]\ncox.result &lt;- list()\nfor (i in 1:length(gene)) {\n      #print(i)\n      group &lt;- dat_cox[, i + 2]\n      if (length(table(group)) == 1) next\n      #if (length(grep(\"high\", group)) &lt; min_sample_size) next\n      #if (length(grep(\"low\", group)) &lt; min_sample_size) next\n      x &lt;- survival::coxph(survival::Surv(time_months, event) ~ group, \n                           data = dat_cox)\n      tmp1 &lt;- broom::tidy(x, exponentiate = T, conf.int = T)\n      cox.result[[i]] &lt;- c(gene[i], tmp1)\n    }\n\nres.cox &lt;- data.frame(do.call(rbind, cox.result))\n\n筛选出P值小于0.1的变量:\n\nlibrary(dplyr)\n\nunifea &lt;- res.cox %&gt;% \n  filter(p.value&lt;0.1) %&gt;% \n  pull(V1) %&gt;% \n  unlist()\nunifea\n##  [1] \"AC005180.2\"   \"AC005180.1\"   \"AC053503.3\"   \"MIR100HG\"     \"AP001107.5\"  \n##  [6] \"C5orf66-AS1\"  \"AL162424.1\"   \"ADAMTS9-AS1\"  \"MIR200CHG\"    \"AC093010.3\"  \n## [11] \"AC079313.2\"   \"SNHG25\"       \"AL049555.1\"   \"MIR1-1HG-AS1\" \"SPINT1-AS1\"  \n## [16] \"KRT7-AS\"      \"HAND2-AS1\"    \"AC025575.2\"   \"MAFG-DT\"      \"AL390719.2\"  \n## [21] \"AC002398.2\"   \"AL161431.1\"   \"U62317.1\"     \"AL023284.4\"   \"AATBC\""
+    "title": "15  变量选择之先单后多",
+    "section": "15.2 批量单因素cox",
+    "text": "15.2 批量单因素cox\n然后就可以对每个变量进行单因素COX分析了:\n\nlibrary(survival)\n\ngene &lt;- colnames(dat_cox)[-c(1:2)]\ncox.result &lt;- list()\nfor (i in 1:length(gene)) {\n      #print(i)\n      group &lt;- dat_cox[, i + 2]\n      if (length(table(group)) == 1) next\n      #if (length(grep(\"high\", group)) &lt; min_sample_size) next\n      #if (length(grep(\"low\", group)) &lt; min_sample_size) next\n      x &lt;- survival::coxph(survival::Surv(time_months, event) ~ group, \n                           data = dat_cox)\n      tmp1 &lt;- broom::tidy(x, exponentiate = T, conf.int = T)\n      cox.result[[i]] &lt;- c(gene[i], tmp1)\n    }\n\nres.cox &lt;- data.frame(do.call(rbind, cox.result))\n\n筛选出P值小于0.1的变量:\n\nlibrary(dplyr)\n\nunifea &lt;- res.cox %&gt;% \n  filter(p.value&lt;0.1) %&gt;% \n  pull(V1) %&gt;% \n  unlist()\nunifea\n##  [1] \"AC005180.2\"   \"AC005180.1\"   \"AC053503.3\"   \"MIR100HG\"     \"AP001107.5\"  \n##  [6] \"C5orf66-AS1\"  \"AL162424.1\"   \"ADAMTS9-AS1\"  \"MIR200CHG\"    \"AC093010.3\"  \n## [11] \"AC079313.2\"   \"SNHG25\"       \"AL049555.1\"   \"MIR1-1HG-AS1\" \"SPINT1-AS1\"  \n## [16] \"KRT7-AS\"      \"HAND2-AS1\"    \"AC025575.2\"   \"MAFG-DT\"      \"AL390719.2\"  \n## [21] \"AC002398.2\"   \"AL161431.1\"   \"U62317.1\"     \"AL023284.4\"   \"AATBC\"",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>15</span>  <span class='chapter-title'>变量选择之先单后多</span>"
+    ]
   },
   {
     "objectID": "feature-selection_unimulti.html#多因素cox",
     "href": "feature-selection_unimulti.html#多因素cox",
-    "title": "11  变量筛选之先单后多",
-    "section": "11.3 多因素cox",
-    "text": "11.3 多因素cox\n把这些变量进行多因素COX回归\n\nsub_dat &lt;- dat_cox[,c(\"time_months\",\"event\",unifea)]\ndim(sub_dat)\n## [1] 297  27\nsub_dat[1:4,1:6]\n##   time_months event AC005180.2 AC005180.1 AC053503.3 MIR100HG\n## 1       36.33     0        low        low        low      low\n## 2       13.87     0       high       high       high      low\n## 3       21.83     1       high       high       high     high\n## 4       18.20     0       high       high       high     high\n\n拟合多因素cox回归模型并查看结果:\n\nfinal.fit &lt;- coxph(Surv(time_months,event)~., data = sub_dat)\nres &lt;- broom::tidy(final.fit)\nres\n## # A tibble: 25 × 5\n##    term             estimate std.error statistic p.value\n##    &lt;chr&gt;               &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n##  1 AC005180.2low      0.146      0.413     0.354 0.723  \n##  2 AC005180.1low     -0.343      0.399    -0.859 0.390  \n##  3 AC053503.3low     -0.139      0.391    -0.355 0.723  \n##  4 MIR100HGlow       -0.365      0.366    -0.997 0.319  \n##  5 AP001107.5low      0.284      0.344     0.825 0.409  \n##  6 `C5orf66-AS1`low  -0.538      0.284    -1.89  0.0587 \n##  7 AL162424.1low      0.0418     0.335     0.125 0.901  \n##  8 `ADAMTS9-AS1`low  -0.947      0.360    -2.63  0.00853\n##  9 MIR200CHGlow       0.0336     0.329     0.102 0.919  \n## 10 AC093010.3low      0.905      0.323     2.80  0.00505\n## # ℹ 15 more rows\n\n查看P值小于0.05的变量:结果只有5个\n\nres %&gt;% filter(p.value&lt;0.05)\n## # A tibble: 5 × 5\n##   term             estimate std.error statistic p.value\n##   &lt;chr&gt;               &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n## 1 `ADAMTS9-AS1`low   -0.947     0.360     -2.63 0.00853\n## 2 AC093010.3low       0.905     0.323      2.80 0.00505\n## 3 SNHG25low           0.592     0.280      2.11 0.0346 \n## 4 AC025575.2low       0.618     0.287      2.16 0.0311 \n## 5 AL161431.1low      -0.704     0.309     -2.28 0.0226\n\n这5个变量可以用于最终的模型中,但是考虑到不同变量之间的交互作用等情况,此时再拟合多因素cox模型,可能还会出现某个变量的P值大于0.05的情况,属于正常现象~\n\nfit5 &lt;- coxph(Surv(time_months,event)~`ADAMTS9-AS1`+AC093010.3+SNHG25+\n                AC025575.2+AL161431.1,data = sub_dat)\nlibrary(survminer)\n## Loading required package: ggplot2\n## Loading required package: ggpubr\n## \n## Attaching package: 'survminer'\n## The following object is masked from 'package:survival':\n## \n##     myeloma\nsurvminer::ggforest(fit5)\n## Warning in .get_data(model, data = data): The `data` argument is not provided.\n## Data will be extracted from model fit."
+    "title": "15  变量选择之先单后多",
+    "section": "15.3 多因素cox",
+    "text": "15.3 多因素cox\n把这些变量进行多因素COX回归\n\nsub_dat &lt;- dat_cox[,c(\"time_months\",\"event\",unifea)]\ndim(sub_dat)\n## [1] 297  27\nsub_dat[1:4,1:6]\n##   time_months event AC005180.2 AC005180.1 AC053503.3 MIR100HG\n## 1       36.33     0        low        low        low      low\n## 2       13.87     0       high       high       high      low\n## 3       21.83     1       high       high       high     high\n## 4       18.20     0       high       high       high     high\n\n拟合多因素cox回归模型并查看结果:\n\nfinal.fit &lt;- coxph(Surv(time_months,event)~., data = sub_dat)\nres &lt;- broom::tidy(final.fit)\nres\n## # A tibble: 25 × 5\n##    term             estimate std.error statistic p.value\n##    &lt;chr&gt;               &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n##  1 AC005180.2low      0.146      0.413     0.354 0.723  \n##  2 AC005180.1low     -0.343      0.399    -0.859 0.390  \n##  3 AC053503.3low     -0.139      0.391    -0.355 0.723  \n##  4 MIR100HGlow       -0.365      0.366    -0.997 0.319  \n##  5 AP001107.5low      0.284      0.344     0.825 0.409  \n##  6 `C5orf66-AS1`low  -0.538      0.284    -1.89  0.0587 \n##  7 AL162424.1low      0.0418     0.335     0.125 0.901  \n##  8 `ADAMTS9-AS1`low  -0.947      0.360    -2.63  0.00853\n##  9 MIR200CHGlow       0.0336     0.329     0.102 0.919  \n## 10 AC093010.3low      0.905      0.323     2.80  0.00505\n## # ℹ 15 more rows\n\n查看P值小于0.05的变量:结果只有5个\n\nres %&gt;% filter(p.value&lt;0.05)\n## # A tibble: 5 × 5\n##   term             estimate std.error statistic p.value\n##   &lt;chr&gt;               &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n## 1 `ADAMTS9-AS1`low   -0.947     0.360     -2.63 0.00853\n## 2 AC093010.3low       0.905     0.323      2.80 0.00505\n## 3 SNHG25low           0.592     0.280      2.11 0.0346 \n## 4 AC025575.2low       0.618     0.287      2.16 0.0311 \n## 5 AL161431.1low      -0.704     0.309     -2.28 0.0226\n\n这5个变量可以用于最终的模型中,但是考虑到不同变量之间的交互作用等情况,此时再拟合多因素cox模型,可能还会出现某个变量的P值大于0.05的情况,属于正常现象~\n\nfit5 &lt;- coxph(Surv(time_months,event)~`ADAMTS9-AS1`+AC093010.3+SNHG25+\n                AC025575.2+AL161431.1,data = sub_dat)\nlibrary(survminer)\nsurvminer::ggforest(fit5)\n\n\n\n\n\n\n\n\n上面这个森林图是多因素回归的森林图,和亚组分析的森林图完全不是一回事,不知道大家有没有注意过呢?\n关于森林图和亚组分析的相关问题和详细解释以及各种代码可以在公众号后台回复森林图获取合集。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>15</span>  <span class='chapter-title'>变量选择之先单后多</span>"
+    ]
   },
   {
     "objectID": "feature-selection_unimulti.html#行代码实现",
     "href": "feature-selection_unimulti.html#行代码实现",
-    "title": "11  变量筛选之先单后多",
-    "section": "11.4 1行代码实现",
-    "text": "11.4 1行代码实现\n手动实现的过程就是为了告诉大家思路是怎样的,这样大家有一定的基础就可以自己做,不管是什么数据,都是一样的思路,用什么方法和工具不重要,思路才是最重要的。\n下面再给大家介绍一个R包,可以实现1行代码完成先单后多cox分析,得到的结果和我们的手动实现的结果是一样的。\n首先安装R包:\n\n#install.packages(\"devtools\")\ndevtools::install_github(\"cardiomoon/autoReg\")\n\n\nlibrary(autoReg)\n\n使用autoReg函数可以实现先单后多cox分析,首先先建立cox模型,此时是多因素cox的形式,但是这个函数会自动帮我们提取数据,然后先批量对每个变量做cox。\n但是!乱七八糟的变量名字是不行的,比如我们演示用的这个lncRNA数据集,变量名字中有-,导致函数报错:\nfit &lt;- coxph(Surv(time_months,event)~., data = dat_cox)\n\nautoReg(fit,\n        threshold = 0.1,\n        uni = T,\n        multi = F\n        )\n\n# 报错\nError in parse(text = eq) : &lt;text&gt;:1:23: unexpected symbol\n1: df[['MIR1-1HG-AS1']]+1HG\n^\n我们给这个数据集的变量名字修改一下即可,我这里直接把-去掉了:\n\ncolnames(dat_cox)&lt;- gsub(\"-\",\"\",colnames(dat_cox))\ndat_cox[1:4,1:6]\n##   event time_months PGM5AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33    high       low        low        low\n## 2     0       13.87     low       low       high       high\n## 3     1       21.83    high      high       high       high\n## 4     0       18.20    high      high       high       high\n\n这样变量名字中就没有乱七八糟的符号了,此时再进行分析就不会报错了。\n而且结果直接给出了三线表的格式,看起来非常整洁:\n\nfit &lt;- coxph(Surv(time_months,event)~., data = dat_cox)\n\nft &lt;- autoReg(fit,\n        threshold = 0.1,\n        uni = T, # 单因素分析\n        multi = T, # 多因素分析\n        final = F # 逐步法,向后\n        )\nft\n\n表格太长了,只展示部分:\n\n这个结果是可以导出为Word或者Excel格式的:\n\nlibrary(rrtable)\n\ntable2docx(ft)\n\n除此之外,这个包还是一个非常强大的三线表绘制R包,可以1行代码实现多种精美的三线表、回归分析(线性回归、逻辑回归、生存分析)结果表格,大家感兴趣的可以去官网学习:https://cardiomoon.github.io/autoReg/index.html"
-  },
-  {
-    "objectID": "feature-selection_stepwise.html#加载数据",
-    "href": "feature-selection_stepwise.html#加载数据",
-    "title": "12  筛选变量逐步回归",
-    "section": "12.1 加载数据",
-    "text": "12.1 加载数据\n我们使用TCGA-BLCA的lncRNA数据(数据已放在粉丝qq群文件),其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\n\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin1 &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin1 &lt;- lnc_expr_clin1[lnc_expr_clin1$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin1[,c(72:73,1:59)]\ndim(dat.cox)\n## [1] 297  61\ndat.cox[1:4,1:6]\n##   event time_months   PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33 0.15064007 0.2642238  0.0000000  0.1547768\n## 2     0       13.87 0.06309362 0.1666554  0.3105983  0.2436603\n## 3     1       21.83 2.16399508 3.5662920  2.2454129  2.0073496\n## 4     0       18.20 2.73075081 1.7314314  0.8609916  0.7323014\n\n现在这个数据一共59个自变量,我们先使用所有自变量建立cox回归模型。"
+    "title": "15  变量选择之先单后多",
+    "section": "15.4 1行代码实现",
+    "text": "15.4 1行代码实现\n手动实现的过程就是为了告诉大家思路是怎样的,这样大家有一定的基础就可以自己做,不管是什么数据,都是一样的思路,用什么方法和工具不重要,思路才是最重要的。\n下面再给大家介绍一个R包,可以实现1行代码完成先单后多cox分析,得到的结果和我们的手动实现的结果是一样的。\n首先安装R包:\n\n#install.packages(\"devtools\")\ndevtools::install_github(\"cardiomoon/autoReg\")\n\n\nlibrary(autoReg)\n\n使用autoReg函数可以实现先单后多cox分析,首先先建立cox模型,此时是多因素cox的形式,但是这个函数会自动帮我们提取数据,然后先批量对每个变量做cox。\n但是!乱七八糟的变量名字是不行的,比如我们演示用的这个lncRNA数据集,变量名字中有-,导致函数报错:\nfit &lt;- coxph(Surv(time_months,event)~., data = dat_cox)\n\nautoReg(fit,\n        threshold = 0.1,\n        uni = T,\n        multi = F\n        )\n\n# 报错\nError in parse(text = eq) : &lt;text&gt;:1:23: unexpected symbol\n1: df[['MIR1-1HG-AS1']]+1HG\n^\n我们给这个数据集的变量名字修改一下即可,我这里直接把-去掉了:\n\ncolnames(dat_cox)&lt;- gsub(\"-\",\"\",colnames(dat_cox))\ndat_cox[1:4,1:6]\n##   event time_months PGM5AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33    high       low        low        low\n## 2     0       13.87     low       low       high       high\n## 3     1       21.83    high      high       high       high\n## 4     0       18.20    high      high       high       high\n\n这样变量名字中就没有乱七八糟的符号了,此时再进行分析就不会报错了。\n而且结果直接给出了三线表的格式,看起来非常整洁:\n\nfit &lt;- coxph(Surv(time_months,event)~., data = dat_cox)\n\nft &lt;- autoReg(fit,\n        threshold = 0.1,\n        uni = T, # 单因素分析\n        multi = T, # 多因素分析\n        final = F # 逐步法,向后\n        )\nft\n\n表格太长了,只展示部分:\n\n这个结果是可以导出为Word或者Excel格式的:\n\nlibrary(rrtable)\n\ntable2docx(ft)\n\n除此之外,这个包还是一个非常强大的三线表绘制R包,可以1行代码实现多种精美的三线表、回归分析(线性回归、逻辑回归、生存分析)结果表格,大家感兴趣的可以去官网学习:https://cardiomoon.github.io/autoReg/index.html",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>15</span>  <span class='chapter-title'>变量选择之先单后多</span>"
+    ]
+  },
+  {
+    "objectID": "feature-selection_stepwise.html",
+    "href": "feature-selection_stepwise.html",
+    "title": "16  变量选择之逐步回归",
+    "section": "",
+    "text": "16.1 加载数据\n我们使用TCGA-BLCA的lncRNA数据(数据已放在粉丝qq群文件),其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin1 &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin1 &lt;- lnc_expr_clin1[lnc_expr_clin1$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin1[,c(72:73,1:59)]\ndim(dat.cox)\n## [1] 297  61\ndat.cox[1:4,1:6]\n##   event time_months   PGM5-AS1 LINC01082 AC005180.2 AC005180.1\n## 1     0       36.33 0.15064007 0.2642238  0.0000000  0.1547768\n## 2     0       13.87 0.06309362 0.1666554  0.3105983  0.2436603\n## 3     1       21.83 2.16399508 3.5662920  2.2454129  2.0073496\n## 4     0       18.20 2.73075081 1.7314314  0.8609916  0.7323014\n现在这个数据一共59个自变量,我们先使用所有自变量建立cox回归模型。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>16</span>  <span class='chapter-title'>变量选择之逐步回归</span>"
+    ]
   },
   {
     "objectID": "feature-selection_stepwise.html#建立模型",
     "href": "feature-selection_stepwise.html#建立模型",
-    "title": "12  筛选变量逐步回归",
-    "section": "12.2 建立模型",
-    "text": "12.2 建立模型\n我们这个是生存数据,使用cox回归。如果你的数据是其他类型,使用逻辑回归或者线性回归都是可以的。\n\nlibrary(survival)\n\nfit.cox &lt;- coxph(Surv(time_months,event)~.,data = dat.cox)\nfit.cox\n## Call:\n## coxph(formula = Surv(time_months, event) ~ ., data = dat.cox)\n## \n##                     coef exp(coef)  se(coef)      z       p\n## `PGM5-AS1`     -0.008183  0.991850  0.222738 -0.037 0.97069\n## LINC01082       0.345614  1.412858  0.403674  0.856 0.39190\n## AC005180.2      0.977584  2.658027  0.906672  1.078 0.28094\n## AC005180.1      0.846348  2.331118  1.193460  0.709 0.47823\n## FENDRR         -0.653451  0.520247  0.548215 -1.192 0.23328\n## AC053503.3     -0.589548  0.554578  0.553104 -1.066 0.28647\n## MIR100HG        0.902471  2.465687  0.386229  2.337 0.01946\n## AP001107.5     -0.812922  0.443560  0.677700 -1.200 0.23032\n## `C5orf66-AS1`   0.094286  1.098873  0.295767  0.319 0.74989\n## NR4A1AS         0.874631  2.397990  0.336703  2.598 0.00939\n## AL162424.1      0.049223  1.050455  0.324490  0.152 0.87943\n## AF001548.1      0.949594  2.584659  0.788709  1.204 0.22860\n## AC099850.4      0.205430  1.228053  0.252745  0.813 0.41634\n## `MBNL1-AS1`    -0.798659  0.449932  0.675864 -1.182 0.23733\n## `ADAMTS9-AS1`  -0.065160  0.936917  1.776167 -0.037 0.97074\n## MIR22HG         0.108393  1.114486  0.228433  0.475 0.63514\n## MIR200CHG      -0.070914  0.931542  0.215534 -0.329 0.74214\n## AC093010.3     -0.658117  0.517825  0.347044 -1.896 0.05791\n## LINC00865      -0.282616  0.753809  0.284716 -0.993 0.32089\n## AP003071.4     -0.506228  0.602765  0.675734 -0.749 0.45377\n## PCAT6           0.347869  1.416047  0.199663  1.742 0.08146\n## LINC02657      -0.175082  0.839388  0.122482 -1.429 0.15287\n## `PPP1R14B-AS1`  0.144657  1.155643  0.238269  0.607 0.54377\n## AC012085.2     -2.267686  0.103552  1.671128 -1.357 0.17479\n## `ACTA2-AS1`    -0.084816  0.918681  0.760755 -0.111 0.91123\n## AC036108.3      1.405644  4.078154  1.413552  0.994 0.32003\n## AC079313.2      0.167743  1.182633  1.020173  0.164 0.86940\n## AC020916.1      0.037921  1.038649  0.201470  0.188 0.85070\n## SNHG25         -0.151295  0.859594  0.330536 -0.458 0.64715\n## AL049555.1      0.398962  1.490277  0.207738  1.921 0.05479\n## `MIR1-1HG-AS1` -1.851131  0.157059  1.991975 -0.929 0.35274\n## AC018904.1      0.026484  1.026838  0.233038  0.114 0.90952\n## SNHG12          0.144329  1.155264  0.344430  0.419 0.67519\n## `SPINT1-AS1`    0.676775  1.967522  0.374980  1.805 0.07110\n## `KRT7-AS`      -0.137828  0.871248  0.129775 -1.062 0.28821\n## MIR205HG       -0.076826  0.926051  0.161261 -0.476 0.63378\n## `HAND2-AS1`     1.853233  6.380415  1.742430  1.064 0.28751\n## AL445524.1     -0.255737  0.774345  0.220099 -1.162 0.24527\n## LINC01980      -0.171282  0.842584  0.128515 -1.333 0.18260\n## `ZNF710-AS1`   -0.959290  0.383165  0.459985 -2.085 0.03703\n## AC092718.4      0.010577  1.010633  0.272577  0.039 0.96905\n## AC008735.2     -0.002696  0.997308  0.291545 -0.009 0.99262\n## LINC01133       0.122659  1.130499  0.120170  1.021 0.30739\n## AC025575.2      0.158544  1.171804  0.135523  1.170 0.24205\n## `MAFG-DT`       0.343519  1.409901  0.242305  1.418 0.15627\n## CASC9          -0.118071  0.888633  0.154923 -0.762 0.44598\n## AL390719.2      0.177187  1.193854  0.225404  0.786 0.43182\n## AC002398.2     -1.089318  0.336446  1.662224 -0.655 0.51225\n## AC008736.1     -0.117863  0.888818  0.163847 -0.719 0.47193\n## AL161431.1      0.158805  1.172110  0.112004  1.418 0.15623\n## `PCCA-DT`      -0.456381  0.633572  0.254320 -1.795 0.07273\n## AC245041.2      0.243686  1.275944  0.200371  1.216 0.22392\n## U62317.1       -0.162513  0.850005  0.205601 -0.790 0.42928\n## U62317.2       -0.131903  0.876426  0.315579 -0.418 0.67597\n## `VPS9D1-AS1`   -0.044547  0.956431  0.174172 -0.256 0.79813\n## AL023284.4     -0.335339  0.715095  0.245641 -1.365 0.17220\n## AATBC           0.136654  1.146432  0.180919  0.755 0.45005\n## LINC00641       0.383262  1.467062  0.474750  0.807 0.41950\n## AC015912.3     -0.562875  0.569569  0.296322 -1.900 0.05749\n## \n## Likelihood ratio test=78.86  on 59 df, p=0.04311\n## n= 297, number of events= 71\n\n下面就是用逐步法选择变量。"
+    "title": "16  变量选择之逐步回归",
+    "section": "16.2 建立模型",
+    "text": "16.2 建立模型\n我们这个是生存数据,使用cox回归。如果你的数据是其他类型,使用逻辑回归或者线性回归都是可以的。\n\nlibrary(survival)\n\nfit.cox &lt;- coxph(Surv(time_months,event)~.,data = dat.cox)\nfit.cox\n## Call:\n## coxph(formula = Surv(time_months, event) ~ ., data = dat.cox)\n## \n##                     coef exp(coef)  se(coef)      z       p\n## `PGM5-AS1`     -0.008183  0.991850  0.222738 -0.037 0.97069\n## LINC01082       0.345614  1.412858  0.403674  0.856 0.39190\n## AC005180.2      0.977584  2.658027  0.906672  1.078 0.28094\n## AC005180.1      0.846348  2.331118  1.193460  0.709 0.47823\n## FENDRR         -0.653451  0.520247  0.548215 -1.192 0.23328\n## AC053503.3     -0.589548  0.554578  0.553104 -1.066 0.28647\n## MIR100HG        0.902471  2.465687  0.386229  2.337 0.01946\n## AP001107.5     -0.812922  0.443560  0.677700 -1.200 0.23032\n## `C5orf66-AS1`   0.094286  1.098873  0.295767  0.319 0.74989\n## NR4A1AS         0.874631  2.397990  0.336703  2.598 0.00939\n## AL162424.1      0.049223  1.050455  0.324490  0.152 0.87943\n## AF001548.1      0.949594  2.584659  0.788709  1.204 0.22860\n## AC099850.4      0.205430  1.228053  0.252745  0.813 0.41634\n## `MBNL1-AS1`    -0.798659  0.449932  0.675864 -1.182 0.23733\n## `ADAMTS9-AS1`  -0.065160  0.936917  1.776167 -0.037 0.97074\n## MIR22HG         0.108393  1.114486  0.228433  0.475 0.63514\n## MIR200CHG      -0.070914  0.931542  0.215534 -0.329 0.74214\n## AC093010.3     -0.658117  0.517825  0.347044 -1.896 0.05791\n## LINC00865      -0.282616  0.753809  0.284716 -0.993 0.32089\n## AP003071.4     -0.506228  0.602765  0.675734 -0.749 0.45377\n## PCAT6           0.347869  1.416047  0.199663  1.742 0.08146\n## LINC02657      -0.175082  0.839388  0.122482 -1.429 0.15287\n## `PPP1R14B-AS1`  0.144657  1.155643  0.238269  0.607 0.54377\n## AC012085.2     -2.267686  0.103552  1.671128 -1.357 0.17479\n## `ACTA2-AS1`    -0.084816  0.918681  0.760755 -0.111 0.91123\n## AC036108.3      1.405644  4.078154  1.413552  0.994 0.32003\n## AC079313.2      0.167743  1.182633  1.020173  0.164 0.86940\n## AC020916.1      0.037921  1.038649  0.201470  0.188 0.85070\n## SNHG25         -0.151295  0.859594  0.330536 -0.458 0.64715\n## AL049555.1      0.398962  1.490277  0.207738  1.921 0.05479\n## `MIR1-1HG-AS1` -1.851131  0.157059  1.991975 -0.929 0.35274\n## AC018904.1      0.026484  1.026838  0.233038  0.114 0.90952\n## SNHG12          0.144329  1.155264  0.344430  0.419 0.67519\n## `SPINT1-AS1`    0.676775  1.967522  0.374980  1.805 0.07110\n## `KRT7-AS`      -0.137828  0.871248  0.129775 -1.062 0.28821\n## MIR205HG       -0.076826  0.926051  0.161261 -0.476 0.63378\n## `HAND2-AS1`     1.853233  6.380415  1.742430  1.064 0.28751\n## AL445524.1     -0.255737  0.774345  0.220099 -1.162 0.24527\n## LINC01980      -0.171282  0.842584  0.128515 -1.333 0.18260\n## `ZNF710-AS1`   -0.959290  0.383165  0.459985 -2.085 0.03703\n## AC092718.4      0.010577  1.010633  0.272577  0.039 0.96905\n## AC008735.2     -0.002696  0.997308  0.291545 -0.009 0.99262\n## LINC01133       0.122659  1.130499  0.120170  1.021 0.30739\n## AC025575.2      0.158544  1.171804  0.135523  1.170 0.24205\n## `MAFG-DT`       0.343519  1.409901  0.242305  1.418 0.15627\n## CASC9          -0.118071  0.888633  0.154923 -0.762 0.44598\n## AL390719.2      0.177187  1.193854  0.225404  0.786 0.43182\n## AC002398.2     -1.089318  0.336446  1.662224 -0.655 0.51225\n## AC008736.1     -0.117863  0.888818  0.163847 -0.719 0.47193\n## AL161431.1      0.158805  1.172110  0.112004  1.418 0.15623\n## `PCCA-DT`      -0.456381  0.633572  0.254320 -1.795 0.07273\n## AC245041.2      0.243686  1.275944  0.200371  1.216 0.22392\n## U62317.1       -0.162513  0.850005  0.205601 -0.790 0.42928\n## U62317.2       -0.131903  0.876426  0.315579 -0.418 0.67597\n## `VPS9D1-AS1`   -0.044547  0.956431  0.174172 -0.256 0.79813\n## AL023284.4     -0.335339  0.715095  0.245641 -1.365 0.17220\n## AATBC           0.136654  1.146432  0.180919  0.755 0.45005\n## LINC00641       0.383262  1.467062  0.474750  0.807 0.41950\n## AC015912.3     -0.562875  0.569569  0.296322 -1.900 0.05749\n## \n## Likelihood ratio test=78.86  on 59 df, p=0.04311\n## n= 297, number of events= 71\n\n下面就是用逐步法选择变量。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>16</span>  <span class='chapter-title'>变量选择之逐步回归</span>"
+    ]
   },
   {
     "objectID": "feature-selection_stepwise.html#逐步选择",
     "href": "feature-selection_stepwise.html#逐步选择",
-    "title": "12  筛选变量逐步回归",
-    "section": "12.3 逐步选择",
-    "text": "12.3 逐步选择\n我们使用逐步选择法进行变量筛选:\n\nfit.step &lt;- step(fit.cox,direction = \"both\")\n#save(fit.step,file = \"./datasets/fit.step.edata\")\n\nStart:  AIC=794.12\nSurv(time_months, event) ~ `PGM5-AS1` + LINC01082 + AC005180.2 + \n    AC005180.1 + FENDRR + AC053503.3 + MIR100HG + AP001107.5 + \n    `C5orf66-AS1` + NR4A1AS + AL162424.1 + AF001548.1 + AC099850.4 + \n    `MBNL1-AS1` + `ADAMTS9-AS1` + MIR22HG + MIR200CHG + AC093010.3 + \n    LINC00865 + AP003071.4 + PCAT6 + LINC02657 + `PPP1R14B-AS1` + \n    AC012085.2 + `ACTA2-AS1` + AC036108.3 + AC079313.2 + AC020916.1 + \n    SNHG25 + AL049555.1 + `MIR1-1HG-AS1` + AC018904.1 + SNHG12 + \n    `SPINT1-AS1` + `KRT7-AS` + MIR205HG + `HAND2-AS1` + AL445524.1 + \n    LINC01980 + `ZNF710-AS1` + AC092718.4 + AC008735.2 + LINC01133 + \n    AC025575.2 + `MAFG-DT` + CASC9 + AL390719.2 + AC002398.2 + \n    AC008736.1 + AL161431.1 + `PCCA-DT` + AC245041.2 + U62317.1 + \n    U62317.2 + `VPS9D1-AS1` + AL023284.4 + AATBC + LINC00641 + \n    AC015912.3\n\n                 Df    AIC\n- AC008735.2      1 792.12\n- `ADAMTS9-AS1`   1 792.12\n- `PGM5-AS1`      1 792.12\n- AC092718.4      1 792.12\n- `ACTA2-AS1`     1 792.13\n- AC018904.1      1 792.13\n- AL162424.1      1 792.14\n- AC079313.2      1 792.15\n- AC020916.1      1 792.15\n- `VPS9D1-AS1`    1 792.18\n- `C5orf66-AS1`   1 792.22\n- MIR200CHG       1 792.23\n- U62317.2        1 792.29\n- SNHG12          1 792.29\n- SNHG25          1 792.33\n- MIR22HG         1 792.34\n- MIR205HG        1 792.35\n- `PPP1R14B-AS1`  1 792.49\n- AC002398.2      1 792.56\n- AC005180.1      1 792.63\n- AC008736.1      1 792.65\n- AATBC           1 792.69\n- AP003071.4      1 792.69\n- CASC9           1 792.70\n- AL390719.2      1 792.74\n- U62317.1        1 792.75\n- LINC00641       1 792.76\n- AC099850.4      1 792.79\n- LINC01082       1 792.86\n- `MIR1-1HG-AS1`  1 793.03\n- AC036108.3      1 793.10\n- LINC00865       1 793.13\n- LINC01133       1 793.13\n- `HAND2-AS1`     1 793.23\n- `KRT7-AS`       1 793.25\n- AC005180.2      1 793.25\n- AC053503.3      1 793.29\n- AL445524.1      1 793.49\n- AC025575.2      1 793.50\n- AF001548.1      1 793.55\n- FENDRR          1 793.61\n- AC245041.2      1 793.61\n- `MBNL1-AS1`     1 793.62\n- AP001107.5      1 793.84\n- LINC01980       1 793.87\n- AL023284.4      1 794.01\n- AL161431.1      1 794.11\n&lt;none&gt;              794.12\n- `MAFG-DT`       1 794.13\n- AC012085.2      1 794.14\n- LINC02657       1 794.20\n- PCAT6           1 795.17\n- `PCCA-DT`       1 795.43\n- `SPINT1-AS1`    1 795.45\n- AC093010.3      1 795.84\n- AL049555.1      1 795.88\n- AC015912.3      1 795.94\n- `ZNF710-AS1`    1 796.86\n- MIR100HG        1 797.13\n- NR4A1AS         1 798.62\n\nStep:  AIC=792.12\n## 省略巨多中间过程\nStep:  AIC=790.12\n## 省略巨多中间过程\nStep:  AIC=734.72\nSurv(time_months, event) ~ AC005180.2 + MIR100HG + AP001107.5 + \n    NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + AL049555.1 + \n    `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + `ZNF710-AS1` + \n    AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + AC015912.3\n\n                 Df    AIC\n&lt;none&gt;              734.72\n+ LINC00641       1 734.91\n+ AC012085.2      1 735.01\n- AL049555.1      1 735.02\n+ AC002398.2      1 735.06\n- AC036108.3      1 735.12\n+ `MAFG-DT`       1 735.17\n- `ZNF710-AS1`    1 735.28\n+ AF001548.1      1 735.44\n+ AL445524.1      1 735.44\n- `MIR1-1HG-AS1`  1 735.54\n- U62317.1        1 735.76\n+ `C5orf66-AS1`   1 735.89\n+ `MBNL1-AS1`     1 735.91\n+ MIR205HG        1 735.92\n+ AP003071.4      1 735.99\n- `PCCA-DT`       1 736.08\n+ AATBC           1 736.14\n+ LINC01133       1 736.25\n+ AC099850.4      1 736.27\n- AL161431.1      1 736.29\n+ AC245041.2      1 736.30\n+ AC008735.2      1 736.34\n+ AC025575.2      1 736.36\n+ SNHG12          1 736.36\n+ MIR200CHG       1 736.42\n+ LINC02657       1 736.46\n- AL023284.4      1 736.47\n+ `KRT7-AS`       1 736.49\n+ SNHG25          1 736.50\n+ `PPP1R14B-AS1`  1 736.52\n+ `ADAMTS9-AS1`   1 736.53\n+ U62317.2        1 736.53\n+ FENDRR          1 736.56\n+ `ACTA2-AS1`     1 736.60\n+ AC008736.1      1 736.60\n+ `HAND2-AS1`     1 736.60\n+ `PGM5-AS1`      1 736.61\n+ MIR22HG         1 736.61\n+ AL390719.2      1 736.66\n+ `VPS9D1-AS1`    1 736.67\n+ CASC9           1 736.67\n+ AC053503.3      1 736.67\n+ AC005180.1      1 736.68\n+ AL162424.1      1 736.68\n+ LINC01082       1 736.71\n+ AC079313.2      1 736.71\n+ LINC00865       1 736.71\n+ AC092718.4      1 736.71\n+ AC020916.1      1 736.72\n+ AC018904.1      1 736.72\n- NR4A1AS         1 736.74\n- MIR100HG        1 736.79\n- LINC01980       1 736.86\n- `SPINT1-AS1`    1 736.89\n- AP001107.5      1 737.71\n- PCAT6           1 738.00\n- AC015912.3      1 738.51\n- AC093010.3      1 739.96\n- AC005180.2      1 739.97\n\n查看下结果:\n\nsummary(fit.step)\n\nCall:\ncoxph(formula = Surv(time_months, event) ~ AC005180.2 + MIR100HG + \n    AP001107.5 + NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + \n    AL049555.1 + `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + \n    `ZNF710-AS1` + AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + \n    AC015912.3, data = dat.cox)\n\n  n= 297, number of events= 71 \n\n                   coef exp(coef) se(coef)      z Pr(&gt;|z|)   \nAC005180.2      0.83728   2.31007  0.30399  2.754  0.00588 **\nMIR100HG        0.59783   1.81818  0.28762  2.079  0.03766 * \nAP001107.5     -1.63414   0.19512  0.80039 -2.042  0.04118 * \nNR4A1AS         0.48095   1.61761  0.22753  2.114  0.03453 * \nAC093010.3     -0.65126   0.52139  0.24377 -2.672  0.00755 **\nPCAT6           0.34371   1.41017  0.14756  2.329  0.01985 * \nAC036108.3      1.48666   4.42231  0.96894  1.534  0.12495   \nAL049555.1      0.23994   1.27117  0.15931  1.506  0.13203   \n`MIR1-1HG-AS1` -1.95396   0.14171  1.21419 -1.609  0.10756   \n`SPINT1-AS1`    0.48314   1.62116  0.23919  2.020  0.04340 * \nLINC01980      -0.17331   0.84087  0.08564 -2.024  0.04300 * \n`ZNF710-AS1`   -0.55489   0.57414  0.35644 -1.557  0.11953   \nAL161431.1      0.17192   1.18758  0.08854  1.942  0.05217 . \n`PCCA-DT`      -0.35372   0.70207  0.19499 -1.814  0.06966 . \nU62317.1       -0.20670   0.81326  0.12168 -1.699  0.08937 . \nAL023284.4     -0.30170   0.73956  0.15674 -1.925  0.05425 . \nAC015912.3     -0.43266   0.64878  0.18428 -2.348  0.01888 * \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n               exp(coef) exp(-coef) lower .95 upper .95\nAC005180.2        2.3101     0.4329   1.27311    4.1916\nMIR100HG          1.8182     0.5500   1.03470    3.1949\nAP001107.5        0.1951     5.1251   0.04065    0.9367\nNR4A1AS           1.6176     0.6182   1.03563    2.5266\nAC093010.3        0.5214     1.9180   0.32334    0.8407\nPCAT6             1.4102     0.7091   1.05601    1.8831\nAC036108.3        4.4223     0.2261   0.66204   29.5404\nAL049555.1        1.2712     0.7867   0.93025    1.7370\n`MIR1-1HG-AS1`    0.1417     7.0566   0.01312    1.5308\n`SPINT1-AS1`      1.6212     0.6168   1.01443    2.5908\nLINC01980         0.8409     1.1892   0.71094    0.9946\n`ZNF710-AS1`      0.5741     1.7417   0.28551    1.1546\nAL161431.1        1.1876     0.8420   0.99839    1.4126\n`PCCA-DT`         0.7021     1.4244   0.47908    1.0288\nU62317.1          0.8133     1.2296   0.64070    1.0323\nAL023284.4        0.7396     1.3522   0.54395    1.0055\nAC015912.3        0.6488     1.5413   0.45211    0.9310\n\nConcordance= 0.735  (se = 0.029 )\nLikelihood ratio test= 54.26  on 17 df,   p=9e-06\nWald test            = 47.59  on 17 df,   p=1e-04\nScore (logrank) test = 51.16  on 17 df,   p=3e-05\n\n最终59个变量剩下17个,筛选效果还不错。\n这个筛选过程是根据AIC进行的,一般会选择AIC最小的结果。AIC全称赤池信息量准则(Akaike information criterion,AIC),是评估统计模型的复杂度和衡量统计模型”拟合优度”(Goodness of Fit)的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则的方法是寻找可以最好地解释数据但包含最少自由参数的模型。\n查看最终的AIC和BIC:\n\n# 初始模型的AIC\nAIC(fit.cox)\n## [1] 794.1182\n\n# 筛选后的AIC和BIC\nAIC(fit.step)\n## [1] 734.7167\nBIC(fit.step)\n## [1] 773.1823\n\n查看回归系数:\n\nstep.coef &lt;- coef(fit.step)\nstep.coef\n##     AC005180.2       MIR100HG     AP001107.5        NR4A1AS     AC093010.3 \n##      0.8372759      0.5978335     -1.6341403      0.4809485     -0.6512620 \n##          PCAT6     AC036108.3     AL049555.1 `MIR1-1HG-AS1`   `SPINT1-AS1` \n##      0.3437133      1.4866631      0.2399385     -1.9539623      0.4831391 \n##      LINC01980   `ZNF710-AS1`     AL161431.1      `PCCA-DT`       U62317.1 \n##     -0.1733137     -0.5548853      0.1719177     -0.3537250     -0.2067033 \n##     AL023284.4     AC015912.3 \n##     -0.3017031     -0.4326573\n\n提取这17个变量的名字:\n\nstep.lnc &lt;- names(coef(fit.step))\nstep.lnc\n##  [1] \"AC005180.2\"     \"MIR100HG\"       \"AP001107.5\"     \"NR4A1AS\"       \n##  [5] \"AC093010.3\"     \"PCAT6\"          \"AC036108.3\"     \"AL049555.1\"    \n##  [9] \"`MIR1-1HG-AS1`\" \"`SPINT1-AS1`\"   \"LINC01980\"      \"`ZNF710-AS1`\"  \n## [13] \"AL161431.1\"     \"`PCCA-DT`\"      \"U62317.1\"       \"AL023284.4\"    \n## [17] \"AC015912.3\"\n\n简单。\n当然使用broom也是可以提取这个结果的:\n\nbroom::tidy(fit.step)\n## # A tibble: 17 × 5\n##    term           estimate std.error statistic p.value\n##    &lt;chr&gt;             &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n##  1 AC005180.2        0.837    0.304       2.75 0.00588\n##  2 MIR100HG          0.598    0.288       2.08 0.0377 \n##  3 AP001107.5       -1.63     0.800      -2.04 0.0412 \n##  4 NR4A1AS           0.481    0.228       2.11 0.0345 \n##  5 AC093010.3       -0.651    0.244      -2.67 0.00755\n##  6 PCAT6             0.344    0.148       2.33 0.0198 \n##  7 AC036108.3        1.49     0.969       1.53 0.125  \n##  8 AL049555.1        0.240    0.159       1.51 0.132  \n##  9 `MIR1-1HG-AS1`   -1.95     1.21       -1.61 0.108  \n## 10 `SPINT1-AS1`      0.483    0.239       2.02 0.0434 \n## 11 LINC01980        -0.173    0.0856     -2.02 0.0430 \n## 12 `ZNF710-AS1`     -0.555    0.356      -1.56 0.120  \n## 13 AL161431.1        0.172    0.0885      1.94 0.0522 \n## 14 `PCCA-DT`        -0.354    0.195      -1.81 0.0697 \n## 15 U62317.1         -0.207    0.122      -1.70 0.0894 \n## 16 AL023284.4       -0.302    0.157      -1.92 0.0542 \n## 17 AC015912.3       -0.433    0.184      -2.35 0.0189\n\n一目了然,简洁清晰,broom真的是神包~\n还可以1行代码查看模型的各种统计值,包括P值、R^2、AIC、BIC、C-index等等:\n\nbroom::glance(fit.step)\n## # A tibble: 1 × 18\n##       n nevent statistic.log p.value.log statistic.sc p.value.sc statistic.wald\n##   &lt;int&gt;  &lt;dbl&gt;         &lt;dbl&gt;       &lt;dbl&gt;        &lt;dbl&gt;      &lt;dbl&gt;          &lt;dbl&gt;\n## 1   297     71          54.3  0.00000900         51.2  0.0000279           47.6\n## # ℹ 11 more variables: p.value.wald &lt;dbl&gt;, statistic.robust &lt;dbl&gt;,\n## #   p.value.robust &lt;dbl&gt;, r.squared &lt;dbl&gt;, r.squared.max &lt;dbl&gt;,\n## #   concordance &lt;dbl&gt;, std.error.concordance &lt;dbl&gt;, logLik &lt;dbl&gt;, AIC &lt;dbl&gt;,\n## #   BIC &lt;dbl&gt;, nobs &lt;int&gt;"
+    "title": "16  变量选择之逐步回归",
+    "section": "16.3 逐步选择",
+    "text": "16.3 逐步选择\n我们使用逐步选择法进行变量筛选:\n\nfit.step &lt;- step(fit.cox,direction = \"both\")\n#save(fit.step,file = \"./datasets/fit.step.edata\")\n\nStart:  AIC=794.12\nSurv(time_months, event) ~ `PGM5-AS1` + LINC01082 + AC005180.2 + \n    AC005180.1 + FENDRR + AC053503.3 + MIR100HG + AP001107.5 + \n    `C5orf66-AS1` + NR4A1AS + AL162424.1 + AF001548.1 + AC099850.4 + \n    `MBNL1-AS1` + `ADAMTS9-AS1` + MIR22HG + MIR200CHG + AC093010.3 + \n    LINC00865 + AP003071.4 + PCAT6 + LINC02657 + `PPP1R14B-AS1` + \n    AC012085.2 + `ACTA2-AS1` + AC036108.3 + AC079313.2 + AC020916.1 + \n    SNHG25 + AL049555.1 + `MIR1-1HG-AS1` + AC018904.1 + SNHG12 + \n    `SPINT1-AS1` + `KRT7-AS` + MIR205HG + `HAND2-AS1` + AL445524.1 + \n    LINC01980 + `ZNF710-AS1` + AC092718.4 + AC008735.2 + LINC01133 + \n    AC025575.2 + `MAFG-DT` + CASC9 + AL390719.2 + AC002398.2 + \n    AC008736.1 + AL161431.1 + `PCCA-DT` + AC245041.2 + U62317.1 + \n    U62317.2 + `VPS9D1-AS1` + AL023284.4 + AATBC + LINC00641 + \n    AC015912.3\n\n                 Df    AIC\n- AC008735.2      1 792.12\n- `ADAMTS9-AS1`   1 792.12\n- `PGM5-AS1`      1 792.12\n- AC092718.4      1 792.12\n- `ACTA2-AS1`     1 792.13\n- AC018904.1      1 792.13\n- AL162424.1      1 792.14\n- AC079313.2      1 792.15\n- AC020916.1      1 792.15\n- `VPS9D1-AS1`    1 792.18\n- `C5orf66-AS1`   1 792.22\n- MIR200CHG       1 792.23\n- U62317.2        1 792.29\n- SNHG12          1 792.29\n- SNHG25          1 792.33\n- MIR22HG         1 792.34\n- MIR205HG        1 792.35\n- `PPP1R14B-AS1`  1 792.49\n- AC002398.2      1 792.56\n- AC005180.1      1 792.63\n- AC008736.1      1 792.65\n- AATBC           1 792.69\n- AP003071.4      1 792.69\n- CASC9           1 792.70\n- AL390719.2      1 792.74\n- U62317.1        1 792.75\n- LINC00641       1 792.76\n- AC099850.4      1 792.79\n- LINC01082       1 792.86\n- `MIR1-1HG-AS1`  1 793.03\n- AC036108.3      1 793.10\n- LINC00865       1 793.13\n- LINC01133       1 793.13\n- `HAND2-AS1`     1 793.23\n- `KRT7-AS`       1 793.25\n- AC005180.2      1 793.25\n- AC053503.3      1 793.29\n- AL445524.1      1 793.49\n- AC025575.2      1 793.50\n- AF001548.1      1 793.55\n- FENDRR          1 793.61\n- AC245041.2      1 793.61\n- `MBNL1-AS1`     1 793.62\n- AP001107.5      1 793.84\n- LINC01980       1 793.87\n- AL023284.4      1 794.01\n- AL161431.1      1 794.11\n&lt;none&gt;              794.12\n- `MAFG-DT`       1 794.13\n- AC012085.2      1 794.14\n- LINC02657       1 794.20\n- PCAT6           1 795.17\n- `PCCA-DT`       1 795.43\n- `SPINT1-AS1`    1 795.45\n- AC093010.3      1 795.84\n- AL049555.1      1 795.88\n- AC015912.3      1 795.94\n- `ZNF710-AS1`    1 796.86\n- MIR100HG        1 797.13\n- NR4A1AS         1 798.62\n\nStep:  AIC=792.12\n## 省略巨多中间过程\nStep:  AIC=790.12\n## 省略巨多中间过程\nStep:  AIC=734.72\nSurv(time_months, event) ~ AC005180.2 + MIR100HG + AP001107.5 + \n    NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + AL049555.1 + \n    `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + `ZNF710-AS1` + \n    AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + AC015912.3\n\n                 Df    AIC\n&lt;none&gt;              734.72\n+ LINC00641       1 734.91\n+ AC012085.2      1 735.01\n- AL049555.1      1 735.02\n+ AC002398.2      1 735.06\n- AC036108.3      1 735.12\n+ `MAFG-DT`       1 735.17\n- `ZNF710-AS1`    1 735.28\n+ AF001548.1      1 735.44\n+ AL445524.1      1 735.44\n- `MIR1-1HG-AS1`  1 735.54\n- U62317.1        1 735.76\n+ `C5orf66-AS1`   1 735.89\n+ `MBNL1-AS1`     1 735.91\n+ MIR205HG        1 735.92\n+ AP003071.4      1 735.99\n- `PCCA-DT`       1 736.08\n+ AATBC           1 736.14\n+ LINC01133       1 736.25\n+ AC099850.4      1 736.27\n- AL161431.1      1 736.29\n+ AC245041.2      1 736.30\n+ AC008735.2      1 736.34\n+ AC025575.2      1 736.36\n+ SNHG12          1 736.36\n+ MIR200CHG       1 736.42\n+ LINC02657       1 736.46\n- AL023284.4      1 736.47\n+ `KRT7-AS`       1 736.49\n+ SNHG25          1 736.50\n+ `PPP1R14B-AS1`  1 736.52\n+ `ADAMTS9-AS1`   1 736.53\n+ U62317.2        1 736.53\n+ FENDRR          1 736.56\n+ `ACTA2-AS1`     1 736.60\n+ AC008736.1      1 736.60\n+ `HAND2-AS1`     1 736.60\n+ `PGM5-AS1`      1 736.61\n+ MIR22HG         1 736.61\n+ AL390719.2      1 736.66\n+ `VPS9D1-AS1`    1 736.67\n+ CASC9           1 736.67\n+ AC053503.3      1 736.67\n+ AC005180.1      1 736.68\n+ AL162424.1      1 736.68\n+ LINC01082       1 736.71\n+ AC079313.2      1 736.71\n+ LINC00865       1 736.71\n+ AC092718.4      1 736.71\n+ AC020916.1      1 736.72\n+ AC018904.1      1 736.72\n- NR4A1AS         1 736.74\n- MIR100HG        1 736.79\n- LINC01980       1 736.86\n- `SPINT1-AS1`    1 736.89\n- AP001107.5      1 737.71\n- PCAT6           1 738.00\n- AC015912.3      1 738.51\n- AC093010.3      1 739.96\n- AC005180.2      1 739.97\n\n查看下结果:\n\nsummary(fit.step)\n\nCall:\ncoxph(formula = Surv(time_months, event) ~ AC005180.2 + MIR100HG + \n    AP001107.5 + NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + \n    AL049555.1 + `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + \n    `ZNF710-AS1` + AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + \n    AC015912.3, data = dat.cox)\n\n  n= 297, number of events= 71 \n\n                   coef exp(coef) se(coef)      z Pr(&gt;|z|)   \nAC005180.2      0.83728   2.31007  0.30399  2.754  0.00588 **\nMIR100HG        0.59783   1.81818  0.28762  2.079  0.03766 * \nAP001107.5     -1.63414   0.19512  0.80039 -2.042  0.04118 * \nNR4A1AS         0.48095   1.61761  0.22753  2.114  0.03453 * \nAC093010.3     -0.65126   0.52139  0.24377 -2.672  0.00755 **\nPCAT6           0.34371   1.41017  0.14756  2.329  0.01985 * \nAC036108.3      1.48666   4.42231  0.96894  1.534  0.12495   \nAL049555.1      0.23994   1.27117  0.15931  1.506  0.13203   \n`MIR1-1HG-AS1` -1.95396   0.14171  1.21419 -1.609  0.10756   \n`SPINT1-AS1`    0.48314   1.62116  0.23919  2.020  0.04340 * \nLINC01980      -0.17331   0.84087  0.08564 -2.024  0.04300 * \n`ZNF710-AS1`   -0.55489   0.57414  0.35644 -1.557  0.11953   \nAL161431.1      0.17192   1.18758  0.08854  1.942  0.05217 . \n`PCCA-DT`      -0.35372   0.70207  0.19499 -1.814  0.06966 . \nU62317.1       -0.20670   0.81326  0.12168 -1.699  0.08937 . \nAL023284.4     -0.30170   0.73956  0.15674 -1.925  0.05425 . \nAC015912.3     -0.43266   0.64878  0.18428 -2.348  0.01888 * \n---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n               exp(coef) exp(-coef) lower .95 upper .95\nAC005180.2        2.3101     0.4329   1.27311    4.1916\nMIR100HG          1.8182     0.5500   1.03470    3.1949\nAP001107.5        0.1951     5.1251   0.04065    0.9367\nNR4A1AS           1.6176     0.6182   1.03563    2.5266\nAC093010.3        0.5214     1.9180   0.32334    0.8407\nPCAT6             1.4102     0.7091   1.05601    1.8831\nAC036108.3        4.4223     0.2261   0.66204   29.5404\nAL049555.1        1.2712     0.7867   0.93025    1.7370\n`MIR1-1HG-AS1`    0.1417     7.0566   0.01312    1.5308\n`SPINT1-AS1`      1.6212     0.6168   1.01443    2.5908\nLINC01980         0.8409     1.1892   0.71094    0.9946\n`ZNF710-AS1`      0.5741     1.7417   0.28551    1.1546\nAL161431.1        1.1876     0.8420   0.99839    1.4126\n`PCCA-DT`         0.7021     1.4244   0.47908    1.0288\nU62317.1          0.8133     1.2296   0.64070    1.0323\nAL023284.4        0.7396     1.3522   0.54395    1.0055\nAC015912.3        0.6488     1.5413   0.45211    0.9310\n\nConcordance= 0.735  (se = 0.029 )\nLikelihood ratio test= 54.26  on 17 df,   p=9e-06\nWald test            = 47.59  on 17 df,   p=1e-04\nScore (logrank) test = 51.16  on 17 df,   p=3e-05\n\n最终59个变量剩下17个,筛选效果还不错。\n这个筛选过程是根据AIC进行的,一般会选择AIC最小的结果。AIC全称赤池信息量准则(Akaike information criterion,AIC),是评估统计模型的复杂度和衡量统计模型”拟合优度”(Goodness of Fit)的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则的方法是寻找可以最好地解释数据但包含最少自由参数的模型。\n查看最终的AIC和BIC:\n\n# 初始模型的AIC\nAIC(fit.cox)\n## [1] 794.1182\n\n# 筛选后的AIC和BIC\nAIC(fit.step)\n## [1] 734.7167\nBIC(fit.step)\n## [1] 773.1823\n\n查看回归系数:\n\nstep.coef &lt;- coef(fit.step)\nstep.coef\n##     AC005180.2       MIR100HG     AP001107.5        NR4A1AS     AC093010.3 \n##      0.8372759      0.5978335     -1.6341403      0.4809485     -0.6512620 \n##          PCAT6     AC036108.3     AL049555.1 `MIR1-1HG-AS1`   `SPINT1-AS1` \n##      0.3437133      1.4866631      0.2399385     -1.9539623      0.4831391 \n##      LINC01980   `ZNF710-AS1`     AL161431.1      `PCCA-DT`       U62317.1 \n##     -0.1733137     -0.5548853      0.1719177     -0.3537250     -0.2067033 \n##     AL023284.4     AC015912.3 \n##     -0.3017031     -0.4326573\n\n提取这17个变量的名字:\n\nstep.lnc &lt;- names(coef(fit.step))\nstep.lnc\n##  [1] \"AC005180.2\"     \"MIR100HG\"       \"AP001107.5\"     \"NR4A1AS\"       \n##  [5] \"AC093010.3\"     \"PCAT6\"          \"AC036108.3\"     \"AL049555.1\"    \n##  [9] \"`MIR1-1HG-AS1`\" \"`SPINT1-AS1`\"   \"LINC01980\"      \"`ZNF710-AS1`\"  \n## [13] \"AL161431.1\"     \"`PCCA-DT`\"      \"U62317.1\"       \"AL023284.4\"    \n## [17] \"AC015912.3\"\n\n简单。\n当然使用broom也是可以提取这个结果的:\n\nbroom::tidy(fit.step)\n## # A tibble: 17 × 5\n##    term           estimate std.error statistic p.value\n##    &lt;chr&gt;             &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt;\n##  1 AC005180.2        0.837    0.304       2.75 0.00588\n##  2 MIR100HG          0.598    0.288       2.08 0.0377 \n##  3 AP001107.5       -1.63     0.800      -2.04 0.0412 \n##  4 NR4A1AS           0.481    0.228       2.11 0.0345 \n##  5 AC093010.3       -0.651    0.244      -2.67 0.00755\n##  6 PCAT6             0.344    0.148       2.33 0.0198 \n##  7 AC036108.3        1.49     0.969       1.53 0.125  \n##  8 AL049555.1        0.240    0.159       1.51 0.132  \n##  9 `MIR1-1HG-AS1`   -1.95     1.21       -1.61 0.108  \n## 10 `SPINT1-AS1`      0.483    0.239       2.02 0.0434 \n## 11 LINC01980        -0.173    0.0856     -2.02 0.0430 \n## 12 `ZNF710-AS1`     -0.555    0.356      -1.56 0.120  \n## 13 AL161431.1        0.172    0.0885      1.94 0.0522 \n## 14 `PCCA-DT`        -0.354    0.195      -1.81 0.0697 \n## 15 U62317.1         -0.207    0.122      -1.70 0.0894 \n## 16 AL023284.4       -0.302    0.157      -1.92 0.0542 \n## 17 AC015912.3       -0.433    0.184      -2.35 0.0189\n\n一目了然,简洁清晰,broom真的是神包~\n还可以1行代码查看模型的各种统计值,包括P值、R2、AIC、BIC、C-index等等:\n\nbroom::glance(fit.step)\n## # A tibble: 1 × 18\n##       n nevent statistic.log p.value.log statistic.sc p.value.sc statistic.wald\n##   &lt;int&gt;  &lt;dbl&gt;         &lt;dbl&gt;       &lt;dbl&gt;        &lt;dbl&gt;      &lt;dbl&gt;          &lt;dbl&gt;\n## 1   297     71          54.3  0.00000900         51.2  0.0000279           47.6\n## # ℹ 11 more variables: p.value.wald &lt;dbl&gt;, statistic.robust &lt;dbl&gt;,\n## #   p.value.robust &lt;dbl&gt;, r.squared &lt;dbl&gt;, r.squared.max &lt;dbl&gt;,\n## #   concordance &lt;dbl&gt;, std.error.concordance &lt;dbl&gt;, logLik &lt;dbl&gt;, AIC &lt;dbl&gt;,\n## #   BIC &lt;dbl&gt;, nobs &lt;int&gt;",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>16</span>  <span class='chapter-title'>变量选择之逐步回归</span>"
+    ]
   },
   {
     "objectID": "feature-selection_stepwise.html#自助法stepwise",
     "href": "feature-selection_stepwise.html#自助法stepwise",
-    "title": "12  筛选变量逐步回归",
-    "section": "12.4 自助法stepwise",
-    "text": "12.4 自助法stepwise\n这里再给大家介绍下一种自助法stepwise,可以通过自助法重抽样进行逐步筛选变量,比如进行1000次bootstrap。\n该方法借助bootStepAIC实现,是基于stepAIC()函数的,支持”lm”, “aov”,“glm”, “negbin”, “polr”, “survreg”,以及”coxph”。\n使用方法也很简单,下面是一个10次bootstrap的逐步选择法(因为耗时太长了,我只用了10次) :\n\nlibrary(bootStepAIC)\n\n# 10次bootstrap\nfit.boot &lt;- boot.stepAIC(fit.cox,data=dat.cox,direction=\"both\",B=10,seed=123)\n#fit.boot\n\n\nFinal Model:\nSurv(time_months, event) ~ AC005180.2 + MIR100HG + AP001107.5 + \n    NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + AL049555.1 + \n    `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + `ZNF710-AS1` + \n    AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + AC015912.3\n\n提取变量名字:\n\nnames(coef(fit.boot$OrigStepAIC))\n\n [1] \"AC005180.2\"     \"MIR100HG\"       \"AP001107.5\"     \"NR4A1AS\"       \n [5] \"AC093010.3\"     \"PCAT6\"          \"AC036108.3\"     \"AL049555.1\"    \n [9] \"`MIR1-1HG-AS1`\" \"`SPINT1-AS1`\"   \"LINC01980\"      \"`ZNF710-AS1`\"  \n[13] \"AL161431.1\"     \"`PCCA-DT`\"      \"U62317.1\"       \"AL023284.4\"    \n[17] \"AC015912.3\"  \n\n和不进行bootstrap的方法得到的结果是一样的:\n\nidentical(sort(step.lnc),sort(names(coef(fit.boot$OrigStepAIC))))\n\n[1] TRUE"
-  },
-  {
-    "objectID": "feature-selection_bestsubset.html#准备数据",
-    "href": "feature-selection_bestsubset.html#准备数据",
-    "title": "13  变量筛选之最优子集",
-    "section": "13.1 准备数据",
-    "text": "13.1 准备数据\n使用孙振球版医学统计学例15-1的数据。\n\ndf &lt;- data.frame(\n  cho = c(5.68,3.79,6.02,4.85,4.60,6.05,4.90,7.08,3.85,4.65,4.59,4.29,7.97,\n      6.19,6.13,5.71,6.40,6.06,5.09,6.13,5.78,5.43,6.50,7.98,11.54,5.84,\n      3.84),\n  tg = c(1.90,1.64,3.56,1.07,2.32,0.64,8.50,3.00,2.11,0.63,1.97,1.97,1.93,\n      1.18,2.06,1.78,2.40,3.67,1.03,1.71,3.36,1.13,6.21,7.92,10.89,0.92,\n      1.20),\n  ri = c(4.53, 7.32,6.95,5.88,4.05,1.42,12.60,6.75,16.28,6.59,3.61,6.61,7.57,\n      1.42,10.35,8.53,4.53,12.79,2.53,5.28,2.96,4.31,3.47,3.37,1.20,8.61,\n      6.45),\n  hba = c(8.2,6.9,10.8,8.3,7.5,13.6,8.5,11.5,7.9,7.1,8.7,7.8,9.9,6.9,10.5,8.0,\n      10.3,7.1,8.9,9.9,8.0,11.3,12.3,9.8,10.5,6.4,9.6),\n  fpg = c(11.2,8.8,12.3,11.6,13.4,18.3,11.1,12.1,9.6,8.4,9.3,10.6,8.4,9.6,10.9,\n     10.1,14.8,9.1,10.8,10.2,13.6,14.9,16.0,13.2,20.0,13.3,10.4)\n  )"
+    "title": "16  变量选择之逐步回归",
+    "section": "16.4 自助法stepwise",
+    "text": "16.4 自助法stepwise\n这里再给大家介绍下一种自助法stepwise,可以通过自助法重抽样进行逐步筛选变量,比如进行1000次bootstrap。\n该方法借助bootStepAIC实现,是基于stepAIC()函数的,支持”lm”, “aov”,“glm”, “negbin”, “polr”, “survreg”,以及”coxph”。\n使用方法也很简单,下面是一个10次bootstrap的逐步选择法(因为耗时太长了,我只用了10次) :\n\nlibrary(bootStepAIC)\n\n# 10次bootstrap\nfit.boot &lt;- boot.stepAIC(fit.cox,data=dat.cox,direction=\"both\",B=10,seed=123)\n#fit.boot\n\n\nFinal Model:\nSurv(time_months, event) ~ AC005180.2 + MIR100HG + AP001107.5 + \n    NR4A1AS + AC093010.3 + PCAT6 + AC036108.3 + AL049555.1 + \n    `MIR1-1HG-AS1` + `SPINT1-AS1` + LINC01980 + `ZNF710-AS1` + \n    AL161431.1 + `PCCA-DT` + U62317.1 + AL023284.4 + AC015912.3\n\n提取变量名字:\n\nnames(coef(fit.boot$OrigStepAIC))\n\n [1] \"AC005180.2\"     \"MIR100HG\"       \"AP001107.5\"     \"NR4A1AS\"       \n [5] \"AC093010.3\"     \"PCAT6\"          \"AC036108.3\"     \"AL049555.1\"    \n [9] \"`MIR1-1HG-AS1`\" \"`SPINT1-AS1`\"   \"LINC01980\"      \"`ZNF710-AS1`\"  \n[13] \"AL161431.1\"     \"`PCCA-DT`\"      \"U62317.1\"       \"AL023284.4\"    \n[17] \"AC015912.3\"  \n\n和不进行bootstrap的方法得到的结果是一样的:\n\nidentical(sort(step.lnc),sort(names(coef(fit.boot$OrigStepAIC))))\n\n[1] TRUE",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>16</span>  <span class='chapter-title'>变量选择之逐步回归</span>"
+    ]
+  },
+  {
+    "objectID": "feature-selection_bestsubset.html",
+    "href": "feature-selection_bestsubset.html",
+    "title": "17  变量选择之最优子集",
+    "section": "",
+    "text": "17.1 准备数据\n使用孙振球版医学统计学例15-1的数据。使用多个变量预测患者的空腹血糖。\ndf &lt;- data.frame(\n  cho = c(5.68,3.79,6.02,4.85,4.60,6.05,4.90,7.08,3.85,4.65,4.59,4.29,7.97,\n      6.19,6.13,5.71,6.40,6.06,5.09,6.13,5.78,5.43,6.50,7.98,11.54,5.84,\n      3.84),\n  tg = c(1.90,1.64,3.56,1.07,2.32,0.64,8.50,3.00,2.11,0.63,1.97,1.97,1.93,\n      1.18,2.06,1.78,2.40,3.67,1.03,1.71,3.36,1.13,6.21,7.92,10.89,0.92,\n      1.20),\n  ri = c(4.53, 7.32,6.95,5.88,4.05,1.42,12.60,6.75,16.28,6.59,3.61,6.61,7.57,\n      1.42,10.35,8.53,4.53,12.79,2.53,5.28,2.96,4.31,3.47,3.37,1.20,8.61,\n      6.45),\n  hba = c(8.2,6.9,10.8,8.3,7.5,13.6,8.5,11.5,7.9,7.1,8.7,7.8,9.9,6.9,10.5,8.0,\n      10.3,7.1,8.9,9.9,8.0,11.3,12.3,9.8,10.5,6.4,9.6),\n  fpg = c(11.2,8.8,12.3,11.6,13.4,18.3,11.1,12.1,9.6,8.4,9.3,10.6,8.4,9.6,10.9,\n     10.1,14.8,9.1,10.8,10.2,13.6,14.9,16.0,13.2,20.0,13.3,10.4)\n  )",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>17</span>  <span class='chapter-title'>变量选择之最优子集</span>"
+    ]
   },
   {
     "objectID": "feature-selection_bestsubset.html#建立模型",
     "href": "feature-selection_bestsubset.html#建立模型",
-    "title": "13  变量筛选之最优子集",
-    "section": "13.2 建立模型",
-    "text": "13.2 建立模型\n使用全部的4个变量建立回归方程:\n\nf &lt;- lm(fpg ~ cho + tg + ri + hba, data = df)\n\nsummary(f)\n## \n## Call:\n## lm(formula = fpg ~ cho + tg + ri + hba, data = df)\n## \n## Residuals:\n##     Min      1Q  Median      3Q     Max \n## -3.6268 -1.2004 -0.2276  1.5389  4.4467 \n## \n## Coefficients:\n##             Estimate Std. Error t value Pr(&gt;|t|)  \n## (Intercept)   5.9433     2.8286   2.101   0.0473 *\n## cho           0.1424     0.3657   0.390   0.7006  \n## tg            0.3515     0.2042   1.721   0.0993 .\n## ri           -0.2706     0.1214  -2.229   0.0363 *\n## hba           0.6382     0.2433   2.623   0.0155 *\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n## Residual standard error: 2.01 on 22 degrees of freedom\n## Multiple R-squared:  0.6008, Adjusted R-squared:  0.5282 \n## F-statistic: 8.278 on 4 and 22 DF,  p-value: 0.0003121"
+    "title": "17  变量选择之最优子集",
+    "section": "17.2 建立模型",
+    "text": "17.2 建立模型\n使用全部的4个变量建立回归方程:\n\nf &lt;- lm(fpg ~ cho + tg + ri + hba, data = df)\n\nsummary(f)\n## \n## Call:\n## lm(formula = fpg ~ cho + tg + ri + hba, data = df)\n## \n## Residuals:\n##     Min      1Q  Median      3Q     Max \n## -3.6268 -1.2004 -0.2276  1.5389  4.4467 \n## \n## Coefficients:\n##             Estimate Std. Error t value Pr(&gt;|t|)  \n## (Intercept)   5.9433     2.8286   2.101   0.0473 *\n## cho           0.1424     0.3657   0.390   0.7006  \n## tg            0.3515     0.2042   1.721   0.0993 .\n## ri           -0.2706     0.1214  -2.229   0.0363 *\n## hba           0.6382     0.2433   2.623   0.0155 *\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n## Residual standard error: 2.01 on 22 degrees of freedom\n## Multiple R-squared:  0.6008, Adjusted R-squared:  0.5282 \n## F-statistic: 8.278 on 4 and 22 DF,  p-value: 0.0003121",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>17</span>  <span class='chapter-title'>变量选择之最优子集</span>"
+    ]
   },
   {
     "objectID": "feature-selection_bestsubset.html#最优子集法",
     "href": "feature-selection_bestsubset.html#最优子集法",
-    "title": "13  变量筛选之最优子集",
-    "section": "13.3 最优子集法",
-    "text": "13.3 最优子集法\n使用最优子集法筛选变量,借助leaps包实现。使用起来其实就是1行代码而已:\n\nlibrary(leaps)\nleaps &lt;- regsubsets(fpg ~ cho + tg + ri + hba, data = df)\nsummary(leaps)\n## Subset selection object\n## Call: regsubsets.formula(fpg ~ cho + tg + ri + hba, data = df)\n## 4 Variables  (and intercept)\n##     Forced in Forced out\n## cho     FALSE      FALSE\n## tg      FALSE      FALSE\n## ri      FALSE      FALSE\n## hba     FALSE      FALSE\n## 1 subsets of each size up to 4\n## Selection Algorithm: exhaustive\n##          cho tg  ri  hba\n## 1  ( 1 ) \" \" \" \" \" \" \"*\"\n## 2  ( 1 ) \"*\" \" \" \" \" \"*\"\n## 3  ( 1 ) \" \" \"*\" \"*\" \"*\"\n## 4  ( 1 ) \"*\" \"*\" \"*\" \"*\"\n\n*表示变量被包含在模型中,这个结果看起来并不是很直观,下面会结合图进行解释。"
+    "title": "17  变量选择之最优子集",
+    "section": "17.3 最优子集法",
+    "text": "17.3 最优子集法\n使用最优子集法筛选变量,借助leaps包实现。使用起来其实就是1行代码而已:\n\nlibrary(leaps)\nleaps &lt;- regsubsets(fpg ~ cho + tg + ri + hba, data = df)\nsummary(leaps)\n## Subset selection object\n## Call: regsubsets.formula(fpg ~ cho + tg + ri + hba, data = df)\n## 4 Variables  (and intercept)\n##     Forced in Forced out\n## cho     FALSE      FALSE\n## tg      FALSE      FALSE\n## ri      FALSE      FALSE\n## hba     FALSE      FALSE\n## 1 subsets of each size up to 4\n## Selection Algorithm: exhaustive\n##          cho tg  ri  hba\n## 1  ( 1 ) \" \" \" \" \" \" \"*\"\n## 2  ( 1 ) \"*\" \" \" \" \" \"*\"\n## 3  ( 1 ) \" \" \"*\" \"*\" \"*\"\n## 4  ( 1 ) \"*\" \"*\" \"*\" \"*\"\n\n*表示变量被包含在模型中,这个结果看起来并不是很直观,下面会结合图进行解释。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>17</span>  <span class='chapter-title'>变量选择之最优子集</span>"
+    ]
   },
   {
     "objectID": "feature-selection_bestsubset.html#子集选择",
     "href": "feature-selection_bestsubset.html#子集选择",
-    "title": "13  变量筛选之最优子集",
-    "section": "13.4 子集选择",
-    "text": "13.4 子集选择\n我们首先查看rss(Residual sum of squares,残差平方和)最小的结果,因为RSS越小说明模型拟合结果越好:\n\nwhich.min(summary(leaps)$rss)\n## [1] 4\n\n结果表明有4个特征的模型具有最小的RSS,这是很明显的哈,因为这里就有4个自变量。。。\n增加特征数量必然会减少RSS!而且必然会增加R方。我们即使添加一个完全不相关的特征,比如洛杉矶湖人队的胜场数,模型的RSS也会减少,R方也会增加。\n所以只看RSS并不能帮助我们很好的选择变量。\n我们这里讨论4种用于特征选择的统计方法:\n\n赤池信息量准则\n马洛斯的Cp\n贝叶斯准则\n调整的R方\n\n赤池信息量准则(Akaike information criterion,AIC),是评估统计模型的复杂度和衡量统计模型”拟合优度”(Goodness of Fit)的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则的方法是寻找可以最好地解释数据但包含最少自由参数的模型。\nAIC的计算方法如下,其中p是模型中的特征数量(也就是自变量数量),n是样本大小:\n\\[\n\\mathrm{AIC}=n*\\log\\Bigg(\\frac{\\mathrm{RSS}_p}{n}\\Bigg)+2*p\n\\]\n贝叶斯信息量准则(Bayesian information criterion,BIC)和AIC类似,只不过BIC比AIC的惩罚力度更大。\nBIC的计算方法如下,BIC的前半部分计算和AIC是完全一样的:\n\\[\n\\mathrm{BIC}=n*\\log\\left(\\frac{\\mathrm{RSS}_p}n\\right)+p*\\log(n)\n\\]\nAIC和BIC的不同点:\n\nBIC的惩罚项比AIC大,考虑了样本个数,样本数量多,可以防止模型精度过高造成的模型复杂度过高。 AIC和BIC前半部分是一样的,BIC考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。–参考资料2\n\n马洛斯的Cp(Mallows’Cp)与AIC的计算也是类似,其计算公式如下,其中MSE(mean-square error, MSE)是均方误差:\n\\[\n\\mathrm{CP}=\\frac{\\mathrm{RSS}_{p}}{\\mathrm{MSE}_{f}}-n+2*p\n\\]\n调整的R^2(修正R方)的计算公式如下:\n\\[\n\\text{修正R方}=1-\\left(\\frac{\\mathrm{RSS}}{n-p-1}\\right)/\\left(\\frac{\\mathrm{R}\\text{方}}{ n - 1 }\\right)\n\\]\n前三种方法的目标是追求统计量的值最小化,调整的R方的目标是追求统计量的值最大化。这些统计方法的目的是建立一个尽可能简约的模型,换句话说,要对模型复杂性进行”惩罚”。\n在线性模型中,AIC和Cp成正比,所以我们只需关注Cp即可。\n下面以CP为纵坐标进行可视化:\n\npar(mfrow=c(1,2))\nplot(summary(leaps)$cp,type = \"l\",xlab = \"number of features\",ylab = \"cp\")\nplot(leaps, scale = \"Cp\") # 通过Cp判断\n\n\n\n\n左图横坐标是自变量数量,纵坐标是CP值大小,可以看到在变量数量为3时,CP是最小的;右边的图也是一样的意思,先看纵坐标,CP最小是3.2,此时对应的黑色块是tg,ri,hba这3个变量。\n也可以用其他指标作为纵坐标进行可视化,比如调整的R2adjr2:\n\nplot(leaps, scale = \"adjr2\")\n\n\n\n\n或者BIC,BIC和AIC意思是一样的:\n\nplot(leaps, scale = \"bic\")\n\n\n\n\n可以看到3种方法得到的结果都是一样的,都是选出了tg,ri,hba这3个变量,但有时结果也是不太一样的,不用纠结。\n上面是比较传统的方法,但是说实话得到的图不是很好看,如果没有教程完全不知道如何解读,非常的不优雅。\n神包broom可以用于这个筛选结果,结果会返回一个tibble,看起来非常清稀易懂:\n\nbroom::tidy(leaps)\n## # A tibble: 4 × 9\n##   `(Intercept)` cho   tg    ri    hba   r.squared adj.r.squared    BIC\n##   &lt;lgl&gt;         &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt;     &lt;dbl&gt;         &lt;dbl&gt;  &lt;dbl&gt;\n## 1 TRUE          FALSE FALSE FALSE TRUE      0.372         0.347  -5.95\n## 2 TRUE          TRUE  FALSE FALSE TRUE      0.484         0.441  -7.99\n## 3 TRUE          FALSE TRUE  TRUE  TRUE      0.598         0.546 -11.4 \n## 4 TRUE          TRUE  TRUE  TRUE  TRUE      0.601         0.528  -8.32\n## # ℹ 1 more variable: mallows_cp &lt;dbl&gt;\n\n可以看到如果是根据R方来选择,则R方最大时4个变量都在,如果是根据BIC最小选择,那结果是tg,ri,hba这3个变量入选。这样我们不用画图也可以很直观的看出在不同指标下应该选择哪几个变量。\n如果还想更加炫酷一点,可以把这个结果变成一个图表(参考文章):\n\nlibrary(gt)\nlibrary(tidyverse)\nlibrary(scales)\n\nbroom::tidy(leaps) %&gt;%\n  select(-`(Intercept)`) %&gt;%\n  rownames_to_column(var = \"n_vars\") %&gt;%\n  gt(rowname_col = \"n_vars\") %&gt;%\n  gt::data_color(\n    columns = cho:hba,\n    fn = col_numeric(\n      palette = c(\"#fdae61\", \"#abdda4\"),\n      domain = c(0, 1)) \n  ) %&gt;%\n  gt::fmt_number(r.squared:mallows_cp, n_sigfig = 4)\n\n\n\n\n\n  \n    \n    \n      \n      cho\n      tg\n      ri\n      hba\n      r.squared\n      adj.r.squared\n      BIC\n      mallows_cp\n    \n  \n  \n    1\nFALSE\nFALSE\nFALSE\nTRUE\n0.3717\n0.3465\n−5.955\n11.63\n    2\nTRUE\nFALSE\nFALSE\nTRUE\n0.4843\n0.4414\n−7.995\n7.419\n    3\nFALSE\nTRUE\nTRUE\nTRUE\n0.5981\n0.5456\n−11.43\n3.152\n    4\nTRUE\nTRUE\nTRUE\nTRUE\n0.6008\n0.5282\n−8.315\n5.000\n  \n  \n  \n\n\n\n\n这样一来更加直观了,这里我用绿色表示留下的变量,黄色表示被剔除的变量,后面几列是对应的各种指标。\n做到这一步的时候,我真的觉得R语言太牛逼了,大神的可视化思路太强了,我差的太远了。\n如果只是想要看一下不同指标下保留的变量个数,我们可以根据上面的结果用ggplot2画图。\n\nbroom::tidy(leaps) %&gt;%\n  select(r.squared:mallows_cp) %&gt;%\n  mutate(n_vars = 1:n()) %&gt;%\n  pivot_longer(cols = -n_vars, names_to = \"metric\") %&gt;%\n  ggplot(aes(x = n_vars, y = value)) +\n  geom_point(size = 2) +\n  geom_line(linewidth = 1) +\n  geom_vline(\n    data = . %&gt;%\n      group_by(metric) %&gt;%\n      filter(value == ifelse(str_detect(metric, \"r.squared\"),\n                             max(value), min(value))),\n    aes(xintercept = n_vars), lty = 2) +\n  theme_bw()+\n  facet_wrap(~ metric, scales = \"free_y\")\n\n\n\n\n强大!牛B!专业!"
+    "title": "17  变量选择之最优子集",
+    "section": "17.4 子集选择",
+    "text": "17.4 子集选择\n我们首先查看rss(Residual sum of squares,残差平方和)最小的结果,因为RSS越小说明模型拟合结果越好:\n\nwhich.min(summary(leaps)$rss)\n## [1] 4\n\n结果表明有4个特征的模型具有最小的RSS,这是很明显的哈,因为这个数据最多就有4个自变量。。。\n增加特征数量必然会减少RSS!而且必然会增加R方。我们即使添加一个完全不相关的特征,比如洛杉矶湖人队的胜场数,模型的RSS也会减少,R方也会增加。\n所以只看RSS并不能帮助我们很好的选择变量。\n我们这里讨论4种用于特征选择的统计方法:\n\n赤池信息量准则\n马洛斯的Cp\n贝叶斯准则\n调整的R方\n\n赤池信息量准则(Akaike information criterion,AIC),是评估统计模型的复杂度和衡量统计模型”拟合优度”(Goodness of Fit)的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则的方法是寻找可以最好地解释数据但包含最少自由参数的模型。\nAIC的计算方法如下,其中p是模型中的特征数量(也就是自变量数量),n是样本大小:\n\\[\n\\mathrm{AIC}=n*\\log\\Bigg(\\frac{\\mathrm{RSS}_p}{n}\\Bigg)+2*p\n\\]\n贝叶斯信息量准则(Bayesian information criterion,BIC)和AIC类似,只不过BIC比AIC的惩罚力度更大。\nBIC的计算方法如下,BIC的前半部分计算和AIC是完全一样的:\n\\[\n\\mathrm{BIC}=n*\\log\\left(\\frac{\\mathrm{RSS}_p}n\\right)+p*\\log(n)\n\\]\nAIC和BIC的不同点:\n\nBIC的惩罚项比AIC大,考虑了样本个数,样本数量多,可以防止模型精度过高造成的模型复杂度过高。 AIC和BIC前半部分是一样的,BIC考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。–参考资料2\n\n马洛斯的Cp(Mallows’Cp)与AIC的计算也是类似,其计算公式如下,其中MSE(mean-square error, MSE)是均方误差:\n\\[\n\\mathrm{CP}=\\frac{\\mathrm{RSS}_{p}}{\\mathrm{MSE}_{f}}-n+2*p\n\\]\n调整的R2(修正R方)的计算公式如下:\n\\[\n\\text{修正R方}=1-\\left(\\frac{\\mathrm{RSS}}{n-p-1}\\right)/\\left(\\frac{\\mathrm{R}\\text{方}}{ n - 1 }\\right)\n\\]\n前三种方法的目标是追求统计量的值最小化,调整的R方的目标是追求统计量的值最大化。这些统计方法的目的是建立一个尽可能简约的模型,换句话说,要对模型复杂性进行”惩罚”。\n在线性模型中,AIC和Cp成正比,所以我们只需关注Cp即可。\n下面以CP为纵坐标进行可视化:\n\npar(mfrow=c(1,2))\nplot(summary(leaps)$cp,type = \"l\",xlab = \"number of features\",ylab = \"cp\")\nplot(leaps, scale = \"Cp\") # 通过Cp判断\n\n\n\n\n\n\n\n\n左图横坐标是自变量数量,纵坐标是CP值大小,可以看到在变量数量为3时,CP是最小的;右边的图也是一样的意思,先看纵坐标,CP最小是3.2,此时对应的黑色块是tg,ri,hba这3个变量。\n也可以用其他指标作为纵坐标进行可视化,比如调整的R方adjr2:\n\nplot(leaps, scale = \"adjr2\")\n\n\n\n\n\n\n\n\n或者BIC,BIC和AIC意思是一样的:\n\nplot(leaps, scale = \"bic\")\n\n\n\n\n\n\n\n\n可以看到3种方法得到的结果都是一样的,都是选出了tg,ri,hba这3个变量,但有时结果也是不太一样的,不用纠结。\n上面是比较传统的方法,但是说实话得到的图不是很好看,如果没有教程完全不知道如何解读,非常的不优雅。\n神包broom可以用于这个筛选结果,结果会返回一个tibble,看起来非常清稀易懂:\n\nbroom::tidy(leaps)\n## # A tibble: 4 × 9\n##   `(Intercept)` cho   tg    ri    hba   r.squared adj.r.squared    BIC\n##   &lt;lgl&gt;         &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt;     &lt;dbl&gt;         &lt;dbl&gt;  &lt;dbl&gt;\n## 1 TRUE          FALSE FALSE FALSE TRUE      0.372         0.347  -5.95\n## 2 TRUE          TRUE  FALSE FALSE TRUE      0.484         0.441  -7.99\n## 3 TRUE          FALSE TRUE  TRUE  TRUE      0.598         0.546 -11.4 \n## 4 TRUE          TRUE  TRUE  TRUE  TRUE      0.601         0.528  -8.32\n## # ℹ 1 more variable: mallows_cp &lt;dbl&gt;\n\n可以看到如果是根据R方来选择,则R方最大时4个变量都在,如果是根据BIC最小选择,那结果是tg,ri,hba这3个变量入选。这样我们不用画图也可以很直观的看出在不同指标下应该选择哪几个变量。\n如果还想更加炫酷一点,可以把这个结果变成一个图表(参考文章):\n\nlibrary(gt)\nlibrary(tidyverse)\nlibrary(scales)\n\nbroom::tidy(leaps) %&gt;%\n  select(-`(Intercept)`) %&gt;%\n  rownames_to_column(var = \"n_vars\") %&gt;%\n  gt(rowname_col = \"n_vars\") %&gt;%\n  gt::data_color(\n    columns = cho:hba,\n    fn = col_numeric(\n      palette = c(\"#fdae61\", \"#abdda4\"),\n      domain = c(0, 1)) \n  ) %&gt;%\n  gt::fmt_number(r.squared:mallows_cp, n_sigfig = 4)\n\n\n\n\n\n\n\n\ncho\ntg\nri\nhba\nr.squared\nadj.r.squared\nBIC\nmallows_cp\n\n\n\n\n1\nFALSE\nFALSE\nFALSE\nTRUE\n0.3717\n0.3465\n−5.955\n11.63\n\n\n2\nTRUE\nFALSE\nFALSE\nTRUE\n0.4843\n0.4414\n−7.995\n7.419\n\n\n3\nFALSE\nTRUE\nTRUE\nTRUE\n0.5981\n0.5456\n−11.43\n3.152\n\n\n4\nTRUE\nTRUE\nTRUE\nTRUE\n0.6008\n0.5282\n−8.315\n5.000\n\n\n\n\n\n\n\n这样一来更加直观了,这里我用绿色表示留下的变量,黄色表示被剔除的变量,后面几列是对应的各种指标。\n做到这一步的时候,我真的觉得R语言太牛逼了,大神的可视化思路太强了,我差的太远了。\n如果只是想要看一下不同指标下保留的变量个数,我们可以根据上面的结果用ggplot2画图。\n\nbroom::tidy(leaps) %&gt;%\n  select(r.squared:mallows_cp) %&gt;%\n  mutate(n_vars = 1:n()) %&gt;%\n  pivot_longer(cols = -n_vars, names_to = \"metric\") %&gt;%\n  ggplot(aes(x = n_vars, y = value)) +\n  geom_point(size = 2) +\n  geom_line(linewidth = 1) +\n  geom_vline(\n    data = . %&gt;%\n      group_by(metric) %&gt;%\n      filter(value == ifelse(str_detect(metric, \"r.squared\"),\n                             max(value), min(value))),\n    aes(xintercept = n_vars), lty = 2) +\n  theme_bw()+\n  facet_wrap(~ metric, scales = \"free_y\")\n\n\n\n\n\n\n\n\n强大!牛B!专业!",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>17</span>  <span class='chapter-title'>变量选择之最优子集</span>"
+    ]
   },
   {
     "objectID": "feature-selection_bestsubset.html#参考资料",
     "href": "feature-selection_bestsubset.html#参考资料",
-    "title": "13  变量筛选之最优子集",
-    "section": "13.5 参考资料",
-    "text": "13.5 参考资料\n\n维基百科:AIC\nhttps://zhuanlan.zhihu.com/p/293315874\nhttps://bookdown.org/taylordunn/islr-tidy-1655226885741/"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#安装",
-    "href": "feature-selection_lasso.html#安装",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.1 安装",
-    "text": "14.1 安装\n\ninstall.packages(\"glmnet\")"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#建模",
-    "href": "feature-selection_lasso.html#建模",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.2 建模",
-    "text": "14.2 建模\n\nlibrary(glmnet)\n## Loading required package: Matrix\n## Loaded glmnet 4.1-8\n\n用一个二分类数据进行演示,因为大家最常用的就是二分类数据和生存数据了。\n\ndata(BinomialExample)\nx &lt;- BinomialExample$x\ny &lt;- BinomialExample$y\n\ndim(x)\n## [1] 100  30\nclass(x)\n## [1] \"matrix\" \"array\"\nx[1:4,1:4]\n##            [,1]       [,2]       [,3]       [,4]\n## [1,] -0.6192614 0.01624409 -0.6260683  0.4126846\n## [2,]  1.0942728 0.47257285 -1.3371470 -0.6405813\n## [3,] -0.3567040 0.30121334  0.1905619  0.2340268\n## [4,] -2.4690701 2.84771447  1.6602435  1.5688130\n\nclass(y)\n## [1] \"integer\"\nhead(y)\n## [1] 0 1 1 0 1 0\n\n注意glmnet需要的自变量格式,需要是matrix或者稀疏矩阵格式!\nfamily用来指定不同的模型类型,对于二分类数据,应该选择binomial。\nfamily的其他选项如下:“gaussian”(默认), “poisson”, “multinomial”, “cox”, “mgaussian”。\n建立模型就是1句代码,非常简单:\n\nfit &lt;- glmnet(x, y, family = \"binomial\")\n\n官方不建议直接提取fit中的元素,因为提供了plot,print,coef,predict方法帮助大家探索结果。"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#可视化",
-    "href": "feature-selection_lasso.html#可视化",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.3 可视化",
-    "text": "14.3 可视化\n可视化各个变量系数的变化,这个图是大家最常见的图形之一:\n\nplot(fit,label = T)\n\n\n\n\n这个图形中的每一条线都代表1个变量,并且展示了在不同的L1范数(L1 Norm)下该变量的系数变化。这个图下面的横坐标是L1范数,上面的横坐标是L1范数下对应的非零系数的个数,比如当L1范数是20时,对应的非零系数有27个,也就是此时可以有27个变量保留下来。左侧纵坐标是变量的系数值。\n这里的plot()函数还有一个xvar参数,可以用于指定不同的横坐标:\n\nnorm:横坐标是L1 norm,这个是默认值;\nlambda:横坐标是log-lambda;\ndev:横坐标是模型解释的%deviance\n\n\nplot(fit, xvar = \"lambda\")\n\n\n\n\n这里的横坐标是log-lambda,可以看做是正则化程度。\n上面这幅图展示了随着lambda值的变化,每个变量系数的变化,可以看到随着lambda值变大,系数值逐渐减小,直至为0,上面的横坐标也显示随着lambda值变大,保留的变量数量也越来越少。\n\nplot(fit, xvar = \"dev\", label = TRUE)\n\n\n\n\n这幅图和上面图的解释是一样的,只有下面的横坐标不一样。\n最后一幅图下面的横坐标是模型解释的偏差百分比,也可以用来衡量模型复杂度。可以看出在图形的右侧部分,模型能够解释的偏差百分比基本变化不大,但是模型系数基本都是往上或往下“飘”的很厉害。\n虽然官方不建议提取数据,但是很明显大家都喜欢提取数据再自己美化图片,我之前也介绍过一种简便方法,可以实现自定义美化图形:lasso回归结果美化"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#打印结果",
-    "href": "feature-selection_lasso.html#打印结果",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.4 打印结果",
-    "text": "14.4 打印结果\n使用print(fit)可以查看不同lambda值对应的自由度和模型能够解释的偏差百分比:\n\nprint(fit) # 直接fit也可\n## \n## Call:  glmnet(x = x, y = y, family = \"binomial\") \n## \n##    Df  %Dev   Lambda\n## 1   0  0.00 0.240500\n## 2   1  2.90 0.219100\n## 3   1  5.34 0.199600\n## 4   2  8.86 0.181900\n## 5   2 11.95 0.165800\n## 6   2 14.59 0.151000\n## 7   2 16.88 0.137600\n## 8   3 18.95 0.125400\n## 9   7 22.38 0.114200\n## 10  8 26.26 0.104100\n## 11  8 29.73 0.094850\n## 12  8 32.77 0.086420\n## 13  9 35.58 0.078750\n## 14 11 38.98 0.071750\n## 15 12 42.23 0.065380\n## 16 12 45.29 0.059570\n## 17 13 48.09 0.054280\n## 18 13 50.63 0.049450\n## 19 14 53.00 0.045060\n## 20 14 55.19 0.041060\n## 21 15 57.33 0.037410\n## 22 15 59.43 0.034090\n## 23 16 61.36 0.031060\n## 24 17 63.15 0.028300\n## 25 17 64.85 0.025790\n## 26 18 66.42 0.023490\n## 27 19 67.98 0.021410\n## 28 20 69.44 0.019510\n## 29 20 70.80 0.017770\n## 30 21 72.10 0.016190\n## 31 21 73.33 0.014760\n## 32 23 74.52 0.013440\n## 33 23 75.65 0.012250\n## 34 24 76.72 0.011160\n## 35 24 77.77 0.010170\n## 36 25 78.77 0.009267\n## 37 25 79.73 0.008444\n## 38 26 80.66 0.007693\n## 39 26 81.57 0.007010\n## 40 27 82.48 0.006387\n## 41 27 83.39 0.005820\n## 42 27 84.30 0.005303\n## 43 27 85.21 0.004832\n## 44 27 86.12 0.004402\n## 45 27 87.05 0.004011\n## 46 28 87.96 0.003655\n## 47 28 88.87 0.003330\n## 48 28 89.76 0.003034\n## 49 28 90.61 0.002765\n## 50 28 91.41 0.002519\n## 51 28 92.16 0.002295\n## 52 28 92.86 0.002092\n## 53 28 93.50 0.001906\n## 54 28 94.08 0.001736\n## 55 29 94.61 0.001582\n## 56 29 95.10 0.001442\n## 57 29 95.54 0.001314\n## 58 29 95.95 0.001197\n## 59 29 96.31 0.001091\n## 60 29 96.64 0.000994\n## 61 29 96.94 0.000905\n## 62 29 97.22 0.000825\n## 63 29 97.47 0.000752\n## 64 29 97.69 0.000685\n## 65 29 97.90 0.000624\n## 66 29 98.09 0.000569\n## 67 29 98.26 0.000518\n## 68 29 98.41 0.000472\n## 69 29 98.55 0.000430\n## 70 29 98.68 0.000392\n## 71 29 98.80 0.000357\n## 72 30 98.91 0.000325\n## 73 30 99.00 0.000296\n## 74 30 99.09 0.000270\n## 75 30 99.17 0.000246\n## 76 30 99.25 0.000224\n## 77 30 99.31 0.000204\n## 78 30 99.37 0.000186\n## 79 30 99.43 0.000170\n## 80 30 99.48 0.000155\n## 81 30 99.52 0.000141\n## 82 30 99.57 0.000128\n## 83 30 99.61 0.000117\n## 84 30 99.64 0.000106\n## 85 30 99.67 0.000097\n## 86 30 99.70 0.000088\n## 87 30 99.73 0.000081\n## 88 30 99.75 0.000073\n## 89 30 99.77 0.000067\n## 90 30 99.79 0.000061\n## 91 30 99.81 0.000056\n## 92 30 99.83 0.000051\n## 93 30 99.84 0.000046\n## 94 30 99.86 0.000042\n## 95 30 99.87 0.000038\n## 96 30 99.88 0.000035\n## 97 30 99.89 0.000032\n## 98 30 99.90 0.000029\n\n左侧的df是非零系数的个数,中间的%Dev是模型解释的偏差百分比,右侧的Lambda是总惩罚值大小。\n默认情况下,glmnet()函数中的nlambda参数的取值是100,也就是会取100个不同的Lambda值,但是如果%Dev变化不大或者不再变化,它可能会提前停止,取不到100个值,比如我们这个例子就是这样。"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#查看变量系数",
-    "href": "feature-selection_lasso.html#查看变量系数",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.5 查看变量系数",
-    "text": "14.5 查看变量系数\n我们可以通过coef()查看某个Lambda值下的变量系数:\n\ncoef(fit, s = 0.065380)\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.210158382\n## V1           .          \n## V2           0.193006823\n## V3          -0.069820214\n## V4          -0.606741531\n## V5          -0.081962193\n## V6          -0.285761723\n## V7           .          \n## V8          -0.165879158\n## V9           0.092678665\n## V10         -0.595865115\n## V11          .          \n## V12          .          \n## V13          .          \n## V14          .          \n## V15          .          \n## V16          .          \n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.054956208\n## V23          0.001474751\n## V24          .          \n## V25          0.187112112\n## V26         -0.113782733\n## V27          .          \n## V28          .          \n## V29          .          \n## V30          .\n\n可以看到此时一共有12个变量的系数不是0,和上面print(fit)的结果是一样的。\n这里使用了s表示lambda,为什么不直接用lambda呢?这是作者为了以后的某些功能做准备,但是这一点在tidymodels中大受诟病…\n也可以同时指定多个lambda值:\n\ncoef(fit, s = c(0.065380,0.078750))\n## 31 x 2 sparse Matrix of class \"dgCMatrix\"\n##                       s1          s2\n## (Intercept)  0.210158382  0.22467551\n## V1           .            .         \n## V2           0.193006823  0.13578915\n## V3          -0.069820214  .         \n## V4          -0.606741531 -0.55088786\n## V5          -0.081962193 -0.08588769\n## V6          -0.285761723 -0.18303729\n## V7           .            .         \n## V8          -0.165879158 -0.12710236\n## V9           0.092678665  .         \n## V10         -0.595865115 -0.50054790\n## V11          .            .         \n## V12          .            .         \n## V13          .            .         \n## V14          .            .         \n## V15          .            .         \n## V16          .            .         \n## V17          .            .         \n## V18          .            .         \n## V19          .            .         \n## V20          .            .         \n## V21          .            .         \n## V22          0.054956208  0.01466017\n## V23          0.001474751  .         \n## V24          .            .         \n## V25          0.187112112  0.13534486\n## V26         -0.113782733 -0.08255906\n## V27          .            .         \n## V28          .            .         \n## V29          .            .         \n## V30          .            .\n\n除此之外,coef()还有一个exact参数,如果exact = TRUE,那么当一个lambda不在默认的lambda值中时,函数会重新使用这个lambda值拟合模型然后给出结果,如果exact = FALSE(默认值),那么会使用线性插值给出结果。\n举个例子,0.08并不在lambda值向量中:\n\n# 可以看前面的print(fit)的结果,看看lambda的取值有哪些\nany(fit$lambda == 0.08)\n## [1] FALSE\n\n此时两种情况下的系数是不太一样的:\n\ncoef.apprx &lt;- coef(fit, s = 0.08, exact = FALSE)\ncoef.exact &lt;- coef(fit, s = 0.08, exact = TRUE, x=x, y=y)\ncbind2(coef.exact[which(coef.exact != 0)], \n       coef.apprx[which(coef.apprx != 0)])\n##              [,1]        [,2]\n##  [1,]  0.22549572  0.22541853\n##  [2,]  0.13138628  0.13159475\n##  [3,] -0.54737500 -0.54723674\n##  [4,] -0.08464614 -0.08430109\n##  [5,] -0.17544453 -0.17586695\n##  [6,] -0.12334038 -0.12323991\n##  [7,] -0.49261301 -0.49314684\n##  [8,]  0.01036968  0.01227180\n##  [9,]  0.13183895  0.13169100\n## [10,] -0.07909589 -0.07914430\n\n注意在使用exact = TRUE时,需要提供x和y,因为需要重新拟合模型。"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#预测新数据",
-    "href": "feature-selection_lasso.html#预测新数据",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.6 预测新数据",
-    "text": "14.6 预测新数据\n对于新数据,可直接使用predict()进行预测,此时也是可以指定lambda值的:\n\nnx &lt;- head(x) #随便准备的新的测试数据\n\npredict(fit, newx = nx, s = c(0.065380,0.078750))\n##              s1         s2\n## [1,] -0.7609757 -0.5755105\n## [2,]  1.4563904  1.1266031\n## [3,]  0.4415409  0.3981256\n## [4,] -1.1676684 -0.9923334\n## [5,]  0.5730604  0.5612494\n## [6,]  0.3064590  0.1926588\n\n由于glmnet包可以用于线性回归、逻辑回归、cox回归、泊松回归、多项式回归等(通过参数family指定即可,默认值是gaussian,可通过?glmnet查看帮助文档),所以在predict()时,type参数略有不同,对于逻辑回归,type可以是以下3种:\n\nlink:线性预测值,默认是这个\nresponse:预测概率\nclass:预测类别\n\n如果要获得预测概率:\n\npredict(fit, newx = nx, s = c(0.065380,0.078750), type = \"response\")\n##             s1        s2\n## [1,] 0.3184345 0.3599663\n## [2,] 0.8109800 0.7552115\n## [3,] 0.6086261 0.5982372\n## [4,] 0.2372767 0.2704514\n## [5,] 0.6394690 0.6367416\n## [6,] 0.5760207 0.5480163\n\n可以通过?predict.glmnet查看帮助文档。"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#交叉验证",
-    "href": "feature-selection_lasso.html#交叉验证",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.7 交叉验证",
-    "text": "14.7 交叉验证\nglmnet()函数会返回多个模型(因为会使用多个lambda值),但是很多情况下,用户并不知道到底选择哪一个lambda值,即不知道到底保留哪些变量,或者希望函数能自动给出结果。\n所以glmnet包提供了交叉验证法,帮助用户做出选择,使用方法也非常简单:\n\ncvfit &lt;- cv.glmnet(x, y)\n\n除了glmnet()中的参数之外,cv.glmnet()还有一些独有的参数:\n\nnfolds:交叉验证的折数,默认是10折交叉验证;\nfoldid:指定哪个观测在哪一折中,一般用不到;\ntype.measure:模型性能指标,对于不同的family,也是略有不同,可查看帮助文档\n\n对于逻辑回归,type.measure可以是以下取值:\n\nmse:均方误差;\ndeviance:偏差;\nmae:平均绝对误差,mean absolute error;\nclass:错分率;\nauc:只能用于二分类逻辑回归\n\n\n14.7.1 plot方法\n对于cv.glmnet()的结果,也提供了plot,print,coef,predict方法。\n\nplot(cvfit)\n\n\n\n\n该图形下面的横坐标是log10(lambda),上面的横坐标是非零系数的数量,左侧的纵坐标是MSE(均方误差),改图展示了不同lambda取值下MSE的变化以及MSE±1倍标准差的置信区间。\n图中的两条竖线就是函数帮你挑选的两个结果,一个是lambda.min,此时的lambda值可以使得MSE最小,另外一个是lambda.1se,此时的lambda值可以使得MSE在最小MSE的1倍标准误区间内,但是同时可以使模型的复杂度降低。(在模型误差之间的差距不是很大的时候,我们肯定是喜欢更简单的模型啦,这个不难理解吧?)\n查看这两个lambda值:\n\ncvfit$lambda.min\n## [1] 0.02829953\ncvfit$lambda.1se\n## [1] 0.04945423\n\n换一个type.measure试试看:\n\ncvfit1 &lt;- cv.glmnet(x, y, family = \"binomial\", type.measure = \"auc\")\nplot(cvfit1)\n\n\n\n\n这个图的解读和上面那个图的解读也是一样的,只不过左侧纵坐标不一样而已。\n交叉验证的图形也是可以自己美化的,参考推文:lasso回归结果美化\n\n\n14.7.2 coef方法\n查看这两个取值下保留的非零系数情况:\n\n# 此时s不能同时使用多个值\ncoef(cvfit, s = \"lambda.min\")\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.538475144\n## V1           .          \n## V2           0.054881645\n## V3          -0.044528447\n## V4          -0.145609945\n## V5          -0.023218071\n## V6          -0.104593647\n## V7           .          \n## V8          -0.057762149\n## V9           0.073669351\n## V10         -0.148264046\n## V11         -0.009489879\n## V12          .          \n## V13         -0.002021430\n## V14          .          \n## V15          .          \n## V16          0.013778043\n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.032149957\n## V23          0.034431329\n## V24          .          \n## V25          0.069884641\n## V26         -0.050479757\n## V27          .          \n## V28          0.021367958\n## V29         -0.021118533\n## V30          .\ncoef(cvfit, s = \"lambda.1se\") # 这个是默认值\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.541225753\n## V1           .          \n## V2           0.046087719\n## V3          -0.027102998\n## V4          -0.132840898\n## V5          -0.019424141\n## V6          -0.079980759\n## V7           .          \n## V8          -0.044011217\n## V9           0.043650956\n## V10         -0.133222487\n## V11          .          \n## V12          .          \n## V13          .          \n## V14          .          \n## V15          .          \n## V16          .          \n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.022463353\n## V23          0.015349808\n## V24          .          \n## V25          0.052132213\n## V26         -0.037104017\n## V27          .          \n## V28          0.002725018\n## V29         -0.005935917\n## V30          .\n\n可以看到coef()的结果都是稀疏矩阵格式,这种格式计算效率更高,但是不方便后续使用,可以使用as.matrix()转换为矩阵格式:\n\nas.matrix(coef(cvfit))\n##                       s1\n## (Intercept)  0.541225753\n## V1           0.000000000\n## V2           0.046087719\n## V3          -0.027102998\n## V4          -0.132840898\n## V5          -0.019424141\n## V6          -0.079980759\n## V7           0.000000000\n## V8          -0.044011217\n## V9           0.043650956\n## V10         -0.133222487\n## V11          0.000000000\n## V12          0.000000000\n## V13          0.000000000\n## V14          0.000000000\n## V15          0.000000000\n## V16          0.000000000\n## V17          0.000000000\n## V18          0.000000000\n## V19          0.000000000\n## V20          0.000000000\n## V21          0.000000000\n## V22          0.022463353\n## V23          0.015349808\n## V24          0.000000000\n## V25          0.052132213\n## V26         -0.037104017\n## V27          0.000000000\n## V28          0.002725018\n## V29         -0.005935917\n## V30          0.000000000\n\n\n\n14.7.3 predict方法\n对新数据进行预测也是一样的用法:\n\npredict(cvfit, newx = x[1:5,], s = \"lambda.min\")\n##      lambda.min\n## [1,]  0.2880810\n## [2,]  0.9411606\n## [3,]  0.6169352\n## [4,]  0.1604069\n## [5,]  0.5976043"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#一些参数解释",
-    "href": "feature-selection_lasso.html#一些参数解释",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.8 一些参数解释",
-    "text": "14.8 一些参数解释\n\nalpha:可以看做是L1正则化的比例,当alpha=1时,就是lasso,当alpha=0时,就是岭回归,当0&lt;alpha&lt;1时,就是弹性网络。\nweights:不同观测的权重,默认都是1。(glmnet会自动对权重进行重新标准化,使得所有观测的权重相加等于样本数量)。\nnlambda:lambda的取值个数,默认是100。\nlambda:用户可以通过这个参数自己指定lambda的取值。\nstandardize:逻辑值,是否在拟合模型前对自变量进行标准化,默认是TRUE。\n\n下面是一个对不同观测自定义权重的示例。\n我们这个示例中,样本量是100,所以我们为100个观测自定义以下权重:\n\n# 简单定义一下,前50个是1,后50个是2\nwts &lt;-  c(rep(1,50), rep(2,50))\nfit1 &lt;- glmnet(x, y, alpha = 0.2, weights = wts, nlambda = 20)\n\nprint(fit1)\n## \n## Call:  glmnet(x = x, y = y, weights = wts, alpha = 0.2, nlambda = 20) \n## \n##    Df  %Dev  Lambda\n## 1   0  0.00 1.18600\n## 2   2 11.40 0.73050\n## 3  10 31.21 0.44990\n## 4  11 48.89 0.27710\n## 5  15 59.86 0.17060\n## 6  21 66.72 0.10510\n## 7  26 71.32 0.06471\n## 8  28 73.71 0.03985\n## 9  29 74.84 0.02454\n## 10 29 75.37 0.01512\n## 11 29 75.58 0.00931\n## 12 29 75.66 0.00573\n## 13 30 75.70 0.00353\n## 14 30 75.71 0.00217\n## 15 30 75.72 0.00134\n## 16 30 75.72 0.00082\n## 17 30 75.72 0.00051\n\n可以看到结果中只有17个lambda值,少于我们指定的20个,原因已经在前面解释过了。"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#在测试集评估模型",
-    "href": "feature-selection_lasso.html#在测试集评估模型",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.9 在测试集评估模型",
-    "text": "14.9 在测试集评估模型\n模型建立后,我们可能会使用测试集检测模型性能,glmnet包为我们提供了assess.glmnet,roc.glmnet,confusion.glmnet,帮助我们快速在衡量模型性能。\n\n14.9.1 assess.glmnet()\n还是使用这个二分类数据,我们把前70个观测作为训练集,用来建模,后30个观测作为测试集。\n\ndata(BinomialExample)\nx &lt;- BinomialExample$x\ny &lt;- BinomialExample$y\nitrain &lt;- 1:70 # 前70个作为训练集\nfit &lt;- glmnet(x[itrain, ], y[itrain], family = \"binomial\", nlambda = 6)\n\n# 在测试集评估模型\nassess.glmnet(fit, newx = x[-itrain, ], newy = y[-itrain])\n## $deviance\n##        s0        s1        s2        s3        s4        s5 \n## 1.3877348 0.8547044 1.2031017 2.3732041 3.1831559 3.7565310 \n## attr(,\"measure\")\n## [1] \"Binomial Deviance\"\n## \n## $class\n##        s0        s1        s2        s3        s4        s5 \n## 0.4666667 0.1666667 0.2000000 0.2000000 0.1666667 0.1666667 \n## attr(,\"measure\")\n## [1] \"Misclassification Error\"\n## \n## $auc\n## [1] 0.5000000 0.8973214 0.8794643 0.8214286 0.8169643 0.8303571\n## attr(,\"measure\")\n## [1] \"AUC\"\n## \n## $mse\n##        s0        s1        s2        s3        s4        s5 \n## 0.5006803 0.2620161 0.3157726 0.3570313 0.3500126 0.3482634 \n## attr(,\"measure\")\n## [1] \"Mean-Squared Error\"\n## \n## $mae\n##        s0        s1        s2        s3        s4        s5 \n## 0.9904762 0.5650890 0.4609257 0.4227314 0.3865725 0.3745569 \n## attr(,\"measure\")\n## [1] \"Mean Absolute Error\"\n\n结果是一个列表,里面是family = \"binomial\"时,5个性能指标在不同lambda值下的结果,由于我们这里指定了只使用6个lambda值,所以结果就是6个,你指定几个,结果就会有几个。\n不同的family对应着不同的性能指标,可以通过glmnet.measures()查看每个family对应的性能指标:\n\nglmnet.measures()\n## $gaussian\n## [1] \"mse\" \"mae\"\n## \n## $binomial\n## [1] \"deviance\" \"class\"    \"auc\"      \"mse\"      \"mae\"     \n## \n## $poisson\n## [1] \"deviance\" \"mse\"      \"mae\"     \n## \n## $cox\n## [1] \"deviance\" \"C\"       \n## \n## $multinomial\n## [1] \"deviance\" \"class\"    \"mse\"      \"mae\"     \n## \n## $mgaussian\n## [1] \"mse\" \"mae\"\n## \n## $GLM\n## [1] \"deviance\" \"mse\"      \"mae\"\n\n交叉验证同样也是适用的:\n\ncfit &lt;- cv.glmnet(x[itrain, ], y[itrain], family = \"binomial\", nlambda = 30)\nassess.glmnet(cfit, newx = x[-itrain, ], newy = y[-itrain])\n## $deviance\n## lambda.1se \n##   1.062957 \n## attr(,\"measure\")\n## [1] \"Binomial Deviance\"\n## \n## $class\n## lambda.1se \n##  0.2333333 \n## attr(,\"measure\")\n## [1] \"Misclassification Error\"\n## \n## $auc\n## [1] 0.8392857\n## attr(,\"measure\")\n## [1] \"AUC\"\n## \n## $mse\n## lambda.1se \n##  0.3509219 \n## attr(,\"measure\")\n## [1] \"Mean-Squared Error\"\n## \n## $mae\n## lambda.1se \n##  0.7730458 \n## attr(,\"measure\")\n## [1] \"Mean Absolute Error\"\n\n不过此时默认使用的lambda值是lambda.1se,也可以使用lambda.min:\n\nassess.glmnet(cfit, newx = x[-itrain, ],newy = y[-itrain], s = \"lambda.min\")\n## $deviance\n## lambda.min \n##   0.877155 \n## attr(,\"measure\")\n## [1] \"Binomial Deviance\"\n## \n## $class\n## lambda.min \n##  0.1666667 \n## attr(,\"measure\")\n## [1] \"Misclassification Error\"\n## \n## $auc\n## [1] 0.8973214\n## attr(,\"measure\")\n## [1] \"AUC\"\n## \n## $mse\n## lambda.min \n##   0.273071 \n## attr(,\"measure\")\n## [1] \"Mean-Squared Error\"\n## \n## $mae\n## lambda.min \n##  0.6069619 \n## attr(,\"measure\")\n## [1] \"Mean Absolute Error\"\n\n当然也可以获取训练集的各种指标,只要在建模时使用keep=TRUE参数即可:\n\ncfit &lt;- cv.glmnet(x, y, family = \"binomial\", keep = TRUE, nlambda = 3)\nassess.glmnet(cfit$fit.preval, newy = y, family = \"binomial\")\n## $deviance\n##       s0       s1       s2 \n## 1.344523 1.701907 3.167967 \n## attr(,\"measure\")\n## [1] \"Binomial Deviance\"\n## \n## $class\n##   s0   s1   s2 \n## 0.41 0.20 0.21 \n## attr(,\"measure\")\n## [1] \"Misclassification Error\"\n## \n## $auc\n## [1] 0.6225649 0.8668831 0.8620130\n## attr(,\"measure\")\n## [1] \"AUC\"\n## \n## $mse\n##        s0        s1        s2 \n## 0.4792227 0.3204998 0.3901110 \n## attr(,\"measure\")\n## [1] \"Mean-Squared Error\"\n## \n## $mae\n##        s0        s1        s2 \n## 0.9635782 0.4058027 0.4178002 \n## attr(,\"measure\")\n## [1] \"Mean Absolute Error\"\n\n\n\n14.9.2 roc.glmnet()\n对于二分类数据,ROC曲线是非常重要的模型衡量工具。\nroc.glmnet()可以快速计算出画ROC曲线需要的数据,然后使用plot()画图即可。\n\nfit &lt;- glmnet(x[itrain,], y[itrain], family = \"binomial\")\n\nrocs &lt;- roc.glmnet(fit, newx = x[-itrain,], newy=y[-itrain])\n\n这个rocs是一个列表,其长度就是lambda值的数量,对于每一个lambda取值,它都计算了可以用来画ROC曲线的数据。\n我们随便取其中一个画出来:\n\nplot(rocs[[3]],type = \"l\",xlim=c(0,1),ylim=c(0,1))\ninvisible(sapply(rocs, lines)) # 把所有的ROC都画出来\nabline(0,1,col=\"grey\")\n\n\n\n\n交叉验证的结果当然也是可以的:\n\n# 建立模型\ncfit &lt;- cv.glmnet(x, y, family = \"binomial\", type.measure = \"auc\", \n                  keep = TRUE)\n\n# 计算画ROC曲线需要的数据\nrocs &lt;- roc.glmnet(cfit$fit.preval, newy = y)\n\nclass(rocs)\n## [1] \"list\"\nlength(rocs)\n## [1] 98\ndim(rocs[[1]])\n## [1] 43  2\nhead(rocs[[1]])\n##                          FPR TPR\n## 0.515726153922901 0.02272727   0\n## 0.493415443261052 0.04545455   0\n## 0.455710371846811 0.06818182   0\n## 0.454710952490737 0.09090909   0\n## 0.440189664756163 0.11363636   0\n## 0.436170361317587 0.13636364   0\n\n这个rocs也是一个列表,其长度就是lambda值的数量,对于每一个lambda取值,它都计算了可以用来画ROC曲线的数据。\n下面我们把AUC最大的ROC曲线画出来,用红色标记,并把其他ROC曲线也画在一起:\n\nbest &lt;- cvfit$index[\"min\",] # 提取AUC最大的lambda值\nplot(rocs[[best]], type = \"l\") # 画出AUC最大的ROC曲线\ninvisible(sapply(rocs, lines, col=\"grey\")) # 把所有的ROC都画出来\nlines(rocs[[best]], lwd = 2,col = \"red\") # 把AUC最大的标红\n\n\n\n\n\n\n14.9.3 confusion.glmnet()\n混淆矩阵作为分类数据必不可少的工具,可以通过confusion.glmnet()实现。\n用一个多分类数据进行演示。\n\ndata(MultinomialExample)\nx &lt;- MultinomialExample$x\ny &lt;- MultinomialExample$y\nset.seed(101)\nitrain &lt;- sample(1:500, 400, replace = FALSE)\ncfit &lt;- cv.glmnet(x[itrain, ], y[itrain], family = \"multinomial\")\n\n# 默认lambda值是lambda.1se\ncnf &lt;- confusion.glmnet(cfit, newx = x[-itrain, ], newy = y[-itrain]) \n\nprint(cnf)\n##          True\n## Predicted  1  2  3 Total\n##     1     13  6  4    23\n##     2      7 25  5    37\n##     3      4  3 33    40\n##     Total 24 34 42   100\n## \n##  Percent Correct:  0.71\n\n如果使用keep=TRUE,那么结果也是多个混淆矩阵,此时也可以选择任意一个进行展示:\n\ncfit &lt;- cv.glmnet(x, y, family = \"multinomial\", type = \"class\", keep = TRUE)\ncnf &lt;- confusion.glmnet(cfit$fit.preval, newy = y, family = \"multinomial\")\nbest &lt;- cfit$index[\"min\",]\nprint(cnf[[best]])\n##          True\n## Predicted   1   2   3 Total\n##     1      76  22  14   112\n##     2      39 129  23   191\n##     3      27  23 147   197\n##     Total 142 174 184   500\n## \n##  Percent Correct:  0.704\n\n虽然glmnet包提供了这3个函数帮助我们查看模型性能,但是很明显不能满足大家的需求,所以一般情况下我们都用其他的R包来代替这几个函数了,比如caret,yardstick,pROC等。"
+    "title": "17  变量选择之最优子集",
+    "section": "17.5 参考资料",
+    "text": "17.5 参考资料\n\n维基百科:AIC\nhttps://zhuanlan.zhihu.com/p/293315874\nhttps://bookdown.org/taylordunn/islr-tidy-1655226885741/",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>17</span>  <span class='chapter-title'>变量选择之最优子集</span>"
+    ]
+  },
+  {
+    "objectID": "feature-selection_lasso.html",
+    "href": "feature-selection_lasso.html",
+    "title": "18  lasso回归筛选变量",
+    "section": "",
+    "text": "18.1 正则化逻辑回归\n用一个二分类数据进行演示,因为大家最常用的就是二分类数据和生存数据了。\ndata(BinomialExample)\nx &lt;- BinomialExample$x\ny &lt;- BinomialExample$y\n\ndim(x)\n## [1] 100  30\nclass(x)\n## [1] \"matrix\" \"array\"\nx[1:4,1:4]\n##            [,1]       [,2]       [,3]       [,4]\n## [1,] -0.6192614 0.01624409 -0.6260683  0.4126846\n## [2,]  1.0942728 0.47257285 -1.3371470 -0.6405813\n## [3,] -0.3567040 0.30121334  0.1905619  0.2340268\n## [4,] -2.4690701 2.84771447  1.6602435  1.5688130\n\nclass(y)\n## [1] \"integer\"\nhead(y)\n## [1] 0 1 1 0 1 0\n注意glmnet需要的自变量格式,需要是matrix或者稀疏矩阵格式!\nfamily用来指定不同的模型类型,对于二分类数据,应该选择binomial。\nfamily的其他选项如下:“gaussian”(默认), “poisson”, “multinomial”, “cox”, “mgaussian”。\n建立正则化的逻辑回归模型(就是大家说的lasso-logistic模型)就是1句代码,非常简单:\nfit &lt;- glmnet(x, y, family = \"binomial\")\n官方不建议直接提取fit中的元素,因为提供了plot,print,coef,predict方法帮助大家探索结果。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>18</span>  <span class='chapter-title'>lasso回归筛选变量</span>"
+    ]
   },
   {
-    "objectID": "feature-selection_lasso.html#其他功能",
-    "href": "feature-selection_lasso.html#其他功能",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.10 其他功能",
-    "text": "14.10 其他功能\n\n14.10.1 拟合非正则化的广义线性模型\nglmnet包提供了bigGlm()函数,可以对大型数据拟合非正则化的广义线性模型,类似于常规的glm(),但是支持glmnet中的所有参数。其实此时的lambda=0,也就是不进行正则化。如果你的数据巨大,使用glm很慢,或者你需要其他参数,可以尝试一下bigGlm()。\n以下是一个使用示例:\n\ndata(BinomialExample)\nx &lt;- BinomialExample$x\ny &lt;- BinomialExample$y\nfit &lt;- bigGlm(x, y, family = \"binomial\", lower.limits = -1)\nprint(fit)\n## \n## Call:  bigGlm(x = x, y = y, family = \"binomial\", lower.limits = -1) \n## \n##   Df  %Dev Lambda\n## 1 30 77.57      0\n\n\n\n14.10.2 修改自变量矩阵格式\nglmnet包提供了一个makeX()函数,可以对自变量的格式进行修改,比如,如果你提供了1个数据框data.frame,这个格式是不行的,它可以帮你转换为matrix格式,除此之外,还可以进行如下操作:\n\n对因子型或字符型变量进行独热编码;\n使用均值填补缺失值;\n可以直接变为稀疏矩阵,适合大数据;\n可以直接提供训练集和测试集两个数据集,这样可以保证两个数据集的因子水平对应,以及使用训练集中的均值对测试集进行插补\n\n先展示下独热编码转换功能,我们建立一个数据框,其中两列是字符型,makeX可以帮我们进行独热编码,并把数据变为稀疏矩阵格式:\n\nset.seed(101)\nX &lt;- matrix(rnorm(5), nrow = 5)\nX2 &lt;- sample(letters[1:3], 5, replace = TRUE)\nX3 &lt;- sample(LETTERS[1:3], 5, replace = TRUE)\ndf &lt;- data.frame(X, X2, X3)\ndf\n##            X X2 X3\n## 1 -0.3260365  c  C\n## 2  0.5524619  b  C\n## 3 -0.6749438  c  B\n## 4  0.2143595  c  C\n## 5  0.3107692  a  C\nmakeX(df) # 转换\n##            X X2a X2b X2c X3B X3C\n## 1 -0.3260365   0   0   1   0   1\n## 2  0.5524619   0   1   0   0   1\n## 3 -0.6749438   0   0   1   1   0\n## 4  0.2143595   0   0   1   0   1\n## 5  0.3107692   1   0   0   0   1\n\n添加sparse=T可以返回稀疏矩阵格式:\n\nmakeX(df, sparse = TRUE)\n## 5 x 6 sparse Matrix of class \"dgCMatrix\"\n##            X X2a X2b X2c X3B X3C\n## 1 -0.3260365   .   .   1   .   1\n## 2  0.5524619   .   1   .   .   1\n## 3 -0.6749438   .   .   1   1   .\n## 4  0.2143595   .   .   1   .   1\n## 5  0.3107692   1   .   .   .   1\n\n下面我们对原数据框添加一些缺失值,用来演示makeX的缺失值插补功能:\n\nXn  &lt;- X ; Xn[3,1] &lt;- NA\nX2n &lt;- X2; X2n[1]  &lt;- NA\nX3n &lt;- X3; X3n[5]  &lt;- NA\ndfn &lt;- data.frame(Xn, X2n, X3n)\ndfn\n##           Xn  X2n  X3n\n## 1 -0.3260365 &lt;NA&gt;    C\n## 2  0.5524619    b    C\n## 3         NA    c    B\n## 4  0.2143595    c    C\n## 5  0.3107692    a &lt;NA&gt;\n\n通过添加na.impute=T可以进行插补:\n\nmakeX(dfn,na.impute = T)\n##           Xn X2na X2nb X2nc X3nB X3nC\n## 1 -0.3260365 0.25 0.25  0.5 0.00 1.00\n## 2  0.5524619 0.00 1.00  0.0 0.00 1.00\n## 3  0.1878885 0.00 0.00  1.0 1.00 0.00\n## 4  0.2143595 0.00 0.00  1.0 0.00 1.00\n## 5  0.3107692 1.00 0.00  0.0 0.25 0.75\n## attr(,\"means\")\n##        Xn      X2na      X2nb      X2nc      X3nB      X3nC \n## 0.1878885 0.2500000 0.2500000 0.5000000 0.2500000 0.7500000\n\n这个函数总体来说还是挺方便的。\n\n\n14.10.3 添加进度条\nglmnet()和cv.glmnet()都可以通过添加trace.it=TRUE实现进度条功能:\n\n# 结果太长不展示了\nfit &lt;- glmnet(x, y, trace.it = TRUE)\n\n\n# 结果太长不展示了\nfit &lt;- cv.glmnet(x, y, trace.it = TRUE)\n\n也可以通过以下方式实现:\n\nglmnet.control(itrace = 1) # 变成0就不显示了~"
+    "objectID": "feature-selection_lasso.html#正则化逻辑回归",
+    "href": "feature-selection_lasso.html#正则化逻辑回归",
+    "title": "18  lasso回归筛选变量",
+    "section": "",
+    "text": "18.1.1 可视化\n可视化各个变量系数的变化,这个图是大家最常见的图形之一:\n\nplot(fit,label = T)\n\n\n\n\n\n\n\n\n这个图形中的每一条线都代表1个变量,并且展示了在不同的L1范数(L1-Norm)下该变量的系数变化。这个图下面的横坐标是L1范数,上面的横坐标是L1范数下对应的非零系数的个数,比如当L1范数是20时,对应的非零系数有27个,也就是此时可以有27个变量保留下来。左侧纵坐标是变量的系数值。\n这里的plot()函数还有一个xvar参数,可以用于指定不同的横坐标:\n\nnorm:横坐标是L1 norm,这个是默认值;\nlambda:横坐标是log-lambda;\ndev:横坐标是模型解释的%deviance\n\n\nplot(fit, xvar = \"lambda\")\n\n\n\n\n\n\n\n\n这里的横坐标是log-lambda,可以看做是正则化程度。\n上面这幅图展示了随着lambda值的变化,每个变量系数的变化,可以看到随着lambda值变大,系数值逐渐减小,直至为0,上面的横坐标也显示随着lambda值变大,保留的变量数量也越来越少。\n\nplot(fit, xvar = \"dev\", label = TRUE)\n\n\n\n\n\n\n\n\n这幅图和上面图的解释是一样的,只有下面的横坐标不一样。\n最后一幅图下面的横坐标是模型解释的偏差百分比,也可以用来衡量模型复杂度。可以看出在图形的右侧部分,模型能够解释的偏差百分比基本变化不大,但是模型系数基本都是往上或往下“飘”的很厉害。\n虽然官方不建议提取数据,但是很明显大家都喜欢提取数据再自己美化图片,我之前也介绍过一种简便方法,可以实现自定义美化图形:lasso回归结果美化\n\n\n18.1.2 打印结果\n使用print(fit)可以查看不同lambda值对应的自由度和模型能够解释的偏差百分比:\n\nprint(fit) # 直接fit也可\n## \n## Call:  glmnet(x = x, y = y, family = \"binomial\") \n## \n##    Df  %Dev   Lambda\n## 1   0  0.00 0.240500\n## 2   1  2.90 0.219100\n## 3   1  5.34 0.199600\n## 4   2  8.86 0.181900\n## 5   2 11.95 0.165800\n## 6   2 14.59 0.151000\n## 7   2 16.88 0.137600\n## 8   3 18.95 0.125400\n## 9   7 22.38 0.114200\n## 10  8 26.26 0.104100\n## 11  8 29.73 0.094850\n## 12  8 32.77 0.086420\n## 13  9 35.58 0.078750\n## 14 11 38.98 0.071750\n## 15 12 42.23 0.065380\n## 16 12 45.29 0.059570\n## 17 13 48.09 0.054280\n## 18 13 50.63 0.049450\n## 19 14 53.00 0.045060\n## 20 14 55.19 0.041060\n## 21 15 57.33 0.037410\n## 22 15 59.43 0.034090\n## 23 16 61.36 0.031060\n## 24 17 63.15 0.028300\n## 25 17 64.85 0.025790\n## 26 18 66.42 0.023490\n## 27 19 67.98 0.021410\n## 28 20 69.44 0.019510\n## 29 20 70.80 0.017770\n## 30 21 72.10 0.016190\n## 31 21 73.33 0.014760\n## 32 23 74.52 0.013440\n## 33 23 75.65 0.012250\n## 34 24 76.72 0.011160\n## 35 24 77.77 0.010170\n## 36 25 78.77 0.009267\n## 37 25 79.73 0.008444\n## 38 26 80.66 0.007693\n## 39 26 81.57 0.007010\n## 40 27 82.48 0.006387\n## 41 27 83.39 0.005820\n## 42 27 84.30 0.005303\n## 43 27 85.21 0.004832\n## 44 27 86.12 0.004402\n## 45 27 87.05 0.004011\n## 46 28 87.96 0.003655\n## 47 28 88.87 0.003330\n## 48 28 89.76 0.003034\n## 49 28 90.61 0.002765\n## 50 28 91.41 0.002519\n## 51 28 92.16 0.002295\n## 52 28 92.86 0.002092\n## 53 28 93.50 0.001906\n## 54 28 94.08 0.001736\n## 55 29 94.61 0.001582\n## 56 29 95.10 0.001442\n## 57 29 95.54 0.001314\n## 58 29 95.95 0.001197\n## 59 29 96.31 0.001091\n## 60 29 96.64 0.000994\n## 61 29 96.94 0.000905\n## 62 29 97.22 0.000825\n## 63 29 97.47 0.000752\n## 64 29 97.69 0.000685\n## 65 29 97.90 0.000624\n## 66 29 98.09 0.000569\n## 67 29 98.26 0.000518\n## 68 29 98.41 0.000472\n## 69 29 98.55 0.000430\n## 70 29 98.68 0.000392\n## 71 29 98.80 0.000357\n## 72 30 98.91 0.000325\n## 73 30 99.00 0.000296\n## 74 30 99.09 0.000270\n## 75 30 99.17 0.000246\n## 76 30 99.25 0.000224\n## 77 30 99.31 0.000204\n## 78 30 99.37 0.000186\n## 79 30 99.43 0.000170\n## 80 30 99.48 0.000155\n## 81 30 99.52 0.000141\n## 82 30 99.57 0.000128\n## 83 30 99.61 0.000117\n## 84 30 99.64 0.000106\n## 85 30 99.67 0.000097\n## 86 30 99.70 0.000088\n## 87 30 99.73 0.000081\n## 88 30 99.75 0.000073\n## 89 30 99.77 0.000067\n## 90 30 99.79 0.000061\n## 91 30 99.81 0.000056\n## 92 30 99.83 0.000051\n## 93 30 99.84 0.000046\n## 94 30 99.86 0.000042\n## 95 30 99.87 0.000038\n## 96 30 99.88 0.000035\n## 97 30 99.89 0.000032\n## 98 30 99.90 0.000029\n\n左侧的df是非零系数的个数,中间的%Dev是模型解释的偏差百分比,右侧的Lambda是总惩罚值大小。\n默认情况下,glmnet()函数中的nlambda参数的取值是100,也就是会取100个不同的Lambda值,但是如果%Dev变化不大或者不再变化,它可能会提前停止,取不到100个值,比如我们这个例子就是这样。\n\n\n18.1.3 查看变量系数\n我们可以通过coef()查看某个Lambda值下的变量系数:\n\n# 比如让lambda=0.065380\ncoef(fit, s = 0.065380)\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.210158382\n## V1           .          \n## V2           0.193006823\n## V3          -0.069820214\n## V4          -0.606741531\n## V5          -0.081962193\n## V6          -0.285761723\n## V7           .          \n## V8          -0.165879158\n## V9           0.092678665\n## V10         -0.595865115\n## V11          .          \n## V12          .          \n## V13          .          \n## V14          .          \n## V15          .          \n## V16          .          \n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.054956208\n## V23          0.001474751\n## V24          .          \n## V25          0.187112112\n## V26         -0.113782733\n## V27          .          \n## V28          .          \n## V29          .          \n## V30          .\n\n可以看到此时一共有12个变量的系数不是0(没包括截距),其余系数是0的变量就可以去掉了,和上面print(fit)的结果是一样的。\n这里使用了s表示lambda,为什么不直接用lambda呢?这是作者为了以后的某些功能做准备,但是这一点在tidymodels中大受诟病…\n也可以同时指定多个lambda值:\n\ncoef(fit, s = c(0.065380,0.078750))\n## 31 x 2 sparse Matrix of class \"dgCMatrix\"\n##                       s1          s2\n## (Intercept)  0.210158382  0.22467551\n## V1           .            .         \n## V2           0.193006823  0.13578915\n## V3          -0.069820214  .         \n## V4          -0.606741531 -0.55088786\n## V5          -0.081962193 -0.08588769\n## V6          -0.285761723 -0.18303729\n## V7           .            .         \n## V8          -0.165879158 -0.12710236\n## V9           0.092678665  .         \n## V10         -0.595865115 -0.50054790\n## V11          .            .         \n## V12          .            .         \n## V13          .            .         \n## V14          .            .         \n## V15          .            .         \n## V16          .            .         \n## V17          .            .         \n## V18          .            .         \n## V19          .            .         \n## V20          .            .         \n## V21          .            .         \n## V22          0.054956208  0.01466017\n## V23          0.001474751  .         \n## V24          .            .         \n## V25          0.187112112  0.13534486\n## V26         -0.113782733 -0.08255906\n## V27          .            .         \n## V28          .            .         \n## V29          .            .         \n## V30          .            .\n\n除此之外,coef()还有一个exact参数,如果exact=TRUE,那么当一个lambda不在默认的lambda值中时,函数会重新使用这个lambda值拟合模型然后给出结果,如果exact=FALSE(默认值),那么会使用线性插值给出结果。\n举个例子,0.08并不在lambda值向量中:\n\n# 可以看前面的print(fit)的结果,看看lambda的取值有哪些\nany(fit$lambda == 0.08)\n## [1] FALSE\n\n此时两种情况下的系数是不太一样的:\n\ncoef.apprx &lt;- coef(fit, s = 0.08, exact = FALSE)\ncoef.exact &lt;- coef(fit, s = 0.08, exact = TRUE, x=x, y=y)\ncbind2(coef.exact[which(coef.exact != 0)], \n       coef.apprx[which(coef.apprx != 0)])\n##              [,1]        [,2]\n##  [1,]  0.22549572  0.22541853\n##  [2,]  0.13138628  0.13159475\n##  [3,] -0.54737500 -0.54723674\n##  [4,] -0.08464614 -0.08430109\n##  [5,] -0.17544453 -0.17586695\n##  [6,] -0.12334038 -0.12323991\n##  [7,] -0.49261301 -0.49314684\n##  [8,]  0.01036968  0.01227180\n##  [9,]  0.13183895  0.13169100\n## [10,] -0.07909589 -0.07914430\n\n注意在使用exact = TRUE时,需要提供x和y,因为需要重新拟合模型。\n\n\n18.1.4 预测新数据\n对于新数据,可直接使用predict()进行预测,此时也是可以指定lambda值的:\n\nnx &lt;- head(x) #随便准备的新的测试数据\n\npredict(fit, newx = nx, s = c(0.065380,0.078750))\n##              s1         s2\n## [1,] -0.7609757 -0.5755105\n## [2,]  1.4563904  1.1266031\n## [3,]  0.4415409  0.3981256\n## [4,] -1.1676684 -0.9923334\n## [5,]  0.5730604  0.5612494\n## [6,]  0.3064590  0.1926588\n\n由于glmnet包可以用于线性回归、逻辑回归、cox回归、泊松回归、多项式回归等(通过参数family指定即可,默认值是gaussian,可通过?glmnet查看帮助文档),所以在predict()时,type参数略有不同,对于逻辑回归,type可以是以下3种:\n\nlink:线性预测值,默认是这个\nresponse:预测概率\nclass:预测类别\n\n如果要获得预测概率:\n\npredict(fit, newx = nx, s = c(0.065380,0.078750), type = \"response\")\n##             s1        s2\n## [1,] 0.3184345 0.3599663\n## [2,] 0.8109800 0.7552115\n## [3,] 0.6086261 0.5982372\n## [4,] 0.2372767 0.2704514\n## [5,] 0.6394690 0.6367416\n## [6,] 0.5760207 0.5480163\n\n可以通过?predict.glmnet查看帮助文档。\n\n\n18.1.5 交叉验证\nglmnet()函数会返回多个模型(因为会使用多个lambda值),但是很多情况下,用户并不知道到底选择哪一个lambda值,即不知道到底保留哪些变量,或者希望函数能自动给出结果。\n所以glmnet包提供了交叉验证法,帮助用户做出选择,使用方法也非常简单:\n\ncvfit &lt;- cv.glmnet(x, y)\n\n除了glmnet()中的参数之外,cv.glmnet()还有一些独有的参数:\n\nnfolds:交叉验证的折数,默认是10折交叉验证;\nfoldid:指定哪个观测在哪一折中,一般用不到;\ntype.measure:模型性能指标,对于不同的family,也是略有不同,可查看帮助文档\n\n对于逻辑回归,type.measure可以是以下取值:\n\nmse:均方误差;\ndeviance:偏差;\nmae:平均绝对误差,mean absolute error;\nclass:错分率;\nauc:只能用于二分类逻辑回归\n\n\n\n18.1.6 plot方法\n对于cv.glmnet()的结果,也提供了plot,print,coef,predict方法。\n\nplot(cvfit)\n\n\n\n\n\n\n\n\n该图形下面的横坐标是log10(lambda),上面的横坐标是非零系数的数量,左侧的纵坐标是MSE(均方误差),改图展示了不同lambda取值下MSE的变化以及MSE±1倍标准差的置信区间。\n图中的两条竖线就是函数帮你挑选的两个结果,一个是lambda.min,此时的lambda值可以使得MSE最小,另外一个是lambda.1se,此时的lambda值可以使得MSE在最小MSE的1倍标准误区间内,但是同时可以使模型的复杂度降低。(在模型误差之间的差距不是很大的时候,我们肯定是喜欢更简单的模型啦,这个不难理解吧?)\n查看这两个lambda值:\n\ncvfit$lambda.min\n## [1] 0.02829953\ncvfit$lambda.1se\n## [1] 0.04945423\n\n换一个type.measure试试看:\n\ncvfit1 &lt;- cv.glmnet(x, y, family = \"binomial\", type.measure = \"auc\")\nplot(cvfit1)\n\n\n\n\n\n\n\n\n这个图的解读和上面那个图的解读也是一样的,只不过左侧纵坐标不一样而已。\n交叉验证的图形也是可以自己美化的,参考推文:lasso回归结果美化\n\n\n18.1.7 coef方法\n查看这两个取值下保留的非零系数情况:\n\n# 此时s不能同时使用多个值\ncoef(cvfit, s = \"lambda.min\")\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.538475144\n## V1           .          \n## V2           0.054881645\n## V3          -0.044528447\n## V4          -0.145609945\n## V5          -0.023218071\n## V6          -0.104593647\n## V7           .          \n## V8          -0.057762149\n## V9           0.073669351\n## V10         -0.148264046\n## V11         -0.009489879\n## V12          .          \n## V13         -0.002021430\n## V14          .          \n## V15          .          \n## V16          0.013778043\n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.032149957\n## V23          0.034431329\n## V24          .          \n## V25          0.069884641\n## V26         -0.050479757\n## V27          .          \n## V28          0.021367958\n## V29         -0.021118533\n## V30          .\ncoef(cvfit, s = \"lambda.1se\") # 这个是默认值\n## 31 x 1 sparse Matrix of class \"dgCMatrix\"\n##                       s1\n## (Intercept)  0.541225753\n## V1           .          \n## V2           0.046087719\n## V3          -0.027102998\n## V4          -0.132840898\n## V5          -0.019424141\n## V6          -0.079980759\n## V7           .          \n## V8          -0.044011217\n## V9           0.043650956\n## V10         -0.133222487\n## V11          .          \n## V12          .          \n## V13          .          \n## V14          .          \n## V15          .          \n## V16          .          \n## V17          .          \n## V18          .          \n## V19          .          \n## V20          .          \n## V21          .          \n## V22          0.022463353\n## V23          0.015349808\n## V24          .          \n## V25          0.052132213\n## V26         -0.037104017\n## V27          .          \n## V28          0.002725018\n## V29         -0.005935917\n## V30          .\n\n此时你就可以根据实际情况选择使用lambda.min还是lambda.1se,如果你选择了lambda.1se的话,那么就是有以下变量被保留:V2/V3/V4/V5/V6/V8/V9/V10/V22/V23/V25/V26/28/V29,其他变量的系数都是0,说明不重要,就可以被丢掉了。\n可以看到coef()的结果都是稀疏矩阵格式,这种格式计算效率更高,但是不方便后续使用,可以使用as.matrix()转换为矩阵格式:\n\nas.matrix(coef(cvfit))\n##                       s1\n## (Intercept)  0.541225753\n## V1           0.000000000\n## V2           0.046087719\n## V3          -0.027102998\n## V4          -0.132840898\n## V5          -0.019424141\n## V6          -0.079980759\n## V7           0.000000000\n## V8          -0.044011217\n## V9           0.043650956\n## V10         -0.133222487\n## V11          0.000000000\n## V12          0.000000000\n## V13          0.000000000\n## V14          0.000000000\n## V15          0.000000000\n## V16          0.000000000\n## V17          0.000000000\n## V18          0.000000000\n## V19          0.000000000\n## V20          0.000000000\n## V21          0.000000000\n## V22          0.022463353\n## V23          0.015349808\n## V24          0.000000000\n## V25          0.052132213\n## V26         -0.037104017\n## V27          0.000000000\n## V28          0.002725018\n## V29         -0.005935917\n## V30          0.000000000\n\n\n\n18.1.8 predict方法\n对新数据进行预测也是一样的用法:\n\npredict(cvfit, newx = x[1:5,], s = \"lambda.min\")\n##      lambda.min\n## [1,]  0.2880810\n## [2,]  0.9411606\n## [3,]  0.6169352\n## [4,]  0.1604069\n## [5,]  0.5976043\n\n\n\n18.1.9 一些参数解释\n\nalpha:可以看做是L1正则化的比例,当alpha=1时,就是lasso,当alpha=0时,就是岭回归,当0&lt;alpha&lt;1时,就是弹性网络。\nweights:不同观测的权重,默认都是1。(glmnet会自动对权重进行重新标准化,使得所有观测的权重相加等于样本数量)。\nnlambda:lambda的取值个数,默认是100。\nlambda:用户可以通过这个参数自己指定lambda的取值。\nstandardize:逻辑值,是否在拟合模型前对自变量进行标准化,默认是TRUE。\n\n下面是一个对不同观测自定义权重的示例。\n我们这个示例中,样本量是100,所以我们为100个观测自定义以下权重:\n\n# 简单定义一下,前50个是1,后50个是2\nwts &lt;-  c(rep(1,50), rep(2,50))\nfit1 &lt;- glmnet(x, y, alpha = 0.2, weights = wts, nlambda = 20)\n\nprint(fit1)\n## \n## Call:  glmnet(x = x, y = y, weights = wts, alpha = 0.2, nlambda = 20) \n## \n##    Df  %Dev  Lambda\n## 1   0  0.00 1.18600\n## 2   2 11.40 0.73050\n## 3  10 31.21 0.44990\n## 4  11 48.89 0.27710\n## 5  15 59.86 0.17060\n## 6  21 66.72 0.10510\n## 7  26 71.32 0.06471\n## 8  28 73.71 0.03985\n## 9  29 74.84 0.02454\n## 10 29 75.37 0.01512\n## 11 29 75.58 0.00931\n## 12 29 75.66 0.00573\n## 13 30 75.70 0.00353\n## 14 30 75.71 0.00217\n## 15 30 75.72 0.00134\n## 16 30 75.72 0.00082\n## 17 30 75.72 0.00051\n\n可以看到结果中只有17个lambda值,少于我们指定的20个,原因已经在前面解释过了。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>18</span>  <span class='chapter-title'>lasso回归筛选变量</span>"
+    ]
   },
   {
     "objectID": "feature-selection_lasso.html#正则化cox回归",
     "href": "feature-selection_lasso.html#正则化cox回归",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.11 正则化Cox回归",
-    "text": "14.11 正则化Cox回归\n正则化的COX回归,也就是glmnet在生存分析中的应用,这里我们还是以lasso为例进行演示。\nglmnet包的详细使用介绍已经在前面都介绍过了,正则化的COX回归并没有太大的不同,所以这里简单介绍一下。\n下面是一些理论解释,大家随便看看就好。\n在glmnet中,我们使用弹性网络(elastic net)方法对部分似然的负对数进行惩罚。\n部分似然(partial-likelihood)是一种用于处理生存分析(survival-analysis)中右侧截尾(right-censored)观测的方法。而负对数部分似然(negative-log-partial-likelihood)则是对部分似然取反并求对数,目的是将最大化似然函数的问题转化为最小化负对数似然函数的问题。\n为了进一步约束模型的复杂度和提高模型的泛化能力,我们在负对数部分似然的基础上引入了弹性网络惩罚(elastic-net-penalty)。弹性网惩罚结合了L1正则化(L1-regularization)和L2正则化(L2-regularization)的特性,从而既能产生稀疏解,又能保留一些高度相关的特征。这样我们可以在建立模型时在部分似然的基础上,使用弹性网惩罚来进行模型的优化和参数选择,以提高模型的性能和泛化能力。\n\n14.11.1 基础使用\nglmnet对数据格式是有要求的,之前也说过,x必须是由自变量组成的matrix,y可以是一个两列的matrix,两列的列名必须是time和status,分别表示生存时间和生存状态,其中status必须使用0和1组成,0表示删失,1表示发生终点事件(又叫失效事件,比如死亡)。除此之外,y还可以是由Surv()函数生成的对象。\n下面是一个示例数据:\n\nlibrary(glmnet)\nlibrary(survival)\n\ndata(CoxExample)\nx &lt;- CoxExample$x\ny &lt;- CoxExample$y\n\n# 查看y的数据格式\ny[1:5, ]\n##            time status\n## [1,] 1.76877757      1\n## [2,] 0.54528404      1\n## [3,] 0.04485918      0\n## [4,] 0.85032298      0\n## [5,] 0.61488426      1\n\n建立模型,只需要使用family = \"cox\"即可:\n\nfit &lt;- glmnet(x, y, family = \"cox\")\n\n其中的一些参数比如alpha,weights,nlambda等,在前面已经介绍过了,这里就不再多介绍了。\n可视化、提取系数、预测新数据和之前介绍的用法也是一模一样,这里也不再多说了。\n\n\n14.11.2 交叉验证\n对于正则化的cox来说,cv.glmnet()中的type.measure只能是\"deviance\"(默认值,给出部分似然),或者\"C\",给出 Harrell-C-index。\n\nset.seed(1)\ncvfit &lt;- cv.glmnet(x, y, family = \"cox\", type.measure = \"C\")\n\nprint(cvfit)\n## \n## Call:  cv.glmnet(x = x, y = y, type.measure = \"C\", family = \"cox\") \n## \n## Measure: C-index \n## \n##      Lambda Index Measure       SE Nonzero\n## min 0.03058    23  0.7304 0.005842      11\n## 1se 0.05865    16  0.7267 0.005993      10\n\n画图也是一样的,下面这幅图的解释在前面也已经详细介绍过了,这里就不再多做解释了:\n\nplot(cvfit)\n\n\n\n\n\n在glmnet中,对于生存时间的排列相同(ties)情况,使用的是Breslow近似(Breslow approximation)。这与survival软件包中的coxph函数的默认排列处理方法(tie-handling method)——Efron近似(Efron approximation)不同。\n当存在相同的生存时间观测时,例如多个个体在同一时间发生事件,排列的处理方法对估计结果和推断的准确性至关重要。Breslow近似与Efron近似是最常见的两种处理方法。\n在glmnet中,使用Breslow近似处理排列,该方法假设所有的排列发生在后一事件之前的所有时间上。这种近似方法在计算效率上比较高,但可能会导致估计的偏差。\n而在survival软件包中的coxph函数,默认使用的是Efron近似处理排列。Efron近似方法基于考虑排列发生的时间顺序进行调整,更接近真实的结果,但在计算过程中稍微耗时一些。\n因此,当在glmnet和survival软件包中处理生存分析时,需要注意到在处理排列的方法上的差异,以确保得到准确和一致的结果。\n\n\n\n14.11.3 分层COX\ncoxph()支持strata()函数,因为它是使用公式形式的,但是glmnet不支持公式形式,只能使用x/y形式的输入,所以如果要实现分层,需要使用stratifySurv()。\n继续使用上面的示例数据,我们把1000个观测分成5层:\n\n# 把1000个观测分5层\nstrata &lt;- rep(1:5, length.out = 1000)\ny2 &lt;- stratifySurv(y, strata) # 对y进行分层\nstr(y2[1:6])\n##  'stratifySurv' num [1:6, 1:2] 1.7688  0.5453  0.0449+ 0.8503+ 0.6149  0.2986+\n##  - attr(*, \"dimnames\")=List of 2\n##   ..$ : NULL\n##   ..$ : chr [1:2] \"time\" \"status\"\n##  - attr(*, \"type\")= chr \"right\"\n##  - attr(*, \"strata\")= int [1:6] 1 2 3 4 5 1\n\n接下来把y2提供给glmnet()或者cv.glmnet()就可以实现正则化的分层COX了。\n\nfit &lt;- glmnet(x, y2, family = \"cox\")\n\ncv.fit &lt;- cv.glmnet(x, y2, family = \"cox\", nfolds = 5)\nplot(cv.fit)\n\n\n\n\n\n\n14.11.4 生存曲线\nglmnet的结果可以直接提供给survfit()使用,可以用来画生存曲线。这里简单介绍一下,大家知道即可,因为大家在平时写文章时根本不会这么用……\n以下是一个示例。\n\ndata(CoxExample)\nx &lt;- CoxExample$x\ny &lt;- CoxExample$y\n\ny &lt;- Surv(y[,1],y[,2]) # 需要用Surv转换格式\n\nfit &lt;- glmnet(x, y, family = \"cox\")\nsurvival::survfit(fit, s = 0.05, x = x, y = y)\n## Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y)\n## \n##         n events median\n## [1,] 1000    692  0.922\n\n直接画图即可:\n\nplot(survival::survfit(fit, s = 0.05, x = x, y = y))\n\n\n\n\n这个生存曲线有些奇怪,因为数据原因,大家可以自己尝试下。\n基于新的数据画生存曲线也是可以的:\n\nplot(survival::survfit(fit, s = 0.05, x = x, y = y, newx = x[1:3, ]))"
-  },
-  {
-    "objectID": "feature-selection_lasso.html#其他",
-    "href": "feature-selection_lasso.html#其他",
-    "title": "14  lasso回归筛选变量",
-    "section": "14.12 其他",
-    "text": "14.12 其他\n我知道大家想看的肯定不是这些,所以后期会安排一些glmnet实战的推文,用几个详细的示例进行演示,并展示lasso回归相关的列线图、校准曲线、决策曲线、ROC曲线等内容,结合一些文章进行讲解。\n敬请期待~"
-  },
-  {
-    "objectID": "feature-selection_randomforest.html#准备数据",
-    "href": "feature-selection_randomforest.html#准备数据",
-    "title": "15  变量筛选之随机森林",
-    "section": "15.1 准备数据",
-    "text": "15.1 准备数据\n我们使用TCGA-BLCA的lncRNA数据(数据在粉丝QQ群文件,需要的加群下载即可),其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\n先简单处理一下数据:\n\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin &lt;- lnc_expr_clin[lnc_expr_clin$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin[,c(72,1:59)]\n\n#把变量命中的“-”去掉\ncolnames(dat.cox)&lt;- gsub(\"-\",\"\",colnames(dat.cox))\n\n#结果变量变为因子型\ndat.cox$event &lt;- factor(dat.cox$event)\ndim(dat.cox)\n## [1] 297  60\ndat.cox[1:4,1:6]\n##   event    PGM5AS1 LINC01082 AC005180.2 AC005180.1    FENDRR\n## 1     0 0.15064007 0.2642238  0.0000000  0.1547768 0.7802599\n## 2     0 0.06309362 0.1666554  0.3105983  0.2436603 0.7239329\n## 3     1 2.16399508 3.5662920  2.2454129  2.0073496 2.8409939\n## 4     0 2.73075081 1.7314314  0.8609916  0.7323014 1.0531249"
+    "title": "18  lasso回归筛选变量",
+    "section": "18.2 正则化Cox回归",
+    "text": "18.2 正则化Cox回归\n正则化的COX回归,也就是glmnet在生存分析中的应用,这里我们还是以lasso为例进行演示。\nglmnet包的详细使用介绍已经在前面都介绍过了,正则化的COX回归并没有太大的不同,所以这里简单介绍一下。\n下面是一些理论解释,大家随便看看就好。\n在glmnet中,我们使用弹性网络(elastic net)方法对部分似然的负对数进行惩罚。\n部分似然(partial-likelihood)是一种用于处理生存分析(survival-analysis)中右侧截尾(right-censored)观测的方法。而负对数部分似然(negative-log-partial-likelihood)则是对部分似然取反并求对数,目的是将最大化似然函数的问题转化为最小化负对数似然函数的问题。\n为了进一步约束模型的复杂度和提高模型的泛化能力,我们在负对数部分似然的基础上引入了弹性网络惩罚(elastic-net-penalty)。弹性网惩罚结合了L1正则化(L1-regularization)和L2正则化(L2-regularization)的特性,从而既能产生稀疏解,又能保留一些高度相关的特征。这样我们可以在建立模型时在部分似然的基础上,使用弹性网惩罚来进行模型的优化和参数选择,以提高模型的性能和泛化能力。\n\n18.2.1 基础使用\nglmnet对数据格式是有要求的,之前也说过,x必须是由自变量组成的matrix,y可以是一个两列的matrix,两列的列名必须是time和status,分别表示生存时间和生存状态,其中status必须使用数字0和数字1组成,0表示删失,1表示发生终点事件(又叫失效事件,比如死亡)。除此之外,y还可以是由Surv()函数生成的对象。\n下面是一个示例数据:\n\nlibrary(glmnet)\nlibrary(survival)\n\ndata(CoxExample)\nx &lt;- CoxExample$x\ny &lt;- CoxExample$y\n\n# 查看y的数据格式\ny[1:5, ]\n##            time status\n## [1,] 1.76877757      1\n## [2,] 0.54528404      1\n## [3,] 0.04485918      0\n## [4,] 0.85032298      0\n## [5,] 0.61488426      1\n\n建立模型,只需要使用family = \"cox\"即可:\n\nfit &lt;- glmnet(x, y, family = \"cox\")\n\n其中的一些参数比如alpha,weights,nlambda等,在前面已经介绍过了,这里就不再多介绍了。\n可视化、提取系数、预测新数据和之前介绍的用法也是一模一样,这里也不再多说了。\n\n\n18.2.2 交叉验证\n对于正则化的cox来说,cv.glmnet()中的type.measure只能是\"deviance\"(默认值,给出部分似然),或者\"C\",给出 Harrell-C-index。\n\nset.seed(1)\ncvfit &lt;- cv.glmnet(x, y, family = \"cox\", type.measure = \"C\")\n\nprint(cvfit)\n## \n## Call:  cv.glmnet(x = x, y = y, type.measure = \"C\", family = \"cox\") \n## \n## Measure: C-index \n## \n##      Lambda Index Measure       SE Nonzero\n## min 0.03058    23  0.7304 0.005842      11\n## 1se 0.05865    16  0.7267 0.005993      10\n\n画图也是一样的,下面这幅图的解释在前面也已经详细介绍过了,这里就不再多做解释了:\n\nplot(cvfit)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n提示\n\n\n\n在glmnet中,对于生存时间的排列相同(ties)情况,使用的是Breslow近似(Breslow approximation)。这与survival软件包中的coxph函数的默认排列处理方法(tie-handling method)-Efron近似(Efron approximation)不同。\n当存在相同的生存时间观测时,例如多个个体在同一时间发生事件,排列的处理方法对估计结果和推断的准确性至关重要。Breslow近似与Efron近似是最常见的两种处理方法。\n在glmnet中,使用Breslow近似处理排列,该方法假设所有的排列发生在后一事件之前的所有时间上。这种近似方法在计算效率上比较高,但可能会导致估计的偏差。\n而在survival软件包中的coxph函数,默认使用的是Efron近似处理排列。Efron近似方法基于考虑排列发生的时间顺序进行调整,更接近真实的结果,但在计算过程中稍微耗时一些。\n因此,当在glmnet和survival软件包中处理生存分析时,需要注意到在处理排列的方法上的差异,以确保得到准确和一致的结果。\n\n\n\n\n18.2.3 分层COX\ncoxph()支持strata()函数,因为它是使用公式形式的,但是glmnet不支持公式形式,只能使用x/y形式的输入,所以如果要实现分层,需要使用stratifySurv()。\n继续使用上面的示例数据,我们把1000个观测分成5层:\n\n# 把1000个观测分5层\nstrata &lt;- rep(1:5, length.out = 1000)\ny2 &lt;- stratifySurv(y, strata) # 对y进行分层\nstr(y2[1:6])\n##  'stratifySurv' num [1:6, 1:2] 1.7688  0.5453  0.0449+ 0.8503+ 0.6149  0.2986+\n##  - attr(*, \"dimnames\")=List of 2\n##   ..$ : NULL\n##   ..$ : chr [1:2] \"time\" \"status\"\n##  - attr(*, \"type\")= chr \"right\"\n##  - attr(*, \"strata\")= int [1:6] 1 2 3 4 5 1\n\n接下来把y2提供给glmnet()或者cv.glmnet()就可以实现正则化的分层COX了。\n\nfit &lt;- glmnet(x, y2, family = \"cox\")\n\ncv.fit &lt;- cv.glmnet(x, y2, family = \"cox\", nfolds = 5)\nplot(cv.fit)\n\n\n\n\n\n\n\n\n\n\n18.2.4 生存曲线\nglmnet的结果可以直接提供给survfit()使用,可以用来画生存曲线。这里简单介绍一下,大家知道即可,因为大家在平时写文章时根本不会这么用……\n以下是一个示例。\n\ndata(CoxExample)\nx &lt;- CoxExample$x\ny &lt;- CoxExample$y\n\ny &lt;- Surv(y[,1],y[,2]) # 需要用Surv转换格式\n\nfit &lt;- glmnet(x, y, family = \"cox\")\nsurvival::survfit(fit, s = 0.05, x = x, y = y)\n## Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y)\n## \n##         n events median\n## [1,] 1000    692  0.922\n\n直接画图即可:\n\nplot(survival::survfit(fit, s = 0.05, x = x, y = y))\n\n\n\n\n\n\n\n\n这个生存曲线有些奇怪,因为数据原因,大家可以自己尝试下。\n基于新的数据画生存曲线也是可以的:\n\nplot(survival::survfit(fit, s = 0.05, x = x, y = y, newx = x[1:3, ]))",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>18</span>  <span class='chapter-title'>lasso回归筛选变量</span>"
+    ]
+  },
+  {
+    "objectID": "feature-selection_randomforest.html",
+    "href": "feature-selection_randomforest.html",
+    "title": "19  随机森林筛选变量",
+    "section": "",
+    "text": "19.1 准备数据\n我们使用TCGA-BLCA的lncRNA数据(数据在粉丝QQ群文件,需要的加群下载即可),其中包括408个样本,time_months是生存时间,event是生存状态,1代表死亡,0代表生存,其余变量都是自变量。\n先简单处理一下数据:\nrm(list = ls())\nload(file = \"datasets/lnc_expr_clin.RData\")\n#去掉没有生存信息的样本\nlnc_expr_clin &lt;- lnc_expr_clin[!is.na(lnc_expr_clin$time_months),]\nlnc_expr_clin &lt;- lnc_expr_clin[lnc_expr_clin$time_months&gt;0,]\n\n#选择其中一部分数据\ndat.cox &lt;- lnc_expr_clin[,c(72,1:59)]\n\n#把变量命中的“-”去掉\ncolnames(dat.cox)&lt;- gsub(\"-\",\"\",colnames(dat.cox))\n\n#结果变量变为因子型\ndat.cox$event &lt;- factor(dat.cox$event)\ndim(dat.cox)\n## [1] 297  60\ndat.cox[1:4,1:6]\n##   event    PGM5AS1 LINC01082 AC005180.2 AC005180.1    FENDRR\n## 1     0 0.15064007 0.2642238  0.0000000  0.1547768 0.7802599\n## 2     0 0.06309362 0.1666554  0.3105983  0.2436603 0.7239329\n## 3     1 2.16399508 3.5662920  2.2454129  2.0073496 2.8409939\n## 4     0 2.73075081 1.7314314  0.8609916  0.7323014 1.0531249",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>19</span>  <span class='chapter-title'>随机森林筛选变量</span>"
+    ]
   },
   {
     "objectID": "feature-selection_randomforest.html#建立模型",
     "href": "feature-selection_randomforest.html#建立模型",
-    "title": "15  变量筛选之随机森林",
-    "section": "15.2 建立模型",
-    "text": "15.2 建立模型\n使用经典的randomForest建立随机森林模型:\n\nlibrary(randomForest)\n\nset.seed(124)\nfit &lt;- randomForest(event~., data = dat.cox)\n\nfit\n## \n## Call:\n##  randomForest(formula = event ~ ., data = dat.cox) \n##                Type of random forest: classification\n##                      Number of trees: 500\n## No. of variables tried at each split: 7\n## \n##         OOB estimate of  error rate: 23.91%\n## Confusion matrix:\n##     0 1 class.error\n## 0 225 1 0.004424779\n## 1  70 1 0.985915493\n\n结果给出了树的数量:500颗;OOB错误率:23.91%;还给出了混淆矩阵。"
+    "title": "19  随机森林筛选变量",
+    "section": "19.2 建立模型",
+    "text": "19.2 建立模型\n使用经典的randomForest建立随机森林模型:\n\nlibrary(randomForest)\n\nset.seed(124)\nfit &lt;- randomForest(event~., data = dat.cox)\n\nfit\n## \n## Call:\n##  randomForest(formula = event ~ ., data = dat.cox) \n##                Type of random forest: classification\n##                      Number of trees: 500\n## No. of variables tried at each split: 7\n## \n##         OOB estimate of  error rate: 23.91%\n## Confusion matrix:\n##     0 1 class.error\n## 0 225 1 0.004424779\n## 1  70 1 0.985915493\n\n结果给出了树的数量:500颗;OOB错误率:23.91%;还给出了混淆矩阵。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>19</span>  <span class='chapter-title'>随机森林筛选变量</span>"
+    ]
   },
   {
     "objectID": "feature-selection_randomforest.html#结果探索",
     "href": "feature-selection_randomforest.html#结果探索",
-    "title": "15  变量筛选之随机森林",
-    "section": "15.3 结果探索",
-    "text": "15.3 结果探索\n下面是可视化整体错误率和树的数量的关系,可以看到随着树的数量增加,错误率逐渐降低并渐趋平稳,中间的黑色线条是整体的错误率,上下两条是结果变量中两个类别的错误率。\n\nplot(fit)\n\n\n\n\n可以看到结果有一个类别的错误率竟然是逐渐增加的,因为我们这个数据的存在严重的类不平衡问题,也就是结果变量中的两种类别差异很大:\n\ntable(dat.cox$event)\n## \n##   0   1 \n## 226  71\n\n类别0有226个,类别1只有71个,模型为了提高整体准确率,就会牺牲掉类别为1的准确性~\n查看整体错误率最小时有几棵树:\n\nwhich.min(fit$err.rate[,1])\n## [1] 252\n\n查看各个变量的重要性,这里给出了mean decrease gini,数值越大说明变量越重要:\n\nimportance(fit)\n##             MeanDecreaseGini\n## PGM5AS1            0.9352510\n## LINC01082          1.3866068\n## AC005180.2         1.6168145\n## AC005180.1         1.3488141\n## FENDRR             1.3961145\n## AC053503.3         1.1375051\n## MIR100HG           1.8389235\n## AP001107.5         1.4790429\n## C5orf66AS1         1.9776753\n## NR4A1AS            1.5676917\n## AL162424.1         1.4297710\n## AF001548.1         1.4044652\n## AC099850.4         1.9485050\n## MBNL1AS1           1.7969564\n## ADAMTS9AS1         2.6993467\n## MIR22HG            1.7904790\n## MIR200CHG          2.0379430\n## AC093010.3         2.8789159\n## LINC00865          1.4885762\n## AP003071.4         1.6418555\n## PCAT6              2.0033471\n## LINC02657          2.2435347\n## PPP1R14BAS1        1.8262720\n## AC012085.2         1.3986750\n## ACTA2AS1           1.3608811\n## AC036108.3         1.6392733\n## AC079313.2         1.1854198\n## AC020916.1         1.5358508\n## SNHG25             3.2320090\n## AL049555.1         3.2795519\n## MIR11HGAS1         1.1433175\n## AC018904.1         1.5742751\n## SNHG12             2.9166977\n## SPINT1AS1          2.2857854\n## KRT7AS             2.1031232\n## MIR205HG           1.5659665\n## HAND2AS1           1.9955215\n## AL445524.1         2.2827356\n## LINC01980          1.4518537\n## ZNF710AS1          1.7042160\n## AC092718.4         1.7060641\n## AC008735.2         1.5337512\n## LINC01133          1.2802464\n## AC025575.2         1.5706176\n## MAFGDT             1.9238538\n## CASC9              2.6039129\n## AL390719.2         2.1003651\n## AC002398.2         0.7629889\n## AC008736.1         1.9839028\n## AL161431.1         3.0891759\n## PCCADT             1.5235273\n## AC245041.2         1.9197363\n## U62317.1           1.6662262\n## U62317.2           1.4415305\n## VPS9D1AS1          2.0524334\n## AL023284.4         1.8027226\n## AATBC              2.1357139\n## LINC00641          1.6734872\n## AC015912.3         2.4443188\n\n可视化变量重要性:\n\nvarImpPlot(fit)\n\n\n\n\n通过变量重要性,大家就可以选择比较重要的变量了。你可以选择前5个,前10个,或者大于所有变量性平均值(中位数,百分位数等)的变量等等。"
+    "title": "19  随机森林筛选变量",
+    "section": "19.3 结果探索",
+    "text": "19.3 结果探索\n下面是可视化整体错误率和树的数量的关系,可以看到随着树的数量增加,错误率逐渐降低并渐趋平稳,中间的黑色线条是整体的错误率,上下两条是结果变量中两个类别的错误率。\n\nplot(fit)\n\n\n\n\n\n\n\n\n可以看到结果有一个类别的错误率竟然是逐渐增加的,因为我们这个数据的存在严重的类不平衡问题,也就是结果变量中的两种类别差异很大:\n\ntable(dat.cox$event)\n## \n##   0   1 \n## 226  71\n\n类别0有226个,类别1只有71个,模型为了提高整体准确率,就会牺牲掉类别为1的准确性。\n查看整体错误率最小时有几棵树:\n\nwhich.min(fit$err.rate[,1])\n## [1] 252\n\n查看各个变量的重要性,这里给出了mean decrease gini,数值越大说明变量越重要:\n\nimportance(fit)\n##             MeanDecreaseGini\n## PGM5AS1            0.9352510\n## LINC01082          1.3866068\n## AC005180.2         1.6168145\n## AC005180.1         1.3488141\n## FENDRR             1.3961145\n## AC053503.3         1.1375051\n## MIR100HG           1.8389235\n## AP001107.5         1.4790429\n## C5orf66AS1         1.9776753\n## NR4A1AS            1.5676917\n## AL162424.1         1.4297710\n## AF001548.1         1.4044652\n## AC099850.4         1.9485050\n## MBNL1AS1           1.7969564\n## ADAMTS9AS1         2.6993467\n## MIR22HG            1.7904790\n## MIR200CHG          2.0379430\n## AC093010.3         2.8789159\n## LINC00865          1.4885762\n## AP003071.4         1.6418555\n## PCAT6              2.0033471\n## LINC02657          2.2435347\n## PPP1R14BAS1        1.8262720\n## AC012085.2         1.3986750\n## ACTA2AS1           1.3608811\n## AC036108.3         1.6392733\n## AC079313.2         1.1854198\n## AC020916.1         1.5358508\n## SNHG25             3.2320090\n## AL049555.1         3.2795519\n## MIR11HGAS1         1.1433175\n## AC018904.1         1.5742751\n## SNHG12             2.9166977\n## SPINT1AS1          2.2857854\n## KRT7AS             2.1031232\n## MIR205HG           1.5659665\n## HAND2AS1           1.9955215\n## AL445524.1         2.2827356\n## LINC01980          1.4518537\n## ZNF710AS1          1.7042160\n## AC092718.4         1.7060641\n## AC008735.2         1.5337512\n## LINC01133          1.2802464\n## AC025575.2         1.5706176\n## MAFGDT             1.9238538\n## CASC9              2.6039129\n## AL390719.2         2.1003651\n## AC002398.2         0.7629889\n## AC008736.1         1.9839028\n## AL161431.1         3.0891759\n## PCCADT             1.5235273\n## AC245041.2         1.9197363\n## U62317.1           1.6662262\n## U62317.2           1.4415305\n## VPS9D1AS1          2.0524334\n## AL023284.4         1.8027226\n## AATBC              2.1357139\n## LINC00641          1.6734872\n## AC015912.3         2.4443188\n\n可视化变量重要性:\n\nvarImpPlot(fit)\n\n\n\n\n\n\n\n\n通过变量重要性,大家就可以选择比较重要的变量了。你可以选择前5个,前10个,或者大于所有变量性平均值(中位数,百分位数等)的变量等等。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>19</span>  <span class='chapter-title'>随机森林筛选变量</span>"
+    ]
   },
   {
     "objectID": "feature-selection_randomforest.html#交叉验证变量筛选",
     "href": "feature-selection_randomforest.html#交叉验证变量筛选",
-    "title": "15  变量筛选之随机森林",
-    "section": "15.4 交叉验证变量筛选",
-    "text": "15.4 交叉验证变量筛选\nrandomForest还提供了使用交叉验证法进行递归特征消除,筛选变量的方法:rfcv,下面是使用5折交叉验证进行递归特征消除:\n\nset.seed(647)\nres &lt;- rfcv(trainx = dat.cox[,-1],trainy = dat.cox[,1],\n            cv.fold = 5,\n            recursive = T\n            )\nres$n.var #变量个数\n## [1] 59 30 15  7  4  1\nres$error.cv #错误率\n##        59        30        15         7         4         1 \n## 0.2558923 0.2693603 0.2592593 0.2558923 0.2929293 0.3333333\n\n可以看到在变量个数为7的时候,错误率是最小的(和59一样,但是肯定选简单的)。\n可视化这个结果,很明显变量个数为7(和59)的时候错误率最小:\n\nwith(res, plot(n.var, error.cv, type=\"o\", lwd=2))\n\n\n\n\n结合上面的变量重要性,你可以选择前7个最重要的变量。\n\n\n\n\n\n\n注意\n\n\n\nrfcv得出的变量重要性和randomForest得出的变量重要性并不一样,而且rfcv的结果也并没有明确给出到底哪几个变量才是被选中的。这个方法并不常用,也不推荐大家用~\n参考:stackoverflow"
+    "title": "19  随机森林筛选变量",
+    "section": "19.4 交叉验证变量筛选",
+    "text": "19.4 交叉验证变量筛选\nrandomForest还提供了使用交叉验证法进行递归特征消除,筛选变量的方法:rfcv,下面是使用5折交叉验证进行递归特征消除:\n\nset.seed(647)\nres &lt;- rfcv(trainx = dat.cox[,-1],trainy = dat.cox[,1],\n            cv.fold = 5,\n            recursive = T\n            )\nres$n.var #变量个数\n## [1] 59 30 15  7  4  1\nres$error.cv #错误率\n##        59        30        15         7         4         1 \n## 0.2558923 0.2693603 0.2592593 0.2558923 0.2929293 0.3333333\n\n可以看到在变量个数为7的时候,错误率是最小的(和59一样,但是肯定选简单的)。\n可视化这个结果,很明显变量个数为7(和59)的时候错误率最小:\n\nwith(res, plot(n.var, error.cv, type=\"o\", lwd=2))\n\n\n\n\n\n\n\n\n结合上面的变量重要性,你可以选择前7个最重要的变量。\n\n\n\n\n\n\n注意\n\n\n\nrfcv得出的变量重要性和randomForest得出的变量重要性并不一样,而且rfcv的结果也并没有明确给出到底哪几个变量才是被选中的。这个方法并不常用,也不推荐大家用~\n参考:stackoverflow",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>19</span>  <span class='chapter-title'>随机森林筛选变量</span>"
+    ]
   },
   {
     "objectID": "feature-selection_randomforest.html#boruta筛选变量",
     "href": "feature-selection_randomforest.html#boruta筛选变量",
-    "title": "15  变量筛选之随机森林",
-    "section": "15.5 Boruta筛选变量",
-    "text": "15.5 Boruta筛选变量\nBoruta是基于随机森林的一种变量筛选方法,它可以基于随机森林的变量重要性计算z-score,然后对每个变量标记确认 or 待定 or 拒绝,从而实现变量筛选。\n这种方法倾向于找到所有与结果变量最相关的变量,所以结果有可能是冗余的(或者存在共线性、相关性)。\n参考文献:Kursa M B, Rudnicki W R. Feature selection with the Boruta package[J]. Journal of statistical software, 2010, 36: 1-13.\n我们还是以这个数据集为例进行演示。\n\nlibrary(Boruta)\n\nset.seed(23)\n\nfs &lt;- Boruta(event ~ ., data = dat.cox, doTrace=1)\n## After 13 iterations, +0.91 secs:\n##  rejected 35 attributes: AATBC, AC002398.2, AC008735.2, AC008736.1, AC012085.2 and 30 more;\n##  still have 24 attributes left.\n## After 17 iterations, +0.99 secs:\n##  rejected 2 attributes: KRT7AS, MAFGDT;\n##  still have 22 attributes left.\n## After 21 iterations, +1.1 secs:\n##  confirmed 1 attribute: AL161431.1;\n##  rejected 3 attributes: AC099850.4, AL162424.1, FENDRR;\n##  still have 18 attributes left.\n## After 24 iterations, +1.1 secs:\n##  rejected 1 attribute: AP001107.5;\n##  still have 17 attributes left.\n## After 30 iterations, +1.2 secs:\n##  confirmed 1 attribute: ADAMTS9AS1;\n##  still have 16 attributes left.\n## After 45 iterations, +1.5 secs:\n##  confirmed 1 attribute: SNHG25;\n##  still have 15 attributes left.\n## After 48 iterations, +1.6 secs:\n##  confirmed 2 attributes: AC093010.3, MIR100HG;\n##  still have 13 attributes left.\n## After 63 iterations, +1.9 secs:\n##  confirmed 1 attribute: SPINT1AS1;\n##  still have 12 attributes left.\n## After 71 iterations, +2 secs:\n##  confirmed 1 attribute: HAND2AS1;\n##  still have 11 attributes left.\n\n查看筛选结果:变量确认,变量待定,变量拒绝:\n\ntable(fs$finalDecision)\n## \n## Tentative Confirmed  Rejected \n##        11         7        41\n\n获取确认变量的名字:\n\ngetSelectedAttributes(fs)\n## [1] \"MIR100HG\"   \"ADAMTS9AS1\" \"AC093010.3\" \"SNHG25\"     \"SPINT1AS1\" \n## [6] \"HAND2AS1\"   \"AL161431.1\"\n\n这样就搞定了!用这几个变量重新建立模型即可,当然也可以用这几个变量建立其他你喜欢的模型,都是可以的。\n公众号后台回复变量筛选即可获取相关推文合集,回复随机森林也可获取相关合集。"
-  },
-  {
-    "objectID": "clinmodel-evalution.html#什么样的模型是好的模型",
-    "href": "clinmodel-evalution.html#什么样的模型是好的模型",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.1 什么样的模型是好的模型?",
-    "text": "16.1 什么样的模型是好的模型?\n一个理想的模型应该是这样的:它能正确区分所有的患者和非患者,能正确预测每一个个体是否会发生危险事件,并且不会出错。很明显这样的模型是不存在的,我们只能朝这个方向努力。\n评价一个模型的好坏可以从区分度(Discrimination)和校准度(Calibration)两个方面进行。\n区分度指的是一个模型能正确把人群分为患者/非患者,或者正确区分个体是处于低风险、还是处于高风险,或者正确预测患者是存活、还是死亡等的能力。\n但是一个模型只是有良好的区分度是不够的,因为临床是很复杂的,并不是只要正确分类就行了。对于不同的患者,可能他们都处于高风险组,但是对于50%的风险和80%的风险,我们的处理是不一样的!\n这就引出了校准度的概念,校准度指的是结局实际发生的概率和模型预测出的概率之间的一致性,所以校准度又叫一致性、拟合优度(goodness of fit),校准度体现了一个模型对绝对风险预测的准确性。\n一个具有良好区分度的模型,校准度不一定也很好。比如,一个模型把A、B两个患者(实际上就是低风险)都分为低风险组,并且B的风险是A的3倍,我们可以说这个模型的区分度很好,因为分类分的很准!然后这个模型预测出A的风险是1%,B的风险是3%,但实际上A的风险是10%,B的风险是30%!你看,这个模型的校准度就很差(世纪概率和预测概率相差很大)。如果使用这样的模型预测出来的结果处理病人的话,可能就会碰到很多问题。\n区分度和校准度虽然都有不足,但是一般来说,具有较差区分度的模型,其校准度也不会很好。当一个模型区分度和校准度都很差的时候,我们可以先从提高模型区分度的角度继续。"
-  },
-  {
-    "objectID": "clinmodel-evalution.html#区分度的评价",
-    "href": "clinmodel-evalution.html#区分度的评价",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.2 区分度的评价",
-    "text": "16.2 区分度的评价\n说了这么多,那我们应该用哪些指标评价模型的分类能力的强弱呢?\n我们可以使用ROC曲线和C-Statistic评价。二分类变量的AUC(曲线下面积)和C-Statistic是一个东西,都是越接近1,模型的区分度越好。一般认为,AUC或者C-Statistic在0.6以下是低区分度,在0.6~0.75之间是中区分度,高于0.75是高区分度。\n关于ROC曲线和AUC的概念,大家自行了解。\n\nROC曲线的横坐标是1-特异度,纵坐标是灵敏度,也就是横坐标是假阳性,纵坐标是真阳性,这两个指标刚好是相反的,一个大另一个就小,所以一般我们会找一个阈值,使得曲线下面积最大。但是如果考虑到临床,这样做有时也是不妥的。比如,在患者具有某些高危疾病(比如心梗、肺梗等)的风险时,我们应该采取更加激进的措施进行预防,这时我们就需要更高的灵敏度,因为不想漏诊。\nROC和C-Statistic也存在明显的局限性,比如在模型中新增一个预测变量可能对于预后非常重要,但是反应在ROC和C-Statistic上却变化不大,特别是在ROC和C-Statistic已经很高的时候。"
-  },
-  {
-    "objectID": "clinmodel-evalution.html#校准度的评价",
-    "href": "clinmodel-evalution.html#校准度的评价",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.3 校准度的评价",
-    "text": "16.3 校准度的评价\n目前校准度的评价最好的方式还是使用Calibration curve(Calibration plot)。通过校准曲线可以非常直观地看到预测概率和真实概率的关系。\n\n校准度的评价可以在很多水平进行,比如,从整体角度,或者从不同的组进行等。\n假如100个人有20个人发生了结局事件,那么真实概率就是20%,我们的模型会对每个人都计算出一个概率,如果大于某个值(比如说0.5),我们就认为这个人会发生结局事件,小于0.5就认为不会发生结局事件,那么这100个人每个人都会得到一个概率,把100个人的概率加起来再除以100,就得到了模型预测的平均概率,这个概率就是从整体角度评价的。\n假如把100个人按照预测概率大小排好序,然后分成10组,每组10人,在每个组内计算模型平均概率,再和真实概率(比如一组内10人有3人发生了结局事件,那这一组的真实概率就是30%)比较,然后把真实概率作为横坐标,预测概率作为纵坐标,就可以画出Calibration curve了,这就是从不同组的角度评价的(这是目前多数做法)。\n校准度还可以用Hosmer-Lemeshow 检验(H-L 检验)进行检验,若得到的P值小于0.05,那说明模型的预测值和真实值之间有差异,实际上Calibration curve就是Hosmer-Lemeshow检验的结果可视化,但是也仅仅是能说明有差异而已,并不能量化差异的大小。"
-  },
-  {
-    "objectID": "clinmodel-evalution.html#多个模型之间的比较",
-    "href": "clinmodel-evalution.html#多个模型之间的比较",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.4 多个模型之间的比较",
-    "text": "16.4 多个模型之间的比较\n模型之间的区分度可以用AUC或者C-Statistic进行比较,校准度可以用AIC(Akaike index criterion)、BIC(Bayesian index criterion)、R^2等指标进行比较。\n除此之外,还可以用净重新分类指数和综合判别改善指数来比较模型的优劣。\n\n16.4.1 NRI\nNRI,net reclassification index,净重新分类指数,是用来比较模型准确度的,这个概念有点难理解,但是非常重要,在临床研究中非常常见,是评价模型的一大利器!\n我们可以这样简单的理解,假如有一群受试者,有些是患病的,有些是没病的,你建立了一个模型1,通过计算把受试者分为了有病组和没病组(当然有些是分错的),然后你又建立了模型2,也是把这群受试者分成了有病组和没病组,相当于是重新分类了!2个模型计算的结果是不一样的,有的可能重新分类分对了,有的可能分错了,然后,净重分类 = 重新分对的 - 重新分错的,净重分类指数只要再除以总人数就可以了,这样得到的就是绝对净重分类指数。\n绝对净重分类指数反应的是模型对整体的分类能力有无改变,但是,对于有病组和没病组,都是有可能出现重新分类分对了/重新分类分错了/重新分类和之前一样,这3种情况的。所以,我们完全可以把有病组和没病组分开计算净重分类指数,然后再相加,这样得到的就是相加净重分类指数(additive NRI)。\n2种净重分类指数,在临床使用时建议都计算一下,我们用上面那篇文献中的一个例子说明。\n两种模型(旧模型为RCRI,新模型为CCTA + RCRI)评价患者术后发生心梗的风险,结果如下表所示,其中绿色表示正确重新分类,粉色表示错误重新分类,灰色表示没有重新分类。\n\n根据这个表计算出来的相加NRI为11%,但是绝对NRI为-8%。绝对NRI为-8%说明新模型比旧模型差,难道我们就要继续采用旧模型了吗?但是我们的结局事件是心梗,是会危及患者生命的,这时候我们就需要适当提高假阳性,因为即使漏诊1例对漏诊的患者来说也是生命攸关的大事,所以这种情况下新模型还是值得采用的。\n所以到底怎么取舍,不能只看数字,一定要结合实际情况,写文章时遇到了不好的结果也要好好讨论!\n\n\n16.4.2 IDI\nNRI、AUC、C-Statistic都是要先设置一个阈值,然后在这个阈值的前提下进行各种比较,它们只是考虑了单独一个点的情况,不能反应模型的整体情况。因此,又来了新的指标-IDI,Integrated Discrimination Improvement,综合判别改善指数。\nIDI的计算很简单,它反映了两个模型在预测概率上的差别,是基于模型对每个个体的预测概率计算所得。它的计算方法为:\n\nPnew,events:患者组,新模型对每个人预测概率的平均值;\nPold,events :患者组,旧模型对每个人预测概率的平均值;\n对于患者来说,那肯定是预测概率越高越准确,所以2者相减,值越大,表明新模型的预测能力越好;\nPnew,non-events:非患者组,新模型对每个人预测概率的平均值;\nPold,non-events:非患者组,旧模型对每个人预测概率的平均值;\n对于非患者来说,那肯定是预测概率越小越准确,因此,2者相减,值越小,表明新模型的预测能力越好;\n两部分再相减,就是值越大,表明模型预测能力越好,如果IDI为负值,那说明还不如原来的模型好。"
-  },
-  {
-    "objectID": "clinmodel-evalution.html#决策曲线-dca",
-    "href": "clinmodel-evalution.html#决策曲线-dca",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.5 决策曲线 DCA",
-    "text": "16.5 决策曲线 DCA\n临床都会碰到假阳性和假阴性问题,也就是误诊和漏诊问题,对于不同的疾病,可能我们需要的阈值不同,有时需要更高的假阳性,有时需要更高的假阴性,因此这就是一个实际临床效用问题,到底怎么办,才能使患者获益最大?\n决策曲线分析(Decision Curve Analysis,DCA)就是为了解决这一问题。\n当患者有症状但尚不能诊断为某种疾病时,临床医生必须决定是(1)经验性治疗,(2)不治疗,或(3)在选择选项1和2之前进行进一步的检查。是否治疗取决于临床医生的经验、疾病治疗的有效性和并发症,以及患者接受治疗风险和负担的意愿。决策曲线分析是一种通过考虑患者风险和获益的可能范围来评估临床决策是否可行的方法。\n\nDCA中的一个关键概念是“概率阈值”,即患者选择接受治疗的概率水平。结合上面这幅图,横坐标就是概率阈值,当概率阈值到达某个水平时,我们就采取治疗措施(简单理解)。此时对于一个病人来说,治疗有可能会利大于弊,也有可能会弊大于利,纵坐标就是利减去弊之后的净获益。\n概率阈值也是概率,取值自然是0-1之间的,所以对于每一个概率,我们都可以计算出一个净获益(计算方法上图中给出了),然后把所有的点连起来,就是决策曲线了(上图中3条曲线,代表3种不同方法的决策曲线)。\n上图中还有2条特殊的线,一条水平的蓝色线,表示所有人都不接受治疗时,此时不管概率阈值是多少,净获益肯定都是0。一条黄色的线,表示所有人都接受治疗时,随着概率阈值的改变,其净获益的改变。这两条线代表了2种极端的情况。\n在给定的概率阈值下,肯定是净获益越大越好,所以一般来说,肯定是曲线距离两条特殊的线越远越好。"
+    "title": "19  随机森林筛选变量",
+    "section": "19.5 Boruta筛选变量",
+    "text": "19.5 Boruta筛选变量\nBoruta是基于随机森林的一种变量筛选方法,它可以基于随机森林的变量重要性计算z-score,然后对每个变量标记确认 or 待定 or 拒绝,从而实现变量筛选。\n这种方法倾向于找到所有与结果变量最相关的变量,所以结果有可能是冗余的(或者存在共线性、相关性)。\n参考文献:Kursa M B, Rudnicki W R. Feature selection with the Boruta package[J]. Journal of statistical software, 2010, 36: 1-13.\n我们还是以这个数据集为例进行演示。\n\nlibrary(Boruta)\n\nset.seed(23)\n\nfs &lt;- Boruta(event ~ ., data = dat.cox, doTrace=1)\n\n查看筛选结果:变量确认,变量待定,变量拒绝:\n\ntable(fs$finalDecision)\n## \n## Tentative Confirmed  Rejected \n##        11         7        41\n\n获取确认变量的名字:\n\ngetSelectedAttributes(fs)\n## [1] \"MIR100HG\"   \"ADAMTS9AS1\" \"AC093010.3\" \"SNHG25\"     \"SPINT1AS1\" \n## [6] \"HAND2AS1\"   \"AL161431.1\"\n\n这样就搞定了!用这几个变量重新建立模型即可,当然也可以用这几个变量建立其他你喜欢的模型,都是可以的。\n公众号后台回复变量筛选即可获取相关推文合集,回复随机森林也可获取相关合集。",
+    "crumbs": [
+      "常见的变量选择方法",
+      "<span class='chapter-number'>19</span>  <span class='chapter-title'>随机森林筛选变量</span>"
+    ]
+  },
+  {
+    "objectID": "conf_matrix-3d.html",
+    "href": "conf_matrix-3d.html",
+    "title": "20  三维混淆矩阵",
+    "section": "",
+    "text": "20.1 2d混淆矩阵可视化\n如果要可视化混淆矩阵,简单的2维非常简单,比如用ggplot2即可:\nggplot(df1, aes(pred, outcome))+\n  geom_tile(aes(fill=ca125))+\n  geom_label(data = df1 %&gt;% count(pred, outcome), aes(pred,outcome,label=n),size=12)+\n  theme_minimal()+\n  theme(legend.position = \"none\")\n想要修改更多细节,大家自己动手即可,非常简单!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>20</span>  <span class='chapter-title'>三维混淆矩阵</span>"
+    ]
   },
   {
-    "objectID": "clinmodel-evalution.html#临床影响曲线-cic",
-    "href": "clinmodel-evalution.html#临床影响曲线-cic",
-    "title": "16  临床预测模型的评价方法",
-    "section": "16.6 临床影响曲线 CIC",
-    "text": "16.6 临床影响曲线 CIC\n临床影响曲线,Clinical Impact Curve,属于DCA的变种,是Kerr等人对DCA的进一步发展,结合下面这张图来看:\n\n横坐标还是概率阈值,纵坐标是人数。紫色线表示在不同的概率阈值下,被模型判定为高风险的人数;红色线条表示在不同的概率阈值下,被模型判定为高风险且真的发生结局事件的人数。在最下面还增加了一个损失:获益比,表示在不同的概率阈值下,损失和获益的比例。\n了解这些基础内容后,我们就可以通过各种各样的工具实现它,后面我们将会详细介绍如果通过R语言实现以上内容。"
+    "objectID": "conf_matrix-3d.html#d版混淆矩阵可视化",
+    "href": "conf_matrix-3d.html#d版混淆矩阵可视化",
+    "title": "20  三维混淆矩阵",
+    "section": "20.2 3d版混淆矩阵可视化",
+    "text": "20.2 3d版混淆矩阵可视化\n也是很简单,使用barplot3d这个包即可。这个包需要本地安装。\n注意这个包画图的顺序:从左到右,从前到后!\n\nlibrary(barplot3d)\n\n# 把混淆矩阵结果放到1个向量里\ninputdata &lt;- c(15,5,1,9)\n\n# 定义4个颜色\nmycolors &lt;- c(\"#00468BB2\", \"#ED0000B2\", \"#42B540B2\", \"#0099B4B2\")\n\nbarplot3d(rows = 2,cols = 2, z = inputdata, # 一共4个数,2行,2列\n          scalexy=8, # 让柱子胖一点\n          topcolors=mycolors, # 柱子顶部的颜色\n          sidecolors=mycolors, # 柱子的填充色\n          xlabels = c(\"pred.No\",\"pred.Yes\"), \n          ylabels = c(\"No\",\"Yes\"),\n          xsub = \"Prediction\",\n          ysub = \"Outcome\",\n          zsub = \"Count\"\n          )\n\n出图如下:\n\n这个图是3d的,画出来之后会单独弹出一个窗口,你可以随意旋转,找到自己喜欢的角度保存即可!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>20</span>  <span class='chapter-title'>三维混淆矩阵</span>"
+    ]
+  },
+  {
+    "objectID": "roc-binominal.html",
+    "href": "roc-binominal.html",
+    "title": "21  二分类ROC曲线绘制",
+    "section": "",
+    "text": "21.1 方法1:pROC\n使用pROC包,这个R包的功能非常强大,我这里只演示它的绘制ROC曲线以及计算AUC的功能,关于这个R包的详细使用,请参考文章:用pROC实现ROC曲线分析,关于pROC的使用在最后一章有详细介绍。\n这个包的使用有一些注意点如下:\n使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:\nlibrary(pROC)\n\ndata(aSAH)\ndim(aSAH)\n## [1] 113   7\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n计算AUC及可信区间:\nres &lt;- roc(aSAH$outcome,aSAH$s100b,ci=T,auc=T)\nres\n## \n## Call:\n## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)\n## \n## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).\n## Area under the curve: 0.7314\n## 95% CI: 0.6301-0.8326 (DeLong)\n绘制ROC曲线:\nplot(res,legacy.axes = TRUE)\n可以显示最佳截点(最佳截点的问题后续章节会详细介绍),比如AUC最大的点:\nplot(res,\n     legacy.axes = TRUE,\n     thresholds=\"best\", # AUC最大的点\n     print.thres=\"best\")\n多条ROC曲线画在一起:\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), \n       col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n两条ROC曲线的比较,可以添加P值:\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), \n       col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n\ntestobj &lt;- roc.test(rocobj1, rocobj2)\n\ntext(50, 50, labels=paste(\"p-value =\",format.pval(testobj$p.value)), \n     adj=c(0, .5))",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>21</span>  <span class='chapter-title'>二分类ROC曲线绘制</span>"
+    ]
   },
   {
     "objectID": "roc-binominal.html#方法1proc",
     "href": "roc-binominal.html#方法1proc",
-    "title": "17  二分类资料ROC曲线绘制",
-    "section": "17.1 方法1:pROC",
-    "text": "17.1 方法1:pROC\n使用pROC包,不过使用这个包需要注意,一定要指定direction,否则可能会得出错误的结果。\n这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC,在计算时千万要注意!\n关于这个R包的详细使用,请参考文章:用pROC实现ROC曲线分析\n使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。\n\nlibrary(pROC)\n## Type 'citation(\"pROC\")' for a citation.\n## \n## Attaching package: 'pROC'\n## The following objects are masked from 'package:stats':\n## \n##     cov, smooth, var\n\ndata(aSAH)\ndim(aSAH)\n## [1] 113   7\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n\n计算AUC及可信区间:\n\nres &lt;- roc(aSAH$outcome,aSAH$s100b,ci=T,auc=T)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nres\n## \n## Call:\n## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)\n## \n## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).\n## Area under the curve: 0.7314\n## 95% CI: 0.6301-0.8326 (DeLong)\n\n\nplot(res,legacy.axes = TRUE)\n\n\n\n\n可以显示最佳截点,比如AUC最大的点:\n\nplot(res,\n     legacy.axes = TRUE,\n     thresholds=\"best\", # AUC最大的点\n     print.thres=\"best\") \n\n\n\n\n可以显示AUC的可信区间:\n\nrocobj &lt;- plot.roc(aSAH$outcome, aSAH$s100b,\n                   main=\"Confidence intervals\", \n                   percent=TRUE,ci=TRUE, \n                   print.auc=TRUE\n                   ) \n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\nciobj &lt;- ci.se(rocobj,\n               specificities=seq(0, 100, 5)\n               )\n\nplot(ciobj, type=\"shape\", col=\"#1c61b6AA\")\nplot(ci(rocobj, of=\"thresholds\", thresholds=\"best\")) \n\n\n\n\n多条ROC曲线画在一起:\n\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n\n\n\n\n两条ROC曲线的比较,可以添加P值:\n\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n\ntestobj &lt;- roc.test(rocobj1, rocobj2)\n\ntext(50, 50, labels=paste(\"p-value =\", format.pval(testobj$p.value)), adj=c(0, .5))"
+    "title": "21  二分类ROC曲线绘制",
+    "section": "",
+    "text": "一定要指定direction,否则可能会得出错误的结果。\n这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC。\n它可以绘制带有置信区间的ROC,但是并不是大家想要的那一种,具体请参考上面的文章\n\n\n\ngos6:格拉斯哥量表评分\noutcome:结果变量\ngender:性别\nage:年龄\nwfns:世界神经外科医师联合会公认的神经学量表评分\ns100b:生物标志物\nndka:生物标志物",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>21</span>  <span class='chapter-title'>二分类ROC曲线绘制</span>"
+    ]
   },
   {
     "objectID": "roc-binominal.html#方法2rocr",
     "href": "roc-binominal.html#方法2rocr",
-    "title": "17  二分类资料ROC曲线绘制",
-    "section": "17.2 方法2:ROCR",
-    "text": "17.2 方法2:ROCR\n使用ROCR,如果你只是为了画一条ROC曲线,这是我最推荐的方法了,美观又简单!\n\nlibrary(ROCR)\n\n使用非常简单,3句代码,其中第2句是关键,可以更改各种参数,然后就可以画出各种不同的图形:\n\npred &lt;- prediction(aSAH$s100b,aSAH$outcome)\nperf &lt;- performance(pred, \"tpr\",\"fpr\")\nauc &lt;- round(performance(pred, \"auc\")@y.values[[1]],digits = 4)\n\nplot(perf,lwd=2,col=\"tomato\")\nabline(0,1,lty=2)\nlegend(\"bottomright\", legend=\"AUC of s100b: 0.7314\", col=\"tomato\", lwd=2,bty = \"n\")\n\n\n\n\n添加箱线图:\n\nperf &lt;- performance(pred, \"tpr\", \"fpr\")\nperf\n## A performance instance\n##   'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')\n##   with 51 data points\n\nplot(perf,\n     avg=\"threshold\",\n     spread.estimate=\"boxplot\")\n\n\n\n\n还可以绘制PR曲线,召回率recall为横坐标,精确率precision 为纵坐标:\n\nperf &lt;- performance(pred, \"prec\", \"rec\")\nplot(perf,\n     avg= \"threshold\",\n     colorize=TRUE,\n     lwd= 3,\n     main= \"Precision-Recall plot\")\nplot(perf,\n     lty=3,\n     col=\"grey78\",\n     add=TRUE)\n\n\n\n\n还可以把特异度为横坐标,灵敏度为纵坐标:\n\nperf &lt;- performance(pred, \"sens\", \"spec\")\nplot(perf,\n     avg= \"threshold\",\n     colorize=TRUE,\n     lwd= 3,\n     main=\"Sensitivity/Specificity plots\")\nplot(perf,\n     lty=3,\n     col=\"grey78\",\n     add=TRUE)\n\n\n\n\n这个包还可以计算非常多其他的指标,各种图都能画,大家可以自己探索。"
-  },
-  {
-    "objectID": "roc-binominal.html#方法3tidymodels",
-    "href": "roc-binominal.html#方法3tidymodels",
-    "title": "17  二分类资料ROC曲线绘制",
-    "section": "17.3 方法3:tidymodels",
-    "text": "17.3 方法3:tidymodels\n使用tidymodels。这个包很有来头,它是R中专门做机器学习的,可以到公众号:医学和生信笔记中查看更多关于它的教程,它也是目前R语言机器学习领域两大当红辣子鸡之一!另一个是mlr3。\n\nsuppressPackageStartupMessages(library(tidymodels))\n\n它很优雅,如果你要计算AUC,那么就是roc_auc()函数:\n\naSAH %&gt;% roc_auc(outcome, s100b,event_level=\"second\")\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.731\n\n如果你是要画ROC曲线,那么就是roc_curve()函数:\n\naSAH %&gt;% roc_curve(outcome, s100b,event_level=\"second\") %&gt;% \n  ggplot(aes(x = 1 - specificity, y = sensitivity)) +\n  geom_path(size=1.2,color=\"firebrick\") +\n  geom_abline(lty = 3) +\n  coord_equal() +\n  theme_bw()\n\n\n\n\n还有太多方法可以画ROC了,不过pROC和ROCR基本上技能解决99%的问题了。\n最后,给大家看看cran中比较常见的画ROC曲线的包,大家有兴趣可以自己探索:\n\nlibrary(pkgsearch) \n\nrocPkg &lt;-  pkg_search(query=\"ROC\",size=200)\n\nrocPkgShort &lt;- rocPkg %&gt;% \n               filter(maintainer_name != \"ORPHANED\") %&gt;%\n               select(score, package, downloads_last_month) %&gt;%\n               arrange(desc(downloads_last_month))\nhead(rocPkgShort,20)\n## # A data frame: 20 × 3\n##      score package         downloads_last_month\n##  *   &lt;dbl&gt; &lt;chr&gt;                          &lt;int&gt;\n##  1 12333.  pROC                          208519\n##  2  4487.  caTools                       105907\n##  3   990.  ROCR                           53779\n##  4   404.  riskRegression                 12677\n##  5  2637.  PRROC                           9912\n##  6  1833.  plotROC                         3783\n##  7  2303.  cvAUC                           3657\n##  8   346.  mlr3viz                         3110\n##  9   385.  PresenceAbsence                 2653\n## 10  1881.  survivalROC                     2612\n## 11  1801.  precrec                         2547\n## 12  1838.  timeROC                         2371\n## 13   117.  RcmdrPlugin.EZR                 2196\n## 14   460.  ROCit                           1956\n## 15   180.  WVPlots                         1940\n## 16   213.  logcondens                      1800\n## 17   152.  PredictABEL                     1208\n## 18   151.  MLeval                           960\n## 19    51.7 wrProteo                         877\n## 20  1446.  plotwidgets                      637\n\npROC高居榜首,遥遥领先!"
-  },
-  {
-    "objectID": "roc-survive.html#加载r包和数据",
-    "href": "roc-survive.html#加载r包和数据",
-    "title": "18  生存资料ROC曲线绘制",
-    "section": "18.1 加载R包和数据",
-    "text": "18.1 加载R包和数据\n\nrm(list = ls())\nlibrary(timeROC)\nlibrary(survival)\n\nload(file = \"./datasets/timeROC.RData\")"
+    "title": "21  二分类ROC曲线绘制",
+    "section": "21.2 方法2:ROCR",
+    "text": "21.2 方法2:ROCR\n使用ROCR,如果你只是为了画一条ROC曲线,这是我最推荐的方法了,美观又简单!\n\nlibrary(ROCR)\n\n使用非常简单,3句代码,其中第2句是关键,可以更改各种参数,然后就可以画出各种不同的图形:\n\npred &lt;- prediction(aSAH$s100b,aSAH$outcome)\nperf &lt;- performance(pred, \"tpr\",\"fpr\")\nauc &lt;- round(performance(pred, \"auc\")@y.values[[1]],digits = 4)\n\nplot(perf,lwd=2,col=\"tomato\")\nabline(0,1,lty=2)\nlegend(\"bottomright\", legend=\"AUC of s100b: 0.7314\", \n       col=\"tomato\", lwd=2,bty = \"n\")\n\n\n\n\n\n\n\n\n添加箱线图:\n\nperf &lt;- performance(pred, \"tpr\", \"fpr\")\nperf\n## A performance instance\n##   'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')\n##   with 51 data points\n\nplot(perf,\n     avg=\"threshold\",\n     spread.estimate=\"boxplot\")\n\n\n\n\n\n\n\n\n还可以绘制PR曲线,召回率recall为横坐标,精确率precision 为纵坐标:\n\nperf &lt;- performance(pred, \"prec\", \"rec\")\nplot(perf,\n     avg= \"threshold\",\n     colorize=TRUE,\n     lwd= 3,\n     main= \"Precision-Recall plot\")\nplot(perf,\n     lty=3,\n     col=\"grey78\",\n     add=TRUE)\n\n\n\n\n\n\n\n\n这个包还可以计算非常多其他的指标,各种图都能画,大家可以自己探索。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>21</span>  <span class='chapter-title'>二分类ROC曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "roc-binominal.html#方法3yardstick",
+    "href": "roc-binominal.html#方法3yardstick",
+    "title": "21  二分类ROC曲线绘制",
+    "section": "21.3 方法3:yardstick",
+    "text": "21.3 方法3:yardstick\n使用yardstick,它是tidymodels的核心R包之一,tidymodels是R中专门做机器学习和统计建模的,可以到公众号:医学和生信笔记,后台回复tidymodels查看更多关于它的教程,它也是目前R语言机器学习领域两大当红辣子鸡之一!另一个是mlr3。\n\nlibrary(yardstick)\nlibrary(ggplot2)\n\n它很优雅,如果你要计算AUC,那么就是roc_auc()函数:\n\naSAH |&gt; roc_auc(outcome, s100b,event_level=\"second\")\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.731\n\n如果你是要画ROC曲线,那么就是roc_curve()函数:\n\naSAH |&gt; roc_curve(outcome, s100b,event_level=\"second\") |&gt; \n  ggplot(aes(x = 1 - specificity, y = sensitivity)) +\n  geom_path(size=1.2,color=\"firebrick\") +\n  geom_abline(lty = 3) +\n  coord_equal() +\n  theme_bw()\n\n\n\n\n\n\n\n\n还有太多方法可以画ROC了,不过pROC和ROCR基本上能解决99%的问题了。\n最后,给大家看看cran中比较常见的画ROC曲线的包,大家有兴趣可以自己探索:\n\nlibrary(pkgsearch) \nlibrary(dplyr)\n\nrocPkg &lt;-  pkg_search(query=\"ROC\",size=200)\n\nrocPkgShort &lt;- rocPkg |&gt; \n               filter(maintainer_name != \"ORPHANED\") |&gt;\n               select(score, package, downloads_last_month) |&gt;\n               arrange(desc(downloads_last_month))\nhead(rocPkgShort,20)\n## # A data frame: 20 × 3\n##     score package              downloads_last_month\n##  *  &lt;dbl&gt; &lt;chr&gt;                               &lt;int&gt;\n##  1 12743. pROC                               151995\n##  2   961. ROCR                                57388\n##  3  2866. PRROC                               12230\n##  4   432. riskRegression                       8820\n##  5   410. PresenceAbsence                      3378\n##  6  1992. plotROC                              3155\n##  7  2291. cvAUC                                2955\n##  8   526. ROCit                                2663\n##  9  2021. survivalROC                          2661\n## 10  1818. timeROC                              2653\n## 11  2024. precrec                              1859\n## 12   218. logcondens                           1829\n## 13   190. WVPlots                              1583\n## 14   164. PredictABEL                           869\n## 15   190. RISCA                                 706\n## 16   220. hmeasure                              681\n## 17   159. cubfits                               659\n## 18  1599. plotwidgets                           654\n## 19   137. ThresholdROCsurvival                  649\n## 20  1000. ROCnReg                               643\n\npROC高居榜首,遥遥领先!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>21</span>  <span class='chapter-title'>二分类ROC曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "roc-binominal.html#推荐阅读",
+    "href": "roc-binominal.html#推荐阅读",
+    "title": "21  二分类ROC曲线绘制",
+    "section": "21.4 推荐阅读",
+    "text": "21.4 推荐阅读\nROC曲线的其他问题可参考以下推文:\n\n多时间点和多指标的ROC曲线\n临床预测模型之二分类资料ROC曲线的绘制\n临床预测模型之生存资料ROC曲线的绘制\nROC曲线(AUC)的显著性检验\n生存资料ROC曲线的最佳截点和平滑曲线\nROC曲线纯手工绘制\nR语言计算AUC(ROC曲线)的注意事项\nROC阴性结果还是阳性结果\n多指标联合诊断的ROC曲线\nROC曲线最佳截点\nbootstrap ROC/AUC\nR语言多分类ROC曲线绘制\n\n公众号后台回复ROC即可获取以上合集链接。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>21</span>  <span class='chapter-title'>二分类ROC曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "roc-survive.html",
+    "href": "roc-survive.html",
+    "title": "22  生存数据ROC曲线绘制",
+    "section": "",
+    "text": "22.1 加载数据\nrm(list = ls())\nload(file = \"./datasets/timeROC.RData\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>22</span>  <span class='chapter-title'>生存数据ROC曲线绘制</span>"
+    ]
   },
   {
     "objectID": "roc-survive.html#多个时间点roc",
     "href": "roc-survive.html#多个时间点roc",
-    "title": "18  生存资料ROC曲线绘制",
-    "section": "18.2 多个时间点ROC",
-    "text": "18.2 多个时间点ROC\n首先看一下数据结构,对于多个时间点的ROC,需要3列数据:time, event, marker(比如你计算得到的risk score)。\n看一下画图所需的数据长什么样子,event这一列,0代表living,1代表dead,futime这一列单位是年,也可以改成其他的。\n\nstr(df)\n## 'data.frame':    297 obs. of  3 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n\n\n# 构建timeroc\n\nROC &lt;- timeROC(T=df$futime,   \n               delta=df$event,   \n               marker=df$riskScore,   \n               cause=1,                #阳性结局指标数值\n               weighting=\"marginal\",   #计算方法,默认为marginal\n               times=c(1, 2, 3),       #时间点,选取1年,3年和5年的生存率\n               iid=TRUE)\n\nROC   #查看模型变量信息\n## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). \n##     Cases Survivors Censored AUC (%)   se\n## t=1    57       203       37   71.02 3.68\n## t=2    66       106      125   69.23 3.94\n## t=3    68        74      155   65.53 4.85\n## \n## Method used for estimating IPCW:marginal \n## \n## Total computation time : 0.08  secs.\n\n画图很简单:\n\nplot(ROC, \n     time=1, col=\"red\", lwd=2, title = \"\")   #time是时间点,col是线条颜色\nplot(ROC,\n     time=2, col=\"blue\", add=TRUE, lwd=2)    #add指是否添加在上一张图中\nplot(ROC,\n     time=3, col=\"orange\", add=TRUE, lwd=2)\n\n#添加标签信息\nlegend(\"bottomright\",\n       c(paste0(\"AUC at 1 year: \",round(ROC[[\"AUC\"]][1],2)), \n         paste0(\"AUC at 2 year: \",round(ROC[[\"AUC\"]][2],2)), \n         paste0(\"AUC at 3 year: \",round(ROC[[\"AUC\"]][3],2))),\n       col=c(\"red\", \"blue\", \"orange\"),\n       lty=1, lwd=2,bty = \"n\")"
+    "title": "22  生存数据ROC曲线绘制",
+    "section": "22.2 多个时间点ROC",
+    "text": "22.2 多个时间点ROC\n计算生存数据的ROC曲线以及AUC值,需要3列数据:生存时间,生存状态,以及你的分类依据(也就是你根据什么把样本分成生存还是死亡),在具体执行时,还必须指定时间点。\n看一下画图所需的数据长什么样子,event这一列是生存状态,0代表living,1代表dead,futime这一列是生存时间,单位是年,riskScore这一列是分类依据。\n\nstr(df)\n## 'data.frame':    297 obs. of  3 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\nhead(df)\n##   event    riskScore   futime\n## 1     0 -0.249325687 3.027500\n## 2     0 -0.511105679 1.155833\n## 3     1 -0.211305578 1.819167\n## 4     0 -0.427056800 1.516667\n## 5     0  0.278585747 1.344167\n## 7     1 -0.006760815 0.050000\n\n下面我们使用timeROC包中的timeROC()函数计算不同时间点的AUC值。\n\n# 加载R包\nlibrary(timeROC)\nlibrary(survival)\n\n# 构建timeroc\nROC &lt;- timeROC(T=df$futime,   \n               delta=df$event,   \n               marker=df$riskScore,   \n               cause=1,                #阳性结局指标数值\n               weighting=\"marginal\",   #计算方法,默认为marginal\n               times=c(1, 2, 3),       #时间点,选取1年2年3年\n               iid=TRUE)\n\nROC   #查看模型变量信息\n## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). \n##     Cases Survivors Censored AUC (%)   se\n## t=1    57       203       37   71.02 3.68\n## t=2    66       106      125   69.23 3.94\n## t=3    68        74      155   65.53 4.85\n## \n## Method used for estimating IPCW:marginal \n## \n## Total computation time : 0.07  secs.\n\n结果中给出了时间点在1年、2年、3年是的AUC值以及标准误(se)\n然后我们就可以根据这个结果绘制ROC曲线了。\n\n# 第1年的\nplot(ROC, \n     time=1, col=\"red\", lwd=2, title = \"\")   #time是时间点,col是线条颜色\n# 第2年的\nplot(ROC,\n     time=2, col=\"blue\", add=TRUE, lwd=2)    #add指是否添加在上一张图中\n# 第3年的\nplot(ROC,\n     time=3, col=\"orange\", add=TRUE, lwd=2)\n\n#添加图例信息\nlegend(\"bottomright\",\n       c(paste0(\"AUC at 1 year: \",round(ROC[[\"AUC\"]][1],2)), \n         paste0(\"AUC at 2 year: \",round(ROC[[\"AUC\"]][2],2)), \n         paste0(\"AUC at 3 year: \",round(ROC[[\"AUC\"]][3],2))),\n       col=c(\"red\", \"blue\", \"orange\"),\n       lty=1, lwd=2,bty = \"n\") \n\n\n\n\n\n\n\n\n如果你想绘制其他时间点的AUC以及ROC曲线,只需要在timeROC()函数中更改时间点即可。\n由于我们使用了不同的时间点,每一个时间点都有一个AUC值,所以我们可以很简单的就画出time-dependent-AUC曲线:\n\nplotAUCcurve(ROC, conf.int = T, col = \"firebrick\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>22</span>  <span class='chapter-title'>生存数据ROC曲线绘制</span>"
+    ]
   },
   {
     "objectID": "roc-survive.html#多指标roc",
     "href": "roc-survive.html#多指标roc",
-    "title": "18  生存资料ROC曲线绘制",
-    "section": "18.3 多指标ROC",
-    "text": "18.3 多指标ROC\n首先也是看一下所需要的数据结构,其中futime和event是必须的,另外的几列是你想要用来画ROC曲线图的指标,可以自己添加,在这里我使用了riskScore, gender, TNM分期。 在gender这一列,1是female,2是male,t,n,m这3列,数字代表不同的分期\n\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n多指标的ROC曲线非常简单,就是构建多个ROC,依次添加即可:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=3,   \n                    iid=TRUE)\n\n\n# gender的ROC曲线\nROC.gender &lt;- timeROC(T=df2$futime,   \n                      delta=df2$event,   \n                      marker=df2$gender,   \n                      cause=1,   \n                      weighting=\"marginal\",   \n                      times=3,   \n                      iid=TRUE)\n\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=3,   \n                   iid=TRUE)\n\n\n# T分期的ROC曲线\nROC.T &lt;- timeROC(T=df2$futime,\n                 delta=df2$event,  \n                 marker=df2$t,   \n                 cause=1, \n                 weighting=\"marginal\", \n                 times=3, \n                 iid=TRUE)\n\n\n# N分期的ROC曲线\nROC.N &lt;- timeROC(T=df2$futime,   \n                 delta=df2$event,   \n                 marker=df2$n,   \n                 cause=1,   \n                 weighting=\"marginal\",   \n                 times=3,   \n                 iid=TRUE)\n\n\n# M分期的ROC曲线\nROC.M &lt;- timeROC(T=df2$futime,   \n                 delta=df2$event,   \n                 marker=df2$m,   \n                 cause=1,   \n                 weighting=\"marginal\",   \n                 times=3,   \n                 iid=TRUE)\n\n把每个曲线拼在一起即可,添加一个图例:\n\nplot(ROC.risk, time = 3, col=\"#E41A1C\", lwd=2, title = \"\")\nplot(ROC.gender, time = 3, col=\"#A65628\", lwd=2, add = T)\nplot(ROC.age, time = 3, col=\"#4DAF4A\", lwd=2, add = T)\nplot(ROC.T, time = 3, col=\"#377EB8\", lwd=2, add = T)\nplot(ROC.N, time = 3, col=\"#984EA3\", lwd=2, add = T)\nplot(ROC.M, time = 3, col=\"#FFFF33\", lwd=2, add = T)\nlegend(\"bottomright\",\n       c(paste0(\"Risk score: \",round(ROC.risk[[\"AUC\"]][2],2)), \n         paste0(\"gender: \",round(ROC.gender[[\"AUC\"]][2],2)), \n         paste0(\"age: \",round(ROC.age[[\"AUC\"]][2],2)),\n         paste0(\"T: \",round(ROC.T[[\"AUC\"]][2],2)),\n         paste0(\"N: \",round(ROC.N[[\"AUC\"]][2],2)),\n         paste0(\"M: \",round(ROC.M[[\"AUC\"]][2],2))\n         ),\n       col=c(\"#E41A1C\", \"#A65628\", \"#4DAF4A\",\"#377EB8\",\"#984EA3\",\"#FFFF33\"),\n       lty=1, lwd=2,bty = \"n\")"
-  },
-  {
-    "objectID": "roc-bestcut.html#proc",
-    "href": "roc-bestcut.html#proc",
-    "title": "19  ROC曲线的最佳截点",
-    "section": "19.1 pROC",
-    "text": "19.1 pROC\n只能用于二分类数据,不能用于生存数据。\n使用pROC包需要注意,一定要指定direction,否则可能会得出错误的结果。\n这个R包计算AUC是基于中位数的,哪一组的中位数大就计算哪一组的AUC,在计算时千万要注意!\n关于这个包的详细介绍,请参考文章:用pROC实现ROC曲线分析\n使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。\n\nlibrary(pROC)\n## Type 'citation(\"pROC\")' for a citation.\n## \n## Attaching package: 'pROC'\n## The following objects are masked from 'package:stats':\n## \n##     cov, smooth, var\n\ndata(aSAH)\ndim(aSAH)\n## [1] 113   7\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n\n计算AUC及可信区间:\n\nres &lt;- pROC::roc(aSAH$outcome,aSAH$s100b,ci=T,auc=T)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nres\n## \n## Call:\n## roc.default(response = aSAH$outcome, predictor = aSAH$s100b,     auc = T, ci = T)\n## \n## Data: aSAH$s100b in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).\n## Area under the curve: 0.7314\n## 95% CI: 0.6301-0.8326 (DeLong)\n\n显示最佳截点,比如AUC最大的点:\n\nplot(res,\n     legacy.axes = TRUE,\n     thresholds=\"best\", # AUC最大的点\n     print.thres=\"best\") \n\n\n\n\n最佳截点是0.205,特异度是0.806,敏感度是0.634。"
-  },
-  {
-    "objectID": "roc-bestcut.html#cutoff",
-    "href": "roc-bestcut.html#cutoff",
-    "title": "19  ROC曲线的最佳截点",
-    "section": "19.2 cutoff",
-    "text": "19.2 cutoff\ncutoff包中的roc函数也可以用于确定二分类数据ROC曲线的最佳截点,这个R包还可以用于连续性变量最佳截点的计算,之前专门介绍过:最佳截断值确定之cutoff\n\nlibrary(cutoff)\n## \n## Attaching package: 'cutoff'\n## The following object is masked from 'package:pROC':\n## \n##     roc\n\ncutoff::roc(aSAH$s100b, aSAH$outcome)\n##                      type  auc cutoff sensitivity specificity\n## 1 positive classification 0.73   0.22   0.6341463   0.8055556\n\n该包给出的最佳截点是0.22,敏感度是0.6341463,特异度是0.8055556。和pROC的结果有一点点差别,问题不大。"
-  },
-  {
-    "objectID": "roc-bestcut.html#optimalcutpoints",
-    "href": "roc-bestcut.html#optimalcutpoints",
-    "title": "19  ROC曲线的最佳截点",
-    "section": "19.3 optimalcutpoints",
-    "text": "19.3 optimalcutpoints\nOptimalCutpoints包也是用于二分类数据ROC曲线的最佳截点,不能用于生存数据。\n该包中最重要的函数是optimal.cutpoints()、control.cutpoints()、summary.optimal.cutpoints()和plot.optimal.cutpoints()函数。optimal.cutpoints()函数根据所选的准则计算最佳切点以及其准确性度量。可以选择多个准则来选择最佳切点。control.cutpoints()函数用于设置每种方法特定的几个参数,例如成本值或诊断准确性度量的最小值。summary.optimal.cutpoints()和plot.optimal.cutpoints()函数分别生成数值和图形输出。数值输出包括有关最佳切点的信息,包括选择最佳值的方法,以及最佳切点的数量(在某些情况下可能有多个值)和最佳切点及其准确性度量的估计值。\n使用起来也是非常简单,没有难度:\n\nlibrary(OptimalCutpoints)\n\noc_youden &lt;- optimal.cutpoints(X=\"s100b\",\n                               status = \"outcome\",\n                               tag.healthy=\"Good\",\n                               method=\"Youden\",#支持的标准超多\n                               data=aSAH\n                               )\nsummary(oc_youden)\n## \n## Call:\n## optimal.cutpoints.default(X = \"s100b\", status = \"outcome\", tag.healthy = \"Good\", \n##     methods = \"Youden\", data = aSAH)\n## \n## Area under the ROC curve (AUC):  0.731 (0.63, 0.833) \n## \n## CRITERION: Youden\n## Number of optimal cutoffs: 1\n## \n##                     Estimate\n## cutoff             0.2200000\n## Se                 0.6341463\n## Sp                 0.8055556\n## PPV                0.6500000\n## NPV                0.7945205\n## DLR.Positive       3.2613240\n## DLR.Negative       0.4541632\n## FP                14.0000000\n## FN                15.0000000\n## Optimal criterion  0.4397019\n\n给出的结果也是和pROC以及cutoff包是一致的。\n画出来的图也是和pROC一样的:\n\nplot(oc_youden)\n\n\n\n## Press return for next page....\n\n\n\n\n除此之外,这个包还可以指定协变量,还可以使用最大化敏感度/特异度等指标确定最佳截点,大家可以去查看帮助文档。"
-  },
-  {
-    "objectID": "roc-bestcut.html#cutpointr",
-    "href": "roc-bestcut.html#cutpointr",
-    "title": "19  ROC曲线的最佳截点",
-    "section": "19.4 cutpointr",
-    "text": "19.4 cutpointr\ncutpointr是一个用于整洁计算“最佳”切点的R包。它支持多种计算切点的方法,并包括几个可以通过选择切点来最大化或最小化的度量标准。cutpointr可以自动通过自助法计算最佳切点的变异性,并返回各种性能指标的袋外估计值。\n支持支二分类数据不支持生存数据。\n\ninstall.packages(\"cutpointr\")\n\n这个包也支持多种标准,使用时也要注意方向。\n\nlibrary(cutpointr)\n## \n## Attaching package: 'cutpointr'\n## The following object is masked from 'package:cutoff':\n## \n##     roc\n## The following objects are masked from 'package:pROC':\n## \n##     auc, roc\n\ncp &lt;- cutpointr(data=aSAH, \n                x=s100b, \n                class=outcome, \n                method = maximize_metric, # 最大化指标\n                metric = youden) # 选择指标\n## Assuming the positive class is Poor\n## Assuming the positive class has higher x values\nsummary(cp)\n## Method: maximize_metric \n## Predictor: s100b \n## Outcome: outcome \n## Direction: &gt;= \n## \n##     AUC   n n_pos n_neg\n##  0.7314 113    41    72\n## \n##  optimal_cutpoint youden    acc sensitivity specificity tp fn fp tn\n##              0.22 0.4397 0.7434      0.6341      0.8056 26 15 14 58\n## \n## Predictor summary: \n##     Data Min.    5% 1st Qu. Median      Mean 3rd Qu.   95% Max.        SD NAs\n##  Overall 0.03 0.046    0.09   0.14 0.2469912    0.33 0.722 2.07 0.2721603   0\n##     Good 0.04 0.040    0.08   0.11 0.1615278    0.17 0.470 0.50 0.1308548   0\n##     Poor 0.03 0.070    0.12   0.30 0.3970732    0.56 0.860 2.07 0.3751949   0\n\n画图:\n\nplot(cp)\n\n\n\n\n除此之外,还有很多其他函数没介绍,大家可以参考github:https://github.com/Thie1e/cutpointr"
-  },
-  {
-    "objectID": "roc-bestcut.html#survavalroc",
-    "href": "roc-bestcut.html#survavalroc",
-    "title": "19  ROC曲线的最佳截点",
-    "section": "19.5 survavalROC",
-    "text": "19.5 survavalROC\n能做time-dependent-ROC分析的R包不多,找了好久也没发现一个R包可以完成time-dependent-ROC的所有分析,timeROC是比较全能的了,但是不能计算最佳截点,survavalROC可以计算最佳截点,但是又不能同时计算多个时间点的ROC曲线。\n所以最佳截点我们可以通过survivalROC包实现。\n\nload(file = \"./datasets/timeROC.RData\")\nlibrary(survivalROC)\n\n# 1年的最佳截点\nroc1 &lt;- survivalROC(Stime = df$futime,\n                   status = df$event,\n                   marker = df$riskScore,\n                   method = \"KM\",\n                   predict.time = 1 # 时间选1年\n                   )\n\nroc1$cut.values[which.max(roc1$TP - roc1$FP)] # 最佳截点的值,基于约登指数计算出来\n## [1] -0.07986499\n\n最佳截点是-0.07986499,就是这么简单,下面就是画图:\n\nplot(roc1$FP, roc1$TP, type=\"l\", xlim=c(0,1), ylim=c(0,1),   \n  xlab=paste( \"FP\", \"\\n\", \"AUC = \",round(roc1$AUC,3)), \n  ylab=\"TP\")\n  abline(0,1)\n\n\n\n\n除了以上介绍的R包,还有ThresholdROC也是同样的用法,这里就不介绍了,大家感兴趣的自己学习一下。\n公众号后台回复ROC即可获取ROC曲线合集,回复最佳截点即可获取最佳截断值相关推文合集。"
-  },
-  {
-    "objectID": "roc-smooth.html#二分类资料的平滑roc曲线",
-    "href": "roc-smooth.html#二分类资料的平滑roc曲线",
-    "title": "20  平滑ROC曲线",
-    "section": "20.1 二分类资料的平滑ROC曲线",
-    "text": "20.1 二分类资料的平滑ROC曲线\n直接通过pROC即可实现,这个包详细使用请参考:用pROC实现ROC曲线分析\npROC包中提供了一个aSAH数据集,这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:\n\ngos6:格拉斯哥量表评分\noutcome:结果变量\ngender:性别\nage:年龄\nwfns:世界神经外科医师联合会公认的神经学量表评分\ns100b:生物标志物\nndka:生物标志物\n\n\nlibrary(pROC)\ndata(\"aSAH\")\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n\n可以直接在roc函数中指定,也可以使用smooth函数:\n\nroc(aSAH$outcome, aSAH$wfns, smooth = T)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n## \n## Call:\n## roc.default(response = aSAH$outcome, predictor = aSAH$wfns, smooth = T)\n## \n## Data: aSAH$wfns in 72 controls (aSAH$outcome Good) &lt; 41 cases (aSAH$outcome Poor).\n## Smoothing: binormal \n## Area under the curve: 0.8454\n# 或者\nrr &lt;- roc(aSAH$outcome, aSAH$wfns)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nrrs &lt;- smooth(rr)\n\n画图:\n\nplot(rrs,auc.polygon=T,auc.polygon.col=\"steelblue\",\n     print.auc=T,\n     print.auc.x=1,print.auc.y=0.9,print.auc.col=\"firebrick\",\n     print.auc.cex=2)"
-  },
-  {
-    "objectID": "roc-smooth.html#生存资料的平滑roc曲线",
-    "href": "roc-smooth.html#生存资料的平滑roc曲线",
-    "title": "20  平滑ROC曲线",
-    "section": "20.2 生存资料的平滑ROC曲线",
-    "text": "20.2 生存资料的平滑ROC曲线\n不考虑时间因素的ROC曲线可以使用pROC包中的smooth参数实现平滑版的曲线。time-dependent ROC目前还没发现比较好的方法可以直接实现,只能使用ggplot2曲线救国了。\n\nrm(list = ls())\nlibrary(timeROC)\nlibrary(survival)\n\nload(file = \"./datasets/timeROC.RData\")\n\n\n20.2.1 方法1:ggplot2\n首先看一下数据结构,对于多个时间点的ROC,需要3列数据:time, event, marker(比如你计算得到的risk score)\n首先还是借助timeROC包构建多个时间点的ROC对象:\n\nROC &lt;- timeROC(T = df$futime,   \n               delta = df$event,   \n               marker = df$riskScore,   \n               cause = 1,                \n               weighting = \"marginal\",   \n               times = c(1, 2, 3),       \n               iid = TRUE)\n\nROC   #查看模型变量信息\n## Time-dependent-Roc curve estimated using IPCW  (n=297, without competing risks). \n##     Cases Survivors Censored AUC (%)   se\n## t=1    57       203       37   71.02 3.68\n## t=2    66       106      125   69.23 3.94\n## t=3    68        74      155   65.53 4.85\n## \n## Method used for estimating IPCW:marginal \n## \n## Total computation time : 0.08  secs.\n\n默认的画出来也还可以,但是就是觉得可以更好看一点。\n\nplot(ROC, \n     time=1, col=\"red\", lwd=2, title = \"\")   #time是时间点,col是线条颜色\nplot(ROC,\n     time=2, col=\"blue\", add=TRUE, lwd=2)    #add指是否添加在上一张图中\nplot(ROC,\n     time=3, col=\"orange\", add=TRUE, lwd=2)\n\n#添加标签信息\nlegend(\"bottomright\",\n       c(paste0(\"AUC at 1 year: \",round(ROC[[\"AUC\"]][1],2)), \n         paste0(\"AUC at 2 year: \",round(ROC[[\"AUC\"]][2],2)), \n         paste0(\"AUC at 3 year: \",round(ROC[[\"AUC\"]][3],2))),\n       col=c(\"red\", \"blue\", \"orange\"),\n       lty=1, lwd=2,bty = \"n\")   \n\n\n\n\n下面使用ggplot2画图。\n首先是提取数据,这个提取数据比起lasso的真的是很简单了,不过现在提取lasso的数据也很简单。\n\ndf_plot &lt;- data.frame(tpr = as.numeric(ROC$TP),\n                 fpr = as.numeric(ROC$FP),\n                 year = rep(c(\"1-year\",\"2-year\",\"3-year\"),each = nrow(ROC$TP)))\n\nhead(df_plot)\n##          tpr         fpr   year\n## 1 0.00000000 0.000000000 1-year\n## 2 0.00000000 0.004926108 1-year\n## 3 0.01809868 0.004926108 1-year\n## 4 0.03681243 0.004926108 1-year\n## 5 0.03681243 0.009852217 1-year\n## 6 0.05425138 0.009852217 1-year\n\n下面是画图代码,平滑曲线,说简单确实简单,如果对ggplot2不熟悉,确实也很难想到:\n\nlibrary(ggplot2)\n\np &lt;- ggplot(df_plot, aes(fpr, tpr, color = year)) +\n  geom_smooth(se=FALSE, linewidth=1.2)+ # 这就是平滑曲线的关键\n  geom_abline(slope = 1, intercept = 0, color = \"grey10\",linetype = 2) +\n  scale_color_manual(values = c(\"#E41A1C\",\"#377EB8\",\"#4DAF4A\"),\n                     name = NULL, \n                     labels = c(paste0(\"AUC at 1 year: \",round(ROC[[\"AUC\"]][1],2)), \n                                paste0(\"AUC at 2 year: \",round(ROC[[\"AUC\"]][2],2)), \n                                paste0(\"AUC at 3 year: \",round(ROC[[\"AUC\"]][3],2)))\n                     ) + \n  coord_fixed(ratio = 1) +\n  labs(x = \"1 - Specificity\", y = \"Sensitivity\") +\n  theme_minimal(base_size = 14, base_family = \"sans\") +\n  theme(legend.position = c(0.7,0.15), \n        panel.border = element_rect(fill = NA),\n        axis.text = element_text(color = \"black\"))\n\np\n## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'\n\n\n\n\n\n\n20.2.2 方法2:risksetROC\n使用risksetROC包实现。\n使用survival包中的pbc数据集。\n\nlibrary(risksetROC)\n## Loading required package: MASS\nlibrary(survival)\ndata(pbc)\nstr(pbc)\n## 'data.frame':    418 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...\n##  $ fudays  : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...\n##  $ status  : int  2 0 2 2 1 2 0 2 2 2 ...\n##  $ drug    : int  1 1 1 1 2 2 2 2 1 2 ...\n##  $ age     : int  21464 20617 25594 19994 13918 24201 20284 19379 15526 25772 ...\n##  $ sex     : int  1 1 0 1 1 1 1 1 1 1 ...\n##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...\n##  $ hepatom : int  1 1 0 1 1 1 1 0 0 0 ...\n##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...\n##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...\n##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...\n##  $ alkphos : num  1718 7395 516 6122 671 ...\n##  $ sgot    : num  137.9 113.5 96.1 60.6 113.2 ...\n##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...\n##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...\n##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...\n##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...\n\n做一些准备工作。只使用前312行数据,生存状态用1表示终点事件,0表示删失,然后建立cox模型,计算出线性预测值作为marker:\n\npbc1 &lt;- pbc[1:312,]\nsurvival.status &lt;- ifelse(pbc1$status==2,1,0)\nsurvival.time &lt;- pbc1$fudays\n\npbc1$status1 &lt;- survival.status\n\nfit &lt;- coxph(Surv(survival.time, status1) ~ log(bili)+\n               log(protime)+edema+albumin+age,\n             data = pbc1\n             )\neta &lt;- fit$linear.predictors\n\n使用方法和timeROC以及survivalROC基本上是一样的:\n\nnobs &lt;- length(survival.time[survival.status==1])\nspan &lt;- 1.0*(nobs^(-0.2))\n\n# 3种方法都试一下,然后画在一起\nROC.CC90 &lt;- risksetROC(Stime = survival.time, status = survival.status,\n                       marker = eta, predict.time = 90, method = \"Cox\",\n                       main=\"time-denpendent ROC with riksetROC\",\n                       lty=2, lwd=2,col=\"red\"\n                       )\nROC.SS90 &lt;- risksetROC(Stime = survival.time, status = survival.status,\n                       marker = eta, predict.time = 90, method = \"Schoenfeld\",\n                       plot = F, span = span\n                       )\nROC.LL90 &lt;- risksetROC(Stime = survival.time, status = survival.status,\n                       marker = eta, predict.time = 90, method = \"LocalCox\",\n                       plot = F, span = span\n                       )\n\nlines(ROC.SS90$FP, ROC.SS90$TP, lty=3, lwd=2, col=\"darkblue\")\nlines(ROC.LL90$FP, ROC.LL90$TP, lty=4, lwd=2, col=\"green\")\nlegend(0.6,0.25, lty = c(2,3,4),col = c(\"red\",\"darkblue\",\"green\"),\n       legend = c(\"Cox\",\"Schoenfeld\",\"LocalCox\"), bty = \"n\")\n\n\n\n\n完美的平滑曲线,不用自己实现。"
+    "title": "22  生存数据ROC曲线绘制",
+    "section": "22.3 多指标ROC",
+    "text": "22.3 多指标ROC\n大家在文献中也可能见到过多个指标的ROC曲线绘制在一张图上。下面给大家演示。\n首先也是看一下所需要的数据结构,其中futime和event是必须的,另外的几列是你想要用来画ROC曲线的指标,在这里我使用了riskScore,gender,age,TNM分期。\n在gender这一列,1是female,2是male,t,n,m这3列,数字代表不同的分期。\n\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n多指标的ROC曲线非常简单,就是构建多个ROC,依次添加即可,时间点我们统一选择3年:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=3,   \n                    iid=TRUE)\n\n# gender的ROC曲线\nROC.gender &lt;- timeROC(T=df2$futime,   \n                      delta=df2$event,   \n                      marker=df2$gender,   \n                      cause=1,   \n                      weighting=\"marginal\",   \n                      times=3,   \n                      iid=TRUE)\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=3,   \n                   iid=TRUE)\n\n# T分期的ROC曲线\nROC.T &lt;- timeROC(T=df2$futime,\n                 delta=df2$event,  \n                 marker=df2$t,   \n                 cause=1, \n                 weighting=\"marginal\", \n                 times=3, \n                 iid=TRUE)\n\n# N分期的ROC曲线\nROC.N &lt;- timeROC(T=df2$futime,   \n                 delta=df2$event,   \n                 marker=df2$n,   \n                 cause=1,   \n                 weighting=\"marginal\",   \n                 times=3,   \n                 iid=TRUE)\n\n# M分期的ROC曲线\nROC.M &lt;- timeROC(T=df2$futime,   \n                 delta=df2$event,   \n                 marker=df2$m,   \n                 cause=1,   \n                 weighting=\"marginal\",   \n                 times=3,   \n                 iid=TRUE)\n\n把每个曲线拼在一起即可,添加一个图例:\n\nplot(ROC.risk, time = 3, col=\"#E41A1C\", lwd=2, title = \"\")\nplot(ROC.gender, time = 3, col=\"#A65628\", lwd=2, add = T)\nplot(ROC.age, time = 3, col=\"#4DAF4A\", lwd=2, add = T)\nplot(ROC.T, time = 3, col=\"#377EB8\", lwd=2, add = T)\nplot(ROC.N, time = 3, col=\"#984EA3\", lwd=2, add = T)\nplot(ROC.M, time = 3, col=\"#FFFF33\", lwd=2, add = T)\nlegend(\"bottomright\",\n       c(paste0(\"Risk score: \",round(ROC.risk[[\"AUC\"]][2],2)), \n         paste0(\"gender: \",round(ROC.gender[[\"AUC\"]][2],2)), \n         paste0(\"age: \",round(ROC.age[[\"AUC\"]][2],2)),\n         paste0(\"T: \",round(ROC.T[[\"AUC\"]][2],2)),\n         paste0(\"N: \",round(ROC.N[[\"AUC\"]][2],2)),\n         paste0(\"M: \",round(ROC.M[[\"AUC\"]][2],2))\n         ),\n       col=c(\"#E41A1C\", \"#A65628\", \"#4DAF4A\",\"#377EB8\",\"#984EA3\",\"#FFFF33\"),\n       lty=1, lwd=2,bty = \"n\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>22</span>  <span class='chapter-title'>生存数据ROC曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "roc-survive.html#推荐阅读",
+    "href": "roc-survive.html#推荐阅读",
+    "title": "22  生存数据ROC曲线绘制",
+    "section": "22.4 推荐阅读",
+    "text": "22.4 推荐阅读\nROC曲线的其他问题可参考以下推文:\n\n多时间点和多指标的ROC曲线\n临床预测模型之二分类资料ROC曲线的绘制\n临床预测模型之生存资料ROC曲线的绘制\nROC曲线(AUC)的显著性检验\n生存资料ROC曲线的最佳截点和平滑曲线\nROC曲线纯手工绘制\nR语言计算AUC(ROC曲线)的注意事项\nROC阴性结果还是阳性结果\n多指标联合诊断的ROC曲线\nROC曲线最佳截点\nbootstrap ROC/AUC\nR语言多分类ROC曲线绘制\n\n公众号后台回复ROC即可获取以上合集链接。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>22</span>  <span class='chapter-title'>生存数据ROC曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "roc-compare.html",
+    "href": "roc-compare.html",
+    "title": "23  ROC曲线的显著性检验",
+    "section": "",
+    "text": "23.1 二分类资料的ROC比较\n可以通过pROC包实现的,使用其中roc.test()函数可实现两个ROC的Delong检验。\n使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:\nlibrary(pROC)\n\ndata(aSAH)\ndim(aSAH)\n## [1] 113   7\n\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n构建两个ROC对象,然后直接比较即可:\nroc1 &lt;- roc(aSAH$outcome,aSAH$s100b)\nroc2 &lt;- roc(aSAH$outcome,aSAH$ndka)\n\nres &lt;- roc.test(roc1,roc2)\nres\n## \n##  DeLong's test for two correlated ROC curves\n## \n## data:  roc1 and roc2\n## Z = 1.3908, p-value = 0.1643\n## alternative hypothesis: true difference in AUC is not equal to 0\n## 95 percent confidence interval:\n##  -0.04887061  0.28769174\n## sample estimates:\n## AUC of roc1 AUC of roc2 \n##   0.7313686   0.6119580\n这个函数里面有个method参数:delong/bootstrap/venkatraman,默认是delong,delong和bootstrap用于比较AUC,如果只是ROC曲线的比较,需要用venkatraman。关于这几种方法的具体原理,大家可以去翻相关的论文~\nroc.test只能用于两个ROC的比较,如果是多个比较,可以使用MedCalc软件,这个是和SPSS类似的软件,只要点点点即可。\n当然也是可以直接画在图里的:\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), \n       col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n\ntestobj &lt;- roc.test(rocobj1, rocobj2)\n\ntext(50, 50, labels=paste(\"p-value =\",format.pval(testobj$p.value)), \n     adj=c(0, .5))\n当然你也可以用其他非参数检验的方法进行比较,比如mann whitney u检验。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>23</span>  <span class='chapter-title'>ROC曲线的显著性检验</span>"
+    ]
   },
   {
     "objectID": "roc-compare.html#二分类资料的roc比较",
     "href": "roc-compare.html#二分类资料的roc比较",
-    "title": "21  ROC曲线的显著性检验",
-    "section": "21.1 二分类资料的ROC比较",
-    "text": "21.1 二分类资料的ROC比较\n可以通过pROC包实现的,使用其中roc.test()函数可实现两个ROC的Delong检验。\n使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。\n\nlibrary(pROC)\n## Type 'citation(\"pROC\")' for a citation.\n## \n## Attaching package: 'pROC'\n## The following objects are masked from 'package:stats':\n## \n##     cov, smooth, var\n\ndata(aSAH)\ndim(aSAH)\n## [1] 113   7\n\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n\n构建两个ROC对象,然后直接比较即可:\n\nroc1 &lt;- roc(aSAH$outcome,aSAH$s100b)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nroc2 &lt;- roc(aSAH$outcome,aSAH$ndka)\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\nres &lt;- roc.test(roc1,roc2)\nres\n## \n##  DeLong's test for two correlated ROC curves\n## \n## data:  roc1 and roc2\n## Z = 1.3908, p-value = 0.1643\n## alternative hypothesis: true difference in AUC is not equal to 0\n## 95 percent confidence interval:\n##  -0.04887061  0.28769174\n## sample estimates:\n## AUC of roc1 AUC of roc2 \n##   0.7313686   0.6119580\n\n这个函数里面有个method参数:delong/bootstrap/venkatraman,默认是delong,delong和bootstrap用于比较AUC,如果只是ROC曲线的比较,需要用venkatraman。关于这几种方法的具体原理,大家可以去翻相关的论文~\nroc.test只能用于两个ROC的比较,如果是多个比较,可以使用MedCalc软件,这个是和SPSS类似的软件,只要点点点即可。\n当然也是可以直接画在图里的:\n\nrocobj1 &lt;- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col=\"#1c61b6\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\nrocobj2 &lt;- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col=\"#008600\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\nlegend(\"bottomright\", legend=c(\"S100B\", \"NDKA\"), col=c(\"#1c61b6\", \"#008600\"), lwd=2)\n\ntestobj &lt;- roc.test(rocobj1, rocobj2)\n\ntext(50, 50, labels=paste(\"p-value =\", format.pval(testobj$p.value)), adj=c(0, .5))\n\n\n\n\n当然你也可以用其他非参数检验的方法进行比较,比如mann whitney u检验。"
+    "title": "23  ROC曲线的显著性检验",
+    "section": "",
+    "text": "gos6:格拉斯哥量表评分\noutcome:结果变量\ngender:性别\nage:年龄\nwfns:世界神经外科医师联合会公认的神经学量表评分\ns100b:生物标志物\nndka:生物标志物",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>23</span>  <span class='chapter-title'>ROC曲线的显著性检验</span>"
+    ]
   },
   {
     "objectID": "roc-compare.html#生存资料roc的比较",
     "href": "roc-compare.html#生存资料roc的比较",
-    "title": "21  ROC曲线的显著性检验",
-    "section": "21.2 生存资料ROC的比较",
-    "text": "21.2 生存资料ROC的比较\n使用timeROC包实现。\n还是用之前推文中用过的例子,获取数据请翻看之前的推文~\n\nrm(list = ls())\nlibrary(timeROC)\nlibrary(survival)\n\nload(file = \"./datasets/timeROC.RData\")\n\n使用其中的df2这个数据:\n\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n构建几个timeROC:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=3,  # c(1,2) \n                    iid=TRUE)\n\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=3,   # c(1,2)\n                   iid=TRUE)\n\n比较就用compare()函数即可:\n\ncompare(ROC.risk, ROC.age)\n## $p_values_AUC\n##       t=0       t=3 \n##        NA 0.4544231\n\n同时使用多个时间点也是可以的:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=c(1,2),\n                    iid=TRUE)\n\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=c(1,2),\n                   iid=TRUE)\n\ncompare(ROC.risk, ROC.age)\n## $p_values_AUC\n##        t=1        t=2 \n## 0.09758546 0.27995259\n\ncompare(ROC.risk, ROC.age, adjusted = T) # 计算调整p值\n## $p_values_AUC\n##                     t=1       t=2\n## Non-adjusted 0.09758546 0.2799526\n## Adjusted     0.14983636 0.3984702\n## \n## $Cor\n##           [,1]      [,2]\n## [1,] 1.0000000 0.7750774\n## [2,] 0.7750774 1.0000000\n\n画图就不演示了,可以参考前面的内容。"
-  },
-  {
-    "objectID": "roc-attention.html#准备数据",
-    "href": "roc-attention.html#准备数据",
-    "title": "22  R语言计算AUC(ROC)注意事项",
-    "section": "22.1 准备数据",
-    "text": "22.1 准备数据\n假如我们要用ca125的值预测患者是不是癌症,虚构一个数据:\n\nset.seed(20220840)\nca125_1 &lt;- c(rnorm(10,80,20),rnorm(20,50,10))\nca125_2 &lt;- c(rnorm(10,20,20),rnorm(20,70,10))\nclass=c(rep(1:0,c(10,20)))\n\ntumor &lt;- c(rep(c(\"癌症\",\"非癌症\"),c(10,20)))\n\ndf &lt;- data.frame(`class`=class,`ca125_1`=ca125_1,`ca125_2`=ca125_2,\n                 `tumor`=tumor\n                 )\npsych::headTail(df)\n##     class ca125_1 ca125_2  tumor\n## 1       1   51.88    5.96   癌症\n## 2       1   82.46   10.59   癌症\n## 3       1  113.67  -19.22   癌症\n## 4       1   63.49    6.08   癌症\n## ...   ...     ...     ...   &lt;NA&gt;\n## 27      0   53.33   74.34 非癌症\n## 28      0   59.92   51.11 非癌症\n## 29      0   46.46   64.21 非癌症\n## 30      0   30.03    66.5 非癌症"
-  },
-  {
-    "objectID": "roc-attention.html#rocr",
-    "href": "roc-attention.html#rocr",
-    "title": "22  R语言计算AUC(ROC)注意事项",
-    "section": "22.2 ROCR",
-    "text": "22.2 ROCR\nROCR的使用非常简单,两步完成,需要提供用来预测结果的指标以及真实结果。\n关于这个包计算的阳性结果的AUC还是阴性结果的AUC,它的规则是这样的:\nROCR默认计算顺序靠后的类别的AUC。如果提供给labels的值是有序因子型变量,排在前面的默认是阴性结果(negtive),排在后面的默认是阳性结果(positive),默认计算阳性结果(排序靠后)的AUC。如果是无序因子、数值、字符、逻辑型变量,会按照R语言的默认排序,比如按照数字大小、首字母顺序等,也是计算排序靠后的类别的AUC。\n比如我们这个df数据集,其中的tumor这一列是字符型,默认的顺序是:癌症,非癌症,是按照首字母顺序排列的,因此在计算AUC时,默认是计算的非癌症的AUC。\n\nlibrary(ROCR)\n\npred &lt;- prediction(predictions = ca125_1, # 预测指标\n                   labels = tumor # 真实结果\n                   )\n\nperformance(pred, \"auc\")@y.values[[1]]\n## [1] 0.075\n\n但是大多数时候我们需要的都是阳性结果(比如这里我们想计算癌症的AUC,而不是非癌症)的AUC,所以我建议大家在使用R包计算AUC或者画ROC曲线时,手动指定顺序!\n\npred &lt;- prediction(predictions = ca125_1, # 预测指标\n                   labels = tumor # 真实结果\n                   ,label.ordering = c(\"非癌症\",\"癌症\") # 此时就是计算癌症的AUC\n                   )\n\nperformance(pred, \"auc\")@y.values[[1]]\n## [1] 0.925"
-  },
-  {
-    "objectID": "roc-attention.html#proc",
-    "href": "roc-attention.html#proc",
-    "title": "22  R语言计算AUC(ROC)注意事项",
-    "section": "22.3 pROC",
-    "text": "22.3 pROC\n\nlibrary(pROC)\n\npROC包计算AUC也需要:用来预测结果的指标以及真实结果。\n这个包计算pROC略有不同,它是根据中位数来的,谁的中位数大,就计算谁的AUC,比如我们的这个例子,计算下中位数看看:\n\n# 把ca125_1按照tumor的两个类别进行分组,然后分别计算中位数\ntapply(ca125_1, tumor, median)\n##     癌症   非癌症 \n## 81.34426 49.99926\n\n结果是癌症组的中位数>非癌症组的中位数,所以是计算癌症的AUC。\n计算AUC:\n\nroc(response=tumor, predictor=ca125_1)\n## Setting levels: control = 癌症, case = 非癌症\n## Setting direction: controls &gt; cases\n## \n## Call:\n## roc.default(response = tumor, predictor = ca125_1)\n## \n## Data: ca125_1 in 10 controls (tumor 癌症) &gt; 20 cases (tumor 非癌症).\n## Area under the curve: 0.925\n\n再来看看ca125_2这一列指标:\n\n# 把ca125_2按照tumor的两个类别进行分组,然后分别计算中位数\ntapply(ca125_2, tumor, median)\n##     癌症   非癌症 \n## 13.52771 69.69272\n\n结果是癌症组的中位数<非癌症组,所以是计算非癌症的AUC。\n\nroc(response=tumor, predictor=ca125_2)\n## Setting levels: control = 癌症, case = 非癌症\n## Setting direction: controls &lt; cases\n## \n## Call:\n## roc.default(response = tumor, predictor = ca125_2)\n## \n## Data: ca125_2 in 10 controls (tumor 癌症) &lt; 20 cases (tumor 非癌症).\n## Area under the curve: 0.9\n\n如果想要手动指定,需要设置levels和direction:\n\n# 此时计算的就是癌症的AUC\nroc(response=tumor, predictor=ca125_2,\n    levels=c(\"非癌症\", \"癌症\"), # 这个顺序随便设定,重要的是direction\n    direction = \"&lt;\" # 手动设定非癌症 &lt; 癌症\n    )\n## \n## Call:\n## roc.default(response = tumor, predictor = ca125_2, levels = c(\"非癌症\",     \"癌症\"), direction = \"&lt;\")\n## \n## Data: ca125_2 in 20 controls (tumor 非癌症) &lt; 10 cases (tumor 癌症).\n## Area under the curve: 0.1"
-  },
-  {
-    "objectID": "roc-attention.html#yardstick",
-    "href": "roc-attention.html#yardstick",
-    "title": "22  R语言计算AUC(ROC)注意事项",
-    "section": "22.4 yardstick",
-    "text": "22.4 yardstick\n最后给大家演示下yardstick包的做法,其中truth必须提供因子型,使用event_level指定到底是计算谁的AUC:\n\ndf$tumor &lt;- factor(df$tumor,levels = c(\"癌症\",\"非癌症\"))\n\nlibrary(yardstick)\nroc_auc(data = df, \n        tumor,\n        ca125_1,\n        event_level=\"first\")\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.925\n\n画ROC曲线:\n\nyardstick::roc_curve(df, truth=tumor,\n                   ca125_1,\n                   event_level=\"first\") |&gt; \n  ggplot2::autoplot()\n\n\n\n\nR语言中的ROC曲线R包都有这样的潜规则,大家在使用的时候一定要注意哦~\n示例数据还提供了用数值表示的结果变量class,感兴趣的可以试试看,是不是和我说的一样!"
-  },
-  {
-    "objectID": "roc-many.html#准备数据",
-    "href": "roc-many.html#准备数据",
-    "title": "23  多指标联合诊断的ROC曲线",
-    "section": "23.1 准备数据",
-    "text": "23.1 准备数据\n\nlibrary(pROC)\n## Type 'citation(\"pROC\")' for a citation.\n## \n## Attaching package: 'pROC'\n## The following objects are masked from 'package:stats':\n## \n##     cov, smooth, var\n\ndata(aSAH)\nstr(aSAH)\n## 'data.frame':    113 obs. of  7 variables:\n##  $ gos6   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...\n##  $ outcome: Factor w/ 2 levels \"Good\",\"Poor\": 1 1 1 1 2 2 1 2 1 1 ...\n##  $ gender : Factor w/ 2 levels \"Male\",\"Female\": 2 2 2 2 2 1 1 1 2 2 ...\n##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...\n##  $ wfns   : Ord.factor w/ 5 levels \"1\"&lt;\"2\"&lt;\"3\"&lt;\"4\"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...\n##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...\n##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...\n\n其中outcome是结果变量,是二分类的,其余列是预测变量。"
-  },
-  {
-    "objectID": "roc-many.html#多指标联合诊断的roc",
-    "href": "roc-many.html#多指标联合诊断的roc",
-    "title": "23  多指标联合诊断的ROC曲线",
-    "section": "23.2 多指标联合诊断的ROC",
-    "text": "23.2 多指标联合诊断的ROC\n假如现在我想使用s100b/ndka/age这3个变量来预测结果,该如何画出这3个变量联合诊断的ROC曲线呢?\n首先,使用这3个变量建立逻辑回归:\n\nf &lt;- glm(outcome ~ s100b + ndka + age, data = aSAH, family = binomial())\n\n然后,计算逻辑回归给出的概率:\n\n# 等价于直接使用 f$fitted\npred &lt;- predict(f, newdata = aSAH, type = \"response\")\n\naSAH$pred &lt;- pred\n\n用这个pred就可以画ROC曲线了:\n\nlibrary(yardstick)\nlibrary(ggplot2)\n\nroc_curve(data=aSAH, outcome, pred,event_level = \"second\") |&gt; \n  autoplot()"
-  },
-  {
-    "objectID": "roc-many.html#测试集怎么办",
-    "href": "roc-many.html#测试集怎么办",
-    "title": "23  多指标联合诊断的ROC曲线",
-    "section": "23.3 测试集怎么办?",
-    "text": "23.3 测试集怎么办?\n很简单,只要把predict中的数据集换成测试集即可:\n\n# 换成测试集即可\npred &lt;- predict(f, newdata = 你的测试集, type = \"response\")\n\n剩下的就都一样了!"
+    "title": "23  ROC曲线的显著性检验",
+    "section": "23.2 生存资料ROC的比较",
+    "text": "23.2 生存资料ROC的比较\n使用timeROC包实现。还是用之前用过的例子。\n\nrm(list = ls())\nlibrary(timeROC)\nlibrary(survival)\n\nload(file = \"./datasets/timeROC.RData\")\n\n使用其中的df2这个数据:\n\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n构建几个timeROC:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=3,  # c(1,2) \n                    iid=TRUE)\n\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=3,   # c(1,2)\n                   iid=TRUE)\n\n比较就用compare()函数即可:\n\ncompare(ROC.risk, ROC.age)\n## $p_values_AUC\n##       t=0       t=3 \n##        NA 0.4544231\n\n同时使用多个时间点也是可以的:\n\n# riskScore的ROC曲线\nROC.risk &lt;- timeROC(T=df2$futime,\n                    delta=df2$event,   \n                    marker=df2$riskScore,   \n                    cause=1,                \n                    weighting=\"marginal\",   \n                    times=c(1,2),\n                    iid=TRUE)\n\n\n# age的ROC曲线\nROC.age &lt;- timeROC(T=df2$futime,   \n                   delta=df2$event,   \n                   marker=df2$age,   \n                   cause=1,   \n                   weighting=\"marginal\",   \n                   times=c(1,2),\n                   iid=TRUE)\n\ncompare(ROC.risk, ROC.age)\n## $p_values_AUC\n##        t=1        t=2 \n## 0.09758546 0.27995259\n\ncompare(ROC.risk, ROC.age, adjusted = T) # 计算调整p值\n## $p_values_AUC\n##                     t=1       t=2\n## Non-adjusted 0.09758546 0.2799526\n## Adjusted     0.14983636 0.3984702\n## \n## $Cor\n##           [,1]      [,2]\n## [1,] 1.0000000 0.7750774\n## [2,] 0.7750774 1.0000000\n\n画图就不演示了,可以参考前面的内容。\n但是要注意,如果两条ROC曲线比较得到的结果是P&gt;0.05的,只能说两者没有统计学意义,并不能直接说这两个ROC曲线的效能是一样的!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>23</span>  <span class='chapter-title'>ROC曲线的显著性检验</span>"
+    ]
   },
   {
-    "objectID": "roc-bootstrap.html#fbroc",
-    "href": "roc-bootstrap.html#fbroc",
+    "objectID": "roc-bootstrap.html",
+    "href": "roc-bootstrap.html",
     "title": "24  bootstrap ROC/AUC",
-    "section": "24.1 fbroc",
-    "text": "24.1 fbroc\n先介绍一个最简单的,用fbroc这个包实现,因为你在必应或者谷歌搜索bootstrap ROC in R,前几个结果中就是这个包。\n\nlibrary(fbroc)\n## Loading required package: ggplot2\n\n这个包在使用时需要把结果变量变为逻辑型:\n\noutcome1 &lt;- ifelse(aSAH$outcome == \"Good\",FALSE,TRUE)\n\n然后1行代码即可实现,默认是1000次bootstrap:\n\nset.seed(123)\nresult.boot &lt;- boot.roc(aSAH$s100b, outcome1)\nresult.boot\n## \n## Bootstraped uncached ROC Curve with 41 positive and 72 negative samples. \n##  \n## The AUC is 0.73.\n##  \n## 1000 bootstrap samples will be calculated. \n## The results use up 0 MB of memory.\n\n获取1000次bootstrap AUC的可信区间,还同时给出了标准误:\n\nset.seed(123)\nperf(result.boot, \"auc\", conf.level = 0.95)\n## \n## \n##                 Bootstrapped ROC performance metric\n## \n## Metric: AUC\n## Bootstrap replicates: 1000\n## Observed: 0.731\n## Std. Error: 0.052\n## 95% confidence interval:\n## 0.625 0.824\n\n把这1000条ROC曲线画在一起,就得到bootstrap ROC了:\n\nplot(result.boot)\n\n\n\n\n这个是我目前找到的最简单的方法。"
+    "section": "",
+    "text": "24.1 fbroc\n先介绍一个最简单的,用fbroc这个包实现,因为你在必应或者谷歌搜索bootstrap ROC in R,前几个结果中就是这个包。\nlibrary(fbroc)\n这个包在使用时需要把结果变量变为逻辑型:\noutcome1 &lt;- ifelse(aSAH$outcome == \"Good\",FALSE,TRUE)\n然后1行代码即可实现,默认是1000次bootstrap:\nset.seed(123)\nresult.boot &lt;- boot.roc(aSAH$s100b, outcome1)\nresult.boot\n## \n## Bootstraped uncached ROC Curve with 41 positive and 72 negative samples. \n##  \n## The AUC is 0.73.\n##  \n## 1000 bootstrap samples will be calculated. \n## The results use up 0 MB of memory.\n获取1000次bootstrap AUC的可信区间,还同时给出了标准误:\nset.seed(123)\nperf(result.boot, \"auc\", conf.level = 0.95)\n## \n## \n##                 Bootstrapped ROC performance metric\n## \n## Metric: AUC\n## Bootstrap replicates: 1000\n## Observed: 0.731\n## Std. Error: 0.052\n## 95% confidence interval:\n## 0.625 0.824\n把这1000条ROC曲线画在一起,就得到bootstrap ROC了:\nplot(result.boot)\n这个是我目前找到的最简单的方法。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>24</span>  <span class='chapter-title'>bootstrap ROC/AUC</span>"
+    ]
   },
   {
     "objectID": "roc-bootstrap.html#tidyverse",
     "href": "roc-bootstrap.html#tidyverse",
     "title": "24  bootstrap ROC/AUC",
     "section": "24.2 tidyverse",
-    "text": "24.2 tidyverse\n后面的方法就是根据开头说的思路,一步一步的实现了。\n先说个tidy的方法,借助tidyverse和tidymodels实现。\n\nlibrary(yardstick)\nlibrary(rsample)\nlibrary(tidyverse)\n\n先说下如何在tidymodels中绘制ROC曲线,详情可参考:tidymodels-yardstick:衡量模型性能\n在tidymodels中画一条ROC曲线非常简单,首先是计算画图需要的数据:\n\nroc_data &lt;- roc_curve(aSAH, outcome, s100b,event_level = \"second\")\nroc_data\n## # A tibble: 52 × 3\n##    .threshold specificity sensitivity\n##         &lt;dbl&gt;       &lt;dbl&gt;       &lt;dbl&gt;\n##  1    -Inf         0            1    \n##  2       0.03      0            1    \n##  3       0.04      0            0.976\n##  4       0.05      0.0694       0.976\n##  5       0.06      0.111        0.976\n##  6       0.07      0.139        0.976\n##  7       0.08      0.222        0.902\n##  8       0.09      0.306        0.878\n##  9       0.1       0.389        0.829\n## 10       0.11      0.486        0.780\n## # ℹ 42 more rows\n\n然后是画图:\n\nautoplot(roc_data)\n\n\n\n\n接下来只要使用bootstrap生成1000个自助集就可以很方便的绘制1000条ROC曲线了。\n生成1000个自助集:\n\nset.seed(123)\nasb &lt;- bootstraps(aSAH, times = 1000)\nasb\n## # Bootstrap sampling \n## # A tibble: 1,000 × 2\n##    splits           id           \n##    &lt;list&gt;           &lt;chr&gt;        \n##  1 &lt;split [113/44]&gt; Bootstrap0001\n##  2 &lt;split [113/43]&gt; Bootstrap0002\n##  3 &lt;split [113/47]&gt; Bootstrap0003\n##  4 &lt;split [113/41]&gt; Bootstrap0004\n##  5 &lt;split [113/37]&gt; Bootstrap0005\n##  6 &lt;split [113/37]&gt; Bootstrap0006\n##  7 &lt;split [113/39]&gt; Bootstrap0007\n##  8 &lt;split [113/38]&gt; Bootstrap0008\n##  9 &lt;split [113/33]&gt; Bootstrap0009\n## 10 &lt;split [113/42]&gt; Bootstrap0010\n## # ℹ 990 more rows\n\n定义一个函数,获取自助集:这是tidymodels中的常见操作,可参考:tidymodels数据划分\n\nff &lt;- function(split){analysis(split)}\n\n下面就是提取1000个自助集的数据,对每个自助集进行1次ROC分析,以获取画图数据:\n\nplot_data &lt;- asb %&gt;% \n  mutate(boot_data = map(splits, ff)) %&gt;% \n  unnest(boot_data) %&gt;% \n  group_by(id) %&gt;% \n  roc_curve(outcome, s100b,event_level = \"second\") \n\ndim(plot_data)\n## [1] 40007     4\nhead(plot_data)\n## # A tibble: 6 × 4\n## # Groups:   id [1]\n##   id            .threshold specificity sensitivity\n##   &lt;chr&gt;              &lt;dbl&gt;       &lt;dbl&gt;       &lt;dbl&gt;\n## 1 Bootstrap0001    -Inf         0            1    \n## 2 Bootstrap0001       0.04      0            1    \n## 3 Bootstrap0001       0.05      0.0779       1    \n## 4 Bootstrap0001       0.06      0.143        1    \n## 5 Bootstrap0001       0.07      0.195        1    \n## 6 Bootstrap0001       0.08      0.312        0.944\n\n最后把1000条ROC曲线画在一起即可:也就是大家需要的bootstrap ROC:\n\nggplot()+\n  # 自助集的ROC曲线,共1000条\n  geom_path(data = plot_data,\n            mapping=aes(1-specificity, sensitivity,group=id),color = \"grey\")+\n  # 原始数据的ROC曲线\n  geom_path(data = roc_data, mapping = aes(1-specificity, sensitivity),\n            color=\"blue\", linewidth=1.5)+\n  theme_bw()\n\n\n\n\n由于我们已经进行了1000次ROC分析,那自然就可以获得1000个AUC,所以根据这1000个AUC,就可以计算均值、标准差、标准误、可信区间。\n先获取1000个AUC:\n\nboot_auc &lt;- asb %&gt;% \n  mutate(boot_data = map(splits, ff)) %&gt;% \n  unnest(boot_data) %&gt;% \n  group_by(id) %&gt;% \n  roc_auc(outcome, s100b,event_level = \"second\") \n#boot_auc\ndim(boot_auc)\n## [1] 1000    4\nhead(boot_auc)\n## # A tibble: 6 × 4\n##   id            .metric .estimator .estimate\n##   &lt;chr&gt;         &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 Bootstrap0001 roc_auc binary         0.799\n## 2 Bootstrap0002 roc_auc binary         0.721\n## 3 Bootstrap0003 roc_auc binary         0.774\n## 4 Bootstrap0004 roc_auc binary         0.707\n## 5 Bootstrap0005 roc_auc binary         0.743\n## 6 Bootstrap0006 roc_auc binary         0.701\n\n这1000个AUC基本接近正态分布:\n\nggplot(boot_auc, aes(x=.estimate))+\n  geom_density()\n\n\n\n\n计算置信区间,公式如下(数学知识和统计知识,网络搜索或者看课本都可以):\n\n可信区间下限 = 均值 - z * 标准误\n可信区间上限 = 均值 + z * 标准误\n\n先计算标准误:\n\nsample_mean &lt;- mean(boot_auc$.estimate)\nsample_mean\n## [1] 0.7315554\nsample_size &lt;- nrow(boot_auc)\nstandard_d &lt;- sd(boot_auc$.estimate)\nse &lt;- standard_d/sqrt(sample_size)\nse\n## [1] 0.001544964\n\n计算置信区间:\n\nconf_low &lt;- sample_mean - 1.96 * se\nconf_low\n## [1] 0.7285273\n\nconf_high &lt;- sample_mean + 1.96 * se\nconf_high\n## [1] 0.7345836"
+    "text": "24.2 tidyverse\n后面的方法就是根据开头说的思路,一步一步的实现了。\n先说个tidy的方法,借助tidyverse和tidymodels实现。\n\nlibrary(yardstick)\nlibrary(rsample)\nlibrary(tidyverse)\n\n先说下如何在tidymodels中绘制ROC曲线,详情可参考:tidymodels-yardstick:衡量模型性能\n在tidymodels中画一条ROC曲线非常简单,首先是计算画图需要的数据:\n\nroc_data &lt;- roc_curve(aSAH, outcome, s100b,event_level = \"second\")\nroc_data\n## # A tibble: 52 × 3\n##    .threshold specificity sensitivity\n##         &lt;dbl&gt;       &lt;dbl&gt;       &lt;dbl&gt;\n##  1    -Inf         0            1    \n##  2       0.03      0            1    \n##  3       0.04      0            0.976\n##  4       0.05      0.0694       0.976\n##  5       0.06      0.111        0.976\n##  6       0.07      0.139        0.976\n##  7       0.08      0.222        0.902\n##  8       0.09      0.306        0.878\n##  9       0.1       0.389        0.829\n## 10       0.11      0.486        0.780\n## # ℹ 42 more rows\n\n然后是画图:\n\nautoplot(roc_data)\n\n\n\n\n\n\n\n\n接下来只要使用bootstrap生成1000个自助集就可以很方便的绘制1000条ROC曲线了。\n生成1000个自助集:\n\nset.seed(123)\nasb &lt;- bootstraps(aSAH, times = 1000)\nasb\n## # Bootstrap sampling \n## # A tibble: 1,000 × 2\n##    splits           id           \n##    &lt;list&gt;           &lt;chr&gt;        \n##  1 &lt;split [113/44]&gt; Bootstrap0001\n##  2 &lt;split [113/43]&gt; Bootstrap0002\n##  3 &lt;split [113/47]&gt; Bootstrap0003\n##  4 &lt;split [113/41]&gt; Bootstrap0004\n##  5 &lt;split [113/37]&gt; Bootstrap0005\n##  6 &lt;split [113/37]&gt; Bootstrap0006\n##  7 &lt;split [113/39]&gt; Bootstrap0007\n##  8 &lt;split [113/38]&gt; Bootstrap0008\n##  9 &lt;split [113/33]&gt; Bootstrap0009\n## 10 &lt;split [113/42]&gt; Bootstrap0010\n## # ℹ 990 more rows\n\n定义一个函数,获取自助集:这是tidymodels中的常见操作,可参考:tidymodels数据划分\n\nff &lt;- function(split){analysis(split)}\n\n下面就是提取1000个自助集的数据,对每个自助集进行1次ROC分析,以获取画图数据:\n\nplot_data &lt;- asb %&gt;% \n  mutate(boot_data = map(splits, ff)) %&gt;% \n  unnest(boot_data) %&gt;% \n  group_by(id) %&gt;% \n  roc_curve(outcome, s100b,event_level = \"second\") \n\ndim(plot_data)\n## [1] 40007     4\nhead(plot_data)\n## # A tibble: 6 × 4\n## # Groups:   id [1]\n##   id            .threshold specificity sensitivity\n##   &lt;chr&gt;              &lt;dbl&gt;       &lt;dbl&gt;       &lt;dbl&gt;\n## 1 Bootstrap0001    -Inf         0            1    \n## 2 Bootstrap0001       0.04      0            1    \n## 3 Bootstrap0001       0.05      0.0779       1    \n## 4 Bootstrap0001       0.06      0.143        1    \n## 5 Bootstrap0001       0.07      0.195        1    \n## 6 Bootstrap0001       0.08      0.312        0.944\n\n最后把1000条ROC曲线画在一起即可:也就是大家需要的bootstrap ROC:\n\nggplot()+\n  # 自助集的ROC曲线,共1000条\n  geom_path(data = plot_data,\n            mapping=aes(1-specificity, sensitivity,group=id),color = \"grey\")+\n  # 原始数据的ROC曲线\n  geom_path(data = roc_data, mapping = aes(1-specificity, sensitivity),\n            color=\"blue\", linewidth=1.5)+\n  theme_bw()\n\n\n\n\n\n\n\n\n由于我们已经进行了1000次ROC分析,那自然就可以获得1000个AUC,所以根据这1000个AUC,就可以计算均值、标准差、标准误、可信区间。\n先获取1000个AUC:\n\nboot_auc &lt;- asb %&gt;% \n  mutate(boot_data = map(splits, ff)) %&gt;% \n  unnest(boot_data) %&gt;% \n  group_by(id) %&gt;% \n  roc_auc(outcome, s100b,event_level = \"second\") \n#boot_auc\ndim(boot_auc)\n## [1] 1000    4\nhead(boot_auc)\n## # A tibble: 6 × 4\n##   id            .metric .estimator .estimate\n##   &lt;chr&gt;         &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 Bootstrap0001 roc_auc binary         0.799\n## 2 Bootstrap0002 roc_auc binary         0.721\n## 3 Bootstrap0003 roc_auc binary         0.774\n## 4 Bootstrap0004 roc_auc binary         0.707\n## 5 Bootstrap0005 roc_auc binary         0.743\n## 6 Bootstrap0006 roc_auc binary         0.701\n\n这1000个AUC基本接近正态分布:\n\nggplot(boot_auc, aes(x=.estimate))+\n  geom_density()\n\n\n\n\n\n\n\n\n计算置信区间,公式如下(数学知识和统计知识,网络搜索或者看课本都可以):\n\n可信区间下限 = 均值 - z * 标准误\n可信区间上限 = 均值 + z * 标准误\n\n先计算标准误:\n\nsample_mean &lt;- mean(boot_auc$.estimate)\nsample_mean\n## [1] 0.7315554\nsample_size &lt;- nrow(boot_auc)\nstandard_d &lt;- sd(boot_auc$.estimate)\nse &lt;- standard_d/sqrt(sample_size)\nse\n## [1] 0.001544964\n\n计算置信区间:\n\nconf_low &lt;- sample_mean - 1.96 * se\nconf_low\n## [1] 0.7285273\n\nconf_high &lt;- sample_mean + 1.96 * se\nconf_high\n## [1] 0.7345836",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>24</span>  <span class='chapter-title'>bootstrap ROC/AUC</span>"
+    ]
   },
   {
     "objectID": "roc-bootstrap.html#base-r",
     "href": "roc-bootstrap.html#base-r",
     "title": "24  bootstrap ROC/AUC",
     "section": "24.3 base R",
-    "text": "24.3 base R\n和tidy的方法没有本质区别,只是实现方式使用base R语法而已。这让我想起了某个外国网友对R的评论:目前很多人不是纠结于用R还是用Python,而是纠结于用base R还是tidy R。base R和tidy R真是太割裂了。\n先进行1次bootstrap(获取样本编号)看看效果:\n\nset.seed(123)\nbootset &lt;- sample(nrow(aSAH), size = nrow(aSAH), replace = T)\nbootset\n##   [1]  31  79  51  14  67  42  50  43 101  14  25  90  91  69  91  57  92   9\n##  [19]  93  99  72  26   7  42   9  83  36  78  81  43 103  76  15  32 106 109\n##  [37]   7   9  41  74  23  27  60  53   7  53  27  96  38  89  34  93  69  72\n##  [55]  76  63  13  82  97  91  25  38  21  79  41  47  90  60  95  16  94   6\n##  [73] 107  72  86  86  39  31 112  81  50 113  34   4  13  69  25  52  22  89\n##  [91]  32 110  25  87  35  40 112  30  12  31 110  30  64  99  14  93  96  71\n## [109]  67  23  79  85  37\n\n然后定义一个函数,获取每次的自助集:\n\nget_bootset &lt;- function(data){\n  boot_index &lt;- sample(nrow(data), size = nrow(data), replace = T)\n  bootset &lt;- data[boot_index,]\n  return(bootset)\n}\n\n#set.seed(123)\n#get_bootset(aSAH)\n\n使用bootstrap获取1000个自助集,通过for循环实现:\n\n# 每次结果都不一样\nbootsets &lt;- list()\nfor(i in 1:1000){\n  bootsets[[i]] &lt;- get_bootset(aSAH)\n}\nlength(bootsets)\n## [1] 1000\n\n对每一个自助集进行1次ROC分析,通过for循环实现:\n\nlibrary(pROC)\nrocs &lt;- list()\n\nfor(i in 1:1000){\n  rocs[[i]] &lt;- pROC::roc(bootsets[[i]][,\"outcome\"], bootsets[[i]][,\"s100b\"],\n                   quiet=T)\n}\n\n画1000条ROC曲线,还是通过for循环实现:\n\n# 提供一个画布\nplot(roc(aSAH$outcome, aSAH$s100b),col=\"blue\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\n# 画1000条ROC曲线\nfor(i in 1:1000){\n  lines.roc(rocs[[i]],col=\"grey\")\n}\n\n# 画完1000条把原来的挡住了,重新画一条\nlines.roc(roc(aSAH$outcome, aSAH$s100b),col=\"blue\")\n## Setting levels: control = Good, case = Poor\n## Setting direction: controls &lt; cases\n\n\n\n\n然后是计算1000个AUC的置信区间,和tidy的方法一样的。\n计算1000个AUC:\n\naucs &lt;- list()\n\nfor(i in 1:1000){\n  aucs[[i]] &lt;- auc(pROC::roc(bootsets[[i]][,\"outcome\"],bootsets[[i]][,\"s100b\"],\n                   quiet=T))\n}\naucs &lt;- unlist(aucs)\n\n计算可信区间:\n\nsample_mean &lt;- mean(aucs)\nsample_mean\n## [1] 0.7312995\nsample_size &lt;- length(aucs)\nstandard_d &lt;- sd(aucs)\nse &lt;- standard_d/sqrt(sample_size)\nse\n## [1] 0.001569356\n\n95%的可信区间,参考课本或者这个知乎的解释\n\nconf_low &lt;- sample_mean - 1.96 * se\nconf_low\n## [1] 0.7282235\n\nconf_high &lt;- sample_mean + 1.96 * se\nconf_high\n## [1] 0.7343754\n\n这种方法由于我没有在每次重抽样时设定种子数,导致结果是不可重复的哈,每次都不太一样~"
+    "text": "24.3 base R\n和tidy的方法没有本质区别,只是实现方式使用base R语法而已。这让我想起了某个外国网友对R的评论:目前很多人不是纠结于用R还是用Python,而是纠结于用base R还是tidy R。base R和tidy R真是太割裂了。\n先进行1次bootstrap(获取样本编号)看看效果:\n\nset.seed(123)\nbootset &lt;- sample(nrow(aSAH), size = nrow(aSAH), replace = T)\nbootset\n##   [1]  31  79  51  14  67  42  50  43 101  14  25  90  91  69  91  57  92   9\n##  [19]  93  99  72  26   7  42   9  83  36  78  81  43 103  76  15  32 106 109\n##  [37]   7   9  41  74  23  27  60  53   7  53  27  96  38  89  34  93  69  72\n##  [55]  76  63  13  82  97  91  25  38  21  79  41  47  90  60  95  16  94   6\n##  [73] 107  72  86  86  39  31 112  81  50 113  34   4  13  69  25  52  22  89\n##  [91]  32 110  25  87  35  40 112  30  12  31 110  30  64  99  14  93  96  71\n## [109]  67  23  79  85  37\n\n然后定义一个函数,获取每次的自助集:\n\nget_bootset &lt;- function(data){\n  boot_index &lt;- sample(nrow(data), size = nrow(data), replace = T)\n  bootset &lt;- data[boot_index,]\n  return(bootset)\n}\n\n#set.seed(123)\n#get_bootset(aSAH)\n\n使用bootstrap获取1000个自助集,通过for循环实现:\n\n# 每次结果都不一样\nbootsets &lt;- list()\nfor(i in 1:1000){\n  bootsets[[i]] &lt;- get_bootset(aSAH)\n}\nlength(bootsets)\n## [1] 1000\n\n对每一个自助集进行1次ROC分析,通过for循环实现:\n\nlibrary(pROC)\nrocs &lt;- list()\n\nfor(i in 1:1000){\n  rocs[[i]] &lt;- pROC::roc(bootsets[[i]][,\"outcome\"], bootsets[[i]][,\"s100b\"],\n                   quiet=T)\n}\n\n画1000条ROC曲线,还是通过for循环实现:\n\n# 提供一个画布\nplot(roc(aSAH$outcome, aSAH$s100b),col=\"blue\")\n\n# 画1000条ROC曲线\nfor(i in 1:1000){\n  lines.roc(rocs[[i]],col=\"grey\")\n}\n\n# 画完1000条把原来的挡住了,重新画一条\nlines.roc(roc(aSAH$outcome, aSAH$s100b),col=\"blue\")\n\n\n\n\n\n\n\n\n然后是计算1000个AUC的置信区间,和tidy的方法一样的。\n计算1000个AUC:\n\naucs &lt;- list()\n\nfor(i in 1:1000){\n  aucs[[i]] &lt;- auc(pROC::roc(bootsets[[i]][,\"outcome\"],bootsets[[i]][,\"s100b\"],\n                   quiet=T))\n}\naucs &lt;- unlist(aucs)\n\n计算可信区间:\n\nsample_mean &lt;- mean(aucs)\nsample_mean\n## [1] 0.7312995\nsample_size &lt;- length(aucs)\nstandard_d &lt;- sd(aucs)\nse &lt;- standard_d/sqrt(sample_size)\nse\n## [1] 0.001569356\n\n95%的可信区间,参考课本或者这个知乎的解释\n\nconf_low &lt;- sample_mean - 1.96 * se\nconf_low\n## [1] 0.7282235\n\nconf_high &lt;- sample_mean + 1.96 * se\nconf_high\n## [1] 0.7343754\n\n这种方法由于我没有在每次重抽样时设定种子数,导致结果是不可重复的哈,每次都不太一样~",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>24</span>  <span class='chapter-title'>bootstrap ROC/AUC</span>"
+    ]
   },
   {
     "objectID": "roc-bootstrap.html#boot",
     "href": "roc-bootstrap.html#boot",
     "title": "24  bootstrap ROC/AUC",
     "section": "24.4 boot",
-    "text": "24.4 boot\nboot是专门做重抽样的经典R包,在《R语言实战》一书中有详细介绍。\n通过这个包也可以计算bootstrap AUC的置信区间,但是这种方法只能计算指标,不能画ROC曲线。\n\nlibrary(boot)\nlibrary(pROC)\n\n定义一个函数,提取AUC:\n\n# boot的使用方式很奇怪\nget_auc &lt;- function(data, ind, outcome, predictor){\n  d = data[ind,] #这句必须加\n  au &lt;- as.numeric(auc(pROC::roc(d[,outcome], d[,predictor],quiet=T)))\n  au\n}\n\nget_auc(aSAH, outcome=\"outcome\",predictor=\"s100b\")\n## [1] 0.7313686\n\n提供给boot使用即可:\n\nset.seed(123)\nba &lt;- boot(aSAH, get_auc, R = 1000,\n           outcome=\"outcome\",predictor=\"s100b\")\nba\n## \n## ORDINARY NONPARAMETRIC BOOTSTRAP\n## \n## \n## Call:\n## boot(data = aSAH, statistic = get_auc, R = 1000, outcome = \"outcome\", \n##     predictor = \"s100b\")\n## \n## \n## Bootstrap Statistics :\n##      original       bias    std. error\n## t1* 0.7313686 0.0001084232  0.05365581\n\n结果给出了原始的AUC,以及1000次bootstrap得到的AUC的标准误。\n可以对这个结果画个图看看这1000个AUC的分布:\n\nplot(ba)\n\n\n\n\n获取这1000个AUC的置信区间,默认会给出95%的置信区间,并包含4种计算方法的结果:\n\nboot.ci(ba)\n## Warning in boot.ci(ba): bootstrap variances needed for studentized intervals\n## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS\n## Based on 1000 bootstrap replicates\n## \n## CALL : \n## boot.ci(boot.out = ba)\n## \n## Intervals : \n## Level      Normal              Basic         \n## 95%   ( 0.6261,  0.8364 )   ( 0.6314,  0.8479 )  \n## \n## Level     Percentile            BCa          \n## 95%   ( 0.6148,  0.8313 )   ( 0.6048,  0.8228 )  \n## Calculations and Intervals on Original Scale\n\n4种计算方法的置信区间都有了。\nOVER!"
-  },
-  {
-    "objectID": "多分类数据的ROC曲线.html#yardstick",
-    "href": "多分类数据的ROC曲线.html#yardstick",
-    "title": "25  多分类数据的ROC曲线",
-    "section": "25.1 yardstick",
-    "text": "25.1 yardstick\nyardstick作为tidymodels的核心包之一,其使用语法和tidy系列完全一样,并且支持所有的tidy特性,学习成本非常低。而且背靠Rstudio这颗大树,稳定性和可靠性也有保障。\n接下来我们会演示衡量具有3个或更多类别的分类数据的方法。下面使用的示例数据包含了4个类别:\n\nlibrary(tidymodels)\n\ndata(hpc_cv)\ntibble(hpc_cv)\n## # A tibble: 3,467 × 7\n##    obs   pred     VF      F       M          L Resample\n##    &lt;fct&gt; &lt;fct&gt; &lt;dbl&gt;  &lt;dbl&gt;   &lt;dbl&gt;      &lt;dbl&gt; &lt;chr&gt;   \n##  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01  \n##  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01  \n##  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01  \n##  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01  \n##  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01  \n##  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01  \n##  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01  \n##  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01  \n##  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01  \n## 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01  \n## # ℹ 3,457 more rows\n\n此数据的真实结果(obs)和预测结果(pred)都是因子型,并且数据中包含每个类别的预测概率(VF、F、M、L)。\n计算多分类性能指标的函数与计算二分类性能指标的函数用法基本相同:\n\naccuracy(hpc_cv, obs, pred)\n## # A tibble: 1 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy multiclass     0.709\n\nmcc(hpc_cv, obs, pred)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 mcc     multiclass     0.515\n\n有一些指标是用来处理仅具有两个类别的数据的,但是可以通过一些方法将其扩展到具有多个类别的数据。比如宏平均(macro-averaging)、宏加权平均(macro-weighted averaging)和微平均(micro-averaging):\n\n宏平均使用标准的二分类方法计算一组一对多的指标,并对这些指标取平均值。\n宏加权平均执行相同的操作,但平均值会根据每个类别中的样本数加权。\n微平均计算每个类别的贡献并汇总,然后从汇总中计算单个指标。\n\n我们可以基于上面的解释自己计算,也可以使用yardstick中的函数可以帮助我们实现,只需指定estimator参数即可:\n\nsensitivity(hpc_cv, obs, pred, estimator = \"macro\")\n## # A tibble: 1 × 3\n##   .metric     .estimator .estimate\n##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt;\n## 1 sensitivity macro          0.560\n\nsensitivity(hpc_cv, obs, pred, estimator = \"macro_weighted\")\n## # A tibble: 1 × 3\n##   .metric     .estimator     .estimate\n##   &lt;chr&gt;       &lt;chr&gt;              &lt;dbl&gt;\n## 1 sensitivity macro_weighted     0.709\n\nsensitivity(hpc_cv, obs, pred, estimator = \"micro\")\n## # A tibble: 1 × 3\n##   .metric     .estimator .estimate\n##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt;\n## 1 sensitivity micro          0.709\n\n也有一些指标使用预测概率衡量多分类数据,比如ROC曲线,此时必须将所有预测概率列都提供给函数:\n\nroc_auc(hpc_cv, obs, VF, F, M, L) # 默认hand_till法\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc hand_till      0.829\n\n除此之外,ROC曲线还可以使用宏加权平均衡量多分类数据:\n\nroc_auc(hpc_cv, obs, VF, F, M, L, estimator = \"macro_weighted\")\n## # A tibble: 1 × 3\n##   .metric .estimator     .estimate\n##   &lt;chr&gt;   &lt;chr&gt;              &lt;dbl&gt;\n## 1 roc_auc macro_weighted     0.868\n\n或者使用宏平均法:\n\nroc_auc(hpc_cv, obs, VF, F, M, L, estimator = \"macro\")\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc macro          0.869\n\n画图也是非常简单,先使用roc_curve计算画图所需数据(注意此函数不能更改计算方法),然后使用ggplot2画图即可:\n\nroc_curve(hpc_cv, obs, VF, F, M, L) %&gt;% \n  autoplot()\n\n\n\n\n结果会同时展示4个类别的ROC曲线,当然也可以自己提取数据画。数就是图,图就是数,只要把数据提取出来,就一定能画出来图。提取数据才是最关键的一步,因为画图无非就是ggplot2而已,随便买本书(我只推荐两本:《ggplot2数据分析与图形艺术》和《R数据可视化手册》)认真看看,ggplot2就学得差不多了。提取数据多数都是列表(list)格式,在tidy的世界中更常见的是tibble和列表列,这就需要你认真学习R语言的基础知识。\n\nplot_data &lt;- roc_curve(hpc_cv, obs, VF, F, M, L)\nclass(plot_data)\n## [1] \"roc_df\"     \"tbl_df\"     \"tbl\"        \"data.frame\"\n\nglimpse(plot_data)\n## Rows: 13,876\n## Columns: 4\n## $ .level      &lt;chr&gt; \"VF\", \"VF\", \"VF\", \"VF\", \"VF\", \"VF\", \"VF\", \"VF\", \"VF\", \"VF\"…\n## $ .threshold  &lt;dbl&gt; -Inf, 4.118856e-18, 1.151238e-16, 1.447982e-16, 1.857902e-…\n## $ specificity &lt;dbl&gt; 0.0000000000, 0.0000000000, 0.0005889282, 0.0011778563, 0.…\n## $ sensitivity &lt;dbl&gt; 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 0.9…\n\n这个结果一看就知道.level是4个类别,.threshold是预测变量的阈值,剩下两列是敏感性和特异性,也就是画图需要的数据。\n可以只画其中一个类别,我们以VF这个类别为例:\n\nplot_data %&gt;% \n  filter(.level == \"VF\") %&gt;% \n  ggplot(aes(1-specificity, sensitivity))+\n  geom_line()+\n  geom_abline(linetype = 2)+\n  theme_bw()\n\n\n\n\n而且有了数据,你很容易可以实现bootstrap ROC/AUC,无非就是重复多次而已。可参考:bootstrap ROC/AUC\n所有类别都画就是加个分面就行了:\n\nplot_data %&gt;% \n  #filter(.level == \"VF\") %&gt;% \n  ggplot(aes(1-specificity, sensitivity))+\n  geom_line()+\n  geom_abline(linetype = 2)+\n  facet_wrap(vars(.level))+\n  theme_bw()\n\n\n\n\n一模一样。\n所有这些性能指标都可以使用dplyr进行分组计算:\n\n# 每一次重抽样的1-vs-所有ROC曲线\nhpc_cv %&gt;% \n  group_by(Resample) %&gt;% \n  roc_curve(obs, VF, F, M, L) %&gt;% \n  autoplot()\n\n\n\n\n以上就是yardstick的简单介绍。后台回复tidymodels即可获取相关推文合集."
-  },
-  {
-    "objectID": "多分类数据的ROC曲线.html#multiroc",
-    "href": "多分类数据的ROC曲线.html#multiroc",
-    "title": "25  多分类数据的ROC曲线",
-    "section": "25.2 multiROC",
-    "text": "25.2 multiROC\n也可以实现多分类的ROC曲线,但是很久不更新了,上次更新是2018.6.26。\ngithub地址:https://github.com/WandeRum/multiROC\n\nlibrary(multiROC)\n\n还是用上面的数据作为演示。使用起来很费事,首先得准备正确的格式。需要一个data.frame,包含真实标签和预测数值(可以是概率也可以不是,但肯定不能是预测类别),真实标签必须每个类别都是单独的1列,且列名必须是xxx_true,且必须用1表示阳性,0表示阴性,预测数值的列名必须是xxx_pred。\n首先是真实类别进行独热编码,然后改列名:\n\nhpc_cv1 &lt;- hpc_cv %&gt;% \n  model.matrix(~obs-1, .) %&gt;% \n  bind_cols(hpc_cv %&gt;% select(VF,F,M,L))\n\n# 预测结果必须添加一个  _pred_xx 后缀,不然就报错,太zz了。。。\ncolnames(hpc_cv1) &lt;- c(paste0(c(\"VF\",\"F\",\"M\",\"L\"),\"_true\"),\n                       paste0(c(\"VF\",\"F\",\"M\",\"L\"),\"_pred_rf\")) # _rf是随便加的\n\nhead(hpc_cv1)\n##   VF_true F_true M_true L_true VF_pred_rf  F_pred_rf   M_pred_rf    L_pred_rf\n## 1       1      0      0      0  0.9136340 0.07786694 0.008479147 1.991225e-05\n## 2       1      0      0      0  0.9380672 0.05710623 0.004816447 1.011557e-05\n## 3       1      0      0      0  0.9473710 0.04946767 0.003156287 4.999849e-06\n## 4       1      0      0      0  0.9289077 0.06528949 0.005787179 1.564496e-05\n## 5       1      0      0      0  0.9418764 0.05430830 0.003808013 7.294581e-06\n## 6       1      0      0      0  0.9510978 0.04618223 0.002716177 3.841455e-06\n\n计算AUC,会同时使用宏平均和微平均计算:\n\nroc_res &lt;- multi_roc(hpc_cv1)\n## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):\n## collapsing to unique 'x' values\n\n## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):\n## collapsing to unique 'x' values\n\n## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):\n## collapsing to unique 'x' values\n\n## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):\n## collapsing to unique 'x' values\nroc_res$AUC\n## $rf\n## $rf$VF\n## [1] 0.9145978\n## \n## $rf$F\n## [1] 0.7912642\n## \n## $rf$M\n## [1] 0.8389398\n## \n## $rf$L\n## [1] 0.9322527\n## \n## $rf$macro\n## [1] 0.8692609\n## \n## $rf$micro\n## [1] 0.9028392\n\n计算画图数据:\n\nplot_roc_df &lt;- plot_roc_data(roc_res)\ndim(plot_roc_df)\n## [1] 38140     5\nhead(plot_roc_df)\n##   Specificity  Sensitivity Group       AUC Method\n## 1           1 0.0000000000    VF 0.9145978     rf\n## 2           1 0.0005652911    VF 0.9145978     rf\n## 3           1 0.0011305822    VF 0.9145978     rf\n## 4           1 0.0016958734    VF 0.9145978     rf\n## 5           1 0.0022611645    VF 0.9145978     rf\n## 6           1 0.0028264556    VF 0.9145978     rf\n\n然后使用ggplot2画图即可:\n\nggplot(plot_roc_df, aes(x = 1-Specificity, y=Sensitivity)) +\n  geom_path(aes(color = Group), linewidth=1.5) +\n  geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1), \n               colour='grey', linetype = 'dotdash') +\n  theme_bw() + \n  theme(plot.title = element_text(hjust = 0.5), \n        legend.justification=c(1, 0), legend.position=c(.95, .05),\n        legend.title=element_blank(), \n        legend.background = element_rect(fill=NULL, linewidth=0.5, \n                                         linetype=\"solid\",colour =\"black\")\n        )\n\n\n\n\n这个图是全都画在一起的,你也可以使用分面的形式。\n画图是很简单的,但是说实话这个准备数据的过程不太方便~\nOVER!\n后台回复ROC获取超全合集,回复最佳截点即可获取ROC曲线的最佳截点合集。"
-  },
-  {
-    "objectID": "cindex.html#logistic回归的c-statistic",
-    "href": "cindex.html#logistic回归的c-statistic",
-    "title": "26  C-index的计算",
-    "section": "26.1 logistic回归的C-statistic",
-    "text": "26.1 logistic回归的C-statistic\n今天学习C-index的4种计算方法,在二分类变量中,C-statistic就是AUC,二者在数值上是一样的。\n使用lowbirth数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中dead这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量。数据的预处理和之前一样。\n\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\n\ntmp &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         black = ifelse(race == \"black\",1,0),\n         white = ifelse(race == \"white\",1,0),\n         other = ifelse(race %in% c(\"native American\",\"oriental\"),1,0)\n         ) %&gt;% \n  select(- race)\n\nglimpse(tmp)\n## Rows: 565\n## Columns: 12\n## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…\n## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…\n## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…\n## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…\n## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…\n## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…\n## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…\n## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…\n## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…\n## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…\n## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…\n## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…\n\n\n26.1.1 方法1:rms\n使用rms包构建模型,模型结果中Rank Discrim.下面的C 就是C-Statistic,本模型中C-Statistic = 0.879。\n\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:dplyr':\n## \n##     src, summarize\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\ndd &lt;- datadist(tmp)\noptions(datadist=\"dd\")\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\n\nfit2\n## Logistic Regression Model\n## \n## lrm(formula = dead ~ birth + lowph + pltct + bwt + vent + black + \n##     white, data = tmp, x = T, y = T)\n## \n##                        Model Likelihood      Discrimination    Rank Discrim.    \n##                              Ratio Test             Indexes          Indexes    \n## Obs           565    LR chi2     167.56      R2       0.432    C       0.879    \n##  0            471    d.f.             7      R2(7,565)0.247    Dxy     0.759    \n##  1             94    Pr(&gt; chi2) &lt;0.0001    R2(7,235.1)0.495    gamma   0.759    \n## max |deriv| 1e-06                            Brier    0.095    tau-a   0.211    \n## \n##           Coef    S.E.    Wald Z Pr(&gt;|Z|)\n## Intercept 38.3815 11.0303  3.48  0.0005  \n## birth     -0.1201  0.0914 -1.31  0.1890  \n## lowph     -4.1451  1.1881 -3.49  0.0005  \n## pltct     -0.0017  0.0019 -0.91  0.3644  \n## bwt       -0.0031  0.0006 -5.14  &lt;0.0001 \n## vent=1     2.7526  0.7436  3.70  0.0002  \n## black      1.1974  0.8448  1.42  0.1564  \n## white      0.8597  0.8655  0.99  0.3206\n\n\n\n26.1.2 方法2:ROCR\nROCR包计算AUC,logistic回归的AUC就是C-statistic。这种方法和SPSS得到的一样。\n\nlibrary(ROCR)\n\ntmp$predvalue&lt;-predict(fit2)\n\n# 取出C-Statistics,和上面结果一样\npred &lt;- prediction(tmp$predvalue, tmp$dead)\n\nauc &lt;- round(performance(pred, \"auc\")@y.values[[1]],digits = 4)\n\n这个包也是用来画ROC曲线常用的包,可以根据上面的结果直接画出ROC曲线:\n\nperf &lt;- performance(pred,\"tpr\",\"fpr\")\nplot(perf,col=\"tomato\",lwd=2)\nabline(0,1,lty=2, col=\"grey\")\n\n\n\n\n\n\n26.1.3 方法3:pROC\npROC包计算AUC,这个包也是画ROC曲线常用的R包,但是这个包在使用时需要注意,这部分内容会在后面详细介绍。\n\nlibrary(pROC)\n## Type 'citation(\"pROC\")' for a citation.\n## \n## Attaching package: 'pROC'\n## The following objects are masked from 'package:stats':\n## \n##     cov, smooth, var\n\n# 计算AUC,也就是C-statistic\nroc(tmp$dead, tmp$predvalue, legacy.axes = T, print.auc = T, print.auc.y = 45)\n## Setting levels: control = 0, case = 1\n## Setting direction: controls &lt; cases\n## \n## Call:\n## roc.default(response = tmp$dead, predictor = tmp$predvalue, legacy.axes = T,     print.auc = T, print.auc.y = 45)\n## \n## Data: tmp$predvalue in 471 controls (tmp$dead 0) &lt; 94 cases (tmp$dead 1).\n## Area under the curve: 0.8794\n\n也是可以直接画法ROC曲线的:\n\nroc.plot &lt;- roc(tmp$dead, tmp$predvalue)\n## Setting levels: control = 0, case = 1\n## Setting direction: controls &lt; cases\n\nplot(roc.plot,legacy.axes=T)\n\n\n\n\n\n\n26.1.4 方法4:Hmisc\n使用Hmisc包。结果中的C就是C-Statistic。\n\nlibrary(Hmisc)\nsomers2(tmp$predvalue, tmp$dead)\n##           C         Dxy           n     Missing \n##   0.8793875   0.7587749 565.0000000   0.0000000"
+    "text": "24.4 boot\nboot是专门做重抽样的经典R包,在《R语言实战》一书中有详细介绍。\n通过这个包也可以计算bootstrap AUC的置信区间,但是这种方法只能计算指标,不能画ROC曲线。\n\nlibrary(boot)\nlibrary(pROC)\n\n定义一个函数,提取AUC:\n\n# boot的使用方式很奇怪\nget_auc &lt;- function(data, ind, outcome, predictor){\n  d = data[ind,] #这句必须加\n  au &lt;- as.numeric(auc(pROC::roc(d[,outcome], d[,predictor],quiet=T)))\n  au\n}\n\nget_auc(aSAH, outcome=\"outcome\",predictor=\"s100b\")\n## [1] 0.7313686\n\n提供给boot使用即可:\n\nset.seed(123)\nba &lt;- boot(aSAH, get_auc, R = 1000,\n           outcome=\"outcome\",predictor=\"s100b\")\nba\n## \n## ORDINARY NONPARAMETRIC BOOTSTRAP\n## \n## \n## Call:\n## boot(data = aSAH, statistic = get_auc, R = 1000, outcome = \"outcome\", \n##     predictor = \"s100b\")\n## \n## \n## Bootstrap Statistics :\n##      original       bias    std. error\n## t1* 0.7313686 0.0001084232  0.05365581\n\n结果给出了原始的AUC,以及1000次bootstrap得到的AUC的标准误。\n可以对这个结果画个图看看这1000个AUC的分布:\n\nplot(ba)\n\n\n\n\n\n\n\n\n获取这1000个AUC的置信区间,默认会给出95%的置信区间,并包含4种计算方法的结果:\n\nboot.ci(ba)\n## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS\n## Based on 1000 bootstrap replicates\n## \n## CALL : \n## boot.ci(boot.out = ba)\n## \n## Intervals : \n## Level      Normal              Basic         \n## 95%   ( 0.6261,  0.8364 )   ( 0.6314,  0.8479 )  \n## \n## Level     Percentile            BCa          \n## 95%   ( 0.6148,  0.8313 )   ( 0.6048,  0.8228 )  \n## Calculations and Intervals on Original Scale\n\n4种计算方法的置信区间都有了。\nOVER!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>24</span>  <span class='chapter-title'>bootstrap ROC/AUC</span>"
+    ]
   },
   {
-    "objectID": "cindex.html#cox回归的c-statistic",
-    "href": "cindex.html#cox回归的c-statistic",
-    "title": "26  C-index的计算",
-    "section": "26.2 cox回归的C-statistic",
-    "text": "26.2 cox回归的C-statistic\ncox回归的C-statistic可以用survival包计算,需要注意,生存分析的C-statistic和AUC是不一样的。\n使用survival包自带的lung数据集进行演示。\n\nlibrary(survival)\nlibrary(dplyr)\n\ndf1 &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 1,1,0))\n\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n\nR语言自带的coxph函数即可给出C-index,非常简单:\n\ncox_fit1 &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = lung,x = T, y = T)\n\nsummary(cox_fit1)\n## Call:\n## coxph(formula = Surv(time, status) ~ age + sex + ph.ecog + ph.karno + \n##     pat.karno, data = lung, x = T, y = T)\n## \n##   n= 223, number of events= 160 \n##    (5 observations deleted due to missingness)\n## \n##                coef exp(coef)  se(coef)      z Pr(&gt;|z|)   \n## age        0.011383  1.011448  0.009510  1.197  0.23134   \n## sex       -0.561464  0.570373  0.170689 -3.289  0.00100 **\n## ph.ecog    0.565533  1.760386  0.186716  3.029  0.00245 **\n## ph.karno   0.015853  1.015979  0.009853  1.609  0.10762   \n## pat.karno -0.010111  0.989940  0.006881 -1.470  0.14169   \n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n##           exp(coef) exp(-coef) lower .95 upper .95\n## age          1.0114     0.9887    0.9928     1.030\n## sex          0.5704     1.7532    0.4082     0.797\n## ph.ecog      1.7604     0.5681    1.2209     2.538\n## ph.karno     1.0160     0.9843    0.9965     1.036\n## pat.karno    0.9899     1.0102    0.9767     1.003\n## \n## Concordance= 0.647  (se = 0.025 )\n## Likelihood ratio test= 32.9  on 5 df,   p=4e-06\n## Wald test            = 33  on 5 df,   p=4e-06\n## Score (logrank) test = 33.79  on 5 df,   p=3e-06\n\nConcordance就是C-statistic,本次示例中为0.647。\n以上就是C-statistic的计算。\n获取lowbirth数据请在公众号:医学和生信笔记 后台回复20220520"
+    "objectID": "cindex.html",
+    "href": "cindex.html",
+    "title": "25  C-index的计算",
+    "section": "",
+    "text": "25.1 logistic回归\n今天学习C-index的4种计算方法,在二分类变量中,C-statistic就是AUC,二者在数值上是一样的。\n使用lowbirth数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中dead这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量(获取lowbirth数据请在公众号:医学和生信笔记 后台回复20220520,或者在粉丝qq群文件自取)。\n我们首先对这个数据做一些预处理(参考:Chapter 7)\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n\nlibrary(dplyr)\n\ntmp &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         #dead = factor(dead), 下面介绍的方法2不能是因子型,所以不转换了\n         race = case_when(race %in% \n                            c(\"native American\",\"oriental\") ~ \"other\",\n                          .default = race),\n         race = factor(race))\n\nstr(tmp)\n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : Factor w/ 3 levels \"black\",\"other\",..: 3 1 1 1 1 1 3 1 3 3 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : Factor w/ 2 levels \"0\",\"1\": 1 2 1 2 1 1 2 1 1 2 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>25</span>  <span class='chapter-title'>C-index的计算</span>"
+    ]
   },
   {
-    "objectID": "cindex-compare.html#二分类资料c-index的比较",
-    "href": "cindex-compare.html#二分类资料c-index的比较",
-    "title": "27  C-index的比较",
-    "section": "27.1 二分类资料C-index的比较",
-    "text": "27.1 二分类资料C-index的比较\n二分类资料的AUC和C-index是一样的,所以可以参考Chapter 21关于ROC曲线的显著性检验。"
+    "objectID": "cindex.html#logistic回归",
+    "href": "cindex.html#logistic回归",
+    "title": "25  C-index的计算",
+    "section": "",
+    "text": "25.1.1 方法1:rms\n使用rms包构建模型,模型结果中Rank Discrim.下面的C就是C-Statistic,本模型中C-Statistic = 0.879。\n\nlibrary(rms)\n\ndd &lt;- datadist(tmp)\noptions(datadist=\"dd\")\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + race,\n            data = tmp)\n\nfit2\n## Logistic Regression Model\n## \n## lrm(formula = dead ~ birth + lowph + pltct + bwt + vent + race, \n##     data = tmp)\n## \n##                        Model Likelihood      Discrimination    Rank Discrim.    \n##                              Ratio Test             Indexes          Indexes    \n## Obs           565    LR chi2     167.56      R2       0.432    C       0.879    \n##  0            471    d.f.             7      R2(7,565)0.247    Dxy     0.759    \n##  1             94    Pr(&gt; chi2) &lt;0.0001    R2(7,235.1)0.495    gamma   0.759    \n## max |deriv| 1e-06                            Brier    0.095    tau-a   0.211    \n## \n##            Coef    S.E.    Wald Z Pr(&gt;|Z|)\n## Intercept  39.5788 11.0070  3.60  0.0003  \n## birth      -0.1201  0.0914 -1.31  0.1890  \n## lowph      -4.1451  1.1881 -3.49  0.0005  \n## pltct      -0.0017  0.0019 -0.91  0.3644  \n## bwt        -0.0031  0.0006 -5.14  &lt;0.0001 \n## vent=1      2.7526  0.7436  3.70  0.0002  \n## race=other -1.1974  0.8448 -1.42  0.1564  \n## race=white -0.3377  0.2953 -1.14  0.2529\n\n\n\n25.1.2 方法2:Hmisc\n使用Hmisc包。结果中的C就是C-Statistic。\n\n# 先计算线性预测值\ntmp$predvalue&lt;-predict(fit2)\n\nlibrary(Hmisc)\nsomers2(tmp$predvalue, tmp$dead)\n##           C         Dxy           n     Missing \n##   0.8793875   0.7587749 565.0000000   0.0000000\n\n# 或者用\nrcorr.cens(tmp$predvalue, tmp$dead)\n##        C Index            Dxy           S.D.              n        missing \n##   8.793875e-01   7.587749e-01   3.417295e-02   5.650000e+02   0.000000e+00 \n##     uncensored Relevant Pairs     Concordant      Uncertain \n##   5.650000e+02   8.854800e+04   7.786800e+04   0.000000e+00\n\n\n\n25.1.3 方法3:ROCR\nROCR包计算AUC,logistic回归的AUC就是C-statistic。这种方法和SPSS得到的一样。\n\nlibrary(ROCR)\n\ntmp$predvalue&lt;-predict(fit2)\n\n# 取出C-Statistics,和上面结果一样\npred &lt;- prediction(tmp$predvalue, tmp$dead)\n\nauc &lt;- round(performance(pred, \"auc\")@y.values[[1]],digits = 4)\nauc\n## [1] 0.8794\n\n这个包也是用来画ROC曲线常用的包,可以根据上面的结果直接画出ROC曲线,这里就不重复演示了。\n\n\n25.1.4 方法4:pROC\npROC包计算AUC,这个包也是画ROC曲线常用的R包,但是这个包在使用时需要注意,这部分内容会在后面详细介绍。\n\nlibrary(pROC)\n\n# 计算AUC,也就是C-statistic\nroc(tmp$dead, tmp$predvalue, legacy.axes = T, print.auc = T, print.auc.y = 45)\n## \n## Call:\n## roc.default(response = tmp$dead, predictor = tmp$predvalue, legacy.axes = T,     print.auc = T, print.auc.y = 45)\n## \n## Data: tmp$predvalue in 471 controls (tmp$dead 0) &lt; 94 cases (tmp$dead 1).\n## Area under the curve: 0.8794\n\n也是可以直接画法ROC曲线的,请参考前面的文章。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>25</span>  <span class='chapter-title'>C-index的计算</span>"
+    ]
+  },
+  {
+    "objectID": "cindex.html#cox回归",
+    "href": "cindex.html#cox回归",
+    "title": "25  C-index的计算",
+    "section": "25.2 cox回归",
+    "text": "25.2 cox回归\ncox回归的C-statistic可以用survival包计算,需要注意,生存分析的C-statistic和AUC是不一样的,生存分析的C指数一般是指Harrell’s C指数(Harrell就是rms包的作者,统计学大佬)。\n使用survival包自带的lung数据集进行演示。\n\nrm(list = ls())\nlibrary(survival)\nlibrary(dplyr)\n\ndf1 &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 1,1,0))\n\nstr(df1)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n\nR语言自带的coxph函数即可给出C-index,非常简单:\n\ncox_fit1 &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog,\n              data = df1,x = T, y = T)\n\nsummary(cox_fit1)\n## Call:\n## coxph(formula = Surv(time, status) ~ age + sex + ph.ecog, data = df1, \n##     x = T, y = T)\n## \n##   n= 227, number of events= 63 \n##    (1 observation deleted due to missingness)\n## \n##             coef exp(coef) se(coef)      z Pr(&gt;|z|)  \n## age     -0.02193   0.97831  0.01496 -1.465   0.1428  \n## sex      0.63989   1.89626  0.26588  2.407   0.0161 *\n## ph.ecog -0.19941   0.81922  0.20708 -0.963   0.3356  \n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n##         exp(coef) exp(-coef) lower .95 upper .95\n## age        0.9783     1.0222    0.9500     1.007\n## sex        1.8963     0.5274    1.1261     3.193\n## ph.ecog    0.8192     1.2207    0.5459     1.229\n## \n## Concordance= 0.584  (se = 0.042 )\n## Likelihood ratio test= 10.28  on 3 df,   p=0.02\n## Wald test            = 10.14  on 3 df,   p=0.02\n## Score (logrank) test = 10.43  on 3 df,   p=0.02\n\nConcordance就是C-statistic,本次示例中为0.584。\n也可以用以下代码提取结果:\n\nsummary(cox_fit1)$concordance\n##          C      se(C) \n## 0.58390352 0.04179314\n\n以上就是C-statistic的计算。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>25</span>  <span class='chapter-title'>C-index的计算</span>"
+    ]
+  },
+  {
+    "objectID": "cindex-compare.html",
+    "href": "cindex-compare.html",
+    "title": "26  C-index的比较",
+    "section": "",
+    "text": "26.1 二分类资料C-index的比较\n二分类资料的AUC和C-index是一样的,所以可以参考Chapter 23关于ROC曲线的显著性检验。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>26</span>  <span class='chapter-title'>C-index的比较</span>"
+    ]
   },
   {
     "objectID": "cindex-compare.html#生存资料c-index的比较",
     "href": "cindex-compare.html#生存资料c-index的比较",
-    "title": "27  C-index的比较",
-    "section": "27.2 生存资料C-index的比较",
-    "text": "27.2 生存资料C-index的比较\n可以使用compareC包,专门用来比较生存资料的C-index。\n\nrm(list = ls())\nlibrary(compareC)\n\n还是用之前推文的数据,获取数据可以查看历史推文。\n\nload(file = \"./datasets/timeROC.RData\")\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n只要提供4个参数:time,status,第一个指标,第二个指标,即可。\n\ncompareC(df2$futime,\n         df2$event,\n         df2$riskScore,\n         df2$age\n         )\n## $est.c\n##       Cxy       Cxz \n## 0.3383690 0.3894508 \n## \n## $est.diff_c\n## [1] -0.05108181\n## \n## $est.vardiff_c\n## [1] 0.002124315\n## \n## $est.varCxy\n## [1] 0.001046384\n## \n## $est.varCxz\n## [1] 0.00112578\n## \n## $est.cov\n## [1] 2.392402e-05\n## \n## $zscore\n## [1] -1.108299\n## \n## $pval\n## [1] 0.2677329\n\n第1行给出了2个C指数; 第2行是2个C指数相减的差值; 第3行是2个C指数方差相减的差值; 第4、5行是方差; 第6行是协方差; 第7、8行是z值和p值。"
+    "title": "26  C-index的比较",
+    "section": "26.2 生存资料C-index的比较",
+    "text": "26.2 生存资料C-index的比较\n可以使用compareC包,专门用来比较生存资料的C-index。\n\nrm(list = ls())\nlibrary(compareC)\n\n还是用之前推文的数据,获取数据可以查看历史推文。\n\nload(file = \"./datasets/timeROC.RData\")\nstr(df2)\n## 'data.frame':    297 obs. of  8 variables:\n##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...\n##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...\n##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...\n##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...\n##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...\n##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...\n##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...\n##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...\n\n只要提供4个参数:time,status,第一个指标,第二个指标,即可。\n\ncompareC(df2$futime,\n         df2$event,\n         df2$riskScore,\n         df2$age\n         )\n## $est.c\n##       Cxy       Cxz \n## 0.3383690 0.3894508 \n## \n## $est.diff_c\n## [1] -0.05108181\n## \n## $est.vardiff_c\n## [1] 0.002124315\n## \n## $est.varCxy\n## [1] 0.001046384\n## \n## $est.varCxz\n## [1] 0.00112578\n## \n## $est.cov\n## [1] 2.392402e-05\n## \n## $zscore\n## [1] -1.108299\n## \n## $pval\n## [1] 0.2677329\n\n第1行给出了2个C指数;第2行是2个C指数相减的差值;第3行是2个C指数方差相减的差值;第4、5行是方差;第6行是协方差;第7、8行是z值和p值。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>26</span>  <span class='chapter-title'>C-index的比较</span>"
+    ]
   },
   {
     "objectID": "cindex-compare.html#两个cox模型的比较",
     "href": "cindex-compare.html#两个cox模型的比较",
-    "title": "27  C-index的比较",
-    "section": "27.3 两个cox模型的比较",
-    "text": "27.3 两个cox模型的比较\n下面再多说一点两个cox模型的比较,也是很简单的,方差分析即可,使用anova()函数。\n我们用lung数据集进行演示。\n\nlibrary(survival)\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\n\ndf1 &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 1,1,0))\n\n建立两个cox模型:\n\ncox_fit1 &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                  data = lung,x = T, y = T)\n\ncox_fit2 &lt;- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno,\n                  data = lung,x = T, y = T)\n\n直接使用anova()即可:\n\nanova(cox_fit1,cox_fit2)\n## Analysis of Deviance Table\n##  Cox model: response is  Surv(time, status)\n##  Model 1: ~ age + sex + ph.ecog + ph.karno + pat.karno\n##  Model 2: ~ ph.ecog + ph.karno + pat.karno\n##    loglik  Chisq Df Pr(&gt;|Chi|)   \n## 1 -706.48                        \n## 2 -712.83 12.703  2   0.001745 **\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nrms包也带了一个lrtest()函数,也是直接构建两个cph模型即可进行比较,简单演示一下。\n\nsuppressMessages(library(rms))\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\ndd &lt;- datadist(lung)\noptions(datadist=\"dd\")\n\ncox_fit1 &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                data = lung,x = T, y = T)\n\ncox_fit2 &lt;- cph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno,\n                data = lung,x = T, y = T)\n\nlrtest(cox_fit1,cox_fit2)\n## \n## Model 1: Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno\n## Model 2: Surv(time, status) ~ ph.ecog + ph.karno + pat.karno\n## \n##   L.R. Chisq         d.f.            P \n## 12.702485990  2.000000000  0.001744577\n\n可以看到P值是一样的~"
-  },
-  {
-    "objectID": "conf_matrix-3d.html#d混淆矩阵可视化",
-    "href": "conf_matrix-3d.html#d混淆矩阵可视化",
-    "title": "28  三维混淆矩阵",
-    "section": "28.1 2d混淆矩阵可视化",
-    "text": "28.1 2d混淆矩阵可视化\n如果要可视化混淆矩阵,简单的2维非常简单,比如用ggplot2即可:\n\nggplot(df1, aes(pred, outcome))+\n  geom_tile(aes(fill=ca125))+\n  geom_label(data = df1 %&gt;% count(pred, outcome), aes(pred,outcome,label=n),size=12)+\n  theme_minimal()+\n  theme(legend.position = \"none\")\n\n\n\n\n想要修改更多细节,大家自己动手即可,非常简单!"
-  },
-  {
-    "objectID": "conf_matrix-3d.html#d版混淆矩阵可视化",
-    "href": "conf_matrix-3d.html#d版混淆矩阵可视化",
-    "title": "28  三维混淆矩阵",
-    "section": "28.2 3d版混淆矩阵可视化",
-    "text": "28.2 3d版混淆矩阵可视化\n也是很简单,使用barplot3d这个包即可。这个包需要本地安装。\n注意这个包画图的顺序:从左到右,从前到后!\n\nlibrary(barplot3d)\n\n# 把混淆矩阵结果放到1个向量里\ninputdata &lt;- c(15,5,1,9)\n\n# 定义4个颜色\nmycolors &lt;- c(\"#00468BB2\", \"#ED0000B2\", \"#42B540B2\", \"#0099B4B2\")\n\nbarplot3d(rows = 2,cols = 2, z = inputdata, # 一共4个数,2行,2列\n          scalexy=8, # 让柱子胖一点\n          topcolors=mycolors, # 柱子顶部的颜色\n          sidecolors=mycolors, # 柱子的填充色\n          xlabels = c(\"pred.No\",\"pred.Yes\"), \n          ylabels = c(\"No\",\"Yes\"),\n          xsub = \"Prediction\",\n          ysub = \"Outcome\",\n          zsub = \"Count\"\n          )\n\n出图如下:\n\n这个图是3d的,画出来之后会单独弹出一个窗口,你可以随意旋转,找到自己喜欢的角度保存即可!"
-  },
-  {
-    "objectID": "nri.html#logistic的nri",
-    "href": "nri.html#logistic的nri",
-    "title": "29  NRI净重新分类指数",
-    "section": "29.1 logistic的NRI",
-    "text": "29.1 logistic的NRI\n\n29.1.1 nricens包\n\n#install.packages(\"nricens\") # 安装R包\nlibrary(nricens)\n## Loading required package: survival\n\n使用survival包中的pbc数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示logistic回归,只要不使用time这一列就可以了。\n\nlibrary(survival)\n\n# 只使用部分数据\ndat = pbc[1:312,] \ndat = dat[ dat$time &gt; 2000 | (dat$time &lt; 2000 & dat$status == 2), ]\n\nstr(dat) # 数据长这样\n## 'data.frame':    232 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...\n##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...\n##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...\n##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...\n##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...\n##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...\n##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...\n##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...\n##  $ alk.phos: num  1718 7395 516 6122 944 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...\n##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...\n##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...\n##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...\n##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...\ndim(dat) # 232 20\n## [1] 232  20\n\n然后就是准备计算NRI所需要的各个参数。\n\n# 定义结局事件,0是存活,1是死亡\nevent = ifelse(dat$time &lt; 2000 & dat$status == 2, 1, 0)\n\n# 两个只由预测变量组成的矩阵\nz.std = as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new = as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n# 建立2个模型\nmstd = glm(event ~ age + bili + albumin, family = binomial(), data = dat, x=TRUE)\nmnew = glm(event ~ age + bili + albumin + protime, family = binomial(), data = dat, x=TRUE)\n\n# 取出模型预测概率\np.std = mstd$fitted.values\np.new = mnew$fitted.values\n\n然后就是计算NRI,对于二分类变量,使用nribin()函数,这个函数提供了3种参数使用组合,任选一种都可以计算出来(结果一样),以下3组参数任选1组即可。 mdl.std, mdl.new 或者 event, z.std, z.new 或者 event, p.std, p.new。\n\n# 这3种方法算出来都是一样的结果\n\n# 两个模型\nnribin(mdl.std = mstd, mdl.new = mnew, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n# 结果变量 + 两个只有预测变量的矩阵\nnribin(event = event, z.std = z.std, z.new = z.new, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n## 结果变量 + 两个模型得到的预测概率\nnribin(event = event, p.std = p.std, p.new = p.new, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n其中,cut是判断风险高低的阈值,我们使用了0.3,0.7,代表0-0.3是低风险,0.3-0.7是中风险,0.7-1是高风险,这个阈值是自己设置的,大家根据经验或者文献设置即可。\nniter是使用bootstrap法进行重抽样的次数,默认是1000,大家可以自己设置。\nupdown参数,当设置为category时,表示低、中、高风险这种方式;当设置为diff时,此时cut的取值只能设置1个,比如设置0.2,即表示当新模型预测的风险和旧模型相差20%时,认为是重新分类。\n上面的代码运行后结果是这样的:\n\nUP and DOWN calculation:\n  #of total, case, and control subjects at t0:  232 88 144\n\n  Reclassification Table for all subjects:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    135     4      0\n  &lt; 0.7      1    31      4\n  &gt;= 0.7     0     2     55\n\n  Reclassification Table for case:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3     14     0      0\n  &lt; 0.7      0    18      3\n  &gt;= 0.7     0     1     52\n\n  Reclassification Table for control:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    121     4      0\n  &lt; 0.7      1    13      1\n  &gt;= 0.7     0     1      3\n\nNRI estimation:\nPoint estimates:\n                  Estimate\nNRI            0.001893939\nNRI+           0.022727273\nNRI-          -0.020833333\nPr(Up|Case)    0.034090909\nPr(Down|Case)  0.011363636\nPr(Down|Ctrl)  0.013888889\nPr(Up|Ctrl)    0.034722222\n\nNow in bootstrap..\n\nPoint & Interval estimates:\n                  Estimate   Std.Error        Lower       Upper\nNRI            0.001893939 0.027816095 -0.053995513 0.055354449\nNRI+           0.022727273 0.021564394 -0.019801980 0.065789474\nNRI-          -0.020833333 0.017312438 -0.058823529 0.007518797\nPr(Up|Case)    0.034090909 0.019007629  0.000000000 0.072164948\nPr(Down|Case)  0.011363636 0.010924271  0.000000000 0.039603960\nPr(Down|Ctrl)  0.013888889 0.009334685  0.000000000 0.035211268\nPr(Up|Ctrl)    0.034722222 0.014716046  0.006993007 0.066176471\n\n首先是3个混淆矩阵,第一个是全体的,第2个是case(结局为1)组的,第3个是control(结局为2)组的,有了这3个矩阵,我们可以自己计算净重分类指数。\n看case组:\n净重分类指数 = ((0+3)-(0+1)) / 88 ≈ 0.022727273\n再看control组:\n净重分类指数 = ((1+1)-(4+1)) / 144 ≈ -0.020833333\n相加净重分类指数 = case组净重分类指数 + control组净重分类指数 = 2/88 - 3/144 ≈ 0.000315657\n再往下是不做bootstrap时得到的估计值,其中NRI就是绝对净重分类指数,NRI+是case组的净重分类指数,NRI-是control组的净重分类指数(和我们计算的一样哦),最后是做了500次bootstrap后得到的估计值,并且有标准误和可信区间。\n最后还会得到一张图:\n\n这张图中的虚线对应的坐标,就是我们在cut中设置的阈值,这张图对应的是上面结果中的第一个混淆矩阵,反应的是总体的情况,case是结果为1的组,也就是发生结局的组,control是结果为0的组,也就是未发生结局的组。\nP值没有直接给出,但是可以自己计算。\n\n# 计算P值\nz &lt;- abs(0.001893939/0.027816095)\np &lt;- (1 - pnorm(z))*2\np\n## [1] 0.9457157\n\n\n\n29.1.2 PredictABEL包\n\n#install.packages(\"PredictABEL\") #安装R包\nlibrary(PredictABEL)  \n\n# 取出模型预测概率,这个包只能用预测概率计算\np.std = mstd$fitted.values\np.new = mnew$fitted.values \n\n然后就是计算NRI:\n\ndat$event &lt;- event\n\nreclassification(data = dat,\n                 cOutcome = 21, # 结果变量在哪一列\n                 predrisk1 = p.std,\n                 predrisk2 = p.new,\n                 cutoff = c(0,0.3,0.7,1)\n                 )\n##  _________________________________________\n##  \n##      Reclassification table    \n##  _________________________________________\n## \n##  Outcome: absent \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       121         4       0               3\n##     [0.3,0.7)       1        13       1              13\n##     [0.7,1]         0         1       3              25\n## \n##  \n##  Outcome: present \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        14         0       0               0\n##     [0.3,0.7)       0        18       3              14\n##     [0.7,1]         0         1      52               2\n## \n##  \n##  Combined Data \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       135         4       0               3\n##     [0.3,0.7)       1        31       4              14\n##     [0.7,1]         0         2      55               4\n##  _________________________________________\n## \n##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 \n##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 \n##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396\n\n结果得到的是相加净重分类指数,还给出了IDI和P值。两个包算是各有优劣吧,大家可以自由选择。"
+    "title": "26  C-index的比较",
+    "section": "26.3 两个cox模型的比较",
+    "text": "26.3 两个cox模型的比较\n下面再多说一点两个cox模型的比较,也是很简单的,方差分析即可,使用anova()函数。\n我们用lung数据集进行演示。\n\nlibrary(survival)\nlibrary(dplyr)\n\ndf1 &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 1,1,0))\n\n建立两个cox模型:\n\ncox_fit1 &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                  data = df1,x = T, y = T)\n\ncox_fit2 &lt;- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno,\n                  data = df1,x = T, y = T)\n\n直接使用anova()即可:\n\nanova(cox_fit1,cox_fit2)\n## Analysis of Deviance Table\n##  Cox model: response is  Surv(time, status)\n##  Model 1: ~ age + sex + ph.ecog + ph.karno + pat.karno\n##  Model 2: ~ ph.ecog + ph.karno + pat.karno\n##    loglik  Chisq Df Pr(&gt;|Chi|)  \n## 1 -257.97                       \n## 2 -261.94 7.9486  2    0.01879 *\n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nrms包也带了一个lrtest()函数,也是直接构建两个cph模型即可进行比较,简单演示一下。\n\nsuppressMessages(library(rms))\ndd &lt;- datadist(lung)\noptions(datadist=\"dd\")\n\ncox_fit1 &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                data = df1,x = T, y = T)\n\ncox_fit2 &lt;- cph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno,\n                data = df1,x = T, y = T)\n\nlrtest(cox_fit1,cox_fit2)\n## \n## Model 1: Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno\n## Model 2: Surv(time, status) ~ ph.ecog + ph.karno + pat.karno\n## \n## L.R. Chisq       d.f.          P \n## 7.94861288 2.00000000 0.01879233\n\n可以看到P值是一样的~",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>26</span>  <span class='chapter-title'>C-index的比较</span>"
+    ]
+  },
+  {
+    "objectID": "nri.html",
+    "href": "nri.html",
+    "title": "27  净重分类指数NRI",
+    "section": "",
+    "text": "27.1 二分类模型的NRI",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>27</span>  <span class='chapter-title'>净重分类指数NRI</span>"
+    ]
   },
   {
-    "objectID": "nri.html#生存资料的nri",
-    "href": "nri.html#生存资料的nri",
-    "title": "29  NRI净重新分类指数",
-    "section": "29.2 生存资料的NRI",
-    "text": "29.2 生存资料的NRI\n还是使用survival包中的pbc数据集用于演示,这次要构建cox回归模型,因此我们要使用time这一列了。\n\n29.2.1 nricens包\n\nlibrary(nricens)\nlibrary(survival)\n\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\n然后准备所需参数:\n\n# 两个只由预测变量组成的矩阵\nz.std = as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new = as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n# 建立2个cox模型\nmstd &lt;- coxph(Surv(time,status) ~ age + bili + albumin, data = dat, x=TRUE)\nmnew &lt;- coxph(Surv(time,status) ~ age + bili + albumin + protime, data = dat, x=TRUE)\n\n# 计算在2000天的模型预测概率,这一步不要也行,看你使用哪些参数\np.std &lt;- get.risk.coxph(mstd, t0=2000)\np.new &lt;- get.risk.coxph(mnew, t0=2000)\n\n计算NRI:\n\nnricens(mdl.std= mstd, mdl.new = mnew, \n        t0 = 2000, \n        cut = c(0.3, 0.7),\n        niter = 1000, \n        updown = 'category')\n\nUP and DOWN calculation:\n  #of total, case, and control subjects at t0:  312 88 144\n\n  Reclassification Table for all subjects:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    202     7      0\n  &lt; 0.7     13    53      6\n  &gt;= 0.7     0     0     31\n\n  Reclassification Table for case:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3     19     3      0\n  &lt; 0.7      3    32      4\n  &gt;= 0.7     0     0     27\n\n  Reclassification Table for control:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    126     3      0\n  &lt; 0.7      5     7      2\n  &gt;= 0.7     0     0      1\n\nNRI estimation by KM estimator:\n\nPoint estimates:\n                Estimate\nNRI           0.05377635\nNRI+          0.03748660\nNRI-          0.01628974\nPr(Up|Case)   0.07708938\nPr(Down|Case) 0.03960278\nPr(Down|Ctrl) 0.04256352\nPr(Up|Ctrl)   0.02627378\n\nNow in bootstrap..\n\nPoint & Interval estimates:\n                Estimate        Lower      Upper\nNRI           0.05377635 -0.082230381 0.16058172\nNRI+          0.03748660 -0.084245197 0.13231776\nNRI-          0.01628974 -0.030861213 0.06753616\nPr(Up|Case)   0.07708938  0.000000000 0.19102291\nPr(Down|Case) 0.03960278  0.000000000 0.15236016\nPr(Down|Ctrl) 0.04256352  0.004671535 0.09863170\nPr(Up|Ctrl)   0.02627378  0.006400463 0.05998424\n\n\n结果的解读和logistic的一模一样。\n\n\n29.2.2 survNRI包\n\n# 安装R包\ndevtools::install_github(\"mdbrown/survNRI\")\n\n加载R包并使用,还是用上面的pbc数据集。\n\nlibrary(survNRI)\n## Loading required package: MASS\nlibrary(survival)\n\n# 使用部分数据\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\nres &lt;- survNRI(time  = \"time\", event = \"status\", \n        model1 = c(\"age\", \"bili\", \"albumin\"), # 模型1的自变量\n        model2 = c(\"age\", \"bili\", \"albumin\", \"protime\"), # 模型2的自变量\n        data = dat, \n        predict.time = 2000, # 预测的时间点\n        method = \"all\", \n        bootMethod = \"normal\",  \n        bootstraps = 500, \n        alpha = .05)\n\n查看结果,$estimates给出了不同组的NRI以及总的NRI,包括了使用不同方法(KM/IPW/SmoothIPW/SEM/Combined)得到的结果;$CI给出了可信区间。\n\nprint.survNRI(res)\n## \n##  Net Reclassification Improvement at time t = 2000\n##   with 95% bootstrap confidence intervals based on normal approximation.\n## \n##  method     |  event NRI              non-event NRI             NRI \n## -------------------------------------------------------------------------------\n##   KM        |  0.204 (-0.024,0.433)   0.319 (0.122,0.720)   0.523 (-0.046,0.888)   \n##   IPW       |  0.224 (-0.006,0.454)   0.327 (0.129,0.750)   0.552 (-0.042,0.921)   \n##   SmoothIPW |  0.196 (-0.031,0.424)   0.314 (0.118,0.707)   0.511 (-0.050,0.875)   \n##   SEM       |  0.075 (-0.117,0.266)   0.263 (0.080,0.521)   0.338 (-0.044,0.646)   \n##   Combined  |  0.196 (-0.032,0.424)   0.314 (0.118,0.707)   0.511 (-0.050,0.875)   \n## -------------------------------------------------------------------------------\n\nOK,这就是NRI的计算,除此之外,随机森林、决策树、lasso回归、SVM等,这些模型,都是可以计算的NRI的,大家可以关注公众号查看相关内容。"
+    "objectID": "nri.html#二分类模型的nri",
+    "href": "nri.html#二分类模型的nri",
+    "title": "27  净重分类指数NRI",
+    "section": "",
+    "text": "27.1.1 nricens\n首先我们加载R包和数据。\n使用survival包中的pbc数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示分类模型,只要不使用time这一列就可以了。\n\n#install.packages(\"nricens\") # 安装R包\nlibrary(nricens)\nlibrary(survival)\n\n# 只使用部分数据\ndat &lt;- pbc[1:312,] \ndat &lt;- dat[dat$time &gt; 2000 | (dat$time &lt; 2000 & dat$status == 2), ]\n\nstr(dat) # 数据长这样\n## 'data.frame':    232 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...\n##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...\n##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...\n##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...\n##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...\n##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...\n##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...\n##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...\n##  $ alk.phos: num  1718 7395 516 6122 944 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...\n##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...\n##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...\n##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...\n##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...\ndim(dat) # 232 20\n## [1] 232  20\n\n然后就是准备计算NRI所需要的各个参数。\n\n# 定义结局事件,0是存活,1是死亡\nevent &lt;- ifelse(dat$time &lt; 2000 & dat$status == 2, 1, 0)\n\n# 两个只由预测变量组成的矩阵\nz.std &lt;- as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new &lt;- as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n# 建立2个模型用于比较\nmstd &lt;- glm(event ~ age + bili + albumin, family = binomial(), \n            data = dat, x=TRUE)\nmnew &lt;- glm(event ~ age + bili + albumin + protime, family = binomial(), \n            data = dat, x=TRUE)\n\n# 取出模型预测概率\np.std &lt;- mstd$fitted.values\np.new &lt;- mnew$fitted.values\n\n\n\n\n\n\n\n提示\n\n\n\n在建立模型时可以选择任何能够计算概率的模型,并不一定需要是逻辑回归模型,随机森林、支持向量机等机器学习模型也都可以的。\n\n\n然后就是计算NRI,对于二分类变量,使用nribin()函数,这个函数提供了3种参数使用组合,任选一种都可以计算出来(结果一样),以下3组参数任选1组即可。 - mdl.std和mdl.new - event, z.std, z.new - event, p.std, p.new\n我个人更推荐使用第3组参数,只需要提供结局变量和模型的预测概率即可,适用范围更广,其他模型(比如随机森林、支持向量机等)的概率也可以用。\n\n# 这3种方法算出来都是一样的结果\n\n# 两个模型\nnribin(mdl.std = mstd, mdl.new = mnew, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n# 结果变量 + 两个只有预测变量的矩阵\nnribin(event = event, z.std = z.std, z.new = z.new, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n## 结果变量 + 两个模型得到的预测概率\nnribin(event = event, p.std = p.std, p.new = p.new, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n其中,cut是判断风险高低的阈值,我们使用了0.3,0.7,代表0-0.3是低风险,0.3-0.7是中风险,0.7-1是高风险,这个阈值是自己设置的,大家根据经验或者文献设置即可。\nniter是使用bootstrap法进行重抽样的次数,默认是1000。\nupdown参数,当设置为category时,表示使用低、中、高风险这种方式;当设置为diff时,此时cut的取值只能设置1个,比如设置0.2,即表示当新模型预测的风险和旧模型相差20%时,认为是重新分类。\n上面的代码运行后结果是这样的:\n\nUP and DOWN calculation:\n  #of total, case, and control subjects at t0:  232 88 144\n\n  Reclassification Table for all subjects:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    135     4      0\n  &lt; 0.7      1    31      4\n  &gt;= 0.7     0     2     55\n\n  Reclassification Table for case:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3     14     0      0\n  &lt; 0.7      0    18      3\n  &gt;= 0.7     0     1     52\n\n  Reclassification Table for control:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    121     4      0\n  &lt; 0.7      1    13      1\n  &gt;= 0.7     0     1      3\n\nNRI estimation:\nPoint estimates:\n                  Estimate\nNRI            0.001893939\nNRI+           0.022727273\nNRI-          -0.020833333\nPr(Up|Case)    0.034090909\nPr(Down|Case)  0.011363636\nPr(Down|Ctrl)  0.013888889\nPr(Up|Ctrl)    0.034722222\n\nNow in bootstrap..\n\nPoint & Interval estimates:\n                  Estimate   Std.Error        Lower       Upper\nNRI            0.001893939 0.027816095 -0.053995513 0.055354449\nNRI+           0.022727273 0.021564394 -0.019801980 0.065789474\nNRI-          -0.020833333 0.017312438 -0.058823529 0.007518797\nPr(Up|Case)    0.034090909 0.019007629  0.000000000 0.072164948\nPr(Down|Case)  0.011363636 0.010924271  0.000000000 0.039603960\nPr(Down|Ctrl)  0.013888889 0.009334685  0.000000000 0.035211268\nPr(Up|Ctrl)    0.034722222 0.014716046  0.006993007 0.066176471\n\n首先是3个重分类表格,第一个是所有患者的,第2个是case(结局为1)组的,第3个是control(结局为2)组的,有了这3个表格,我们可以根据之前的介绍,自己计算NRI。\ncase组(n=88):\n\n重新分对的:3个\n重新分错的:1个\n净重分类:3-1=2\n净重分类的比例是:2/88=0.022727273\n\ncontrol组(n=144):\n\n重新分对的:2个\n重新分错的:5个\n净重分类:2-5=-3\n净重分类的比例是:-3/144=-0.020833333\n相加NRI=2/88 + (-3/144) = 0.001893939 绝对NRI=(2-3)/232=-0.000431\n这个结果和上面的结果(也就是中间的Point-estimates部分)是完全一样的,而且上面的结果只给出了相加NRI,没有绝对NRI。\n最后是做了500次bootstrap后得到的估计值,并且有标准误和可信区间。\n最后还会得到一张图:\n\n这张图中的虚线对应的坐标,就是我们在cut中设置的阈值,这张图对应的是上面结果中的第一个重分类表格,反应的是总体的情况,case是结果为1的组,也就是发生结局的组,control是结果为0的组,也就是未发生结局的组。\nP值没有直接给出,但是可以自己计算。\n\n# 计算P值\nz &lt;- abs(0.001893939/0.027816095)\np &lt;- (1 - pnorm(z))*2\np\n## [1] 0.9457157\n\n以上是训练集的NRI,那么测试集(验证集,外部验证集)的NRI如何实现呢?很简单,只要拿到测试集(验证集,外部验证集)的概率即可。\n我们先随机建立一个测试集(验证集,外部验证集):\n\n# 取前100行作为测试集,这个方法是不正规的哈\ntestset &lt;- dat[1:100,]\n\n# 计算测试集的概率\np.std_test &lt;- predict(mstd, newdata = testset,type = \"response\")\np.new_test &lt;- predict(mnew, newdata = testset,type = \"response\")\n\n然后准备下测试集(验证集,外部验证集)的结果变量,就可以计算NRI了:\n\nevent_test &lt;- ifelse(testset$time &lt; 2000 & testset$status == 2, 1, 0)\n## 结果变量 + 两个模型得到的预测概率\nnribin(event = event_test, p.std = p.std_test, p.new = p.new_test, \n       cut = c(0.3,0.7), \n       niter = 500, \n       updown = 'category')\n\n结果就不展示了,结果解读也是和测试集(验证集,外部验证集)完全一样的。\n\n\n27.1.2 PredictABEL\nPredictABEL只能计算二分类模型的NRI,除此之外,它还会自动给出IDI。\n\n#install.packages(\"PredictABEL\") #安装R包\nlibrary(PredictABEL)  \n\n# 取出模型预测概率,这个包只能用预测概率计算\np.std = mstd$fitted.values\np.new = mnew$fitted.values \n\n然后就是计算NRI:\n\ndat$event &lt;- event\n\nreclassification(data = dat,\n                 cOutcome = 21, # 结果变量在哪一列\n                 predrisk1 = p.std,\n                 predrisk2 = p.new,\n                 cutoff = c(0,0.3,0.7,1)\n                 )\n##  _________________________________________\n##  \n##      Reclassification table    \n##  _________________________________________\n## \n##  Outcome: absent \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       121         4       0               3\n##     [0.3,0.7)       1        13       1              13\n##     [0.7,1]         0         1       3              25\n## \n##  \n##  Outcome: present \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        14         0       0               0\n##     [0.3,0.7)       0        18       3              14\n##     [0.7,1]         0         1      52               2\n## \n##  \n##  Combined Data \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       135         4       0               3\n##     [0.3,0.7)       1        31       4              14\n##     [0.7,1]         0         2      55               4\n##  _________________________________________\n## \n##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 \n##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 \n##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396\n\n这个结果首先也是3个重分类表格,下面是NRI和IDI,第一行NRI(Categorical)的结果和nricens的结果是一样的,也是相加净重分类指数,也同时给出了P值。最后一行还给出了IDI和P值。\n测试集的计算毫无难度,也是只要提供测试集数据以及相应的概率即可,这里就不再重复演示了。\n两个包算是各有优劣吧,大家可以自由选择。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>27</span>  <span class='chapter-title'>净重分类指数NRI</span>"
+    ]
+  },
+  {
+    "objectID": "nri.html#生存模型的nri",
+    "href": "nri.html#生存模型的nri",
+    "title": "27  净重分类指数NRI",
+    "section": "27.2 生存模型的NRI",
+    "text": "27.2 生存模型的NRI\n还是使用survival包中的pbc数据集用于演示,这次要构建生存分析模型,因此我们要使用time这一列了。\n\n27.2.1 nricens\n加载数据和R包:\n\nrm(list = ls())\nlibrary(nricens)\nlibrary(survival)\n\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\n然后准备所需参数:\n\n# 两个只由预测变量组成的矩阵\nz.std &lt;- as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new &lt;- as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n# 建立2个cox模型,建立其他模型也可以,只要能计算概率就行\nmstd &lt;- coxph(Surv(time,status) ~ age + bili + albumin, data = dat, x=TRUE)\nmnew &lt;- coxph(Surv(time,status) ~ age + bili + albumin + protime, data = dat, x=TRUE)\n\n# 计算在2000天的模型预测的生存概率\np.std &lt;- get.risk.coxph(mstd, t0=2000)\np.new &lt;- get.risk.coxph(mnew, t0=2000)\n\n\n\n\n\n\n\n提示\n\n\n\n在建立模型时可以选择任何能够计算概率的模型,并不一定需要是cox回归模型,随机生存森林、生存支持向量机等机器学习模型也都可以的。\n\n\n然后就是计算NRI,但是要注意,生存模型的NRI只能选择计算某一个时间点的NRI,比如计算1年的NRI,计算3年的NRI这种。\n\nnricens(mdl.std= mstd, mdl.new = mnew, \n        t0 = 2000, \n        cut = c(0.3, 0.7),\n        niter = 1000, \n        updown = 'category')\n\nUP and DOWN calculation:\n  #of total, case, and control subjects at t0:  312 88 144\n\n  Reclassification Table for all subjects:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    202     7      0\n  &lt; 0.7     13    53      6\n  &gt;= 0.7     0     0     31\n\n  Reclassification Table for case:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3     19     3      0\n  &lt; 0.7      3    32      4\n  &gt;= 0.7     0     0     27\n\n  Reclassification Table for control:\n        New\nStandard &lt; 0.3 &lt; 0.7 &gt;= 0.7\n  &lt; 0.3    126     3      0\n  &lt; 0.7      5     7      2\n  &gt;= 0.7     0     0      1\n\nNRI estimation by KM estimator:\n\nPoint estimates:\n                Estimate\nNRI           0.05377635\nNRI+          0.03748660\nNRI-          0.01628974\nPr(Up|Case)   0.07708938\nPr(Down|Case) 0.03960278\nPr(Down|Ctrl) 0.04256352\nPr(Up|Ctrl)   0.02627378\n\nNow in bootstrap..\n\nPoint & Interval estimates:\n                Estimate        Lower      Upper\nNRI           0.05377635 -0.082230381 0.16058172\nNRI+          0.03748660 -0.084245197 0.13231776\nNRI-          0.01628974 -0.030861213 0.06753616\nPr(Up|Case)   0.07708938  0.000000000 0.19102291\nPr(Down|Case) 0.03960278  0.000000000 0.15236016\nPr(Down|Ctrl) 0.04256352  0.004671535 0.09863170\nPr(Up|Ctrl)   0.02627378  0.006400463 0.05998424\n\n\n结果的解读以及和分类模型的一模一样,这里就不再重复了。\n测试集(验证集,外部验证集)也是只要拿到概率就好了,下面演示下。\n首先随机建立一个测试集:\n\n# 取前100行作为测试集,这个方法并不正规哈\ntestset &lt;- dat[1:100,]\n\n# 获取测试集在2000天时的生存概率\np.std_test &lt;- 1-c((summary(survfit(mstd, newdata=testset), times=2000)$surv))\np.new_test &lt;- 1-c((summary(survfit(mnew, newdata=testset), times=2000)$surv))\n\n然后计算NRI即可:\n\nnricens(time = testset$time, event = testset$status,\n        p.std = p.std_test, p.new = p.new_test,\n        t0 = 2000, \n        cut = c(0.3, 0.7),\n        niter = 1000, \n        updown = 'category')\n\n结果解读是一模一样的,所以就不重复了。\n\n\n27.2.2 survNRI\nsurvNRI不在CRAN上,可以通过github安装或者下载到本地安装,这个包的作者和rmda的作者是同一个人。\n\n# 安装R包\ndevtools::install_github(\"mdbrown/survNRI\")\n\n加载R包并使用,还是用上面的pbc数据集。\n\nrm(list = ls())\nlibrary(survNRI)\nlibrary(survival)\n\n# 使用部分数据\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\n下面就是计算NRI,时间点我们选择2000天,你可以任意选择你感兴趣的时间点。注意这个包计算NRI就不能只提供概率了,所以对于随机生存森林这种机器学习模型就不行了。\n\nres &lt;- survNRI(time  = \"time\", event = \"status\", \n        model1 = c(\"age\", \"bili\", \"albumin\"), # 模型1的自变量\n        model2 = c(\"age\", \"bili\", \"albumin\", \"protime\"), # 模型2的自变量\n        data = dat, \n        predict.time = 2000, # 预测的时间点\n        method = \"all\", # 所有方法都计算\n        bootMethod = \"normal\",  \n        bootstraps = 500, # 重抽样次数\n        alpha = .05)\n\n下面是查看结果,这个结果很清晰,给出了5种方法得到的相加NRI,并且以表格的方式呈现。分别给出了死亡组和生存组的NRI以及总的NRI,并且也有可信区间:\n\nprint.survNRI(res)\n## \n##  Net Reclassification Improvement at time t = 2000\n##   with 95% bootstrap confidence intervals based on normal approximation.\n## \n##  method     |  event NRI              non-event NRI             NRI \n## -------------------------------------------------------------------------------\n##   KM        |  0.204 (-0.034,0.443)   0.319 (0.132,0.710)   0.523 (-0.046,0.888)   \n##   IPW       |  0.224 (-0.014,0.463)   0.327 (0.141,0.738)   0.552 (-0.036,0.915)   \n##   SmoothIPW |  0.196 (-0.041,0.434)   0.314 (0.129,0.696)   0.511 (-0.047,0.873)   \n##   SEM       |  0.075 (-0.116,0.266)   0.263 (0.084,0.518)   0.338 (-0.047,0.649)   \n##   Combined  |  0.196 (-0.041,0.434)   0.314 (0.129,0.696)   0.511 (-0.048,0.873)   \n## -------------------------------------------------------------------------------\n\n这个包在计算可信区间时有两种方法:正态近似法和分位数法,默认正态近似法。\n上面给出的5种方法,其实是估计生存概率的方法,并不是计算NRI的方法,NRI的计算方法都是一样的,无非就是相加NRI和绝对NRI。\n但是这个函数无法计算测试集(或者叫验证集、外部验证集都可以)的IDI,因为它不支持使用概率,如果你提供测试集的数据给它,也只是在测试集重新拟合模型而已,这样就不是原来的模型了。如果大家知道其他R包,欢迎告诉我。\n但是在实际使用时,NRI和IDI都是作为比较最终模型准确性的,所以通常都是只做一遍就可以了,不需要在训练集、验证集各来一遍。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>27</span>  <span class='chapter-title'>净重分类指数NRI</span>"
+    ]
+  },
+  {
+    "objectID": "idi.html",
+    "href": "idi.html",
+    "title": "28  综合判别改善指数IDI",
+    "section": "",
+    "text": "28.1 二分类模型的IDI\n二分类模型的NRI和IDI计算使用PredictABEL包,这个包在之前演示二分类模型的NRI时也演示过了,使用起来非常简单,可以同时给出NRI和IDI。\n使用survival包中的pbc数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示分类模型,只要不使用time这一列就可以了。\nrm(list = ls())\nlibrary(survival)\n\n# 只使用部分数据\ndat &lt;- pbc[1:312,] \ndat &lt;- dat[ dat$time &gt; 2000 | (dat$time &lt; 2000 & dat$status == 2), ]\n\nstr(dat) # 数据长这样\n## 'data.frame':    232 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...\n##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...\n##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...\n##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...\n##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...\n##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...\n##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...\n##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...\n##  $ alk.phos: num  1718 7395 516 6122 944 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...\n##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...\n##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...\n##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...\n##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...\ndim(dat) # 232 20\n## [1] 232  20\n然后就是准备计算IDI所需要的各个参数。\n# 定义结局事件,0是存活,1是死亡\nevent &lt;- ifelse(dat$time &lt; 2000 & dat$status == 2, 1, 0)\n\n# 建立2个模型\nmstd &lt;- glm(event ~ age + bili + albumin, family = binomial(), data = dat, x=TRUE)\nmnew &lt;- glm(event ~ age + bili + albumin + protime, family = binomial(), data = dat, x=TRUE)\n\n# 取出模型预测概率\np.std &lt;- mstd$fitted.values\np.new &lt;- mnew$fitted.values\n接下来就是使用PredictABEL计算IDI:\n#install.packages(\"PredictABEL\") #安装R包\nlibrary(PredictABEL)  \n\ndat$event &lt;- event\n\nreclassification(data = dat,\n                 cOutcome = 21, # 结果变量在哪一列\n                 predrisk1 = p.std,\n                 predrisk2 = p.new,\n                 cutoff = c(0,0.3,0.7,1)\n                 )\n##  _________________________________________\n##  \n##      Reclassification table    \n##  _________________________________________\n## \n##  Outcome: absent \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       121         4       0               3\n##     [0.3,0.7)       1        13       1              13\n##     [0.7,1]         0         1       3              25\n## \n##  \n##  Outcome: present \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        14         0       0               0\n##     [0.3,0.7)       0        18       3              14\n##     [0.7,1]         0         1      52               2\n## \n##  \n##  Combined Data \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       135         4       0               3\n##     [0.3,0.7)       1        31       4              14\n##     [0.7,1]         0         2      55               4\n##  _________________________________________\n## \n##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 \n##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 \n##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396\nIDI在最后一行,同时给出了95%的可信区间和P值。重分类表格中,absent是event=0的结果,present是event=1的结果。\n这个包还是很全面的,如果你的模型只涉及分类,不涉及生存分析,那么在计算NRI和IDI时我推荐你使用这个包,因为使用简单,1行代码即可得到两个结果。\n测试集(验证集,外部验证集)的计算也是很简单,只要计算出概率就可以了。\n我们先随机建立一个测试集:\n# 取前100行作为测试集,这个方法是不正规的哈\ntestset &lt;- dat[1:100,]\n\n# 计算测试集的概率\np.std_test &lt;- predict(mstd, newdata = testset,type = \"response\")\np.new_test &lt;- predict(mnew, newdata = testset,type = \"response\")\n计算IDI即可:\nreclassification(data = testset,\n                 cOutcome = 21, # 结果变量在哪一列\n                 predrisk1 = p.std_test,\n                 predrisk2 = p.new_test,\n                 cutoff = c(0,0.3,0.7,1)\n                 )\n##  _________________________________________\n##  \n##      Reclassification table    \n##  _________________________________________\n## \n##  Outcome: absent \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        49         1       0               2\n##     [0.3,0.7)       0         6       1              14\n##     [0.7,1]         0         0       3               0\n## \n##  \n##  Outcome: present \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)         6         0       0               0\n##     [0.3,0.7)       0         7       2              22\n##     [0.7,1]         0         1      24               4\n## \n##  \n##  Combined Data \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        55         1       0               2\n##     [0.3,0.7)       0        13       3              19\n##     [0.7,1]         0         1      27               4\n##  _________________________________________\n## \n##  NRI(Categorical) [95% CI]: -0.0083 [ -0.1043 - 0.0876 ] ; p-value: 0.86483 \n##  NRI(Continuous) [95% CI]: -0.15 [ -0.5466 - 0.2466 ] ; p-value: 0.45847 \n##  IDI [95% CI]: 7e-04 [ -0.0091 - 0.0105 ] ; p-value: 0.89138\neasy!结果解读也是一模一样的。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>28</span>  <span class='chapter-title'>综合判别改善指数IDI</span>"
+    ]
   },
   {
-    "objectID": "idi.html#logistic的idi",
-    "href": "idi.html#logistic的idi",
-    "title": "30  IDI综合判别改善指数",
-    "section": "30.1 logistic的IDI",
-    "text": "30.1 logistic的IDI\n二分类变量的NRI和IDI计算使用PredictABEL包。\n使用survival包中的pbc数据集用于演示,这是一份关于原发性硬化性胆管炎的数据,其实是一份用于生存分析的数据,是有时间变量的,但是这里我们用于演示logistic回归,只要不使用time这一列就可以了。\n\nlibrary(survival)\n\n# 只使用部分数据\ndat = pbc[1:312,] \ndat = dat[ dat$time &gt; 2000 | (dat$time &lt; 2000 & dat$status == 2), ]\n\nstr(dat) # 数据长这样\n## 'data.frame':    232 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 6 8 9 10 11 12 ...\n##  $ time    : int  400 4500 1012 1925 2503 2466 2400 51 3762 304 ...\n##  $ status  : int  2 0 2 2 2 2 2 2 2 2 ...\n##  $ trt     : int  1 1 1 1 2 2 1 2 2 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 66.3 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 1 0 0 ...\n##  $ hepato  : int  1 1 0 1 1 0 0 0 1 0 ...\n##  $ spiders : int  1 1 0 1 0 0 1 1 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 1 0 0 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 0.8 0.3 3.2 12.6 1.4 3.6 ...\n##  $ chol    : int  261 302 176 244 248 280 562 200 259 236 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.98 4 3.08 2.74 4.16 3.52 ...\n##  $ copper  : int  156 54 210 64 50 52 79 140 46 94 ...\n##  $ alk.phos: num  1718 7395 516 6122 944 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 93 ...\n##  $ trig    : int  172 88 55 92 63 189 88 143 79 95 ...\n##  $ platelet: int  190 221 151 183 NA 373 251 302 258 71 ...\n##  $ protime : num  12.2 10.6 12 10.3 11 11 11 11.5 12 13.6 ...\n##  $ stage   : int  4 3 4 4 3 3 2 4 4 4 ...\ndim(dat) # 232 20\n## [1] 232  20\n\n然后就是准备计算IDI所需要的各个参数。\n\n# 定义结局事件,0是存活,1是死亡\nevent = ifelse(dat$time &lt; 2000 & dat$status == 2, 1, 0)\n\n# 建立2个模型\nmstd = glm(event ~ age + bili + albumin, family = binomial(), data = dat, x=TRUE)\nmnew = glm(event ~ age + bili + albumin + protime, family = binomial(), data = dat, x=TRUE)\n\n# 取出模型预测概率\np.std = mstd$fitted.values\np.new = mnew$fitted.values\n\n接下来就是使用PredictABEL计算IDI:\n\n#install.packages(\"PredictABEL\") #安装R包\nlibrary(PredictABEL)  \n\ndat$event &lt;- event\n\nreclassification(data = dat,\n                 cOutcome = 21, # 结果变量在哪一列\n                 predrisk1 = p.std,\n                 predrisk2 = p.new,\n                 cutoff = c(0,0.3,0.7,1)\n                 )\n##  _________________________________________\n##  \n##      Reclassification table    \n##  _________________________________________\n## \n##  Outcome: absent \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       121         4       0               3\n##     [0.3,0.7)       1        13       1              13\n##     [0.7,1]         0         1       3              25\n## \n##  \n##  Outcome: present \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)        14         0       0               0\n##     [0.3,0.7)       0        18       3              14\n##     [0.7,1]         0         1      52               2\n## \n##  \n##  Combined Data \n##   \n##              Updated Model\n## Initial Model [0,0.3) [0.3,0.7) [0.7,1]  % reclassified\n##     [0,0.3)       135         4       0               3\n##     [0.3,0.7)       1        31       4              14\n##     [0.7,1]         0         2      55               4\n##  _________________________________________\n## \n##  NRI(Categorical) [95% CI]: 0.0019 [ -0.0551 - 0.0589 ] ; p-value: 0.94806 \n##  NRI(Continuous) [95% CI]: 0.0391 [ -0.2238 - 0.3021 ] ; p-value: 0.77048 \n##  IDI [95% CI]: 0.0044 [ -0.0037 - 0.0126 ] ; p-value: 0.28396\n\nIDI在最后一行,同时给出了95%的可信区间和P值;还给出了NRI和P值。重分类表中,absent是event=0的结果,present是event=1的结果。"
+    "objectID": "idi.html#二分类模型的idi",
+    "href": "idi.html#二分类模型的idi",
+    "title": "28  综合判别改善指数IDI",
+    "section": "",
+    "text": "提示\n\n\n\n在建立模型时可以选择任何能够计算概率的模型,并不一定需要是逻辑回归模型,随机森林、支持向量机等机器学习模型也都可以的。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>28</span>  <span class='chapter-title'>综合判别改善指数IDI</span>"
+    ]
   },
   {
     "objectID": "idi.html#生存资料的idi",
     "href": "idi.html#生存资料的idi",
-    "title": "30  IDI综合判别改善指数",
-    "section": "30.2 生存资料的IDI",
-    "text": "30.2 生存资料的IDI\n生存资料的IDI计算使用survIDINRI包计算。\n\n# 安装R包\ninstall.packages(\"survIDINRI\")\n\n加载R包并使用,还是用上面的pbc数据集。\n\n#library(survNRI)\nlibrary(survIDINRI)\n## Loading required package: survC1\n\n# 使用部分数据\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\nstr(dat)\n## 'data.frame':    312 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...\n##  $ time    : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...\n##  $ status  : num  1 0 1 1 0 1 0 1 1 1 ...\n##  $ trt     : int  1 1 1 1 2 2 2 2 1 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 38.1 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...\n##  $ hepato  : int  1 1 0 1 1 1 1 0 0 0 ...\n##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...\n##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...\n##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...\n##  $ alk.phos: num  1718 7395 516 6122 671 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 113.2 ...\n##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...\n##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...\n##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...\n##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...\n\n构建参数需要的值:\n\n# 两个只由预测变量组成的矩阵\nz.std = as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new = as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n然后使用IDI.INF()函数计算IDI:\n\nres &lt;- IDI.INF(indata = dat[,c(2,3)],\n               covs0 = z.std,\n               covs1 = z.new,\n               t0 = 2000, # 时间点\n               npert = 500 # 重抽样次数\n               )\n\nIDI.INF.OUT(res) # 提取结果\n##     Est.  Lower Upper p-value\n## M1 0.020 -0.002 0.056   0.076\n## M2 0.202 -0.028 0.393   0.076\n## M3 0.011 -0.001 0.035   0.068\n\n\nm1:IDI的值,可信区间,P值\nm2:NRI的值,可信区间,P值\nm3:Median improvement in risk score,可信区间,p值。\n\n以上就是IDI的计算方法。\n除此之外,随机森林、决策树、lasso回归等也是可以计算IDI的,大家可以关注公众号查看相关内容。"
+    "title": "28  综合判别改善指数IDI",
+    "section": "28.2 生存资料的IDI",
+    "text": "28.2 生存资料的IDI\n生存资料的IDI使用survIDINRI包计算。\n\n# 安装R包\ninstall.packages(\"survIDINRI\")\n\n加载R包并使用,还是用上面的pbc数据集。\n\nrm(list = ls())\nlibrary(survival)\nlibrary(survIDINRI)\n\n# 使用部分数据\ndat &lt;- pbc[1:312,]\ndat$status &lt;- ifelse(dat$status==2, 1, 0) # 0表示活着,1表示死亡\n\nstr(dat)\n## 'data.frame':    312 obs. of  20 variables:\n##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ...\n##  $ time    : int  400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...\n##  $ status  : num  1 0 1 1 0 1 0 1 1 1 ...\n##  $ trt     : int  1 1 1 1 2 2 2 2 1 2 ...\n##  $ age     : num  58.8 56.4 70.1 54.7 38.1 ...\n##  $ sex     : Factor w/ 2 levels \"m\",\"f\": 2 2 1 2 2 2 2 2 2 2 ...\n##  $ ascites : int  1 0 0 0 0 0 0 0 0 1 ...\n##  $ hepato  : int  1 1 0 1 1 1 1 0 0 0 ...\n##  $ spiders : int  1 1 0 1 1 0 0 0 1 1 ...\n##  $ edema   : num  1 0 0.5 0.5 0 0 0 0 0 1 ...\n##  $ bili    : num  14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...\n##  $ chol    : int  261 302 176 244 279 248 322 280 562 200 ...\n##  $ albumin : num  2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...\n##  $ copper  : int  156 54 210 64 143 50 52 52 79 140 ...\n##  $ alk.phos: num  1718 7395 516 6122 671 ...\n##  $ ast     : num  137.9 113.5 96.1 60.6 113.2 ...\n##  $ trig    : int  172 88 55 92 72 63 213 189 88 143 ...\n##  $ platelet: int  190 221 151 183 136 NA 204 373 251 302 ...\n##  $ protime : num  12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...\n##  $ stage   : int  4 3 4 4 3 3 3 3 2 4 ...\n\n构建参数需要的值:\n\n# 两个只由预测变量组成的矩阵\nz.std &lt;- as.matrix(subset(dat, select = c(age, bili, albumin)))\nz.new &lt;- as.matrix(subset(dat, select = c(age, bili, albumin, protime)))\n\n然后使用IDI.INF()函数计算IDI:\n\nres &lt;- IDI.INF(indata = dat[,c(2,3)],\n               covs0 = z.std,\n               covs1 = z.new,\n               t0 = 2000, # 时间点\n               npert = 500, # 重抽样次数\n               seed1 = 1234 # 设定重抽样的种子数\n               )\n\nIDI.INF.OUT(res) # 提取结果\n##     Est.  Lower Upper p-value\n## M1 0.020 -0.004 0.055   0.104\n## M2 0.202 -0.064 0.382   0.084\n## M3 0.011 -0.003 0.033   0.088\n\n\nm1:IDI的值,可信区间,P值\nm2:NRI的值,可信区间,P值\nm3:风险分数的中位数提升(median improvement of risk score),可信区间,p值。\n\n这里的NRI是连续型NRI,定义是当“1/2 NRI(&gt;0)”时的值,详细内容请参考该函数的帮助文档。\n计算IDI也是基于概率的,这个函数默认会帮你建立cox模型从而计算生存概率,所以这个函数计算的其实是两个cox模型的IDI。\n除此之外这个包还可以绘制图形,以图形的方式同时展示IDI、NRI、中位数提升分数:\n\nIDI.INF.GRAPH(res)\n\n\n\n\n\n\n\n\n红色面积减去蓝色面积得到的值就是IDI;两个黑点之间的垂直距离就是连续NRI;两个灰点之间的距离是中位数提升。\n由于这个函数计算IDI时不支持使用概率,只能使用原始数据,所以理论上这个函数无法计算测试集(验证集,外部验证集)的IDI,而且也不支持计算机器学习模型(比如随机生存森林、生存支持向量机等)的IDI。目前我并没有发现其他更好的R包,大家有知道的欢迎评论区留言。\n但是在实际使用时,NRI和IDI都是作为比较最终模型准确性的,所以通常都是只做一遍就可以了,不需要再训练集、验证集各来一遍。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>28</span>  <span class='chapter-title'>综合判别改善指数IDI</span>"
+    ]
+  },
+  {
+    "objectID": "calibration-logistic.html",
+    "href": "calibration-logistic.html",
+    "title": "29  分类模型校准曲线绘制",
+    "section": "",
+    "text": "29.1 准备数据\n使用lowbirth数据集,这个数据集是关于低出生体重儿能否存活的数据集,其中dead这一列是结果变量,0代表存活,1代表死亡,但是存活和死亡的比例严重失衡,存活的只有94个,死亡的有471个。其余列都是预测变量。该数据集没有缺失值,也没有高度相关的自变量。\n获取lowbirth数据请在公众号:医学和生信笔记,后台回复20220520。或者到粉丝QQ群文件自取。\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n查看一下数据:\ndim(lowbirth) # 565行,10列\n## [1] 565  10\nstr(lowbirth) \n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : chr  \"white\" \"black\" \"black\" \"black\" ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: chr  \"abdominal\" \"vaginal\" \"vaginal\" \"abdominal\" ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : chr  \"female\" \"female\" \"male\" \"female\" ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n\n# 看下结果变量的比例\ntable(lowbirth$dead)\n## \n##   0   1 \n## 471  94\nrace这一列有4个类别,分别表示4个人种,但是东方人和美洲人太少了,这样会影响模型拟合,所以我们这两个人种变成other:\n# 其中两个人种人数太少了\ntable(lowbirth$race)\n## \n##           black native American        oriental           white \n##             325              14               4             222\n\n# 把人数太少的变成other\nlowbirth[lowbirth == \"oriental\"] &lt;- \"other\"\nlowbirth[lowbirth == \"native American\"] &lt;- \"other\"\n在R语言中一定要把分类变量因子型,这样才能在建模时进行正确的编码:\nlibrary(dplyr)\n\nlowbirth &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor)\n         #dead = factor(dead, levels=c(1,0),labels=c(\"live\",\"death\"))\n         )\nstr(lowbirth)\n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : Factor w/ 3 levels \"black\",\"other\",..: 3 1 1 1 1 1 3 1 3 3 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n然后把数据划分为训练集、测试集,划分比例为7:3:\nset.seed(123)\nind &lt;- sample(1:nrow(lowbirth),nrow(lowbirth)*0.7)\n\ntrain_df &lt;- lowbirth[ind,]\ntest_df &lt;- lowbirth[- ind, ]\n\ndim(train_df)\n## [1] 395  10\ndim(test_df)\n## [1] 170  10\n接下来就是绘制校准曲线,首先我们会在训练集拟合模型,并使用bootstrap法进行内部验证,然后绘制内部验证的校准曲线,最后绘制测试集的校准曲线(其实就是外部验证集的校准曲线,但是我们数据量不多,只能这样演示了)。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>29</span>  <span class='chapter-title'>分类模型校准曲线绘制</span>"
+    ]
   },
   {
-    "objectID": "calibration-logistic.html#加载数据",
-    "href": "calibration-logistic.html#加载数据",
-    "title": "31  logistic回归校准曲线绘制",
-    "section": "31.1 加载数据",
-    "text": "31.1 加载数据\n使用lowbirth数据集,这个数据集是关于低出生体重儿是否会死亡的数据集,其中dead这一列是结果变量,0代表死亡,1代表存活,其余列都是预测变量。\n\n注意:需要把分类变量因子化,对于无序分类变量,需要设置哑变量!\n\n\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n\n查看一下数据:\n\ndim(lowbirth) # 565行,10列\n## [1] 565  10\nstr(lowbirth) \n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : chr  \"white\" \"black\" \"black\" \"black\" ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: chr  \"abdominal\" \"vaginal\" \"vaginal\" \"abdominal\" ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : chr  \"female\" \"female\" \"male\" \"female\" ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n\n简单的把人种分为白色和黑色人种(无序分类变量需要设置哑变量),再去掉race这一列,然后其余分类变量因子化。\n\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\n\ntmp &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor),\n         vent = factor(vent),\n         black = ifelse(race == \"black\",1,0),\n         white = ifelse(race == \"white\",1,0),\n         other = ifelse(race %in% c(\"native American\",\"oriental\"),1,0)\n         ) %&gt;% \n  select(- race)\n\nglimpse(tmp)\n## Rows: 565\n## Columns: 12\n## $ birth    &lt;dbl&gt; 81.514, 81.552, 81.558, 81.593, 81.610, 81.624, 81.626, 81.68…\n## $ lowph    &lt;dbl&gt; 7.250000, 7.059998, 7.250000, 6.969997, 7.320000, 7.160000, 7…\n## $ pltct    &lt;int&gt; 244, 114, 182, 54, 282, 153, 229, 182, 361, 378, 255, 186, 26…\n## $ bwt      &lt;int&gt; 1370, 620, 1480, 925, 1255, 1350, 1310, 1110, 1180, 970, 770,…\n## $ delivery &lt;fct&gt; abdominal, vaginal, vaginal, abdominal, vaginal, abdominal, v…\n## $ apg1     &lt;int&gt; 7, 1, 8, 5, 9, 4, 6, 6, 6, 2, 4, 8, 1, 8, 5, 9, 9, 9, 6, 2, 1…\n## $ vent     &lt;fct&gt; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1…\n## $ sex      &lt;fct&gt; female, female, male, female, female, female, male, male, mal…\n## $ dead     &lt;int&gt; 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…\n## $ black    &lt;dbl&gt; 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0…\n## $ white    &lt;dbl&gt; 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1…\n## $ other    &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…"
+    "objectID": "calibration-logistic.html#准备数据",
+    "href": "calibration-logistic.html#准备数据",
+    "title": "29  分类模型校准曲线绘制",
+    "section": "",
+    "text": "注释\n\n\n\n如果结果变量是分类变量,我建议把结果变量也变为因子型,并设定好因子的顺序,但是对于rms来说,最好是使用数值型,所以这里我没改。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>29</span>  <span class='chapter-title'>分类模型校准曲线绘制</span>"
+    ]
   },
   {
     "objectID": "calibration-logistic.html#方法1rms",
     "href": "calibration-logistic.html#方法1rms",
-    "title": "31  logistic回归校准曲线绘制",
-    "section": "31.2 方法1:rms",
-    "text": "31.2 方法1:rms\n使用rms包。\n\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:dplyr':\n## \n##     src, summarize\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\ndd &lt;- datadist(tmp)\noptions(datadist=\"dd\")\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\n\ncal2 &lt;- calibrate(fit2, method='boot', B=500)\n\n接下来就是画图:\n\nplot(cal2,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.8,\n     #subtitles = FALSE,\n     legend = FALSE\n     ) \n## \n## n=565   Mean absolute error=0.012   Mean squared error=0.00029\n## 0.9 Quantile of absolute error=0.032\nlines(cal2[,c(\"predy\",\"calibrated.corrected\")], \n      type = 'l', #连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, #连线的粗细\n      pch = 16, #点的形状,可以是0-20\n      col = \"#2166AC\") #连线的颜色\nlines(cal2[,c(\"predy\",\"calibrated.orig\")],type=\"l\",pch=16,lwd=3,col=\"tomato\")\nabline(0,1,\n       lty = 2, #对角线为虚线\n       lwd = 2, #对角线的粗细\n       col = \"#224444\") #对角线的颜色\nlegend(0.6,0.2,\n       c(\"Apparent\",\"Bias-corrected\",\"Ideal\"), \n       lty = c(2,1,1), \n       lwd = c(2,3,3), \n       col = c(\"black\",\"#2166AC\",\"tomato\"), \n       bty = \"n\"\n)\n\n\n\n\n还可以计算hosmer-lemeshow的P值。\n\n# 进行hosmer-lemeshow 检验\nlibrary(ResourceSelection)\n## ResourceSelection 0.3-6   2023-06-27\n\nmodel_glm &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp, family = binomial)\n\n# hosmer-lemeshow 检验\np.hoslem &lt;- hoslem.test(model_glm$y, fitted(model_glm), g=10)$p.value\np.hoslem\n## [1] 0.2340365\n\n# 构建 calibration\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\n\ncal2 &lt;- calibrate(fit2, method='boot', B=500)\n\n画图还是和上面一样,就是多了一个添加 hosmer-lemeshow P值的步骤。\n\nplot(cal2,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.8,\n     #subtitles = FALSE,\n     legend = FALSE\n     ) \n## \n## n=565   Mean absolute error=0.012   Mean squared error=0.00028\n## 0.9 Quantile of absolute error=0.032\nlines(cal2[,c(\"predy\",\"calibrated.corrected\")], \n      type = 'l', #连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, #连线的粗细\n      pch = 16, #点的形状,可以是0-20\n      col = \"#2166AC\") #连线的颜色\nlines(cal2[,c(\"predy\",\"calibrated.orig\")],type=\"l\",pch=16,lwd=3,col=\"tomato\")\nabline(0,1,\n       lty = 2, #对角线为虚线\n       lwd = 2, #对角线的粗细\n       col = \"#224444\")#对角线的颜色\nlegend(0.6,0.2,\n       c(\"Apparent\",\"Bias-corrected\",\"Ideal\"), \n       lty = c(2,1,1), \n       lwd = c(2,3,3), \n       col = c(\"black\",\"#2166AC\",\"tomato\"), \n       bty = \"n\"\n)\ntext(0,0,bquote(\"Hosmer-Lemeshow \"~italic(P)~\" = \"~.(round(p.hoslem,3))),adj = 0)"
+    "title": "29  分类模型校准曲线绘制",
+    "section": "29.2 方法1:rms",
+    "text": "29.2 方法1:rms\nrms可以使用内部重抽样的方法绘制校准曲线,可以选择bootstrap法或者交叉验证法,下面我们选择500次bootstrap的内部验证方法:\n\nlibrary(rms)\n# 必须先打包数据\ndd &lt;- datadist(train_df)\noptions(datadist=\"dd\")\n\n# 建立模型\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + race,\n            data = train_df, x=T,y=T)\n\n# 进行内部验证\ncal2 &lt;- calibrate(fit2, method='boot', B=500)\n\n\n29.2.1 训练集\n接下来就是画图,可以直接使用plot()函数:\n\nplot(cal2)\n\n\n\n\n\n\n\n## \n## n=395   Mean absolute error=0.009   Mean squared error=0.00013\n## 0.9 Quantile of absolute error=0.018\n\n也可以提取数据,自己画,以实现更多的细节控制:\n\nplot(cal2,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.8,\n     #subtitles = FALSE,\n     legend = FALSE\n     ) \n## \n## n=395   Mean absolute error=0.009   Mean squared error=0.00013\n## 0.9 Quantile of absolute error=0.018\nlines(cal2[,c(\"predy\",\"calibrated.corrected\")], \n      type = 'l', #连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, #连线的粗细\n      pch = 16, #点的形状,可以是0-20\n      col = \"#2166AC\") #连线的颜色\nlines(cal2[,c(\"predy\",\"calibrated.orig\")],type=\"l\",pch=16,lwd=3,col=\"tomato\")\nabline(0,1,\n       lty = 2, #对角线为虚线\n       lwd = 2, #对角线的粗细\n       col = \"#224444\") #对角线的颜色\nlegend(0.6,0.2,\n       c(\"Ideal\",\"Bias-corrected\",\"Apparent\"), \n       lty = c(2,1,1), \n       lwd = c(2,3,3), \n       col = c(\"black\",\"#2166AC\",\"tomato\"), \n       bty = \"n\"\n)\n\n\n\n\n\n\n\n\n这个图就是训练集的校准曲线,同时是经过500次bootstrap内部验证过的校准曲线。\n虚线是理想情况下的校准曲线,红线是模型的校准曲线,蓝线是经过校正的校准曲线。\n\n\n29.2.2 测试集\n然后是外部验证集的校准曲线:\n\n# 首先获取测试集的预测结果\nphat &lt;- predict(fit2, test_df, type = 'fitted')\n\n# 直接使用val.prob即可实现,statloc=F可不显示各种指标\n# 赋值给aa是为了减少输出信息\naa &lt;- val.prob(phat, test_df$dead,cex = 1)\n\n\n\n\n\n\n\n\n你可能在文献看见过训练集和测试集的校准曲线都是下面这张图展示的,训练集和测试集一样的图,实现方法也很简单。\n\n上面是测试集(即外部验证集)的校准曲线,我们也可以用同样的方法绘制训练集的校准曲线:\n\n# 获取训练集的预测结果\nphat_train &lt;- predict(fit2, train_df, type = 'fitted')\n\n# 直接使用val.prob即可实现\naa &lt;- val.prob(phat_train, train_df$dead,cex = 1)\n\n\n\n\n\n\n\n\n这张图就是内部验证集(或者叫训练集)的校准曲线了。\n这个图上有很多指标,其实就在函数的帮助文档里,我就是帮大家翻译一下:\n\nDxy:预测概率与实际概率的相关性,Dxy=2C-1\nC:ROC曲线下面积。\nR2:复决定系数,越大越好,最大是1。\nD:discrimination index,区分度指数,越大越好。\nU:unreliability index,不可靠指数,越小越好。\nQ:quality index,质量指数,越大越好。\nBrier:布里尔分数,预测概率与实际概率的均方误差,brier越小,校准效果越好。\nIntercept:截距,为0的时候最好。\nSlope:斜率,为1的时候最好。\nEmax:预测概率和实际概率的最大绝对差。\nE90:预测概率和实际概率差值的90%分位数\nEavg:预测概率和实际概率的平均差值。\nS:z:Z检验的z值\nS:p:Z检验的p值。p=0.842说明拟合效果好,P&gt;0.05说明拟合线和参考线无统计学差异,吻合度高。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>29</span>  <span class='chapter-title'>分类模型校准曲线绘制</span>"
+    ]
   },
   {
     "objectID": "calibration-logistic.html#方法2riskregression",
     "href": "calibration-logistic.html#方法2riskregression",
-    "title": "31  logistic回归校准曲线绘制",
-    "section": "31.3 方法2:riskRegression",
-    "text": "31.3 方法2:riskRegression\n使用riskRegression包。\n\nfit2 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp, family = binomial)\n\n\nlibrary(riskRegression)\n## riskRegression version 2023.09.08\n\nfit22 &lt;- Score(list(\"fit\"=fit2),\n               formula = dead ~ 1,\n               data = tmp,\n               metrics = c(\"auc\",\"brier\"),\n               summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               null.model = T,\n               conf.int = T,\n               B = 500,\n               M = 50\n               )\nplotCalibration(fit22,col=\"tomato\",\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\",\n                bars = F)\n\n\n\n\n非常神奇的是,还可以用ggplot2来画!\n\nplotdata &lt;- plotCalibration(fit22,plot = F,method = \"nne\"\n                            #bandwidth = 0.1\n                            )\n\nlibrary(ggplot2)\n\nggplot(plotdata$plotFrames$fit, aes(x=Pred,y=Obs))+\n  geom_line(color=\"tomato\",linewidth=1.5)+\n  scale_x_continuous(limits = c(0,1),name = \"Predicted Risk\")+\n  scale_y_continuous(limits = c(0,1),name = \"Observerd Risk\")+\n  geom_abline(slope = 1,intercept = 0,lty=2)+\n  geom_rug(color=\"grey\")+\n  theme_bw()"
-  },
-  {
-    "objectID": "calibration-logistic.html#多个calibration画在一起",
-    "href": "calibration-logistic.html#多个calibration画在一起",
-    "title": "31  logistic回归校准曲线绘制",
-    "section": "31.4 多个calibration画在一起",
-    "text": "31.4 多个calibration画在一起\n\n31.4.1 方法1\n首先构建多个画图需要的结果:\n\nfit2 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp,x=T,y=T)\ncal2 &lt;- calibrate(fit2, method='boot', B=500)\n\nfit1 &lt;- lrm(dead ~ lowph + bwt + vent + black,\n            data = tmp,x=T,y=T)\ncal1 &lt;- calibrate(fit1, method='boot', B=500)\n\nfit3 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent,\n            data = tmp,x=T,y=T)\ncal3 &lt;- calibrate(fit3, method='boot', B=500)\n\n然后使用基础函数画在一起即可:\n\nplot(1,\n     type = \"n\",\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Nomogram-prediced Probability\",\n     ylab = \"Observed Probability\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.8\n)\nlines(cal1[,c(\"predy\",\"calibrated.corrected\")], \n      type = 'l', #连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, #连线的粗细\n      pch = 16, #点的形状,可以是0-20\n      col = \"#2166AC\") #连线的颜色\nlines(cal2[,c(\"predy\",\"calibrated.corrected\")],type=\"l\",pch=16,lwd=3,col=\"tomato\")\nlines(cal3[,c(\"predy\",\"calibrated.corrected\")],type=\"l\",pch=16,lwd=3,col=\"skyblue\")\nabline(0,1,\n       lty = 2, #对角线为虚线\n       lwd = 2, #对角线的粗细\n       col = \"#224444\")#对角线的颜色\nlegend(0.6,0.2,\n       c(\"fit1\",\"fit2\",\"fit3\"), \n       lty = c(1,1,1), \n       lwd = c(3,3,3), \n       col = c(\"#2166AC\",\"tomato\",\"skyblue\"), \n       bty = \"n\"\n)\n\n\n\n\n\n\n31.4.2 方法2\n\nlibrary(riskRegression)\n\nfit1 &lt;- glm(dead ~ lowph + bwt + vent + black,data = tmp,family=binomial)\nfit2 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = tmp, family = binomial)\nfit3 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent,data=tmp,\n            family=binomial)\n\nfit_all &lt;- Score(list(\"Fit1\"=fit1,\n                      \"Fit2\"=fit2,\n                      \"Fit3\"=fit3\n                      ),\n               formula = dead ~ 1,\n               data = tmp,\n               metrics = c(\"auc\",\"brier\"),\n               summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               null.model = T,\n               conf.int = T,\n               B = 500,\n               M = 50\n               )\n\ndata_all &lt;- plotCalibration(fit_all,plot = F)\n\n接下来数据稍作变换,就可以画图了!\n\nplot_df &lt;- bind_rows(data_all$plotFrames) %&gt;% \n  mutate(fits = rep(c(\"fit1\",\"fit2\",\"fit3\"),each=76))\n\nggplot(plot_df, aes(Pred,Obs))+\n  geom_line(aes(group=fits,color=fits),linewidth=1.2)+\n  scale_color_manual(values = c(\"#2166AC\",\"tomato\",\"skyblue\"),name=NULL)+\n  scale_x_continuous(limits = c(0,1),name = \"Predicted Risk\")+\n  scale_y_continuous(limits = c(0,1),name = \"Observerd Risk\")+\n  geom_abline(slope = 1,intercept = 0,lty=2)+\n  geom_rug(aes(color=fits))+\n  theme_bw()\n\n\n\n\n获取lowbirth数据请在公众号后台回复20220520。"
-  },
-  {
-    "objectID": "calibration-logistic-test.html#准备数据",
-    "href": "calibration-logistic-test.html#准备数据",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.1 准备数据",
-    "text": "32.1 准备数据\n数据来自于这篇推文:logistic回归校准曲线的绘制,数据获取方法也在上面的推文中给出了。\n\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\nlowbirth$black = ifelse(lowbirth$race == \"black\",1,0)\nlowbirth$white = ifelse(lowbirth$race == \"white\",1,0)\nlowbirth$other = ifelse(lowbirth$race %in% c(\"native American\",\"oriental\"),1,0)\nlowbirth$delivery = factor(lowbirth$delivery)\nlowbirth$sex &lt;- factor(lowbirth$sex)\nlowbirth$race &lt;- NULL\nstr(lowbirth)\n## 'data.frame':    565 obs. of  12 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n##  $ black   : num  0 1 1 1 1 1 0 1 0 0 ...\n##  $ white   : num  1 0 0 0 0 0 1 0 1 1 ...\n##  $ other   : num  0 0 0 0 0 0 0 0 0 0 ..."
-  },
-  {
-    "objectID": "calibration-logistic-test.html#数据分割",
-    "href": "calibration-logistic-test.html#数据分割",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.2 数据分割",
-    "text": "32.2 数据分割\n把数据随机划分为训练集、测试集,划分比例为7:3\n\nset.seed(123)\nind &lt;- sample(1:nrow(lowbirth),nrow(lowbirth)*0.7)\n\ntrain_df &lt;- lowbirth[ind,]\ntest_df &lt;- lowbirth[- ind, ]"
-  },
-  {
-    "objectID": "calibration-logistic-test.html#训练集的校准曲线",
-    "href": "calibration-logistic-test.html#训练集的校准曲线",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.3 训练集的校准曲线",
-    "text": "32.3 训练集的校准曲线\n在之前的推文中这种二分类资料训练集的校准曲线给大家介绍了非常多的方法:\n\nlogistic回归校准曲线的绘制\n\n这里我们直接使用rms包实现,已在上面的推文中详细介绍过了,这里就不多解释了。\n\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\ndd &lt;- datadist(train_df)\noptions(datadist=\"dd\")\n\nfit1 &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = train_df,x=T,y=T)\n\ncal1 &lt;- calibrate(fit1, method='boot', B=100)\n\nplot(cal1,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\"\n     ) \n\n\n\n## \n## n=395   Mean absolute error=0.01   Mean squared error=0.00016\n## 0.9 Quantile of absolute error=0.021"
-  },
-  {
-    "objectID": "calibration-logistic-test.html#测试集校准曲线方法1",
-    "href": "calibration-logistic-test.html#测试集校准曲线方法1",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.4 测试集校准曲线方法1",
-    "text": "32.4 测试集校准曲线方法1\n测试集的校准曲线对于logistic回归很简单,任何可以计算概率的算法都可以轻松画出训练集、测试集的校准曲线,无非就是计算实际概率和预测概率而已。\n二分类资料测试集的校准曲线在之前的推文中也做过很多次介绍,比如:\n\ntidymodels不能画校准曲线?\nmlr3的校准曲线也是一样画!\ntidymodels支持校准曲线了\n\n上面是3种实现方法,其实本质是一样的,前2种是手动计算,最后一种省去了自己计算的步骤,直接给你图形,并且完美继承yardstick的用法。\n这里再给大家介绍3种方法,加上上面介绍的方法,logistic测试集的校准曲线一共给大家介绍了6种方法!\n这个方法是基于rms包的。\n\n# 首先获取测试集的预测结果\nphat &lt;- predict(fit1, test_df, type = 'fitted')\n\n# 直接使用val.prob即可实现\nval.prob(phat, test_df$dead,statloc = F,cex = 1)\n\n\n\n##         Dxy     C (ROC)          R2           D    D:Chi-sq         D:p \n##  0.74384874  0.87192437  0.42860880  0.28181902 48.90923309          NA \n##           U    U:Chi-sq         U:p           Q       Brier   Intercept \n## -0.01085663  0.15437207  0.92571762  0.29267565  0.08935692  0.12059928 \n##       Slope        Emax         E90        Eavg         S:z         S:p \n##  1.08566597  0.29112563  0.07879941  0.03183303 -0.54088957  0.58858370\n\n这个结果,你可以把它当做测试集的校准曲线用,但其实val.prob函数的真正作用是实现外部验证数据(external validation)的校准曲线,这一点在Harrell大神写的书:Regression Modeling Strategies 中写的很清楚,或者你可以看函数的帮助文档。\n所以这个方法没有给你重抽样的选择,因为作者认为外部验证是对模型最后的检验,不需要重抽样。\n你可能在文献看见过训练集和测试集的校准曲线都是上面那张图的样式,类似下面这张图展示的,训练集和测试集一样的图,实现方法也很简单。\n\n\n# 获取训练集的预测结果\nphat_train &lt;- predict(fit1, train_df, type = 'fitted')\n\n# 直接使用val.prob即可实现\nval.prob(phat_train, train_df$dead,cex = 1)\n\n\n\n##           Dxy       C (ROC)            R2             D      D:Chi-sq \n##  7.595104e-01  8.797552e-01  4.274140e-01  2.924665e-01  1.165243e+02 \n##           D:p             U      U:Chi-sq           U:p             Q \n##            NA -5.063291e-03 -8.526513e-14  1.000000e+00  2.975298e-01 \n##         Brier     Intercept         Slope          Emax           E90 \n##  9.802204e-02 -8.039794e-10  1.000000e+00  3.476792e-02  3.030223e-02 \n##          Eavg           S:z           S:p \n##  1.012113e-02 -1.990865e-01  8.421951e-01\n\n上面这张图可以用作训练集的校准曲线。"
-  },
-  {
-    "objectID": "calibration-logistic-test.html#测试集校准曲线方法2",
-    "href": "calibration-logistic-test.html#测试集校准曲线方法2",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.5 测试集校准曲线方法2",
-    "text": "32.5 测试集校准曲线方法2\n如果你非要对测试集的校准曲线进行重抽样,其实也很简单(除了rms还有很多手段可实现)。\n这里还是用rms包实现。\n二分类资料的校准曲线就是计算下实际概率和预测概率就好了,基于这个原理,我们可以自己实现,方法如下:\n\n# 首先也是获取测试集的预测值\nphat &lt;- predict(fit1, test_df)\ntest_df$phat &lt;- phat # 添加到测试集中\n\n# 以预测值为自变量,结果变量为因变量,在测试集中建立逻辑回归\nfit2 &lt;- lrm(dead ~ phat, data = test_df,x=T,y=T)\n\n# 对这个逻辑回归画校准曲线即可\ncal2 &lt;- calibrate(fit2, method='boot', B=100)\n\nplot(cal2,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\"\n     ) \n\n\n\n## \n## n=170   Mean absolute error=0.031   Mean squared error=0.00183\n## 0.9 Quantile of absolute error=0.078\n\n这个图就是测试集的校准曲线,并且使用了bootstrap方法进行了重抽样。\n可以看到其实两张图是一样的,唯一不同是我们手动实现的方法多了重抽样100次的矫正曲线,其余就都是一样的了!"
+    "title": "29  分类模型校准曲线绘制",
+    "section": "29.3 方法2:riskRegression",
+    "text": "29.3 方法2:riskRegression\nriskRegression也是非常好用的R包,使用起来也非常简单,可同时实现内部验证集和外部验证集的校准曲线绘制。\n首先是建立一个模型:\n\nfit2 &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + race,\n            data = train_df, family = binomial)\n\n\n29.3.1 训练集\n然后是使用Score()函数,最后使用plotCalibration()函数画图即可:\n\nlibrary(riskRegression)\n\nfit22 &lt;- Score(list(\"fit\"=fit2),\n               formula = dead ~ 1,\n               data = train_df,\n               metrics = c(\"auc\",\"brier\"),\n               #summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               null.model = T,\n               conf.int = T,\n               B = 500,\n               M = 50 # 每组的人数\n               )\n\n# 画图\nplotCalibration(fit22,col=\"tomato\",\n                method = \"quantile\", # 默认是nne,quantile是分组计算的传统方法\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\",\n                brier.in.legend = F, # 不显示brier分数\n                auc.in.legend = F,  # 不显示auc值\n                bars = F)\n\n\n\n\n\n\n\n\n非常神奇的是,还可以用ggplot2来画!\n\nplotdata &lt;- plotCalibration(fit22,plot = F,method = \"quantile\"\n                            #bandwidth = 0.1\n                            )\n\nlibrary(ggplot2)\n\nggplot(plotdata$plotFrames$fit, aes(x=Pred,y=Obs))+\n  geom_line(color=\"tomato\",linewidth=1.5)+\n  scale_x_continuous(limits = c(0,1),name = \"Predicted Risk\")+\n  scale_y_continuous(limits = c(0,1),name = \"Observerd Risk\")+\n  geom_abline(slope = 1,intercept = 0,lty=2)+\n  geom_rug(color=\"grey\")+\n  theme_bw()\n\n\n\n\n\n\n\n\n除了这种校准曲线,riskRegression还提供另外一种预测风险的频率分布图(这个也就是前面提到过的预测概率直方图):\n\nplotCalibration(fit22,\n                method = \"quantile\", # 默认是nne,quantile是分组计算的传统方法\n                bars = T, # 这里选择TRUE即可\n                q = 10 # 把风险分为10组\n                )\n\n\n\n\n\n\n\n\n横坐标是风险分组,被分成了10组,纵坐标是风险的频率,黑色表示实际的频率,灰色表示预测的频率,两者之间越接近说明模型预测的越准确。\n这个图也是可以用ggplot2自己绘制的。\n\nplotdata &lt;- plotCalibration(fit22,plot = F,method = \"quantile\",\n                            bars = T, \n                            q = 10 )\nplotdata &lt;- plotdata$plotFrames$fit\nplotdata$risk &lt;- rownames(plotdata)\n\nlibrary(tidyr)\nplotdata &lt;- plotdata %&gt;% \n  pivot_longer(cols = 1:2,names_to = \"type\",values_to = \"values\")\n\nlibrary(ggplot2)\n\nggplot(plotdata, aes(x=risk,y=values))+\n  geom_bar(position = \"dodge\",aes(fill=type),stat = \"identity\")+\n  theme(axis.text.x = element_text(hjust = 1,angle = 30))\n\n\n\n\n\n\n\n\n横坐标的大小和顺序还有点问题,大家需要的话可以自己慢慢调整,这里就不演示了。\n\n\n29.3.2 测试集\n下面是绘制测试集(外部验证集)的校准曲线。\n\nfit22 &lt;- Score(list(\"fit\"=fit2),\n               formula = dead ~ 1,\n               data = test_df, # 这里写测试集即可\n               metrics = c(\"auc\",\"brier\"),\n               #summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               null.model = T,\n               conf.int = T,\n               B = 500,\n               M = 50\n               )\n\n# 画图\nplotCalibration(fit22,col=\"tomato\",\n                method = \"quantile\", # 默认是nne,quantile是分组计算的传统方法\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\",\n                brier.in.legend = F, # 不显示brier分数\n                auc.in.legend = F,  # 不显示auc值\n                bars = F)\n\n\n\n\n\n\n\n\n测试集也是可以绘制风险频率分布图的,同时也支持返回数据使用ggplot2绘制,这里就不再重复了。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>29</span>  <span class='chapter-title'>分类模型校准曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "calibration-logistic.html#方法3tidymodels",
+    "href": "calibration-logistic.html#方法3tidymodels",
+    "title": "29  分类模型校准曲线绘制",
+    "section": "29.4 方法3:tidymodels",
+    "text": "29.4 方法3:tidymodels\n这个方法是我目前最推荐的方法,它是基于tidymodels实现的,主要优势有以下几个:\n\n支持所有的tidyverse语法,\n支持所有的分类模型,\n使用语法一致,\n使用的统计方法清晰\n\n我下面给大家展示一下随机森林模型,其他模型都是完全一致的语法,只要换个“引擎”即可,学习起来非常简单。\n\nlibrary(tidymodels) # 注意版本,我的是1.1.1\n\n# 先把结果变量变成因子型\nlowbirth$dead &lt;- factor(lowbirth$dead,levels=c(1,0),labels=c(\"death\",\"live\"))\n\n# 划分数据\nset.seed(123)\nsplit &lt;- initial_split(lowbirth, strata = \"dead\", prop = 0.7)\ntrain &lt;- training(split)\ntest &lt;- testing(split)\n\n# 重抽样方法选择,也就是内部验证方法\nset.seed(123)\nrs &lt;- bootstraps(train, times = 500)\n\n# 选择模型,选择预处理,建立工作流\nrf_spec &lt;- rand_forest(mode = \"classification\",engine = \"ranger\",trees = 500)\nrf_rec &lt;- recipe(dead ~ birth + lowph + pltct + bwt + vent + race,data = train)\nrf_wf &lt;- workflow(preprocessor = rf_rec, spec = rf_spec)\n\n# 开始建模\nrf_res &lt;- fit_resamples(rf_wf,\n                        resamples = rs,\n                        metrics = metric_set(roc_auc, sens, spec, mcc, f_meas, \n                                          j_index, brier_class),\n                        control = control_resamples(save_pred = T))\n\n查看模型结果,我在建模时同时选择了7个评价指标,所以结果也会同时展示出来:\n\ncollect_metrics(rf_res)\n## # A tibble: 7 × 6\n##   .metric     .estimator  mean     n  std_err .config             \n##   &lt;chr&gt;       &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;    &lt;dbl&gt; &lt;chr&gt;               \n## 1 brier_class binary     0.111   500 0.000591 Preprocessor1_Model1\n## 2 f_meas      binary     0.415   500 0.00388  Preprocessor1_Model1\n## 3 j_index     binary     0.287   500 0.00392  Preprocessor1_Model1\n## 4 mcc         binary     0.359   500 0.00394  Preprocessor1_Model1\n## 5 roc_auc     binary     0.835   500 0.00136  Preprocessor1_Model1\n## 6 sens        binary     0.337   500 0.00427  Preprocessor1_Model1\n## 7 spec        binary     0.950   500 0.00107  Preprocessor1_Model1\n\n所有指标都是通过500次bootstrap的内部重抽样得到的,并且同时给出了均值和标准差,很容易通过计算得到可信区间,比如95%的可信区间就是:均值±1.96*标准误:\n\n# 计算置信区间\ncollect_metrics(rf_res) %&gt;% \n  dplyr::select(1,3,5) %&gt;% \n  mutate(lower = mean - 1.96*std_err,\n         upper = mean + 1.96*std_err)\n## # A tibble: 7 × 5\n##   .metric      mean  std_err lower upper\n##   &lt;chr&gt;       &lt;dbl&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;\n## 1 brier_class 0.111 0.000591 0.109 0.112\n## 2 f_meas      0.415 0.00388  0.407 0.422\n## 3 j_index     0.287 0.00392  0.279 0.294\n## 4 mcc         0.359 0.00394  0.351 0.367\n## 5 roc_auc     0.835 0.00136  0.832 0.838\n## 6 sens        0.337 0.00427  0.328 0.345\n## 7 spec        0.950 0.00107  0.948 0.952\n\n\n29.4.1 训练集\n画校准曲线也只要1行代码即可,无缝衔接,而且是基于ggplot2绘制的,风格更加统一:\n\nlibrary(probably)\nlibrary(ggplot2)\n\n# 3种方法\ncal_plot_breaks(rf_res,num_breaks = 9)\n\n\n\n\n\n\n\ncal_plot_logistic(rf_res)\n\n\n\n\n\n\n\ncal_plot_windowed(rf_res)\n\n\n\n\n\n\n\n\n\n\n29.4.2 测试集\n以上是训练集的校准曲线,也就是内部验证的校准曲线,那么测试集(也就是外部验证集)的校准曲线如何绘制呢?\n首先要把训练好的模型应用到测试集上,获取测试集的预测结果:\n\npred_test &lt;- last_fit(rf_wf, split = split)\n\n# 查看模型在测试集的表现\ncollect_metrics(pred_test)\n## # A tibble: 3 × 4\n##   .metric     .estimator .estimate .config             \n##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy    binary         0.860 Preprocessor1_Model1\n## 2 roc_auc     binary         0.836 Preprocessor1_Model1\n## 3 brier_class binary         0.108 Preprocessor1_Model1\n\n提取测试集的预测概率,并绘制校准曲线即可:\n\ntest %&gt;% dplyr::select(dead) %&gt;% \n  bind_cols(collect_predictions(pred_test) %&gt;% dplyr::select(.pred_death)) %&gt;% \n  cal_plot_breaks(dead, .pred_death,conf_level = 0.95) # 其他方法略\n\n\n\n\n\n\n\n\n是不是非常简单呢?\n除此之外,还有很多R包可以绘制校准曲线,比如caret、PredictABEL等,但是用的比较少,就不给大家在这里介绍了,caret绘制校准曲线介绍过了,可以在公众号后台回复caret获取相关推文。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>29</span>  <span class='chapter-title'>分类模型校准曲线绘制</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html",
+    "href": "hosmer-lemeshow检验.html",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "",
+    "text": "30.1 准备数据\n使用lowbirth数据集,这个数据集是关于低出生体重儿能否存活的数据集,其中dead这一列是结果变量,0代表存活,1代表死亡,但是存活和死亡的比例严重失衡,存活的只有94个,死亡的有471个。其余列都是预测变量。该数据集没有缺失值,也没有高度相关的自变量。\n获取lowbirth数据请在公众号:医学和生信笔记,后台回复20220520。或者到粉丝QQ群文件自取。\nrm(list = ls())\nlowbirth &lt;- read.csv(\"./datasets/lowbirth.csv\")\n查看一下数据:\ndim(lowbirth) # 565行,10列\n## [1] 565  10\nstr(lowbirth) \n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : chr  \"white\" \"black\" \"black\" \"black\" ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: chr  \"abdominal\" \"vaginal\" \"vaginal\" \"abdominal\" ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : chr  \"female\" \"female\" \"male\" \"female\" ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...\n\n# 看下结果变量的比例\ntable(lowbirth$dead)\n## \n##   0   1 \n## 471  94\nrace这一列有4个类别,分别表示4个人种,但是东方人和美洲人太少了,这样会影响模型拟合,所以我们这两个人种变成other:\n# 其中两个人种人数太少了\ntable(lowbirth$race)\n## \n##           black native American        oriental           white \n##             325              14               4             222\n\n# 把人数太少的变成other\nlowbirth[lowbirth == \"oriental\"] &lt;- \"other\"\nlowbirth[lowbirth == \"native American\"] &lt;- \"other\"\n在R语言中一定要把分类变量因子型,这样才能在建模时进行正确的编码:\nlibrary(dplyr)\n\nlowbirth &lt;- lowbirth %&gt;% \n  mutate(across(where(is.character),as.factor)\n         #dead = factor(dead, levels=c(1,0),labels=c(\"live\",\"death\"))\n         )\nstr(lowbirth)\n## 'data.frame':    565 obs. of  10 variables:\n##  $ birth   : num  81.5 81.6 81.6 81.6 81.6 ...\n##  $ lowph   : num  7.25 7.06 7.25 6.97 7.32 ...\n##  $ pltct   : int  244 114 182 54 282 153 229 182 361 378 ...\n##  $ race    : Factor w/ 3 levels \"black\",\"other\",..: 3 1 1 1 1 1 3 1 3 3 ...\n##  $ bwt     : int  1370 620 1480 925 1255 1350 1310 1110 1180 970 ...\n##  $ delivery: Factor w/ 2 levels \"abdominal\",\"vaginal\": 1 2 2 1 2 1 2 2 1 2 ...\n##  $ apg1    : int  7 1 8 5 9 4 6 6 6 2 ...\n##  $ vent    : int  0 1 0 1 0 0 1 0 0 1 ...\n##  $ sex     : Factor w/ 2 levels \"female\",\"male\": 1 1 2 1 1 1 2 2 2 1 ...\n##  $ dead    : int  0 1 0 1 0 0 0 0 0 1 ...",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
   },
   {
-    "objectID": "calibration-logistic-test.html#测试集校准曲线方法3",
-    "href": "calibration-logistic-test.html#测试集校准曲线方法3",
-    "title": "32  logistic回归测试集校准曲线的绘制",
-    "section": "32.6 测试集校准曲线方法3",
-    "text": "32.6 测试集校准曲线方法3\n使用riskRegression包。这是我推荐的方法,这个包真的好用!你可能还听说过另一个包:pec,riskRegression正是pec的升级版,目前大部分功能都已经转移到riskRegression了。\n\n# 训练集建立模型\nfit &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + black + white,\n            data = train_df, family = binomial)\n\nlibrary(riskRegression)\n## riskRegression version 2023.09.08\n\n# 测试集的表现\nscore &lt;- Score(list(\"fit\"=fit),\n               formula = dead ~ 1,\n               data = test_df, # 这里选择测试集即可\n               metrics = c(\"auc\",\"brier\"),\n               summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               null.model = T,\n               conf.int = T,\n               B = 100,\n               M = 50\n               )\n\n# 画图即可\nplotCalibration(score,col=\"tomato\",\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\",\n                bars = F)\n\n\n\n\n并且这个方法是可以返回数据自己用ggplot2美化的,详情参考二分类资料校准曲线的绘制,这里就不多介绍了。\n\nlogistic的校准曲线真的很简单,Cox回归测试集的校准曲下次再介绍。"
+    "objectID": "hosmer-lemeshow检验.html#准备数据",
+    "href": "hosmer-lemeshow检验.html#准备数据",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "",
+    "text": "注释\n\n\n\n如果结果变量是分类变量,我建议把结果变量也变为因子型,并设定好因子的顺序,但是对于rms来说,最好是使用数值型,所以这里我没改。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html#方法1resourceselection",
+    "href": "hosmer-lemeshow检验.html#方法1resourceselection",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "30.2 方法1:ResourceSelection",
+    "text": "30.2 方法1:ResourceSelection\n这个R包进行H-L检验应该是大家见的比较多的方法。\n首先是建立逻辑回归模型:\n\nmodel_glm &lt;- glm(dead ~ birth + lowph + pltct + bwt + vent + race,\n                 data = lowbirth, family = binomial)\n\n然后使用模型预测的概率,和模型的真是结果,就可以进行H-L检验了:\n\n# 加载R包\nlibrary(ResourceSelection)\n\n# hosmer-lemeshow 检验\nhoslem.test(model_glm$y, fitted(model_glm), g=10) # g=10表示分成10组\n## \n##  Hosmer and Lemeshow goodness of fit (GOF) test\n## \n## data:  model_glm$y, fitted(model_glm)\n## X-squared = 10.463, df = 8, p-value = 0.234\n\n只提取P值也可以,方便加在校准曲线图中:\n\np.hoslem &lt;- hoslem.test(model_glm$y, fitted(model_glm), g=10)$p.value\np.hoslem\n## [1] 0.2340365\n\n下面我们绘制一个校准曲线,并把H-L检验的结果放在图里:\n\nlibrary(rms)\n\n# 必须先打包数据\ndd &lt;- datadist(lowbirth)\noptions(datadist=\"dd\")\n\n# 构建 calibration\nfit &lt;- lrm(dead ~ birth + lowph + pltct + bwt + vent + race, \n           data = lowbirth,x = TRUE, y = TRUE)\ncal &lt;- calibrate(fit, method='boot', B=500)\n\n画图还是和上面一样,就是多了一个添加 hosmer-lemeshow P值的步骤。\n\nplot(cal,\n     xlim = c(0,1),\n     ylim = c(0,1),\n     xlab = \"Prediced Probability\",\n     ylab = \"Observed Probability\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.8,\n     #subtitles = FALSE,\n     legend = FALSE\n     ) \n## \n## n=565   Mean absolute error=0.012   Mean squared error=0.00028\n## 0.9 Quantile of absolute error=0.032\nlines(cal[,c(\"predy\",\"calibrated.corrected\")], \n      type = 'l', #连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, #连线的粗细\n      pch = 16, #点的形状,可以是0-20\n      col = \"#2166AC\") #连线的颜色\nlines(cal[,c(\"predy\",\"calibrated.orig\")],type=\"l\",pch=16,lwd=3,col=\"tomato\")\nabline(0,1,\n       lty = 2, #对角线为虚线\n       lwd = 2, #对角线的粗细\n       col = \"#224444\")#对角线的颜色\nlegend(0.6,0.2,\n       c(\"Ideal\",\"Bias-corrected\",\"Apparent\"), \n       lty = c(2,1,1), \n       lwd = c(2,3,3), \n       col = c(\"black\",\"#2166AC\",\"tomato\"), \n       bty = \"n\"\n)\ntext(0,0.9,bquote(\"Hosmer-Lemeshow \"~italic(P)~\" = \"~.(round(p.hoslem,3))),\n     adj = 0)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html#方法2generalhoslem",
+    "href": "hosmer-lemeshow检验.html#方法2generalhoslem",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "30.3 方法2:generalhoslem",
+    "text": "30.3 方法2:generalhoslem\n这个R包的使用方法和ResourceSelection完全一样,结果也是一样的:\n\nlibrary(generalhoslem)\n\nlogitgof(model_glm$y, fitted(model_glm), g=10, ord = F)\n## \n##  Hosmer and Lemeshow test (binary model)\n## \n## data:  model_glm$y, fitted(model_glm)\n## X-squared = 10.463, df = 8, p-value = 0.234",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html#方法3performance",
+    "href": "hosmer-lemeshow检验.html#方法3performance",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "30.4 方法3:performance",
+    "text": "30.4 方法3:performance\n这个包非常强大,它属于easystats这个包的一部分,我在之前也介绍过:\n\n线性模型回归诊断图\n\n但是它只能对一些统计模型进行检验,不能对机器学习模型进行检验,而且在计算模型性能指标方面,和yardstick有很多重合,所以我平常还是用yardstick更多。\n\nlibrary(performance)\n\nperformance_hosmer(model_glm, n_bins = 10)\n## # Hosmer-Lemeshow Goodness-of-Fit Test\n## \n##   Chi-squared: 10.463\n##            df:  8    \n##       p-value:  0.234",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html#方法4predictabel",
+    "href": "hosmer-lemeshow检验.html#方法4predictabel",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "30.5 方法4:PredictABEL",
+    "text": "30.5 方法4:PredictABEL\n这个包在计算NRI和IDI时使用过,非常强大,还可以绘制校准曲线并且进行H-L检验,只需要使用plotCalibration()函数即可。\n\nlibrary(PredictABEL)\n\n# 首先获得预测概率,和fitted(model_glm)完全一样\npredRisk &lt;- PredictABEL::predRisk(model_glm)\n\nrr &lt;- plotCalibration(data=lowbirth, cOutcome=10, #结果变量在数据的第几列\n                predRisk=predRisk, \n                groups=10)\n\n\n\n\n\n\n\n\n提取H-L检验的P值:\n\nrr$p_value\n## [1] 0.2805\n\n也是和其他方法不一样,建议别用这个结果。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "hosmer-lemeshow检验.html#方法5glmtoolbox",
+    "href": "hosmer-lemeshow检验.html#方法5glmtoolbox",
+    "title": "30  hosmer-lemeshow检验",
+    "section": "30.6 方法5:glmtoolbox",
+    "text": "30.6 方法5:glmtoolbox\n这个方法得到的结果与其他几种方法的结果都不一样,我没查看源码,不知道有啥区别,大家还是选择其他几个方法吧。\n\nlibrary(glmtoolbox)\n\nhltest(model_glm,verbose = F)$p.value\n## [1] \"0.3410089\"\n\n多种方法,任君选择,搭配校准曲线教程一起,食用更佳。\n公众号后台回复校准曲线集合获取合集。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>30</span>  <span class='chapter-title'>hosmer-lemeshow检验</span>"
+    ]
+  },
+  {
+    "objectID": "calibration-cox.html",
+    "href": "calibration-cox.html",
+    "title": "31  Cox回归校准曲线绘制",
+    "section": "",
+    "text": "31.1 准备数据\n使用自带数据lung数据集进行演示。\n这个是关于肺癌的生存数据,一共有228行,10列,其中time是生存时间,单位是天,status是生存状态,1是删失,2是死亡。其余变量是自变量,意义如下:\nlibrary(survival)\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡,但有的R包会报错,需要注意!\n我们这里给它改过来:\nlibrary(dplyr)\nlibrary(tidyr)\n\nlung &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 2,1,0))\n\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  1 1 0 1 1 0 1 1 1 1 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n然后把数据划分为训练集、测试集,下面这个划分方法是错的哈,这个示例数据样本量太少了,我想让训练集和测试集样本量都尽量多一点,所以用了一个错误的方法进行演示:\nset.seed(123)\nind1 &lt;- sample(1:nrow(lung),nrow(lung)*0.7)\ntrain_df &lt;- lung[ind1,]\n\nset.seed(563435)\nind2 &lt;- sample(1:nrow(lung),nrow(lung)*0.7)\ntest_df &lt;- lung[ind2, ]\n\ndim(train_df)\n## [1] 159  10\ndim(test_df)\n## [1] 159  10",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>31</span>  <span class='chapter-title'>Cox回归校准曲线绘制</span>"
+    ]
   },
   {
-    "objectID": "calibration-cox.html#加载r包和数据",
-    "href": "calibration-cox.html#加载r包和数据",
-    "title": "33  Cox回归校准曲线绘制",
-    "section": "33.1 加载R包和数据",
-    "text": "33.1 加载R包和数据\n\nlibrary(survival)\nlibrary(rms)\n## Loading required package: Hmisc\n## \n## Attaching package: 'Hmisc'\n## The following objects are masked from 'package:base':\n## \n##     format.pval, units\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\nlibrary(ggplot2)\n\n试试使用自带数据lung数据集进行演示。\n大多数情况下都是使用1代表死亡,0代表删失,这个数据集用2代表死亡。但有的R包会报错,需要注意!\n\nrm(list = ls())\n\ndim(lung)\n## [1] 228  10\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...\n\n\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:Hmisc':\n## \n##     src, summarize\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\nlibrary(tidyr)\n\ndf1 &lt;- lung %&gt;% \n  mutate(status=ifelse(status == 2,1,0))\n\nstr(lung)\n## 'data.frame':    228 obs. of  10 variables:\n##  $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...\n##  $ time     : num  306 455 1010 210 883 ...\n##  $ status   : num  2 2 1 2 2 1 2 2 2 2 ...\n##  $ age      : num  74 68 56 57 60 74 68 71 53 61 ...\n##  $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...\n##  $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...\n##  $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...\n##  $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...\n##  $ meal.cal : num  1175 1225 NA 1150 NA ...\n##  $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ..."
+    "objectID": "calibration-cox.html#准备数据",
+    "href": "calibration-cox.html#准备数据",
+    "title": "31  Cox回归校准曲线绘制",
+    "section": "",
+    "text": "inst:机构代码,对于我们这次建模没啥用\nage:年龄\nsex:1是男性,2是女性\nph.ecog:ECOG评分。0=无症状,1=有症状但完全可以走动,2=每天&lt;50%的时间在床上,3=在床上&gt;50%的时间但没有卧床,4=卧床不起\nph.karno:医生评的KPS评分,范围是0-100,得分越高,健康状况越好,越能忍受治疗给身体带来的副作用。\npat.karno:患者自己评的KPS评分\nmeal.cal:用餐时消耗的卡路里\nwt.loss:过去6个月的体重减少量,单位是磅",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>31</span>  <span class='chapter-title'>Cox回归校准曲线绘制</span>"
+    ]
   },
   {
     "objectID": "calibration-cox.html#方法1rms",
     "href": "calibration-cox.html#方法1rms",
-    "title": "33  Cox回归校准曲线绘制",
-    "section": "33.2 方法1:rms",
-    "text": "33.2 方法1:rms\n\ndd &lt;- datadist(df1)\noptions(datadist = \"dd\")\n\n构建cox比例风险模型:\n\n# 1年\ncoxfit1 &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = df1, x=T,y=T,surv = T,\n              time.inc = 365 # 1 年\n              )\n\n# m=50表示每次计算50个样本,一般取4-6个点,u=365和上面的time.inc对应\ncal1 &lt;- calibrate(coxfit1, cmethod=\"KM\", method=\"boot\",u=365,m=50,B=500) \n## Using Cox survival estimates at 365 Days\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n然后就是画图:\n\nplot(cal1,\n     lwd = 2, # 误差线粗细\n     lty = 1, # 误差线类型,可选0-6\n     errbar.col = c(\"#2166AC\"), # 误差线颜色\n     xlim = c(0,1),ylim= c(0,1),\n     xlab = \"Nomogram-prediced OS (%)\",ylab = \"Observed OS (%)\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.6) # 字体大小\nlines(cal1[,c('mean.predicted',\"KM\")], \n      type = 'b', # 连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, # 连线的粗细\n      pch = 16, # 点的形状,可以是0-20\n      col = \"tomato\") # 连线的颜色\nbox(lwd = 2) # 边框粗细\nabline(0,1,lty = 3, # 对角线为虚线\n       lwd = 2, # 对角线的粗细\n       col = \"grey70\" # 对角线的颜色\n       ) \n\n\n\n\n再介绍一下多个校正曲线图形画在一起的方法。\n\n# 2年\ncoxfit2 &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = df1, x=T,y=T,surv = T,\n              time.inc = 730 # 2 年\n              )\n\ncal2 &lt;- calibrate(coxfit2, cmethod=\"KM\", method=\"boot\",u=730,m=50,B=500) \n## Using Cox survival estimates at 730 Days\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n## Warning in groupkm(cox, Surv(y[, 1], y[, 2]), u = u, cuts = orig.cuts): one\n## interval had &lt; 2 observations\n\n画图:\n\nplot(cal1,lwd = 2,lty = 1,errbar.col = c(\"#2166AC\"),\n     xlim = c(0,1),ylim= c(0,1),\n     xlab = \"Nomogram-prediced OS (%)\",ylab = \"Observed OS (%)\",\n     col = c(\"#2166AC\"),\n     cex.lab=1.2,cex.axis=1, cex.main=1.2, cex.sub=0.6)\nlines(cal1[,c('mean.predicted',\"KM\")],\n      type = 'b', lwd = 3, col = c(\"#2166AC\"), pch = 16)\n\nplot(cal2,lwd = 2,lty = 0,errbar.col = c(\"#B2182B\"),\n     xlim = c(0,1),ylim= c(0,1),col = c(\"#B2182B\"),add = T)\nlines(cal2[,c('mean.predicted',\"KM\")],\n      type = 'b', lwd = 3, col = c(\"#B2182B\"), pch = 16)\n\nabline(0,1, lwd = 2, lty = 3, col = c(\"#224444\"))\n\nlegend(\"bottomright\", #图例的位置\n       legend = c(\"5-year\",\"8-year\"), #图例文字\n       col =c(\"#2166AC\",\"#B2182B\"), #图例线的颜色,与文字对应\n       lwd = 2,#图例中线的粗细\n       cex = 1.2,#图例字体大小\n       bty = \"n\")#不显示图例边框"
+    "title": "31  Cox回归校准曲线绘制",
+    "section": "31.2 方法1:rms",
+    "text": "31.2 方法1:rms\n\nlibrary(rms)\n\n# 必须先打包数据\ndd &lt;- datadist(train_df)\noptions(datadist = \"dd\")\nunits(train_df$time) &lt;- \"day\" # 单位设置为:天\n\n构建cox比例风险模型。rms可以使用内部重抽样的方法绘制校准曲线,可以选择bootstrap法或者交叉验证法,下面我们选择500次bootstrap的内部验证方法,计算时间点为第1年的校准曲线(样本太少,给警告了):\n\n# 建立cox回归模型,时间点选择1年\ncoxfit1 &lt;- cph(Surv(time, status) ~ sex + ph.ecog + ph.karno + wt.loss,\n              data = train_df, x = T, y = T, surv = T,\n              time.inc = 100 # 100天\n              )\n\n# m=40表示以40个样本为1组,一般取4-6组,我们这个数据样本量太少了\n# u=100和上面的time.inc对应\ncal1 &lt;- calibrate(coxfit1, cmethod = \"KM\", method = \"boot\",\n                  u = 100, m = 40, B = 500) \n## Using Cox survival estimates at  100 days\n\n\n31.2.1 训练集\n接下来就是画图,可以直接使用plot()函数:\n\nplot(cal1)\n\n\n\n\n\n\n\n\n也可以提取数据,自己画,以实现更多的细节控制:\n\nplot(cal1,\n     lwd = 2, # 误差线粗细\n     lty = 1, # 误差线类型,可选0-6\n     errbar.col = c(\"#2166AC\"), # 误差线颜色\n     xlim = c(0.7,1),ylim= c(0.7,1), # 坐标轴范围\n     xlab = \"Prediced OS\",ylab = \"Observed OS\",\n     cex.lab=1.2, cex.axis=1, cex.main=1.2, cex.sub=0.6) # 字体大小\nlines(cal1[,c('mean.predicted',\"KM\")], \n      type = 'b', # 连线的类型,可以是\"p\",\"b\",\"o\"\n      lwd = 3, # 连线的粗细\n      pch = 16, # 点的形状,可以是0-20\n      col = \"tomato\") # 连线的颜色\nbox(lwd = 2) # 边框粗细\nabline(0,1,lty = 3, # 对角线为虚线\n       lwd = 2, # 对角线的粗细\n       col = \"grey70\" # 对角线的颜色\n       ) \n\n\n\n\n\n\n\n\n\n\n31.2.2 测试集\n然后是外部验证集的校准曲线:\n\n# 获取测试集的预测的生存概率,这一步有没有都行\nestimates &lt;- survest(coxfit1,newdata=test_df,times=100)$surv\n\nvs &lt;- val.surv(coxfit1, newdata = test_df,\n               S = Surv(test_df$time,test_df$status),\n               est.surv = estimates,# 这一步有没有都行\n               u = 100 # 时间点,也是选100天\n               )\nplot(vs)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>31</span>  <span class='chapter-title'>Cox回归校准曲线绘制</span>"
+    ]
   },
   {
     "objectID": "calibration-cox.html#方法2riskregression",
     "href": "calibration-cox.html#方法2riskregression",
-    "title": "33  Cox回归校准曲线绘制",
-    "section": "33.3 方法2:riskRegression",
-    "text": "33.3 方法2:riskRegression\n不过这种方法是把多个模型放在一张图上,不是同一个模型对应多个时间点。\n这种方法不能有缺失值。\n\n# 删除缺失值\ndf2 &lt;- na.omit(df1)\n\nlibrary(survival)\n\n# 构建模型\ncox_fit1 &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n              data = df2,x = T, y = T)\ncox_fit2 &lt;- coxph(Surv(time, status) ~ age + ph.ecog + ph.karno,\n              data = df2,x = T, y = T)\n\n\n# 画图\nlibrary(riskRegression)\n## riskRegression version 2023.09.08\nset.seed(1)\ncox_fit_s &lt;- Score(list(\"fit1\" = cox_fit1,\n                        \"fit2\" = cox_fit2),\n               formula = Surv(time, status) ~ 1,\n               data = df2,\n               #metrics = c(\"auc\",\"brier\"),\n               #summary = c(\"risks\",\"IPA\",\"riskQuantile\",\"ibs\"),\n               plots = \"calibration\",\n               #null.model = T,\n               conf.int = T,\n               B = 500,\n               M = 50,\n               times=c(700) # limit the time range\n               )\nplotCalibration(cox_fit_s,\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\")\n## The default method for estimating calibration curves based on censored data has changed for riskRegression version 2019-9-8 or higher\n## Set cens.method=\"jackknife\" to get the estimate using pseudo-values.\n## However, note that the option \"jackknife\" is sensitive to violations of the assumption that the censoring is independent of both the event times and the covariates.\n## Set cens.method=\"local\" to suppress this message.\n\n\n\n\n当然也是可以用ggplot2画图的。\n\n# 获取数据\ndata_all &lt;- plotCalibration(cox_fit_s,plot = F)\n## The default method for estimating calibration curves based on censored data has changed for riskRegression version 2019-9-8 or higher\n## Set cens.method=\"jackknife\" to get the estimate using pseudo-values.\n## However, note that the option \"jackknife\" is sensitive to violations of the assumption that the censoring is independent of both the event times and the covariates.\n## Set cens.method=\"local\" to suppress this message.\n\n\n# 数据转换\nplot_df &lt;- bind_rows(data_all$plotFrames) %&gt;% \n  mutate(fits = rep(c(\"fit1\",\"fit2\"),c(44,38)))\n\n# 画图\nggplot(plot_df, aes(Pred,Obs))+\n  geom_line(aes(group=fits,color=fits),size=1.2)+\n  scale_color_manual(values = c(\"#2166AC\",\"tomato\"),name=NULL)+\n  scale_x_continuous(limits = c(0,1),name = \"Predicted Risk\")+\n  scale_y_continuous(limits = c(0,1),name = \"Observerd Risk\")+\n  geom_abline(slope = 1,intercept = 0,lty=2)+\n  geom_rug(aes(color=fits))+\n  theme_bw()\n## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.\n## ℹ Please use `linewidth` instead."
-  },
-  {
-    "objectID": "calibration-cox-test.html#加载数据",
-    "href": "calibration-cox-test.html#加载数据",
-    "title": "34  Cox回归测试集校准曲线绘制",
-    "section": "34.1 加载数据",
-    "text": "34.1 加载数据\n\nrm(list = ls())\nlibrary(survival)\n\nlung$status &lt;- ifelse(lung$status == 2,1,0)\nlung &lt;- na.omit(lung)\n\ndim(lung)\n## [1] 167  10\nstr(lung)\n## 'data.frame':    167 obs. of  10 variables:\n##  $ inst     : num  3 5 12 7 11 1 7 6 12 22 ...\n##  $ time     : num  455 210 1022 310 361 ...\n##  $ status   : num  1 1 0 1 1 1 1 1 1 1 ...\n##  $ age      : num  68 57 74 68 71 53 61 57 57 70 ...\n##  $ sex      : num  1 1 1 2 2 1 1 1 1 1 ...\n##  $ ph.ecog  : num  0 1 1 2 2 1 2 1 1 1 ...\n##  $ ph.karno : num  90 90 50 70 60 70 70 80 80 90 ...\n##  $ pat.karno: num  90 60 80 60 80 80 70 80 70 100 ...\n##  $ meal.cal : num  1225 1150 513 384 538 ...\n##  $ wt.loss  : num  15 11 0 10 1 16 34 27 60 -5 ...\n##  - attr(*, \"na.action\")= 'omit' Named int [1:61] 1 3 5 12 13 14 16 20 23 25 ...\n##   ..- attr(*, \"names\")= chr [1:61] \"1\" \"3\" \"5\" \"12\" ..."
-  },
-  {
-    "objectID": "calibration-cox-test.html#数据分割",
-    "href": "calibration-cox-test.html#数据分割",
-    "title": "34  Cox回归测试集校准曲线绘制",
-    "section": "34.2 数据分割",
-    "text": "34.2 数据分割\n把数据随机划分为训练集、测试集,划分比例为7:3\n\nset.seed(123)\nind &lt;- sample(1:nrow(lung),nrow(lung)*0.7)\n\ntrain_df &lt;- lung[ind,]\ntest_df &lt;- lung[- ind, ]\n\ndim(train_df)\n## [1] 116  10\ndim(test_df)\n## [1] 51 10"
-  },
-  {
-    "objectID": "calibration-cox-test.html#方法1riskregression",
-    "href": "calibration-cox-test.html#方法1riskregression",
-    "title": "34  Cox回归测试集校准曲线绘制",
-    "section": "34.3 方法1:riskRegression",
-    "text": "34.3 方法1:riskRegression\n使用riskRegression轻松实现,训练集的校准曲线就不画了,直接画测试集的校准曲线。\n\nlibrary(riskRegression)\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n## riskRegression version 2023.09.08\n\n# 在训练集建立模型\ncoxph_fit &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                   data = train_df,\n                   x = T, y = T)\n\n# 画出测试集的校准曲线\nset.seed(1)\ncox_fit_t &lt;- Score(list(\"fit1\" = coxph_fit),\n               formula = Surv(time, status) ~ 1,\n               data = test_df, # 这里写测试集即可\n               plots = \"calibration\",\n               conf.int = T,\n               B = 500, # 重抽样500次\n               M = 50,\n               times=c(100) # 时间\n               )\n\n# 画图即可\nplotCalibration(cox_fit_t,\n                cens.method=\"local\",\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\")\n\n\n\n\n这个就是测试集的校准曲线了,非常简单,而且支持返回数据自己用ggplot2画,你想要的样子它都可以有!可参考推文:生存资料校准曲线的绘制"
-  },
-  {
-    "objectID": "calibration-cox-test.html#方法2rms",
-    "href": "calibration-cox-test.html#方法2rms",
-    "title": "34  Cox回归测试集校准曲线绘制",
-    "section": "34.4 方法2:rms",
-    "text": "34.4 方法2:rms\n回归建模神包rms当然也是支持COX回归测试集校准曲线的,不过隐藏的比较深。\n在上次介绍logistic回归测试集的校准曲线时,我们介绍过val.prob函数,这里给大家介绍下val.surv函数。\n首先还是要使用使用cph函数建立cox回归模型,这里我们指定时间为100天:\n\nsuppressMessages(library(rms))\n\n# 一定要记得打包数据\ndd &lt;- datadist(train_df)\noptions(datadist = \"dd\")\nunits(train_df$time) &lt;- \"days\"\n\ncph_fit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n               data = train_df,\n               x = T, y = T,\n               time.inc = 100\n               )\n\n然后计算模型在测试集中的各种指标:\n\nv &lt;- val.surv(fit= cph_fit, # 模型\n         newdata = test_df, # 测试集\n         u=100, # 时间\n         #evaluate = 10,\n         S=Surv(test_df$time,test_df$status) # 测试集的生存对象\n         )\nv\n## \n## Validation of Predicted Survival at Time= 100    n= 51 , events= 40 \n## \n## hare fit:\n## \n## dim A/D   loglik       AIC        penalty \n##                                 min    max \n##   1 Add   -284.61    573.15   11.98     Inf\n##   2 Add   -278.62    565.11    7.05   11.98\n##   3 Add   -275.81    563.41      NA      NA\n##   4 Add   -271.57    558.87    3.15    7.05\n##   5 Add   -270.00    559.65    0.00    3.15\n## \n## the present optimal number of dimensions is 4.\n## penalty(AIC) was the default: BIC=log(samplesize): log(51)=3.93\n## \n##   dim1           dim2           beta        SE         Wald\n## Constant                            -5.6          1   -5.65\n## Time   3.6e+02                      0.01     0.0052    1.95\n## Co-1  linear                      -0.091       0.52   -0.17\n## Time   3.6e+02 Co-1  linear       0.0094     0.0033    2.89\n## \n## Function used to transform predictions:\n## function (p)  log(-log(p))\n## \n## Mean absolute error in predicted probabilities: 0.0894 \n## 0.9 Quantile of absolute errors               : 0.1025\n\n之后通过调用plot实现测试集的校准曲线,可以看到这个校准曲线并不是通过分箱的方法获得的,这里使用了一种hare方法(通过polspline包实现,感兴趣的可以自己看看),且在测试集中没得选,只能用这种方法(训练集的校准曲线可通过method参数选择)。\n但是这里也要注意,仔细阅读Regression Modeling Strategies 就会发现,val.surv计算的是外部验证集的各种指标,画出来的图也是外部验证集的,这一点在logistic回归测试集校准曲线的6种实现方法 中也说过。\n\nplot(v, \n     scat1d.opts=list(nhistSpike=200, side=3)\n     )\n\n\n\n\n这里由于数据集样本量太少,结果并不好看,大家可以使用自己的数据(样本量尽量大一点)尝试一下。\n2种方法,我还是比较推荐riskRegression,因为简单又强大。\n但是很明显这种简单又好用的方法反而是在文献中出现的比较少的!\n大家经常读文献就会发现这种COX回归测试集的校准曲线↓:\n\n目前好像并没有包可以直接实现,不过也不是什么难题,下次介绍。"
-  },
-  {
-    "objectID": "calibration-cox-test.html#方法3",
-    "href": "calibration-cox-test.html#方法3",
-    "title": "34  Cox回归测试集校准曲线绘制",
-    "section": "34.5 方法3",
-    "text": "34.5 方法3\n首先把数据集划分为训练集、测试集,然后在训练集建立cox模型\n\nrm(list = ls())\nlibrary(survival)\n\nlung$status &lt;- ifelse(lung$status == 2,1,0)\nlung &lt;- na.omit(lung)\n\nset.seed(123)\nind &lt;- sample(1:nrow(lung),nrow(lung)*0.7)\n\ntrain_df &lt;- lung[ind,]\ntest_df &lt;- lung[- ind, ]\n\n# 在训练集建立cox模型\ncoxph_fit &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog,\n                   data = train_df,\n                   x = T, y = T)\n\n\n34.5.1 训练集的校准曲线\n对于生存分析来说,校准曲线的横纵坐标分别是模型预测的生存概率(predicted survival probability)和K-M法估计的生存概率(也可以称为Observed survival probability),其中模型预测的生存概率是模型算出来的(生存分析一般是根据COX算出来的),K-M法估计的生存概率则是根据乘积极限法(K-M法)计算的。\n模型计算的生存概率很简单可以得到,比如训练集100天的校准曲线,首先计算cox模型预测的100天的生存概率:\n\n# 模型预测的概率\nset.seed(123)\ntrain_p &lt;- c((summary(survfit(coxph_fit, newdata=train_df), times=100)$surv))\nhead(train_p)\n## [1] 0.6958190 0.9347173 0.8681793 0.7350013 0.8694693 0.8213824\n\n以上是通过模型计算出的生存概率,为了画出校准曲线,我们还需要真实的生存概率,怎么计算?通过K-M法。\n如何通过K-M法计算真实的生存概率?\n首先,分组。根据什么东西分组?就根据我们通过模型计算的概率分组。\n为了保证每组都有人,我们就分为4组(可以多试几次):\n\n# 根据这几个点进行切分\ncuts &lt;- unique(quantile(c(0, 1, train_p), seq(0, 1, length = 5), na.rm = TRUE))\ncuts\n## [1] 0.0000000 0.8097154 0.8526484 0.8892975 1.0000000\n\n然后计算K-M法估计的生存概率:\n\nsuppressMessages(library(rms))\n\nkm_surv &lt;- groupkm(train_p,\n                   Srv = Surv(train_df$time,train_df$status),\n                   u = 100,\n                   cuts = cuts)\n\nkm_surv\n##              x  n events        KM    std.err\n## [1,] 0.7597781 28     24 0.7500000 0.10910895\n## [2,] 0.8291634 29     20 0.8620690 0.07427814\n## [3,] 0.8695150 30     23 0.8333333 0.08164966\n## [4,] 0.9131132 29     13 0.9310345 0.05053987\n\n其中x就是模型预测的概率,KM是K-M法估计的真实概率,所以就可以画图了:\n\nplot(km_surv[,1], km_surv[,4],xlim=c(0,1),ylim=c(0,1))\nlines(km_surv[,1], km_surv[,4])\n\n\n\n\n上面这个图比较简陋,下面进行美化。\n\nplot(km_surv[,1], km_surv[,4],\n     xlim=c(0,1),ylim=c(0,1),\n     xlab = 'Predicted 100-day Survival Probability',\n     ylab = 'Observed 100-day Survival Probability'\n     )\nlines(km_surv[,1], km_surv[,4])\n\n# 计算误差线范围\nerrl &lt;- ifelse(km_surv[,\"KM\"] == 0, 0,  \n               km_surv[,\"KM\"] * exp(1.959964 * (-km_surv[,\"std.err\"])))\nerrh &lt;- ifelse(km_surv[,\"KM\"] == 0, 0, \n               pmin(1, km_surv[,\"KM\"] * exp(1.959964 * km_surv[,\"std.err\"])))\n# 添加误差线\nerrbar(x = km_surv[,\"x\"],\n       y = km_surv[,\"KM\"],\n       yminus = errl,yplus = errh,\n       add = T,\n       pch=16,cex=1,\n       asp=1,xaxs='i',yaxs='i'\n       )\n# 添加对角线\nabline(a = 0,b = 1,col='grey')\n\n\n\n\n这个图就基本和上面一样了,和开头的文献里的图一模一样!\n\n\n34.5.2 测试集的校准曲线\n方法一模一样,很简单!\n测试集100天的校准曲线,首先也是计算概率:\n\nset.seed(123)\n\ntest_p &lt;- c((summary(survfit(coxph_fit, newdata=test_df), times=100)$surv))\n\n然后分组:\n\ncuts_t &lt;- unique(quantile(c(0, 1, test_p), seq(0, 1, length = 5), na.rm = TRUE))\ncuts_t\n## [1] 0.0000000 0.7887829 0.8588841 0.8829986 1.0000000\n\n然后计算K-M法估计的生存概率:\n\nsuppressMessages(library(rms))\n\nkm_surv_t &lt;- groupkm(test_p,\n                     Srv = Surv(test_df$time,test_df$status),\n                     u = 100,\n                     cuts = cuts_t)\n\nkm_surv_t\n##              x  n events        KM   std.err\n## [1,] 0.7379403 12     10 0.6666667 0.2041241\n## [2,] 0.8263202 13     12 1.0000000 0.0000000\n## [3,] 0.8693478 13     11 0.8461538 0.1182625\n## [4,] 0.9073257 13      7 1.0000000 0.0000000\n\n然后就可以画图了:\n\nplot(km_surv_t[,1], km_surv_t[,4],\n     xlim=c(0,1),ylim=c(0,1),\n     xlab = 'Predicted 100-day Survival Probability',\n     ylab = 'Observed 100-day Survival Probability'\n     )\nlines(km_surv_t[,1], km_surv_t[,4])\n\n# 计算误差线范围\nerrl &lt;- ifelse(km_surv_t[,\"KM\"] == 0, 0,  \n               km_surv_t[,\"KM\"] * exp(1.959964 * (-km_surv_t[,\"std.err\"])))\nerrh &lt;- ifelse(km_surv_t[,\"KM\"] == 0, 0, \n               pmin(1, km_surv_t[,\"KM\"] * exp(1.959964 * km_surv_t[,\"std.err\"])))\n# 添加误差线\nerrbar(x = km_surv_t[,\"x\"],\n       y = km_surv_t[,\"KM\"],\n       yminus = errl,yplus = errh,\n       add = T,\n       pch=16,cex=1,\n       asp=1,xaxs='i',yaxs='i'\n       )\n# 添加对角线\nabline(a = 0,b = 1,col='grey')\n\n\n\n\n这个就是测试集的校准曲线了!\n两张图拼在一起就是大家文献中常见的图了!后期我会把这些函数打包,然后变为长数据,支持使用ggplot2画图!"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#加载数据和r包",
-    "href": "calibration-tidymodels-man.html#加载数据和r包",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.1 加载数据和R包",
-    "text": "35.1 加载数据和R包\n没有安装的R包的自己安装下~\n\nsuppressPackageStartupMessages(library(tidyverse))\nsuppressPackageStartupMessages(library(tidymodels))\ntidymodels_prefer()\n\n由于要做演示用,肯定要一份比较好的数据才能说明问题,今天用的这份数据,结果变量是一个二分类的。\n一共有91976行,26列,其中play_type是结果变量,因子型,其余列都是预测变量。\n\nrm(list = ls())\nall_plays &lt;- read_rds(\"./datasets/all_plays.rds\")\nglimpse(all_plays)\n## Rows: 91,976\n## Columns: 26\n## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…\n## $ posteam                    &lt;chr&gt; \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"…\n## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…\n## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…\n## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …\n## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…\n## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…\n## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…\n## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…\n## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…\n## $ defteam                    &lt;chr&gt; \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"…\n## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…\n## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …\n## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…\n## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…\n## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…\n## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…\n## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…\n## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…\n## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…\n## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …\n## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…\n## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…\n## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#数据划分",
-    "href": "calibration-tidymodels-man.html#数据划分",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.2 数据划分",
-    "text": "35.2 数据划分\n把75%的数据用于训练集,剩下的做测试集。\n\nset.seed(20220520)\n\n# 数据划分,根据play_type分层\nsplit_pbp &lt;- initial_split(all_plays, 0.75, strata = play_type)\n\ntrain_data &lt;- training(split_pbp) # 训练集\ntest_data &lt;- testing(split_pbp) # 测试集"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#数据预处理",
-    "href": "calibration-tidymodels-man.html#数据预处理",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.3 数据预处理",
-    "text": "35.3 数据预处理\n使用recipe包进行数据预处理,如果你认真学习过caret,那这个包你应该不陌生。\n\npbp_rec &lt;- recipe(play_type ~ ., data = train_data)  %&gt;%\n  step_rm(half_seconds_remaining,yards_gained, game_id) %&gt;% # 移除这3列\n  step_string2factor(posteam, defteam) %&gt;%  # 变为因子类型\n  #update_role(yards_gained, game_id, new_role = \"ID\") %&gt;% \n  # 去掉高度相关的变量\n  step_corr(all_numeric(), threshold = 0.7) %&gt;% \n  step_center(all_numeric()) %&gt;%  # 中心化\n  step_zv(all_predictors())  # 去掉零方差变量"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#建立模型",
-    "href": "calibration-tidymodels-man.html#建立模型",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.4 建立模型",
-    "text": "35.4 建立模型\n就以经常用的随机森林进行演示,这里就不演示调参了,因为也不一定比默认参数的结果好……\n选择随机森林,建立workflow:\n\nrf_spec &lt;- rand_forest(mode = \"classification\") %&gt;% \n  set_engine(\"ranger\",importance = \"permutation\")\nrf_wflow &lt;- workflow() %&gt;% \n  add_recipe(pbp_rec) %&gt;% \n  add_model(rf_spec)\n\n在训练集建模:\n\nfit_rf &lt;- rf_wflow %&gt;% \n  fit(train_data)"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#模型评价",
-    "href": "calibration-tidymodels-man.html#模型评价",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.5 模型评价",
-    "text": "35.5 模型评价\n应用于测试集:\n\npred_rf &lt;- test_data %&gt;% select(play_type) %&gt;% \n  bind_cols(predict(fit_rf, test_data, type = \"prob\")) %&gt;% \n  bind_cols(predict(fit_rf, test_data, type = \"class\"))\n\n#save(pred_rf, file = \"../000预测模型/pred_rf.rdata\")\n\n这个pred_rf就是接下来一系列操作的基础,非常重要!!\n\nhead(pred_rf)\n## # A tibble: 6 × 4\n##   play_type .pred_pass .pred_run .pred_class\n##   &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      \n## 1 pass           0.312     0.688 run        \n## 2 pass           0.829     0.171 pass       \n## 3 pass           0.806     0.194 pass       \n## 4 pass           0.678     0.322 pass       \n## 5 run            0.184     0.816 run        \n## 6 run            0.544     0.456 pass\n\n查看模型表现:\n你知道的又或者不知道的指标基本上都有:\n\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\npred_rf %&gt;% metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.731\n## 2 mcc      binary         0.441\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.439\n\n混淆矩阵:\n\npred_rf %&gt;% conf_mat(truth = play_type, estimate = .pred_class)\n##           Truth\n## Prediction  pass   run\n##       pass 10622  3226\n##       run   2962  6185\n\n混淆矩阵图形版:\n\npred_rf %&gt;% \n  conf_mat(play_type,.pred_class) %&gt;% \n  autoplot()\n\n\n\n\n大家最喜欢的AUC:\n\npred_rf %&gt;% roc_auc(truth = play_type, .pred_pass)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.799\n\n可视化结果,首先是大家喜闻乐见的ROC曲线:\n\npred_rf %&gt;% roc_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\npr曲线:\n\npred_rf %&gt;% pr_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\ngain_curve:\n\npred_rf %&gt;% gain_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\nlift_curve:\n\npred_rf %&gt;% lift_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\n\n就是没有校准曲线!!"
-  },
-  {
-    "objectID": "calibration-tidymodels-man.html#校准曲线",
-    "href": "calibration-tidymodels-man.html#校准曲线",
-    "title": "35  tidymodels手动绘制校准曲线",
-    "section": "35.6 校准曲线",
-    "text": "35.6 校准曲线\n下面给大家手动画一个校准曲线。\n两种画法,差别不大,主要是分组方法不一样,第2种分组方法是大家常见的哦~\n如果你还不懂为什么我说校准曲线是散点图,建议你先看看前面的基础知识,看了不吃亏。\n\ncalibration_df &lt;- pred_rf %&gt;% \n   mutate(pass = if_else(play_type == \"pass\", 1, 0),\n          pred_rnd = round(.pred_pass, 2)\n          ) %&gt;% \n  group_by(pred_rnd) %&gt;% \n  dplyr::summarize(mean_pred = mean(.pred_pass),\n            mean_obs = mean(pass),\n            n = n()\n            )\n\nggplot(calibration_df, aes(mean_pred, mean_obs))+ \n  geom_point(aes(size = n), alpha = 0.5)+\n  geom_abline(linetype = \"dashed\")+\n  theme_minimal()\n\n\n\n\n第2种方法:\n\ncali_df &lt;- pred_rf %&gt;% \n  arrange(.pred_pass) %&gt;% \n  mutate(pass = if_else(play_type == \"pass\", 1, 0),\n         group = c(rep(1:249,each=92), rep(250,87))\n         ) %&gt;% \n  group_by(group) %&gt;% \n  dplyr::summarise(mean_pred = mean(.pred_pass),\n            mean_obs = mean(pass)\n            )\n\n\ncali_plot &lt;- ggplot(cali_df, aes(mean_pred, mean_obs))+ \n  geom_point(alpha = 0.5)+\n  geom_abline(linetype = \"dashed\")+\n  theme_minimal()\n\ncali_plot\n\n\n\n\n两种方法差别不大,效果都是很好的,这就说明,好就是好,不管你用什么方法,都是好!如果你的数据很烂,那大概率你的结果也是很烂!不管用什么方法都是烂!\n最后,随机森林这种方法是可以计算变量重要性的,当然也是能把结果可视化的。\n顺手给大家演示下如何可视化随机森林结果的变量重要性:\n\nlibrary(vip)\n\nfit_rf %&gt;% \n  extract_fit_parsnip() %&gt;% \n  vip(num_features = 10)\n\n\n\n\n所以,校准曲线的画法,你学会了吗?"
-  },
-  {
-    "objectID": "calibration-tidymodels.html#安装",
-    "href": "calibration-tidymodels.html#安装",
-    "title": "36  tidymodels已原生支持校准曲线",
-    "section": "36.1 安装",
-    "text": "36.1 安装\n截止到2023.3.30日,只能安装开发版才有这个功能,cran上的版本还没有这个功能。\n\nremotes::install_github(\"tidymodels/probably\")"
-  },
-  {
-    "objectID": "calibration-tidymodels.html#使用",
-    "href": "calibration-tidymodels.html#使用",
-    "title": "36  tidymodels已原生支持校准曲线",
-    "section": "36.2 使用",
-    "text": "36.2 使用\n和yardstick的用法一脉相承,如果你还不知道yardstick以及tidymodels系列的使用规范,请参考这篇入门教程:tidymodels用于机器学习的一些使用细节\n我们使用这篇推文中的数据:tidymodels不能画校准曲线?。\n具体过程就不再演示了,直接使用pred_rf这个对象进行演示。\n\nrm(list = ls())\nsuppressMessages(library(tidymodels))\nsuppressMessages(library(probably))\n\nload(file = \"./datasets/pred_rf.rdata\")\n\n这个结果就是tidymodels中得到的标准结果,一切模型衡量指标都是通过这个结果算出来的,包括校准曲线。\n结果长这样:\n\nhead(pred_rf)\n## # A tibble: 6 × 4\n##   play_type .pred_pass .pred_run .pred_class\n##   &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      \n## 1 pass           0.312     0.688 run        \n## 2 pass           0.829     0.171 pass       \n## 3 pass           0.806     0.194 pass       \n## 4 pass           0.678     0.322 pass       \n## 5 run            0.184     0.816 run        \n## 6 run            0.544     0.456 pass\n\n\n36.2.1 基于分箱的校准曲线\n校准曲线是先对概率进行分箱,然后计算平均值得到的,如果你还不明白,请参考这篇推文:一文搞懂临床预测模型的评价!\n基于分箱的原理画校准曲线,通过以下函数实现:\n\npred_rf %&gt;% \n  cal_plot_breaks(play_type, .pred_pass)\n\n\n\n\n有几个参数可以调节:\n\npred_rf %&gt;% \n  cal_plot_breaks(play_type, .pred_pass, \n                  num_breaks = 5 , # 选几个点\n                  include_rug=F, # 是否添加地毯线\n                  include_ribbon = T, # 是否添加可信区间\n                  conf_level = 0.95 # 可信区间范围\n                  )\n\n\n\n\n\n\n36.2.2 基于窗口滑动的校准曲线\n但是有时候样本量太少,不方便分箱,tidymodels提供了一种窗口滑动的方式。\n比如一共100个样本,第一次取第1个到第10个样本,然后计算得到一个预测值,第二次取第6个到第15个样本,计算得到一个预测值,第三次取第11个带第20个样本,以此类推,彼此之间是有重复的。\n可通过cal_plot_windowed函数实现这样的校准曲线:\n\npred_rf %&gt;% \n  cal_plot_windowed(play_type, .pred_pass)\n\n\n\n\n其中step_size参数控制每次增加多少:\n\n# 每次增加2%\npred_rf %&gt;% \n  cal_plot_windowed(play_type, .pred_pass, step_size = 0.02)\n\n\n\n\n所有这些图都是基于ggplot2的,可以无缝衔接ggplot2语法进行美化、修改。\n对于分类模型的校准曲线终于有了!大家有需要的可以用起来了。"
-  },
-  {
-    "objectID": "calibration-mlr3.html#加载r包",
-    "href": "calibration-mlr3.html#加载r包",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.1 加载R包",
-    "text": "37.1 加载R包\n首先还是加载数据和R包,和之前的数据一样的。\n\nrm(list = ls())\nlibrary(mlr3verse)\n## Loading required package: mlr3\nlibrary(mlr3pipelines)\nlibrary(mlr3filters)"
-  },
-  {
-    "objectID": "calibration-mlr3.html#建立任务",
-    "href": "calibration-mlr3.html#建立任务",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.2 建立任务",
-    "text": "37.2 建立任务\n然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的tidymodels进行比较,这里使用的数据和预处理步骤都是和之前一样的。\n\n# 读取数据\nall_plays &lt;- readRDS(\"./datasets/all_plays.rds\")\n\n# 建立任务\npbp_task &lt;- as_task_classif(all_plays, target=\"play_type\")\n\n# 数据划分\nsplit_task &lt;- partition(pbp_task, ratio=0.75)\n\ntask_train &lt;- pbp_task$clone()$filter(split_task$train)\ntask_test &lt;- pbp_task$clone()$filter(split_task$test)"
-  },
-  {
-    "objectID": "calibration-mlr3.html#数据预处理",
-    "href": "calibration-mlr3.html#数据预处理",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.3 数据预处理",
-    "text": "37.3 数据预处理\n建立任务后就是建立数据预处理步骤,这里采用和上篇推文tidymodels中一样的预处理步骤:\n\n# 数据预处理\npbp_prep &lt;- po(\"select\", # 去掉3列\n               selector = selector_invert(\n                 selector_name(c(\"half_seconds_remaining\",\"yards_gained\",\"game_id\")))\n               ) %&gt;&gt;%\n  po(\"colapply\", # 把这两列变成因子类型\n     affect_columns = selector_name(c(\"posteam\",\"defteam\")),\n     applicator = as.factor) %&gt;&gt;% \n  po(\"filter\", # 去除高度相关的列\n     filter = mlr3filters::flt(\"find_correlation\"), filter.cutoff=0.3) %&gt;&gt;%\n  po(\"scale\", scale = F) %&gt;&gt;% # 中心化\n  po(\"removeconstants\") # 去掉零方差变量"
-  },
-  {
-    "objectID": "calibration-mlr3.html#建立模型",
-    "href": "calibration-mlr3.html#建立模型",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.4 建立模型",
-    "text": "37.4 建立模型\n先选择随机森林模型。\n\nrf_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.ranger\", predict_type=\"prob\")) \nrf_glr$id &lt;- \"randomForest\"\n\n很多人喜欢在训练集中使用10折交叉验证,但其实这对于提高模型表现没什么用尤其是临床预测模型这个领域因为你的模型表现好不好很大程度上取决于你的数据好不好!鸭子是不会变成天鹅的,这一点可以看附录。\n\n# 加速\nlibrary(future)\nplan(\"multisession\",workers=12)\n\n# 为了加快速度,用个3折交叉验证\nrr &lt;- resample(task = task_train,\n               learner = rf_glr,\n               resampling = rsmp(\"cv\",folds = 3),\n               store_models = T\n               )\n## INFO  [20:44:17.522] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 1/3)\n## INFO  [20:44:17.868] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 2/3)\n## INFO  [20:44:18.212] [mlr3] Applying learner 'randomForest' on task 'all_plays' (iter 3/3)"
-  },
-  {
-    "objectID": "calibration-mlr3.html#评价模型",
-    "href": "calibration-mlr3.html#评价模型",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.5 评价模型",
-    "text": "37.5 评价模型\n先看看在训练集中的表现。\n混淆矩阵:\n\nrr$prediction()$confusion\n##         truth\n## response  pass   run\n##     pass 32043 10055\n##     run   8708 18176\n\n混淆矩阵可视化:\n\nautoplot(rr$prediction())\n\n\n\n\n查看其他结果:\n\nrr$aggregate(msrs(c(\"classif.auc\",\"classif.acc\",\"classif.bbrier\")))\n##    classif.auc    classif.acc classif.bbrier \n##      0.7960892      0.7280015      0.1798211\n\n喜闻乐见ROC曲线:\n\nautoplot(rr,type = \"roc\")\n\n\n\n\n喜闻乐见的prc曲线:\n\nautoplot(rr, type = \"prc\")\n\n\n\n\n箱线图:\n\nautoplot(rr, measure = msr(\"classif.auc\"))\n\n\n\n\n以上所有介绍的图形和评价方法都在之前的推文详细介绍过了~不会的赶紧翻看。"
-  },
-  {
-    "objectID": "calibration-mlr3.html#训练集的校准曲线",
-    "href": "calibration-mlr3.html#训练集的校准曲线",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.6 训练集的校准曲线",
-    "text": "37.6 训练集的校准曲线\n先画训练集的校准曲线,毫无难度,看不懂的可以加群一起讨论~\n\nprediction &lt;- as.data.table(rr$prediction())\nhead(prediction)\n##    row_ids truth response prob.pass  prob.run\n## 1:       8  pass      run 0.2116344 0.7883656\n## 2:      14  pass     pass 0.8305389 0.1694611\n## 3:      29   run     pass 0.6949074 0.3050926\n## 4:      32   run      run 0.2503858 0.7496142\n## 5:      37   run     pass 0.6836322 0.3163678\n## 6:      42  pass     pass 0.5705558 0.4294442\n\n方法1:\n\nsuppressPackageStartupMessages(library(tidyverse))\nlibrary(ggsci)\n\ncalibration_df &lt;- prediction %&gt;% \n   mutate(pass = if_else(truth == \"pass\", 1, 0),\n          pred_rnd = round(prob.pass, 2)\n          ) %&gt;% \n  group_by(pred_rnd) %&gt;% \n  dplyr::summarize(mean_pred = mean(prob.pass),\n            mean_obs = mean(pass),\n            n = n()\n            )\n\nggplot(calibration_df, aes(mean_pred, mean_obs))+ \n  geom_point(aes(size = n), alpha = 0.5)+\n  scale_color_lancet()+\n  geom_abline(linetype = \"dashed\")+\n  labs(x=\"Predicted Probability\", y= \"Observed Probability\")+\n  theme_minimal()\n\n\n\n\n第2种方法,大家比较喜欢的折线图!\n\ncali_df &lt;- prediction %&gt;% \n  arrange(prob.pass) %&gt;% \n  mutate(pass = if_else(truth == \"pass\", 1, 0),\n         group = c(rep(1:100,each=680), rep(101,982))\n         ) %&gt;% \n  group_by(group) %&gt;% \n  dplyr::summarise(mean_pred = mean(prob.pass),\n            mean_obs = mean(pass)\n            )\n\nggplot(cali_df, aes(mean_pred, mean_obs))+ \n  geom_line(linewidth=1)+\n  labs(x=\"Predicted Probability\", y= \"Observed Probability\")+\n  theme_minimal()\n\n\n\n\n是不是和上一篇中的tidymodels画出来的一模一样?没错,就是一样的,就是这么简单,想怎么画就怎么画 !"
-  },
-  {
-    "objectID": "calibration-mlr3.html#测试集的校准曲线",
-    "href": "calibration-mlr3.html#测试集的校准曲线",
-    "title": "37  mlr3绘制校准曲线",
-    "section": "37.7 测试集的校准曲线",
-    "text": "37.7 测试集的校准曲线\n先把模型用在测试集上,得到预测结果,然后画图!\n\ncv_pred &lt;- rf_glr$train(task_train)$predict(task_test)\n\ncv_pred_df &lt;- as.data.table(cv_pred)\nhead(cv_pred_df)\n##    row_ids truth response prob.pass   prob.run\n## 1:       3   run     pass 0.7906472 0.20935277\n## 2:       4   run     pass 0.6911209 0.30887909\n## 3:       6   run      run 0.4308536 0.56914641\n## 4:       7  pass     pass 0.8317469 0.16825305\n## 5:      13   run     pass 0.9383892 0.06161080\n## 6:      16  pass     pass 0.9243608 0.07563917\n\n先画个喜闻乐见的校准曲线:\n\ncali_df &lt;- cv_pred_df %&gt;% \n  arrange(prob.pass) %&gt;% \n  mutate(pass = if_else(truth == \"pass\", 1, 0),\n         group = c(rep(1:100,each=229), rep(101,94))\n         ) %&gt;% \n  group_by(group) %&gt;% \n  dplyr::summarise(mean_pred = mean(prob.pass),\n            mean_obs = mean(pass)\n            )\n\nggplot(cali_df, aes(mean_pred, mean_obs))+ \n  geom_line(linewidth=1)+\n  labs(x=\"Predicted Probability\", y= \"Observed Probability\")+\n  theme_minimal()\n\n\n\n\n另一种颜值高点的校准曲线,给你点颜色瞧瞧!\n\ncalibration_df &lt;- cv_pred_df %&gt;% \n   mutate(pass = if_else(truth == \"pass\", 1, 0),\n          pred_rnd = round(prob.pass, 2)\n          ) %&gt;% \n  group_by(pred_rnd) %&gt;% \n  dplyr::summarize(mean_pred = mean(prob.pass),\n            mean_obs = mean(pass),\n            n = n()\n            ) %&gt;% \n  mutate(group = case_when(n &lt; 100 ~ \"&lt;100\",\n                           n &lt; 200 ~ \"&lt;200\",\n                           n &lt; 300 ~ \"&lt;300\",\n                           n &lt; 400 ~ \"&lt;400\",\n                           TRUE ~ \"≥400\"\n                           ))\n\nggplot(calibration_df, aes(mean_pred, mean_obs))+ \n  geom_point(aes(size = n, color = group))+\n  scale_color_d3()+\n  geom_abline(linetype = \"dashed\")+\n  labs(x=\"Predicted Probability\", y= \"Observed Probability\")+\n  theme_minimal()\n\n\n\n\n配色略诡异…\n校准曲线,你学会了吗?\n我知道并没有,比如,多条画一起怎么搞?生存资料的怎么搞?"
+    "title": "31  Cox回归校准曲线绘制",
+    "section": "31.3 方法2:riskRegression",
+    "text": "31.3 方法2:riskRegression\n这个R包也非常好用,但是这种方法不能有缺失值,所以我先把缺失值去掉,然后再划分训练集和测试集,但是由于样本量太少,这里的划分方法是不正确的哈。\n\n# 删除缺失值\ndf2 &lt;- na.omit(lung)\n\n# 划分数据\nset.seed(123)\nind1 &lt;- sample(1:nrow(df2),nrow(df2)*0.9)\ntrain_df &lt;- df2[ind1,]\n\nset.seed(563435)\nind2 &lt;- sample(1:nrow(df2),nrow(df2)*0.9)\ntest_df &lt;- df2[ind2, ]\n\ndim(train_df)\n## [1] 150  10\ndim(test_df)\n## [1] 150  10\n\n# 构建模型\ncox_fit1 &lt;- coxph(Surv(time, status) ~ sex + ph.ecog + ph.karno,\n                  data = train_df,x = T, y = T)\n\n\n31.3.1 训练集\n\n# 画图\nlibrary(riskRegression)\nset.seed(1)\ncox_fit_s &lt;- Score(list(\"fit1\" = cox_fit1),\n               formula = Surv(time, status) ~ 1,\n               data = train_df,\n               plots = \"calibration\",\n               conf.int = T,\n               B = 500,\n               M = 50, # 每组的人数\n               times=c(100) # 时间点选100天\n               )\nplotCalibration(cox_fit_s,cens.method=\"local\",# 减少输出日志\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd RISK\")\n\n\n\n\n\n\n\n\n当然也是可以用ggplot2画图的。\n\n# 获取数据\ndata_all &lt;- plotCalibration(cox_fit_s,plot = F,cens.method=\"local\")\n\n# 数据转换\nplot_df &lt;- data_all$plotFrames$fit1\n\n# 画图\nlibrary(ggplot2)\nggplot(plot_df, aes(Pred,Obs))+\n  geom_point()+\n  geom_line(linewidth=1.2)+\n  scale_x_continuous(limits = c(0,0.5),name = \"Predicted Risk\")+\n  scale_y_continuous(limits = c(0,0.5),name = \"Observerd Risk\")+\n  geom_abline(slope = 1,intercept = 0,lty=2)+\n  theme_bw()\n\n\n\n\n\n\n\n\n\n\n31.3.2 测试集\n使用起来完全一样,只需要提供测试集即可:\n\nset.seed(1)\ncox_fit_s &lt;- Score(list(\"fit1\" = cox_fit1),\n               formula = Surv(time, status) ~ 1,\n               data = test_df, # 测试集\n               plots = \"calibration\",\n               B = 500,\n               M = 50,\n               times=c(100) # 时间点\n               )\nplotCalibration(cox_fit_s,cens.method=\"local\",# 减少输出日志\n                xlab = \"Predicted Risk\",\n                ylab = \"Observerd Risk\")\n\n\n\n\n\n\n\n\n这个结果也是可以用ggplot2绘制的,就不再重复了。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>31</span>  <span class='chapter-title'>Cox回归校准曲线绘制</span>"
+    ]
   },
   {
-    "objectID": "calibration-qhscrnomo.html#安装",
-    "href": "calibration-qhscrnomo.html#安装",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.1 安装",
-    "text": "38.1 安装\n2选1:\n\ndevtools::install_github(\"ClevelandClinicQHS/QHScrnomo\")\ninstall.packages(\"QHScrnomo\")"
+    "objectID": "calibration-qhscrnomo.html",
+    "href": "calibration-qhscrnomo.html",
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "",
+    "text": "32.1 安装\n2选1:\ndevtools::install_github(\"ClevelandClinicQHS/QHScrnomo\")\ninstall.packages(\"QHScrnomo\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#准备数据",
     "href": "calibration-qhscrnomo.html#准备数据",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.2 准备数据",
-    "text": "38.2 准备数据\n使用casebase中的bmtcrr数据,只使用其中的一部分,并且把字符型变成因子型。\n\nlibrary(QHScrnomo)\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n\ndata(\"bmtcrr\",package = \"casebase\")\nbmtcrr[,c(1,2,3,6)] &lt;- lapply(bmtcrr[,c(1,2,3,6)],as.factor)\nstr(bmtcrr)\n## 'data.frame':    177 obs. of  7 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 4 levels \"CR1\",\"CR2\",\"CR3\",..: 4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ..."
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.2 准备数据",
+    "text": "32.2 准备数据\n使用casebase中的bmtcrr数据,只使用其中的一部分,并且把字符型变成因子型。\n\nlibrary(QHScrnomo)\n\ndata(\"bmtcrr\",package = \"casebase\")\nbmtcrr[,c(1,2,3,6)] &lt;- lapply(bmtcrr[,c(1,2,3,6)],as.factor)\nstr(bmtcrr)\n## 'data.frame':    177 obs. of  7 variables:\n##  $ Sex   : Factor w/ 2 levels \"F\",\"M\": 2 1 2 1 1 2 2 1 2 1 ...\n##  $ D     : Factor w/ 2 levels \"ALL\",\"AML\": 1 2 1 1 1 1 1 1 1 1 ...\n##  $ Phase : Factor w/ 4 levels \"CR1\",\"CR2\",\"CR3\",..: 4 2 3 2 2 4 1 1 1 4 ...\n##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ...\n##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ...\n##  $ Source: Factor w/ 2 levels \"BM+PB\",\"PB\": 1 1 1 1 1 1 1 1 1 1 ...\n##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#拟合竞争风险模型",
     "href": "calibration-qhscrnomo.html#拟合竞争风险模型",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.3 拟合竞争风险模型",
-    "text": "38.3 拟合竞争风险模型\n先使用rms拟合cox回归模型,这几个变量只是我随便挑选的,可能并不是完全适合~\n\ndd &lt;- datadist(bmtcrr)\noptions(datadist = \"dd\")\n\nfit &lt;- cph(Surv(ftime,Status == 1) ~ Sex + rcs(Age,3)+D+Phase, data = bmtcrr,\n           x = TRUE, y= TRUE, surv=TRUE, time.inc = 24)\n\n拟合好之后再使用crr.fit变为竞争风险模型,其实是借助了cmprsk::crr:\n\ncrr &lt;- crr.fit(fit = fit, cencode = 0, failcode = 1)\nclass(crr)\n## [1] \"cmprsk\" \"crr\"\nsummary(crr)\n##              Effects              Response : Surv(ftime, Status == 1) \n## \n##  Factor              Low High Diff. Effect    S.E.    Lower 0.95 Upper 0.95\n##  Age                 20  40   20    -0.337350 0.23489 -0.79772    0.12303  \n##   Hazard Ratio       20  40   20     0.713660      NA  0.45035    1.13090  \n##  Sex - F:M            2   1   NA     0.022279 0.28692 -0.54007    0.58463  \n##   Hazard Ratio        2   1   NA     1.022500      NA  0.58271    1.79430  \n##  D - ALL:AML          2   1   NA     0.363100 0.29546 -0.21599    0.94219  \n##   Hazard Ratio        2   1   NA     1.437800      NA  0.80575    2.56560  \n##  Phase - CR1:Relapse  4   1   NA    -1.135800 0.37803 -1.87670   -0.39488  \n##   Hazard Ratio        4   1   NA     0.321160      NA  0.15309    0.67376  \n##  Phase - CR2:Relapse  4   2   NA    -1.034200 0.35885 -1.73750   -0.33084  \n##   Hazard Ratio        4   2   NA     0.355520      NA  0.17596    0.71832  \n##  Phase - CR3:Relapse  4   3   NA    -0.914910 0.58559 -2.06260    0.23282  \n##   Hazard Ratio        4   3   NA     0.400550      NA  0.12712    1.26220\n\n可以用方差分析看看各个系数的显著性:\n\nanova(crr)\n##                 Wald Statistics          Response: Surv(ftime, Status == 1) \n## \n##  Factor     Chi-Square d.f. P     \n##  Sex         0.01      1    0.9381\n##  Age         2.25      2    0.3238\n##   Nonlinear  0.04      1    0.8510\n##  D           1.51      1    0.2191\n##  Phase      14.70      3    0.0021\n##  TOTAL      19.86      7    0.0059"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.3 拟合竞争风险模型",
+    "text": "32.3 拟合竞争风险模型\n先使用rms拟合cox回归模型,这几个变量只是我为了演示随便挑选的,可能并不是完全适合。\n\ndd &lt;- datadist(bmtcrr)\noptions(datadist = \"dd\")\n\n# 对Age这个变量进行样条变换\nfit &lt;- cph(Surv(ftime,Status == 1) ~ Sex + rcs(Age,3)+D+Phase, data = bmtcrr,\n           x = TRUE, y= TRUE, surv=TRUE, time.inc = 24)\n\n拟合好之后再使用crr.fit变为竞争风险模型,其实是借助了cmprsk::crr:\n\ncrr &lt;- crr.fit(fit = fit, cencode = 0, failcode = 1)\nclass(crr)\n## [1] \"cmprsk\" \"crr\"\nsummary(crr)\n##              Effects              Response : Surv(ftime, Status == 1) \n## \n##  Factor              Low High Diff. Effect    S.E.    Lower 0.95 Upper 0.95\n##  Age                 20  40   20    -0.337350 0.23489 -0.79772    0.12303  \n##   Hazard Ratio       20  40   20     0.713660      NA  0.45035    1.13090  \n##  Sex - F:M            2   1   NA     0.022279 0.28692 -0.54007    0.58463  \n##   Hazard Ratio        2   1   NA     1.022500      NA  0.58271    1.79430  \n##  D - ALL:AML          2   1   NA     0.363100 0.29546 -0.21599    0.94219  \n##   Hazard Ratio        2   1   NA     1.437800      NA  0.80575    2.56560  \n##  Phase - CR1:Relapse  4   1   NA    -1.135800 0.37803 -1.87670   -0.39488  \n##   Hazard Ratio        4   1   NA     0.321160      NA  0.15309    0.67376  \n##  Phase - CR2:Relapse  4   2   NA    -1.034200 0.35885 -1.73750   -0.33084  \n##   Hazard Ratio        4   2   NA     0.355520      NA  0.17596    0.71832  \n##  Phase - CR3:Relapse  4   3   NA    -0.914910 0.58559 -2.06260    0.23282  \n##   Hazard Ratio        4   3   NA     0.400550      NA  0.12712    1.26220\n\n可以用方差分析看看各个系数的显著性:\n\nanova(crr)\n##                 Wald Statistics          Response: Surv(ftime, Status == 1) \n## \n##  Factor     Chi-Square d.f. P     \n##  Sex         0.01      1    0.9381\n##  Age         2.25      2    0.3238\n##   Nonlinear  0.04      1    0.8510\n##  D           1.51      1    0.2191\n##  Phase      14.70      3    0.0021\n##  TOTAL      19.86      7    0.0059",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#内部验证",
     "href": "calibration-qhscrnomo.html#内部验证",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.4 内部验证",
-    "text": "38.4 内部验证\n建立好模型之后,可以用tenf.crr对验证集进行交叉验证,查看感兴趣时间点的预测结果(死亡概率),就相当于内部验证。\n\n# 默认10折交叉验证\nset.seed(123)\nbmtcrr$preds.tenf &lt;- tenf.crr(crr, time = 36, trace = FALSE)#可以计算线性预测值,可查看帮助文档\nstr(bmtcrr$preds.tenf)\n##  num [1:177] 0.485 0.171 0.284 0.299 0.206 ...\n\n结果是第36个月时,各个病人的死亡风险,而且是考虑到了竞争风险事件的。"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.4 内部验证",
+    "text": "32.4 内部验证\n建立好模型之后,可以用tenf.crr对验证集进行交叉验证,查看感兴趣时间点的预测结果(死亡概率),就相当于内部验证。\n\n# 默认10折交叉验证\nset.seed(123)\n#可以计算线性预测值,可查看帮助文档\nbmtcrr$preds.tenf &lt;- tenf.crr(crr, time = 36, trace = FALSE)\nstr(bmtcrr$preds.tenf)\n##  num [1:177] 0.485 0.171 0.284 0.299 0.206 ...\n\n结果是第36个月的时候,各个病人的死亡风险,而且是考虑到了竞争风险事件的。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#计算c-index",
     "href": "calibration-qhscrnomo.html#计算c-index",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.5 计算C-index",
-    "text": "38.5 计算C-index\n基于上面计算出的概率,计算cindex:\n\ncindex(prob = bmtcrr$preds.tenf,\n       fstatus = bmtcrr$Status,\n       ftime = bmtcrr$ftime,\n       type = \"crr\",\n       failcode = 1, cencode = 0\n       )\n##            N            n       usable   concordant       cindex \n##  177.0000000  177.0000000 8249.0000000 5092.0000000    0.6172869\n\ncindex=0.617,说明模型一般。"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.5 计算C-index",
+    "text": "32.5 计算C-index\n基于上面计算出的概率,计算cindex:\n\ncindex(prob = bmtcrr$preds.tenf,\n       fstatus = bmtcrr$Status,\n       ftime = bmtcrr$ftime,\n       type = \"crr\",\n       failcode = 1, cencode = 0\n       )\n##            N            n       usable   concordant       cindex \n##  177.0000000  177.0000000 8249.0000000 5092.0000000    0.6172869\n\ncindex=0.617,说明模型一般。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#校准曲线",
     "href": "calibration-qhscrnomo.html#校准曲线",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.6 校准曲线",
-    "text": "38.6 校准曲线\n也是基于上面计算出的cindex。\n\ngroupci(x = bmtcrr$preds.tenf,\n        ftime = bmtcrr$ftime,\n        fstatus = bmtcrr$Status,\n        g = 5, # 分成几组\n        u = 36, # 时间点\n        failcode = 1,\n        xlab = \"Predicted 3-year mortality\",\n        ylab = \"Actual 3-year mortality\"\n        )\n\n\n\n##              x  n events        ci    std.err\n## [1,] 0.1408630 36      8 0.2286706 0.07313371\n## [2,] 0.2021363 35      7 0.2114286 0.07429595\n## [3,] 0.2841367 36     10 0.2822421 0.07775400\n## [4,] 0.3876848 35     14 0.3714286 0.08458920\n## [5,] 0.5899486 35     17 0.4857143 0.08757744\n\n这个其实就是内部验证的校准曲线了,看起来还不错,因为是在训练集中,训练集的校准曲线其实说明不了任何问题。\n如果你觉得不好看可以使用给出的数据自己画,或者直接自己计算也可。可信区间是95%CI,可以通过pred.ci计算的。"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.6 校准曲线",
+    "text": "32.6 校准曲线\n也是基于上面计算出的cindex。\n\ngroupci(x = bmtcrr$preds.tenf,\n        ftime = bmtcrr$ftime,\n        fstatus = bmtcrr$Status,\n        g = 5, # 分成几组\n        u = 36, # 时间点\n        failcode = 1,\n        xlab = \"Predicted 3-year mortality\",\n        ylab = \"Actual 3-year mortality\"\n        )\n\n\n\n\n\n\n\n##              x  n events        ci    std.err\n## [1,] 0.1408630 36      8 0.2286706 0.07313371\n## [2,] 0.2021363 35      7 0.2114286 0.07429595\n## [3,] 0.2841367 36     10 0.2822421 0.07775400\n## [4,] 0.3876848 35     14 0.3714286 0.08458920\n## [5,] 0.5899486 35     17 0.4857143 0.08757744\n\n这个其实就是内部验证的校准曲线了,看起来还不错,因为是在训练集中,训练集的校准曲线其实说明不了任何问题。\n如果你觉得不好看可以使用给出的数据自己画,或者直接自己计算也可。可信区间是95%CI,可以通过pred.ci计算的。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#列线图",
     "href": "calibration-qhscrnomo.html#列线图",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.7 列线图",
-    "text": "38.7 列线图\n建立列线图,和rms包的使用一模一样:\n\nnomogram.crr(\n  fit = crr,\n  failtime = 36,\n  lp = T,\n  xfrac = 0.65,\n  fun.at = seq(0.2, 0.45, 0.05),\n  funlabel = \"Predicted 3-year risk\"\n)"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.7 列线图",
+    "text": "32.7 列线图\n建立列线图,和rms包的使用一模一样:\n\nnomogram.crr(\n  fit = crr,\n  failtime = 36,\n  lp = T,\n  xfrac = 0.65,\n  fun.at = seq(0.2, 0.45, 0.05),\n  funlabel = \"Predicted 3-year risk\"\n)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#生成模型方程",
     "href": "calibration-qhscrnomo.html#生成模型方程",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.8 生成模型方程",
-    "text": "38.8 生成模型方程\n可以直接给出某个时间点的线性预测值的计算方程:\n\nsas.cmprsk(crr,time = 36)\n## Base failure probability by time = 36 is 0.3308 \n## - 0.022279144 * (Sex = \"M\") - 0.012796928 * Age - \n##     6.6881995e-06 * max(Age - 15.6, 0)**3 + 1.140514e-05 * max(Age - \n##     29, 0)**3 - 4.7169407e-06 * max(Age - 48, 0)**3 - 0.36310183 * \n##     (D = \"AML\") + 0.10164664 * (Phase = \"CR2\") + 0.22089946 * \n##     (Phase = \"CR3\") + 1.1358137 * (Phase = \"Relapse\")"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.8 生成模型方程",
+    "text": "32.8 生成模型方程\n可以直接给出某个时间点的线性预测值的计算方程:\n\nsas.cmprsk(crr,time = 36)\n## Base failure probability by time = 36 is 0.3308 \n## - 0.022279144 * (Sex = \"M\") - 0.012796928 * Age - \n##     6.6881995e-06 * max(Age - 15.6, 0)**3 + 1.140514e-05 * max(Age - \n##     29, 0)**3 - 4.7169407e-06 * max(Age - 48, 0)**3 - 0.36310183 * \n##     (D = \"AML\") + 0.10164664 * (Phase = \"CR2\") + 0.22089946 * \n##     (Phase = \"CR3\") + 1.1358137 * (Phase = \"Relapse\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#外部验证测试集",
     "href": "calibration-qhscrnomo.html#外部验证测试集",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.9 外部验证(测试集)",
-    "text": "38.9 外部验证(测试集)\n直接predict即可:\n\ntest_df &lt;- head(bmtcrr,50)#取前50个作为测试集\nprob &lt;- predict(crr, time = 36, newdata = test_df)\nhead(prob)\n## [1] 0.4344841 0.2052952 0.3610625 0.2712397 0.2336076 0.6261795\n\n有了概率又可以计算cindex了:\n\ncindex(prob = prob,\n       fstatus = test_df$Status,\n       ftime = test_df$ftime\n       )\n##           N           n      usable  concordant      cindex \n##  50.0000000  50.0000000 630.0000000 454.0000000   0.7206349\n\n还可以绘制校准曲线:\n\ngroupci(x = prob,\n        ftime = test_df$ftime,\n        fstatus = test_df$Status,\n        u = 36,\n        g = 5\n        )\n\n\n\n##              x  n events  ci   std.err\n## [1,] 0.1619231 10      1 0.1 0.1013889\n## [2,] 0.2478567 10      2 0.2 0.1545392\n## [3,] 0.3141252 10      4 0.4 0.1683094\n## [4,] 0.4561951 10      1 0.1 0.1023904\n## [5,] 0.6326698 10      7 0.7 0.1702254\n\n是不是很easy呢。"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.9 外部验证(测试集)",
+    "text": "32.9 外部验证(测试集)\n直接predict即可:\n\ntest_df &lt;- head(bmtcrr,50)#取前50个作为测试集\nprob &lt;- predict(crr, time = 36, newdata = test_df)\nhead(prob)\n## [1] 0.4344841 0.2052952 0.3610625 0.2712397 0.2336076 0.6261795\n\n有了概率又可以计算cindex了:\n\ncindex(prob = prob,\n       fstatus = test_df$Status,\n       ftime = test_df$ftime\n       )\n##           N           n      usable  concordant      cindex \n##  50.0000000  50.0000000 630.0000000 454.0000000   0.7206349\n\n还可以绘制校准曲线:\n\ngroupci(x = prob,\n        ftime = test_df$ftime,\n        fstatus = test_df$Status,\n        u = 36,\n        g = 5\n        )\n\n\n\n\n\n\n\n##              x  n events  ci   std.err\n## [1,] 0.1619231 10      1 0.1 0.1013889\n## [2,] 0.2478567 10      2 0.2 0.1545392\n## [3,] 0.3141252 10      4 0.4 0.1683094\n## [4,] 0.4561951 10      1 0.1 0.1023904\n## [5,] 0.6326698 10      7 0.7 0.1702254\n\n是不是很easy呢。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-qhscrnomo.html#参考资料",
     "href": "calibration-qhscrnomo.html#参考资料",
-    "title": "38  竞争风险模型的校准曲线",
-    "section": "38.10 参考资料",
-    "text": "38.10 参考资料\n\nhttps://github.com/ClevelandClinicQHS/QHScrnomo\nvignette(“QHScrnomo”)"
-  },
-  {
-    "objectID": "calibration-lasso.html#安装",
-    "href": "calibration-lasso.html#安装",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.1 安装",
-    "text": "39.1 安装\n\n# 2选1\ninstall.packages(\"hdnom\")\nremotes::install_github(\"nanxstats/hdnom\")"
+    "title": "32  竞争风险模型的校准曲线",
+    "section": "32.10 参考资料",
+    "text": "32.10 参考资料\n\nhttps://github.com/ClevelandClinicQHS/QHScrnomo\nvignette(“QHScrnomo”)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>32</span>  <span class='chapter-title'>竞争风险模型的校准曲线</span>"
+    ]
+  },
+  {
+    "objectID": "calibration-lasso.html",
+    "href": "calibration-lasso.html",
+    "title": "33  lasso回归校准曲线",
+    "section": "",
+    "text": "33.1 安装\n# 2选1\ninstall.packages(\"hdnom\")\nremotes::install_github(\"nanxstats/hdnom\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#加载r包和数据",
     "href": "calibration-lasso.html#加载r包和数据",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.2 加载R包和数据",
-    "text": "39.2 加载R包和数据\n使用smart数据集进行演示,这是一个生存数据。该数据是经过缺失值插补的,所以没有缺失值。包含3873行,27个预测变量,TEVENT是时间变量,EVENT是结局变量。\n\nlibrary(hdnom)\n\ndata(\"smart\")\nx &lt;- as.matrix(smart[, -c(1, 2)])\ntime &lt;- smart$TEVENT\nevent &lt;- smart$EVENT\ny &lt;- survival::Surv(time, event)"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.2 加载R包和数据",
+    "text": "33.2 加载R包和数据\n使用smart数据集进行演示,这是一个生存数据。该数据是经过缺失值插补的,所以没有缺失值。包含3873行,27个预测变量,TEVENT是时间变量,EVENT是结局变量。\n\nlibrary(hdnom)\n\ndata(\"smart\")\nx &lt;- as.matrix(smart[, -c(1, 2)])\ntime &lt;- smart$TEVENT\nevent &lt;- smart$EVENT\ny &lt;- survival::Surv(time, event)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#拟合模型",
     "href": "calibration-lasso.html#拟合模型",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.3 拟合模型",
-    "text": "39.3 拟合模型\n拟合一个最简单的正则化COX回归,它会自动执行超参数调优的过程:\n\n#suppressMessages(library(\"doParallel\"))\n#registerDoParallel(detectCores())\n\nfit &lt;- fit_lasso(x, y, nfolds = 10, rule = \"lambda.1se\", seed = 1001)\nfit\n## High-Dimensional Cox Model Object\n## Random seed: 1001 \n## Model type: lasso\n## Best lambda: 0.02351754\nnames(fit)\n## [1] \"model\"  \"lambda\" \"type\"   \"seed\"   \"call\"\n\n我们选择的最佳超参数的方法是\"lambda.1se\",此时选中的最佳lambda是0.02351754。"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.3 拟合模型",
+    "text": "33.3 拟合模型\n拟合一个最简单的正则化COX回归,它会自动执行超参数调优的过程:\n\n#suppressMessages(library(\"doParallel\"))\n#registerDoParallel(detectCores())\n\nfit &lt;- fit_lasso(x, y, nfolds = 10, rule = \"lambda.1se\", seed = 1001)\nfit\n## High-Dimensional Cox Model Object\n## Random seed: 1001 \n## Model type: lasso\n## Best lambda: 0.02351754\nnames(fit)\n## [1] \"model\"  \"lambda\" \"type\"   \"seed\"   \"call\"\n\n我们选择的最佳超参数的方法是\"lambda.1se\",此时选中的最佳lambda是0.02351754。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#列线图",
     "href": "calibration-lasso.html#列线图",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.4 列线图",
-    "text": "39.4 列线图\n首先要提取模型对象和超参数,不同的正则化模型有不同的超参数,不要搞错了:\n\nmodel &lt;- fit$model\n#alpha &lt;- fit$alpha\nlambda &lt;- fit$lambda\n#adapen &lt;- fit$pen_factor\n\n使用as_nomogram转换一下,就可以绘制列线图了:\n\nnom &lt;- as_nomogram(\n  fit, x, time, event,\n  pred.at = 365 * 2,\n  funlabel = \"2-Year Overall Survival Probability\"\n)\n\nplot(nom)"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.4 列线图",
+    "text": "33.4 列线图\n首先要提取模型对象和超参数,不同的正则化模型有不同的超参数,不要搞错了:\n\nmodel &lt;- fit$model\n#alpha &lt;- fit$alpha\nlambda &lt;- fit$lambda\n#adapen &lt;- fit$pen_factor\n\n使用as_nomogram转换一下,就可以绘制列线图了:\n\nnom &lt;- as_nomogram(\n  fit, x, time, event,\n  pred.at = 365 * 2,\n  funlabel = \"2-Year Overall Survival Probability\"\n)\n\nplot(nom)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#模型验证",
     "href": "calibration-lasso.html#模型验证",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.5 模型验证",
-    "text": "39.5 模型验证\n\n39.5.1 内部验证\n通过validate函数可以实现内部验证,和rms包如出一辙!支持bootstrap、交叉验证、重复交叉验证3种重抽样方法。\n注意这个函数对不同的正则化方法有不同的要求,注意看帮助文档,下面是10次bootstrap的内部验证,时间截点选择的是第一年到第5年,每半年一次(也就是第1,1.5,2,2.5,3,3.5,4,4.5,5年这几个截点)。\n\nval_int &lt;- validate(\n  x, time, event,\n  model.type = \"lasso\",\n  alpha = 1, # lasso的alpha是1\n  lambda = lambda,\n  method = \"bootstrap\", boot.times = 10,\n  tauc.type = \"UNO\", tauc.time = seq(1, 5, 0.5) * 365,\n  seed = 42, trace = FALSE\n)\n\n# 最后一行给出了不同时间截点的time-dependent AUC\nprint(val_int)\n## High-Dimensional Cox Model Validation Object\n## Random seed: 42 \n## Validation method: bootstrap\n## Bootstrap samples: 10 \n## Model type: lasso \n## glmnet model alpha: 1 \n## glmnet model lambda: 0.02351754 \n## glmnet model penalty factor: not specified\n## Time-dependent AUC type: UNO \n## Evaluation time points for tAUC: 365 547.5 730 912.5 1095 1277.5 1460 1642.5 1825\n\n# 给出time-dependent AUC的均值、最大值、最小值等信息\nsummary(val_int)\n## Time-Dependent AUC Summary at Evaluation Time Points\n##                365     547.5       730     912.5      1095    1277.5      1460\n## Mean     0.6621581 0.6954059 0.6790755 0.6735408 0.7087387 0.7318520 0.6849760\n## Min      0.6520262 0.6885520 0.6695303 0.6673154 0.6925704 0.7075978 0.6730413\n## 0.25 Qt. 0.6613887 0.6924443 0.6774962 0.6704223 0.7077576 0.7275127 0.6802230\n## Median   0.6624251 0.6959672 0.6793223 0.6742531 0.7099186 0.7333807 0.6862219\n## 0.75 Qt. 0.6639822 0.6986393 0.6818983 0.6757052 0.7126817 0.7381664 0.6904942\n## Max      0.6682398 0.6998708 0.6895636 0.6792039 0.7194969 0.7481341 0.6951763\n##             1642.5      1825\n## Mean     0.6809777 0.6993722\n## Min      0.6698759 0.6892602\n## 0.25 Qt. 0.6779836 0.6961173\n## Median   0.6810805 0.7018242\n## 0.75 Qt. 0.6852553 0.7026699\n## Max      0.6908602 0.7058832\n\n其中的均值和中位数可以当做矫正过误差的模型表现。\n把time-dependent AUC画出来:\n\nplot(val_int)\n##                365     547.5       730     912.5      1095    1277.5      1460\n## Mean     0.6621581 0.6954059 0.6790755 0.6735408 0.7087387 0.7318520 0.6849760\n## Min      0.6520262 0.6885520 0.6695303 0.6673154 0.6925704 0.7075978 0.6730413\n## 0.25 Qt. 0.6613887 0.6924443 0.6774962 0.6704223 0.7077576 0.7275127 0.6802230\n## Median   0.6624251 0.6959672 0.6793223 0.6742531 0.7099186 0.7333807 0.6862219\n## 0.75 Qt. 0.6639822 0.6986393 0.6818983 0.6757052 0.7126817 0.7381664 0.6904942\n## Max      0.6682398 0.6998708 0.6895636 0.6792039 0.7194969 0.7481341 0.6951763\n##             1642.5      1825\n## Mean     0.6809777 0.6993722\n## Min      0.6698759 0.6892602\n## 0.25 Qt. 0.6779836 0.6961173\n## Median   0.6810805 0.7018242\n## 0.75 Qt. 0.6852553 0.7026699\n## Max      0.6908602 0.7058832\n\n\n\n\n上图中实线表示AUC的平均值,虚线表示AUC的中位数。图中较暗的区间显示AUC的25%和75%分位数,较浅的区间显示AUC的最小值和最大值。\n\n\n39.5.2 外部验证\n也就是用一个新的数据集进行验证,这里我们从smart中随机抽取1000个样本作为外部验证集。\n外部验证使用validate_external,使用方法和validate一模一样,但是没有重抽样了,因为外部验证就是检查模型的,就是要最真实的结果,不需要重抽样:\n\nx_new &lt;- as.matrix(smart[, -c(1, 2)])[1001:2000, ]\ntime_new &lt;- smart$TEVENT[1001:2000]\nevent_new &lt;- smart$EVENT[1001:2000]\n\nval_ext &lt;- validate_external(\n  fit, x, time, event,\n  x_new, time_new, event_new,\n  tauc.type = \"UNO\",\n  tauc.time = seq(0.25, 2, 0.25) * 365 # 时间截点和内部验证不同了\n)\n\n# 3个查看结果的方法,也是内部验证一样的\nprint(val_ext)\n## High-Dimensional Cox Model External Validation Object\n## Model type: lasso \n## Time-dependent AUC type: UNO \n## Evaluation time points for tAUC: 91.25 182.5 273.75 365 456.25 547.5 638.75 730\nsummary(val_ext)\n## Time-Dependent AUC Summary at Evaluation Time Points\n##         91.25     182.5   273.75       365    456.25     547.5    638.75\n## AUC 0.4794879 0.6008266 0.662017 0.6523222 0.6732534 0.6963037 0.7013534\n##           730\n## AUC 0.7042923\nplot(val_ext)\n##         91.25     182.5   273.75       365    456.25     547.5    638.75\n## AUC 0.4794879 0.6008266 0.662017 0.6523222 0.6732534 0.6963037 0.7013534\n##           730\n## AUC 0.7042923"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.5 模型验证",
+    "text": "33.5 模型验证\n\n33.5.1 内部验证\n通过validate函数可以实现内部验证,和rms包如出一辙!支持bootstrap、交叉验证、重复交叉验证3种重抽样方法。\n注意这个函数对不同的正则化方法有不同的要求,注意看帮助文档,下面是10次bootstrap的内部验证,时间截点选择的是第一年到第5年,每半年一次(也就是第1,1.5,2,2.5,3,3.5,4,4.5,5年这几个截点)。\n\nval_int &lt;- validate(\n  x, time, event,\n  model.type = \"lasso\",\n  alpha = 1, # lasso的alpha是1\n  lambda = lambda,\n  method = \"bootstrap\", boot.times = 10,\n  tauc.type = \"UNO\", tauc.time = seq(1, 5, 0.5) * 365,\n  seed = 42, trace = FALSE\n)\n\n# 最后一行给出了不同时间截点的time-dependent AUC\nprint(val_int)\n## High-Dimensional Cox Model Validation Object\n## Random seed: 42 \n## Validation method: bootstrap\n## Bootstrap samples: 10 \n## Model type: lasso \n## glmnet model alpha: 1 \n## glmnet model lambda: 0.02351754 \n## glmnet model penalty factor: not specified\n## Time-dependent AUC type: UNO \n## Evaluation time points for tAUC: 365 547.5 730 912.5 1095 1277.5 1460 1642.5 1825\n\n# 给出time-dependent AUC的均值、最大值、最小值等信息\nsummary(val_int)\n## Time-Dependent AUC Summary at Evaluation Time Points\n##                365     547.5       730     912.5      1095    1277.5      1460\n## Mean     0.6621581 0.6954059 0.6790755 0.6735408 0.7087387 0.7318520 0.6849760\n## Min      0.6520262 0.6885520 0.6695303 0.6673154 0.6925704 0.7075978 0.6730413\n## 0.25 Qt. 0.6613887 0.6924443 0.6774962 0.6704223 0.7077576 0.7275127 0.6802230\n## Median   0.6624251 0.6959672 0.6793223 0.6742531 0.7099186 0.7333807 0.6862219\n## 0.75 Qt. 0.6639822 0.6986393 0.6818983 0.6757052 0.7126817 0.7381664 0.6904942\n## Max      0.6682398 0.6998708 0.6895636 0.6792039 0.7194969 0.7481341 0.6951763\n##             1642.5      1825\n## Mean     0.6809777 0.6993722\n## Min      0.6698759 0.6892602\n## 0.25 Qt. 0.6779836 0.6961173\n## Median   0.6810805 0.7018242\n## 0.75 Qt. 0.6852553 0.7026699\n## Max      0.6908602 0.7058832\n\n其中的均值和中位数可以当做矫正过误差的模型表现。\n把time-dependent AUC画出来:\n\nplot(val_int)\n##                365     547.5       730     912.5      1095    1277.5      1460\n## Mean     0.6621581 0.6954059 0.6790755 0.6735408 0.7087387 0.7318520 0.6849760\n## Min      0.6520262 0.6885520 0.6695303 0.6673154 0.6925704 0.7075978 0.6730413\n## 0.25 Qt. 0.6613887 0.6924443 0.6774962 0.6704223 0.7077576 0.7275127 0.6802230\n## Median   0.6624251 0.6959672 0.6793223 0.6742531 0.7099186 0.7333807 0.6862219\n## 0.75 Qt. 0.6639822 0.6986393 0.6818983 0.6757052 0.7126817 0.7381664 0.6904942\n## Max      0.6682398 0.6998708 0.6895636 0.6792039 0.7194969 0.7481341 0.6951763\n##             1642.5      1825\n## Mean     0.6809777 0.6993722\n## Min      0.6698759 0.6892602\n## 0.25 Qt. 0.6779836 0.6961173\n## Median   0.6810805 0.7018242\n## 0.75 Qt. 0.6852553 0.7026699\n## Max      0.6908602 0.7058832\n\n\n\n\n\n\n\n\n上图中实线表示AUC的平均值,虚线表示AUC的中位数。图中较暗的区间显示AUC的25%和75%分位数,较浅的区间显示AUC的最小值和最大值。\n\n\n33.5.2 外部验证\n也就是用一个新的数据集进行验证,这里我们从smart中随机抽取1000个样本作为外部验证集。\n外部验证使用validate_external,使用方法和validate一模一样,但是没有重抽样了,因为外部验证就是检查模型的,就是要最真实的结果,不需要重抽样:\n\nx_new &lt;- as.matrix(smart[, -c(1, 2)])[1001:2000, ]\ntime_new &lt;- smart$TEVENT[1001:2000]\nevent_new &lt;- smart$EVENT[1001:2000]\n\nval_ext &lt;- validate_external(\n  fit, x, time, event,\n  x_new, time_new, event_new,\n  tauc.type = \"UNO\",\n  tauc.time = seq(0.25, 2, 0.25) * 365 # 时间截点和内部验证不同了\n)\n\n# 3个查看结果的方法,也是内部验证一样的\nprint(val_ext)\n## High-Dimensional Cox Model External Validation Object\n## Model type: lasso \n## Time-dependent AUC type: UNO \n## Evaluation time points for tAUC: 91.25 182.5 273.75 365 456.25 547.5 638.75 730\nsummary(val_ext)\n## Time-Dependent AUC Summary at Evaluation Time Points\n##         91.25     182.5   273.75       365    456.25     547.5    638.75\n## AUC 0.4794879 0.6008266 0.662017 0.6523222 0.6732534 0.6963037 0.7013534\n##           730\n## AUC 0.7042923\nplot(val_ext)\n##         91.25     182.5   273.75       365    456.25     547.5    638.75\n## AUC 0.4794879 0.6008266 0.662017 0.6523222 0.6732534 0.6963037 0.7013534\n##           730\n## AUC 0.7042923",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#模型校准",
     "href": "calibration-lasso.html#模型校准",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.6 模型校准",
-    "text": "39.6 模型校准\n也就是绘制校准曲线,同样是支持内部校准和外部校准。\n\n39.6.1 内部校准曲线\n内部校准通过calibrate实现,也是支持bootstrap、交叉验证、重复交叉验证3种重抽样方法,和rms包类似的。\n下面是10次bootstrap的内部校准,时间截点选择的是第5年:\n\ncal_int &lt;- calibrate(\n  x, time, event,\n  model.type = \"aenet\",\n  alpha = 1, \n  lambda = lambda, \n  #pen.factor = adapen,\n  method = \"bootstrap\", boot.times = 10,\n  pred.at = 365 * 5, ngroup = 3, # 分几组\n  seed = 42, trace = FALSE\n)\n\n# 查看结果\nprint(cal_int)\n## High-Dimensional Cox Model Calibration Object\n## Random seed: 42 \n## Calibration method: bootstrap\n## Bootstrap samples: 10 \n## Model type: aenet \n## glmnet model alpha: 1 \n## glmnet model lambda: 0.02351754 \n## glmnet model penalty factor: not specified\n## Calibration time point: 1825 \n## Number of groups formed for calibration: 3\n\n# 真实值、预测值、可信区间\nsummary(cal_int)\n##   Calibration Summary Table\n##   Predicted  Observed Lower 95% Upper 95%\n## 1 0.8214255 0.7508803 0.7216191 0.7813280\n## 2 0.8696257 0.9021791 0.8812135 0.9236435\n## 3 0.8978577 0.9307660 0.9136491 0.9482034\n\n这个结果的预测值是预测概率的中位数(因为使用了bootstrap,所以会有多个预测值,所以可以计算中位数),真实值是K-M法计算的,这些我们在之前的推文中都详细介绍过的,后台回复校准曲线即可获取相关推文合集了。\n绘制校准曲线:\n\nplot(cal_int, xlim = c(0.7, 1), ylim = c(0.7, 1))\n\n\n\n\n可以多个时间点的画在一起。\n\n\n39.6.2 外部校准\n通过calibrate_external实现:\n\ncal_ext &lt;- calibrate_external(\n  fit, x, time, event,\n  x_new, time_new, event_new,\n  pred.at = 365 * 5, ngroup = 3\n)\n\nprint(cal_ext)\n## High-Dimensional Cox Model External Calibration Object\n## Model type: lasso \n## Calibration time point: 1825 \n## Number of groups formed for calibration: 3\nsummary(cal_ext)\n##   External Calibration Summary Table\n##   Predicted  Observed Lower 95% Upper 95%\n## 1 0.8132618 0.7376980 0.6892529 0.7895482\n## 2 0.8721412 0.8829179 0.8478426 0.9194443\n## 3 0.9021290 0.9381784 0.9113542 0.9657922\nplot(cal_ext, xlim = c(0.5, 1), ylim = c(0.5, 1))"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.6 模型校准",
+    "text": "33.6 模型校准\n也就是绘制校准曲线,同样是支持内部校准和外部校准。\n\n33.6.1 内部校准曲线\n内部校准通过calibrate实现,也是支持bootstrap、交叉验证、重复交叉验证3种重抽样方法,和rms包类似的。\n下面是10次bootstrap的内部校准,时间截点选择的是第5年:\n\ncal_int &lt;- calibrate(\n  x, time, event,\n  model.type = \"aenet\",\n  alpha = 1, \n  lambda = lambda, \n  #pen.factor = adapen,\n  method = \"bootstrap\", boot.times = 10,\n  pred.at = 365 * 5, ngroup = 3, # 分几组\n  seed = 42, trace = FALSE\n)\n\n# 查看结果\nprint(cal_int)\n## High-Dimensional Cox Model Calibration Object\n## Random seed: 42 \n## Calibration method: bootstrap\n## Bootstrap samples: 10 \n## Model type: aenet \n## glmnet model alpha: 1 \n## glmnet model lambda: 0.02351754 \n## glmnet model penalty factor: not specified\n## Calibration time point: 1825 \n## Number of groups formed for calibration: 3\n\n# 真实值、预测值、可信区间\nsummary(cal_int)\n##   Calibration Summary Table\n##   Predicted  Observed Lower 95% Upper 95%\n## 1 0.8214255 0.7508803 0.7216191 0.7813280\n## 2 0.8696257 0.9021791 0.8812135 0.9236435\n## 3 0.8978577 0.9307660 0.9136491 0.9482034\n\n这个结果的预测值是预测概率的中位数(因为使用了bootstrap,所以会有多个预测值,所以可以计算中位数),真实值是K-M法计算的,这些我们在之前的推文中都详细介绍过的,后台回复校准曲线即可获取相关推文合集了。\n绘制校准曲线:\n\nplot(cal_int, xlim = c(0.7, 1), ylim = c(0.7, 1))\n\n\n\n\n\n\n\n\n可以多个时间点的画在一起。\n\n\n33.6.2 外部校准\n通过calibrate_external实现:\n\ncal_ext &lt;- calibrate_external(\n  fit, x, time, event,\n  x_new, time_new, event_new,\n  pred.at = 365 * 5, ngroup = 3\n)\n\nprint(cal_ext)\n## High-Dimensional Cox Model External Calibration Object\n## Model type: lasso \n## Calibration time point: 1825 \n## Number of groups formed for calibration: 3\nsummary(cal_ext)\n##   External Calibration Summary Table\n##   Predicted  Observed Lower 95% Upper 95%\n## 1 0.8132618 0.7376980 0.6892529 0.7895482\n## 2 0.8721412 0.8829179 0.8478426 0.9194443\n## 3 0.9021290 0.9381784 0.9113542 0.9657922\nplot(cal_ext, xlim = c(0.5, 1), ylim = c(0.5, 1))",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#risk-group的k-m生存曲线",
     "href": "calibration-lasso.html#risk-group的k-m生存曲线",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.7 risk group的K-M生存曲线",
-    "text": "39.7 risk group的K-M生存曲线\n在进行模型校准时我们是分成了3组,所以这里可以对这3组进行K-M生存分析,log-tank检验的P值也会展示出来。\n内部验证的3个组别:\n\nkmplot(\n  cal_int,\n  group.name = c(\"High risk\", \"Medium risk\", \"Low risk\"),\n  time.at = 1:6 * 365\n)\n\n\n\n\n外部验证的3个组别:\n\nkmplot(\n  cal_ext,\n  group.name = c(\"High risk\", \"Medium risk\", \"Low risk\"),\n  time.at = 1:6 * 365\n)"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.7 risk group的K-M生存曲线",
+    "text": "33.7 risk group的K-M生存曲线\n在进行模型校准时我们是分成了3组,所以这里可以对这3组进行K-M生存分析,log-tank检验的P值也会展示出来。\n内部验证的3个组别:\n\nkmplot(\n  cal_int,\n  group.name = c(\"High risk\", \"Medium risk\", \"Low risk\"),\n  time.at = 1:6 * 365\n)\n\n\n\n\n\n\n\n\n外部验证的3个组别:\n\nkmplot(\n  cal_ext,\n  group.name = c(\"High risk\", \"Medium risk\", \"Low risk\"),\n  time.at = 1:6 * 365\n)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#risk-group的log-rank检验",
     "href": "calibration-lasso.html#risk-group的log-rank检验",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.8 risk group的log-rank检验",
-    "text": "39.8 risk group的log-rank检验\n也可以直接进行log-rank检验:\n\n# 内部验证3个组的log-rank检验\ncal_int_logrank &lt;- logrank_test(cal_int)\ncal_int_logrank\n## Call:\n## survdiff(formula = formula(\"Surv(time, event) ~ grp\"))\n## \n## n=3872, 1 observation deleted due to missingness.\n## \n##          N Observed Expected (O-E)^2/E (O-E)^2/V\n## grp=1 1290      279      148     116.1     171.5\n## grp=2 1291      104      155      16.6      25.0\n## grp=3 1291       76      156      41.4      62.8\n## \n##  Chisq= 174  on 2 degrees of freedom, p= &lt;2e-16\ncal_int_logrank$pval\n## [1] 1.511019e-38\n\n# 外部验证3个组的log-rank检验\ncal_ext_logrank &lt;- logrank_test(cal_ext)\ncal_ext_logrank\n## Call:\n## survdiff(formula = formula(\"Surv(time, event) ~ grp\"))\n## \n## n=999, 1 observation deleted due to missingness.\n## \n##         N Observed Expected (O-E)^2/E (O-E)^2/V\n## grp=1 333       86     44.8     37.95     54.76\n## grp=2 333       38     50.1      2.94      4.47\n## grp=3 333       23     52.1     16.23     25.17\n## \n##  Chisq= 57.3  on 2 degrees of freedom, p= 4e-13\ncal_ext_logrank$pval\n## [1] 3.581463e-13"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.8 risk group的log-rank检验",
+    "text": "33.8 risk group的log-rank检验\n也可以直接进行log-rank检验:\n\n# 内部验证3个组的log-rank检验\ncal_int_logrank &lt;- logrank_test(cal_int)\ncal_int_logrank\n## Call:\n## survdiff(formula = formula(\"Surv(time, event) ~ grp\"))\n## \n## n=3872, 1 observation deleted due to missingness.\n## \n##          N Observed Expected (O-E)^2/E (O-E)^2/V\n## grp=1 1290      279      148     116.1     171.5\n## grp=2 1291      104      155      16.6      25.0\n## grp=3 1291       76      156      41.4      62.8\n## \n##  Chisq= 174  on 2 degrees of freedom, p= &lt;2e-16\ncal_int_logrank$pval\n## [1] 1.511019e-38\n\n# 外部验证3个组的log-rank检验\ncal_ext_logrank &lt;- logrank_test(cal_ext)\ncal_ext_logrank\n## Call:\n## survdiff(formula = formula(\"Surv(time, event) ~ grp\"))\n## \n## n=999, 1 observation deleted due to missingness.\n## \n##         N Observed Expected (O-E)^2/E (O-E)^2/V\n## grp=1 333       86     44.8     37.95     54.76\n## grp=2 333       38     50.1      2.94      4.47\n## grp=3 333       23     52.1     16.23     25.17\n## \n##  Chisq= 57.3  on 2 degrees of freedom, p= 4e-13\ncal_ext_logrank$pval\n## [1] 3.581463e-13",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#模型比较",
     "href": "calibration-lasso.html#模型比较",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.9 模型比较",
-    "text": "39.9 模型比较\n\n39.9.1 通过模型验证比较\n通过validate进行比较,也就是通过计算不同模型的time-dependent AUC进行比较。\n比如这里比较一下lasso和自适应lasso的模型效果:\n\ncmp_val &lt;- compare_by_validate(\n  x, time, event,\n  model.type = c(\"lasso\", \"alasso\"),\n  method = \"cv\", nfolds = 5, tauc.type = \"UNO\",\n  tauc.time = seq(0.25, 2, 0.25) * 365,\n  seed = 42, trace = FALSE\n)\n\n#print(cmp_val)\n#summary(cmp_val)\nplot(cmp_val) #袋外数据的结果\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4862766 0.6235047 0.6554862 0.6645661 0.6709065 0.6905955 0.6859931\n## Min      0.2039134 0.5628978 0.6125746 0.6259622 0.6288554 0.6480062 0.6258751\n## 0.25 Qt. 0.4868413 0.6095040 0.6296803 0.6518906 0.6636125 0.6740643 0.6677914\n## Median   0.5470612 0.6207525 0.6669674 0.6753767 0.6780298 0.6956816 0.7034205\n## 0.75 Qt. 0.5840546 0.6536918 0.6724515 0.6765498 0.6818180 0.6959422 0.7126816\n## Max      0.6095124 0.6706775 0.6957573 0.6930510 0.7022166 0.7392832 0.7201967\n##                730\n## Mean     0.6789647\n## Min      0.6251706\n## 0.25 Qt. 0.6258098\n## Median   0.6935016\n## 0.75 Qt. 0.7180132\n## Max      0.7323283\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4814586 0.6106500 0.6475280 0.6612647 0.6675871 0.6834418 0.6813224\n## Min      0.2479919 0.5538453 0.6009056 0.6208453 0.6310650 0.6504086 0.6354844\n## 0.25 Qt. 0.4747967 0.5918396 0.6394882 0.6539436 0.6509640 0.6548892 0.6608927\n## Median   0.5320552 0.6000809 0.6534756 0.6651832 0.6601551 0.6643520 0.6634682\n## 0.75 Qt. 0.5755143 0.6290886 0.6546811 0.6665424 0.6841356 0.6999959 0.7108894\n## Max      0.5769350 0.6783959 0.6890896 0.6998091 0.7116160 0.7475634 0.7358773\n##                730\n## Mean     0.6774869\n## Min      0.6340813\n## 0.25 Qt. 0.6386258\n## Median   0.6791506\n## 0.75 Qt. 0.6995719\n## Max      0.7360047\n\n\n\n\n内部验证的结果:\n\nplot(cmp_val, interval = TRUE)\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4862766 0.6235047 0.6554862 0.6645661 0.6709065 0.6905955 0.6859931\n## Min      0.2039134 0.5628978 0.6125746 0.6259622 0.6288554 0.6480062 0.6258751\n## 0.25 Qt. 0.4868413 0.6095040 0.6296803 0.6518906 0.6636125 0.6740643 0.6677914\n## Median   0.5470612 0.6207525 0.6669674 0.6753767 0.6780298 0.6956816 0.7034205\n## 0.75 Qt. 0.5840546 0.6536918 0.6724515 0.6765498 0.6818180 0.6959422 0.7126816\n## Max      0.6095124 0.6706775 0.6957573 0.6930510 0.7022166 0.7392832 0.7201967\n##                730\n## Mean     0.6789647\n## Min      0.6251706\n## 0.25 Qt. 0.6258098\n## Median   0.6935016\n## 0.75 Qt. 0.7180132\n## Max      0.7323283\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4814586 0.6106500 0.6475280 0.6612647 0.6675871 0.6834418 0.6813224\n## Min      0.2479919 0.5538453 0.6009056 0.6208453 0.6310650 0.6504086 0.6354844\n## 0.25 Qt. 0.4747967 0.5918396 0.6394882 0.6539436 0.6509640 0.6548892 0.6608927\n## Median   0.5320552 0.6000809 0.6534756 0.6651832 0.6601551 0.6643520 0.6634682\n## 0.75 Qt. 0.5755143 0.6290886 0.6546811 0.6665424 0.6841356 0.6999959 0.7108894\n## Max      0.5769350 0.6783959 0.6890896 0.6998091 0.7116160 0.7475634 0.7358773\n##                730\n## Mean     0.6774869\n## Min      0.6340813\n## 0.25 Qt. 0.6386258\n## Median   0.6791506\n## 0.75 Qt. 0.6995719\n## Max      0.7360047\n\n\n\n\n\n\n39.9.2 通过模型校准验证\n也就是通过校准曲线进行验证。\n\ncmp_cal &lt;- compare_by_calibrate(\n  x, time, event,\n  model.type = c(\"lasso\", \"alasso\"),\n  method = \"cv\", nfolds = 5,\n  pred.at = 365 * 9, ngroup = 5,\n  seed = 42, trace = FALSE\n)\n\n#print(cmp_cal)\n#summary(cmp_cal)\nplot(cmp_cal, xlim = c(0.3, 1), ylim = c(0.3, 1))"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.9 模型比较",
+    "text": "33.9 模型比较\n\n33.9.1 通过模型验证比较\n通过validate进行比较,也就是通过计算不同模型的time-dependent AUC进行比较。\n比如这里比较一下lasso和自适应lasso的模型效果:\n\ncmp_val &lt;- compare_by_validate(\n  x, time, event,\n  model.type = c(\"lasso\", \"alasso\"),\n  method = \"cv\", nfolds = 5, tauc.type = \"UNO\",\n  tauc.time = seq(0.25, 2, 0.25) * 365,\n  seed = 42, trace = FALSE\n)\n\n#print(cmp_val)\n#summary(cmp_val)\nplot(cmp_val) #袋外数据的结果\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4862766 0.6235047 0.6554862 0.6645661 0.6709065 0.6905955 0.6859931\n## Min      0.2039134 0.5628978 0.6125746 0.6259622 0.6288554 0.6480062 0.6258751\n## 0.25 Qt. 0.4868413 0.6095040 0.6296803 0.6518906 0.6636125 0.6740643 0.6677914\n## Median   0.5470612 0.6207525 0.6669674 0.6753767 0.6780298 0.6956816 0.7034205\n## 0.75 Qt. 0.5840546 0.6536918 0.6724515 0.6765498 0.6818180 0.6959422 0.7126816\n## Max      0.6095124 0.6706775 0.6957573 0.6930510 0.7022166 0.7392832 0.7201967\n##                730\n## Mean     0.6789647\n## Min      0.6251706\n## 0.25 Qt. 0.6258098\n## Median   0.6935016\n## 0.75 Qt. 0.7180132\n## Max      0.7323283\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4814586 0.6106500 0.6475280 0.6612647 0.6675871 0.6834418 0.6813224\n## Min      0.2479919 0.5538453 0.6009056 0.6208453 0.6310650 0.6504086 0.6354844\n## 0.25 Qt. 0.4747967 0.5918396 0.6394882 0.6539436 0.6509640 0.6548892 0.6608927\n## Median   0.5320552 0.6000809 0.6534756 0.6651832 0.6601551 0.6643520 0.6634682\n## 0.75 Qt. 0.5755143 0.6290886 0.6546811 0.6665424 0.6841356 0.6999959 0.7108894\n## Max      0.5769350 0.6783959 0.6890896 0.6998091 0.7116160 0.7475634 0.7358773\n##                730\n## Mean     0.6774869\n## Min      0.6340813\n## 0.25 Qt. 0.6386258\n## Median   0.6791506\n## 0.75 Qt. 0.6995719\n## Max      0.7360047\n\n\n\n\n\n\n\n\n内部验证的结果:\n\nplot(cmp_val, interval = TRUE)\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4862766 0.6235047 0.6554862 0.6645661 0.6709065 0.6905955 0.6859931\n## Min      0.2039134 0.5628978 0.6125746 0.6259622 0.6288554 0.6480062 0.6258751\n## 0.25 Qt. 0.4868413 0.6095040 0.6296803 0.6518906 0.6636125 0.6740643 0.6677914\n## Median   0.5470612 0.6207525 0.6669674 0.6753767 0.6780298 0.6956816 0.7034205\n## 0.75 Qt. 0.5840546 0.6536918 0.6724515 0.6765498 0.6818180 0.6959422 0.7126816\n## Max      0.6095124 0.6706775 0.6957573 0.6930510 0.7022166 0.7392832 0.7201967\n##                730\n## Mean     0.6789647\n## Min      0.6251706\n## 0.25 Qt. 0.6258098\n## Median   0.6935016\n## 0.75 Qt. 0.7180132\n## Max      0.7323283\n##              91.25     182.5    273.75       365    456.25     547.5    638.75\n## Mean     0.4814586 0.6106500 0.6475280 0.6612647 0.6675871 0.6834418 0.6813224\n## Min      0.2479919 0.5538453 0.6009056 0.6208453 0.6310650 0.6504086 0.6354844\n## 0.25 Qt. 0.4747967 0.5918396 0.6394882 0.6539436 0.6509640 0.6548892 0.6608927\n## Median   0.5320552 0.6000809 0.6534756 0.6651832 0.6601551 0.6643520 0.6634682\n## 0.75 Qt. 0.5755143 0.6290886 0.6546811 0.6665424 0.6841356 0.6999959 0.7108894\n## Max      0.5769350 0.6783959 0.6890896 0.6998091 0.7116160 0.7475634 0.7358773\n##                730\n## Mean     0.6774869\n## Min      0.6340813\n## 0.25 Qt. 0.6386258\n## Median   0.6791506\n## 0.75 Qt. 0.6995719\n## Max      0.7360047\n\n\n\n\n\n\n\n\n\n\n33.9.2 通过模型校准验证\n也就是通过校准曲线进行验证。\n\ncmp_cal &lt;- compare_by_calibrate(\n  x, time, event,\n  model.type = c(\"lasso\", \"alasso\"),\n  method = \"cv\", nfolds = 5,\n  pred.at = 365 * 9, ngroup = 5,\n  seed = 42, trace = FALSE\n)\n\n#print(cmp_cal)\n#summary(cmp_cal)\nplot(cmp_cal, xlim = c(0.3, 1), ylim = c(0.3, 1))",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#预测新数据",
     "href": "calibration-lasso.html#预测新数据",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.10 预测新数据",
-    "text": "39.10 预测新数据\n由于在拟合模型时会自动进行超参数选择,所以得到的模型就是最终结果了。可以直接使用predict预测新数据。\n\npredict(fit, x, y, newx = x[101:105, ], pred.at = 1:10 * 365)\n##            365       730      1095      1460      1825      2190      2555\n## [1,] 0.9478345 0.9203830 0.8881359 0.8567453 0.8166540 0.7841083 0.7431914\n## [2,] 0.9605957 0.9396430 0.9148295 0.8904582 0.8590046 0.8331866 0.8003446\n## [3,] 0.9721710 0.9572351 0.9394182 0.9217779 0.8987971 0.8797459 0.8552554\n## [4,] 0.9330930 0.8983106 0.8578385 0.8188522 0.7696659 0.7302518 0.6813769\n## [5,] 0.9664734 0.9485614 0.9272704 0.9062732 0.8790447 0.8565816 0.8278538\n##           2920      3285      3650\n## [1,] 0.7039669 0.6496905 0.6496905\n## [2,] 0.7684344 0.7235347 0.7235347\n## [3,] 0.8311712 0.7967714 0.7967714\n## [4,] 0.6352566 0.5726751 0.5726751\n## [5,] 0.7997693 0.7599497 0.7599497\n\n是不是很简单呢?"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.10 预测新数据",
+    "text": "33.10 预测新数据\n由于在拟合模型时会自动进行超参数选择,所以得到的模型就是最终结果了。可以直接使用predict预测新数据。\n\npredict(fit, x, y, newx = x[101:105, ], pred.at = 1:10 * 365)\n##            365       730      1095      1460      1825      2190      2555\n## [1,] 0.9478345 0.9203830 0.8881359 0.8567453 0.8166540 0.7841083 0.7431914\n## [2,] 0.9605957 0.9396430 0.9148295 0.8904582 0.8590046 0.8331866 0.8003446\n## [3,] 0.9721710 0.9572351 0.9394182 0.9217779 0.8987971 0.8797459 0.8552554\n## [4,] 0.9330930 0.8983106 0.8578385 0.8188522 0.7696659 0.7302518 0.6813769\n## [5,] 0.9664734 0.9485614 0.9272704 0.9062732 0.8790447 0.8565816 0.8278538\n##           2920      3285      3650\n## [1,] 0.7039669 0.6496905 0.6496905\n## [2,] 0.7684344 0.7235347 0.7235347\n## [3,] 0.8311712 0.7967714 0.7967714\n## [4,] 0.6352566 0.5726751 0.5726751\n## [5,] 0.7997693 0.7599497 0.7599497\n\n是不是很简单呢?",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
   },
   {
     "objectID": "calibration-lasso.html#shiny版",
     "href": "calibration-lasso.html#shiny版",
-    "title": "39  lasso回归列线图、校准曲线、内外部验证",
-    "section": "39.11 shiny版",
-    "text": "39.11 shiny版\n该包还提供了shiny版本,可以通过点点点使用,感兴趣的可以试用一下:nanx.app/hdnom/"
+    "title": "33  lasso回归校准曲线",
+    "section": "33.11 shiny版",
+    "text": "33.11 shiny版\n该包还提供了shiny版本,可以通过点点点使用,感兴趣的可以试用一下:nanx.app/hdnom/",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>33</span>  <span class='chapter-title'>lasso回归校准曲线</span>"
+    ]
+  },
+  {
+    "objectID": "dca-logistic.html",
+    "href": "dca-logistic.html",
+    "title": "34  分类数据的决策曲线",
+    "section": "",
+    "text": "34.1 方法1:rmda\n使用rmda包。\n# 先安装R包\ninstall.packages(\"rmda\")\n使用这个包自带的一个dcaData作为演示,这个数据集一共500行,6列,其中Cancer是结果变量,1代表患病,0代表没病,其余列是预测变量。\nlibrary(rmda)\ndata(\"dcaData\")\n\ndim(dcaData) # 500,6\n## [1] 500   6\nhead(dcaData)\n## # A tibble: 6 × 6\n##     Age Female Smokes Marker1  Marker2 Cancer\n##   &lt;int&gt;  &lt;dbl&gt; &lt;lgl&gt;    &lt;dbl&gt;    &lt;dbl&gt;  &lt;int&gt;\n## 1    33      1 FALSE    0.245  1.02         0\n## 2    29      1 FALSE    0.943 -0.256        0\n## 3    28      1 FALSE    0.774  0.332        0\n## 4    27      0 FALSE    0.406 -0.00569      0\n## 5    23      1 FALSE    0.508  0.208        0\n## 6    35      1 FALSE    0.186  1.41         0\nstr(dcaData)\n## tibble [500 × 6] (S3: tbl_df/tbl/data.frame)\n##  $ Age    : int [1:500] 33 29 28 27 23 35 34 29 35 27 ...\n##  $ Female : num [1:500] 1 1 1 0 1 1 1 1 1 1 ...\n##  $ Smokes : logi [1:500] FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ Marker1: num [1:500] 0.245 0.943 0.774 0.406 0.508 ...\n##  $ Marker2: num [1:500] 1.02108 -0.25576 0.33184 -0.00569 0.20753 ...\n##  $ Cancer : int [1:500] 0 0 0 0 0 0 0 0 0 0 ...\n划分训练集测试集,划分比例为7:3。\nset.seed(123)\ntrain &lt;- sample(1:nrow(dcaData), nrow(dcaData)*0.7)\ntrain_df &lt;- dcaData[train,]\ntest_df &lt;- dcaData[- train,]\ndim(train_df)\n## [1] 350   6\ndim(test_df)\n## [1] 150   6",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-logistic.html#方法1rmda",
     "href": "dca-logistic.html#方法1rmda",
-    "title": "40  分类数据的决策曲线分析",
-    "section": "40.1 方法1:rmda",
-    "text": "40.1 方法1:rmda\n使用rmda包。\n\n# 先安装R包\ninstall.packages(\"rmda\")\n\n使用这个包自带的一个dcaData,作为演示,这个数据集一共500行,6列,其中Cancer是结果变量,1代表患病,0代表没病,其余列是预测变量。\n\nlibrary(rmda)\ndata(\"dcaData\")\n\ndim(dcaData) # 500,6\n## [1] 500   6\n\nhead(dcaData)\n## # A tibble: 6 × 6\n##     Age Female Smokes Marker1  Marker2 Cancer\n##   &lt;int&gt;  &lt;dbl&gt; &lt;lgl&gt;    &lt;dbl&gt;    &lt;dbl&gt;  &lt;int&gt;\n## 1    33      1 FALSE    0.245  1.02         0\n## 2    29      1 FALSE    0.943 -0.256        0\n## 3    28      1 FALSE    0.774  0.332        0\n## 4    27      0 FALSE    0.406 -0.00569      0\n## 5    23      1 FALSE    0.508  0.208        0\n## 6    35      1 FALSE    0.186  1.41         0\n\nstr(dcaData)\n## tibble [500 × 6] (S3: tbl_df/tbl/data.frame)\n##  $ Age    : int [1:500] 33 29 28 27 23 35 34 29 35 27 ...\n##  $ Female : num [1:500] 1 1 1 0 1 1 1 1 1 1 ...\n##  $ Smokes : logi [1:500] FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ Marker1: num [1:500] 0.245 0.943 0.774 0.406 0.508 ...\n##  $ Marker2: num [1:500] 1.02108 -0.25576 0.33184 -0.00569 0.20753 ...\n##  $ Cancer : int [1:500] 0 0 0 0 0 0 0 0 0 0 ...\n\n使用起来非常简单,首先构建dca,然后画图:\n\nset.seed(123)\n \nfit1 &lt;- decision_curve(Cancer ~ Age + Female + Smokes, # R语言里常见的公式类型\n                       data = dcaData, \n                       study.design = \"cohort\", # 选择研究类型\n                       bootstraps = 50 # 重抽样次数\n                       )\n## Note:  The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance.\n\n# 画图\nplot_decision_curve(fit1, curve.names = \"fit1\",\n                    cost.benefit.axis = F, # 是否需要损失:获益比 轴\n                    confidence.intervals = \"none\" # 不画可信区间\n                    )\n\n\n\n\n可以查看模型中的各个数据的值:\n\n# 数据很大,没有展示,大家可以自己运行看看\nsummary(fit1)\n\n多个模型的多条DCA曲线一起绘制也是可以的:\n\n# 新建立1个模型\nset.seed(123)\nfit2 &lt;- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,\n              data = dcaData, \n              bootstraps = 50\n              )\n## Note:  The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance.\n\n# 画图只要把多个模型放在1个列表中即可,还可以进行很多自定义调整\nplot_decision_curve(list(fit1, fit2),\n                    curve.names = c(\"fit1\", \"fit2\"), \n                    xlim = c(0, 1), # 可以设置x轴范围\n                    legend.position = \"topright\", # 图例位置,\n                    col = c(\"red\",\"blue\"), # 自定义颜色\n                    confidence.intervals = \"none\",\n                    lty = c(1,2), # 线型,注意顺序\n                    lwd = c(3,2,2,1) #注意顺序,先是自己的模型,然后All,然后None\n                    )\n## Note: When multiple decision curves are plotted, decision curves for 'All' are calculated using the prevalence from the first DecisionCurve object in the list provided.\n\n\n\n\n这个包还可以绘制临床影响曲线:\n\n# 1次只能绘制1个模型\nplot_clinical_impact(fit1,\n                     population.size= 1000,\n                     cost.benefit.axis = T,\n                     n.cost.benefits= 8,\n                     col=c('red','blue'),\n                     confidence.intervals= T,\n                     ylim=c(0,1000),\n                     legend.position=\"topright\")\n\n\n\n\n这就是这个包画DCA的例子,效果还是不错的,自定义设置也很多,方便大家画出更好看的图。这个包还有很多其他功能,我们就不演示了,感兴趣的小伙伴可以自己探索哦。美中不足的是不能画生存资料的DCA。"
+    "title": "34  分类数据的决策曲线",
+    "section": "",
+    "text": "34.1.1 训练集\n使用起来非常简单,首先构建dca,然后画图:\n\nset.seed(123)\n\n# 构建DCA\nfit1 &lt;- decision_curve(Cancer ~ Age + Female + Smokes, # 自变量和因变量\n                       data = train_df, # 训练集数据\n                       study.design = \"cohort\", # 选择研究类型\n                       bootstraps = 50 # 重抽样次数\n                       )\n\n# 画图\nplot_decision_curve(fit1, curve.names = \"fit1\",\n                    cost.benefit.axis = F, # 是否需要损失:获益比 轴\n                    confidence.intervals = \"none\" # 不画可信区间\n                    )\n\n\n\n\n\n\n\n\n可以查看模型中的各个数据的值:\n\n# 数据很大,没有展示全部,大家可以自己运行看看\nsummary(fit1)\n\n给出了详细的概率阈值(展示部分):\n\n多个模型的多条DCA曲线一起绘制也是可以的:\n\n# 新建立1个模型\nset.seed(123)\nfit2 &lt;- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,\n              data = train_df, \n              bootstraps = 50\n              )\n\n# 画图只要把多个模型放在1个列表中即可,还可以进行很多自定义调整\nplot_decision_curve(list(fit1, fit2),\n                    curve.names = c(\"fit1\", \"fit2\"), \n                    xlim = c(0, 1), # 可以设置x轴范围\n                    legend.position = \"topright\", # 图例位置,\n                    col = c(\"red\",\"blue\"), # 自定义颜色\n                    confidence.intervals = \"none\",\n                    lty = c(1,2), # 线型,注意顺序\n                    lwd = c(3,2,2,1) #注意顺序,先是自己的模型,然后All,然后None\n                    )\n\n\n\n\n\n\n\n\n这个包还可以绘制临床影响曲线(这也是我目前发现的唯一能绘制临床影响曲线的包):\n\n# 1次只能绘制1个模型\nplot_clinical_impact(fit1,\n                     population.size= 1000,\n                     cost.benefit.axis = T,\n                     n.cost.benefits= 8,\n                     col=c('red','blue'),\n                     confidence.intervals= T,\n                     ylim=c(0,1000),\n                     legend.position=\"topright\")\n\n\n\n\n\n\n\n\n这就是这个包画DCA的例子,效果还是不错的,自定义设置也很多,方便大家画出更好看的图。这个包还有很多其他功能,我们就不演示了,感兴趣的小伙伴可以自己探索哦。美中不足的是不能画生存资料的DCA。\n\n\n34.1.2 测试集\n只需要提供测试集数据即可:\n\nset.seed(123)\n\n# 构建DCA\nfit1 &lt;- decision_curve(Cancer ~ Age + Female + Smokes, # 自变量和因变量\n                       data = test_df, # 测试集数据\n                       study.design = \"cohort\", # 选择研究类型\n                       bootstraps = 50 # 重抽样次数\n                       )\n\n# 画图\nplot_decision_curve(fit1, curve.names = \"fit1\",\n                    cost.benefit.axis = F, # 是否需要损失:获益比 轴\n                    confidence.intervals = \"none\" # 不画可信区间\n                    )\n\n\n\n\n\n\n\n\n测试集的临床影响曲线:\n\n# 1次只能绘制1个模型\nplot_clinical_impact(fit1,\n                     population.size= 1000,\n                     cost.benefit.axis = T,\n                     n.cost.benefits= 8,\n                     col=c('red','blue'),\n                     confidence.intervals= T,\n                     ylim=c(0,1000),\n                     legend.position=\"topright\")",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-logistic.html#方法2dca.r",
     "href": "dca-logistic.html#方法2dca.r",
-    "title": "40  分类数据的决策曲线分析",
-    "section": "40.2 方法2:dca.r",
-    "text": "40.2 方法2:dca.r\n使用这个网站给出的dca.r文件绘制DCA,需要代码的直接去网站下载即可。\n\n\n\n\n\n\n注意\n\n\n\n这个网站已经不再提供该代码的下载,我把dca.r/stdca.r这两段代码已经放在粉丝QQ群文件,需要的加群下载即可。\n\n\n还是使用rmda包的数据,首先我们画一个简单的DCA,结果变量是Cancer,预测变量我们只用一个Smokes。使用起来非常简单,一句代码即可:\n\nsource(\"./datasets/dca.r\")\n\ndf &lt;- as.data.frame(dcaData)\n\ndd &lt;- dca(data = df, # 指定数据集,必须是data.frame类型\n    outcome=\"Cancer\", # 指定结果变量\n    predictors=\"Smokes\", # 指定预测变量\n    probability = F # Smokes这一列是0,1组成的二分类变量,不是概率,所以是F\n    )\n\n\n\n\n但是如果你的预测变量不是0,1这种,或者有多个的话,这个函数就比较蛋疼了,它需要你先把预测概率算出来,才能使用这个函数。\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes + Marker1 + Marker2, \n            family=binomial(),\n            data = df\n            )\n\n# 算出概率\ndf$prob &lt;- predict(model, type=\"response\")\n\n# 绘制多个预测变量的DCA\ndd &lt;- dca(data=df, outcome=\"Cancer\", predictors=\"prob\", \n    probability = T,\n    xstop=0.35 # 控制x轴范围\n    )\n\n\n\n\n把多个模型画在一起的方式也有点奇怪,比如我们下面演示下3个模型画在一起,其中prob代表的是上面的model模型,Marker2代表的是只有一个预测变量Marker2的模型,Smokes代表只有一个预测变量Smokes的模型!\nprob是概率,所以是T,Smokes和Marker2不是概率,所以是F。\n\ndd &lt;- dca(data = df, outcome=\"Cancer\", \n    predictors=c(\"prob\",\"Smokes\",\"Marker2\"), # 这是3个模型哦!\n    probability = c(T,F,F) # 和上面是对应的!\n    )\n## [1] \"Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur.\"\n## [1] \"Marker2 converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur.\""
+    "title": "34  分类数据的决策曲线",
+    "section": "34.2 方法2:dca.r",
+    "text": "34.2 方法2:dca.r\n这个方法是纪念斯隆·凯特林癌症中心给出的方法,非常正规,目前绝大多数其他实现DCA的方法都是基于此方法实现的。\n曾经,纪念斯隆·凯特林癌症中心的官网网站会让你免费下载dca.r/stdca.r这两段脚本,可分别用于二分类数据和生存数据的决策曲线分析,但是非常遗憾的是,目前该网站已不再提供代码下载了。\n\n\n\n\n\n\n注意\n\n\n\n这个网站(https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis)已经不再提供该代码的下载,我在多年前就下载好了,我把dca.r/stdca.r这两段代码已经放在粉丝QQ群文件,需要的加群下载即可。\n\n\n\n34.2.1 训练集\n还是使用rmda包的数据,首先我们画一个简单的DCA,结果变量是Cancer,预测变量我们只用一个Smokes。使用起来非常简单,一句代码即可:\n\nsource(\"./datasets/dca.r\")\n\n# 变为数据框类型\ntrain_df &lt;- as.data.frame(train_df)\n\ndd &lt;- dca(data = train_df, # 指定数据集,必须是data.frame类型\n    outcome=\"Cancer\", # 指定结果变量\n    predictors=\"Smokes\", # 指定预测变量\n    probability = F, # Smokes这一列是0,1组成的二分类变量,不是概率,所以是F\n    xstop = 0.3 # x轴范围\n    )\n\n\n\n\n\n\n\n\n但是如果你的预测变量不是0,1这种,或者有多个的话,这时候需要你先把预测概率算出来,才能使用这个函数。\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes, \n            family=binomial(),\n            data = train_df\n            )\n\n# 算出概率\ntrain_df$prob &lt;- predict(model, type=\"response\")\n\n# 绘制多个预测变量的DCA\ndd &lt;- dca(data=train_df, outcome=\"Cancer\", predictors=\"prob\", \n    probability = T\n    )\n\n\n\n\n\n\n\n\n把多个模型画在一起的方式需要注意,比如我们下面演示下3个模型画在一起,其中prob代表的是上面的model模型,Marker2代表的是只有一个预测变量Marker2的模型,Smokes代表只有一个预测变量Smokes的模型!\nprob是概率,所以是T,Smokes和Marker2不是概率,所以是F。\n\ndd &lt;- dca(data = train_df, outcome=\"Cancer\", \n    predictors=c(\"prob\",\"Smokes\",\"Marker2\"), # 这是3个模型!\n    probability = c(T,F,F) # 和上面是对应的!\n    )\n## [1] \"Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur.\"\n## [1] \"Marker2 converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur.\"\n\n\n\n\n\n\n\n\n\n\n34.2.2 测试集\n如果只有1个预测变量,直接用即可:\n\n# 变为数据框类型\ntest_df &lt;- as.data.frame(test_df)\n\ndd &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"Cancer\", # 指定结果变量\n    predictors=\"Smokes\", # 指定预测变量\n    probability = F, # Smokes这一列是0,1组成的二分类变量,不是概率,所以是F\n    xstop = 0.3 # x轴范围\n    )\n## [1] \"Smokes converted to a probability with logistic regression. Due to linearity assumption, miscalibration may occur.\"\n\n\n\n\n\n\n\n\n如果有多个预测变量,需要自己计算出概率,再画图:\n\n# 在训练集建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes, \n            family=binomial(),\n            data = train_df\n            )\n\n# 算出测试集的概率\ntest_df$prob &lt;- predict(model, type=\"response\", newdata = test_df)\n\n# 绘制多个预测变量的DCA\ndd &lt;- dca(data=test_df, outcome=\"Cancer\", predictors=\"prob\", \n          probability = T)\n\n\n\n\n\n\n\n\n其他的就不再重复说了。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-logistic.html#方法3diy",
     "href": "dca-logistic.html#方法3diy",
-    "title": "40  分类数据的决策曲线分析",
-    "section": "40.3 方法3:DIY",
-    "text": "40.3 方法3:DIY\n上面的方法自定义选项也很少,不利于美化图形。但是呢,有一个优点就是可以直接返回画图数据,我们只要稍加修改,就能使用ggplot2画图了!而且由于直接给出了源码,我们可以试着自己修改,这样可发挥的地方就太多了!\n下面几个将要介绍的方法,都是可以返回数据的,都支持使用ggplot2画图!\n下面我们返回2个模型的画图数据,自己稍加整理,然后使用ggplot2画DCA,大家如果只有1个模型或者更多的模型,道理都是一样的哦,就是整成ggplot2需要的格式就行了!\n\n# 返回模型1的画图数据\nsource(\"./datasets/dca.r\")\ndca_data1 &lt;- dca(data = df, \n    outcome=\"Cancer\", \n    predictors=\"prob\", \n    probability = T,\n    graph = F\n    )\n\n然后提取数据,数据转换:\n\n# 转换数据\nlibrary(tidyr)\n\ndca_df1 &lt;- dca_data1$net.benefit %&gt;% # 画图数据就藏在这里!\n  # 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!\n  pivot_longer(cols = -threshold, names_to = \"type\", values_to = \"net_benefit\") \n\n# 看下数据结构\nstr(dca_df1)\n## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)\n##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...\n##  $ type       : chr [1:297] \"all\" \"none\" \"prob\" \"all\" ...\n##  $ net_benefit: num [1:297] 0.111 0 0.11 0.102 0 ...\n\n画图就是非常简单了,先给大家看看只画1个模型的例子:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\n# 以prob这个模型为例\n\nggplot(dca_df1, aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ # c(\"steelblue\",\"firebrick\",\"green4\")\n  scale_y_continuous(limits = c(-0.03,0.12),name = \"Net Benefit\")+\n  #限定y轴范围是重点,你可以去掉这句看看\n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position = c(0.8,0.8),\n        legend.background = element_blank()\n        )\n## Warning: Removed 85 rows containing missing values (`geom_line()`).\n\n\n\n\n看着是不是比上面的颜值都高些?是不是已经有了JAMA杂志的味道?\n下面是2个模型画在一起的例子,和上面的思路一模一样!\n\n# 构建模型2\nmod2 &lt;- glm(Cancer ~ Marker1 + Age + Smokes, df, family = binomial)\ndf$model2 &lt;- predict(mod2, type=\"response\")\n\n# 返回两个模型的画图数据\ndca12 &lt;- dca(data = df, \n             outcome=\"Cancer\", \n             predictors=c(\"prob\",\"model2\") ,\n             probability = c(T,T),\n             graph = F\n             )\n\n\n# 合并数据,大家可以打开这2个数据看下,可以直接合并\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\n\ndca_df_all &lt;- dca12$net.benefit %&gt;% \n  pivot_longer(cols = -threshold,names_to = \"models\",values_to = \"net_benefit\")\n\nglimpse(dca_df_all)\n## Rows: 396\n## Columns: 3\n## $ threshold   &lt;dbl&gt; 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03…\n## $ models      &lt;chr&gt; \"all\", \"none\", \"prob\", \"model2\", \"all\", \"none\", \"prob\", \"m…\n## $ net_benefit &lt;dbl&gt; 0.11111111, 0.00000000, 0.10957576, 0.11111111, 0.10204082…\n\n画图也是一样的简单:\n\nggplot(dca_df_all, aes(threshold, net_benefit, color = models))+\n  #geom_line(size = 1.2)+\n  stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", span = 0.2)+ \n  # 灵感来自于方法5!\n  scale_color_jama(name = \"Model Type\")+\n  scale_y_continuous(limits = c(-0.03,0.12),name = \"Net Benefit\")+\n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position = c(0.8,0.75),\n        legend.background = element_blank()\n        )\n## Warning: Removed 85 rows containing non-finite values (`stat_smooth()`).\n## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,\n## : span too small.  fewer data values than degrees of freedom.\n## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,\n## : pseudoinverse used at 0.00935\n## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,\n## : neighborhood radius 0.01065\n## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,\n## : reciprocal condition number 0\n## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,\n## : There are other near singularities as well. 0.00011342\n\n\n\n\n挺好,还是不错的,能直接返回数据的都是可以高度自定义的,配合ggplot2,你可以尽情发挥。\n在今天推荐的所有方法中,这个方法我是最喜欢的,虽然只有一段代码,连个正经的R包都没有,但是很明显这个方法的潜力最大!只要你会自己修改,那这个方法就是万能的,适合很多模型的DCA绘制!"
+    "title": "34  分类数据的决策曲线",
+    "section": "34.3 方法3:DIY",
+    "text": "34.3 方法3:DIY\n上面的方法自定义选项也很少,不利于美化图形。但是呢,有一个优点就是可以直接返回画图数据,我们只要稍加修改,就能使用ggplot2画图了!而且由于直接给出了源码,我们可以试着自己修改,这样可发挥的地方就太多了!\n下面几个将要介绍的方法,都是可以返回数据的,都支持使用ggplot2画图!\n下面我们返回2个模型的画图数据,自己稍加整理,然后使用ggplot2画DCA,大家如果只有1个模型或者更多的模型,道理都是一样的哦,就是整成ggplot2需要的格式就行了!\n\n34.3.1 训练集\n\n# 返回模型1的画图数据\nsource(\"./datasets/dca.r\")\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes, \n            family=binomial(),\n            data = train_df\n            )\n\n# 算出概率\ntrain_df$prob &lt;- predict(model, type=\"response\")\n\n# 绘制多个预测变量的DCA,返回画图数据\ndca_data1 &lt;- dca(data=train_df, outcome=\"Cancer\", predictors=\"prob\", \n          probability = T, graph = F)\n\n然后提取数据,数据转换:\n\n# 转换数据\nlibrary(tidyr)\n\ndca_df1 &lt;- dca_data1$net.benefit %&gt;% # 画图数据就藏在这里!\n  # 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!\n  pivot_longer(cols = -threshold, names_to = \"type\", values_to = \"net_benefit\") \n\n# 看下数据结构\nstr(dca_df1)\n## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)\n##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...\n##  $ type       : chr [1:297] \"all\" \"none\" \"prob\" \"all\" ...\n##  $ net_benefit: num [1:297] 0.12 0 0.12 0.111 0 ...\n\n画图就是非常简单了,先给大家看看只画1个模型的例子:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\n# 以prob这个模型为例\n\nggplot(dca_df1, aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ # c(\"steelblue\",\"firebrick\",\"green4\")\n  scale_y_continuous(limits = c(-0.03,0.12),name = \"Net Benefit\")+\n  #限定y轴范围是重点,你可以去掉这句看看\n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position.inside = c(0.8,0.8),\n        legend.background = element_blank()\n        )\n\n\n\n\n\n\n\n\n看着是不是比上面的颜值都高些?是不是已经有了JAMA杂志的味道?\n下面是2个模型画在一起的例子,和上面的思路一模一样!\n\n# 构建模型2\nmod2 &lt;- glm(Cancer ~ Marker1 + Age + Smokes, train_df, family = binomial)\ntrain_df$model2 &lt;- predict(mod2, type=\"response\")\n\n# 返回两个模型的画图数据\ndca12 &lt;- dca(data = train_df, \n             outcome=\"Cancer\", \n             predictors=c(\"prob\",\"model2\") ,\n             probability = c(T,T),\n             graph = F\n             )\n\n\n# 合并数据,大家可以打开这2个数据看下,可以直接合并\nlibrary(dplyr)\n\ndca_df_all &lt;- dca12$net.benefit %&gt;% \n  pivot_longer(cols = -threshold,names_to = \"models\",values_to = \"net_benefit\")\n\nglimpse(dca_df_all)\n## Rows: 396\n## Columns: 3\n## $ threshold   &lt;dbl&gt; 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03…\n## $ models      &lt;chr&gt; \"all\", \"none\", \"prob\", \"model2\", \"all\", \"none\", \"prob\", \"m…\n## $ net_benefit &lt;dbl&gt; 0.11976912, 0.00000000, 0.11976912, 0.11976912, 0.11078717…\n\n画图也是一样的简单:\n\nggplot(dca_df_all, aes(threshold, net_benefit, color = models))+\n  #geom_line(size = 1.2)+\n  stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", span = 0.2)+ \n  # 灵感来自于方法5!\n  scale_color_jama(name = \"Model Type\")+\n  scale_y_continuous(limits = c(-0.03,0.12),name = \"Net Benefit\")+\n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position.inside = c(0.8,0.75),\n        legend.background = element_blank()\n        )\n\n\n\n\n\n\n\n\n挺好,还是不错的,能直接返回数据的都是可以高度自定义的,配合ggplot2,你可以尽情发挥。\n在今天推荐的所有方法中,这个方法我是最喜欢的,虽然只有一段代码,连个正经的R包都没有,但是很明显这个方法的潜力最大!只要你会自己修改,那这个方法就是万能的,适合很多模型的DCA绘制!\n\n\n34.3.2 测试集\n还是首先获取测试集的预测概率:\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes, \n            family=binomial(),\n            data = train_df\n            )\n\n# 算出测试集的概率\ntest_df$prob &lt;- predict(model, type=\"response\", newdata = test_df)\n\n# 绘制多个预测变量的DCA\ndca_data1 &lt;- dca(data=test_df, outcome=\"Cancer\", predictors=\"prob\", \n          probability = T, graph = F)\n\n然后提取数据,数据转换:\n\n# 转换数据\nlibrary(tidyr)\n\ndca_df1 &lt;- dca_data1$net.benefit %&gt;% # 画图数据就藏在这里!\n  # 变成长数据,还不懂长宽数据转换这个超强操作的快去翻一下历史文章!\n  pivot_longer(cols = -threshold, names_to = \"type\", values_to = \"net_benefit\") \n\n# 看下数据结构\nstr(dca_df1)\n## tibble [297 × 3] (S3: tbl_df/tbl/data.frame)\n##  $ threshold  : num [1:297] 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 ...\n##  $ type       : chr [1:297] \"all\" \"none\" \"prob\" \"all\" ...\n##  $ net_benefit: num [1:297] 0.0909 0 0.0909 0.0816 0 ...\n\n画图即可:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\n# 以prob这个模型为例\n\nggplot(dca_df1, aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ # c(\"steelblue\",\"firebrick\",\"green4\")\n  scale_y_continuous(limits = c(-0.03,0.12),name = \"Net Benefit\")+\n  #限定y轴范围是重点,你可以去掉这句看看\n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position.inside = c(0.8,0.8),\n        legend.background = element_blank()\n        )",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-logistic.html#方法4ggdca",
     "href": "dca-logistic.html#方法4ggdca",
-    "title": "40  分类数据的决策曲线分析",
-    "section": "40.4 方法4:ggDCA",
-    "text": "40.4 方法4:ggDCA\n使用ggDCA包,和上面的提取数据再画图有点像,不过它给你简化了,一句代码即可,省事儿!\n\n# 安装R包,使用有问题的小伙伴请安装github版本\ninstall.packages(\"ggDCA\")\n\nremotes::install_github('yikeshu0611/ggDCA')\n\n还是使用rmda包里面自带的dcaData演示。\n\nlibrary(ggDCA)\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n## \n## Attaching package: 'ggDCA'\n## The following object is masked _by_ '.GlobalEnv':\n## \n##     dca\nlibrary(rmda)\n\n# 构建模型\nfit1 &lt;- glm(Cancer ~ Age + Female + Smokes, data = dcaData, family = binomial())\n\nfit2 &lt;- glm(Cancer~Age + Female + Smokes + Marker1 + Marker2,\n              data = dcaData,family = binomial())\n\n画图,非常简洁!\n\nlibrary(ggplot2)\n\ndca1 &lt;- ggDCA::dca(fit1)\n\nggplot(dca1)\n## Warning: Removed 18 rows containing missing values (`geom_line()`).\n\n\n\n\n大家可以使用ggplot2语法继续修改细节,在此之前先给大家看看这个dca1的数据结构。\n\nstr(dca1)\n## Classes 'dca.lrm' and 'data.frame':  188 obs. of  5 variables:\n##  $ thresholds: num  0.021 0.0228 0.0251 0.0272 0.0298 ...\n##  $ TPR       : num  0.12 0.12 0.12 0.118 0.118 0.116 0.112 0.112 0.112 0.112 ...\n##  $ FPR       : num  0.88 0.85 0.832 0.806 0.784 0.758 0.732 0.7 0.67 0.648 ...\n##  $ NB        : num  0.1011 0.1001 0.0986 0.0955 0.0939 ...\n##  $ model     : Factor w/ 3 levels \"fit1\",\"All\",\"None\": 1 1 1 1 1 1 1 1 1 1 ...\n\n还自动算出了TPR和FPR,如果你想画ROC的话也是一句代码的事,咱就不演示了!就给大家演示下怎么自定义细节。\n\nggplot(dca1,linetype = 1,color = c(\"firebrick\",\"steelblue\",\"green4\"))+\n  theme(legend.position = c(0.8,0.75))\n## Warning: Removed 18 rows containing missing values (`geom_line()`).\n\n\n\n\n多个模型画在一起也是非常简单!\n\n# 2个模型画在一起\ndca12 &lt;- ggDCA::dca(fit1,fit2)\n\nggplot(dca12, linetype = 1,color = c(\"firebrick\",\"steelblue\",\"green4\",\"tomato\"))+\n  theme(legend.position = c(0.8,0.75))\n## Warning: Removed 131 rows containing missing values (`geom_line()`).\n\n\n\n\n简洁强大!"
+    "title": "34  分类数据的决策曲线",
+    "section": "34.4 方法4:ggDCA",
+    "text": "34.4 方法4:ggDCA\n使用ggDCA包,和上面的提取数据再画图有点像,不过它给你简化了,一句代码即可,省事儿!\n\n# 安装R包,建议安装github版本,不然会出问题\nremotes::install_github('yikeshu0611/ggDCA')\n\n\n34.4.1 训练集\n还是使用rmda包里面自带的dcaData演示。\n\nlibrary(ggDCA)\nlibrary(rmda)\n#options(datadist= dd )\n# 构建模型\nfit1 &lt;- glm(Cancer ~ Age + Female + Smokes, \n            data = train_df, family = binomial())\n\nfit2 &lt;- glm(Cancer~Age + Female + Smokes + Marker1 + Marker2,\n            data = train_df,family = binomial())\n\n画图,非常简洁!\n\nlibrary(ggplot2)\n\ndca1 &lt;- ggDCA::dca(fit1)\n\nggplot(dca1)\n\n\n\n\n\n\n\n\n大家可以使用ggplot2语法继续修改细节,在此之前先给大家看看这个dca1的数据结构。\n\nstr(dca1)\n## Classes 'dca.lrm' and 'data.frame':  182 obs. of  5 variables:\n##  $ thresholds: num  0.0242 0.0245 0.0289 0.0291 0.0344 ...\n##  $ TPR       : num  0.129 0.129 0.129 0.129 0.126 ...\n##  $ FPR       : num  0.871 0.857 0.831 0.814 0.794 ...\n##  $ NB        : num  0.1069 0.1071 0.1039 0.1041 0.0974 ...\n##  $ model     : Factor w/ 3 levels \"fit1\",\"All\",\"None\": 1 1 1 1 1 1 1 1 1 1 ...\n\n还自动算出了TPR和FPR,如果你想画ROC的话也是一句代码的事,咱就不演示了!就给大家演示下怎么自定义细节。\n\nggplot(dca1,linetype = 1,color = c(\"firebrick\",\"steelblue\",\"green4\"))+\n  theme(legend.position = c(0.8,0.75))\n\n\n\n\n\n\n\n\n多个模型画在一起也是非常简单!\n\n# 2个模型画在一起\ndca12 &lt;- ggDCA::dca(fit1,fit2)\n\nggplot(dca12, linetype = 1,\n       color = c(\"firebrick\",\"steelblue\",\"green4\",\"tomato\"))+\n  theme(legend.position = c(0.8,0.75))\n\n\n\n\n\n\n\n\n简洁强大!\n\n\n34.4.2 测试集\n也是只要1行代码即可:\n\naa &lt;- ggDCA::dca(fit1,new.data=test_df)\n\nggplot(aa)\n\n\n\n\n\n\n\n\n但是这个包画出的测试集的决策曲线和其他R包差别较大,有人建议大家慎用该方法:二分类logistic回归模型决策曲线的绘制与解读",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-logistic.html#方法5dcurves",
     "href": "dca-logistic.html#方法5dcurves",
-    "title": "40  分类数据的决策曲线分析",
-    "section": "40.5 方法5:dcurves",
-    "text": "40.5 方法5:dcurves\n使用dcurves包。\n\n# 安装,2选1\ninstall.packages(\"dcurves\")\n\n# install.packages(\"devtools\")\ndevtools::install_github(\"ddsjoberg/dcurves\")\n\n还是使用rmda包的dcaData数据进行演示。\n和dca.r的使用很像。废话不多说了,直接上 画2个模型DCA 的代码。\n\nlibrary(dcurves)\n## \n## Attaching package: 'dcurves'\n## The following object is masked _by_ '.GlobalEnv':\n## \n##     dca\n## The following object is masked from 'package:ggDCA':\n## \n##     dca\nlibrary(rmda)\ndata(\"dcaData\")\n\n# 建立2个模型,算出概率\nmod1 &lt;- glm(Cancer ~ Marker1 + Age + Smokes, dcaData, family = binomial)\ndcaData$model1 &lt;- predict(mod1, type=\"response\")\n\nmod2 &lt;- glm(Cancer ~ Marker1 + Marker2 + Age + Smokes + Female, \n            dcaData, family = binomial)\ndcaData$model2 &lt;- predict(mod2, type=\"response\")\n  \ndcurves::dca(Cancer ~ model1 + model2,\n             data = dcaData\n             ) %&gt;% \n  plot(smooth = T,\n       show_ggplot_code = T # 显示ggplot2代码,方便大家自己调整\n       )\n## Assuming '1' is [Event] and '0' is [non-Event]\n## # ggplot2 code to create DCA figure -------------------------------\n## as_tibble(x) %&gt;%\n##   dplyr::filter(!is.na(net_benefit)) %&gt;%\n##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +\n##   stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", \n##     span = 0.2) +\n##   coord_cartesian(ylim = c(-0.012, 0.12)) +\n##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +\n##   labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n##   theme_bw()\n\n\n\n\n大家看到ggplot2的代码了吧?自己调整就可以了。\n今天就给大家简单介绍下logistic回归DCA的5种画法,其实还有很多,留着以后再介绍吧,实在是写不动了。。除了常见的logistic、cox,其实随机森林、决策树、lasso、xgboost、SVM等很多模型都是可以绘制DCA的,更多进阶内容可以关注公众号查看。"
+    "title": "34  分类数据的决策曲线",
+    "section": "34.5 方法5:dcurves",
+    "text": "34.5 方法5:dcurves\n使用dcurves包,这个包是官方基于方法2的代码写的,所以也算是一个官方的方法,虽然你没有dca.r/stdca.r,但是你可以直接使用dcurves包。\n\n# 安装,2选1\ninstall.packages(\"dcurves\")\n\n# install.packages(\"devtools\")\ndevtools::install_github(\"ddsjoberg/dcurves\")\n\n还是使用rmda包的dcaData数据进行演示。\n\n34.5.1 训练集\n和dca.r的使用很像。废话不多说了,直接上 画2个模型DCA 的代码。\n\nlibrary(dcurves)\nlibrary(rmda)\ndata(\"dcaData\")\n\n# 建立2个模型,算出概率\nmod1 &lt;- glm(Cancer ~ Marker1 + Age + Smokes, train_df, family = binomial)\ntrain_df$model1 &lt;- predict(mod1, type=\"response\")\n\nmod2 &lt;- glm(Cancer ~ Marker1 + Marker2 + Age + Smokes + Female, \n            train_df, family = binomial)\ntrain_df$model2 &lt;- predict(mod2, type=\"response\")\n  \ndcurves::dca(Cancer ~ model1 + model2,\n             data = train_df\n             ) %&gt;% \n  plot(smooth = T,\n       show_ggplot_code = T # 显示ggplot2代码,方便大家自己调整\n       )\n## # ggplot2 code to create DCA figure -------------------------------\n## as_tibble(x) %&gt;%\n##   dplyr::filter(!is.na(net_benefit)) %&gt;%\n##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +\n##   stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", \n##     span = 0.2) +\n##   coord_cartesian(ylim = c(-0.0128571428571429, 0.128571428571429\n## )) +\n##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +\n##   labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n##   theme_bw()\n\n\n\n\n\n\n\n\n大家看到ggplot2的代码了吧?自己调整就可以了。\n\n\n34.5.2 测试集\n也是展示同时画两个曲线,只需要提前计算出预测概率即可:\n\ntest_df$model1 &lt;- predict(mod1, type=\"response\",newdata = test_df)\ntest_df$model2 &lt;- predict(mod2, type=\"response\",newdata = test_df)\n\ndcurves::dca(Cancer ~ model1 + model2,\n             data = test_df\n             ) %&gt;% \n  plot(smooth = T,\n       show_ggplot_code = T # 显示ggplot2代码,方便大家自己调整\n       )\n## # ggplot2 code to create DCA figure -------------------------------\n## as_tibble(x) %&gt;%\n##   dplyr::filter(!is.na(net_benefit)) %&gt;%\n##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +\n##   stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", \n##     span = 0.2) +\n##   coord_cartesian(ylim = c(-0.01, 0.1)) +\n##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +\n##   labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n##   theme_bw()\n\n\n\n\n\n\n\n\n今天就给大家简单介绍下logistic回归DCA的5种画法,其实还有很多,留着以后再介绍吧,实在是写不动了。。除了常见的logistic、cox,其实随机森林、决策树、lasso、xgboost、SVM等很多模型都是可以绘制DCA的,更多进阶内容可以关注公众号查看。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>34</span>  <span class='chapter-title'>分类数据的决策曲线</span>"
+    ]
+  },
+  {
+    "objectID": "dca-cox.html",
+    "href": "dca-cox.html",
+    "title": "35  生存数据的决策曲线",
+    "section": "",
+    "text": "35.1 方法1:dcurves\n使用dcurves包,使用的数据集是包自带的df_surv数据集,一共有750行,9列,其中ttcancer是时间,cancer是结局事件,TRUE代表有癌症,FALSE代表没有癌症。\n这个包是官方基于方法3的代码写的,所以也算是一个官方的方法,虽然你没有dca.r/stdca.r,但是你可以直接使用dcurves包。\n并不是只有结局事件是生存或者死亡的才叫生存资料哦!只要是time-event类型的,都可以。\nrm(list = ls())\n# 加载R包和数据\nlibrary(dcurves)\nlibrary(survival)\ndata(\"df_surv\")\n\n# 查看数据结构\ndim(df_surv)\n## [1] 750   9\nstr(df_surv)\n## tibble [750 × 9] (S3: tbl_df/tbl/data.frame)\n##  $ patientid       : num [1:750] 1 2 3 4 5 6 7 8 9 10 ...\n##  $ cancer          : logi [1:750] FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ ttcancer        : num [1:750] 3.009 0.249 1.59 3.457 3.329 ...\n##  $ risk_group      : chr [1:750] \"low\" \"high\" \"low\" \"low\" ...\n##  $ age             : num [1:750] 64 78.5 64.1 58.5 64 ...\n##  $ famhistory      : num [1:750] 0 0 0 0 0 0 0 0 0 0 ...\n##  $ marker          : num [1:750] 0.7763 0.2671 0.1696 0.024 0.0709 ...\n##  $ cancerpredmarker: num [1:750] 0.0372 0.57891 0.02155 0.00391 0.01879 ...\n##  $ cancer_cr       : Factor w/ 3 levels \"censor\",\"diagnosed with cancer\",..: 1 1 1 1 1 1 1 2 1 1 ...\n划分训练集测试集:\nset.seed(123)\ntrain &lt;- sample(1:nrow(df_surv),nrow(df_surv) * 0.7)\ntrain_df &lt;- df_surv[train,]\ntest_df &lt;- df_surv[- train,]\n\ndim(train_df)\n## [1] 525   9\ndim(test_df)\n## [1] 225   9",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>35</span>  <span class='chapter-title'>生存数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-cox.html#方法1dcurves",
     "href": "dca-cox.html#方法1dcurves",
-    "title": "41  生存数据的决策曲线分析",
-    "section": "41.1 方法1:dcurves",
-    "text": "41.1 方法1:dcurves\n使用dcurves包,使用的数据集是包自带的df_surv数据集,一共有750行,9列,其中ttcancer是时间,cancer是结局事件,TRUE代表有癌症,FALSE代表没有癌症。\n并不是只有结局事件是生存或者死亡的才叫生存资料哦!只要是time-event类型的,都可以。\n\nrm(list = ls())\n# 加载R包和数据,不知道怎么安装的请看我前面的推文\nlibrary(dcurves)\nlibrary(survival)\ndata(\"df_surv\")\n\n# 查看数据结构\ndim(df_surv)\n## [1] 750   9\nstr(df_surv)\n## tibble [750 × 9] (S3: tbl_df/tbl/data.frame)\n##  $ patientid       : num [1:750] 1 2 3 4 5 6 7 8 9 10 ...\n##  $ cancer          : logi [1:750] FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ ttcancer        : num [1:750] 3.009 0.249 1.59 3.457 3.329 ...\n##  $ risk_group      : chr [1:750] \"low\" \"high\" \"low\" \"low\" ...\n##  $ age             : num [1:750] 64 78.5 64.1 58.5 64 ...\n##  $ famhistory      : num [1:750] 0 0 0 0 0 0 0 0 0 0 ...\n##  $ marker          : num [1:750] 0.7763 0.2671 0.1696 0.024 0.0709 ...\n##  $ cancerpredmarker: num [1:750] 0.0372 0.57891 0.02155 0.00391 0.01879 ...\n##  $ cancer_cr       : Factor w/ 3 levels \"censor\",\"diagnosed with cancer\",..: 1 1 1 1 1 1 1 2 1 1 ...\n\n这个包使用起来很别扭,但是可以说它很灵活!\n如果预测变量只有1个,且是0,1表示的,那就很简单,直接用就行;如果有多个预测变量,就需要先计算出预测概率,然后才能使用。\n预测变量是famhistory,这是0,1表示的二分类变量:\n\nlibrary(ggplot2)\n\ndcurves::dca(Surv(ttcancer, cancer) ~ famhistory,\n             data = df_surv,\n             time = 1 # 时间选1年\n             ) %&gt;% \n  plot(smooth = T)\n\n\n\n\n下面展示一个把多个模型的DCA画在一起的例子,和之前介绍的dca.r的用法优点类似。\ncancerpredmarker这一列已经是概率了,marker是数值型的连续性变量,famhistory是0,1表示的二分类变量。\n\ndcurves::dca(Surv(ttcancer, cancer) ~ cancerpredmarker + marker + famhistory,\n    data = df_surv,\n    as_probability = \"marker\", # 只有marker需要转换成概率\n    time = 1,\n    label = list(cancerpredmarker = \"Prediction Model\", marker = \"Biomarker\")) %&gt;%\n  plot(smooth = TRUE,show_ggplot_code = T) +\n  ggplot2::labs(x = \"Treatment Threshold Probability\")\n## # ggplot2 code to create DCA figure -------------------------------\n## as_tibble(x) %&gt;%\n##   dplyr::filter(!is.na(net_benefit)) %&gt;%\n##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +\n##   stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", \n##     span = 0.2) +\n##   coord_cartesian(ylim = c(-0.0147287067742928, 0.147287067742928\n## )) +\n##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +\n##   labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n##   theme_bw()\n\n\n\n\n可以看到marker这个曲线有点过分了。。结果也给出了ggplot2的代码,大家可以自己修改。\n上面是多个模型在同一个时间点的DCA曲线,如果是同一个模型在不同时间点的DCA,这个包不能直接画出,需要自己整理数据,因为不同时间点进行治疗的风险和获益都是不一样的,所以会出现同一个阈值概率对应多个净获益的情况,所以none和all每个概率阈值下都有1套数据。\n如果你的预测变量是多个,就需要先计算预测概率。\n\n# 构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, data = df_surv)\n\n# 计算1.5年的概率\ndf_surv$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=df_surv), times=1.5)$surv))\n\n# 我们分2步,先获取数据,再用ggplot2画图\nx1 &lt;- dcurves::dca(Surv(ttcancer, cancer) ~ prob1,\n    data = df_surv,\n    time = 1.5\n    )%&gt;% \n  dcurves::as_tibble()\n\n# 使用自带的画图代码\nggplot(x1, aes(x=threshold, y=net_benefit,color=variable))+\n  stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", span = 0.2) +\n  coord_cartesian(ylim = c(-0.03, 0.25)) +\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1)) +\n  labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n  theme_bw()\n## Warning: Removed 20 rows containing non-finite values (`stat_smooth()`).\n\n\n\n\n大家还可以根据自己的喜好继续调整细节。"
+    "title": "35  生存数据的决策曲线",
+    "section": "",
+    "text": "35.1.1 训练集\n这个包使用起来很别扭,但是可以说它很灵活!\n如果预测变量只有1个,且是0,1表示的,那就很简单,直接用就行;如果有多个预测变量,就需要先计算出预测概率,然后才能使用。\n预测变量是famhistory,这是0,1表示的二分类变量:\n\nlibrary(ggplot2)\n\ndcurves::dca(Surv(ttcancer, cancer) ~ famhistory,\n             data = train_df,\n             time = 1 # 时间选1年\n             ) %&gt;% \n  plot(smooth = T)\n\n\n\n\n\n\n\n\n下面展示一个把多个模型的DCA画在一起的例子,和之前介绍的dca.r的用法有点类似。\ncancerpredmarker这一列已经是概率了,marker是数值型的连续性变量,famhistory是0,1表示的二分类变量。\n\ndcurves::dca(Surv(ttcancer, cancer) ~ cancerpredmarker + marker + famhistory,\n    data = train_df,\n    as_probability = \"marker\", # 只有marker需要转换成概率\n    time = 1,\n    label = list(cancerpredmarker = \"Prediction Model\", \n                 marker = \"Biomarker\")) %&gt;%\n  plot(smooth = TRUE,show_ggplot_code = T) +\n  ggplot2::labs(x = \"Treatment Threshold Probability\")\n## # ggplot2 code to create DCA figure -------------------------------\n## as_tibble(x) %&gt;%\n##   dplyr::filter(!is.na(net_benefit)) %&gt;%\n##   ggplot(aes(x = threshold, y = net_benefit, color = label)) +\n##   stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", \n##     span = 0.2) +\n##   coord_cartesian(ylim = c(-0.0142882170725106, 0.142882170725106\n## )) +\n##   scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +\n##   labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n##   theme_bw()\n\n\n\n\n\n\n\n\n可以看到marker这个曲线有点过分了。。结果也给出了ggplot2的代码,大家可以自己修改。\n上面是多个模型在同一个时间点的DCA曲线,如果是同一个模型在不同时间点的DCA,这个包不能直接画出,需要自己整理数据,因为不同时间点进行治疗的风险和获益都是不一样的,所以会出现同一个阈值概率对应多个净获益的情况,所以none和all每个概率阈值下都有1套数据。\n如果你的预测变量是多个,就需要先计算预测概率。\n\n# 构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                   data = train_df)\n\n# 计算1.5年的概率\ntrain_df$prob1 &lt;- c(1-(summary(survfit(cox_model,newdata=train_df), \n                               times=1.5)$surv))\n\n# 我们分2步,先获取数据,再用ggplot2画图\nx1 &lt;- dcurves::dca(Surv(ttcancer, cancer) ~ prob1,\n    data = train_df,\n    time = 1.5\n    )%&gt;% \n  dcurves::as_tibble()\n\n# 使用自带的画图代码\nggplot(x1, aes(x=threshold, y=net_benefit,color=variable))+\n  stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", span = 0.2) +\n  coord_cartesian(ylim = c(-0.03, 0.25)) +\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1)) +\n  labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n  theme_bw()\n\n\n\n\n\n\n\n\n大家还可以根据自己的喜好继续调整细节。\n\n\n35.1.2 测试集\n使用思路和分类数据是一样的,也是先计算预测概率,再画图:\n\n# 在训练集构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                   data = train_df)\n\n# 计算测试集1.5年的概率\ntest_df$prob1 &lt;- c(1-(summary(survfit(cox_model,newdata=test_df), \n                               times=1.5)$surv))\n\n# 先获取数据,再用ggplot2画图\nx1 &lt;- dcurves::dca(Surv(ttcancer, cancer) ~ prob1,\n    data = test_df,\n    time = 1.5\n    )%&gt;% \n  dcurves::as_tibble()\n\n# 使用自带的画图代码\nggplot(x1, aes(x=threshold, y=net_benefit,color=variable))+\n  stat_smooth(method = \"loess\", se = FALSE, formula = \"y ~ x\", span = 0.2) +\n  coord_cartesian(ylim = c(-0.03, 0.25)) +\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1)) +\n  labs(x = \"Threshold Probability\", y = \"Net Benefit\", color = \"\") +\n  theme_bw()",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>35</span>  <span class='chapter-title'>生存数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-cox.html#方法2ggdca",
     "href": "dca-cox.html#方法2ggdca",
-    "title": "41  生存数据的决策曲线分析",
-    "section": "41.2 方法2:ggDCA",
-    "text": "41.2 方法2:ggDCA\n使用ggDCA包。是这么多方法里面最简单的一个。对于同一个模型多个时间点、同一个时间点多个模型,都可以非常简单的画出来。\n如果遇到报错:no points selected for one or more curves, consider using …,请安装GitHub版本的ggDCA包,且不要同时加载其它可以做DCA的R包。\n还是使用dcurves里面的df_surv数据集作为演示。\n\nlibrary(ggDCA)\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n## \n## Attaching package: 'ggDCA'\n## The following object is masked from 'package:dcurves':\n## \n##     dca\n\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, \n                  data = df_surv)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, data = df_surv)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, data = df_surv)\n\n多个模型同一时间点的DCA:\n\ndf1 &lt;- ggDCA::dca(cox_fit1, cox_fit2, cox_fit3,\n                  times = 1.5 # 1.5年,默认值是中位数\n                  )\n\nlibrary(ggsci)\n\nggplot(df1,linetype = F)+\n  scale_color_jama(name=\"Model Type\",labels=c(\"Cox 1\",\"Cox 2\",\"Cox 3\",\"All\",\"None\"))+\n  theme_bw(base_size = 14)+\n  theme(legend.position = c(0.8,0.75),\n        legend.background = element_blank()\n        )\n## Warning: Removed 498 rows containing missing values (`geom_line()`).\n\n\n\n\n同一个模型多个时间的DCA:\n\ndf2 &lt;- ggDCA::dca(cox_fit2,\n                  times = c(1,2,3)\n                  )\n\nggplot(df2,linetype = F)+\n  scale_color_jama(name=\"Model Type\")+\n  theme_bw()+\n  facet_wrap(~time) # 分面展示,因为不同时间点净获益是不一样的\n## Warning: Removed 1689 rows containing missing values (`geom_line()`).\n\n\n\n\n多个模型多个时间点:\n\ndf3 &lt;- ggDCA::dca(cox_fit1,cox_fit2,cox_fit3,\n                  times = c(1,2,3)\n                  )\n\nggplot(df3,linetype = F)+\n  scale_color_jama(name=\"Model Type\")+\n  theme_bw()+\n  facet_wrap(~time)\n## Warning: Removed 1226 rows containing missing values (`geom_line()`).\n\n\n\n\n非常强!如果你不会自己搞数据,就用这个!"
+    "title": "35  生存数据的决策曲线",
+    "section": "35.2 方法2:ggDCA",
+    "text": "35.2 方法2:ggDCA\n使用ggDCA包。是这么多方法里面最简单的一个。对于同一个模型多个时间点、同一个时间点多个模型,都可以非常简单的画出来。\n如果遇到报错:no points selected for one or more curves, consider using …,请安装GitHub版本的ggDCA包,且不要同时加载其它可以做DCA的R包。\n还是使用dcurves里面的df_surv数据集作为演示。\n\n35.2.1 训练集\n直接展示多个模型的绘制方法。\n首先建立多个模型:\n\nlibrary(ggDCA)\n\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, \n                  data = train_df)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                  data = train_df)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, \n                  data = df_surv)\n\n多个模型同一时间点的DCA:\n\ndf1 &lt;- ggDCA::dca(cox_fit1, cox_fit2, cox_fit3,\n                  times = 1.5 # 1.5年,默认值是中位数\n                  )\n\nlibrary(ggsci)\n\nggplot(df1,linetype = F)+\n  scale_color_jama(name=\"Model Type\",\n                   labels=c(\"Cox 1\",\"Cox 2\",\"Cox 3\",\"All\",\"None\"))+\n  theme_bw(base_size = 14)+\n  theme(legend.position.inside = c(0.8,0.75),\n        legend.background = element_blank()\n        )\n\n\n\n\n\n\n\n\n同一个模型多个时间的DCA:\n\ndf2 &lt;- ggDCA::dca(cox_fit2,\n                  times = c(1,2,3)\n                  )\n\nggplot(df2,linetype = F)+\n  scale_color_jama(name=\"Model Type\")+\n  theme_bw()+\n  facet_wrap(~time) # 分面展示,因为不同时间点净获益是不一样的\n\n\n\n\n\n\n\n\n多个模型多个时间点:\n\ndf3 &lt;- ggDCA::dca(cox_fit1,cox_fit2,cox_fit3,\n                  times = c(1,2,3)\n                  )\n\nggplot(df3,linetype = F)+\n  scale_color_jama(name=\"Model Type\")+\n  theme_bw()+\n  facet_wrap(~time)\n\n\n\n\n\n\n\n\n非常强!如果你不会自己搞数据,就用这个!\n\n\n35.2.2 测试集\n这里直接展示多个模型多个时间点的决策曲线:\n\ndf3 &lt;- ggDCA::dca(cox_fit1,cox_fit2,cox_fit3,\n                  times = c(1,2,3),\n                  new.data = test_df # 这里提供测试集即可\n                  )\n\nggplot(df3,linetype = F)+\n  scale_color_jama(name=\"Model Type\")+\n  theme_bw()+\n  facet_wrap(~time)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>35</span>  <span class='chapter-title'>生存数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-cox.html#方法3stdca.r",
     "href": "dca-cox.html#方法3stdca.r",
-    "title": "41  生存数据的决策曲线分析",
-    "section": "41.3 方法3:stdca.R",
-    "text": "41.3 方法3:stdca.R\n使用这个网站给出的stdca.r文件绘制cox的DCA,需要代码的直接去网站下载即可。\n\n\n\n\n\n\n注意\n\n\n\n这个网站已经不再提供该代码的下载,我很早之前就下载过了,所以我把dca.r/stdca.r这两段代码放在粉丝QQ群文件,需要的加群下载即可(免费的,别问我怎么加群)。\n但是原网站下载的stdca.r脚本在某些数据中会遇到以下报错:Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument,所以我对这段脚本进行了修改,可以解决这个报错。但是需要付费获取,获取链接:适用于一切模型的DCA,没有任何答疑服务,介意勿扰。\n\n\n数据还是用df_surv数据集。\n\nrm(list = ls())\nlibrary(survival)\nlibrary(dcurves)\ndata(\"df_surv\")\n\n# 加载函数,这个是我修改过的\n# 原函数有时会报错:no points selected for one or more curves, consider using...\n# 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") \n\n# 构建一个多元cox回归\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, data = df_surv)\n\n# 计算1.5年的概率\ndf_surv$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=df_surv), times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\ndd &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE\n    )\n\n\n\n\n多个模型在同一个时间点的DCA画法,和第一种方法很类似,也是要分别计算出每个模型的概率。\n\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, \n                  data = df_surv)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, data = df_surv)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, data = df_surv)\n\n# 计算每个模型的概率\ndf_surv$prob1 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), times=1.5)$surv))\ndf_surv$prob2 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), times=1.5)$surv))\ndf_surv$prob3 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), times=1.5)$surv))\n\n# 画图\ndd &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=c(\"prob1\",\"prob2\",\"prob3\"),  \n      smooth=TRUE\n    )"
+    "title": "35  生存数据的决策曲线",
+    "section": "35.3 方法3:stdca.R",
+    "text": "35.3 方法3:stdca.R\n这个方法是纪念斯隆·凯特林癌症中心给出的方法,非常正规,目前绝大多数其他实现DCA的方法都是基于此方法实现的。\n曾经,纪念斯隆·凯特林癌症中心的官网网站会让你免费下载dca.r/stdca.r这两段脚本,可分别用于二分类数据和生存数据的决策曲线分析,但是非常遗憾的是,目前该网站已不再提供代码下载了。\n\n\n\n\n\n\n注意\n\n\n\n这个网站已经不再提供该代码的下载,我很早之前就下载过了,所以我把dca.r/stdca.r这两段代码放在粉丝QQ群文件,需要的加群下载即可(免费的,别问我怎么加群)。\n但是原网站下载的stdca.r脚本在某些数据中会遇到以下报错:Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument,所以我对这段脚本进行了修改,可以解决这个报错,也只能解决这个报错。但是需要付费获取,获取链接:适用于一切模型的DCA,没有任何答疑服务,介意勿扰。\n\n\n数据还是用df_surv数据集。\n\n35.3.1 训练集\n\n#rm(list = ls())\nlibrary(survival)\n#library(dcurves)\n#data(\"df_surv\")\n\n# 加载函数,这个是我修改过的\n# 原函数有时会报错:no points selected for one or more curves...\n# 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") \n\n# 格式准备好\ntrain_df$cancer &lt;- as.numeric(train_df$cancer) # stdca函数需要结果变量是0,1\ntrain_df &lt;- as.data.frame(train_df) # stdca函数只接受data.frame\n\n# 构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                   data = train_df)\n\n# 计算1.5年的概率\ntrain_df$prob1 &lt;- c(1-(summary(survfit(cox_model,newdata=train_df),\n                               times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\ndd &lt;- stdca(data=train_df, outcome=\"cancer\", ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE\n    )\n\n\n\n\n\n\n\n\n多个模型在同一个时间点的DCA画法,和第一种方法很类似,也是要分别计算出每个模型的概率。\n\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, \n                  data = train_df)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                  data = train_df)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, \n                  data = train_df)\n\n# 计算每个模型的概率\ntrain_df$prob1 &lt;- c(1-(summary(survfit(cox_fit1, newdata=train_df), \n                              times=1.5)$surv))\ntrain_df$prob2 &lt;- c(1-(summary(survfit(cox_fit2, newdata=train_df), \n                              times=1.5)$surv))\ntrain_df$prob3 &lt;- c(1-(summary(survfit(cox_fit3, newdata=train_df), \n                              times=1.5)$surv))\n\n# 画图\ndd &lt;- stdca(data=train_df, outcome=\"cancer\", ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=c(\"prob1\",\"prob2\",\"prob3\"),  \n      smooth=TRUE\n    )\n## [1] \"prob3: No observations with risk greater than 94%, and therefore net benefit not calculable in this range.\"\n\n\n\n\n\n\n\n\n\n\n35.3.2 测试集\n思路依然是先计算概率,再画图,下面直接给大家展示多条曲线的画法。\n\n# 格式准备好\ntest_df$cancer &lt;- as.numeric(test_df$cancer) # stdca函数需要结果变量是0,1\ntest_df &lt;- as.data.frame(test_df) # stdca函数只接受data.frame\n\n# 计算每个模型的概率\ntest_df$prob1 &lt;- c(1-(summary(survfit(cox_fit1, newdata=test_df), \n                              times=1.5)$surv))\ntest_df$prob2 &lt;- c(1-(summary(survfit(cox_fit2, newdata=test_df), \n                              times=1.5)$surv))\ntest_df$prob3 &lt;- c(1-(summary(survfit(cox_fit3, newdata=test_df), \n                              times=1.5)$surv))\n\n# 画图\ndd &lt;- stdca(data=test_df, outcome=\"cancer\", ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=c(\"prob1\",\"prob2\",\"prob3\"),  \n      smooth=TRUE\n    )\n## [1] \"prob1: No observations with risk greater than 95%, and therefore net benefit not calculable in this range.\"",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>35</span>  <span class='chapter-title'>生存数据的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-cox.html#方法4diy",
     "href": "dca-cox.html#方法4diy",
-    "title": "41  生存数据的决策曲线分析",
-    "section": "41.4 方法4:DIY",
-    "text": "41.4 方法4:DIY\n返回画图数据,再用ggplot2画图:\n\ncox_dca &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 1.5, \n      predictors = c(\"prob1\",\"prob2\",\"prob3\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n\nlibrary(tidyr)\n\ncox_dca_df &lt;- cox_dca$net.benefit %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"sm\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n使用ggplot2画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\nggplot(cox_dca_df, aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_color_jama(name=\"Models Types\",\n                   labels=c(\"All\",\"None\",\"Model1\",\"Model2\",\"Model3\"))+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.2),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  theme(legend.background = element_blank(),\n        legend.position = c(0.85,0.75)\n        )\n## Warning: Removed 83 rows containing missing values (`geom_line()`).\n\n\n\n\n常见的DCA方法都展示了,大家自己选择使用哪个就好。"
+    "title": "35  生存数据的决策曲线",
+    "section": "35.4 方法4:DIY",
+    "text": "35.4 方法4:DIY\n\n35.4.1 训练集\n返回画图数据,再用ggplot2画图:\n\ncox_dca &lt;- stdca(data = train_df, outcome = \"cancer\", ttoutcome = \"ttcancer\", \n      timepoint = 1.5, \n      predictors = c(\"prob1\",\"prob2\",\"prob3\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n## [1] \"prob3: No observations with risk greater than 94%, and therefore net benefit not calculable in this range.\"\n\nlibrary(tidyr)\n\ncox_dca_df &lt;- cox_dca$net.benefit %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"sm\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n使用ggplot2画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\nggplot(cox_dca_df, aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_color_jama(name=\"Models Types\",\n                   labels=c(\"All\",\"None\",\"Model1\",\"Model2\",\"Model3\"))+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.2),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  theme(legend.background = element_blank(),\n        legend.position.inside = c(0.85,0.75)\n        )\n\n\n\n\n\n\n\n\n\n\n35.4.2 测试集\n先获取画图数据:\n\n# 格式准备好\ntest_df$cancer &lt;- as.numeric(test_df$cancer) # stdca函数需要结果变量是0,1\ntest_df &lt;- as.data.frame(test_df) # stdca函数只接受data.frame\n\n# 计算每个模型的概率\ntest_df$prob1 &lt;- c(1-(summary(survfit(cox_fit1, newdata=test_df), \n                              times=1.5)$surv))\ntest_df$prob2 &lt;- c(1-(summary(survfit(cox_fit2, newdata=test_df), \n                              times=1.5)$surv))\ntest_df$prob3 &lt;- c(1-(summary(survfit(cox_fit3, newdata=test_df), \n                              times=1.5)$surv))\n\n# 返回画图数据\ndd &lt;- stdca(data=test_df, outcome=\"cancer\", ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=c(\"prob1\",\"prob2\",\"prob3\"),  \n      smooth=TRUE, graph = F\n    )\n## [1] \"prob1: No observations with risk greater than 95%, and therefore net benefit not calculable in this range.\"\n\n# 格式整理\ncox_dca_df &lt;- dd$net.benefit %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"sm\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n使用ggplot2画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\nggplot(cox_dca_df, aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_color_jama(name=\"Models Types\",\n                   labels=c(\"All\",\"None\",\"Model1\",\"Model2\",\"Model3\"))+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.2),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  theme(legend.background = element_blank(),\n        legend.position.inside = c(0.85,0.75)\n        )\n\n\n\n\n\n\n\n\n常见的DCA方法都展示了,大家自己选择使用哪个就好。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>35</span>  <span class='chapter-title'>生存数据的决策曲线</span>"
+    ]
+  },
+  {
+    "objectID": "dca-diy.html",
+    "href": "dca-diy.html",
+    "title": "36  适用一切模型的决策曲线",
+    "section": "",
+    "text": "36.1 多个时间点多个cox模型的数据提取\n其实ggDCA包完全可以做到,只要1行代码就搞定了,而且功能还很丰富。\n我给大家演示一遍基于stdca.r的方法,给大家开阔思路,代码可能不够简洁,但是思路没问题,无非就是各种数据整理与转换。\n而且很定会有人对默认结果不满意,想要各种修改,下面介绍的这个方法非常适合自己进行各种自定义!\nrm(list = ls())\nlibrary(survival)\nlibrary(dcurves)\ndata(\"df_surv\")\n\n# 加载函数\n# 原函数有问题,这个是我修改过的\n# 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") # 原函数有问题\n\n# 构建一个多元cox回归\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n建立多个模型,计算每个模型在不同时间点的概率:\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, \n                  data = df_surv)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                  data = df_surv)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, \n                  data = df_surv)\n\n# 计算每个模型在不同时间点的死亡概率\ndf_surv$prob11 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), \n                               times=1)$surv))\ndf_surv$prob21 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), \n                               times=1)$surv))\ndf_surv$prob31 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), \n                               times=1)$surv))\n\ndf_surv$prob12 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), \n                               times=2)$surv))\ndf_surv$prob22 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), \n                               times=2)$surv))\ndf_surv$prob32 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), \n                               times=2)$surv))\n\ndf_surv$prob13 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), \n                               times=3)$surv))\ndf_surv$prob23 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), \n                               times=3)$surv))\ndf_surv$prob33 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), \n                               times=3)$surv))\n计算threshold和net benefit:\ncox_dca1 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 1, \n      predictors = c(\"prob11\",\"prob21\",\"prob31\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n## [1] \"prob31: No observations with risk greater than 99%, and therefore net benefit not calculable in this range.\"\n\ncox_dca2 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 2, \n      predictors = c(\"prob12\",\"prob22\",\"prob32\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n\ncox_dca3 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 3, \n      predictors = c(\"prob13\",\"prob23\",\"prob33\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n\n\nlibrary(tidyr)\nlibrary(dplyr)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>36</span>  <span class='chapter-title'>适用一切模型的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-diy.html#多个时间点多个cox模型的数据提取",
     "href": "dca-diy.html#多个时间点多个cox模型的数据提取",
-    "title": "42  适用于一切模型的决策曲线分析",
-    "section": "42.1 多个时间点多个cox模型的数据提取",
-    "text": "42.1 多个时间点多个cox模型的数据提取\n其实ggDCA包完全可以做到,只要1行代码就搞定了,而且功能还很丰富。\n我给大家演示一遍基于stdca.r的方法,给大家开阔思路,代码可能不够简洁,但是思路没问题,无非就是各种数据整理与转换。\n而且很定会有人对默认结果不满意,想要各种修改,下面介绍的这个方法非常适合自己进行各种自定义!\n\nrm(list = ls())\nlibrary(survival)\nlibrary(dcurves)\ndata(\"df_surv\")\n\n# 加载函数\n# 原函数有问题,这个是我修改过的\n# 获取方式:https://mp.weixin.qq.com/s/TZ7MSaPZZ0Pwomyp_7wqFw\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") # 原函数有问题\n\n# 构建一个多元cox回归\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n\n建立多个模型,计算每个模型在不同时间点的概率:\n\n# 建立多个模型\ncox_fit1 &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory+marker, data = df_surv)\ncox_fit2 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, data = df_surv)\ncox_fit3 &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory, data = df_surv)\n\n# 计算每个模型在不同时间点的概率\ndf_surv$prob11 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), times=1)$surv))\ndf_surv$prob21 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), times=1)$surv))\ndf_surv$prob31 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), times=1)$surv))\n\ndf_surv$prob12 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), times=2)$surv))\ndf_surv$prob22 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), times=2)$surv))\ndf_surv$prob32 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), times=2)$surv))\n\ndf_surv$prob13 &lt;- c(1-(summary(survfit(cox_fit1, newdata=df_surv), times=3)$surv))\ndf_surv$prob23 &lt;- c(1-(summary(survfit(cox_fit2, newdata=df_surv), times=3)$surv))\ndf_surv$prob33 &lt;- c(1-(summary(survfit(cox_fit3, newdata=df_surv), times=3)$surv))\n\n计算threshold和net benefit:\n\ncox_dca1 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 1, \n      predictors = c(\"prob11\",\"prob21\",\"prob31\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n## [1] \"prob31: No observations with risk greater than 99%, and therefore net benefit not calculable in this range.\"\n\ncox_dca2 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 2, \n      predictors = c(\"prob12\",\"prob22\",\"prob32\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n\ncox_dca3 &lt;- stdca(data = df_surv, \n      outcome = \"cancer\", \n      ttoutcome = \"ttcancer\", \n      timepoint = 3, \n      predictors = c(\"prob13\",\"prob23\",\"prob33\"),\n      smooth=TRUE,\n      graph = FALSE\n    )\n\n\nlibrary(tidyr)\nlibrary(dplyr)\n## \n## Attaching package: 'dplyr'\n## The following objects are masked from 'package:stats':\n## \n##     filter, lag\n## The following objects are masked from 'package:base':\n## \n##     intersect, setdiff, setequal, union\n\n\n42.1.1 第一种数据整理方法\n\ncox_dca_df1 &lt;- cox_dca1$net.benefit\ncox_dca_df2 &lt;- cox_dca2$net.benefit\ncox_dca_df3 &lt;- cox_dca3$net.benefit\n\nnames(cox_dca_df1)[2] &lt;- \"all1\"\nnames(cox_dca_df2)[2] &lt;- \"all2\"\nnames(cox_dca_df3)[2] &lt;- \"all3\"\n\ntmp &lt;- cox_dca_df1 %&gt;% \n  left_join(cox_dca_df2) %&gt;% \n  left_join(cox_dca_df3) %&gt;% \n  pivot_longer(cols = contains(c(\"all\",\"sm\",\"none\")),\n               names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n## Joining with `by = join_by(threshold, none)`\n## Joining with `by = join_by(threshold, none)`\n\n画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\nggplot(tmp, aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)\n## Warning: Removed 235 rows containing missing values (`geom_line()`).\n\n\n\n\n\n\n42.1.2 第二种数据整理方法\n\ncox_dca_df1 &lt;- cox_dca1$net.benefit\ncox_dca_df2 &lt;- cox_dca2$net.benefit\ncox_dca_df3 &lt;- cox_dca3$net.benefit\n\ncox_dca_long_df1 &lt;- cox_dca_df1 %&gt;% \n  rename(mod1 = prob11_sm,\n         mod2 = prob21_sm,\n         mod3 = prob31_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"1\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\ncox_dca_long_df2 &lt;- cox_dca_df2 %&gt;% \n  rename(mod1 = prob12_sm,\n         mod2 = prob22_sm,\n         mod3 = prob32_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"2\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n\ncox_dca_long_df3 &lt;- cox_dca_df3 %&gt;% \n  rename(mod1 = prob13_sm,\n         mod2 = prob23_sm,\n         mod3 = prob33_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"3\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\ntes &lt;- bind_rows(cox_dca_long_df1,cox_dca_long_df2,cox_dca_long_df3)\n\n画图:\n\nggplot(tes,aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models,linetype=time),linewidth=1.2)+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)\n## Warning: Removed 235 rows containing missing values (`geom_line()`).\n\n\n\n\n这种方法可以分面。\n\nggplot(tes,aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  facet_wrap(~time)\n## Scale for y is already present.\n## Adding another scale for y, which will replace the existing scale.\n## Warning: Removed 73 rows containing missing values (`geom_line()`).\n\n\n\n\n接下来演示其他模型的DCA实现方法,这里就以二分类变量为例,生存资料的DCA也是一样的,就是需要一个概率而已!"
+    "title": "36  适用一切模型的决策曲线",
+    "section": "",
+    "text": "36.1.1 第一种数据整理方法\n\ncox_dca_df1 &lt;- cox_dca1$net.benefit\ncox_dca_df2 &lt;- cox_dca2$net.benefit\ncox_dca_df3 &lt;- cox_dca3$net.benefit\n\nnames(cox_dca_df1)[2] &lt;- \"all1\"\nnames(cox_dca_df2)[2] &lt;- \"all2\"\nnames(cox_dca_df3)[2] &lt;- \"all3\"\n\ntmp &lt;- cox_dca_df1 %&gt;% \n  left_join(cox_dca_df2) %&gt;% \n  left_join(cox_dca_df3) %&gt;% \n  pivot_longer(cols = contains(c(\"all\",\"sm\",\"none\")),\n               names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\nggplot(tmp, aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)\n\n\n\n\n\n\n\n\n\n\n36.1.2 第二种数据整理方法\n\ncox_dca_df1 &lt;- cox_dca1$net.benefit\ncox_dca_df2 &lt;- cox_dca2$net.benefit\ncox_dca_df3 &lt;- cox_dca3$net.benefit\n\ncox_dca_long_df1 &lt;- cox_dca_df1 %&gt;% \n  rename(mod1 = prob11_sm,\n         mod2 = prob21_sm,\n         mod3 = prob31_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"1\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\ncox_dca_long_df2 &lt;- cox_dca_df2 %&gt;% \n  rename(mod1 = prob12_sm,\n         mod2 = prob22_sm,\n         mod3 = prob32_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"2\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n\ncox_dca_long_df3 &lt;- cox_dca_df3 %&gt;% \n  rename(mod1 = prob13_sm,\n         mod2 = prob23_sm,\n         mod3 = prob33_sm\n         ) %&gt;% \n  select(-4:-6) %&gt;% \n  mutate(time = \"3\") %&gt;% \n  pivot_longer(cols = c(all,none,contains(\"mod\")),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\ntes &lt;- bind_rows(cox_dca_long_df1,cox_dca_long_df2,cox_dca_long_df3)\n\n画图:\n\nggplot(tes,aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models,linetype=time),linewidth=1.2)+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)\n\n\n\n\n\n\n\n\n这种方法可以分面。\n\nggplot(tes,aes(x=threshold,y=net_benefit))+\n  geom_line(aes(color=models),linewidth=1.2)+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.05,0.3),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  facet_wrap(~time)\n\n\n\n\n\n\n\n\n接下来演示其他模型的DCA实现方法,这里就以二分类变量为例,生存资料的DCA也是一样的,就是需要一个概率而已!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>36</span>  <span class='chapter-title'>适用一切模型的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-diy.html#lasso回归",
     "href": "dca-diy.html#lasso回归",
-    "title": "42  适用于一切模型的决策曲线分析",
-    "section": "42.2 lasso回归",
-    "text": "42.2 lasso回归\n\nrm(list = ls())\nsuppressMessages(library(glmnet))\nsuppressPackageStartupMessages(library(tidyverse))\n\n准备数据,这是从TCGA下载的一部分数据,其中sample_type是样本类型,1代表tumor,0代表normal,我们首先把因变量变为0,1。然后划分训练集和测试集。\n\ndf &lt;- readRDS(file = \"./datasets/df_example.rds\")\n\ndf &lt;- df %&gt;% \n  select(-c(2:3)) %&gt;% \n  mutate(sample_type = ifelse(sample_type==\"Tumor\",1,0))\n\nind &lt;- sample(1:nrow(df),nrow(df)*0.6)\n\ntrain_df &lt;- df[ind,]\ntest_df &lt;- df[-ind,]\n\n构建lasso回归需要的参数值。\n\nx &lt;- as.matrix(train_df[,-1])\ny &lt;- train_df$sample_type\n\n在训练集建立lasso回归模型:\n\ncvfit = cv.glmnet(x, y, family = \"binomial\")\nplot(cvfit)\n\n\n\n\n在测试集上查看模型表现:\n\nprob_lasso &lt;- predict(cvfit,\n                      newx = as.matrix(test_df[,-1]),\n                      s=\"lambda.1se\",\n                      type=\"response\") #返回概率\n\n然后进行DCA,也是基于测试集的:\n\nsource(\"./datasets/dca.r\")\n\ntest_df$lasso &lt;- prob_lasso\n\ndf_lasso &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"sample_type\", # 指定结果变量\n    predictors=\"lasso\", # 指定预测变量\n    probability = T\n    )\n\n\n\n\n这就是lasso的DCA,由于数据和模型原因,这个DCA看起来很诡异,大家千万要理解实现方法!\n\nlibrary(ggplot2)\nlibrary(ggsci)\nlibrary(tidyr)\n\ndf_lasso$net.benefit %&gt;% \n  pivot_longer(cols = -threshold, \n               names_to = \"type\", \n               values_to = \"net_benefit\") %&gt;% \n  ggplot(aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ \n  scale_y_continuous(limits = c(-0.02,1),name = \"Net Benefit\")+ \n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position = c(0.2,0.3),\n        legend.background = element_blank()\n        )\n## Warning: Removed 10 rows containing missing values (`geom_line()`)."
+    "title": "36  适用一切模型的决策曲线",
+    "section": "36.2 lasso回归",
+    "text": "36.2 lasso回归\n\nrm(list = ls())\nlibrary(glmnet)\nlibrary(tidyverse)\n\n准备数据,这是从TCGA下载的一部分数据,其中sample_type是样本类型,1代表tumor,0代表normal,我们首先把因变量变为0,1。然后划分训练集和测试集。\n\ndf &lt;- readRDS(file = \"./datasets/df_example.rds\")\n\ndf &lt;- df %&gt;% \n  select(-c(2:3)) %&gt;% \n  mutate(sample_type = ifelse(sample_type==\"Tumor\",1,0))\n\nset.seed(123)\nind &lt;- sample(1:nrow(df),nrow(df)*0.6)\n\ntrain_df &lt;- df[ind,]\ntest_df &lt;- df[-ind,]\n\n构建lasso回归需要的参数值。\n\nx &lt;- as.matrix(train_df[,-1])\ny &lt;- train_df$sample_type\n\n在训练集建立lasso回归模型:\n\ncvfit = cv.glmnet(x, y, family = \"binomial\")\nplot(cvfit)\n\n\n\n\n\n\n\n\n在测试集上查看模型表现:\n\nprob_lasso &lt;- predict(cvfit,\n                      newx = as.matrix(test_df[,-1]),\n                      s=\"lambda.1se\",\n                      type=\"response\") #返回概率\n\n然后进行DCA,也是基于测试集的:\n\nsource(\"./datasets/dca.r\")\n\ntest_df$lasso &lt;- prob_lasso\n\ndf_lasso &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"sample_type\", # 指定结果变量\n    predictors=\"lasso\", # 指定预测变量\n    probability = T\n    )\n\n\n\n\n\n\n\n\n这就是lasso的DCA,由于数据和模型原因,这个DCA看起来很诡异,大家千万要理解实现方法!\n\nlibrary(ggplot2)\nlibrary(ggsci)\nlibrary(tidyr)\n\ndf_lasso$net.benefit %&gt;% \n  pivot_longer(cols = -threshold, \n               names_to = \"type\", \n               values_to = \"net_benefit\") %&gt;% \n  ggplot(aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ \n  scale_y_continuous(limits = c(-0.02,1),name = \"Net Benefit\")+ \n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position.inside = c(0.2,0.3),\n        legend.background = element_blank()\n        )",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>36</span>  <span class='chapter-title'>适用一切模型的决策曲线</span>"
+    ]
   },
   {
     "objectID": "dca-diy.html#随机森林",
     "href": "dca-diy.html#随机森林",
-    "title": "42  适用于一切模型的决策曲线分析",
-    "section": "42.3 随机森林",
-    "text": "42.3 随机森林\n\nlibrary(ranger)\n\nrf &lt;- ranger(sample_type ~ ., data = train_df)\n\nprob_rf &lt;- predict(rf,test_df[,-1],type = \"response\")$predictions\n\ntest_df$rf &lt;- prob_rf\n\ndf_rf &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"sample_type\", # 指定结果变量\n    predictors=\"rf\", # 指定预测变量\n    probability = T,\n    graph = F\n    )\n\n\ndf_rf$net.benefit %&gt;% \n  pivot_longer(cols = -threshold, \n               names_to = \"type\", \n               values_to = \"net_benefit\") %&gt;% \n  ggplot(aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ \n  scale_y_continuous(limits = c(-0.02,1),name = \"Net Benefit\")+ \n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position = c(0.2,0.3),\n        legend.background = element_blank()\n        )\n## Warning: Removed 10 rows containing missing values (`geom_line()`)."
-  },
-  {
-    "objectID": "dca-diy.html#logistic",
-    "href": "dca-diy.html#logistic",
-    "title": "42  适用于一切模型的决策曲线分析",
-    "section": "42.4 logistic",
-    "text": "42.4 logistic\n\nlogis &lt;- glm(sample_type ~ ., data = train_df,family = binomial())\n## Warning: glm.fit: algorithm did not converge\n## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred\n\nprob_logis &lt;- predict(logis, test_df[,-1],type = \"response\")\n\n\ntest_df$logis &lt;- prob_logis\n\ndf_logis &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"sample_type\", # 指定结果变量\n    predictors=\"logis\", # 指定预测变量\n    probability = T,\n    graph = T\n    )\n\n\n\n\n还有其他比如支持向量机等,就不一一介绍了,实现原理都是一样的,就是需要一个概率而已。"
+    "title": "36  适用一切模型的决策曲线",
+    "section": "36.3 随机森林",
+    "text": "36.3 随机森林\n思路完全一样,首先建立随机森林模型,然后计算预测概率(训练集或者测试集都是可以计算的),然后画图即可。\n\nlibrary(ranger)\n\nrf &lt;- ranger(sample_type ~ ., data = train_df)\n\n# 获取测试集的概率\nprob_rf &lt;- predict(rf,test_df[,-1],type = \"response\")$predictions\n\ntest_df$rf &lt;- prob_rf\n\ndf_rf &lt;- dca(data = test_df, # 指定数据集,必须是data.frame类型\n    outcome=\"sample_type\", # 指定结果变量\n    predictors=\"rf\", # 指定预测变量\n    probability = T,\n    graph = F\n    )\n\n画图即可:\n\ndf_rf$net.benefit %&gt;% \n  pivot_longer(cols = -threshold, \n               names_to = \"type\", \n               values_to = \"net_benefit\") %&gt;% \n  ggplot(aes(threshold, net_benefit, color = type))+\n  geom_line(linewidth = 1.2)+\n  scale_color_jama(name = \"Model Type\")+ \n  scale_y_continuous(limits = c(-0.02,1),name = \"Net Benefit\")+ \n  scale_x_continuous(limits = c(0,1),name = \"Threshold Probility\")+\n  theme_bw(base_size = 16)+\n  theme(legend.position = c(0.2,0.3),\n        legend.background = element_blank()\n        )\n\n\n\n\n\n\n\n\n还有其他比如支持向量机等,就不一一介绍了,实现原理都是一样的,就是需要一个概率而已。\n如果是生存分析的话,会比较复杂一点,因为真实概率不好计算,需要指定一个时间点。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>36</span>  <span class='chapter-title'>适用一切模型的决策曲线</span>"
+    ]
   },
   {
     "objectID": "DCA彩色条带.html",
     "href": "DCA彩色条带.html",
-    "title": "43  决策曲线添加彩色条带",
+    "title": "37  决策曲线添加彩色条带",
     "section": "",
-    "text": "前段时间给大家介绍了如何给列线图增加彩色的危险分层条带,详情请见:列线图增加彩色风险分层\n\n并且还介绍了如何根据列线图计算每个患者的得分,并根据得分进行最佳危险分层,请见:根据列线图计算分数并进行危险分层\n今天介绍如何为决策曲线添加彩色条带,实现类似于下图的效果:\n\n这张列线图来自于这篇文章:Nomograms in oncology: more than meets the eye,DOI:10.1016/S1470-2045(14)71116-7\n这张图在底部增加了两种颜色的条带,分别是Nomogram relevant和Nomogram not relevant。\n通常在解读列线图时,我们需要汇报到底在哪个阈值区间内,我们的模型是更有临床意义的,在这个区间内也就是上图中的Nomogram relevant,不在这个区间内就是Nomogram not relevant。\n理解这点之后,画图就很简单了。\n首先我们看看常规的决策曲线画法。先看看默认的出图:\n\nrm(list = ls())\nlibrary(survival)\nlibrary(dcurves)\ndata(\"df_surv\")\n\n# 加载函数\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") \n\n# 构建一个多元cox回归\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory + marker, data = df_surv)\n\n# 计算1.5年的概率\ndf_surv$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=df_surv), times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\ncox_dca &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE,\n      xby = 0.001,\n      ymin = -0.1\n    )\n\n\n\n\n这个默认的出图不是很好看,我们可以自己提取数据,然后使用ggplot2画:\n\nlibrary(tidyr)\n\ncox_dca_df &lt;- cox_dca$net.benefit %&gt;% \n  pivot_longer(cols = c(all,none,prob1_sm),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n使用ggplot2画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\np1 &lt;- ggplot(cox_dca_df)+\n  geom_line(aes(x=threshold,y=net_benefit,color=models),linewidth=1.2)+\n  scale_color_jama(name=\"Models Types\",\n                   labels=c(\"All\",\"None\",\"Model1\"))+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.1,0.2),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  theme(legend.background = element_blank(),\n        legend.position = c(0.85,0.75)\n        )\np1\n## Warning: Removed 731 rows containing missing values (`geom_line()`).\n\n\n\n\n添加彩色条带的思路也很简单,就是在合适的位置添加矩形色块即可。\n首先我们查看下这个合适的阈值区间是多少。左侧的阈值应该就是在相同的横坐标下,Model1的net-benefit开始大于All的位置,右侧阈值应该是Model1的net-benefit开始小于0的位置。\n我们直接查看下数据即可,最简单的方法,肉眼看一下。前面在使用ggplot2画图时已经把数据都提取好了,就是cox_dca_df这个数据。\n左侧的阈值大概在0.1左右,右侧的阈值大概在0.7左右。因为没有恰好相等的情况,所以只能取个大概的阈值。\n左侧阈值:\n\n右侧阈值,0.707的净获益还是正数,0.708的净获益就是负数了,所以这个阈值应该是在0.707~0.708之间,我们就取个大约的数字,0.7。\n\n有了这两个阈值就是有了矩形的坐标,所以下面再准备3个矩形的坐标即可,如果是ggplot2画的图,就用geom_rect()添加矩形。\n\n# 准备3个矩形的坐标\nrect_df1 &lt;- data.frame(xmin = 0,\n                      xmax = 0.1,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\nrect_df2 &lt;- data.frame(xmin = 0.1,\n                      xmax = 0.7,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\nrect_df3 &lt;- data.frame(xmin = 0.7,\n                      xmax = 1,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\n\n解释说明的文字直接使用annotate()函数添加即可:\n\np2 &lt;- p1+\n  geom_rect(data = rect_df1, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#0151a2\")+\n  geom_rect(data = rect_df2, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#c01e35\")+\n  geom_rect(data = rect_df3, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#0151a2\")+\n  annotate(geom = \"text\", label = \"Nomogram relevant\", \n           x = 0.4, y = -0.075,\n           size = 4.5, color = \"white\")+\n  annotate(geom = \"text\", label = \"Nomogram irrelevant\", \n           x = 0.85, y = -0.075,\n           size = 4.5, color = \"white\")\np2\n## Warning: Removed 731 rows containing missing values (`geom_line()`).\n\n\n\n\n是不是很easy呢?\n还可以再添加2条竖线,使图形更容易理解:\n\n# 准备2条竖线坐标\nline_df &lt;- data.frame(x = c(0.1,0.7),\n                      ymin = c(-0.05,-0.05),\n                      ymax = c(0.13,0)\n                      )\n\n添加竖线:\n\np2+geom_linerange(data = line_df, mapping = aes(x=x,ymin=ymin,ymax=ymax),\n                  linetype = 2, linewidth = 1.2\n                  )\n## Warning: Removed 731 rows containing missing values (`geom_line()`).\n\n\n\n\n如果是默认的出图,那就更简单了,因为都是R语言默认的画图引擎,支持所有base r画图语法,和之前列线图添加彩色条带的方法一模一样:\n\ncox_dca &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE,\n      xby = 0.001,\n      ymin = -0.1\n    )\n# 添加条带\nrect(xleft = 0,xright = 0.1,ybottom = -0.05,ytop = -0.1,col = \"#0151a2\",border = NA)\nrect(xleft = 0.1,xright = 0.7,ybottom = -0.05,ytop = -0.1,col = \"#c01e35\",border = NA)\nrect(xleft = 0.7,xright = 1,ybottom = -0.05,ytop = -0.1,col = \"#0151a2\",border = NA)\n\n# 添加文字\ntext(x = 0.4, y = -0.075, labels=\"Nomogram relevant\",col=\"white\")\ntext(x = 0.85, y = -0.075, labels=\"Nomogram relevant\",col=\"white\")\n\n\n\n\n搞定!"
-  },
-  {
-    "objectID": "DCA测试集.html#生存数据测试集",
-    "href": "DCA测试集.html#生存数据测试集",
-    "title": "44  测试集的决策曲线分析",
-    "section": "44.1 生存数据测试集",
-    "text": "44.1 生存数据测试集\n使用的数据集是包自带的df_surv数据集,一共有750行,9列,其中ttcancer是时间,cancer是结局事件,TRUE代表有癌症,FALSE代表没有癌症。\n\ndata(\"df_surv\",package = \"dcurves\")\n\ndim(df_surv)\n## [1] 750   9\nstr(df_surv)\n## Classes 'tbl_df', 'tbl' and 'data.frame':    750 obs. of  9 variables:\n##  $ patientid       : num  1 2 3 4 5 6 7 8 9 10 ...\n##  $ cancer          : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ ttcancer        : num  3.009 0.249 1.59 3.457 3.329 ...\n##  $ risk_group      : chr  \"low\" \"high\" \"low\" \"low\" ...\n##  $ age             : num  64 78.5 64.1 58.5 64 ...\n##  $ famhistory      : num  0 0 0 0 0 0 0 0 0 0 ...\n##  $ marker          : num  0.7763 0.2671 0.1696 0.024 0.0709 ...\n##  $ cancerpredmarker: num  0.0372 0.57891 0.02155 0.00391 0.01879 ...\n##  $ cancer_cr       : Factor w/ 3 levels \"censor\",\"diagnosed with cancer\",..: 1 1 1 1 1 1 1 2 1 1 ...\n\n划分训练集测试集:\n\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n\ntrain &lt;- sample(1:nrow(df_surv),nrow(df_surv) * 0.7)\ntrain_df &lt;- df_surv[train,]\ntest_df &lt;- df_surv[- train,]\n\ndim(train_df)\n## [1] 525   9\ndim(test_df)\n## [1] 225   9\n\n\n44.1.1 方法1:stdca.R\n我这里选择方法是stdca.R,因为这种方法比较灵活,非常适合各种DIY。但是要注意:\n\n这个网站之前可以免费下载dca.r/stdca.r这两段脚本,但是现在已经不再提供该代码的下载,我把dca.r/stdca.r这两段代码已经放在粉丝QQ群文件,需要的加群下载即可。\n但是原网站下载的stdca.r脚本在某些数据中会遇到以下报错:Error in findrow(fit,times,extend):no points selected for one or more curves, consider using the extend argument,所以我对这段脚本进行了修改,可以解决这个报错。但是需要额外付费获取,获取链接:适用于一切模型的DCA,赞赏后加我微信获取,或者加我微信转账获取。没有任何答疑服务,介意勿扰。\n另外,我在之前的推文中介绍过超多种绘制决策曲线的方法,你也可以选择其他方法。\n\n\nlibrary(survival)\n\n# 加载函数\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") \n\n# 构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                   data = train_df)\n\n# 计算1.5年的事件概率\ntrain_df$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=train_df), times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\naa &lt;- stdca(data=train_df, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE\n    )\n\n\n\n\n这个是训练集的决策曲线,这个是可以提取数据然后自己使用ggplot2绘制的,详情请参考上面的推文。\n下面就是测试集的决策曲线分析了,非常简单:\n\n# 计算测试集1.5年的事件概率\ntest_df$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=test_df), times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\naa &lt;- stdca(data=test_df, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE\n    )\n\n\n\n\n这个就是测试集的决策曲线分析了。\n\n\n44.1.2 方法2:ggDCA\n初学者最适合的方法了。对于同一个模型多个时间点、同一个时间点多个模型,都可以非常简单的画出来。\n\nlibrary(ggDCA)\n\n# 构建一个多元cox回归\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ age + famhistory + marker, \n                   data = train_df)\n\n1行代码解决:\n\ndf &lt;- ggDCA::dca(cox_model,\n                  times = 1.5 # 1.5年,默认值是中位数\n                  )\nggplot(df)\n## Warning: Removed 128 rows containing missing values (`geom_line()`).\n\n\n\n\n这个图也是可以美化的,具体还是参考上面的推文。这个图和我们用stdca.r画出来的图是一模一样的哈,只是图形的长宽比例和坐标轴的范围不同而已(stdca.r画出来的图还进行了平滑处理)。\n测试集也是1行代码解决:\n\ndf &lt;- ggDCA::dca(cox_model,\n                times = 1.5, # 1.5年,默认值是中位数\n                new.data = test_df\n                )\nggplot(df)\n## Warning: Removed 184 rows containing missing values (`geom_line()`).\n\n\n\n\n红色的那条是测试集的,validate是训练集的,你如果不想要可以自己提取数据画图。\n是不是很easy呢?"
+    "text": "前面给大家介绍了如何给列线图增加彩色的危险分层条带,详情请见:列线图增加彩色风险分层\n\n并且还介绍了如何根据列线图计算每个患者的得分,并根据得分进行最佳危险分层,请见:根据列线图计算分数并进行危险分层\n今天介绍如何为决策曲线添加彩色条带,实现类似于下图的效果:\n\n这张列线图来自于这篇文章:Nomograms in oncology: more than meets the eye,DOI:10.1016/S1470-2045(14)71116-7\n这张图在底部增加了两种颜色的条带,分别是Nomogram relevant和Nomogram not relevant。\n通常在解读列线图时,我们需要汇报到底在哪个阈值区间内,我们的模型是更有临床意义的,在这个区间内也就是上图中的Nomogram relevant,不在这个区间内就是Nomogram not relevant。\n理解这点之后,画图就很简单了。\n首先我们看看常规的决策曲线画法。先看看默认的出图:\n\nrm(list = ls())\nlibrary(survival)\nlibrary(dcurves)\ndata(\"df_surv\")\n\n# 加载函数\nsource(\"E:/R/r-clinical-model/000files/stdca.R\") \n\n# 构建一个多元cox回归\ndf_surv$cancer &lt;- as.numeric(df_surv$cancer) # stdca函数需要结果变量是0,1\ndf_surv &lt;- as.data.frame(df_surv) # stdca函数只接受data.frame\n\ncox_model &lt;- coxph(Surv(ttcancer, cancer) ~ famhistory + marker, \n                   data = df_surv)\n\n# 计算1.5年的概率\ndf_surv$prob1 &lt;- c(1-(summary(survfit(cox_model, newdata=df_surv), \n                              times=1.5)$surv))\n\n# 这个函数我修改过,如果你遇到报错,可以通过添加参数 xstop=0.5 解决\ncox_dca &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE,\n      xby = 0.001,\n      ymin = -0.1\n    )\n\n\n\n\n\n\n\n\n这个默认的出图不是很好看,我们可以自己提取数据,然后使用ggplot2画:\n\nlibrary(tidyr)\n\ncox_dca_df &lt;- cox_dca$net.benefit %&gt;% \n  pivot_longer(cols = c(all,none,prob1_sm),names_to = \"models\",\n               values_to = \"net_benefit\"\n               )\n\n使用ggplot2画图:\n\nlibrary(ggplot2)\nlibrary(ggsci)\n\np1 &lt;- ggplot(cox_dca_df)+\n  geom_line(aes(x=threshold,y=net_benefit,color=models),linewidth=1.2)+\n  scale_color_jama(name=\"Models Types\",\n                   labels=c(\"All\",\"None\",\"Model1\"))+\n  scale_x_continuous(labels = scales::label_percent(accuracy = 1),\n                     name=\"Threshold Probility\")+\n  scale_y_continuous(limits = c(-0.1,0.2),name=\"Net Benefit\")+\n  theme_bw(base_size = 14)+\n  theme(legend.background = element_blank(),\n        legend.position.inside = c(0.85,0.75)\n        )\np1\n\n\n\n\n\n\n\n\n添加彩色条带的思路也很简单,就是在合适的位置添加矩形色块即可。\n首先我们查看下这个合适的阈值区间是多少。左侧的阈值应该就是在相同的横坐标下,Model1的net-benefit开始大于All的位置,右侧阈值应该是Model1的net-benefit开始小于0的位置。\n我们直接查看下数据即可,最简单的方法,肉眼看一下。前面在使用ggplot2画图时已经把数据都提取好了,就是cox_dca_df这个数据。\n左侧的阈值大概在0.1左右,右侧的阈值大概在0.7左右。因为没有恰好相等的情况,所以只能取个大概的阈值。\n左侧阈值:\n\n右侧阈值,0.707的净获益还是正数,0.708的净获益就是负数了,所以这个阈值应该是在0.707~0.708之间,我们就取个大约的数字,0.7。\n\n有了这两个阈值就是有了矩形的坐标,所以下面再准备3个矩形的坐标即可,如果是ggplot2画的图,就用geom_rect()添加矩形。\n\n# 准备3个矩形的坐标\nrect_df1 &lt;- data.frame(xmin = 0,\n                      xmax = 0.1,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\nrect_df2 &lt;- data.frame(xmin = 0.1,\n                      xmax = 0.7,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\nrect_df3 &lt;- data.frame(xmin = 0.7,\n                      xmax = 1,\n                      ymin = -0.05,\n                      ymax = -0.1\n                      )\n\n解释说明的文字直接使用annotate()函数添加即可:\n\np2 &lt;- p1+\n  geom_rect(data = rect_df1, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#0151a2\")+\n  geom_rect(data = rect_df2, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#c01e35\")+\n  geom_rect(data = rect_df3, \n            mapping = aes(xmin = xmin, xmax=xmax,ymin=ymin,ymax=ymax),\n            fill = \"#0151a2\")+\n  annotate(geom = \"text\", label = \"Nomogram relevant\", \n           x = 0.4, y = -0.075,\n           size = 4.5, color = \"white\")+\n  annotate(geom = \"text\", label = \"Nomogram irrelevant\", \n           x = 0.85, y = -0.075,\n           size = 4.5, color = \"white\")\np2\n\n\n\n\n\n\n\n\n是不是很easy呢?\n还可以再添加2条竖线,使图形更容易理解:\n\n# 准备2条竖线坐标\nline_df &lt;- data.frame(x = c(0.1,0.7),\n                      ymin = c(-0.05,-0.05),\n                      ymax = c(0.13,0)\n                      )\n\n添加竖线:\n\np2+geom_linerange(data = line_df, mapping = aes(x=x,ymin=ymin,ymax=ymax),\n                  linetype = 2, linewidth = 1.2\n                  )\n\n\n\n\n\n\n\n\n如果是默认的出图,那就更简单了,因为都是R语言默认的画图引擎,支持所有base r画图语法,和之前列线图添加彩色条带的方法一模一样:\n\ncox_dca &lt;- stdca(data=df_surv, \n      outcome=\"cancer\", \n      ttoutcome=\"ttcancer\", \n      timepoint=1.5, \n      predictors=\"prob1\",\n      smooth=TRUE,\n      xby = 0.001,\n      ymin = -0.1\n    )\n# 添加条带\nrect(xleft = 0,xright = 0.1,ybottom = -0.05,ytop = -0.1,\n     col = \"#0151a2\",border = NA)\nrect(xleft = 0.1,xright = 0.7,ybottom = -0.05,ytop = -0.1,\n     col = \"#c01e35\",border = NA)\nrect(xleft = 0.7,xright = 1,ybottom = -0.05,ytop = -0.1,\n     col = \"#0151a2\",border = NA)\n\n# 添加文字\ntext(x = 0.4, y = -0.075, labels=\"Nomogram relevant\",col=\"white\")\ntext(x = 0.85, y = -0.075, labels=\"Nomogram relevant\",col=\"white\")\n\n\n\n\n\n\n\n\n搞定!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>37</span>  <span class='chapter-title'>决策曲线添加彩色条带</span>"
+    ]
   },
   {
-    "objectID": "DCA测试集.html#分类数据测试集",
-    "href": "DCA测试集.html#分类数据测试集",
-    "title": "44  测试集的决策曲线分析",
-    "section": "44.2 分类数据测试集",
-    "text": "44.2 分类数据测试集\n这个数据集一共500行,6列,其中Cancer是结果变量,1代表患病,0代表没病,其余列是预测变量。\n\nrm(list = ls())\ndata(\"dcaData\",package = \"rmda\")\ndcaData &lt;- as.data.frame(dcaData)\ndim(dcaData) # 500,6\n## [1] 500   6\nstr(dcaData)\n## 'data.frame':    500 obs. of  6 variables:\n##  $ Age    : int  33 29 28 27 23 35 34 29 35 27 ...\n##  $ Female : num  1 1 1 0 1 1 1 1 1 1 ...\n##  $ Smokes : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...\n##  $ Marker1: num  0.245 0.943 0.774 0.406 0.508 ...\n##  $ Marker2: num  1.02108 -0.25576 0.33184 -0.00569 0.20753 ...\n##  $ Cancer : int  0 0 0 0 0 0 0 0 0 0 ...\n\n划分训练集测试集:\n\ntrain &lt;- sample(1:nrow(dcaData), nrow(dcaData)*0.7)\ntrain_df &lt;- dcaData[train,]\ntest_df &lt;- dcaData[- train,]\ndim(train_df)\n## [1] 350   6\ndim(test_df)\n## [1] 150   6\n\n\n44.2.1 方法1:dca.r\n训练集的DCA:\n\nsource(\"./datasets/dca.r\")\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes + Marker1 + Marker2, \n            family=binomial(),\n            data = train_df\n            )\n\n# 算出概率\ntrain_df$prob &lt;- predict(model, type=\"response\")\n\n# 绘制多个预测变量的DCA\naa &lt;- dca(data=train_df, outcome=\"Cancer\", predictors=\"prob\", \n    probability = T,\n    xstop=0.35 # 控制x轴范围\n    )\n\n\n\n\n测试集的DCA:\n\n# 算出概率\ntest_df$prob &lt;- predict(model, type=\"response\", newdata = test_df)\n\n# 绘制多个预测变量的DCA\naa &lt;- dca(data=test_df, outcome=\"Cancer\", predictors=\"prob\", \n    probability = T,\n    xstop=0.35 # 控制x轴范围\n    )\n\n\n\n\n\n\n44.2.2 方法2:ggDCA\n训练集的DCA:\n\nlibrary(ggDCA)\n\n# 建立包含多个自变量的logistic模型\nmodel &lt;- glm(Cancer ~ Age + Female + Smokes + Marker1 + Marker2, \n            family=binomial(),\n            data = train_df\n            )\n\naa &lt;- ggDCA::dca(model)\n\nggplot(aa)\n## Warning: Removed 73 rows containing missing values (`geom_line()`).\n\n\n\n\n测试集的DCA:\n\naa &lt;- ggDCA::dca(model,new.data=test_df)\n\nggplot(aa)\n## Warning: Removed 120 rows containing missing values (`geom_line()`).\n\n\n\n\n红色的是测试集的DCA曲线,因为坐标范围问题,看起来不太好看,但是你可以自己提取数据重新画。这里就不演示了。\n后台回复决策曲线即可获取决策曲线推文合集;回复校准曲线即可获取校准曲线推文合集~"
-  },
-  {
-    "objectID": "校准曲线和决策曲线的概率.html",
-    "href": "校准曲线和决策曲线的概率.html",
-    "title": "45  校准曲线和决策曲线的概率",
+    "objectID": "bootstrap一切指标.html",
+    "href": "bootstrap一切指标.html",
+    "title": "38  bootstrap一切指标",
     "section": "",
-    "text": "不知道大家有没有注意过,绘制生存曲线和决策曲线都要用到概率,那到底是生存概率还是死亡概率呢?\n我在学习绘制随机生存森林的校准曲线和决策曲线时,遇到了这个问题,然后认真探索了一下,发现校准曲线和决策曲线用的概率竟然是不一样的。\n画COX模型的校准曲线需要实际生存概率和预测生存概率,但是关于生存概率到底是怎么算出来的,还有算出来的到底是死亡概率还是生存概率,一直搞不清楚,所以写这篇明确一下。\n首先把数据集划分为训练集、测试集。\n\nrm(list = ls())\nlibrary(survival)\n\nlung$status &lt;- ifelse(lung$status == 2,1,0)\nlung &lt;- na.omit(lung)\n\nset.seed(123)\nind &lt;- sample(1:nrow(lung),nrow(lung)*0.7)\n\ntrain_df &lt;- lung[ind,]\ntest_df &lt;- lung[- ind, ]\n\n生存/死亡概率这种说法在某些数据集是成立的,比如这里的数据,其结局就是生存或者死亡。\n但是某些数据的结局不是“生存/死亡”这种,可能是“患病/不患病、复发/不复发”等等情况,此时再叫生存/死亡概率就不对了,所以应该明确,使用event-probability,即终点事件发生的概率,通常终点事件是用数字1表示的,这种说法更加明确,不容易出错。(event-probability有时也被称为failure-probability)\n而且生存分析作为一种在医学领域常见的方法,在其他领域应用也很广泛。\n\n生存分析(英语:Survival analysis)是指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析,例如生物有机体的死亡和机械系统的故障。该主题在工程学中称为可靠性理论或可靠性分析,在经济学中称为持续时间分析或持续时间建模,在社会学中称为事件历史分析。–维基百科\n\n对于lung这个数据集来说,event-probability就是死亡概率!\n下面我们通过cox模型计算训练集的生存概率,以下是2种方法:\n\ncoxph_fit &lt;- coxph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                   data = train_df,\n                   x = T, y = T)\n\n# 生存概率,不是event-probability \nc(summary(survfit(coxph_fit), times = 100)$surv)^exp(coxph_fit$linear.predictors)\n##   [1] 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469\n##   [8] 0.9032144 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090\n##  [15] 0.8621303 0.8893680 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016\n##  [22] 0.7442135 0.9244979 0.8678144 0.8184844 0.8413455 0.8541395 0.9222329\n##  [29] 0.8044921 0.8517422 0.8429372 0.9178130 0.9299924 0.9269818 0.8302337\n##  [36] 0.7211115 0.6815169 0.8089742 0.9250284 0.8259474 0.9060193 0.8827809\n##  [43] 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 0.8875361\n##  [50] 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530900 0.8855674\n##  [57] 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934\n##  [64] 0.7815514 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698\n##  [71] 0.7426331 0.8408116 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881\n##  [78] 0.7906085 0.8396755 0.8791217 0.8724587 0.8955971 0.8426875 0.8104841\n##  [85] 0.8843599 0.8926688 0.8196833 0.9133560 0.8602637 0.8579585 0.8131528\n##  [92] 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 0.9223448 0.7819553\n##  [99] 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 0.6978048\n## [106] 0.9013489 0.8112944 0.6854877 0.8853881 0.8183476 0.7124062 0.8235475\n## [113] 0.9066584 0.8161488 0.8612663 0.8121238\n\nc((summary(survfit(coxph_fit, newdata=train_df), times=100)$surv))\n##   [1] 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469\n##   [8] 0.9032144 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090\n##  [15] 0.8621303 0.8893680 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016\n##  [22] 0.7442135 0.9244979 0.8678144 0.8184844 0.8413455 0.8541395 0.9222329\n##  [29] 0.8044921 0.8517422 0.8429372 0.9178130 0.9299924 0.9269818 0.8302337\n##  [36] 0.7211115 0.6815169 0.8089742 0.9250284 0.8259474 0.9060193 0.8827809\n##  [43] 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 0.8875361\n##  [50] 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530900 0.8855674\n##  [57] 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934\n##  [64] 0.7815514 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698\n##  [71] 0.7426331 0.8408116 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881\n##  [78] 0.7906085 0.8396755 0.8791217 0.8724587 0.8955971 0.8426875 0.8104841\n##  [85] 0.8843599 0.8926688 0.8196833 0.9133560 0.8602637 0.8579585 0.8131528\n##  [92] 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 0.9223448 0.7819553\n##  [99] 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 0.6978048\n## [106] 0.9013489 0.8112944 0.6854877 0.8853881 0.8183476 0.7124062 0.8235475\n## [113] 0.9066584 0.8161488 0.8612663 0.8121238\n\n这两种方法计算出来的生存概率是一模一样的。\n这个方法也是之前在绘制决策曲线时使用的方法:生存资料的决策曲线分析DCA\n在画COX模型的决策曲线时,需要使用概率,使用的是1-summary(xxxx)。这一点在官方的说法也是很明确的,来自stdca.r脚本的官方机构:纪念斯隆-凯特琳癌症中心:\n\n\n# failure probability \nc(1-(summary(survfit(coxph_fit, newdata=train_df), times=100)$surv))\n##   [1] 0.36391922 0.08687312 0.14985089 0.23691353 0.14628733 0.15493424\n##   [7] 0.06245312 0.09678563 0.13128605 0.27716348 0.20483344 0.12667093\n##  [13] 0.05125721 0.14559099 0.13786967 0.11063201 0.22218806 0.09039195\n##  [19] 0.08480558 0.15215836 0.13819836 0.25578648 0.07550208 0.13218564\n##  [25] 0.18151559 0.15865446 0.14586054 0.07776714 0.19550795 0.14825781\n##  [31] 0.15706277 0.08218697 0.07000765 0.07301820 0.16976631 0.27888853\n##  [37] 0.31848310 0.19102579 0.07497155 0.17405255 0.09398071 0.11721909\n##  [43] 0.07535682 0.22293786 0.26577192 0.10913621 0.14748469 0.16618091\n##  [49] 0.11246388 0.22150420 0.10323032 0.12267652 0.14725839 0.16688923\n##  [55] 0.14691005 0.11443259 0.11359944 0.16246550 0.23201760 0.08621721\n##  [61] 0.10807703 0.07890259 0.18400656 0.21844859 0.11180203 0.23056777\n##  [67] 0.06112043 0.09214054 0.15368200 0.10823019 0.25736689 0.15918841\n##  [73] 0.17545294 0.14046334 0.27124664 0.17645248 0.16281191 0.20939151\n##  [79] 0.16032453 0.12087828 0.12754126 0.10440294 0.15731251 0.18951593\n##  [85] 0.11564013 0.10733123 0.18031666 0.08664403 0.13973627 0.14204145\n##  [91] 0.18684720 0.22323209 0.15389400 0.14955219 0.10182876 0.09977463\n##  [97] 0.07765520 0.21804473 0.19236203 0.16488251 0.19920229 0.18652767\n## [103] 0.06456910 0.07393773 0.30219524 0.09865107 0.18870555 0.31451234\n## [109] 0.11461188 0.18165243 0.28759375 0.17645248 0.09334163 0.18385122\n## [115] 0.13873375 0.18787620\n\n所以,绘制决策曲线用的是event-probability,或者叫failure-probability。在以死亡为终点事件的数据中,这个概率就是死亡概率,但是某些数据的终点不是死亡,此时再叫死亡概率就容易引起混淆了。\n除此之外,pec包的predictSurvProb()函数可以计算多个模型的不同数据集的event-probability,非常方便,目前此包的大部分功能都已经转移到riskRegression包中,且predictSurvProb()的功能已经被更为强大的predictRisk替代。\n帮助文档写的很清楚,就是:Extract event probabilities…:\n\nlibrary(riskRegression)\n## Warning in .recacheSubclasses(def@className, def, env): undefined subclass\n## \"ndiMatrix\" of class \"replValueSp\"; definition not updated\n## riskRegression version 2023.09.08\n\n# event probability 这个例子是死亡概率\nc(predictRisk(coxph_fit, newdata = train_df, times = 100))\n##   [1] 0.36391922 0.08687312 0.14985089 0.23691353 0.14628733 0.15493424\n##   [7] 0.06245312 0.09678563 0.13128605 0.27716348 0.20483344 0.12667093\n##  [13] 0.05125721 0.14559099 0.13786967 0.11063201 0.22218806 0.09039195\n##  [19] 0.08480558 0.15215836 0.13819836 0.25578648 0.07550208 0.13218564\n##  [25] 0.18151559 0.15865446 0.14586054 0.07776714 0.19550795 0.14825781\n##  [31] 0.15706277 0.08218697 0.07000765 0.07301820 0.16976631 0.27888853\n##  [37] 0.31848310 0.19102579 0.07497155 0.17405255 0.09398071 0.11721909\n##  [43] 0.07535682 0.22293786 0.26577192 0.10913621 0.14748469 0.16618091\n##  [49] 0.11246388 0.22150420 0.10323032 0.12267652 0.14725839 0.16688923\n##  [55] 0.14691005 0.11443259 0.11359944 0.16246550 0.23201760 0.08621721\n##  [61] 0.10807703 0.07890259 0.18400656 0.21844859 0.11180203 0.23056777\n##  [67] 0.06112043 0.09214054 0.15368200 0.10823019 0.25736689 0.15918841\n##  [73] 0.17545294 0.14046334 0.27124664 0.17645248 0.16281191 0.20939151\n##  [79] 0.16032453 0.12087828 0.12754126 0.10440294 0.15731251 0.18951593\n##  [85] 0.11564013 0.10733123 0.18031666 0.08664403 0.13973627 0.14204145\n##  [91] 0.18684720 0.22323209 0.15389400 0.14955219 0.10182876 0.09977463\n##  [97] 0.07765520 0.21804473 0.19236203 0.16488251 0.19920229 0.18652767\n## [103] 0.06456910 0.07393773 0.30219524 0.09865107 0.18870555 0.31451234\n## [109] 0.11461188 0.18165243 0.28759375 0.17645248 0.09334163 0.18385122\n## [115] 0.13873375 0.18787620\n\n结果和上面的1-summary(xxx)计算的是一样的。\n再看一个cph模型,计算生存概率(非终点事件概率):\n\nsuppressMessages(library(rms))\ndd &lt;- datadist(train_df)\noptions(datadist = \"dd\")\n\ncph_fit &lt;- cph(Surv(time, status) ~ age + sex + ph.ecog + ph.karno + pat.karno,\n                   data = train_df,\n                   x = T, y = T\n               ,surv = T,\n               time.inc = 100\n               )\n\nc(cph_fit$surv.summary[2,1,1]^exp(cph_fit$linear.predictors))\n##       218        22        69       163        60       227       225       205 \n## 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469 0.9032144 \n##       123       124       216       125       186       135        94        38 \n## 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090 0.8621303 0.8893680 \n##        10       211       107       111       222       141       162       102 \n## 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016 0.7442135 0.9244979 0.8678144 \n##       194        45       148       203       202        99        34        72 \n## 0.8184844 0.8413455 0.8541395 0.9222329 0.8044920 0.8517422 0.8429372 0.9178130 \n##       182       185        47        90       219       195        84        21 \n## 0.9299924 0.9269818 0.8302337 0.7211115 0.6815168 0.8089742 0.9250285 0.8259475 \n##       112       131       166       213        37        53        31       109 \n## 0.9060193 0.8827809 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 \n##        57        65       228        81       128        26       127         9 \n## 0.8875361 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530899 0.8855674 \n##       145       177       118       190        54        43       200       226 \n## 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934 0.7815514 \n##       180         7       174       179       169        71        32       122 \n## 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698 0.7426331 0.8408116 \n##       191       208       119        48        55        42        19       144 \n## 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881 0.7906085 0.8396755 0.8791217 \n##       196        85       221        93        88       188       165        50 \n## 0.8724587 0.8955971 0.8426875 0.8104841 0.8843599 0.8926688 0.8196833 0.9133560 \n##        11        70       187       142       106        64        27        83 \n## 0.8602637 0.8579586 0.8131528 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 \n##       101        73       212        35       189       173       204       168 \n## 0.9223448 0.7819553 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 \n##       116       160       113        39        59         8       155       159 \n## 0.6978048 0.9013489 0.8112945 0.6854876 0.8853881 0.8183476 0.7124062 0.8235475 \n##        89       149       171        18 \n## 0.9066584 0.8161488 0.8612663 0.8121238\n\n校准曲线的使用的是非终点事件概率,在lung这个数据集中就是生存概率,关于它的详细介绍,请参考推文:Cox回归校准曲线(测试集)的实现方法(下)\n参考文章:\n\npec:https://stats.stackexchange.com/questions/36015/prediction-in-cox-regression\n维基百科:https://zh.wikipedia.org/zh-cn/%E7%94%9F%E5%AD%98%E5%88%86%E6%9E%90\n生存分析:https://zhuanlan.zhihu.com/p/367879967\ndca官方文档:dca-tutorial-2015-2-26.pdf\n失效事件failure-event:https://www.jianshu.com/p/1a8ee973b45f"
-  },
-  {
-    "objectID": "model-compare_tidymodels.html#加载数据和r包",
-    "href": "model-compare_tidymodels.html#加载数据和r包",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.1 加载数据和R包",
-    "text": "46.1 加载数据和R包\n没有安装的R包的自己安装下~\n\nrm(list = ls())\nsuppressPackageStartupMessages(library(tidyverse))\nsuppressPackageStartupMessages(library(tidymodels))\ntidymodels_prefer()\n\n由于要做演示用,肯定要一份比较好的数据才能说明问题,今天用的这份数据,结果变量是一个二分类的。\n一共有91976行,26列,其中play_type是结果变量,因子型,其余列都是预测变量。\n\nall_plays &lt;- read_rds(\"./datasets/all_plays.rds\")\nglimpse(all_plays)\n## Rows: 91,976\n## Columns: 26\n## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…\n## $ posteam                    &lt;chr&gt; \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"…\n## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…\n## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…\n## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …\n## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…\n## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…\n## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…\n## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…\n## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…\n## $ defteam                    &lt;chr&gt; \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"…\n## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…\n## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …\n## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…\n## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…\n## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…\n## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…\n## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…\n## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…\n## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…\n## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …\n## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…\n## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…\n## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…"
-  },
-  {
-    "objectID": "model-compare_tidymodels.html#数据划分",
-    "href": "model-compare_tidymodels.html#数据划分",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.2 数据划分",
-    "text": "46.2 数据划分\n把75%的数据用于训练集,剩下的做测试集。\n\nset.seed(20220520)\n\n# 数据划分,根据play_type分层\nsplit_pbp &lt;- initial_split(all_plays, 0.75, strata = play_type)\n\ntrain_data &lt;- training(split_pbp) # 训练集\ntest_data &lt;- testing(split_pbp) # 测试集"
-  },
-  {
-    "objectID": "model-compare_tidymodels.html#数据预处理",
-    "href": "model-compare_tidymodels.html#数据预处理",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.3 数据预处理",
-    "text": "46.3 数据预处理\n\npbp_rec &lt;- recipe(play_type ~ ., data = train_data)  %&gt;%\n  step_rm(half_seconds_remaining,yards_gained, game_id) %&gt;% # 移除这3列\n  step_string2factor(posteam, defteam) %&gt;%  # 变为因子类型\n  #update_role(yards_gained, game_id, new_role = \"ID\") %&gt;% \n  # 去掉高度相关的变量\n  step_corr(all_numeric(), threshold = 0.7) %&gt;% \n  step_center(all_numeric()) %&gt;%  # 中心化\n  step_zv(all_predictors())  # 去掉零方差变量"
-  },
-  {
-    "objectID": "model-compare_tidymodels.html#建立多个模型",
-    "href": "model-compare_tidymodels.html#建立多个模型",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.4 建立多个模型",
-    "text": "46.4 建立多个模型\n\n46.4.1 logistic\n选择模型,连接数据预处理步骤。\n\nlm_spec &lt;- logistic_reg(mode = \"classification\",engine = \"glm\")\nlm_wflow &lt;- workflow() %&gt;% \n  add_recipe(pbp_rec) %&gt;% \n  add_model(lm_spec)\n\n建立模型:\n\nfit_lm &lt;- lm_wflow %&gt;% fit(data = train_data)\n\n应用于测试集:\n\npred_lm &lt;- select(test_data, play_type) %&gt;% \n  bind_cols(predict(fit_lm, test_data, type = \"prob\")) %&gt;% \n  bind_cols(predict(fit_lm, test_data))\n\npred_lm\n## # A tibble: 22,995 × 4\n##    play_type .pred_pass .pred_run .pred_class\n##    &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      \n##  1 pass           0.399     0.601 run        \n##  2 pass           0.817     0.183 pass       \n##  3 pass           0.754     0.246 pass       \n##  4 pass           0.683     0.317 pass       \n##  5 run            0.327     0.673 run        \n##  6 run            0.615     0.385 pass       \n##  7 pass           0.591     0.409 pass       \n##  8 run            0.669     0.331 pass       \n##  9 pass           0.767     0.233 pass       \n## 10 pass           0.437     0.563 run        \n## # ℹ 22,985 more rows\n\n查看模型表现:\n\n# 选择多种评价指标\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\npred_lm %&gt;% metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.724\n## 2 mcc      binary         0.423\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.416\n\n大家最喜欢的AUC:\n\npred_lm %&gt;% roc_auc(truth = play_type, .pred_pass)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.781\n\n可视化结果,首先是大家喜闻乐见的ROC曲线:\n\npred_lm %&gt;% roc_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\npr曲线:\n\npred_lm %&gt;% pr_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\ngain_curve:\n\npred_lm %&gt;% gain_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\nlift_curve:\n\npred_lm %&gt;% lift_curve(truth = play_type, .pred_pass) %&gt;% \n  autoplot()\n\n\n\n\n混淆矩阵:\n\npred_lm %&gt;% \n  conf_mat(play_type,.pred_class) %&gt;% \n  autoplot()\n\n\n\n\n\n\n46.4.2 knn\nk最近邻法,和上面的逻辑回归一模一样的流程。\n首先也是选择模型,连接数据预处理步骤:\n\nknn_spec &lt;- nearest_neighbor(mode = \"classification\", engine = \"kknn\")\n\nknn_wflow &lt;- workflow() %&gt;% \n  add_recipe(pbp_rec) %&gt;% \n  add_model(knn_spec)\n\n建立模型:\n\nlibrary(kknn)\nfit_knn &lt;- knn_wflow %&gt;% \n  fit(train_data)\n\n#saveRDS(fit_knn,file = \"datasets/fit_knn.rds\")\n\n应用于测试集:\n\npred_knn &lt;- test_data %&gt;% select(play_type) %&gt;% \n  bind_cols(predict(fit_knn, test_data, type = \"prob\")) %&gt;% \n  bind_cols(predict(fit_knn, test_data, type = \"class\"))\n#saveRDS(pred_knn, file=\"./datasets/pred_knn.rds\")\n\n查看模型表现:\n\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\npred_knn %&gt;% metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.672\n## 2 mcc      binary         0.317\n## 3 f_meas   binary         0.727\n## 4 j_index  binary         0.315\n\n\npred_knn %&gt;% roc_auc(play_type, .pred_pass)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.718\n\n可视化模型的部分就不说了,和上面的一模一样!\n\n\n46.4.3 随机森林\n同样的流程来第3遍!\n\nrf_spec &lt;- rand_forest(mode = \"classification\") %&gt;% \n  set_engine(\"ranger\",importance = \"permutation\")\nrf_wflow &lt;- workflow() %&gt;% \n  add_recipe(pbp_rec) %&gt;% \n  add_model(rf_spec)\n\n建立模型:\n\nfit_rf &lt;- rf_wflow %&gt;% \n  fit(train_data)\n\n#saveRDS(fit_rf,file = \"datasets/fit_rf.rds\")\n\n应用于测试集:\n\npred_rf &lt;- test_data %&gt;% select(play_type) %&gt;% \n  bind_cols(predict(fit_rf, test_data, type = \"prob\")) %&gt;% \n  bind_cols(predict(fit_rf, test_data, type = \"class\"))\n\n查看模型表现:\n\npred_rf %&gt;% metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.731\n## 2 mcc      binary         0.441\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.439\n\n\npred_rf %&gt;% conf_mat(truth = play_type, estimate = .pred_class)\n##           Truth\n## Prediction  pass   run\n##       pass 10622  3226\n##       run   2962  6185\n\n\npred_rf %&gt;% roc_auc(play_type, .pred_pass)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.799\n\n下面给大家手动画一个校准曲线。\n两种画法,差别不大,主要是分组方法不一样,第2种分组方法是大家常见的哦~\n\ncalibration_df &lt;- pred_rf %&gt;% \n   mutate(pass = if_else(play_type == \"pass\", 1, 0),\n          pred_rnd = round(.pred_pass, 2)\n          ) %&gt;% \n  group_by(pred_rnd) %&gt;% \n  dplyr::summarize(mean_pred = mean(.pred_pass),\n            mean_obs = mean(pass),\n            n = n()\n            )\n\nggplot(calibration_df, aes(mean_pred, mean_obs))+ \n  geom_point(aes(size = n), alpha = 0.5)+\n  geom_abline(linetype = \"dashed\")+\n  theme_minimal()\n\n\n\n\n第2种方法:\n\ncali_df &lt;- pred_rf %&gt;% \n  arrange(.pred_pass) %&gt;% \n  mutate(pass = if_else(play_type == \"pass\", 1, 0),\n         group = c(rep(1:249,each=92), rep(250,87))\n         ) %&gt;% \n  group_by(group) %&gt;% \n  dplyr::summarise(mean_pred = mean(.pred_pass),\n            mean_obs = mean(pass)\n            )\n\n\ncali_plot &lt;- ggplot(cali_df, aes(mean_pred, mean_obs))+ \n  geom_point(alpha = 0.5)+\n  geom_abline(linetype = \"dashed\")+\n  theme_minimal()\n\ncali_plot\n\n\n\n\n随机森林这种方法是可以计算变量重要性的,当然也是能把结果可视化的。\n给大家演示下如何可视化随机森林结果的变量重要性:\n\nlibrary(vip)\n\nfit_rf %&gt;% \n  extract_fit_parsnip() %&gt;% \n  vip(num_features = 10)\n\n\n\n\n\n\n46.4.4 决策树\n同样的流程来第4遍!不知道你看懂了没有。。。\n\ntree_spec &lt;- decision_tree(mode = \"classification\",engine = \"rpart\")\ntree_wflow &lt;- workflow() %&gt;% \n  add_recipe(pbp_rec) %&gt;% \n  add_model(tree_spec)\n\n建立模型:\n\nfit_tree &lt;- tree_wflow %&gt;% \n  fit(train_data)\n\n应用于测试集:\n\npred_tree &lt;- test_data %&gt;% select(play_type) %&gt;% \n  bind_cols(predict(fit_tree, test_data, type = \"prob\")) %&gt;% \n  bind_cols(predict(fit_tree, test_data, type = \"class\"))\n\n查看结果:\n\npred_tree %&gt;% roc_auc(play_type, .pred_pass)\n## # A tibble: 1 × 3\n##   .metric .estimator .estimate\n##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;\n## 1 roc_auc binary         0.706\n\n\npred_tree %&gt;% metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.721\n## 2 mcc      binary         0.417\n## 3 f_meas   binary         0.770\n## 4 j_index  binary         0.411"
-  },
-  {
-    "objectID": "model-compare_tidymodels.html#交叉验证",
-    "href": "model-compare_tidymodels.html#交叉验证",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.5 交叉验证",
-    "text": "46.5 交叉验证\n交叉验证也是大家喜闻乐见的,就用随机森林给大家顺便演示下交叉验证。\n首先要选择重抽样方法,这里我们选择10折交叉验证:\n\nset.seed(20220520)\n\nfolds &lt;- vfold_cv(train_data, v = 10)\nfolds\n## #  10-fold cross-validation \n## # A tibble: 10 × 2\n##    splits               id    \n##    &lt;list&gt;               &lt;chr&gt; \n##  1 &lt;split [62082/6899]&gt; Fold01\n##  2 &lt;split [62083/6898]&gt; Fold02\n##  3 &lt;split [62083/6898]&gt; Fold03\n##  4 &lt;split [62083/6898]&gt; Fold04\n##  5 &lt;split [62083/6898]&gt; Fold05\n##  6 &lt;split [62083/6898]&gt; Fold06\n##  7 &lt;split [62083/6898]&gt; Fold07\n##  8 &lt;split [62083/6898]&gt; Fold08\n##  9 &lt;split [62083/6898]&gt; Fold09\n## 10 &lt;split [62083/6898]&gt; Fold10\n\n然后就是让模型在训练集上跑起来:\n\nkeep_pred &lt;- control_resamples(save_pred = T, verbose = T)\n\nset.seed(20220520)\n\nlibrary(doParallel)\n\ncl &lt;- makePSOCKcluster(12) # 加速,用12个线程\nregisterDoParallel(cl)\n\nrf_res &lt;- fit_resamples(rf_wflow, resamples = folds, control = keep_pred)\n\nstopCluster(cl)\n\n#saveRDS(rf_res,file = \"datasets/rf_res.rds\")\n\n查看模型表现:\n\nrf_res %&gt;% \n  collect_metrics(summarize = T)\n## # A tibble: 2 × 6\n##   .metric  .estimator  mean     n std_err .config             \n##   &lt;chr&gt;    &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy binary     0.732    10 0.00157 Preprocessor1_Model1\n## 2 roc_auc  binary     0.799    10 0.00193 Preprocessor1_Model1\n\n查看具体的结果:\n\nrf_res %&gt;% collect_predictions()\n## # A tibble: 68,981 × 7\n##    id     .pred_pass .pred_run  .row .pred_class play_type .config             \n##    &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt; &lt;int&gt; &lt;fct&gt;       &lt;fct&gt;     &lt;chr&gt;               \n##  1 Fold01      0.572    0.428      6 pass        pass      Preprocessor1_Model1\n##  2 Fold01      0.470    0.530      8 run         pass      Preprocessor1_Model1\n##  3 Fold01      0.898    0.102     22 pass        pass      Preprocessor1_Model1\n##  4 Fold01      0.915    0.0847    69 pass        pass      Preprocessor1_Model1\n##  5 Fold01      0.841    0.159     97 pass        pass      Preprocessor1_Model1\n##  6 Fold01      0.931    0.0688   112 pass        pass      Preprocessor1_Model1\n##  7 Fold01      0.727    0.273    123 pass        pass      Preprocessor1_Model1\n##  8 Fold01      0.640    0.360    129 pass        pass      Preprocessor1_Model1\n##  9 Fold01      0.740    0.260    136 pass        pass      Preprocessor1_Model1\n## 10 Fold01      0.902    0.0979   143 pass        pass      Preprocessor1_Model1\n## # ℹ 68,971 more rows\n\n可视化结果也是和上面的一模一样,就不一一介绍了,简单说下训练集的校准曲线画法,其实也是和上面一样的~\n\nres_calib_plot &lt;- collect_predictions(rf_res) %&gt;% \n  mutate(\n    pass = if_else(play_type == \"pass\", 1, 0),\n    pred_rnd = round(.pred_pass, 2)\n    ) %&gt;% \n  group_by(pred_rnd) %&gt;%\n  dplyr::summarize(\n    mean_pred = mean(.pred_pass),\n    mean_obs = mean(pass),\n    n = n()\n    ) %&gt;% \n  ggplot(aes(x = mean_pred, y = mean_obs)) +\n  geom_abline(linetype = \"dashed\") +\n  geom_point(aes(size = n), alpha = 0.5) +\n  theme_minimal() +\n  labs(\n    x = \"Predicted Pass\", \n    y = \"Observed Pass\"\n    ) +\n  coord_cartesian(\n    xlim = c(0,1), ylim = c(0, 1)\n    )\n\nres_calib_plot\n\n\n\n\n然后就是应用于测试集,并查看测试集上的表现:\n\nrf_last_fit &lt;- last_fit(rf_wflow, split_pbp)\n#saveRDS(rf_last_fit,file = \"./datasets/rf_last_fit.rds\")\n\n查看测试集表现:\n\nrf_test_res &lt;- rf_last_fit %&gt;% \n  collect_metrics()\nrf_test_res\n## # A tibble: 2 × 4\n##   .metric  .estimator .estimate .config             \n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy binary         0.730 Preprocessor1_Model1\n## 2 roc_auc  binary         0.799 Preprocessor1_Model1\n\n多种指标:\n\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\ncollect_predictions(rf_last_fit) %&gt;% \n  metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.730\n## 2 mcc      binary         0.439\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.437"
+    "text": "38.1 加载数据和R包\n演示数据为印第安人糖尿病数据集,这个数据一共有768行,9列,其中diabetes是结果变量,为二分类,其余列是预测变量。\nrm(list = ls())\n\nload(file = \"datasets/pimadiabetes.rdata\")\n\ndim(pimadiabetes)\n## [1] 768   9\nstr(pimadiabetes)\n## 'data.frame':    768 obs. of  9 variables:\n##  $ pregnant: num  6 1 8 1 0 5 3 10 2 8 ...\n##  $ glucose : num  148 85 183 89 137 116 78 115 197 125 ...\n##  $ pressure: num  72 66 64 66 40 ...\n##  $ triceps : num  35 29 22.9 23 35 ...\n##  $ insulin : num  202.2 64.6 217.1 94 168 ...\n##  $ mass    : num  33.6 26.6 23.3 28.1 43.1 ...\n##  $ pedigree: num  0.627 0.351 0.672 0.167 2.288 ...\n##  $ age     : num  50 31 32 21 33 30 26 29 53 54 ...\n##  $ diabetes: Factor w/ 2 levels \"pos\",\"neg\": 2 1 2 1 2 1 2 1 2 2 ...\n各个变量的含义:\nlibrary(tidymodels)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
   },
   {
-    "objectID": "model-compare_tidymodels.html#roc曲线画一起",
-    "href": "model-compare_tidymodels.html#roc曲线画一起",
-    "title": "46  tidymodels实现多模型比较",
-    "section": "46.6 ROC曲线画一起",
-    "text": "46.6 ROC曲线画一起\n其实非常简单,就是把结果拼在一起画个图就行了~\n\nroc_lm &lt;- pred_lm %&gt;% roc_curve(play_type, .pred_pass) %&gt;% \n  mutate(model = \"logistic\")\n\nroc_knn &lt;- pred_knn %&gt;% roc_curve(play_type, .pred_pass) %&gt;% \n  mutate(model = \"kknn\")\n\nroc_rf &lt;- pred_rf %&gt;% roc_curve(play_type, .pred_pass) %&gt;% \n  mutate(model = \"randomforest\")\n\nroc_tree &lt;- pred_tree %&gt;% roc_curve(play_type, .pred_pass) %&gt;% \n  mutate(model = \"decision tree\")\n\n\nrocs &lt;- bind_rows(roc_lm,roc_knn,roc_rf,roc_tree) %&gt;% \n  ggplot(aes(x = 1 - specificity, y = sensitivity, color = model))+\n  geom_path(lwd = 1.2, alpha = 0.6)+\n  geom_abline(lty = 3)+\n  coord_fixed()+\n  scale_color_brewer(palette = \"Set1\")+\n  theme_minimal()\n\nrocs\n\n\n\n\n是不是很简单呢?二分类资料常见的各种评价指标都有了,图也有了,还比较了多个模型,一举多得,tidymodels,你值得拥有!"
+    "objectID": "bootstrap一切指标.html#加载数据和r包",
+    "href": "bootstrap一切指标.html#加载数据和r包",
+    "title": "38  bootstrap一切指标",
+    "section": "",
+    "text": "pregnant:怀孕次数\nglucose:血浆葡萄糖浓度(葡萄糖耐量试验)\npressure:舒张压(毫米汞柱)\ntriceps:三头肌皮褶厚度(mm)\ninsulin:2小时血清胰岛素(mu U/ml)\nmass:BMI\npedigree:糖尿病谱系功能,是一种用于预测糖尿病发病风险的指标,该指标是基于家族史的糖尿病遗传风险因素的计算得出的。它计算了患者的家族成员是否患有糖尿病以及他们与患者的亲缘关系,从而得出一个综合评分,用于预测患糖尿病的概率。\nage:年龄\ndiabetes:是否有糖尿病",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#数据划分和模型选择",
+    "href": "bootstrap一切指标.html#数据划分和模型选择",
+    "title": "38  bootstrap一切指标",
+    "section": "38.2 数据划分和模型选择",
+    "text": "38.2 数据划分和模型选择\n划分训练集、测试集。\n\nset.seed(123)\nsplit &lt;- initial_split(pimadiabetes, prop = 0.7, strata = diabetes)\n\ntrain &lt;- training(split)\ntest &lt;- testing(split)\n\ndim(train)\n## [1] 537   9\ndim(test)\n## [1] 231   9\n\n模型选择随机森林模型,如果你想用其他模型,就换其他模型就好了:\n\nrf_spec &lt;- rand_forest(engine = \"ranger\",mode = \"classification\",trees = 200)\n\n下面就是建立工作流:\n\nrf_rec &lt;- recipe(diabetes ~ ., data = pimadiabetes)\n\nrf_wf &lt;- workflow(preprocessor = rf_rec, spec = rf_spec)",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#内部重抽样和建模",
+    "href": "bootstrap一切指标.html#内部重抽样和建模",
+    "title": "38  bootstrap一切指标",
+    "section": "38.3 内部重抽样和建模",
+    "text": "38.3 内部重抽样和建模\n选择内部重抽样方法,这里就选大家最常问的bootstrap法,bootstrap的次数为1000次!\n\nset.seed(1223)\nresampling &lt;- bootstraps(train, times = 1000)\n\n建立模型,评价指标把能选的都选上,主打一个大而全:\n\nctrl &lt;- control_resamples(verbose = F, save_pred = T)\n\nset.seed(123)\nres &lt;- fit_resamples(rf_wf,\n                     resamples = resampling,\n                     # 常见的指标都选上!\n                     metrics = metric_set(roc_auc, sens, spec, mcc, f_meas, \n                                          j_index, brier_class, precision,\n                                          accuracy, pr_auc, mn_log_loss,\n                                          brier_class),\n                     control = ctrl)\n\n由于版本不同,有些人复制粘贴这段代码可能会报错,没关系,看下帮助文档即可(或者直接不写metrics这个参数,它有默认值的),小问题!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#查看结果",
+    "href": "bootstrap一切指标.html#查看结果",
+    "title": "38  bootstrap一切指标",
+    "section": "38.4 查看结果",
+    "text": "38.4 查看结果\n查看各个指标的结果:\n\ncollect_metrics(res)\n## # A tibble: 11 × 6\n##    .metric     .estimator  mean     n  std_err .config             \n##    &lt;chr&gt;       &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;    &lt;dbl&gt; &lt;chr&gt;               \n##  1 accuracy    binary     0.762  1000 0.000778 Preprocessor1_Model1\n##  2 brier_class binary     0.154  2000 0.000258 Preprocessor1_Model1\n##  3 f_meas      binary     0.821  1000 0.000654 Preprocessor1_Model1\n##  4 j_index     binary     0.459  1000 0.00181  Preprocessor1_Model1\n##  5 mcc         binary     0.469  1000 0.00169  Preprocessor1_Model1\n##  6 mn_log_loss binary     0.463  1000 0.000944 Preprocessor1_Model1\n##  7 pr_auc      binary     0.914  1000 0.000518 Preprocessor1_Model1\n##  8 precision   binary     0.805  1000 0.00109  Preprocessor1_Model1\n##  9 roc_auc     binary     0.843  1000 0.000702 Preprocessor1_Model1\n## 10 sens        binary     0.841  1000 0.00116  Preprocessor1_Model1\n## 11 spec        binary     0.618  1000 0.00208  Preprocessor1_Model1\n\n这个就是内部重抽样(重抽样方法选择的是1000次的bootstrap)得到的各种指标。\n通过统计学中学过的点估计和区间估计法计算置信区间:置信区间=均值±z*标准误\n95%置信区间是的z=1.96,是不是很熟悉的数字?\n\n# 计算95%的置信区间\ncollect_metrics(res) %&gt;% \n  dplyr::select(c(1,3,5)) %&gt;% \n  mutate(lower = mean - 1.96*std_err,\n         upper = mean + 1.96*std_err)\n## # A tibble: 11 × 5\n##    .metric      mean  std_err lower upper\n##    &lt;chr&gt;       &lt;dbl&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;\n##  1 accuracy    0.762 0.000778 0.761 0.764\n##  2 brier_class 0.154 0.000258 0.154 0.155\n##  3 f_meas      0.821 0.000654 0.820 0.823\n##  4 j_index     0.459 0.00181  0.455 0.462\n##  5 mcc         0.469 0.00169  0.466 0.473\n##  6 mn_log_loss 0.463 0.000944 0.461 0.465\n##  7 pr_auc      0.914 0.000518 0.913 0.915\n##  8 precision   0.805 0.00109  0.803 0.807\n##  9 roc_auc     0.843 0.000702 0.842 0.845\n## 10 sens        0.841 0.00116  0.839 0.843\n## 11 spec        0.618 0.00208  0.614 0.622\n\n但是使用这种方法计算置信区间说明“你默认这个数据是符合t分布的”,但实际上很多数据是不符合的,但是也没关系,这个方法也是正确的。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#bootstrap分位数法",
+    "href": "bootstrap一切指标.html#bootstrap分位数法",
+    "title": "38  bootstrap一切指标",
+    "section": "38.5 bootstrap分位数法",
+    "text": "38.5 bootstrap分位数法\n由于我们选择了1000次的bootstrap法,所以对于每个指标,都会得到1000个值,上面的计算置信区间的方法就是默认:对于每个指标的1000个值,符合t分布。\n除此之外,我们还可以使用分位数法计算每个指标的95%置信区间。比如对于AUC这个指标,我们先提取出这1000个值,然后给大家画个图看看它们的分布:\n\nres2 &lt;- collect_metrics(res, summarize = F) # 获取每个指标的1000个值\nres2 %&gt;% filter(.metric == \"roc_auc\") %&gt;% # 只选择auc这个指标\n  ggplot(aes(x = .estimate))+ # 画个图看看分布\n  geom_histogram(fill=\"grey\",color=\"blue\")+\n  labs(x=\"AUC\")\n\n\n\n\n\n\n\n\n上面这个图就是1000个AUC的分布,我们可以基于这1000个值,计算它的2.5%和97.5%分位数,这样就得到AUC的95%置信区间了:\n\nci_95 &lt;- res2 %&gt;% filter(.metric == \"roc_auc\") %&gt;%\n  pull(.estimate) %&gt;% \n  quantile(probs = c(0.025,0.975))\nci_95\n##      2.5%     97.5% \n## 0.7993783 0.8877514\n\n分位数法是最常见的计算置信区间的方法。我们把置信区间画在图中:\n\nres2 %&gt;% filter(.metric == \"roc_auc\") %&gt;% # 只选择auc这个指标\n  ggplot(aes(x = .estimate))+ # 画个图看看分布\n  geom_histogram(fill=\"grey\",color=\"blue\")+\n  geom_vline(xintercept = ci_95,color=\"red\")+\n  labs(x=\"AUC\")\n\n\n\n\n\n\n\n\n通过同样的方法就可以很方便的计算出所有指标的置信区间了:\n\nci_95_all &lt;- res2 %&gt;% group_nest(.metric) %&gt;% \n  mutate(me = map(data, ~ pull(.x, .estimate)),\n         ci95 = map_df(me, quantile, probs=c(0.025,0.975))\n         ) %&gt;% \n  dplyr::select(.metric, ci95) %&gt;% \n  unnest(ci95)\nci_95_all\n## # A tibble: 11 × 3\n##    .metric     `2.5%` `97.5%`\n##    &lt;chr&gt;        &lt;dbl&gt;   &lt;dbl&gt;\n##  1 accuracy     0.712   0.812\n##  2 brier_class  0.132   0.177\n##  3 f_meas       0.780   0.862\n##  4 j_index      0.344   0.567\n##  5 mcc          0.363   0.575\n##  6 mn_log_loss  0.407   0.522\n##  7 pr_auc       0.879   0.946\n##  8 precision    0.734   0.868\n##  9 roc_auc      0.799   0.888\n## 10 sens         0.766   0.913\n## 11 spec         0.492   0.742\n\n这种方法非常正宗,得到的结果绝对可靠而且易于解释和理解。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#bootstrap各种曲线",
+    "href": "bootstrap一切指标.html#bootstrap各种曲线",
+    "title": "38  bootstrap一切指标",
+    "section": "38.6 bootstrap各种曲线",
+    "text": "38.6 bootstrap各种曲线\n顺便再画个bootstrap-ROC曲线在,真的是像探囊取物一般简单!\n\ncollect_predictions(res) %&gt;% \n  #filter(id == \"Bootstrap002\") %&gt;% \n  group_by(id) %&gt;% \n  roc_curve(truth = diabetes, .pred_pos) %&gt;% \n  ggplot(aes(1-specificity, sensitivity))+\n  geom_path(alpha=0.2,aes(group=id))+\n  geom_abline(slope = 1,intercept = 0,linetype=2)+\n  coord_fixed()+\n  theme_bw()\n\n\n\n\n\n\n\n\n顺手再来个1000次bootstrap的PR曲线:\n\ncollect_predictions(res) %&gt;% \n  #filter(id == \"Bootstrap002\") %&gt;% \n  group_by(id) %&gt;% \n  pr_curve(truth = diabetes, .pred_pos) %&gt;% \n  ggplot(aes(recall, precision))+\n  geom_path(alpha=0.2,aes(group=id))+\n  geom_abline(slope = 1,intercept = 0,linetype=2)+\n  coord_fixed()+\n  theme_bw()\n\n\n\n\n\n\n\n\n你还想要lift-curve和gain-curve吗?我就不再重复了,因为太简单了!\n顺手再画个校准曲线,也是1行代码搞定:\n\nlibrary(probably)\nlibrary(ggplot2)\n\n# 带95%置信区间的校准曲线,这个不是bootstrap法\ncal_plot_breaks(res,conf_level = 0.95)\n\n\n\n\n\n\n\n\n这些指标和各种曲线,都是内部验证集的,且都使用了1000次bootstrap的内部重抽样方法,是不是非常easy呢?",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#更通用的方法",
+    "href": "bootstrap一切指标.html#更通用的方法",
+    "title": "38  bootstrap一切指标",
+    "section": "38.7 更通用的方法",
+    "text": "38.7 更通用的方法\n但是如果我们一开始采用的重抽样方法是交叉验证法或者单个验证集法,没有使用bootstrap法,那么这种方法就不能用了。\n所以这里会给大家介绍一种更为通用的方法,用于计算bootstrap法的置信区间,你即使没有使用bootstrap法进行内部重抽样,依然可以计算出bootstrap的置信区间。\n我们可以直接使用int_pctl()函数计算bootstrap分位数法的置信区间:\n\n# 通过bootstrap分位数法计算置信区间\nset.seed(123)\nres_boot &lt;- int_pctl(res, alpha = 0.05, times = 1000)\nres_boot\n## # A tibble: 11 × 6\n##    .metric     .estimator .lower .estimate .upper .config             \n##    &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               \n##  1 accuracy    bootstrap   0.728     0.767  0.803 Preprocessor1_Model1\n##  2 brier_class bootstrap   0.133     0.148  0.165 Preprocessor1_Model1\n##  3 f_meas      bootstrap   0.790     0.826  0.854 Preprocessor1_Model1\n##  4 j_index     bootstrap   0.379     0.463  0.540 Preprocessor1_Model1\n##  5 mcc         bootstrap   0.394     0.476  0.553 Preprocessor1_Model1\n##  6 mn_log_loss bootstrap   0.411     0.448  0.490 Preprocessor1_Model1\n##  7 pr_auc      bootstrap   0.894     0.919  0.940 Preprocessor1_Model1\n##  8 precision   bootstrap   0.760     0.804  0.844 Preprocessor1_Model1\n##  9 roc_auc     bootstrap   0.820     0.853  0.883 Preprocessor1_Model1\n## 10 sens        bootstrap   0.813     0.849  0.886 Preprocessor1_Model1\n## 11 spec        bootstrap   0.541     0.614  0.682 Preprocessor1_Model1\n\n这样就直接得到了所有指标的95%置信区间(.lower和.upper),虽然结果和上面计算的不太一样(计算过程不一样),但是都是对的,而且也是bootstrap分位数法。\n就像我们上面说的,如果你一开始采用的内部重抽样方法不是bootstrap法,这种方法依然适用。\n比如我们使用5折交叉验证法:\n\n# 5折交叉验证法\nset.seed(123)\nres_fold &lt;- fit_resamples(rf_wf,\n                     resamples = vfold_cv(train,5),\n                     #metrics = \"roc_auc\",\n                     control = ctrl)\n# 依然适用\nset.seed(123)\nbootresfold &lt;- int_pctl(res_fold, times = 1000,alpha = 0.05)\nbootresfold\n## # A tibble: 3 × 6\n##   .metric     .estimator .lower .estimate .upper .config             \n##   &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy    bootstrap   0.723     0.761  0.797 Preprocessor1_Model1\n## 2 brier_class bootstrap   0.137     0.153  0.171 Preprocessor1_Model1\n## 3 roc_auc     bootstrap   0.810     0.843  0.875 Preprocessor1_Model1\n\n结果也给出了3个指标各自的95%置信区间!",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "bootstrap一切指标.html#外部验证集的置信区间",
+    "href": "bootstrap一切指标.html#外部验证集的置信区间",
+    "title": "38  bootstrap一切指标",
+    "section": "38.8 外部验证集的置信区间",
+    "text": "38.8 外部验证集的置信区间\n如果你想获得外部验证集的bootstrap法置信区间,也是非常简单,tidymodels的作者作为生物统计专业的博士,早就为我们想好了。\n首先是按照平常的步骤获取测试集(也就是外部验证集,也就是拟合模型时没用过的数据集)的性能指标:\n\n# 在训练集建模,在测试集(即外部验证集)预测\ntest_res &lt;- rf_wf %&gt;% \n  last_fit(split)\n\n# 获取测试集(即外部验证集)的性能指标\ncollect_metrics(test_res)\n## # A tibble: 3 × 4\n##   .metric     .estimator .estimate .config             \n##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy    binary         0.771 Preprocessor1_Model1\n## 2 roc_auc     binary         0.842 Preprocessor1_Model1\n## 3 brier_class binary         0.155 Preprocessor1_Model1\n\n对于这个结果,int_pctl()函数依然适用:\n\nset.seed(123)\nint_pctl(test_res, alpha = 0.05, times = 1000)\n## # A tibble: 3 × 6\n##   .metric     .estimator .lower .estimate .upper .config             \n##   &lt;chr&gt;       &lt;chr&gt;       &lt;dbl&gt;     &lt;dbl&gt;  &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy    bootstrap   0.719     0.772  0.831 Preprocessor1_Model1\n## 2 brier_class bootstrap   0.129     0.154  0.181 Preprocessor1_Model1\n## 3 roc_auc     bootstrap   0.786     0.843  0.896 Preprocessor1_Model1\n\n搞定,大功告成!\n\n数据如何获取?老规矩,粉丝qq群文件自取。",
+    "crumbs": [
+      "临床预测模型的评价",
+      "<span class='chapter-number'>38</span>  <span class='chapter-title'>bootstrap一切指标</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_workflow.html",
+    "href": "model-compare_workflow.html",
+    "title": "39  tidymodels实现多模型比较",
+    "section": "",
+    "text": "39.1 加载数据和R包\n今天用的这份数据,结果变量是一个二分类的。一共有91976行,26列,其中play_type是结果变量,因子型,其余列都是预测变量。\nrm(list = ls())\nlibrary(tidyverse)\nlibrary(tidymodels)\nlibrary(kknn)\ntidymodels_prefer()\n\n# 加载数据\nall_plays &lt;- read_rds(\"./datasets/all_plays.rds\")\nglimpse(all_plays)\n## Rows: 91,976\n## Columns: 26\n## $ game_id                    &lt;dbl&gt; 2017090700, 2017090700, 2017090700, 2017090…\n## $ posteam                    &lt;chr&gt; \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"NE\", \"…\n## $ play_type                  &lt;fct&gt; pass, pass, run, run, pass, run, pass, pass…\n## $ yards_gained               &lt;dbl&gt; 0, 8, 8, 3, 19, 5, 16, 0, 2, 7, 0, 3, 10, 0…\n## $ ydstogo                    &lt;dbl&gt; 10, 10, 2, 10, 7, 10, 5, 2, 2, 10, 10, 10, …\n## $ down                       &lt;ord&gt; 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2…\n## $ game_seconds_remaining     &lt;dbl&gt; 3595, 3589, 3554, 3532, 3506, 3482, 3455, 3…\n## $ yardline_100               &lt;dbl&gt; 73, 73, 65, 57, 54, 35, 30, 2, 2, 75, 32, 3…\n## $ qtr                        &lt;ord&gt; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…\n## $ posteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7…\n## $ defteam                    &lt;chr&gt; \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"KC\", \"…\n## $ defteam_score              &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0…\n## $ score_differential         &lt;dbl&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, 7, 7, …\n## $ shotgun                    &lt;fct&gt; 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0…\n## $ no_huddle                  &lt;fct&gt; 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0…\n## $ posteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ defteam_timeouts_remaining &lt;fct&gt; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3…\n## $ wp                         &lt;dbl&gt; 0.5060180, 0.4840546, 0.5100098, 0.5529816,…\n## $ goal_to_go                 &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0…\n## $ half_seconds_remaining     &lt;dbl&gt; 1795, 1789, 1754, 1732, 1706, 1682, 1655, 1…\n## $ total_runs                 &lt;dbl&gt; 0, 0, 0, 1, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5…\n## $ total_pass                 &lt;dbl&gt; 0, 1, 2, 2, 2, 3, 3, 4, 5, 0, 5, 6, 7, 7, 8…\n## $ previous_play              &lt;fct&gt; First play of Drive, pass, pass, run, run, …\n## $ in_red_zone                &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1…\n## $ in_fg_range                &lt;fct&gt; 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…\n## $ two_min_drill              &lt;fct&gt; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
-    "objectID": "model-compare_workflow.html#加载数据和r包",
-    "href": "model-compare_workflow.html#加载数据和r包",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.1 加载数据和R包",
-    "text": "47.1 加载数据和R包\n首先还是加载数据和R包,和前面的一模一样的操作,数据也没变。\n\nrm(list = ls())\nsuppressPackageStartupMessages(library(tidyverse))\nsuppressPackageStartupMessages(library(tidymodels))\nlibrary(kknn)\ntidymodels_prefer()\n\nall_plays &lt;- read_rds(\"./datasets/all_plays.rds\")\n\nset.seed(20220520)\n\nsplit_pbp &lt;- initial_split(all_plays, 0.75, strata = play_type)\n\ntrain_data &lt;- training(split_pbp)\ntest_data &lt;- testing(split_pbp)"
+    "objectID": "model-compare_workflow.html#数据划分",
+    "href": "model-compare_workflow.html#数据划分",
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.2 数据划分",
+    "text": "39.2 数据划分\n把75%的数据用于训练集,剩下的做测试集。\n\nset.seed(20220520)\n\n# 数据划分,根据play_type分层\nsplit_pbp &lt;- initial_split(all_plays, 0.75, strata = play_type)\n\ntrain_data &lt;- training(split_pbp) # 训练集\ntest_data &lt;- testing(split_pbp) # 测试集\n\ndim(train_data)\n## [1] 68981    26\ndim(test_data)\n## [1] 22995    26",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#数据预处理",
     "href": "model-compare_workflow.html#数据预处理",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.2 数据预处理",
-    "text": "47.2 数据预处理\n\npbp_rec &lt;- recipe(play_type ~ ., data = train_data)  %&gt;%\n  step_rm(half_seconds_remaining,yards_gained, game_id) %&gt;% \n  step_string2factor(posteam, defteam) %&gt;%  \n  step_corr(all_numeric(), threshold = 0.7) %&gt;% \n  step_center(all_numeric()) %&gt;%  \n  step_zv(all_predictors())"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.3 数据预处理",
+    "text": "39.3 数据预处理\n我们对这个数据进行一些简单的预处理:\n\n去掉一些没用的变量\n把一些变量从字符型变成因子型\n去掉高度相关的变量\n数值型变量进行中心化\n去掉零方差变量\n\n\npbp_rec &lt;- recipe(play_type ~ ., data = train_data)  %&gt;%\n  step_rm(half_seconds_remaining,yards_gained, game_id) %&gt;% \n  step_string2factor(posteam, defteam) %&gt;%  \n  step_corr(all_numeric(), threshold = 0.7) %&gt;% \n  step_center(all_numeric()) %&gt;%  \n  step_zv(all_predictors())",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#选择模型",
     "href": "model-compare_workflow.html#选择模型",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.3 选择模型",
-    "text": "47.3 选择模型\n直接选择4个模型,你想选几个都是可以的。\n\nlm_mod &lt;- logistic_reg(mode = \"classification\",engine = \"glm\")\nknn_mod &lt;- nearest_neighbor(mode = \"classification\", engine = \"kknn\")\nrf_mod &lt;- rand_forest(mode = \"classification\", engine = \"ranger\")\ntree_mod &lt;- decision_tree(mode = \"classification\",engine = \"rpart\")"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.4 选择模型",
+    "text": "39.4 选择模型\n直接选择4个模型,你想选几个都是可以的。\n\n# 逻辑回归模型\nlm_mod &lt;- logistic_reg(mode = \"classification\",engine = \"glm\")\n# K最近邻模型\nknn_mod &lt;- nearest_neighbor(mode = \"classification\", engine = \"kknn\")\n# 随机森林模型\nrf_mod &lt;- rand_forest(mode = \"classification\", engine = \"ranger\")\n# 决策树模型\ntree_mod &lt;- decision_tree(mode = \"classification\",engine = \"rpart\")",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#选择重抽样方法",
     "href": "model-compare_workflow.html#选择重抽样方法",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.4 选择重抽样方法",
-    "text": "47.4 选择重抽样方法\n\nset.seed(20220520)\n\nfolds &lt;- vfold_cv(train_data, v = 10)\nfolds\n## #  10-fold cross-validation \n## # A tibble: 10 × 2\n##    splits               id    \n##    &lt;list&gt;               &lt;chr&gt; \n##  1 &lt;split [62082/6899]&gt; Fold01\n##  2 &lt;split [62083/6898]&gt; Fold02\n##  3 &lt;split [62083/6898]&gt; Fold03\n##  4 &lt;split [62083/6898]&gt; Fold04\n##  5 &lt;split [62083/6898]&gt; Fold05\n##  6 &lt;split [62083/6898]&gt; Fold06\n##  7 &lt;split [62083/6898]&gt; Fold07\n##  8 &lt;split [62083/6898]&gt; Fold08\n##  9 &lt;split [62083/6898]&gt; Fold09\n## 10 &lt;split [62083/6898]&gt; Fold10"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.5 选择重抽样方法",
+    "text": "39.5 选择重抽样方法\n我们选择内部重抽样方法为10折交叉验证:\n\nset.seed(20220520)\n\nfolds &lt;- vfold_cv(train_data, v = 10)\nfolds\n## #  10-fold cross-validation \n## # A tibble: 10 × 2\n##    splits               id    \n##    &lt;list&gt;               &lt;chr&gt; \n##  1 &lt;split [62082/6899]&gt; Fold01\n##  2 &lt;split [62083/6898]&gt; Fold02\n##  3 &lt;split [62083/6898]&gt; Fold03\n##  4 &lt;split [62083/6898]&gt; Fold04\n##  5 &lt;split [62083/6898]&gt; Fold05\n##  6 &lt;split [62083/6898]&gt; Fold06\n##  7 &lt;split [62083/6898]&gt; Fold07\n##  8 &lt;split [62083/6898]&gt; Fold08\n##  9 &lt;split [62083/6898]&gt; Fold09\n## 10 &lt;split [62083/6898]&gt; Fold10",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#构建workflow",
     "href": "model-compare_workflow.html#构建workflow",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.5 构建workflow",
-    "text": "47.5 构建workflow\n这一步就是不用重复写代码的关键,把所有模型和数据预处理步骤自动连接起来。\n\nlibrary(workflowsets)\n\nfour_mods &lt;- workflow_set(list(rec = pbp_rec), \n                          list(lm = lm_mod,\n                               knn = knn_mod,\n                               rf = rf_mod,\n                               tree = tree_mod\n                               ),\n                          cross = T\n                          )\nfour_mods\n## # A workflow set/tibble: 4 × 4\n##   wflow_id info             option    result    \n##   &lt;chr&gt;    &lt;list&gt;           &lt;list&gt;    &lt;list&gt;    \n## 1 rec_lm   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 2 rec_knn  &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 3 rec_rf   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 4 rec_tree &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;"
-  },
-  {
-    "objectID": "model-compare_workflow.html#运行模型",
-    "href": "model-compare_workflow.html#运行模型",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.6 运行模型",
-    "text": "47.6 运行模型\n首先是一些运行过程中的参数设置:\n\nkeep_pred &lt;- control_resamples(save_pred = T, verbose = T)\n\n然后就是运行4个模型(目前一直是在训练集中),我们给它加速一下:\n\nlibrary(doParallel) \n\ncl &lt;- makePSOCKcluster(12) # 加速,用12个线程\nregisterDoParallel(cl)\n\nfour_fits &lt;- four_mods %&gt;% \n  workflow_map(\"fit_resamples\",\n               seed = 0520,\n               verbose = T,\n               resamples = folds,\n               control = keep_pred\n               )\n\ni 1 of 4 resampling: rec_lm\n✔ 1 of 4 resampling: rec_lm (26.6s)\ni 2 of 4 resampling: rec_knn\n✔ 2 of 4 resampling: rec_knn (3m 44.1s)\ni 3 of 4 resampling: rec_rf\n✔ 3 of 4 resampling: rec_rf (1m 10.9s)\ni 4 of 4 resampling: rec_tree\n✔ 4 of 4 resampling: rec_tree (4.5s)\n\n#saveRDS(four_fits,file=\"datasets/four_fits.rds\")\nstopCluster(cl)\n\nfour_fits\n\n需要很长时间!大家笔记本如果内存不够可能会失败哦~"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.6 构建workflow",
+    "text": "39.6 构建workflow\n这一步就是不用重复写代码的关键,把所有模型和数据预处理步骤自动连接起来。\n\nlibrary(workflowsets)\n\nfour_mods &lt;- workflow_set(list(rec = pbp_rec), # 预处理\n                          list(lm = lm_mod,    # 模型\n                               knn = knn_mod,\n                               rf = rf_mod,\n                               tree = tree_mod\n                               ),\n                          cross = T\n                          )\nfour_mods\n## # A workflow set/tibble: 4 × 4\n##   wflow_id info             option    result    \n##   &lt;chr&gt;    &lt;list&gt;           &lt;list&gt;    &lt;list&gt;    \n## 1 rec_lm   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 2 rec_knn  &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 3 rec_rf   &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n## 4 rec_tree &lt;tibble [1 × 4]&gt; &lt;opts[0]&gt; &lt;list [0]&gt;\n\n而且你会发现我们虽然设置了预处理步骤,但是并没有进行预处理,展示因为当我们建立工作流之后,它会自动进行这一步,不需要我们提前处理好。这个概念一定要理解。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_workflow.html#同时拟合多个模型",
+    "href": "model-compare_workflow.html#同时拟合多个模型",
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.7 同时拟合多个模型",
+    "text": "39.7 同时拟合多个模型\n首先是一些运行过程中的参数设置:\n\n# 保存中间的结果\nkeep_pred &lt;- control_resamples(save_pred = T, verbose = T)\n\n然后就是同时运行4个模型(目前一直是在训练集中),我们给它加速一下:\n\nlibrary(doParallel) \n\ncl &lt;- makePSOCKcluster(12) # 加速,用12个线程\nregisterDoParallel(cl)\n\nfour_fits &lt;- four_mods %&gt;% \n  workflow_map(\"fit_resamples\",\n               seed = 0520,\n               verbose = T,\n               resamples = folds,\n               control = keep_pred\n               )\n\ni 1 of 4 resampling: rec_lm\n✔ 1 of 4 resampling: rec_lm (26.6s)\ni 2 of 4 resampling: rec_knn\n✔ 2 of 4 resampling: rec_knn (3m 44.1s)\ni 3 of 4 resampling: rec_rf\n✔ 3 of 4 resampling: rec_rf (1m 10.9s)\ni 4 of 4 resampling: rec_tree\n✔ 4 of 4 resampling: rec_tree (4.5s)\n\n#saveRDS(four_fits,file=\"datasets/four_fits.rds\")\nstopCluster(cl)\n\nfour_fits\n\n需要很长时间!大家笔记本如果内存不够可能会失败哦,而且运行完之后R会变得非常卡!",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#查看结果",
     "href": "model-compare_workflow.html#查看结果",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.7 查看结果",
-    "text": "47.7 查看结果\n查看模型在训练集中的表现:\n\ncollect_metrics(four_fits)\n## # A tibble: 8 × 9\n##   wflow_id .config          preproc model .metric .estimator  mean     n std_err\n##   &lt;chr&gt;    &lt;chr&gt;            &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt;\n## 1 rec_lm   Preprocessor1_M… recipe  logi… accura… binary     0.724    10 1.91e-3\n## 2 rec_lm   Preprocessor1_M… recipe  logi… roc_auc binary     0.781    10 1.88e-3\n## 3 rec_knn  Preprocessor1_M… recipe  near… accura… binary     0.671    10 7.31e-4\n## 4 rec_knn  Preprocessor1_M… recipe  near… roc_auc binary     0.716    10 1.28e-3\n## 5 rec_rf   Preprocessor1_M… recipe  rand… accura… binary     0.732    10 1.48e-3\n## 6 rec_rf   Preprocessor1_M… recipe  rand… roc_auc binary     0.799    10 1.90e-3\n## 7 rec_tree Preprocessor1_M… recipe  deci… accura… binary     0.720    10 1.97e-3\n## 8 rec_tree Preprocessor1_M… recipe  deci… roc_auc binary     0.704    10 2.01e-3\n\n查看每一个预测结果,这个就不运行了,毕竟好几万行,太多了。。。\n\ncollect_predictions(four_fits)"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.8 查看结果",
+    "text": "39.8 查看结果\n查看模型在训练集中的表现(也就是看各种指标):\n\ncollect_metrics(four_fits)\n## # A tibble: 8 × 9\n##   wflow_id .config          preproc model .metric .estimator  mean     n std_err\n##   &lt;chr&gt;    &lt;chr&gt;            &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;      &lt;dbl&gt; &lt;int&gt;   &lt;dbl&gt;\n## 1 rec_lm   Preprocessor1_M… recipe  logi… accura… binary     0.724    10 1.91e-3\n## 2 rec_lm   Preprocessor1_M… recipe  logi… roc_auc binary     0.781    10 1.88e-3\n## 3 rec_knn  Preprocessor1_M… recipe  near… accura… binary     0.671    10 7.31e-4\n## 4 rec_knn  Preprocessor1_M… recipe  near… roc_auc binary     0.716    10 1.28e-3\n## 5 rec_rf   Preprocessor1_M… recipe  rand… accura… binary     0.732    10 1.48e-3\n## 6 rec_rf   Preprocessor1_M… recipe  rand… roc_auc binary     0.799    10 1.90e-3\n## 7 rec_tree Preprocessor1_M… recipe  deci… accura… binary     0.720    10 1.97e-3\n## 8 rec_tree Preprocessor1_M… recipe  deci… roc_auc binary     0.704    10 2.01e-3\n\n结果中给出了每个模型的AUC值和准确率,哪个大就说明哪个好。\n查看每一个预测结果,这个就不运行了,毕竟好几万行,太多了。。。\n\ncollect_predictions(four_fits)",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#可视化结果",
     "href": "model-compare_workflow.html#可视化结果",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.8 可视化结果",
-    "text": "47.8 可视化结果\n直接可视化4个模型的结果,感觉比ROC曲线更好看,还给出了可信区间。\n这个图可以自己用ggplot2语法修改。\n\nfour_fits %&gt;% autoplot(metric = \"roc_auc\")+theme_bw()"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.9 可视化结果",
+    "text": "39.9 可视化结果\n直接可视化4个模型的结果,感觉比ROC曲线更好看,还给出了可信区间。\n这个图可以自己用ggplot2语法修改。\n\nfour_fits %&gt;% autoplot(metric = \"roc_auc\")+theme_bw()\n\n\n\n\n\n\n\n\n从这个图中来看,随机森林模型是最好的,决策树最差。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_workflow.html#显著性检验",
+    "href": "model-compare_workflow.html#显著性检验",
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.10 显著性检验",
+    "text": "39.10 显著性检验\n只看大小的话肯定是随机森林最好,但是这种差异有没有统计学意义呢?这就需要专门的统计检验方法了,比如t检验。\n在此之前,我们先看看4个模型的AUC之间的相关性如何,也就是计算相关系数:\n\nauc_indiv_estimates &lt;- \n  collect_metrics(four_fits, summarize = FALSE) %&gt;% \n  filter(.metric == \"roc_auc\") \n\nauc_wider &lt;- \n  auc_indiv_estimates %&gt;% \n  select(wflow_id, .estimate, id) %&gt;% \n  pivot_wider(id_cols = \"id\", names_from = \"wflow_id\", values_from = \".estimate\")\n\ncorrr::correlate(auc_wider %&gt;% select(-id), quiet = TRUE)\n## # A tibble: 4 × 5\n##   term     rec_lm rec_knn rec_rf rec_tree\n##   &lt;chr&gt;     &lt;dbl&gt;   &lt;dbl&gt;  &lt;dbl&gt;    &lt;dbl&gt;\n## 1 rec_lm   NA       0.505  0.933    0.940\n## 2 rec_knn   0.505  NA      0.577    0.298\n## 3 rec_rf    0.933   0.577 NA        0.860\n## 4 rec_tree  0.940   0.298  0.860   NA\n\n上面是一个相关系数矩阵,可以看出线性模型和随机森林以及决策树的AUC相关性很高,随机森林和决策树的AUC相关性也很高,其他模型之间的相关性很低。\n下面给大家使用t检验计算一下线性模型和随机森林模型的p值,看看是否有统计学显著性。\n\n# 配对t检验\nauc_wider %&gt;% \n  with(t.test(rec_lm, rec_rf, paired = TRUE) ) %&gt;%\n  tidy() %&gt;% \n  select(estimate, p.value, starts_with(\"conf\"))\n## # A tibble: 1 × 4\n##   estimate  p.value conf.low conf.high\n##      &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;     &lt;dbl&gt;\n## 1  -0.0186 6.74e-10  -0.0202   -0.0170\n\n结果表明p值是小于0.0001的,具有统计学显著性,说明随机森林模型确实比线性回归好。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_workflow.html#选择最好的模型用于测试集",
     "href": "model-compare_workflow.html#选择最好的模型用于测试集",
-    "title": "47  workflow实现多模型比较",
-    "section": "47.9 选择最好的模型用于测试集",
-    "text": "47.9 选择最好的模型用于测试集\n选择表现最好的应用于测试集:\n\nrand_res &lt;- last_fit(rf_mod,pbp_rec,split_pbp)\nsaveRDS(rand_res,file = \"./datasets/rand_res.rds\")\n\n查看在测试集的模型表现:\n\nrand_res &lt;- readRDS(file = \"./datasets/rand_res.rds\")\n\n\ncollect_metrics(rand_res) # test 中的模型表现\n## # A tibble: 2 × 4\n##   .metric  .estimator .estimate .config             \n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy binary         0.731 Preprocessor1_Model1\n## 2 roc_auc  binary         0.799 Preprocessor1_Model1\n\n使用其他指标查看模型表现:\n\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\ncollect_predictions(rand_res) %&gt;% \n  metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.731\n## 2 mcc      binary         0.440\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.438\n\n可视化结果,喜闻乐见的混淆矩阵:\n\ncollect_predictions(rand_res) %&gt;% \n  conf_mat(play_type,.pred_class) %&gt;% \n  autoplot()\n\n\n\n\n喜闻乐见的ROC曲线:\n\ncollect_predictions(rand_res) %&gt;% \n  roc_curve(play_type,.pred_pass) %&gt;% \n  autoplot()\n\n\n\n\n还有非常多曲线和评价指标可选,大家可以看我之前的介绍推文~"
-  },
-  {
-    "objectID": "model-compare_mlr3.html#加载r包",
-    "href": "model-compare_mlr3.html#加载r包",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.1 加载R包",
-    "text": "48.1 加载R包\n首先还是加载数据和R包,和之前的数据一样的。\n\nrm(list = ls())\nlibrary(mlr3verse)\n## Loading required package: mlr3\nlibrary(mlr3pipelines)\nlibrary(mlr3filters)"
+    "title": "39  tidymodels实现多模型比较",
+    "section": "39.11 选择最好的模型用于测试集",
+    "text": "39.11 选择最好的模型用于测试集\n选择表现最好的模型(随机森林)应用于测试集:\n\nrand_res &lt;- last_fit(rf_mod,pbp_rec,split_pbp)\n#saveRDS(rand_res,file = \"./datasets/rand_res.rds\")\n\n查看模型在测试集的模型表现:\n\ncollect_metrics(rand_res) # test 中的模型表现\n## # A tibble: 2 × 4\n##   .metric  .estimator .estimate .config             \n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt;               \n## 1 accuracy binary         0.731 Preprocessor1_Model1\n## 2 roc_auc  binary         0.799 Preprocessor1_Model1\n\n使用其他指标查看模型表现:\n\nmetricsets &lt;- metric_set(accuracy, mcc, f_meas, j_index)\n\ncollect_predictions(rand_res) %&gt;% \n  metricsets(truth = play_type, estimate = .pred_class)\n## # A tibble: 4 × 3\n##   .metric  .estimator .estimate\n##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;\n## 1 accuracy binary         0.731\n## 2 mcc      binary         0.440\n## 3 f_meas   binary         0.774\n## 4 j_index  binary         0.438\n\n可视化结果,喜闻乐见的混淆矩阵:\n\ncollect_predictions(rand_res) %&gt;% \n  conf_mat(play_type,.pred_class) %&gt;% \n  autoplot()\n\n\n\n\n\n\n\n\n喜闻乐见的ROC曲线:\n\ncollect_predictions(rand_res) %&gt;% \n  roc_curve(play_type,.pred_pass) %&gt;% \n  autoplot()\n\n\n\n\n\n\n\n\n还有非常多曲线和评价指标可选,大家可以看我之前的介绍推文。\n这里介绍的tidymodels的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复tidymodels获取合集。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>39</span>  <span class='chapter-title'>tidymodels实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_mlr3.html",
+    "href": "model-compare_mlr3.html",
+    "title": "40  mlr3实现多模型比较",
+    "section": "",
+    "text": "40.1 加载R包\n首先还是加载数据和R包,和之前的数据一样的。\nrm(list = ls())\nlibrary(mlr3verse)\nlibrary(mlr3pipelines)\nlibrary(mlr3filters)",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#建立任务",
     "href": "model-compare_mlr3.html#建立任务",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.2 建立任务",
-    "text": "48.2 建立任务\n然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的tidymodels进行比较,这里使用的数据和预处理步骤都是和之前一样的。\n\n# 读取数据\nall_plays &lt;- readRDS(\"./datasets/all_plays.rds\")\n\n# 建立任务\npbp_task &lt;- as_task_classif(all_plays, target=\"play_type\")\n\n# 数据划分\nsplit_task &lt;- partition(pbp_task, ratio=0.75)\n\ntask_train &lt;- pbp_task$clone()$filter(split_task$train)\ntask_test &lt;- pbp_task$clone()$filter(split_task$test)"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.2 建立任务",
+    "text": "40.2 建立任务\n然后是对数据进行划分训练集和测试集,对数据进行预处理,为了和之前的tidymodels进行比较,这里使用的数据和预处理步骤都是和之前一样的。\n\n# 读取数据\nall_plays &lt;- readRDS(\"./datasets/all_plays.rds\")\n\n# 建立任务\npbp_task &lt;- as_task_classif(all_plays, target=\"play_type\")\n\n# 数据划分\nsplit_task &lt;- partition(pbp_task, ratio=0.75)\n\ntask_train &lt;- pbp_task$clone()$filter(split_task$train)\ntask_test &lt;- pbp_task$clone()$filter(split_task$test)",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#数据预处理",
     "href": "model-compare_mlr3.html#数据预处理",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.3 数据预处理",
-    "text": "48.3 数据预处理\n建立任务后就是建立数据预处理步骤,这里采用和上篇推文tidymodels中一样的预处理步骤:\n\n# 数据预处理\npbp_prep &lt;- po(\"select\", # 去掉3列\n               selector = selector_invert(\n                 selector_name(c(\"half_seconds_remaining\",\"yards_gained\",\"game_id\")))\n               ) %&gt;&gt;%\n  po(\"colapply\", # 把这两列变成因子类型\n     affect_columns = selector_name(c(\"posteam\",\"defteam\")),\n     applicator = as.factor) %&gt;&gt;% \n  po(\"filter\", # 去除高度相关的列\n     filter = mlr3filters::flt(\"find_correlation\"), filter.cutoff=0.3) %&gt;&gt;%\n  po(\"scale\", scale = F) %&gt;&gt;% # 中心化\n  po(\"removeconstants\") # 去掉零方差变量\n\n可以看到mlr3的数据预处理与tidymodels相比,在语法上确实是有些复杂了,而且由于使用的R6,很多语法看起来很别扭,文档也说的不清楚,对于新手来说还是tidymodels更好些。目前来说最大的优势可能就是速度了吧。。。\n如果你想把预处理步骤应用于数据,得到预处理之后的数据,可以用以下代码:\n\ntask_prep &lt;- pbp_prep$clone()$train(task_train)[[1]]\ndim(task_train$data())\n## [1] 68982    26\n\ntask_prep$feature_types\n##                             id    type\n##  1:                    defteam  factor\n##  2:              defteam_score numeric\n##  3: defteam_timeouts_remaining  factor\n##  4:                       down ordered\n##  5:                 goal_to_go  factor\n##  6:                in_fg_range  factor\n##  7:                in_red_zone  factor\n##  8:                  no_huddle  factor\n##  9:                    posteam  factor\n## 10:              posteam_score numeric\n## 11: posteam_timeouts_remaining  factor\n## 12:              previous_play  factor\n## 13:                        qtr ordered\n## 14:         score_differential numeric\n## 15:                    shotgun  factor\n## 16:                 total_pass numeric\n## 17:              two_min_drill  factor\n## 18:               yardline_100 numeric\n## 19:                    ydstogo numeric\n\n这样就得到了处理好的数据,但是对于mlr3pipelines来说,这一步做不做都可以。"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.3 数据预处理",
+    "text": "40.3 数据预处理\n建立任务后就是建立数据预处理步骤,这里采用和上篇推文tidymodels中一样的预处理步骤:\n\n# 数据预处理\npbp_prep &lt;- po(\"select\", # 去掉3列\n               selector = selector_invert(\n                 selector_name(c(\"half_seconds_remaining\",\"yards_gained\",\"game_id\")))\n               ) %&gt;&gt;%\n  po(\"colapply\", # 把这两列变成因子类型\n     affect_columns = selector_name(c(\"posteam\",\"defteam\")),\n     applicator = as.factor) %&gt;&gt;% \n  po(\"filter\", # 去除高度相关的列\n     filter = mlr3filters::flt(\"find_correlation\"), filter.cutoff=0.3) %&gt;&gt;%\n  po(\"scale\", scale = F) %&gt;&gt;% # 中心化\n  po(\"removeconstants\") # 去掉零方差变量\n\n可以看到mlr3的数据预处理与tidymodels相比,在语法上确实是有些复杂了,而且由于使用的R6,很多语法看起来很别扭,文档也说的不清楚,对于新手来说还是tidymodels更好些。\n如果你想把预处理步骤应用于数据,得到预处理之后的数据,可以用以下代码:\n\ntask_prep &lt;- pbp_prep$clone()$train(task_train)[[1]]\ndim(task_train$data())\n## [1] 68982    26\n\ntask_prep$feature_types\n## Key: &lt;id&gt;\n##                             id    type\n##                         &lt;char&gt;  &lt;char&gt;\n##  1:                    defteam  factor\n##  2:              defteam_score numeric\n##  3: defteam_timeouts_remaining  factor\n##  4:                       down ordered\n##  5:                 goal_to_go  factor\n##  6:                in_fg_range  factor\n##  7:                in_red_zone  factor\n##  8:                  no_huddle  factor\n##  9:                    posteam  factor\n## 10:              posteam_score numeric\n## 11: posteam_timeouts_remaining  factor\n## 12:              previous_play  factor\n## 13:                        qtr ordered\n## 14:         score_differential numeric\n## 15:                    shotgun  factor\n## 16:                 total_pass numeric\n## 17:              two_min_drill  factor\n## 18:               yardline_100 numeric\n## 19:                    ydstogo numeric\n\n这样就得到了处理好的数据,但是对于mlr3pipelines来说,这一步做不做都可以。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#选择多个模型",
     "href": "model-compare_mlr3.html#选择多个模型",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.4 选择多个模型",
-    "text": "48.4 选择多个模型\n还是选择和之前一样的4个模型:逻辑回归、随机森林、决策树、k最近邻:\n\n# 随机森林\nrf_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.ranger\", predict_type=\"prob\")) \nrf_glr$id &lt;- \"randomForest\"\n\n# 逻辑回归\nlog_glr &lt;-as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.log_reg\", predict_type=\"prob\")) \nlog_glr$id &lt;- \"logistic\"\n\n# 决策树\ntree_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.rpart\", predict_type=\"prob\")) \ntree_glr$id &lt;- \"decisionTree\"\n\n# k近邻\nkknn_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.kknn\", predict_type=\"prob\")) \nkknn_glr$id &lt;- \"kknn\""
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.4 选择多个模型",
+    "text": "40.4 选择多个模型\n还是选择和之前一样的4个模型:逻辑回归、随机森林、决策树、k最近邻:\n\n# 随机森林\nrf_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.ranger\", predict_type=\"prob\")) \nrf_glr$id &lt;- \"randomForest\"\n\n# 逻辑回归\nlog_glr &lt;-as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.log_reg\", predict_type=\"prob\")) \nlog_glr$id &lt;- \"logistic\"\n\n# 决策树\ntree_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.rpart\", predict_type=\"prob\")) \ntree_glr$id &lt;- \"decisionTree\"\n\n# k近邻\nkknn_glr &lt;- as_learner(pbp_prep %&gt;&gt;% lrn(\"classif.kknn\", predict_type=\"prob\")) \nkknn_glr$id &lt;- \"kknn\"",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#建立benchmark_grid",
     "href": "model-compare_mlr3.html#建立benchmark_grid",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.5 建立benchmark_grid",
-    "text": "48.5 建立benchmark_grid\n类似于tidymodels中的workflow_set。\n选择10折交叉验证,建立多个模型,语法也是很简单了。\n\nset.seed(0520)\n\n# 10折交叉验证\ncv &lt;- rsmp(\"cv\",folds=10)\n\nset.seed(0520)\n\n# 建立多个模型\ndesign &lt;- benchmark_grid(\n  tasks = task_train,\n  learners = list(rf_glr,log_glr,tree_glr,kknn_glr),\n  resampling = cv\n)\n\n在训练集中,使用10折交叉验证,运行4个模型,看这语法是不是也很简单清稀?"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.5 建立benchmark_grid",
+    "text": "40.5 建立benchmark_grid\n类似于tidymodels中的workflow_set。\n选择10折交叉验证,建立多个模型,语法也是很简单了。\n\nset.seed(0520)\n\n# 10折交叉验证\ncv &lt;- rsmp(\"cv\",folds=10)\n\nset.seed(0520)\n\n# 建立多个模型\ndesign &lt;- benchmark_grid(\n  tasks = task_train,\n  learners = list(rf_glr,log_glr,tree_glr,kknn_glr),\n  resampling = cv\n)\n\n在训练集中,使用10折交叉验证,运行4个模型,看这语法是不是也很简单清晰?",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#开始计算",
     "href": "model-compare_mlr3.html#开始计算",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.6 开始计算",
-    "text": "48.6 开始计算\n下面就是开始计算,和tidymodels相比,这一块语法更加简单一点,就是建立benchmark_grid,然后使用benchmark()函数即可。\n\n# 加速\nlibrary(future)\nplan(\"multisession\",workers=12)\n\n# 减少屏幕输出\nlgr::get_logger(\"mlr3\")$set_threshold(\"warn\")\nlgr::get_logger(\"bbotk\")$set_threshold(\"warn\")\n\n# 开始运行\nbmr &lt;- benchmark(design,store_models = T) # 速度比tidymodels快很多\n\n#saveRDS(bmr,file = \"datasets/bmr.rds\")\nbmr"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.6 开始计算",
+    "text": "40.6 开始计算\n下面就是开始计算,和tidymodels相比,这一块语法更加简单一点,就是建立benchmark_grid,然后使用benchmark()函数即可。\n\n# 加速\nlibrary(future)\nplan(\"multisession\",workers=12)\n\n# 减少屏幕输出\nlgr::get_logger(\"mlr3\")$set_threshold(\"warn\")\nlgr::get_logger(\"bbotk\")$set_threshold(\"warn\")\n\n# 开始运行\nbmr &lt;- benchmark(design,store_models = T) # 速度比tidymodels快很多\n\n#saveRDS(bmr,file = \"datasets/bmr.rds\")\nbmr",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#查看模型表现",
     "href": "model-compare_mlr3.html#查看模型表现",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.7 查看模型表现",
-    "text": "48.7 查看模型表现\n查看结果,也是支持同时查看多个结果的:\n\n# 默认结果\nbmr$aggregate()\n##    nr   task_id   learner_id resampling_id iters classif.ce\n## 1:  1 all_plays randomForest            cv    10  0.2696791\n## 2:  2 all_plays     logistic            cv    10  0.2768839\n## 3:  3 all_plays decisionTree            cv    10  0.2801601\n## 4:  4 all_plays         kknn            cv    10  0.3227799\n## Hidden columns: resample_result\n\n\n# 查看多个结果\nmeasures &lt;- msrs(c(\"classif.auc\",\"classif.acc\",\"classif.bbrier\"))\n\nbmr_res &lt;- bmr$aggregate(measures)\nbmr_res[,c(4,7:9)]\n##      learner_id classif.auc classif.acc classif.bbrier\n## 1: randomForest   0.7983164   0.7303209      0.1789120\n## 2:     logistic   0.7801990   0.7231161      0.1864776\n## 3: decisionTree   0.7038680   0.7198399      0.2003211\n## 4:         kknn   0.7311780   0.6772201      0.2215549"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.7 查看模型表现",
+    "text": "40.7 查看模型表现\n查看结果,也是支持同时查看多个指标的:\n\n# 默认结果\nbmr$aggregate()\n##       nr   task_id   learner_id resampling_id iters classif.ce\n##    &lt;int&gt;    &lt;char&gt;       &lt;char&gt;        &lt;char&gt; &lt;int&gt;      &lt;num&gt;\n## 1:     1 all_plays randomForest            cv    10  0.2658084\n## 2:     2 all_plays     logistic            cv    10  0.2744774\n## 3:     3 all_plays decisionTree            cv    10  0.2784204\n## 4:     4 all_plays         kknn            cv    10  0.3192138\n## Hidden columns: resample_result\n\n\n# 查看多个指标\nmeasures &lt;- msrs(c(\"classif.auc\",\"classif.acc\",\"classif.bbrier\"))\n\nbmr_res &lt;- bmr$aggregate(measures)\nbmr_res[,c(4,7:9)]\n##      learner_id classif.auc classif.acc classif.bbrier\n##          &lt;char&gt;       &lt;num&gt;       &lt;num&gt;          &lt;num&gt;\n## 1: randomForest   0.8002649   0.7341916      0.1779652\n## 2:     logistic   0.7826407   0.7255226      0.1853956\n## 3: decisionTree   0.7055902   0.7215796      0.1995955\n## 4:         kknn   0.7349490   0.6807862      0.2193700",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#结果可视化",
     "href": "model-compare_mlr3.html#结果可视化",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.8 结果可视化",
-    "text": "48.8 结果可视化\n支持ggplot2语法,使用起来和tidymodels差不多,也是对结果直接autoplot()即可。\n\nlibrary(ggplot2)\nautoplot(bmr)+theme(axis.text.x = element_text(angle = 45))\n\n\n\n\n喜闻乐见的ROC曲线:\n\nautoplot(bmr,type = \"roc\")"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.8 结果可视化",
+    "text": "40.8 结果可视化\n支持ggplot2语法,使用起来和tidymodels差不多,也是对结果直接autoplot()即可。\n\nlibrary(ggplot2)\nautoplot(bmr)+theme(axis.text.x = element_text(angle = 45))\n\n\n\n\n\n\n\n\n喜闻乐见的ROC曲线:\n\nautoplot(bmr,type = \"roc\")",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
   },
   {
     "objectID": "model-compare_mlr3.html#选择最好的模型用于测试集",
     "href": "model-compare_mlr3.html#选择最好的模型用于测试集",
-    "title": "48  mlr3实现多模型比较",
-    "section": "48.9 选择最好的模型用于测试集",
-    "text": "48.9 选择最好的模型用于测试集\n通过比较结果可以发现还是随机森林效果最好~,下面选择随机森林,在训练集上训练,在测试集上测试结果。\n这一步并没有使用10折交叉验证,如果你想用,也是可以的~\n\n# 训练\nrf_glr$train(task_train)\n\n训练好之后就是在测试集上测试并查看结果:\n\n# 测试\nprediction &lt;- rf_glr$predict(task_test)\nhead(as.data.table(prediction))\n##    row_ids truth response prob.pass  prob.run\n## 1:       3   run     pass 0.8161656 0.1838344\n## 2:       4   run     pass 0.7097711 0.2902289\n## 3:      10   run      run 0.3917451 0.6082549\n## 4:      12  pass     pass 0.5781400 0.4218600\n## 5:      19  pass     pass 0.5834923 0.4165077\n## 6:      22   run     pass 0.7099366 0.2900634\n\n混淆矩阵:\n\nprediction$confusion\n##         truth\n## response  pass   run\n##     pass 10570  3265\n##     run   3014  6145\n\n混淆矩阵可视化:\n\nautoplot(prediction)\n\n\n\n\n查看其他结果:\n\nprediction$score(msrs(c(\"classif.auc\",\"classif.acc\",\"classif.bbrier\")))\n##    classif.auc    classif.acc classif.bbrier \n##      0.7955435      0.7269288      0.1801018\n\n喜闻乐见ROC曲线:\n\nautoplot(prediction,type = \"roc\")\n\n\n\n\n简单吗?"
-  },
-  {
-    "objectID": "model-compare_caret.html#数据划分",
-    "href": "model-compare_caret.html#数据划分",
-    "title": "49  caret实现多模型比较",
-    "section": "49.1 数据划分",
-    "text": "49.1 数据划分\n下面是一个分类数据的演示。\n\n# 使用的数据集\nlibrary(mlbench)\ndata(Sonar)\nstr(Sonar[, 1:10])\n## 'data.frame':    208 obs. of  10 variables:\n##  $ V1 : num  0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...\n##  $ V2 : num  0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...\n##  $ V3 : num  0.0428 0.0843 0.1099 0.0623 0.0481 ...\n##  $ V4 : num  0.0207 0.0689 0.1083 0.0205 0.0394 ...\n##  $ V5 : num  0.0954 0.1183 0.0974 0.0205 0.059 ...\n##  $ V6 : num  0.0986 0.2583 0.228 0.0368 0.0649 ...\n##  $ V7 : num  0.154 0.216 0.243 0.11 0.121 ...\n##  $ V8 : num  0.16 0.348 0.377 0.128 0.247 ...\n##  $ V9 : num  0.3109 0.3337 0.5598 0.0598 0.3564 ...\n##  $ V10: num  0.211 0.287 0.619 0.126 0.446 ...\n\n用caret包实现boosted tree模型。\n\n# 加载R包,划分数据集\nlibrary(caret)\n## Loading required package: ggplot2\n## Loading required package: lattice\n\n# 训练集、测试集划分,比例为0.75\nset.seed(998)\ninTraining &lt;- createDataPartition(Sonar$Class, p = .75, list = FALSE)\ntraining &lt;- Sonar[inTraining,]\ntesting  &lt;- Sonar[-inTraining,]"
-  },
-  {
-    "objectID": "model-compare_caret.html#重抽样",
-    "href": "model-compare_caret.html#重抽样",
-    "title": "49  caret实现多模型比较",
-    "section": "49.2 重抽样",
-    "text": "49.2 重抽样\ntrainControl()选择重抽样方法。\n\n# 选择重抽样方法,重复10折交叉验证\nfitControl &lt;- trainControl(method = \"repeatedcv\", #默认是simple boost\n                           number = 10,\n                           repeats = 10,\n                           classProbs = T # 计算概率\n                           )\n\n# 借助 gbm 包实现 boosted tree\nset.seed(825)\ngbmFit1 &lt;- train(Class ~ ., \n                 data = training, \n                 method = \"gbm\", \n                 trControl = fitControl,\n                 verbose = FALSE)\ngbmFit1\n## Stochastic Gradient Boosting \n## \n## 157 samples\n##  60 predictor\n##   2 classes: 'M', 'R' \n## \n## No pre-processing\n## Resampling: Cross-Validated (10 fold, repeated 10 times) \n## Summary of sample sizes: 141, 142, 141, 142, 141, 142, ... \n## Resampling results across tuning parameters:\n## \n##   interaction.depth  n.trees  Accuracy   Kappa    \n##   1                   50      0.7935784  0.5797839\n##   1                  100      0.8171078  0.6290208\n##   1                  150      0.8219608  0.6383173\n##   2                   50      0.8041912  0.6027771\n##   2                  100      0.8296176  0.6544713\n##   2                  150      0.8283627  0.6520181\n##   3                   50      0.8110343  0.6170317\n##   3                  100      0.8301275  0.6551379\n##   3                  150      0.8310343  0.6577252\n## \n## Tuning parameter 'shrinkage' was held constant at a value of 0.1\n## \n## Tuning parameter 'n.minobsinnode' was held constant at a value of 10\n## Accuracy was used to select the optimal model using the largest value.\n## The final values used for the model were n.trees = 150, interaction.depth =\n##  3, shrinkage = 0.1 and n.minobsinnode = 10.\n\n结果很详细,就不做解释了。\n上面的例子也展示了caret包建模的基本语法,就是一个train()就可以了,method参数选择模型,trControl选择重抽样方法,preProcess选择数据预处理方法(上面这个例子没有进行数据预处理)。"
-  },
-  {
-    "objectID": "model-compare_caret.html#超参数调整",
-    "href": "model-compare_caret.html#超参数调整",
-    "title": "49  caret实现多模型比较",
-    "section": "49.3 超参数调整",
-    "text": "49.3 超参数调整\n上面是交叉验证的例子,并没有加入超参数调优的环节,下面将加入超参数调优的过程。\n但是说实话caret虽然是一个整合包,但是对于每一种算法,它支持调整的超参数都很有限!\n\n# 网格搜索,首先设定超参数范围\ngbmGrid &lt;-  expand.grid(interaction.depth = c(1, 5, 9), \n                        n.trees = (1:30)*50, \n                        shrinkage = 0.1,\n                        n.minobsinnode = 20)\n\nnrow(gbmGrid)\n## [1] 90\nhead(gbmGrid)\n##   interaction.depth n.trees shrinkage n.minobsinnode\n## 1                 1      50       0.1             20\n## 2                 5      50       0.1             20\n## 3                 9      50       0.1             20\n## 4                 1     100       0.1             20\n## 5                 5     100       0.1             20\n## 6                 9     100       0.1             20\n\n\n# 设置种子数,进行建模\nset.seed(825)\ngbmFit2 &lt;- train(Class ~ ., \n                 data = training, \n                 method = \"gbm\", \n                 trControl = fitControl, \n                 verbose = FALSE, \n                 tuneGrid = gbmGrid # 设定网格范围\n                 )\ngbmFit2\n#saveRDS(gbmFit2,file = \"./datasets/gbmFit2.rds\")\n\n上面这个结果非常详细。\n除了网格搜索,还提供常见的其他方法,大家感兴趣的自己探索即可,我这里只是简单演示基本用法。\n在探索这个结果之前,让我们先看看caret强大的模型结果的可视化功能。\n\n# 展示不同参数下的模型性能\ntrellis.par.set(caretTheme())\nplot(gbmFit2)  \n\n\n\n\n\n# 更改性能指标\ntrellis.par.set(caretTheme())\nplot(gbmFit2, metric = \"Kappa\")\n\n\n\n\n\n#?plot.train 获取更多细节!\ntrellis.par.set(caretTheme())\nplot(gbmFit2, metric = \"Kappa\", plotType = \"level\",\n     scales = list(x = list(rot = 90)))\n\n\n\n\n\n# 支持ggplot2\nggplot(gbmFit2)+theme_bw()  # ?xyplot.train\n\n\n\n\ntrainControl()可用来选择重抽样方法,选择是否需要计算概率(分类数据)等,这个函数非常重要,可以使用?trainControl查看细节。\n\n# trainControl函数用来设置非常多的东西,很重要\nfitControl &lt;- trainControl(method = \"repeatedcv\",\n                           number = 10,\n                           repeats = 10,\n                           classProbs = TRUE, # 计算概率\n                           summaryFunction = twoClassSummary # 二分类变量指标\n                           )\n# 选择好之后开始调优\nset.seed(825)\ngbmFit3 &lt;- train(Class ~ ., \n                 data = training, \n                 method = \"gbm\", \n                 trControl = fitControl, \n                 verbose = FALSE, \n                 tuneGrid = gbmGrid,\n                 metric = \"ROC\" # 选择指标\n                 )\ngbmFit3\n#saveRDS(gbmFit3,file = \"./datasets/gbmFit3.rds\")\n\ntrain()函数中的metric参数可以指定调优的指标,默认分类模型是accuracy和Kappa,回归模型是RMSE/R^2/MAE。\ntrainControl()中的summaryFunction参数还提供了额外的调优指标选项,比如上面这个twoClassSummary,内含3种指标:敏感度、特异度、ROC。"
-  },
-  {
-    "objectID": "model-compare_caret.html#选择最终模型",
-    "href": "model-compare_caret.html#选择最终模型",
-    "title": "49  caret实现多模型比较",
-    "section": "49.4 选择最终模型",
-    "text": "49.4 选择最终模型\n其实经过上面的train()训练后得到的gbmFit3就已经包含了我们最终的模型,如果你不需要额外的操作,那现在这个gbmFit3就可以直接用于测试集了。\n\npredict(gbmFit3, newdata = head(testing), type = \"prob\")\n##              M            R\n## 1 3.215213e-02 9.678479e-01\n## 2 1.000000e+00 3.965815e-08\n## 3 6.996088e-13 1.000000e+00\n## 4 9.070652e-01 9.293483e-02\n## 5 2.029754e-03 9.979702e-01\n## 6 9.999662e-01 3.377548e-05\npredict(gbmFit3, newdata = head(testing))\n## [1] R M R M R M\n## Levels: M R\n\n同时你也可以用$符号查看各种结果,比如:\n\ngbmFit3$finalModel # 最终模型\ngbmFit3$bestTune # 选择的超参数\ngbmFit3$results # 包含各种指标的详细结果\n\n除此之外,caret还提供了另外3个函数帮助你自定义选择最终的模型: - best:根据某一指标选择,选择使某个指标最大或最小的模型 - oneSE:使用1倍标准差法选择最终模型 - tolerance:根据某一指标选择最简单的模型\n下面是一个tolerance的演示,其他两个也是一样的使用方法:\n\nwhichTwoPct &lt;- tolerance(gbmFit3$results, \n                         metric = \"ROC\", \n                         tol = 2, # 这个参数是tolerance函数特有的\n                         maximize = TRUE) \n\ngbmFit3$results[whichTwoPct,1:6]\n##    shrinkage interaction.depth n.minobsinnode n.trees       ROC      Sens\n## 32       0.1                 5             20     100 0.9139707 0.8645833"
-  },
-  {
-    "objectID": "model-compare_caret.html#应用于测试集",
-    "href": "model-compare_caret.html#应用于测试集",
-    "title": "49  caret实现多模型比较",
-    "section": "49.5 应用于测试集",
-    "text": "49.5 应用于测试集\n上面已经介绍过了,直接使用即可。\ncaret对predict()函数进行了优化,type=prob计算概率,type=class计算类别。tidymodels完整继承了这个优点。\n\npredict(gbmFit3, newdata = head(testing))\n## [1] R M R M R M\n## Levels: M R\npredict(gbmFit3, newdata = head(testing), type = \"prob\")\n##              M            R\n## 1 3.215213e-02 9.678479e-01\n## 2 1.000000e+00 3.965815e-08\n## 3 6.996088e-13 1.000000e+00\n## 4 9.070652e-01 9.293483e-02\n## 5 2.029754e-03 9.979702e-01\n## 6 9.999662e-01 3.377548e-05"
-  },
-  {
-    "objectID": "model-compare_caret.html#多个模型的比较",
-    "href": "model-compare_caret.html#多个模型的比较",
-    "title": "49  caret实现多模型比较",
-    "section": "49.6 多个模型的比较",
-    "text": "49.6 多个模型的比较\n\n49.6.1 多建立几个模型\n\nset.seed(825)\nsvmFit &lt;- train(Class ~ ., \n                data = training, \n                method = \"svmRadial\", \n                trControl = fitControl, \n                preProc = c(\"center\", \"scale\"),\n                tuneLength = 8,\n                metric = \"ROC\")\n\nset.seed(825)\nrdaFit &lt;- train(Class ~ ., \n                data = training, \n                method = \"rda\", \n                trControl = fitControl, \n                tuneLength = 4,\n                metric = \"ROC\")\n#save(svmFit, rdaFit,file = \"./datasets/svm_rda_fit.rdata\")\n\n一起放入resamples()函数里面:\n\nresamps &lt;- resamples(list(GBM = gbmFit3,\n                          SVM = svmFit,\n                          RDA = rdaFit))\nresamps\n## \n## Call:\n## resamples.default(x = list(GBM = gbmFit3, SVM = svmFit, RDA = rdaFit))\n## \n## Models: GBM, SVM, RDA \n## Number of resamples: 100 \n## Performance metrics: ROC, Sens, Spec \n## Time estimates for: everything, final model fit\nsummary(resamps)\n## \n## Call:\n## summary.resamples(object = resamps)\n## \n## Models: GBM, SVM, RDA \n## Number of resamples: 100 \n## \n## ROC \n##          Min.  1st Qu.    Median      Mean   3rd Qu. Max. NA's\n## GBM 0.6964286 0.874504 0.9454365 0.9216468 0.9821429    1    0\n## SVM 0.7321429 0.905878 0.9464286 0.9339658 0.9821429    1    0\n## RDA 0.5625000 0.812500 0.8750000 0.8698115 0.9392361    1    0\n## \n## Sens \n##          Min.   1st Qu.    Median      Mean 3rd Qu. Max. NA's\n## GBM 0.5555556 0.7777778 0.8750000 0.8787500       1    1    0\n## SVM 0.5000000 0.7777778 0.8888889 0.8730556       1    1    0\n## RDA 0.4444444 0.7777778 0.8750000 0.8604167       1    1    0\n## \n## Spec \n##          Min.   1st Qu.    Median      Mean   3rd Qu. Max. NA's\n## GBM 0.4285714 0.7142857 0.8571429 0.8119643 1.0000000    1    0\n## SVM 0.4285714 0.7142857 0.8571429 0.8205357 0.9062500    1    0\n## RDA 0.1428571 0.5714286 0.7142857 0.6941071 0.8571429    1    0\n\n结果就很强!分别给出了3种指标下的每种模型的统计值。\n\n\n49.6.2 多个模型可视化\n喜闻乐见的结果可视化也是必不可少的。主要包括以下几种:density plots, box-whisker plots, scatterplot matrices and scatterplots\n\n# 设主题\ntheme1 &lt;- trellis.par.get()\ntheme1$plot.symbol$col = rgb(.2, .2, .2, .4)\ntheme1$plot.symbol$pch = 16\ntheme1$plot.line$col = rgb(1, 0, 0, .7)\ntheme1$plot.line$lwd &lt;- 2\n\n# 画图,箱线图\ntrellis.par.set(theme1)\nbwplot(resamps, layout = c(3, 1))\n\n\n\n\n\n# 密度图\ntrellis.par.set(theme1)\ndensityplot(resamps)\n\n\n\n\n\n# 换个指标,点线图\ntrellis.par.set(caretTheme())\ndotplot(resamps, metric = \"ROC\")\n\n\n\n\n\n# 散点图\ntrellis.par.set(theme1)\nxyplot(resamps, what = \"BlandAltman\")\n\n\n\n\n\n# 散点图矩阵\nsplom(resamps)\n\n\n\n\n\n\n49.6.3 多个模型的显著性检验\n除此之外,我们还可以对不同模型之间的差异进行显著性检验,比如t检验。\n\ndifValues &lt;- diff(resamps)\ndifValues\n## \n## Call:\n## diff.resamples(x = resamps)\n## \n## Models: GBM, SVM, RDA \n## Metrics: ROC, Sens, Spec \n## Number of differences: 3 \n## p-value adjustment: bonferroni\nsummary(difValues)\n## \n## Call:\n## summary.diff.resamples(object = difValues)\n## \n## p-value adjustment: bonferroni \n## Upper diagonal: estimates of the difference\n## Lower diagonal: p-value for H0: difference = 0\n## \n## ROC \n##     GBM       SVM       RDA     \n## GBM           -0.01232   0.05184\n## SVM 0.3408               0.06415\n## RDA 5.356e-07 2.638e-10         \n## \n## Sens \n##     GBM    SVM      RDA     \n## GBM        0.005694 0.018333\n## SVM 1.0000          0.012639\n## RDA 0.4253 1.0000           \n## \n## Spec \n##     GBM       SVM       RDA      \n## GBM           -0.008571  0.117857\n## SVM 1                    0.126429\n## RDA 8.230e-07 1.921e-10\n\n结果的可视化:\n\ntrellis.par.set(theme1)\nbwplot(difValues, layout = c(3, 1))\n\n\n\n\n\ntrellis.par.set(caretTheme())\ndotplot(difValues)\n\n\n\n\n是不是很强!"
-  },
-  {
-    "objectID": "model-compare_caret.html#使用默认超参数",
-    "href": "model-compare_caret.html#使用默认超参数",
-    "title": "49  caret实现多模型比较",
-    "section": "49.7 使用默认超参数",
-    "text": "49.7 使用默认超参数\n直接提供超参数的值,这种情况不能进行重抽样,把超参数的值直接提供给tuneGrid参数即可。\n\nfitControl &lt;- trainControl(method = \"none\", classProbs = TRUE)\n\nset.seed(825)\ngbmFit4 &lt;- train(Class ~ ., \n                 data = training, \n                 method = \"gbm\", \n                 trControl = fitControl, \n                 verbose = FALSE, \n                 # 直接提供超参数的值\n                 tuneGrid = data.frame(interaction.depth = 4,\n                                       n.trees = 100,\n                                       shrinkage = .1,\n                                       n.minobsinnode = 20),\n                 metric = \"ROC\")\ngbmFit4\n\npredict(gbmFit4, newdata = head(testing))\npredict(gbmFit4, newdata = head(testing), type = \"prob\")\n\n以上就是caret典型使用的演示,更多的例子我们慢慢介绍,逐渐深入。"
-  },
-  {
-    "objectID": "data-preprocess.html#加载r包和数据",
-    "href": "data-preprocess.html#加载r包和数据",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.1 加载R包和数据",
-    "text": "A.1 加载R包和数据\n\nlibrary(AppliedPredictiveModeling)\nlibrary(caret)\n## Loading required package: ggplot2\n## Loading required package: lattice\n\ndata(\"segmentationOriginal\")\n\nsegData &lt;- subset(segmentationOriginal, Case == \"Train\")\ncellID &lt;- segData$Cell\ncalss &lt;- segData$Class\ncase &lt;- segData$Case\nsegData &lt;- segData[ ,  -(1:3)]\nstatusColNum &lt;- grep(\"Status\", names(segData))\nstatusColNum\n##  [1]   2   4   9  10  11  12  14  16  20  21  22  26  27  28  30  32  34  36  38\n## [20]  40  43  44  46  48  51  52  55  56  59  60  63  64  68  69  70  72  73  74\n## [39]  76  78  80  82  84  86  88  92  93  94  97  98 103 104 105 106 110 111 112\n## [58] 114\n\nsegData &lt;- segData[ , -statusColNum]\n\nstr(segData)\n## 'data.frame':    1009 obs. of  58 variables:\n##  $ AngleCh1               : num  133.8 106.6 69.2 109.4 104.3 ...\n##  $ AreaCh1                : int  819 431 298 256 258 358 158 315 246 223 ...\n##  $ AvgIntenCh1            : num  31.9 28 19.5 18.8 17.6 ...\n##  $ AvgIntenCh2            : num  206 115 101 126 124 ...\n##  $ AvgIntenCh3            : num  69.9 63.9 28.2 13.6 22.5 ...\n##  $ AvgIntenCh4            : num  164.2 106.7 31 46.8 71.2 ...\n##  $ ConvexHullAreaRatioCh1 : num  1.26 1.05 1.2 1.08 1.08 ...\n##  $ ConvexHullPerimRatioCh1: num  0.797 0.935 0.866 0.92 0.931 ...\n##  $ DiffIntenDensityCh1    : num  31.9 32.5 26.7 28 27.9 ...\n##  $ DiffIntenDensityCh3    : num  43.1 36 22.9 14.9 16.1 ...\n##  $ DiffIntenDensityCh4    : num  79.3 51.4 26.4 32.7 36.2 ...\n##  $ EntropyIntenCh1        : num  6.09 5.88 5.42 5.38 5.18 ...\n##  $ EntropyIntenCh3        : num  6.64 6.68 5.44 4.15 5.49 ...\n##  $ EntropyIntenCh4        : num  7.88 7.14 5.78 6.19 6.62 ...\n##  $ EqCircDiamCh1          : num  32.3 23.4 19.5 18.1 18.2 ...\n##  $ EqEllipseLWRCh1        : num  1.56 1.38 3.39 1.38 1.62 ...\n##  $ EqEllipseOblateVolCh1  : num  2233 802 725 368 404 ...\n##  $ EqEllipseProlateVolCh1 : num  1433 583 214 267 250 ...\n##  $ EqSphereAreaCh1        : num  3279 1727 1195 1027 1036 ...\n##  $ EqSphereVolCh1         : num  17654 6751 3884 3096 3134 ...\n##  $ FiberAlign2Ch3         : num  0.488 0.301 0.22 0.364 0.359 ...\n##  $ FiberAlign2Ch4         : num  0.352 0.522 0.733 0.481 0.244 ...\n##  $ FiberLengthCh1         : num  64.3 21.1 43.1 22.3 26.5 ...\n##  $ FiberWidthCh1          : num  13.2 21.1 7.4 12.1 10.2 ...\n##  $ IntenCoocASMCh3        : num  0.02805 0.00686 0.03096 0.10816 0.01303 ...\n##  $ IntenCoocASMCh4        : num  0.01259 0.00614 0.01103 0.00995 0.00896 ...\n##  $ IntenCoocContrastCh3   : num  8.23 14.45 7.3 6.16 9.4 ...\n##  $ IntenCoocContrastCh4   : num  6.98 16.7 13.39 10.59 10.3 ...\n##  $ IntenCoocEntropyCh3    : num  6.82 7.58 6.31 5.04 6.96 ...\n##  $ IntenCoocEntropyCh4    : num  7.1 7.67 7.2 7.13 7.14 ...\n##  $ IntenCoocMaxCh3        : num  0.1532 0.0284 0.1628 0.3153 0.0739 ...\n##  $ IntenCoocMaxCh4        : num  0.0739 0.0232 0.0775 0.0586 0.0348 ...\n##  $ KurtIntenCh1           : num  -0.249 -0.293 0.626 -0.365 -0.556 ...\n##  $ KurtIntenCh3           : num  -0.331 1.051 0.128 1.083 -0.512 ...\n##  $ KurtIntenCh4           : num  -0.265 0.151 -0.347 -0.626 -0.647 ...\n##  $ LengthCh1              : num  47.2 28.1 37.9 23.1 26.3 ...\n##  $ NeighborAvgDistCh1     : num  174 158 206 264 231 ...\n##  $ NeighborMinDistCh1     : num  30.1 34.9 33.1 38.4 29.8 ...\n##  $ NeighborVarDistCh1     : num  81.4 90.4 116.9 88.5 103.5 ...\n##  $ PerimCh1               : num  154.9 84.6 101.1 68.7 73.4 ...\n##  $ ShapeBFRCh1            : num  0.54 0.724 0.589 0.635 0.557 ...\n##  $ ShapeLWRCh1            : num  1.47 1.33 2.83 1.31 1.49 ...\n##  $ ShapeP2ACh1            : num  2.26 1.27 2.55 1.4 1.59 ...\n##  $ SkewIntenCh1           : num  0.399 0.472 0.882 0.547 0.443 ...\n##  $ SkewIntenCh3           : num  0.62 0.971 1 1.432 0.556 ...\n##  $ SkewIntenCh4           : num  0.527 0.325 0.604 0.704 0.137 ...\n##  $ SpotFiberCountCh3      : int  4 2 4 0 1 1 4 2 2 2 ...\n##  $ SpotFiberCountCh4      : int  11 6 7 5 4 5 4 2 5 1 ...\n##  $ TotalIntenCh1          : int  24964 11552 5545 4613 4340 14461 4743 88725 136957 79885 ...\n##  $ TotalIntenCh2          : int  160997 47510 28869 30855 30719 74259 15434 148012 57421 62235 ...\n##  $ TotalIntenCh3          : int  54675 26344 8042 3332 5548 14474 6265 58224 20304 23878 ...\n##  $ TotalIntenCh4          : int  128368 43959 8843 11466 17588 23099 17534 120536 15482 98948 ...\n##  $ VarIntenCh1            : num  18.8 17.3 13.8 13.9 12.3 ...\n##  $ VarIntenCh3            : num  56.7 37.7 30 18.6 17.7 ...\n##  $ VarIntenCh4            : num  118.4 49.5 24.7 40.3 41.9 ...\n##  $ WidthCh1               : num  32.2 21.2 13.4 17.5 17.7 ...\n##  $ XCentroid              : int  215 371 487 211 172 276 239 95 438 386 ...\n##  $ YCentroid              : int  347 252 295 495 207 385 404 95 16 14 ..."
-  },
-  {
-    "objectID": "data-preprocess.html#中心化和标准化",
-    "href": "data-preprocess.html#中心化和标准化",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.2 中心化和标准化",
-    "text": "A.2 中心化和标准化\n某些算法对预测变量是有要求的,比如需要预测变量具有相同的尺度,如果有的预测变量范围是0.10.2,但是有的却是1000020000,这种变量间的绝大差距会影像某些模型的稳定性,所以需要想办法把它们变成差不多的范围(有个专有名词:无量纲化)。\n中心化和标准化可以解决这样的问题。\n中心化是将所有变量减去其均值,其结果是变换后的变量均值为0;标准化是将每个变量除以其自身的标准差,标准化迫使变量的标准差为1。\nR语言中scale()函数可实现中心化和标准化,就不多做介绍了。"
-  },
-  {
-    "objectID": "data-preprocess.html#偏度问题",
-    "href": "data-preprocess.html#偏度问题",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.3 偏度问题",
-    "text": "A.3 偏度问题\n无偏分布类似我们常说的正态分布,有偏分布又分为右偏和左偏,分别类似正偏态分布和负偏态分布。\n一个判断数据有偏的黄金标准:如果最大值与最小值的比例超过20,那么我们认为数据有偏。\n可以通过计算偏度统计量来衡量偏度。如果预测变量分布是大致对称的,那么偏度将接近于0,右偏分布偏度大于0,越大说明偏的越厉害;左偏分布偏度小于0,越小说明偏的越厉害。\n计算偏度的包很多。\n使用e1071包查看变量的偏度\n\nlibrary(e1071)\n# 查看偏度\nskewness(segData$AngleCh1)\n## [1] -0.02426252\n## [1] -0.02426252\n\n# 查看每一列的偏度\nskewValues &lt;- apply(segData, 2, skewness)\nhead(skewValues)\n##    AngleCh1     AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4 \n## -0.02426252  3.52510745  2.95918524  0.84816033  2.20234214  1.90047128\n\n也可以通过psych包查看:\n\npsych::skew(segData$AngleCh1) # 偏度\n## [1] -0.02426252\n\npsych::kurtosi(segData$AngleCh1) # 峰度\n## [1] -0.8594789\n\n通过对数据进行变换可以一定程度解决偏度的问题,常用的方法有:取对数(log),平方根,倒数,Box&Cox法等。\nlog、平方根、倒数这些很简单,就不演示了,下面演示下BoxCox变换。\n\n# 准备对数据进行BoxCox变换\nCh1AreaTrans &lt;- BoxCoxTrans(segData$AreaCh1)\nCh1AreaTrans\n## Box-Cox Transformation\n## \n## 1009 data points used to estimate Lambda\n## \n## Input data summary:\n##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. \n##   150.0   194.0   256.0   325.1   376.0  2186.0 \n## \n## Largest/Smallest: 14.6 \n## Sample Skewness: 3.53 \n## \n## Estimated Lambda: -0.9\n\n# 进行变换\nAreaCh1_transed &lt;- predict(Ch1AreaTrans, segData$AreaCh1)\n\n# 查看变换前、后的数据\nhead(segData$AreaCh1)\n## [1] 819 431 298 256 258 358\nhead(AreaCh1_transed)\n## [1] 1.108458 1.106383 1.104520 1.103554 1.103607 1.105523\n\n这里可以看到caret对数据预处理的方式,首先是选择方法,然后使用predict()函数把变换应用到具体的变量上。这是caret的基本操作,大家一定要记住!\n对于变换前后的数据变化,只看数字没有直观的感受,下面给大家画图演示。\n\n# 画图看变换前后\nopar &lt;- par(mfrow=c(1,2))\nhist(segData$AreaCh1)\nhist(AreaCh1_transed)\n\n\n\npar(opar)\n\n可以明显看到变换前是右偏分布,变换后基本接近无偏,可以再次计算偏度看看:\n\npsych::skew(AreaCh1_transed)\n## [1] 0.0976087\n\n下面是BoxCox变换的一点点扩展,不看也影响不大。\nBoxCox变换需要一个参数lambda,这个参数需要我们计算并指定,如上使用caret进行变换时,它会自动帮我们处理好,其中一句代码显示Estimated Lambda: -0.9,也就是lambda=0.9。\n还有很多R包可以实现BoxCox变换,其中比较简单的是forecast,简单演示如下:\n\nlibrary(forecast)\n## Registered S3 method overwritten by 'quantmod':\n##   method            from\n##   as.zoo.data.frame zoo\n\nbest.lambda &lt;- BoxCox.lambda(segData$AreaCh1) # 计算lambda\nbest.lambda\n## [1] -0.9999264\n\nAreaCh1.transformed &lt;- BoxCox(segData$AreaCh1, lambda = best.lambda) # 变换\nhead(AreaCh1.transformed)\n## [1] 0.9988519 0.9977522 0.9967163 0.9961655 0.9961958 0.9972789\n\ny0 &lt;- InvBoxCox(AreaCh1.transformed,lambda=best.lambda) # 还原"
-  },
-  {
-    "objectID": "data-preprocess.html#解决离群值",
-    "href": "data-preprocess.html#解决离群值",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.4 解决离群值",
-    "text": "A.4 解决离群值\n离群值其实是有明确定义的,通常我们会选择直接删除离群值,但是还是要根据实际情况来看,有的离群值是非常有意义的,这样的离群值不能直接删除。\n\n有的离群值可能是数据录入时不小心输错了,比如错把收缩压132mmHg录成了 -132mmHg,只需要改正即可;\n在样本量较小时,不宜直接删除离群值,有的离群值可能是因为数据来自一个明显有偏的分布,只是因为我们的样本量太小无法观测到这个偏度;\n有些离群值可能来自一个特殊的子集,只是这个子集才刚开始被收集到。\n\n有些模型对离群值很敏感,比如线性模型,这样是需要处理的,一个常见的方法是空间表示变换,该变换将预测变量取值映射到高纬的球上,它会把所有样本变换到离球心相等的球面上。在caret中可以实现。关于它的具体数学运算过程,感兴趣的自己了解即可,我不太感兴趣。\n在进行空间表示变换前,最好先进行中心化和标准化,这也和它的数学计算有关,我也不太感兴趣。\n\n# 变换前的图形\ndata(mdrr)\ntransparentTheme(trans = .4)\n\nplotSubset &lt;- data.frame(scale(mdrrDescr[, c(\"nC\", \"X4v\")])) \nxyplot(nC ~ X4v,\n       data = plotSubset,\n       groups = mdrrClass, \n       auto.key = list(columns = 2))\n\n\n\n\n\n# 变换后的图形\ntransformed &lt;- spatialSign(plotSubset)\ntransformed &lt;- as.data.frame(transformed)\nxyplot(nC ~ X4v, \n       data = transformed, \n       groups = mdrrClass, \n       auto.key = list(columns = 2)) \n\n\n\n\n是不是很神奇?"
-  },
-  {
-    "objectID": "data-preprocess.html#降维和特征提取",
-    "href": "data-preprocess.html#降维和特征提取",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.5 降维和特征提取",
-    "text": "A.5 降维和特征提取\n有很多方法,比如PCA, ICA, PLS, UMAP等,最流行的还是PCA,主要是它给出的主成分是彼此不相关的,这恰好符合一些模型的需求。\n对数据进行PCA变换之前,最好先解决偏度问题,然后进行中心化和标准化,和它的数学计算过程有关,感兴趣的自己了解。\n可视化前后不同:\n\n# 主成分分析,可参考我之前的推文\npr &lt;- prcomp(~ AvgIntenCh1 + EntropyIntenCh1, \n             data = segData, \n             scale. = TRUE)\n\n# 可视化前后图形\nlibrary(ggplot2)\n\np1 &lt;- ggplot(segData, aes(AvgIntenCh1,EntropyIntenCh1))+\n  geom_point()+\n  labs(x=\"Channel 1 Fiber Width\",y=\"Intensity Entropy Channel 1\")+\n  theme_bw()\np2 &lt;- ggplot(as.data.frame(pr$x), aes(PC1,PC2))+\n  geom_point()+\n  theme_bw()\ncowplot::plot_grid(p1,p2)"
-  },
-  {
-    "objectID": "data-preprocess.html#处理缺失值",
-    "href": "data-preprocess.html#处理缺失值",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.6 处理缺失值",
-    "text": "A.6 处理缺失值\n处理缺失值主要有两种方法,直接删除或者进行插补,使用哪种方法应取决于对数据的理解!\n一些常见的缺失值处理方法可以参考我之前的推文:我常用的缺失值插补方法"
-  },
-  {
-    "objectID": "data-preprocess.html#过滤",
-    "href": "data-preprocess.html#过滤",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.7 过滤",
-    "text": "A.7 过滤\n这里的过滤和解决共线性,其实部分属于特征选择的范围,就是大家常见的自变量选择问题,这个问题在以后的推文中还会详细介绍。\n\n冗余的变量通常增加了模型的复杂度而非信息量\n\n主要是过滤两种变量:(近)零方差变量和高度相关变量。\n如果一个变量只有1个值,那么这个变量的方差为0;如果一个变量只有少量不重复的取值,这种变量称为近零方差变量;这2种变量包含的信息太少了,应当过滤;\n检测近零方差变量的准则是:\n\n不重复取值的数目与样本量的比值低(比如10%);\n最高频数和次高频数的比值高(比如20%)\n\n如果两个变量相关性太高,那么它们携带的信息可能很多是重叠的,会对某些模型产生较大的影响,应当解决。\n移除共线变量的方法如下:\n\n计算预测变量的相关系数矩阵\n找出相关系数绝对值最大的那对预测变量(记为变量A和B)\n分别计算A和B和其他预测变量的相关系数\n如果A的平均相关系数更大,移除A,否则移除B\n重复步骤2-4,直至所有相关系数的绝对值都低于设定的阈值\n\ncaret可以轻松实现以上过程。\n使用mdrr数据集演示。其中一列nR11大部分都是501,这种变量方差是很小的!\n\ndata(mdrr)\ntable(mdrrDescr$nR11) # 大部分值都是0\n## \n##   0   1   2 \n## 501   4  23\n\nsd(mdrrDescr$nR11)^2 # 方差很小!\n## [1] 0.1731787\n\n使用nearZeroVar()找出零方差和近零方差变量,结果中会给出zeroVar和nzv两列,用逻辑值表示是不是近零方差变量或者零方差变量。\n\nnzv &lt;- nearZeroVar(mdrrDescr, saveMetrics= TRUE)\nnzv[nzv$nzv,][1:10,]\n##        freqRatio percentUnique zeroVar  nzv\n## nTB     23.00000     0.3787879   FALSE TRUE\n## nBR    131.00000     0.3787879   FALSE TRUE\n## nI     527.00000     0.3787879   FALSE TRUE\n## nR03   527.00000     0.3787879   FALSE TRUE\n## nR08   527.00000     0.3787879   FALSE TRUE\n## nR11    21.78261     0.5681818   FALSE TRUE\n## nR12    57.66667     0.3787879   FALSE TRUE\n## D.Dr03 527.00000     0.3787879   FALSE TRUE\n## D.Dr07 123.50000     5.8712121   FALSE TRUE\n## D.Dr08 527.00000     0.3787879   FALSE TRUE\n\n去掉近零方差变量:\n\ndim(mdrrDescr)\n## [1] 528 342\n\nnzv &lt;- nearZeroVar(mdrrDescr)\nfilteredDescr &lt;- mdrrDescr[, -nzv]\ndim(filteredDescr)\n## [1] 528 297\n\n下面是处理高度相关的变量。\n\n# 相关系数矩阵\ncorrelations &lt;- cor(segData)\ndim(correlations)\n## [1] 58 58\n\n# 可视化相关系数矩阵,中间几个颜色深的就是高度相关的变量\nlibrary(corrplot)\n## corrplot 0.92 loaded\ncorrplot(correlations, order = \"hclust\",tl.col = \"black\")\n\n\n\n\n去掉高度相关的变量:\n\n# 阈值设为0.75\nhighCorr &lt;- findCorrelation(correlations, cutoff = 0.75)\nlength(highCorr)\n## [1] 32\nhead(highCorr)\n## [1] 23 40 43 36  7 15\n\n# 去掉高度相关的变量\nfilteredSegData &lt;- segData[, -highCorr]"
-  },
-  {
-    "objectID": "data-preprocess.html#共线性",
-    "href": "data-preprocess.html#共线性",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.8 共线性",
-    "text": "A.8 共线性\n假设一个下面这种的数据,其中第2列和第3列的值加起来和第1列一样,第4,5,6列的值起来也和第1列一样。这种数据的某些变量间是有高度共线性的。\n\nltfrDesign &lt;- matrix(0, nrow=6, ncol=6)\nltfrDesign[,1] &lt;- c(1, 1, 1, 1, 1, 1)\nltfrDesign[,2] &lt;- c(1, 1, 1, 0, 0, 0)\nltfrDesign[,3] &lt;- c(0, 0, 0, 1, 1, 1)\nltfrDesign[,4] &lt;- c(1, 0, 0, 1, 0, 0)\nltfrDesign[,5] &lt;- c(0, 1, 0, 0, 1, 0)\nltfrDesign[,6] &lt;- c(0, 0, 1, 0, 0, 1)\n\nltfrDesign\n##      [,1] [,2] [,3] [,4] [,5] [,6]\n## [1,]    1    1    0    1    0    0\n## [2,]    1    1    0    0    1    0\n## [3,]    1    1    0    0    0    1\n## [4,]    1    0    1    1    0    0\n## [5,]    1    0    1    0    1    0\n## [6,]    1    0    1    0    0    1\n\nfindLinearCombos()可以通过算法给出需要去除的变量,关于具体的方法可以官网查看。\n\ncomboInfo &lt;- findLinearCombos(ltfrDesign)\ncomboInfo\n## $linearCombos\n## $linearCombos[[1]]\n## [1] 3 1 2\n## \n## $linearCombos[[2]]\n## [1] 6 1 4 5\n## \n## \n## $remove\n## [1] 3 6\n\n结果给出了需要去除的变量是第3列和第6列。\n\n# 去除第3列和第6列\nltfrDesign[, -comboInfo$remove]\n##      [,1] [,2] [,3] [,4]\n## [1,]    1    1    1    0\n## [2,]    1    1    0    1\n## [3,]    1    1    0    0\n## [4,]    1    0    1    0\n## [5,]    1    0    0    1\n## [6,]    1    0    0    0"
-  },
-  {
-    "objectID": "data-preprocess.html#构建虚拟变量",
-    "href": "data-preprocess.html#构建虚拟变量",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.9 构建虚拟变量",
-    "text": "A.9 构建虚拟变量\n最常见的回归分析中的哑变量设置,可以参考之前的推文,详细介绍了常见的分类变量的编码方式:分类变量进行回归分析时的编码方案\n这里介绍下独热编码(one-hot encoding),和哑变量编码稍有不同,哑变量是变成k-1个变量,独热编码是变成k个变量。\n使用以下数据进行演示\n\ndata(\"cars\", package = \"caret\")\nhead(cars)\n##      Price Mileage Cylinder Doors Cruise Sound Leather Buick Cadillac Chevy\n## 1 22661.05   20105        6     4      1     0       0     1        0     0\n## 2 21725.01   13457        6     2      1     1       0     0        0     1\n## 3 29142.71   31655        4     2      1     1       1     0        0     0\n## 4 30731.94   22479        4     2      1     0       0     0        0     0\n## 5 33358.77   17590        4     2      1     1       1     0        0     0\n## 6 30315.17   23635        4     2      1     0       0     0        0     0\n##   Pontiac Saab Saturn convertible coupe hatchback sedan wagon\n## 1       0    0      0           0     0         0     1     0\n## 2       0    0      0           0     1         0     0     0\n## 3       0    1      0           1     0         0     0     0\n## 4       0    1      0           1     0         0     0     0\n## 5       0    1      0           1     0         0     0     0\n## 6       0    1      0           1     0         0     0     0\n\ntype &lt;- c(\"convertible\", \"coupe\", \"hatchback\", \"sedan\", \"wagon\")\ncars$Type &lt;- factor(apply(cars[, 14:18], 1, function(x) type[which(x == 1)]))\n\ncarSubset &lt;- cars[sample(1:nrow(cars), 20), c(1, 2, 19)]\n\n# 上面是数据生成过程,不重要,记住下面这个数据的样子即可!!\nhead(carSubset)\n##        Price Mileage        Type\n## 249 12553.07   32844       coupe\n## 37  35580.33   21167 convertible\n## 745 43374.05   25199       sedan\n## 331 11179.95   23121   hatchback\n## 266 10777.05   27906   hatchback\n## 155 15253.87   20917       coupe\nlevels(carSubset$Type) # Type是一个因子型变量\n## [1] \"convertible\" \"coupe\"       \"hatchback\"   \"sedan\"       \"wagon\"\n\n现在把Type这个变量进行独热编码。\n使用dummyVars构建虚拟变量:\n\nsimpleMod &lt;- dummyVars(~Mileage + Type, # 用mileage和Type对价格进行预测\n                       data = carSubset,\n                       levelsOnly = TRUE) # 从列名中移除因子变量的名称\nsimpleMod\n## Dummy Variable Object\n## \n## Formula: ~Mileage + Type\n## 2 variables, 1 factors\n## Factor variable names will be removed\n## A less than full rank encoding is used\n\n接下来就可以使用predict和simpleMod对训练集进行生成虚拟变量的操作了:\n\npredict(simpleMod, head(carSubset))\n##     Mileage convertible coupe hatchback sedan wagon\n## 249   32844           0     1         0     0     0\n## 37    21167           1     0         0     0     0\n## 745   25199           0     0         0     1     0\n## 331   23121           0     0         1     0     0\n## 266   27906           0     0         1     0     0\n## 155   20917           0     1         0     0     0\n\n可以看到Type变量没有了,完成了虚拟变量的转换。\n假如你认为车型和里程有交互影响,则可以使用:表示:\n\nwithInteraction &lt;- dummyVars(~Mileage + Type + Mileage:Type,\n                             data = carSubset,\n                             levelsOnly = TRUE)\nwithInteraction\n## Dummy Variable Object\n## \n## Formula: ~Mileage + Type + Mileage:Type\n## 2 variables, 1 factors\n## Factor variable names will be removed\n## A less than full rank encoding is used\n\n应用于新的数据集:\n\npredict(withInteraction, head(carSubset))\n##     Mileage convertible coupe hatchback sedan wagon Mileage:Typeconvertible\n## 249   32844           0     1         0     0     0                       0\n## 37    21167           1     0         0     0     0                   21167\n## 745   25199           0     0         0     1     0                       0\n## 331   23121           0     0         1     0     0                       0\n## 266   27906           0     0         1     0     0                       0\n## 155   20917           0     1         0     0     0                       0\n##     Mileage:Typecoupe Mileage:Typehatchback Mileage:Typesedan Mileage:Typewagon\n## 249             32844                     0                 0                 0\n## 37                  0                     0                 0                 0\n## 745                 0                     0             25199                 0\n## 331                 0                 23121                 0                 0\n## 266                 0                 27906                 0                 0\n## 155             20917                     0                 0                 0"
-  },
-  {
-    "objectID": "data-preprocess.html#区间化预测变量",
-    "href": "data-preprocess.html#区间化预测变量",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.10 区间化预测变量",
-    "text": "A.10 区间化预测变量\n主要是为了好解释结果,比如把血压分为高血压1级、2级、3级,把贫血分为轻中重极重等,这样比如你做logistic回归,可以说血压每增高一个等级,因变量的风险增加多少,但是你如果说血压值每增加1mmHg,因变量增加多少倍,这就有点扯了。"
-  },
-  {
-    "objectID": "data-preprocess.html#多个预处理步骤放一起",
-    "href": "data-preprocess.html#多个预处理步骤放一起",
-    "title": "附录 A — 常见的数据预处理方法",
-    "section": "A.11 多个预处理步骤放一起",
-    "text": "A.11 多个预处理步骤放一起\n在caret中是通过preProcess()函数里面的method参数实现的,把不同的预处理步骤按照顺序写好即可。\n\nlibrary(AppliedPredictiveModeling)\ndata(schedulingData)\nstr(schedulingData)\n## 'data.frame':    4331 obs. of  8 variables:\n##  $ Protocol   : Factor w/ 14 levels \"A\",\"C\",\"D\",\"E\",..: 4 4 4 4 4 4 4 4 4 4 ...\n##  $ Compounds  : num  997 97 101 93 100 100 105 98 101 95 ...\n##  $ InputFields: num  137 103 75 76 82 82 88 95 91 92 ...\n##  $ Iterations : num  20 20 10 20 20 20 20 20 20 20 ...\n##  $ NumPending : num  0 0 0 0 0 0 0 0 0 0 ...\n##  $ Hour       : num  14 13.8 13.8 10.1 10.4 ...\n##  $ Day        : Factor w/ 7 levels \"Mon\",\"Tue\",\"Wed\",..: 2 2 4 5 5 3 5 5 5 3 ...\n##  $ Class      : Factor w/ 4 levels \"VF\",\"F\",\"M\",\"L\": 2 1 1 1 1 1 1 1 1 1 ...\n\n# 中心化、标准化、YeoJohnson变换\npp_hpc &lt;- preProcess(schedulingData[, -8], \n                     method = c(\"center\", \"scale\", \"YeoJohnson\"))\npp_hpc\n## Created from 4331 samples and 7 variables\n## \n## Pre-processing:\n##   - centered (5)\n##   - ignored (2)\n##   - scaled (5)\n##   - Yeo-Johnson transformation (5)\n## \n## Lambda estimates for Yeo-Johnson transformation:\n## -0.08, -0.03, -1.05, -1.1, 1.44\n\n# 应用于数据\ntransformed &lt;- predict(pp_hpc, newdata = schedulingData[, -8])\nhead(transformed)\n##   Protocol  Compounds InputFields Iterations NumPending         Hour Day\n## 1        E  1.2289592  -0.6324580 -0.0615593  -0.554123  0.004586516 Tue\n## 2        E -0.6065826  -0.8120473 -0.0615593  -0.554123 -0.043733201 Tue\n## 3        E -0.5719534  -1.0131504 -2.7894869  -0.554123 -0.034967177 Thu\n## 4        E -0.6427737  -1.0047277 -0.0615593  -0.554123 -0.964170752 Fri\n## 5        E -0.5804713  -0.9564504 -0.0615593  -0.554123 -0.902085020 Fri\n## 6        E -0.5804713  -0.9564504 -0.0615593  -0.554123  0.698108782 Wed\n\nmean(schedulingData$NumPending == 0)\n## [1] 0.7561764\n\n# 进行中心化、标准化、YeoJohnson、nzv\npp_no_nzv &lt;- preProcess(schedulingData[, -8], \n                        method = c(\"center\", \"scale\", \"YeoJohnson\", \"nzv\"))\npp_no_nzv\n## Created from 4331 samples and 7 variables\n## \n## Pre-processing:\n##   - centered (4)\n##   - ignored (2)\n##   - removed (1)\n##   - scaled (4)\n##   - Yeo-Johnson transformation (4)\n## \n## Lambda estimates for Yeo-Johnson transformation:\n## -0.08, -0.03, -1.05, 1.44\n\npredict(pp_no_nzv, newdata = schedulingData[1:6, -8])\n##   Protocol  Compounds InputFields Iterations         Hour Day\n## 1        E  1.2289592  -0.6324580 -0.0615593  0.004586516 Tue\n## 2        E -0.6065826  -0.8120473 -0.0615593 -0.043733201 Tue\n## 3        E -0.5719534  -1.0131504 -2.7894869 -0.034967177 Thu\n## 4        E -0.6427737  -1.0047277 -0.0615593 -0.964170752 Fri\n## 5        E -0.5804713  -0.9564504 -0.0615593 -0.902085020 Fri\n## 6        E -0.5804713  -0.9564504 -0.0615593  0.698108782 Wed\n\n如果你用过tidymodels,那你应该知道里面的数据预处理步骤是通过recipes包完成的,每一步都是step_xx,说实话我觉得caret的这种方式更加简洁易懂!\n以上就是数据预处理的一般过程,一个caret包可以解决上面所有的问题,有兴趣的小伙伴可以自行学习。\n数据预处理是一个非常系统且专业的过程,如同开头说的那样:最有效的编码数据的方法来自于建模者对数据的理解,而不是通过任何数学方法,在对数据进行预处理之前,一定要仔细理解自己的数据哦,结果导向的思维是不对的哦!\n本文简单介绍了常见的数据预处理方法和简单的实现方法,目前在R中实现数据预处理是非常方便的,这部分内容可参考:\n\nmlr3数据预处理\ntidymodels菜谱:数据预处理\nR语言机器学习caret-02:数据预处理"
-  },
-  {
-    "objectID": "data-split.html#留出法holdout",
-    "href": "data-split.html#留出法holdout",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.1 留出法(holdout)",
-    "text": "B.1 留出法(holdout)\n大家最常使用的,把数据集随机划分为训练集(train)/测试集(test)的做法就是holdout,其中训练集用于建模,测试集用于评估模型表现。\n有时还会把数据划分为训练集(train)/测试集(test)/验证集(validation),训练集用来训练模型,测试集查看模型表现,不断进行调整,然后训练集和测试集一起训练出一个模型,最后用验证集评估模型表现。"
-  },
-  {
-    "objectID": "data-split.html#交叉验证cross-validation",
-    "href": "data-split.html#交叉验证cross-validation",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.2 交叉验证(cross validation)",
-    "text": "B.2 交叉验证(cross validation)\n交叉验证,意思就是一份数据既用作训练,也用作验证,互相交叉,主要有以下几种:\nK折交叉验证(K fold cross validation),就是把数据集随机分为K个样本量基本相同的子数据集。比如5折交叉验证,就是把数据集分为5个子集(比如分成A,B,C,D,E,5份),在建模时,首先会使用其中A,B,C,D,4份数据进行建模,然后用剩下的E数据评估模型表现,接下来使用A,B,C,E,4份数据建模,用剩下的D评估模型表现。这样依次进行5个循环,每份数据都会用来评估模型表现。最后将得到的5个模型表现结果进行汇总。\n下面是一个10折交叉验证的示意图:\n\n留一交叉验证(LOOCV, leave one out cross validation),是K折交叉验证的特例。每次都只留1个样本用于评估模型表现,所以这里的K其实就等于样本量,每一个样本都会被用来评估模型表现。\n重复交叉验证(repeated cross validation),也是K折交叉验证的扩展版本,比如,重复10次的5折交叉验证,就是把5折交叉验证这个过程重复10遍。\n蒙特卡洛交叉验证(Monte Carlo cross validation),也是交叉验证的一个变种。留出法是将数据集划分1次,而蒙特卡洛交叉验证就是将留出法进行多次。"
+    "title": "40  mlr3实现多模型比较",
+    "section": "40.9 选择最好的模型用于测试集",
+    "text": "40.9 选择最好的模型用于测试集\n通过比较结果可以发现还是随机森林效果最好,下面选择随机森林,在训练集上训练,在测试集上测试结果。\n这一步并没有使用10折交叉验证,如果你想用,也是可以的~\n\n# 训练\nrf_glr$train(task_train)\n\n训练好之后就是在测试集上测试并查看结果:\n\n# 测试\nprediction &lt;- rf_glr$predict(task_test)\nhead(as.data.table(prediction))\n##    row_ids  truth response prob.pass   prob.run\n##      &lt;int&gt; &lt;fctr&gt;   &lt;fctr&gt;     &lt;num&gt;      &lt;num&gt;\n## 1:       1   pass      run 0.2689853 0.73101473\n## 2:       5   pass     pass 0.8206669 0.17933307\n## 3:       6    run      run 0.3900934 0.60990661\n## 4:      11   pass     pass 0.6096455 0.39035449\n## 5:      13    run     pass 0.9583785 0.04162154\n## 6:      14   pass     pass 0.7942447 0.20575526\n\n混淆矩阵:\n\nprediction$confusion\n##         truth\n## response  pass   run\n##     pass 10671  3239\n##     run   2913  6171\n\n混淆矩阵可视化:\n\nautoplot(prediction)\n\n\n\n\n\n\n\n\n查看其他结果:\n\nprediction$score(msrs(c(\"classif.auc\",\"classif.acc\",\"classif.bbrier\")))\n##    classif.auc    classif.acc classif.bbrier \n##      0.8013743      0.7324519      0.1774763\n\n喜闻乐见ROC曲线:\n\nautoplot(prediction,type = \"roc\")\n\n\n\n\n\n\n\n\n简单吗?\n这里介绍的mlr3的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复mlr3获取合集。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>40</span>  <span class='chapter-title'>mlr3实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_caret.html",
+    "href": "model-compare_caret.html",
+    "title": "41  caret实现多模型比较",
+    "section": "",
+    "text": "41.1 数据划分\n下面是一个分类数据的演示。这个数据一共208行,61列,其中Class是结果变量,二分类,因子型,其余变量都是预测变量。\n# 使用的数据集\nlibrary(mlbench)\ndata(Sonar)\n\ndim(Sonar)\n## [1] 208  61\nstr(Sonar[, 1:10])# 展示前10列\n## 'data.frame':    208 obs. of  10 variables:\n##  $ V1 : num  0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...\n##  $ V2 : num  0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...\n##  $ V3 : num  0.0428 0.0843 0.1099 0.0623 0.0481 ...\n##  $ V4 : num  0.0207 0.0689 0.1083 0.0205 0.0394 ...\n##  $ V5 : num  0.0954 0.1183 0.0974 0.0205 0.059 ...\n##  $ V6 : num  0.0986 0.2583 0.228 0.0368 0.0649 ...\n##  $ V7 : num  0.154 0.216 0.243 0.11 0.121 ...\n##  $ V8 : num  0.16 0.348 0.377 0.128 0.247 ...\n##  $ V9 : num  0.3109 0.3337 0.5598 0.0598 0.3564 ...\n##  $ V10: num  0.211 0.287 0.619 0.126 0.446 ...\n划分训练集、测试集:\n# 加载R包,划分数据集\nlibrary(caret)\n\n# 训练集、测试集划分,比例为0.75\nset.seed(998)\ninTraining &lt;- createDataPartition(Sonar$Class, p = .75, list = FALSE)\ntraining &lt;- Sonar[inTraining,]\ntesting  &lt;- Sonar[-inTraining,]",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>41</span>  <span class='chapter-title'>caret实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_caret.html#建立多个模型",
+    "href": "model-compare_caret.html#建立多个模型",
+    "title": "41  caret实现多模型比较",
+    "section": "41.2 建立多个模型",
+    "text": "41.2 建立多个模型\n首先建立一个boosted tree模型,并设置好它的超参数范围以及重抽样方法:\n\n# 网格搜索,首先设定超参数范围\ngbmGrid &lt;-  expand.grid(interaction.depth = c(1, 5, 9), \n                        n.trees = (1:30)*50, \n                        shrinkage = 0.1,\n                        n.minobsinnode = 20)\n\nnrow(gbmGrid)\n## [1] 90\nhead(gbmGrid)\n##   interaction.depth n.trees shrinkage n.minobsinnode\n## 1                 1      50       0.1             20\n## 2                 5      50       0.1             20\n## 3                 9      50       0.1             20\n## 4                 1     100       0.1             20\n## 5                 5     100       0.1             20\n## 6                 9     100       0.1             20\n\n设置boosted tree模型的重抽样方法:\n\n# trainControl函数用来设置非常多的东西,重复10次的10折交叉验证\nfitControl &lt;- trainControl(method = \"repeatedcv\",\n                           number = 10,\n                           repeats = 10,\n                           classProbs = TRUE, # 计算概率\n                           summaryFunction = twoClassSummary # 二分类指标\n                           )\n\n选择好之后开始拟合模型(及超参数调优):\n\n# 选择好之后开始调优\nset.seed(825)\ngbmFit3 &lt;- train(Class ~ ., \n                 data = training, \n                 method = \"gbm\", \n                 trControl = fitControl, \n                 verbose = FALSE, \n                 tuneGrid = gbmGrid,\n                 metric = \"ROC\" # 选择指标\n                 )\ngbmFit3\n#saveRDS(gbmFit3,file = \"./datasets/gbmFit3.rds\")\n\n上面的例子展示了caret包建模的基本语法,就是一个train()就可以了,method参数选择模型,trControl选择重抽样方法,preProcess选择数据预处理方法(上面这个例子没有进行数据预处理)。\ntrain()函数中的metric参数可以指定调优的指标,默认分类模型是accuracy和Kappa,回归模型是RMSE/R2/MAE。\ntrainControl()中的summaryFunction参数还提供了额外的调优指标选项,比如上面这个twoClassSummary,内含3种指标:敏感度、特异度、ROC。\n然后再建立一个支持向量机模型和正则化的判别分析模型。\n\n# 选择重抽样方法,重复10次的10折交叉验证\nfitControl &lt;- trainControl(method = \"repeatedcv\", #默认是simple boost\n                           number = 10,\n                           repeats = 10,\n                           classProbs = T # 计算概率\n                           )\n\n开始拟合模型:\n\n# 支持向量机,高斯径向基核\nset.seed(825)\nsvmFit &lt;- train(Class ~ ., \n                data = training, \n                method = \"svmRadial\", \n                trControl = fitControl, \n                preProc = c(\"center\", \"scale\"),\n                tuneLength = 8,\n                metric = \"ROC\")\n\n# 正则化的判别分析\nset.seed(825)\nrdaFit &lt;- train(Class ~ ., \n                data = training, \n                method = \"rda\", \n                trControl = fitControl, \n                tuneLength = 4,\n                metric = \"ROC\")\n#save(svmFit, rdaFit,file = \"./datasets/svm_rda_fit.rdata\")\n\n这样我们就建立好了3个模型。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>41</span>  <span class='chapter-title'>caret实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_caret.html#结果查看",
+    "href": "model-compare_caret.html#结果查看",
+    "title": "41  caret实现多模型比较",
+    "section": "41.3 结果查看",
+    "text": "41.3 结果查看\n可以单独查看每个模型的结果,直击打印即可:\n\n# 比如查看gbm模型\ngbmFit3\n\nStochastic Gradient Boosting \n\n157 samples\n 60 predictor\n  2 classes: 'M', 'R' \n\nNo pre-processing\nResampling: Cross-Validated (10 fold, repeated 10 times) \nSummary of sample sizes: 141, 142, 141, 142, 141, 142, ... \nResampling results across tuning parameters:\n\n  interaction.depth  n.trees  ROC        Sens       Spec     \n  1                    50     0.8634003  0.8631944  0.6905357\n  1                   100     0.8844097  0.8486111  0.7544643\n##省略一部分,太长了\n  9                  1500     0.9181721  0.8805556  0.8039286\n\nTuning parameter 'shrinkage' was held constant at a value of 0.1\n\nTuning parameter 'n.minobsinnode' was held constant at a value of 20\nROC was used to select the optimal model using the largest value.\nThe final values used for the model were n.trees =\n 1450, interaction.depth = 5, shrinkage = 0.1 and n.minobsinnode = 20.\n\n结果没什么难度,我就不帮大家翻译了。\n也可以一起放入resamples()函数里面,可以得到每个模型的指标的统计值,比如ROC的最大值、最小值、均值、中位数等:\n\nresamps &lt;- resamples(list(GBM = gbmFit3,\n                          SVM = svmFit,\n                          RDA = rdaFit))\n#resamps\nsummary(resamps)\n## \n## Call:\n## summary.resamples(object = resamps)\n## \n## Models: GBM, SVM, RDA \n## Number of resamples: 100 \n## \n## ROC \n##          Min.  1st Qu.    Median      Mean   3rd Qu. Max. NA's\n## GBM 0.6964286 0.874504 0.9454365 0.9216468 0.9821429    1    0\n## SVM 0.7321429 0.905878 0.9464286 0.9339658 0.9821429    1    0\n## RDA 0.5625000 0.812500 0.8750000 0.8698115 0.9392361    1    0\n## \n## Sens \n##          Min.   1st Qu.    Median      Mean 3rd Qu. Max. NA's\n## GBM 0.5555556 0.7777778 0.8750000 0.8787500       1    1    0\n## SVM 0.5000000 0.7777778 0.8888889 0.8730556       1    1    0\n## RDA 0.4444444 0.7777778 0.8750000 0.8604167       1    1    0\n## \n## Spec \n##          Min.   1st Qu.    Median      Mean   3rd Qu. Max. NA's\n## GBM 0.4285714 0.7142857 0.8571429 0.8119643 1.0000000    1    0\n## SVM 0.4285714 0.7142857 0.8571429 0.8205357 0.9062500    1    0\n## RDA 0.1428571 0.5714286 0.7142857 0.6941071 0.8571429    1    0\n\n结果就很强!分别给出了3种指标下的每种模型的统计值。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>41</span>  <span class='chapter-title'>caret实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_caret.html#结果可视化",
+    "href": "model-compare_caret.html#结果可视化",
+    "title": "41  caret实现多模型比较",
+    "section": "41.4 结果可视化",
+    "text": "41.4 结果可视化\n喜闻乐见的结果可视化也是必不可少的。主要包括以下几种(都是基于lattice的):\n\ndensity plots,\nbox-whisker plots,\nscatterplot matrices,\nscatterplots\n\n箱线图:\n\n# 设主题\ntheme1 &lt;- trellis.par.get()\ntheme1$plot.symbol$col = rgb(.2, .2, .2, .4)\ntheme1$plot.symbol$pch = 16\ntheme1$plot.line$col = rgb(1, 0, 0, .7)\ntheme1$plot.line$lwd &lt;- 2\n\n# 画图,箱线图\ntrellis.par.set(theme1)\nbwplot(resamps, layout = c(3, 1))\n\n\n\n\n\n\n\n\n密度图:\n\n# 密度图\ntrellis.par.set(theme1)\ndensityplot(resamps)\n\n\n\n\n\n\n\n\n换个指标,点线图:\n\n# 换个指标,点线图\ntrellis.par.set(caretTheme())\ndotplot(resamps, metric = \"ROC\")\n\n\n\n\n\n\n\n\n散点图:\n\n# 散点图\ntrellis.par.set(theme1)\nxyplot(resamps, what = \"BlandAltman\")\n\n\n\n\n\n\n\n\n散点图矩阵:\n\n# 散点图矩阵\nsplom(resamps)",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>41</span>  <span class='chapter-title'>caret实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "model-compare_caret.html#显著性检验",
+    "href": "model-compare_caret.html#显著性检验",
+    "title": "41  caret实现多模型比较",
+    "section": "41.5 显著性检验",
+    "text": "41.5 显著性检验\n除此之外,我们还可以对不同模型之间的差异进行显著性检验,比如t检验,结果会给出多重校正检验(bonferroni法)的p值,非常高大上:\n\ndifValues &lt;- diff(resamps)\ndifValues\n## \n## Call:\n## diff.resamples(x = resamps)\n## \n## Models: GBM, SVM, RDA \n## Metrics: ROC, Sens, Spec \n## Number of differences: 3 \n## p-value adjustment: bonferroni\nsummary(difValues)\n## \n## Call:\n## summary.diff.resamples(object = difValues)\n## \n## p-value adjustment: bonferroni \n## Upper diagonal: estimates of the difference\n## Lower diagonal: p-value for H0: difference = 0\n## \n## ROC \n##     GBM       SVM       RDA     \n## GBM           -0.01232   0.05184\n## SVM 0.3408               0.06415\n## RDA 5.356e-07 2.638e-10         \n## \n## Sens \n##     GBM    SVM      RDA     \n## GBM        0.005694 0.018333\n## SVM 1.0000          0.012639\n## RDA 0.4253 1.0000           \n## \n## Spec \n##     GBM       SVM       RDA      \n## GBM           -0.008571  0.117857\n## SVM 1                    0.126429\n## RDA 8.230e-07 1.921e-10\n\n这个结果展示的是不同模型之间的差异和t检验的p值。比如第一个矩阵(ROC的这个),先横着看,GBM和GBM是一个,不用比,GBM和SVM比,平均ROC的差异是-0.01232,GBM和RDA比,平均ROC的差异是0.05184;再顺着看,GBM和SVM的t检验的p值是0.3408,说明无统计学差异,GBM和RDA的t检验的p值是5.356e-07,有统计学差异。\n结果的可视化,使用箱线图,同时展示3种指标,这个图展示的是不同模型之间性能指标的差异分布情况:\n\ntrellis.par.set(theme1)\nbwplot(difValues, layout = c(3, 1))\n\n\n\n\n\n\n\n\n下面这个图展示的是不同模型性能指标差异的95%可信区间,如果通过了0,说明没差异,这个图的结果和上面统计检验的结果是相同的:\n\ntrellis.par.set(caretTheme())\ndotplot(difValues)\n\n\n\n\n\n\n\n\n是不是很强!\n这里介绍的caret的内容比较简单,大家如果想认真学习这个R包的话肯定是要下一番功夫的,我在公众号写了非常多相关的推文,可以在公众号后台回复caret获取合集。",
+    "crumbs": [
+      "多模型比较",
+      "<span class='chapter-number'>41</span>  <span class='chapter-title'>caret实现多模型比较</span>"
+    ]
+  },
+  {
+    "objectID": "BMJ预测模型样本量计算.html",
+    "href": "BMJ预测模型样本量计算.html",
+    "title": "42  开发预测模型样本量计算",
+    "section": "",
+    "text": "42.1 经典方法\nHarrell老爷子在他的书《Regression Modeling Strategies》中介绍的开发模型的样本量计算方法是:\n在开发数据集(也就是训练集)中,连续型结果的有效样本量由研究参与者的总数决定(有多少用多少)。对于二分类结果,有效样本量通常被认为大约等于事件(有结果的事件)和非事件(没有结果的事件)的最小值; time-to-event数据中,样本量可以粗略等于阳性事件的数量。\n在为二分类或time-to-event数据开发预测模型时,所需要的样本量常用的计算方法是10EPV法,即阳性事件的数量至少是预测变量个数的10倍(10 events per variable,10EPV)。\n但是“variable”一词具有误导性,因为在模型中一个预测变量可能有多个β(即回归系数),例如,具有三个类别的分类型预测变量就会有两个β(例如肿瘤等级1、2、3,那么就会有β(2和1比)、β(3和1比),因为分类变量在回归分析中需要进行哑变量编码)。还有就是在建模过程中使用了多项式转换和样条变换等也会使得同一个变量有多个β,如果变量之间有交互项也会产生同样的结果。\n由于预测模型的参数(也就是回归系数β)通常多于实际的预测变量个数,所以最好使用10EPP(10 events per candidate predictor parameter)法,即阳性事件的数量至少是“候选预测变量的参数”的10倍。“候选”一词很重要,因为模型过拟合的程度与预测变量参数的数量有关,而不是最终模型方程中的参数数量。\n但是10EPP原则目前也有一些争议,也有大佬建议5EPP或者15、20、50EPP。这些数量的使用都是和具体的情况有关的,也没个金标准,不仅取决于相对于候选预测变量参数数量的事件数量,还取决于参与者总数、研究人群中的结果比例(发生率)以及模型的预期预测性能等。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>42</span>  <span class='chapter-title'>开发预测模型样本量计算</span>"
+    ]
+  },
+  {
+    "objectID": "BMJ预测模型样本量计算.html#步法",
+    "href": "BMJ预测模型样本量计算.html#步法",
+    "title": "42  开发预测模型样本量计算",
+    "section": "42.2 4步法",
+    "text": "42.2 4步法\nVan Smeden等和Riley等人最近的工作描述了如何计算预测模型开发所需的样本量,使用条件是用户指定目标人群中的总体结果风险或平均结果值、候选预测变量参数的数量以及总体模型拟合方面的预期模型性能。具体实施起来总结为4个步骤:\n\n第一步是确定需要多少样本才能准确估计平均风险(也就是平均概率,对应二分类或者生存数据)或者平均值(对应连续型数据);\n第二步是确定需要多少样本才能让模型的预测值和真实值之间的误差更小;\n第三步是确定有足够的的样本量以防止过拟合;\n第四步是确定有足够的的样本量使模型的表面性能和真实性能的误差更小。\n\n\n42.2.1 第一步\n样本大小必须让预测模型的截距能被精确估计,以确保开发的模型可以准确预测平均结果值(对应连续型数据)或总体结果比例(对应二分类或者生存数据)。一个简单的方法是计算:能够准确估计“没有预测变量的空模型(null model)的截距”所需要的样本量。\n这里涉及一个简单的数学知识,就是线性模型的截距反映了模型预测的平均值。\n这个“准确估计”一般要求误差在0.05以内,也就是说预测值最好不要超过均值的95%可信区间。\n下图是计算公式和一个例子。假如一个二分类数据,它的阳性事件比例是0.5,为了控制误差在0.05以内,根据以下公式计算,需要的样本量最少是385个。\n\n\n\n42.2.2 第二步\n预测值和真实值之间的误差可以用很多指标衡量,比如平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),这个指标其实是衡量回归模型的常用指标,对于二分类数据如果使用的是概率的话也能用这个指标衡量。\n下面是计算公式和一个例子。假如一个二分类数据,它的阳性事件比例是0.3,预测变量有10个,为了控制误差(MAPE)在0.05以内,根据以下公式计算,需要的样本量最少是461个。\n\n\n\n42.2.3 第三步\n样本量越少且预测变量数量越多,则越容易过拟合,因此需要足够的样本量防止过拟合。\n建模过程中通常会使用收缩法(Shrinkage,或者被称为惩罚(penalisation)或正则化(regularisation))来降低过拟合的风险。Riley等人建议使用一个较小的收缩值(≤10%),并计算此时所需要的样本量。并且还需要指定候选预测变量参数的个数以及一个模型性能指标,比如Cox-Snell R2(记为CS-R方,属于伪R方的一种)。CS-R方可以反应信噪比(signal:noise),从而反应模型是否过拟合。\n对于连续型数据来说,CS-R方就是决定系数,反应模型所能解释的方差(或者叫变异)百分比,范围是0到1之间,越接近1越好,说明模型能够准确识别数据内部的模式,不会被噪声(误差)干扰,如果CS-R方接近0则说明模型很有可能过拟合。\n对于二分类数据和生存数据来说,CS-R方的范围是0到max(CS-R方)。对于逻辑回归模型来说,如果阳性事件发生率为0.5,0.4,0.3,0.2,0.1,0.05,0.01,那么对应的max(CS-R方)分别是0.75,0.74,0.71,0.63,0.48,0.33,0.11。所以即使模型的预期性能非常好,这个CS-R方的值也一般会选择比较小的值。\n以下是二分类和生存数据的样本量计算公式和一个示例。对于一个逻辑回归模型,如果有20个候选预测变量参数(EPP),CS-R方选择0.1,那么为了使收缩值保持在10%,最少的样本量是1698。\n\nCox-Snell R2(也就是CS-R方)的选择有多种方法,以下是作者比较推荐的几种:\n\n直接使用别人文献里报道的值\n使用其他指标近似,比如使用C指数、AUC值、其他伪R方等\n根据max(CS-R方)计算\n\n\n\n\nCS-R方的确定方法\n\n\n本文献的附件5提供了详细的公式用于计算max(CS-R方),感兴趣的自己查看一下吧。\n\n\n42.2.4 第四步\n应该有足够多的样本量保证模型的表面指标和真实指标之间的差异足够小。\n表面指标(apparent values),假如我们用训练集开发了一个模型,然后让这个模型对训练集进行预测,这样得到的指标就是表面指标,这种计算模型指标的方法叫做重代入法(resubstitution)。真实指标是指模型在其他数据中(就是模型开发时没用过的数据)得到的更真实、更接近模型真实性能的指标。\n本篇文献中采用的指标是另外一种调整的R方,即:Nagelkerke-R方(也是伪R方的一种),Nagelkerke-R方=CS-R方/max(CS-R方)。\n下面是二分类和生存数据的样本量计算公式。对于一个逻辑回归模型,假设阳性事件的比例是0.05(此时对应的max(CS-R方)是0.33),指定CS-R方为0.2,那么为了使真实的Nagelkerke-R方和表面Nagelkerke-R方的差异保持在0.05,至少需要的样本量是1079。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>42</span>  <span class='chapter-title'>开发预测模型样本量计算</span>"
+    ]
+  },
+  {
+    "objectID": "BMJ预测模型样本量计算.html#总结",
+    "href": "BMJ预测模型样本量计算.html#总结",
+    "title": "42  开发预测模型样本量计算",
+    "section": "42.3 总结",
+    "text": "42.3 总结\n下面是一个总结,对于连续型数据,推荐使用4步法(C1-C4),对于二分类数据推荐使用4步法(B1-B4),对于生存数据推荐使用3步法(T1-T4)。\n\n除此之外作者专门写了一个R包用于计算临床预测模型的样本量:pmsampsize,这个R包可以计算以上每一个步骤(除了B2这个步骤不行,这一步是通过网页计算的,网址是:https://mvansmeden.shinyapps.io/BeyondEPV/)所需要的样本量,并选择最大的一个作为开发模型所需要的最少样本量。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>42</span>  <span class='chapter-title'>开发预测模型样本量计算</span>"
+    ]
+  },
+  {
+    "objectID": "BMJ预测模型样本量计算.html#r包使用方法",
+    "href": "BMJ预测模型样本量计算.html#r包使用方法",
+    "title": "42  开发预测模型样本量计算",
+    "section": "42.4 R包使用方法",
+    "text": "42.4 R包使用方法\n下面用3个实例演示这个R包的使用方法。\n\nlibrary(pmsampsize)\n\n\n42.4.1 二分类数据\n假如我们要根据妊娠15周时测定的各种指标预测孕妇发生子痫前期的风险,这是一个二分类数据,结果变量是发生子痫/不发生子痫。\n假设该数据中,发生子痫的比例是0.05(阳性事件的比例),候选预测变量的参数数量是30(EPP是30),max(CS-R方)是0.33。如果我们预期模型能够解释15%的变异,根据第3步中介绍的CS-R方的计算方法,可以得到CS-R方=0.15*0.33=0.05。\n有了这几个数据,就可以计算样本量了:\n\npmsampsize(\n  type = \"b\",         # 二分类数据\n  csrsquared = 0.05,  # CS-R方\n  parameters = 30,    # EPP的数量\n  prevalence = 0.05,  # 阳性事件发生率\n  seed = 123          # 设置随机数种子\n)\n## NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared \n## NB: Assuming 0.05 margin of error in estimation of intercept \n## NB: Events per Predictor Parameter (EPP) assumes prevalence = 0.05  \n##  \n##            Samp_size Shrinkage Parameter CS_Rsq Max_Rsq Nag_Rsq  EPP\n## Criteria 1      5249     0.900        30   0.05   0.328   0.153 8.75\n## Criteria 2      1770     0.753        30   0.05   0.328   0.153 2.95\n## Criteria 3        73     0.900        30   0.05   0.328   0.153 0.12\n## Final           5249     0.900        30   0.05   0.328   0.153 8.75\n##  \n##  Minimum sample size required for new model development based on user inputs = 5249, \n##  with 263 events (assuming an outcome prevalence = 0.05) and an EPP = 8.75 \n##  \n## \n\n对于二分类数据,使用4步法计算样本量,其中B2这一步不能通过这个包计算,所以这个包给出了其他3个步骤所需要的样本量,B2这个步骤算出来是需要544例,因为要同时满足4个步骤的要求,所以最终需要的样本量是5249例。\n\n\n42.4.2 生存数据\n假如我们要预测治疗停止一段时间后,静脉血栓栓塞复发的风险。这是一个time-to-event类型的数据,结局是复发/不复发,时间就是治疗停止后的时长。\n假设该数据中,C指数是0.69,CS-R方是0.051,EPP=30,平均随访时间是2.07年,阳性事件发生比例是0.065,需要进行预测的时间点选择2年,那么样本量计算如下:\n\npmsampsize(\n  type = \"s\",         # 生存数据\n  csrsquared = 0.051, # CS-R方\n  parameters = 30,    # EPP的数量\n  rate = 0.065,       # 阳性事件发生率\n  timepoint = 2,      # 指定要预测的时间点\n  meanfup = 2.07      # 平均随访时间\n)\n## NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared \n## NB: Assuming 0.05 margin of error in estimation of overall risk at time point = 2  \n## NB: Events per Predictor Parameter (EPP) assumes overall event rate = 0.065  \n##  \n##              Samp_size Shrinkage Parameter CS_Rsq Max_Rsq Nag_Rsq   EPP\n## Criteria 1        5143     0.900        30  0.051   0.555   0.092 23.07\n## Criteria 2        1039     0.648        30  0.051   0.555   0.092  4.66\n## Criteria 3 *      5143     0.900        30  0.051   0.555   0.092 23.07\n## Final SS          5143     0.900        30  0.051   0.555   0.092 23.07\n##  \n##  Minimum sample size required for new model development based on user inputs = 5143, \n##  corresponding to 10646 person-time** of follow-up, with 692 outcome events \n##  assuming an overall event rate = 0.065 and therefore an EPP = 23.07  \n##  \n##  * 95% CI for overall risk = (0.113, 0.13), for true value of 0.122 and sample size n = 5143 \n##  **where time is in the units mean follow-up time was specified in\n\n生存数据的样本量计算遵循4步法,所以结果中给出了4个步骤每一步骤所需要的样本量,最终需要的样本量是5143例。\n\n\n42.4.3 连续型数据\n假如我们要预测青少年的无脂肪体重,该任务很明显是一个回归任务,结果变量是数值型的。\n假设该数据中,CS-R方为0.9,EPP=20,总体的平均无脂肪体重是26.7kg(截距的值),总体的无脂肪体重的标准差是8.7kg,那么计算样本量的代码为:\n\npmsampsize(\n  type = \"c\",       # 连续型数据\n  rsquared = 0.9,   # 连续型数据的CS-R方=R方\n  parameters = 20,  # EPP的数量\n  intercept = 26.7, # 截距,也就是均值\n  sd = 8.7          # 总体的标准差\n)\n## NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared \n## NB: Assuming MMOE &lt;= 1.1 in estimation of intercept & residual standard deviation \n## SPP - Subjects per Predictor Parameter \n##  \n##             Samp_size Shrinkage Parameter Rsq   SPP\n## Criteria 1         68     0.900        20 0.9  3.40\n## Criteria 2         41     0.853        20 0.9  2.05\n## Criteria 3        254     0.970        20 0.9 12.70\n## Criteria 4*       254     0.970        20 0.9 12.70\n## Final             254     0.970        20 0.9 12.70\n##  \n##  Minimum sample size required for new model development based on user inputs = 254  \n##  \n##  * 95% CI for intercept = (26.36, 27.04), for sample size n = 254\n\n连续型数据的样本量计算也遵循4步法,最终所需要的样本量是254。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>42</span>  <span class='chapter-title'>开发预测模型样本量计算</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html",
+    "href": "mice多重插补.html",
+    "title": "43  mice多重插补",
+    "section": "",
+    "text": "43.1 加载数据和R包\n首先我们加载mice包,并使用自带的nhanes数据进行演示。\n这个数据一共25行,4个变量,除了age这个变量外都有缺失值,各个变量的类型如下所示:\nlibrary(mice)\n\nstr(nhanes)\n## 'data.frame':    25 obs. of  4 variables:\n##  $ age: num  1 2 1 3 1 3 1 1 2 2 ...\n##  $ bmi: num  NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...\n##  $ hyp: num  NA 1 1 NA 1 NA 1 1 1 NA ...\n##  $ chl: num  NA 187 187 NA 113 184 118 187 238 NA ...\n使用mice进行缺失值插补非常简单,如果你不考虑各种细节的话,使用起来就是3行代码而已,主要使用的函数和作用如下所示:",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
   },
   {
-    "objectID": "data-split.html#bootstrap",
-    "href": "data-split.html#bootstrap",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.3 bootstrap",
-    "text": "B.3 bootstrap\n自助法,即有放回的随机抽样法。具体做法如下:\n比如,一个数据集有100个样本,每次随机抽取1个,然后放回,再随机抽取1个,这样的过程重复100次,就得到了一个和原数据集样本量相等的抽样数据集,这个抽样数据集就叫做自助集。\n由于每次都是有放回然后再随机抽取,所以一个自助集中可能有多个同一样本!所以就有可能在100次随机抽取中,有一些没被抽中过的样本,这些样本就被称为袋外样本(out of bag),其中被抽中的样本(也就是自助集)用于训练模型,袋外样本用来评估模型表现。随机森林算法就是使用这种方法的!"
+    "objectID": "mice多重插补.html#加载数据和r包",
+    "href": "mice多重插补.html#加载数据和r包",
+    "title": "43  mice多重插补",
+    "section": "",
+    "text": "mice():对缺失值进行插补\nwith():对多个插补后的结果进行分析,注意这里的with()是mice包里的函数\npool():对分析结果进行汇总\n\n\n\n\nmice使用示意图",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#多种使用方法",
+    "href": "mice多重插补.html#多种使用方法",
+    "title": "43  mice多重插补",
+    "section": "43.2 多种使用方法",
+    "text": "43.2 多种使用方法\n假如我们的研究目的是:分析对chl这个变量有影响的因素,或者说是使用age、bmi、hyp预测chl的值,因为chl这个变量是连续型变量,此时我们可以使用lm()建立多元线性回归模型:\n\nsummary(lm(chl ~ age + bmi + hyp, data = nhanes))\n## \n## Call:\n## lm(formula = chl ~ age + bmi + hyp, data = nhanes)\n## \n## Residuals:\n##     Min      1Q  Median      3Q     Max \n## -31.315 -15.782   0.576   6.315  59.335 \n## \n## Coefficients:\n##             Estimate Std. Error t value Pr(&gt;|t|)   \n## (Intercept)  -80.971     61.772  -1.311  0.22238   \n## age           55.210     14.290   3.864  0.00383 **\n## bmi            7.065      2.052   3.443  0.00736 **\n## hyp           -6.222     23.177  -0.268  0.79441   \n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n## Residual standard error: 29.05 on 9 degrees of freedom\n##   (12 observations deleted due to missingness)\n## Multiple R-squared:  0.7339, Adjusted R-squared:  0.6452 \n## F-statistic: 8.274 on 3 and 9 DF,  p-value: 0.005915\n\n此时虽然也能得到结果,但是这个是删除了缺失值之后的结果(12个观察量被删除了),lm()默认的对缺失值的默认操作就是直接删除,我们可以修改一下,但是会报错:\nlm(chl ~ age + bmi + hyp, data = nhanes, na.action = na.fail())\n\n## Error in na.fail.default() : 缺少参数\"object\",也没有缺省值\n此时我们可以使用mice对数据进行多重插补。\nmice在3.0版本以后增加了对管道符的支持,所以现在使用起来有多种语法,下面给大家介绍常见的两种使用方法。\n\n43.2.1 常规用法\n常规用法就是3行代码,分别做3件事:\n\n插补\n分析\n汇总\n\n\n# 进行插补,默认插补5次\nimp &lt;- mice(nhanes, seed = 123, print = FALSE, m=5) \n\n# 对5个结果进行分析\n# chl是连续型,所以用lm;二分类就用glm\nfit &lt;- with(imp, lm(chl ~ age + bmi + hyp)) \n\n# 汇总结果\nest1 &lt;- pool(fit)\n\n# 查看汇总结果\nsummary(est1)\n##          term  estimate std.error  statistic        df    p.value\n## 1 (Intercept) 10.312370 73.181125 0.14091571  8.137530 0.89136250\n## 2         age 27.218585 12.835482 2.12057358 10.608141 0.05841745\n## 3         bmi  4.958399  2.490281 1.99109978  7.079015 0.08629345\n## 4         hyp  1.955541 21.541135 0.09078171 14.986247 0.92886832\n\n这样我们就得到了最终的结果,可以和前面的回归分析结果对比一下,不管是变量系数还是p值、标准误等,都有很大的不同。\n以上是5次分析汇总(不是平均)后的结果,如果要单独提取某次插补后的回归分析结果,可以通过以下方式:\n\n# 提取第2次插补后的回归分析结果\nsummary(fit$analyses[[2]])\n## \n## Call:\n## lm(formula = chl ~ age + bmi + hyp)\n## \n## Residuals:\n##     Min      1Q  Median      3Q     Max \n## -48.746 -24.916  -2.562   8.620  81.342 \n## \n## Coefficients:\n##             Estimate Std. Error t value Pr(&gt;|t|)  \n## (Intercept)   40.313     52.734   0.764   0.4531  \n## age           18.783     10.760   1.746   0.0955 .\n## bmi            4.198      1.731   2.425   0.0244 *\n## hyp            5.211     20.693   0.252   0.8036  \n## ---\n## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n## \n## Residual standard error: 34.55 on 21 degrees of freedom\n## Multiple R-squared:  0.2957, Adjusted R-squared:  0.1951 \n## F-statistic:  2.94 on 3 and 21 DF,  p-value: 0.0568\n\n\n\n43.2.2 tidy用法\n以上代码可以使用管道符的写法,更加简洁美观,效果是一样的:\n\nest2 &lt;- nhanes |&gt;\n  mice(seed = 123, print = FALSE) |&gt;\n  with(lm(chl ~ age + bmi + hyp)) |&gt;\n  pool()\n\nsummary(est2)\n##          term  estimate std.error  statistic        df    p.value\n## 1 (Intercept) 10.312370 73.181125 0.14091571  8.137530 0.89136250\n## 2         age 27.218585 12.835482 2.12057358 10.608141 0.05841745\n## 3         bmi  4.958399  2.490281 1.99109978  7.079015 0.08629345\n## 4         hyp  1.955541 21.541135 0.09078171 14.986247 0.92886832\n\n和上面的常规写法完全一致。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#提取插补结果",
+    "href": "mice多重插补.html#提取插补结果",
+    "title": "43  mice多重插补",
+    "section": "43.3 提取插补结果",
+    "text": "43.3 提取插补结果\n分析多重插补数据的合适方法是在每个插补数据集中拟合模型,然后再汇总多个拟合结果,也就是mice-with-pool三部曲。所以作者并不推荐提取其中某一次插补的结果进行后续分析。如果非要提取也是可以的。\nmice默认可以插补5次,我们可以提取其中某一次插补的结果,比如提取第2次插补的结果:\n\nimputed_df &lt;- mice::complete(imp, action = 2)\nmd.pattern(imputed_df,plot = F) # 没有缺失值了\n##  /\\     /\\\n## {  `---'  }\n## {  O   O  }\n## ==&gt;  V &lt;==  No need for mice. This data set is completely observed.\n##  \\  \\|/  /\n##   `-----'\n##    age bmi hyp chl  \n## 25   1   1   1   1 0\n##      0   0   0   0 0\n\n到底选择哪一次插补的结果没有标准,可以试试选择表现更好的,比如R2更大的,AIC更小的,等等。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#不推荐的用法",
+    "href": "mice多重插补.html#不推荐的用法",
+    "title": "43  mice多重插补",
+    "section": "43.4 不推荐的用法",
+    "text": "43.4 不推荐的用法\n虽然作者也没说到底用哪次插补的结果,但是明确说了不推荐的用法,参考:https://stefvanbuuren.name/fimd/workflow.html\n\n43.4.1 平均多个结果\n对多个插补后的数据集计算平均值,作为最终的结果,这种做法是不推荐的。\n以下是对5次插补结果取平均值的示例代码,其中的ave就是取平均值后的插补后的数据:\n\nlibrary(magrittr)\nlibrary(dplyr)\n\n# 获取5次平均的结果\nave &lt;- nhanes %&gt;%\n  mice(seed = 123, print = FALSE) %&gt;%\n  mice::complete(\"long\") %&gt;% \n  group_by(.id) %&gt;%\n  summarise_all(.funs = mean) %&gt;%\n  select(-.id, -.imp)\n\n# 用平均结果做后续分析\nest8 &lt;- lm(formula = chl ~ age + bmi + hyp, data = ave)\n\n#summary(est8)\n\n这个结果和上面的正确用法的结果相差甚大,作者不推荐使用,因为这种方法和常规的simple-imputation的思想一样,具有常规方法的所有缺点。\n\n\n43.4.2 堆叠多个结果\n这个也很简单,就是把5次插补的结果直接按行合并起来,比如nhanes这个数据一共25行,插补5次后,再按行合并5次的插补结果,于是就有25*5=125行数据,用这个数据作为最终的结果进行后续分析。这种也是作者不推荐的。\n\nstacked &lt;- nhanes %&gt;%\n  mice(seed = 123, print = FALSE) %&gt;%\n  mice::complete(\"stacked\")\n\nest9 &lt;- lm(formula = chl ~ age + bmi + hyp, data = stacked)\n\n这种方法计算的回归系数相比平均法更加准确一点,但是t值、标准误等也是不准的。",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#插补细节探索",
+    "href": "mice多重插补.html#插补细节探索",
+    "title": "43  mice多重插补",
+    "section": "43.5 插补细节探索",
+    "text": "43.5 插补细节探索\n如果正常使用的话就是3步即可,不需要其他操作。但是实际使用中总是需要各种DIY操作的,mice包的每一步都可以自己控制,非常强大。\n拿到一个有缺失值的数据后,首先是探索缺失值,我们可以用mice包里的函数,也可以用其他R包,比如之前介绍过的naniar。这里就不给大家演示这一步了。\n直接看一下mice的一些使用细节,并介绍一些比较重要的参数。\nmice(\n  data,\n  m = 5, # 插补次数,默认5次,不用太多,一般5次就够用了\n  method = NULL,\n  predictorMatrix,\n  ignore = NULL,\n  where = NULL,\n  blocks,\n  visitSequence = NULL,\n  formulas,\n  blots = NULL,\n  post = NULL,\n  defaultMethod = c(\"pmm\", \"logreg\", \"polyreg\", \"polr\"),\n  maxit = 5,\n  printFlag = TRUE,\n  seed = NA,\n  data.init = NULL,\n  ...\n)\n\n43.5.1 插补方法\n\nmethod:插补时使用的方法,默认方法由defaultMethod参数指定,一般是4种方法(参考上面的代码),对应4种数据类型,分别是连续型变量、二分类、无序多分类、有序多分类。\n\nmice支持36种插补方法,可通过methods(mice)查看支持的方法:\n\nmethods(mice)\n##  [1] mice.impute.2l.bin              mice.impute.2l.lmer            \n##  [3] mice.impute.2l.norm             mice.impute.2l.pan             \n##  [5] mice.impute.2lonly.mean         mice.impute.2lonly.norm        \n##  [7] mice.impute.2lonly.pmm          mice.impute.cart               \n##  [9] mice.impute.jomoImpute          mice.impute.lasso.logreg       \n## [11] mice.impute.lasso.norm          mice.impute.lasso.select.logreg\n## [13] mice.impute.lasso.select.norm   mice.impute.lda                \n## [15] mice.impute.logreg              mice.impute.logreg.boot        \n## [17] mice.impute.mean                mice.impute.midastouch         \n## [19] mice.impute.mnar.logreg         mice.impute.mnar.norm          \n## [21] mice.impute.mpmm                mice.impute.norm               \n## [23] mice.impute.norm.boot           mice.impute.norm.nob           \n## [25] mice.impute.norm.predict        mice.impute.panImpute          \n## [27] mice.impute.passive             mice.impute.pmm                \n## [29] mice.impute.polr                mice.impute.polyreg            \n## [31] mice.impute.quadratic           mice.impute.rf                 \n## [33] mice.impute.ri                  mice.impute.sample             \n## [35] mice.mids                       mice.theme                     \n## see '?methods' for accessing help and source code\n\n# 查看每种方法的详细信息和支持的数据类型\n#?mice.impute.2l.norm \n\n在插补的过程中会自动对不同的变量选择不同的插补方法,可以通过以下方式查看每个变量使用的插补方法:\n\nimp &lt;- mice(nhanes, seed = 123, print = FALSE, m=5) \nimp\n## Class: mids\n## Number of multiple imputations:  5 \n## Imputation methods:\n##   age   bmi   hyp   chl \n##    \"\" \"pmm\" \"pmm\" \"pmm\" \n## PredictorMatrix:\n##     age bmi hyp chl\n## age   0   1   1   1\n## bmi   1   0   1   1\n## hyp   1   1   0   1\n## chl   1   1   1   0\n\n这个imp是一个mids对象,在中间部分可以看到age下面是\"\",表示没有进行插补,因为它没有缺失值,其余3个变量都是用的pmm法。\n也可以单独查看每个变量使用的方法:\n\n# 所有变量使用的插补方法\nimp$method\n##   age   bmi   hyp   chl \n##    \"\" \"pmm\" \"pmm\" \"pmm\"\n\n# chl这个变量使用的插补方法\nimp$method[[\"chl\"]]\n## [1] \"pmm\"\n\n对于每个变量,你都可以更改方法,比如对于hyp这个变量我们想使用norm法,即贝叶斯线性回归法,可以使用以下代码更改:\n\nimpp &lt;- mice(nhanes, seed = 123, print = FALSE, m=5)\n# 更改方法\nimpp$method[[\"hyp\"]] &lt;- \"norm\"\n# 重新插补即可\nmice(nhanes, seed = 123, print = FALSE, m=5, method = impp$method)\n## Class: mids\n## Number of multiple imputations:  5 \n## Imputation methods:\n##    age    bmi    hyp    chl \n##     \"\"  \"pmm\" \"norm\"  \"pmm\" \n## PredictorMatrix:\n##     age bmi hyp chl\n## age   0   1   1   1\n## bmi   1   0   1   1\n## hyp   1   1   0   1\n## chl   1   1   1   0\n\n可以看到hyp的插补方法就变成norm了。\n\n如果变量是正态分布的,那么使用norm法可能比pmm法更好。对于大型数据集,选择norm.nob可能更有用,它不绘制回归参数,因此更简单、更快。norm.boot方法是norm的快速非贝叶斯替代方法。在pmm效果不佳的情况下,norm方法是pmm的替代方法。对于稀疏分类数据,最好使用方法pmm而不是logreg、polr或polyreg。logreg.boot是logreg的一个版本,它使用bootstrap来模拟采样方差。lda法通常不如polyreg法,并且仅应在所有其他方法均失败时用作备用方法。sample是一种无需协变量即可创建起始插补的快速方法。\n\n\n\n43.5.2 预测变量矩阵\nimp最下面的预测变量矩阵也可以单独查看:\n\nimp$predictorMatrix\n##     age bmi hyp chl\n## age   0   1   1   1\n## bmi   1   0   1   1\n## hyp   1   1   0   1\n## chl   1   1   1   0\n\n多重插补进行插补时会借助其他变量,比如插补chl时,会使用其他3个变量,插补bmi时,也会使用其他3个变量。这个矩阵中的1就表示使用,0表示未使用。比如在上面的例子中,bmi就是根据age、hyp、chl这3个变量进行插补的。\npredictorMatrix的默认设置是:每个变量都用于插补其他变量。可以自由修改使用哪些变量去插补缺失值,比如我只想用age和chl这两个变量,不想使用hyp,直接把hyp这个变量变成0即可:\n\nimpp &lt;- mice(nhanes, seed = 123, print = FALSE, m=5)\n# 修改变量\nimpp$predictorMatrix[,\"hyp\"] &lt;- 0\n\n# 重新插补即可\nimppp &lt;- mice(nhanes,seed = 123, print = FALSE, m=5, \n     predictorMatrix = impp$predictorMatrix)\n\n# 查看预测变量矩阵\nimppp$predictorMatrix\n##     age bmi hyp chl\n## age   0   1   0   1\n## bmi   1   0   0   1\n## hyp   1   1   0   1\n## chl   1   1   0   0\n\n\n对于小型数据集(最多20-30个变量),使用所有其他变量去插补缺失值是合理的,但是对于大型数据集(包含几百个或者几千个变量)不推荐这种做法,通常使用15-25个变量就足够了。\n\n在实践中有时可能会需要快速使用相关的变量对某个缺失变量进行插补(比如只使用和该变量相关系数大于0.3的变量对该变量进行插补),这时可以使用quickpred()函数快速自动确定符合条件的预测变量。\n\n# 计算预测变量矩阵\npredmatrix &lt;- quickpred(\n  data, # 数据\n  mincor = 0.1, # 最小相关系数\n  minpuc = 0, # 使用的最少样本比例\n  include = \"\", # 使用哪些变量\n  exclude = \"\", # 不使用哪些变量\n  method = \"pearson\" # 相关系数计算方法\n)\n\n# 下面使用这个矩阵进行插补即可\nmice(nhanes,seed = 123, print = FALSE, m=5, \n     predictorMatrix = predmatrix)\n\n\n\n43.5.3 共线性\nmice包在插补时会自动去除存在共线性的变量。下面我们增加一个变量chl2,这个变量是chl这个变量的两倍,是很明显的共线性,mice在插补时会显示一条warning:\n\nimp &lt;- mice(cbind(nhanes, chl2 = 2 * nhanes$chl), # 新建一个有共线性的变量\n            print = FALSE, maxit = 1, m = 3, seed = 1)\n\n这个warning表示有1个变量被排除了,通过以下代码查看被排除的变量,发现是chl2,所以此时chl会被插补,但是chl2不会被插补。\n\nimp$loggedEvents\n##   it im dep      meth  out\n## 1  0  0     collinear chl2\n\n\n\n43.5.4 插补顺序\n一个数据集中可能有多个变量都有缺失值,每个变量都需要被插补,先插补哪个变量呢?\nmice默认是从左到右依次插补。可以通过visitSequence查看插补的顺序:\n\nimp &lt;- mice(nhanes, seed = 123, print = FALSE) \nimp$visitSequence\n## [1] \"age\" \"bmi\" \"hyp\" \"chl\"\n\n这个顺序当然也是可以更改的:\n\n# 自定义顺序\nvis &lt;- c(\"bmi\",\"chl\",\"hyp\",\"age\")\n\n# 按照自定义顺序插补\nimp &lt;- mice(nhanes, seed = 123, print = FALSE, visitSequence = vis) \nimp$visitSequence\n## [1] \"bmi\" \"chl\" \"hyp\" \"age\"",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#插补结果探索",
+    "href": "mice多重插补.html#插补结果探索",
+    "title": "43  mice多重插补",
+    "section": "43.6 插补结果探索",
+    "text": "43.6 插补结果探索\n在完成插补后,可以通过多种图形的方式查看插补后的数据集,检查插补效果等。\n\n43.6.1 收敛\n没有明确的方法来确定MICE算法何时收敛。\n我们可以根据迭代次数绘制出每个变量的均值和标准差(方差)的变化情况。\n\nimp &lt;- mice(nhanes, seed = 62006, maxit = 20, print = FALSE)\nplot(imp)\n\n\n\n\n\n\n\n\n如果算法收敛的话,那么多条线应该趋于交织、重合在一起,不应该有明显的趋势。上图可认为是已经收敛了。\n下面是一个不收敛的示例:\n\nmeth &lt;- make.method(boys)\nmeth[\"bmi\"] &lt;- \"~I(wgt / (hgt / 100)^2)\"\nimp.bmi1 &lt;- mice(boys, meth = meth, maxit = 20,\n                 print = FALSE, seed = 60109)\nplot(imp.bmi1)\n\n\n上图中的曲线一开始是明显的上升趋势,然后是平稳,这种就被认为是没有收敛。\n\n\n43.6.2 诊断图\n有多种图形可以用来检查插补后的数据质量如何,它们基于的思想是:好的插补数据应该具有和观测数据相同的分布。如果观测数据和插补数据的分布相差很大,那么缺失数据可能是非随机缺失。\n比如下面这个散点图,分别展示了4个变量的观测数据和插补数据。其中蓝色点是观测数据(age没有缺失值,所以全是蓝色),红色点是插补数据。\n在bmi、hyp、chl这3个变量中,插补的数据和观测数据的重合度非常高,说明插补质量好。\n\nimp &lt;- mice(nhanes, seed = 29981, printFlag = F)\nstripplot(imp, pch = c(21, 20), cex = c(1, 1.5))\n\n\n\n\n\n\n\n\n另一种看分布比较好的图形是箱线图,蓝色是观测数据,红色是插补数据,可以看出观测数据和插补数据分布基本一致,hyp有几个分布差的比较多,另外两个变量还可以。\n\nbwplot(imp)\n\n\n\n\n\n\n\n\n除此之外,还有密度曲线图,也是一样的解读方法,红色是插补数据的分布,蓝色是观测数据的分布。重合度越高越好。\n\ndensityplot(imp, layout = c(3, 1))",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "mice多重插补.html#参考资料",
+    "href": "mice多重插补.html#参考资料",
+    "title": "43  mice多重插补",
+    "section": "43.7 参考资料",
+    "text": "43.7 参考资料\n\nmice包帮助文档\nFlexible Imputation of Missing Data: https://stefvanbuuren.name/fimd/",
+    "crumbs": [
+      "其他内容",
+      "<span class='chapter-number'>43</span>  <span class='chapter-title'>mice多重插补</span>"
+    ]
+  },
+  {
+    "objectID": "9999-appendix.html",
+    "href": "9999-appendix.html",
+    "title": "附录 A — 其他合集",
+    "section": "",
+    "text": "A.1 R语言零基础入门",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
   },
   {
-    "objectID": "data-split.html#其他方法",
-    "href": "data-split.html#其他方法",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.4 其他方法",
-    "text": "B.4 其他方法\n除了以上方法,其实还有非常多没有介绍,比如在mlr3中经常使用的嵌套重抽样,这些大家感兴趣可以自行了解。"
+    "objectID": "9999-appendix.html#r语言零基础入门",
+    "href": "9999-appendix.html#r语言零基础入门",
+    "title": "附录 A — 其他合集",
+    "section": "",
+    "text": "R语言实战医学统计合集:R语言零基础入门\n在线版电子书:R语言零基础入门\ngithub地址:R语言零基础入门\n视频版教程:R语言零基础入门",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
   },
   {
-    "objectID": "data-split.html#重抽样的目的",
-    "href": "data-split.html#重抽样的目的",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.5 重抽样的目的",
-    "text": "B.5 重抽样的目的\n经常有粉丝问我:为什么我用了各种方法,10折交叉验证、10折重复交叉验证、自助法,都用过了,为什么最后模型的表现还是很差?\n看到类似的问题,我想这部分朋友可能把重抽样的目的搞错了,重抽样的目的不是为了提高模型表现,重抽样也确实不能提高模型表现!开头我已说过,重抽样技术是为了让模型更好的认识数据而已,这样能够得到更加稳健、无偏的结果,但是对于提高模型表现没有直接的影响哦~\n你可以这么理解,如果你不重抽样,可能某次结果的AUC是0.8,再做一次可能就变成0.5了,而你重抽样10次,得到的结果是10次的平均,这样的结果很明显是更加稳健的。\n模型表现好不好首先是数据原因,一个牛逼的数据不需要复杂的模型也能有很好的结果,数据预处理对数据影响很大,大家可以参考上面的推文。另外还和模型本身的性质有关,比如模型的超参数、模型本身的上限等,这些会在以后陆续介绍。"
+    "objectID": "9999-appendix.html#医学统计",
+    "href": "9999-appendix.html#医学统计",
+    "title": "附录 A — 其他合集",
+    "section": "A.2 医学统计",
+    "text": "A.2 医学统计\n\nR语言实战医学统计合集:R语言实战医学统计\n在线版电子书:R语言实战医学统计\nPDF版电子书:R语言实战医学统计\ngithub地址:R语言实战医学统计\n视频版教程:R语言实战医学统计",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
+  },
+  {
+    "objectID": "9999-appendix.html#临床预测模型",
+    "href": "9999-appendix.html#临床预测模型",
+    "title": "附录 A — 其他合集",
+    "section": "A.3 临床预测模型",
+    "text": "A.3 临床预测模型\n\n临床预测模型合集:临床预测模型\n在线版电子书:R语言实战临床预测模型\nPDF版电子书:R语言实战临床预测模型\ngithub地址:R语言实战临床预测模型",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
   },
   {
-    "objectID": "data-split.html#为什么要单独划分出一部分数据",
-    "href": "data-split.html#为什么要单独划分出一部分数据",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.6 为什么要单独划分出一部分数据",
-    "text": "B.6 为什么要单独划分出一部分数据\n通常我们建立模型时,会把数据集A划分为A1和A2两份,A1用来训练模型,A2用来测试模型,在训练模型的过程中,完全不用使用到A2这部分数据。有些人不理解,把这种方法和嵌套重抽样混为一谈。其实这两个有着本质的区别。\n嵌套重抽样是在训练模型时使用的,把两份数据集全都用到了,而且两份数据集都会再叠加其他重抽样方法。\n但我们划分数据的目的是什么呢?我们是为了测试最终的模型表现。临床问题数据很珍贵,通常都只有1份,这种情况下我把这份数据全都用于训练模型,那我用什么测试训练出来的模型好坏呢?有的人喜欢把训练好的模型作用于用来训练模型的数据上,发现结果竟然很好,这样是不对的,这叫数据泄露,你的数据模型已经学习过了,这不是作弊吗?这样的模型结果能说明什么问题呢?\n所以一开始把数据就划分为2份是一个很好的解决方法。如果你有很多个数据集,你完全可以在其中1个数据集中使用各种方法建模。"
+    "objectID": "9999-appendix.html#机器学习",
+    "href": "9999-appendix.html#机器学习",
+    "title": "附录 A — 其他合集",
+    "section": "A.4 机器学习",
+    "text": "A.4 机器学习\n医学和生信笔记后台回复caret即可获取caret包的合集教程;回复tidymodels即可获取tidymodels的合集教程;回复mlr3即可获取mlr3合集教程,回复机器学习即可获取机器学习推文合集。\n\nR语言机器学习合集:R语言机器学习\n在线版电子书:R语言实战机器学习\nPDF版电子书:R语言实战机器学习\ngithub地址:R语言实战机器学习",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
+  },
+  {
+    "objectID": "9999-appendix.html#模型解释",
+    "href": "9999-appendix.html#模型解释",
+    "title": "附录 A — 其他合集",
+    "section": "A.5 模型解释",
+    "text": "A.5 模型解释\n包括各种黑盒模型的解释方法,如SHAP、局部代理法、分解解释等:\n\n模型解释合集:模型解释合集",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
   },
   {
-    "objectID": "data-split.html#方法选择建议",
-    "href": "data-split.html#方法选择建议",
-    "title": "附录 B — 常见的数据划分方法",
-    "section": "B.7 方法选择建议",
-    "text": "B.7 方法选择建议\n以上就是一些常见的重抽样方法,可以看到每种方法都强调一个问题,那就是随机!,只有随机,才能保证模型学习到这个数据集中的更多信息,才能获得稳健的模型表现!\n以下是一些方法选择建议:\n\n没有哪一种方法好,哪一种方法不好!!只有合不合适,没有好不好!\n如果样本量较小,建议选择重复10折交叉验证;\n如果样本量足够大,比如几万,几十万这种,随便选,都可以;\n如果目的不是得到最好的模型表现,而是为了在不同模型间进行选择,建议使用bootstrap;\n如果还不知道怎么选,建议都试一试,喜欢哪个选哪个"
+    "objectID": "9999-appendix.html#生信数据挖掘",
+    "href": "9999-appendix.html#生信数据挖掘",
+    "title": "附录 A — 其他合集",
+    "section": "A.6 生信数据挖掘",
+    "text": "A.6 生信数据挖掘\n生信数据挖掘合集:生信数据挖掘\n医学和生信笔记公众号所有关于生信数据挖掘的推文都可以免费下载使用,请看:“灌水”生信类文章会用到哪些生信下游分析?(附下载地址)\ngithub地址:R语言生信数据挖掘",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#r语言rtoolsrstudio的安装",
-    "href": "9999-appendix.html#r语言rtoolsrstudio的安装",
-    "title": "附录 C — 其他合集",
-    "section": "C.1 R语言、Rtools、Rstudio的安装",
-    "text": "C.1 R语言、Rtools、Rstudio的安装\n\n公众号推文:可能是最适合小白的R语言和R包安装教程\nb站播放量超7w的视频教程:适合小白的R语言和Rstudio安装教程"
+    "objectID": "9999-appendix.html#扫码关注",
+    "href": "9999-appendix.html#扫码关注",
+    "title": "附录 A — 其他合集",
+    "section": "A.7 扫码关注",
+    "text": "A.7 扫码关注\n欢迎扫码关注:医学和生信笔记",
+    "crumbs": [
+      "附录",
+      "<span class='chapter-number'>A</span>  <span class='chapter-title'>其他合集</span>"
+    ]
+  },
+  {
+    "objectID": "模型建立和可视化.html",
+    "href": "模型建立和可视化.html",
+    "title": "模型建立和可视化",
+    "section": "",
+    "text": "这一章介绍的其实主要是列线图的绘制,这一步通常是在你选择好最后的模型之后进行的。当你经过各种步骤之后已经选好了最终的模型,那你可以把这个模型使用图形化的方式展示出来,也就是使用列线图的形式。\n除此之外,还会介绍一些常见的数据划分方法和数据预处理方法。数据划分非常重要,就是大家常见的交叉验证、bootstrap、内部验证、外部验证等。\n列线图(Alignment Diagram),又称诺莫图(Nomogram图),用来把多因素回归分析结果用图形方式表现出来,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。\n列线图并不是一种模型评价方法,它只是一种把模型进行图形化展示的方法。\n根据模型中各个影响因素对结局变量的贡献程度(回归系数的大小),给每个影响因素的每个取值水平进行赋分,然后再将各个评分相加得到总评分,最后通过总评分与结局事件发生概率之间的函数转换关系,从而计算出该个体结局事件的预测值。\n简单地说,就是把你的模型用图形化的方式展示出来。实际使用时不需要在训练集、验证集各来一遍,也不需要进行各种重抽样,这种做法没有任何意义。\n目前能够绘制列线图的R包只有以下几个(如果还有欢迎大家补充):\n\nrms\nregplot\nhdnom\n\n我会在后面的章节中详细介绍以下模型的列线图绘制(其他模型是无法绘制列线图的):\n\n逻辑回归\ncox回归\n样条回归\n竞争风险模型\nlasso回归\n\n并且还会简单介绍下列线图的原理(也就是计算)、根据列线图计算得分、彩色条带的列线图等。\n目前对于机器学习方法,比如决策树、随机森林、支持向量机、KNN、神经网络等,都是不能绘制列线图的(理论可行,实际不可行)。",
+    "crumbs": [
+      "模型建立和可视化"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#r包安装",
-    "href": "9999-appendix.html#r包安装",
-    "title": "附录 C — 其他合集",
-    "section": "C.2 R包安装",
-    "text": "C.2 R包安装\n\n公众号推文:可能是最好的R包安装教程\nb站播放量超7w的视频教程:可能是最好用的R包安装教程"
+    "objectID": "feature-selection.html",
+    "href": "feature-selection.html",
+    "title": "常见的变量选择方法",
+    "section": "",
+    "text": "常见方法简介\n变量选择(又叫特征选择,feature-selection),是机器学习和统计建模领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论非常复杂,实在不是一个临床医生能完全掌握的,以下简单介绍下,感兴趣的自己看书。\n在传统的临床预测模型中,比较常见的变量筛选方法有:\n我会在接下来的几章里详细介绍上面这几种方法.\n除了以上方法外,在机器学习领域其实还有非常多专门用于特征选择的方法.\n下面要介绍的变量筛选方法(并没有包含在本书中,可在公众号医学和生信笔记后台回复变量筛选获取相关合集)虽然可以用在临床预测模型中,但是和大家常见的“先单因素后多因素”这种完全不是一个概念,虽然它们的目的相同,都是为了提高模型表现以及减少使用的预测变量个数。\n通常建议在机器学习为主的文章中使用以下变量选择方法,在传统的预测模型类文章中还是以上面介绍的方法为主。\n当数据的维度增加时,决定模型最终使用哪些预测变量是很关键的问题。数据的维度就是自变量(预测变量)\n特征选择是特征工程中非常重要的一部分内容,特征选择的方法非常多,主要可以分为以下3类,每个大类下又会细分为好多具体的方法,但是我基本都在公众号中介绍过了,感兴趣的可以自翻看历史推文。\n大家经常使用的逐步选择法(step/stepAIC),也属于包装法的一种,但是并不局限于逻辑回归。\n3种方法的简单解释如下,以后单独演示时会专门再解释:",
+    "crumbs": [
+      "常见的变量选择方法"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#医学统计",
-    "href": "9999-appendix.html#医学统计",
-    "title": "附录 C — 其他合集",
-    "section": "C.3 医学统计",
-    "text": "C.3 医学统计\n\nR语言实战医学统计合集:R语言实战医学统计\n在线版电子书:R语言实战医学统计\ngithub地址:R语言实战医学统计"
+    "objectID": "feature-selection.html#常见方法简介",
+    "href": "feature-selection.html#常见方法简介",
+    "title": "常见的变量选择方法",
+    "section": "",
+    "text": "先单因素后多因素\n最优子集(全子集回归)\n逐步选择法\nlasso回归筛选变量\n随机森林筛选变量\n…\n\n\n\n\n\n\n\n\n过滤法(filter)\n\n缺失值比例、方差、相关系数、方差分析/t检验/卡方检验、ROC等\n信息增益 information gain\n最小冗余最大相关性mrmr,Minimum Redundancy Maximum Relevance\n…\n\n包装法(wrapper)\n\n向前、向后、逐步\n递归特征消除rfe(也属于向后)\n模拟退火\n遗传算法\n…\n\n嵌入法(embeded)\n\n随机森林\nMARS\nlasso\nGBDT\n…\n\n\n\n\n\n过滤法:进行变量选择时不考虑模型表现和变量重要性等,只是通过变量自身的情况、变量间的关系进行选择。\n包装法:变量选择考虑到了模型表现和变量重要性等信息,属于是对每一个模型进行“量身定制”的变量\n嵌入法:变量选择的过程就在模型训练的过程之中",
+    "crumbs": [
+      "常见的变量选择方法"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#机器学习",
-    "href": "9999-appendix.html#机器学习",
-    "title": "附录 C — 其他合集",
-    "section": "C.4 机器学习",
-    "text": "C.4 机器学习\n临床预测模型和机器学习的联系越来越紧密,没有明确的界限,目前来看各种机器学习方法已经充斥在预测建模类文章中,所以大家有必要学习一些机器学习的相关知识了。\n医学和生信笔记后台回复caret即可获取caret包的合集教程;回复tidymodels即可获取tidymodels的合集教程;回复mlr3即可获取mlr3合集教程,回复机器学习即可获取机器学习推文合集。\nR语言机器学习合集:R语言机器学习\n在线版电子书敬请期待,即将上线!\n本号很少涉及理论知识,主要还是R语言实战,所以理论部分大家需要自己多多学习。"
+    "objectID": "feature-selection.html#r语言中的实现",
+    "href": "feature-selection.html#r语言中的实现",
+    "title": "常见的变量选择方法",
+    "section": "R语言中的实现",
+    "text": "R语言中的实现\n主要是3个R包:caret、mlr3、tidymodels\n在caret包中主要可以实现包装法和过滤法。\ncaret包中的封装法有递归特征消除(recursive feature elimination,rfe)算法,遗传算法(genetic algorithms,ga)和模拟退火(Simulated annealing,sa)算法。\n过滤法通过sbf函数实现,但其实部分数据预处理方法属于过滤法的内容。公众号后台回复caret可以获取相关合集。\n目前mlr3已经实现了对这3种方法的支持,可以说是R语言中对变量筛选做的最好的综合性R包了。\n过滤法和嵌入法通过mlr3filters包实现,包装法通过mlr3fselect包实现,关于3两种方法的具体实现,大家可以在公众号后台回复mlr3获取相关推文。\ntidymodels中的特征选择很不完善,不如mlr3做得好,也不如caret做得好!\n部分过滤法包含在recipes中,部分包装法和嵌入法现在并不成熟,没有完整的实现,部分可通过colina包实现,但是这个包并不属于tidymodels,而是个人开发者贡献的R包。\n已经看到tidymodels的开发者有计划增加特征选择的这部分特性,但不知何时实现…",
+    "crumbs": [
+      "常见的变量选择方法"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#生信数据挖掘",
-    "href": "9999-appendix.html#生信数据挖掘",
-    "title": "附录 C — 其他合集",
-    "section": "C.5 生信数据挖掘",
-    "text": "C.5 生信数据挖掘\n生信数据挖掘合集:生信数据挖掘\n医学和生信笔记公众号所有关于生信数据挖掘的推文都可以免费下载使用,请看:“灌水”生信类文章会用到哪些生信下游分析?(附下载地址)\ngithub地址:R语言生信数据挖掘"
+    "objectID": "临床预测模型评价.html",
+    "href": "临床预测模型评价.html",
+    "title": "临床预测模型的评价",
+    "section": "",
+    "text": "什么样的模型是优秀的模型?\n评价一个模型的好坏可以从区分度(Discrimination)和校准度(Calibration)两个方面进行。\n区分度指的是一个模型能正确把人群分为患者/非患者,或者正确区分个体是处于低风险、还是处于高风险,或者正确预测患者是存活、还是死亡等的能力。\n但是一个模型只是有良好的区分度是不够的,因为临床问题是很复杂的,并不是只要正确分类就行了。对于不同的患者,可能他们都处于高风险组,但是对于51%的风险和90%的风险,我们的处理是不一样的!\n这就引出了校准度的概念,校准度指的是结局实际发生的概率和模型预测出的概率之间的一致性,所以校准度又叫一致性、拟合优度(goodness-of-fit),校准度体现了一个模型对绝对风险预测的准确性。\n一个具有良好区分度的模型,校准度不一定也很好。比如,A和B两个患者都是低分险组,A的风险是10%,B的风险是30%,如果一个模型把这两个患者都分到低风险组,那说明这个模型的区分度很好,因为分的很准;但是如果这个模型预测A的风险是1%,B的风险是3%,那么这个模型的校准度就是很差的,因为预测的概率和实际概率相差很大。如果使用这样的模型预测出来的结果处理病人的话,可能就会碰到很多问题。\n区分度和校准度虽然都有不足,但是一般来说,具有较差区分度的模型,其校准度也不会很好。当一个模型区分度和校准度都很差的时候,我们可以先从提高模型区分度的角度继续改进。",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
   },
   {
-    "objectID": "9999-appendix.html#扫码关注",
-    "href": "9999-appendix.html#扫码关注",
-    "title": "附录 C — 其他合集",
-    "section": "C.6 扫码关注",
-    "text": "C.6 扫码关注\n欢迎扫码关注:医学和生信笔记"
+    "objectID": "临床预测模型评价.html#什么样的模型是优秀的模型",
+    "href": "临床预测模型评价.html#什么样的模型是优秀的模型",
+    "title": "临床预测模型的评价",
+    "section": "",
+    "text": "一个理想的模型应该是这样的:它能正确区分所有的患者和非患者,并且能准确预测每一个个体发生危险事件的风险大小。很明显这样的模型是不存在的,我们只能朝这个方向努力。\n\n\n\n\n\n\n\n\n\n\n\n注释\n\n\n\n尽管只靠区分度是不够的,但临床医生不应使用区分度较差的模型。区分度差的模型也没有必要进一步评价校准度了。\n\n\n\n\n\n区分度的评价\n说了这么多,那我们应该用哪些指标评价模型的分类能力的强弱呢?\n对于二分类模型来说,临床中常用的评价指标是ROC曲线和C-Statistic。二分类模型的AUC(ROC曲线下面积)和C-Statistic是一个东西,越接近1,说明模型的区分度越好,如果接近0.5说明模型的预测结果和乱猜差不多。一般认为,AUC或者C-Statistic在0.6以下是低区分度,在0.6~0.75之间是中区分度,高于0.75是高区分度。\n\nROC曲线的横坐标是1-特异度(横坐标是特异度也可以,此时的横坐标范围是1到0),纵坐标是灵敏度,也就是横坐标是假阳性,纵坐标是真阳性,这两个指标刚好是相反的,一个大另一个就小,所以一般我们会找一个阈值,使得曲线下面积最大。但是如果考虑到临床,这样做有时也是不妥的。比如,在患者具有某些高危疾病(比如心梗、肺梗等)的风险时,我们应该采取更加激进的措施进行预防,这时我们就需要更高的灵敏度,因为不想漏诊。\n近几年各种机器学习方法在临床预测模型中使用的越来越多,所以模型的评价指标也有了更多的选择。对于分类模型,除了ROC曲线外,还可以使用以下指标进行评价:\n\n混淆矩阵(Confusion Matrix):混淆矩阵是分类任务中所有可能预测结果与真实结果的总结,包含了真阳性、假阳性、真阴性和假阴性的计数,是下述精确率、召回率等指标计算的基础。\n\n用一张图来总结混淆矩阵以及根据混淆矩阵计算出的各种指标(来自于维基百科):\n\n\n\n混淆矩阵\n\n\n这面这个东西,在不同的场景有不同的叫法,在机器学习和预测模型领域,它叫混淆矩阵,但是在诊断试验中,它叫诊断试验的四格表。\n下面要介绍的所有指标,都是根据这个混淆矩阵计算出来的!\n\n准确率(Accuracy):准确率是最直观的评价指标,定义为分类正确的样本数占总样本数的比例。但是在类别分布不均匀(即类别不平衡)的情况下,准确率可能产生误导。假如有100个人,其中只有1个人有癌症,其余99个没有癌症,如果模型此时把100个人都预测为没有癌症,那么准确率是99%,非常高,但是此时对于那个漏诊的人来说是不能接受的。此时漏诊率为100%,漏诊率=1-灵敏度。\n精确率(Precision):也叫查准率,精确率是指被模型预测为阳性的样本中,真正是阳性的比例。\n召回率(Recall):也叫查全率,在医学中通常被称为灵敏度(sensitivity),真阳性率,召回率是指所有实际为阳性的样本中,被模型正确识别为阳性的比例。还是上面那个100人的例子,此时它的灵敏度就是0,这样的结果是没有意义的,因为对于临床来说,漏诊是不能被接受的。以查全率为横坐标,以查准率为纵坐标,绘制曲线,可以得到如下图所示的P-R曲线。\n\n\n\nF1分数(F1-Score):F1分数是精确率和召回率的加权平均值,旨在同时考虑精确率和召回率,特别适用于类别不平衡问题,范围也是[0,1]之间。精准率和召回率是相互矛盾的,一个增大另一个就会减小,所以我们需要找到一个平衡点,由此引出了F1分数,F1分数越高,说明模型越稳健。\n特异度(Specificity):指所有实际为阴性的样本中,被模型正确识别为阴性的比例。上述的100人的例子,特异度就是100%,也就是说你没有误诊的。误诊率是0,误诊率=1-特异度。\n马修斯相关系数(Matthews Correlation Coefficient,MCC):同时考虑混淆矩阵中4个类别的结果,并综合考量,范围是[-1,1],1表示完美预测,0表示随机预测,-1表示完全相反。尤其适用于类不平衡的二分类问题。\n均衡准确率(Balanced Accuracy):当出现类别不平衡时,使用准确率评价可能会出现较大偏差,此时可以使用均衡准确率,它是每个类别中预测正确的比例的算术平均值。\n\n除了这些,还有阳性预测值/阴性预测值,也可以用来评价模型。\n\n\n校准度的评价\n目前校准度的评价最好的方式还是使用校准曲线(Calibration curve,或者Calibration plot),在机器学习领域又叫可靠性曲线(reliability curve)。通过校准曲线可以非常直观地看到预测概率和真实概率的关系。\n\n校准曲线的横纵坐标分别是预测概率和真实概率(横纵坐标可以互换),完美的校准曲线应该是一条斜率为1,截距是0的直线是,说明模型的预测的概率和真实概率完全一致,模型超级准确。\n校准度的评价可以在很多水平进行,比如,从整体角度,或者从不同的组进行等。\n假如100个人有20个人发生了结局事件,那么真实概率就是20%,我们的模型会对每个人都计算出一个概率,如果大于某个值(比如说0.5),我们就认为这个人会发生结局事件,小于0.5就认为不会发生结局事件,那么这100个人每个人都会得到一个概率,把100个人的概率加起来再除以100,就得到了模型预测的平均概率,这个概率就是从整体角度评价的。\n假如把100个人按照预测概率大小排好序,然后分成10组,每组10人,在每个组内计算模型平均概率,再和真实概率(比如一组内10人有3人发生了结局事件,那这一组的真实概率就是30%)比较,然后把真实概率作为横坐标,预测概率作为纵坐标,就可以画出Calibration curve了,这就是从不同组的角度评价的(这是目前主流做法)。\n除了直接查看图形,校准度还可以用统计检验来评估真实概率和预测概率的差异,比如Hosmer-Lemeshow检验(H-L 检验),若得到的P值小于0.05,那说明模型的预测概率和真实概率之间确实有差异,不是由于随机误差导致的,若P值大于0.05,说明通过了H-L检验,预测概率和实际概率没有明显的差异。但是H-L检验无法量化差异的大小,也不能说明差异的大小在低风险患者和高风险患者之间是否存在差异。\n当样本量很大时,Hosmer-Lemeshow检验也可能具有误导性。在这种情况下,预测风险和真实风险之间的临床微小差异可能导致具有统计学意义的Hosmer-Lemeshow检验结果。\n除了校准曲线和H-L检验外,模型的校准度还可以使用以下指标进行评价:\n\nLog Loss(交叉熵损失):又叫对数损失、对数似然、逻辑损失,特别适用于概率预测模型,衡量预测概率分布与实际类别之间的差异。越接近0越好。\nBrier-Score:布里尔分数,衡量模型预测的类别的概率与真实值之间的误差,仅用于二分类数据,范围是0到1,越小越好。\n预测概率直方图:评价模型预测概率的分布,并据此判断模型的校准度。\n\n有一些方法可以对预测概率进行校准,使其更加接近真实结果或者可以使模型的校准曲线拟合的更佳贴近理想情况。常见的方法包括:Platt校准(Platt Scaling)、保序回归法( isotonic regression)、贝叶斯校准(Bayesian Calibration)等。",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
+  },
+  {
+    "objectID": "临床预测模型评价.html#多个模型的比较",
+    "href": "临床预测模型评价.html#多个模型的比较",
+    "title": "临床预测模型的评价",
+    "section": "多个模型的比较",
+    "text": "多个模型的比较\n如果涉及到多个模型进行比较的话,除了区分度和校准度,还可以用净重新分类指数和综合判别改善指数来比较模型的优劣。\n\nNRI\n净重新分类指数(net reclassification index,NRI),是用来比较模型准确度的,这个概念有点难理解,但是非常重要,在临床研究中非常常见,是评价模型的一大利器!\n如果新模型比旧模型更加优秀,那么理想情况下应该是这样的:(1)对于发生终点事件的患者,新模型为其分配了比先前模型更高的风险类别(理想的重新分类),以及(2)对于未发生终点事件的患者,新模型为其分配了较低的风险类别(也是理想的重新分类)。这就是净重分类的基本理念。\n我们可以这样简单的理解,假如有一群受试者,有些是患病的,有些是没病的,你建立了一个模型1,通过计算把受试者分为了有病组和没病组(当然有些是分错的),然后你又建立了模型2,也是把这群受试者分成了有病组和没病组,相当于是重新分类了!2个模型计算的结果是不一样的,有的可能重新分类分对了,有的可能分错了,然后,净重分类=重新分对的-重新分错的,净重分类指数只要再除以总人数就可以了,这样得到的就是绝对净重分类指数(absolute NRI)。\n绝对净重分类指数反应的是模型对整体的分类能力有无改善,但是,对于有病组和没病组,都是有可能出现重新分类分对了/重新分类分错了/重新分类和之前一样,这3种情况的。所以,我们可以把有病组和没病组分开计算净重分类指数,然后再相加,这样得到的就是相加净重分类指数(additive NRI)。\n下面用几个例子说明相加NRI和绝对NRI的计算以及各自的优缺点。\n示例1假设一共有20000名患者,其中发生事件(with events)的患者(以下简称阳性)和未发生事件(without events)的患者(以下简称阴性)人数相等,都是10000人。新旧模型将患者分为低风险、中风险、高风险3组。新旧模型重新分类的结果如下图(example 1)表格所示,其中绿色的表示重新分类正确的,粉色表示重新分类错误的,灰色表示没变化,左侧表格是阳性患者的重新分类表格,右侧是阴性患者的重新分类表格。\n示例2假设一共有11000名患者,但是阳性(with events)的只有1000个,阴性(without events)的有10000个。新旧模型重新分类的结果也是如下图(example 2)表格所示。\n\n\n对于示例1来说:\n\n阳性患者组:新模型重新分类正确的人数是1200+400+600=2200,重新分类错误的人数是300+50+350=700,净重新分类人数是2200-700=1500, 阴性患者组:新模型重新分类正确的人数是100+50+100=250,重新分类错误的人数是300+100+150=550,净重新分类人数是250-550=-300,\n绝对NRI=(2200-700+250-550)/20000=0.06 相加NRI=(2200-700)/10000 +(250-550)/10000=0.12\n\n对于示例2来说:\n\n阳性患者组:新模型重新分类正确的人数是120+40+60=220,重新分类错误的人数是30+5+35=70,净重新分类人数是220-70=150, 阴性患者组:新模型重新分类正确的人数是100+50+100=250,重新分类错误的人数是300+100+150=550,净重新分类人数=250-550=-300,\n绝对NRI=(220-70+250-550)/11000=-0.0136 相加NRI=(220-70)/1000 + (250-550)/10000=0.12\n\n图中在计算时都乘了100,其实没有必要。\n\n相加NRI的主要局限性在于它不考虑人群中事件和非事件的发生比例,比如在上面的示例1和示例2中,虽然示例2的发生事件的患者和不发生事件的患者比例差距很大,但是相加NRI都是0.12。绝对NRI则避免这个问题。以下示例说明了这一优势。\n考虑上图中的示例1,其中发生事件和未发生事件的患者比例相等。在这种情况下,相加NRI将始终是绝对NRI的2倍。绝对NRI表示新模型重新分类更佳的实际比例,如果大于0说明新模型更好,小于0说明新模型更差,等于0说明和原模型相同,在本例中新模型重新分类更佳的比例为0.06。\n在示例2中,发生和不发生事件的患者比例为1:10。阴性组和阳性组重新分类的数量都与示例1是相同的。由于相加NRI不考虑阴性和阳性的比例问题,所以绝对NRI还是0.12,从相加NRI来看是有利于新模型的。虽然新模型在发生事件的患者中表现得更好(净重新分类人数是150),但发生事件的患者比例太小了,新模型在未发生事件的患者中比表现的比较差(净重新分类指数是-300),两者加起来是-150,说明实际上新模型比旧模型还多分错了150个人,新模型是更差的。所以当事件发生率较低时,相加NRI可能会产生误导,而绝对NRI更能反映模型的真实情况。\n但是绝对NRI假设发生事件的影响与不发生事件的影响相同。临床中并不是这样的,比如对于心梗的预测,我们肯定是更关心发生心梗的,因为即使漏诊一个心梗,对于病人本来说也是无法接受的。此时我们可能会更加重视对发生事件的患者能进行更好分类的模型。这就涉及到漏诊和误诊的关系问题了。\n本质上,相加NRI等于(新模型灵敏度与特异度之和)减去(旧模型灵敏度与特异度之和),也就是等于(新模型的约登指数)减去(旧模型的约登指数)。\n所以到底怎么取舍,不能只看数字,一定要结合实际情况,写文章时遇到了不好的结果也要好好讨论!\n\n\nIDI\nNRI、AUC、C-Statistic都是要先设置一个阈值,然后在这个阈值的前提下进行各种比较,它们只是考虑了单独一个点的情况,不能反应模型的整体情况。因此,又来了新的指标-综合判别改善指数(Integrated Discrimination Improvement,IDI)。\nIDI的计算很简单,它反映了两个模型在预测概率上的差别,是基于模型对每个个体的预测概率计算所得。它的计算方法为:\n\nPnew,events:患者组,新模型对每个人预测概率的平均值;\nPold,events :患者组,旧模型对每个人预测概率的平均值;\n对于患者来说,那肯定是预测概率越高越准确,所以两者相减,值越大,表明新模型的预测能力越好;\nPnew,non-events:非患者组,新模型对每个人预测概率的平均值;\nPold,non-events:非患者组,旧模型对每个人预测概率的平均值;\n对于非患者来说,那肯定是预测概率越小越准确,所以两者相减,值越小,表明新模型的预测能力越好;\n两部分再相减,就是值越大,表明模型预测能力越好,如果IDI为负值,那说明还不如原来的模型好。",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
+  },
+  {
+    "objectID": "临床预测模型评价.html#临床适用性",
+    "href": "临床预测模型评价.html#临床适用性",
+    "title": "临床预测模型的评价",
+    "section": "临床适用性",
+    "text": "临床适用性\n临床都会碰到假阳性和假阴性问题,也就是误诊和漏诊问题,对于不同的疾病,可能我们需要的阈值不同,有时需要更高的假阳性,有时需要更高的假阴性,因此这就是一个实际临床效用问题,到底怎么办,才能使患者获益最大?这就是临床适用性(clinical usefulness)问题。\n\n决策曲线分析\n决策曲线分析(Decision Curve Analysis,DCA)就是为了解决这一问题。\n当患者有症状但尚不能诊断为某种疾病时,临床医生必须决定是(1)经验性治疗,(2)不治疗,或(3)在选择选项1和2之前进行进一步的检查。是否治疗取决于临床医生的经验、疾病治疗的有效性和并发症,以及患者接受治疗风险和负担的意愿。决策曲线分析是一种通过考虑患者风险和获益的可能范围来评估临床决策是否可行的方法。\nDCA中的一个关键概念是概率阈值(probability threshold),即患者选择接受治疗的概率水平。概率阈值表明患者在接受治疗(如果有病)时的相对值,以及如果不存在疾病时避免治疗的值。如果治疗疗效高、成本低、不良反应少,则概率阈值较低;相反,如果治疗效果差或与大量并发症相关(例如,恶性脑肿瘤的放疗),则概率阈值会很高。\n\n结合上面这幅图,横坐标就是概率阈值。此时对于一个病人来说,治疗有可能会利大于弊,也有可能会弊大于利,纵坐标就是利减去弊之后的净获益。\n概率阈值也是概率,取值自然是0-1之间的,所以对于每一个概率,我们都可以计算出一个净获益(计算方法上图中给出了),然后把所有的点连起来,就是决策曲线了(上图中3条虚线,代表3种不同方法的决策曲线)。\n上图中还有2条特殊的线,一条水平的蓝色线,表示所有人都不接受治疗时,此时不管概率阈值是多少,净获益肯定都是0。一条黄色的线,表示所有人都接受治疗时,随着概率阈值的改变,其净获益的改变。这两条线代表了2种极端的情况。\n在给定的概率阈值下,肯定是净获益越大越好,所以一般来说,肯定是曲线距离两条特殊的线越远越好。在写文章时一定要写清楚到底是在哪个概率区间内,你的模型的净获益是正的。\n\n\n临床影响曲线\n临床影响曲线(Clinical Impact Curve,DCA),属于DCA的变种,是Kerr等人对DCA的进一步发展,结合下面这张图来看:\n\n横坐标还是概率阈值,纵坐标是每1000人里面的高风险人数。紫色线表示在不同的概率阈值下,被模型判定为高风险的人数;红色线条表示在不同的概率阈值下,被模型判定为高风险且真的发生结局事件的人数。在最下面还增加了一个损失:获益比,表示在不同的概率阈值下,损失和获益的比例。上图表明在概率阈值大于0.6(大约)以后,模型判定为高风险的人群和实际发生终点事件的人群完全一致。\n\n\n\n\n\n\n注释\n\n\n\n临床影响曲线目前在R语言中只有rmda包可以绘制,而且只适用于二分类模型,不能用于生存分析中,在文献中出现的相对偏少。",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
+  },
+  {
+    "objectID": "临床预测模型评价.html#回归模型的评价",
+    "href": "临床预测模型评价.html#回归模型的评价",
+    "title": "临床预测模型的评价",
+    "section": "回归模型的评价",
+    "text": "回归模型的评价\n以上内容基本基本都是对于分类模型和生存模型的评价,对回归模型来说,也有一些评价指标,常用的回归模型评价指标如下所示:\n\n均方误差(Mean Squared Error, MSE): 定义为预测值与实际值之差的平方和的均值。\n均方根误差(Root Mean Squared Error, RMSE): 是MSE的平方根,使得其单位与目标变量相同,便于解释。RMSE对异常值很敏感,极端异常值会让RMSE明显变大。如果只是为了衡量模型整体的误差,则使用RMSE更佳。\n平均绝对误差(Mean Absolute Error, MAE): 计算预测值与实际值之间绝对差值的平均数。MAE对所有误差给予相等的权重,不被大误差过分影响,比RMSE更适合有极端值的情况。\n平均绝对百分比误差(Mean Absolute Percentage Error, MAPE): 计算预测误差相对于实际值的百分比的平均值,适用于对预测误差的相对大小更感兴趣的场景。\n中位绝对误差(Median Absolute Error, MAE):\nR²(决定系数,Coefficient of Determination): 表示模型解释的变异量占总变异量的比例,值范围从0到1,越接近1表示模型拟合越好。R²衡量了模型解释数据变异的能力。\n解释方差分数(Explained Variance Score): 类似于R²,但直接作为比例表示模型解释的方差部分,值越大表示模型拟合越好。\n\n凡是叫xxx误差的指标,一般都是越小说明模型越好。\n了解这些基础内容后,我们就可以通过各种各样的工具实现它,后面我们将会详细介绍如果通过R语言计算以上指标。",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
+  },
+  {
+    "objectID": "临床预测模型评价.html#参考资料",
+    "href": "临床预测模型评价.html#参考资料",
+    "title": "临床预测模型的评价",
+    "section": "参考资料",
+    "text": "参考资料\n[1] Alba A C, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature[J]. JAMA, 2017, 318(14): 1377–1384. DOI:10.1001/jama.2017.12126. [2] Fitzgerald M, Saville B R, Lewis R J. Decision curve analysis[J]. JAMA, 2015, 313(4): 409–410. DOI:10.1001/jama.2015.37.",
+    "crumbs": [
+      "临床预测模型的评价"
+    ]
+  },
+  {
+    "objectID": "多模型比较.html",
+    "href": "多模型比较.html",
+    "title": "多模型比较",
+    "section": "",
+    "text": "当我们建立了多个模型后,肯定是要比较不同模型的优劣的。模型比较涉及很多专业的方法和理论。\n当说到模型比较时,我们其实是在比较模型的性能指标,比如,比较AUC值、RMSE、校准曲线、NRI、IDI等。但是此时我们比较的通常是这些指标的大小,比如,A模型的AUC值比B模型高,那么我们就认为A模型更好。\n其实这种方法是很肤浅的。我们需要更加专业的比较方法,比如在前面介绍过的ROC曲线的比较(Delong检验),这种方法更加正式,而且还可以给出p值,在统计学上更加令人信服,是比单纯比较数值大小更好的方法。\n有很多可以用于模型比较的专业方法,比如似然比检验和方差分析法,我们在Chapter 26  C-index的比较C-index的比较中一章中介绍过。\n除此之外,还可以使用贝叶斯方法进行比较,这些方法都是有理论基础的,也有相关的参考文献。而且可以用于多种类型的模型比较,比如,随机森林模型和支持向量机模型进行比较,不必局限于回归模型。\n但是由于这些方法目前在文献中用的很少,所以我会在接下来的章节中简单介绍下。\n接下来的章节会主要介绍几个综合性R包的使用方法,比如caret、tidymodels、mlr3,给大家展示如何使用简洁的代码同时比较多个不同的模型,方便大家快速筛选表现更好的模型。\n\n\n\n\n\n\n注意\n\n\n\n这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的使用方法,可参考机器学习合集。除此之外,在公众号后台回复caret、tidymodels、mlr3,都可以直接获取相关合集。",
+    "crumbs": [
+      "多模型比较"
+    ]
   }
 ]
\ No newline at end of file
diff --git a/docs/site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css b/docs/site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css
new file mode 100644
index 0000000..3df2f74
--- /dev/null
+++ b/docs/site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css
@@ -0,0 +1,12 @@
+/*!
+ * Bootstrap  v5.3.1 (https://getbootstrap.com/)
+ * Copyright 2011-2023 The Bootstrap Authors
+ * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)
+ */@import"https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;700&display=swap";:root,[data-bs-theme=light]{--bs-blue: #2780e3;--bs-indigo: #6610f2;--bs-purple: #613d7c;--bs-pink: #e83e8c;--bs-red: #ff0039;--bs-orange: #f0ad4e;--bs-yellow: #ff7518;--bs-green: #3fb618;--bs-teal: #20c997;--bs-cyan: #9954bb;--bs-black: #000;--bs-white: #fff;--bs-gray: #6c757d;--bs-gray-dark: #343a40;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #343a40;--bs-gray-900: #212529;--bs-default: #343a40;--bs-primary: #2780e3;--bs-secondary: #343a40;--bs-success: #3fb618;--bs-info: #9954bb;--bs-warning: #ff7518;--bs-danger: #ff0039;--bs-light: #f8f9fa;--bs-dark: #343a40;--bs-default-rgb: 52, 58, 64;--bs-primary-rgb: 39, 128, 227;--bs-secondary-rgb: 52, 58, 64;--bs-success-rgb: 63, 182, 24;--bs-info-rgb: 153, 84, 187;--bs-warning-rgb: 255, 117, 24;--bs-danger-rgb: 255, 0, 57;--bs-light-rgb: 248, 249, 250;--bs-dark-rgb: 52, 58, 64;--bs-primary-text-emphasis: #10335b;--bs-secondary-text-emphasis: #15171a;--bs-success-text-emphasis: #19490a;--bs-info-text-emphasis: #3d224b;--bs-warning-text-emphasis: #662f0a;--bs-danger-text-emphasis: #660017;--bs-light-text-emphasis: #495057;--bs-dark-text-emphasis: #495057;--bs-primary-bg-subtle: #d4e6f9;--bs-secondary-bg-subtle: #d6d8d9;--bs-success-bg-subtle: #d9f0d1;--bs-info-bg-subtle: #ebddf1;--bs-warning-bg-subtle: #ffe3d1;--bs-danger-bg-subtle: #ffccd7;--bs-light-bg-subtle: #fcfcfd;--bs-dark-bg-subtle: #ced4da;--bs-primary-border-subtle: #a9ccf4;--bs-secondary-border-subtle: #aeb0b3;--bs-success-border-subtle: #b2e2a3;--bs-info-border-subtle: #d6bbe4;--bs-warning-border-subtle: #ffc8a3;--bs-danger-border-subtle: #ff99b0;--bs-light-border-subtle: #e9ecef;--bs-dark-border-subtle: #adb5bd;--bs-white-rgb: 255, 255, 255;--bs-black-rgb: 0, 0, 0;--bs-font-sans-serif: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";--bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;--bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0));--bs-root-font-size: 17px;--bs-body-font-family: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";--bs-body-font-size:1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #343a40;--bs-body-color-rgb: 52, 58, 64;--bs-body-bg: #fff;--bs-body-bg-rgb: 255, 255, 255;--bs-emphasis-color: #000;--bs-emphasis-color-rgb: 0, 0, 0;--bs-secondary-color: rgba(52, 58, 64, 0.75);--bs-secondary-color-rgb: 52, 58, 64;--bs-secondary-bg: #e9ecef;--bs-secondary-bg-rgb: 233, 236, 239;--bs-tertiary-color: rgba(52, 58, 64, 0.5);--bs-tertiary-color-rgb: 52, 58, 64;--bs-tertiary-bg: #f8f9fa;--bs-tertiary-bg-rgb: 248, 249, 250;--bs-heading-color: inherit;--bs-link-color: #2761e3;--bs-link-color-rgb: 39, 97, 227;--bs-link-decoration: underline;--bs-link-hover-color: #1f4eb6;--bs-link-hover-color-rgb: 31, 78, 182;--bs-code-color: #7d12ba;--bs-highlight-bg: #ffe3d1;--bs-border-width: 1px;--bs-border-style: solid;--bs-border-color: #dee2e6;--bs-border-color-translucent: rgba(0, 0, 0, 0.175);--bs-border-radius: 0.25rem;--bs-border-radius-sm: 0.2em;--bs-border-radius-lg: 0.5rem;--bs-border-radius-xl: 1rem;--bs-border-radius-xxl: 2rem;--bs-border-radius-2xl: var(--bs-border-radius-xxl);--bs-border-radius-pill: 50rem;--bs-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-box-shadow-sm: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-box-shadow-lg: 0 1rem 3rem rgba(0, 0, 0, 0.175);--bs-box-shadow-inset: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-focus-ring-width: 0.25rem;--bs-focus-ring-opacity: 0.25;--bs-focus-ring-color: rgba(39, 128, 227, 0.25);--bs-form-valid-color: #3fb618;--bs-form-valid-border-color: #3fb618;--bs-form-invalid-color: #ff0039;--bs-form-invalid-border-color: #ff0039}[data-bs-theme=dark]{color-scheme:dark;--bs-body-color: #dee2e6;--bs-body-color-rgb: 222, 226, 230;--bs-body-bg: #212529;--bs-body-bg-rgb: 33, 37, 41;--bs-emphasis-color: #fff;--bs-emphasis-color-rgb: 255, 255, 255;--bs-secondary-color: rgba(222, 226, 230, 0.75);--bs-secondary-color-rgb: 222, 226, 230;--bs-secondary-bg: #343a40;--bs-secondary-bg-rgb: 52, 58, 64;--bs-tertiary-color: rgba(222, 226, 230, 0.5);--bs-tertiary-color-rgb: 222, 226, 230;--bs-tertiary-bg: #2b3035;--bs-tertiary-bg-rgb: 43, 48, 53;--bs-primary-text-emphasis: #7db3ee;--bs-secondary-text-emphasis: #85898c;--bs-success-text-emphasis: #8cd374;--bs-info-text-emphasis: #c298d6;--bs-warning-text-emphasis: #ffac74;--bs-danger-text-emphasis: #ff6688;--bs-light-text-emphasis: #f8f9fa;--bs-dark-text-emphasis: #dee2e6;--bs-primary-bg-subtle: #081a2d;--bs-secondary-bg-subtle: #0a0c0d;--bs-success-bg-subtle: #0d2405;--bs-info-bg-subtle: #1f1125;--bs-warning-bg-subtle: #331705;--bs-danger-bg-subtle: #33000b;--bs-light-bg-subtle: #343a40;--bs-dark-bg-subtle: #1a1d20;--bs-primary-border-subtle: #174d88;--bs-secondary-border-subtle: #1f2326;--bs-success-border-subtle: #266d0e;--bs-info-border-subtle: #5c3270;--bs-warning-border-subtle: #99460e;--bs-danger-border-subtle: #990022;--bs-light-border-subtle: #495057;--bs-dark-border-subtle: #343a40;--bs-heading-color: inherit;--bs-link-color: #7db3ee;--bs-link-hover-color: #97c2f1;--bs-link-color-rgb: 125, 179, 238;--bs-link-hover-color-rgb: 151, 194, 241;--bs-code-color: white;--bs-border-color: #495057;--bs-border-color-translucent: rgba(255, 255, 255, 0.15);--bs-form-valid-color: #8cd374;--bs-form-valid-border-color: #8cd374;--bs-form-invalid-color: #ff6688;--bs-form-invalid-border-color: #ff6688}*,*::before,*::after{box-sizing:border-box}:root{font-size:var(--bs-root-font-size)}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;border:0;border-top:1px solid;opacity:.25}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2;color:var(--bs-heading-color)}h1,.h1{font-size:calc(1.325rem + 0.9vw)}@media(min-width: 1200px){h1,.h1{font-size:2rem}}h2,.h2{font-size:calc(1.29rem + 0.48vw)}@media(min-width: 1200px){h2,.h2{font-size:1.65rem}}h3,.h3{font-size:calc(1.27rem + 0.24vw)}@media(min-width: 1200px){h3,.h3{font-size:1.45rem}}h4,.h4{font-size:1.25rem}h5,.h5{font-size:1.1rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:0.875em}mark,.mark{padding:.1875em;background-color:var(--bs-highlight-bg)}sub,sup{position:relative;font-size:0.75em;line-height:0;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}a{color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 1));text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{--bs-link-color-rgb: var(--bs-link-hover-color-rgb)}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:0.875em;color:#000;background-color:#f8f9fa;line-height:1.5;padding:.5rem;border:1px solid var(--bs-border-color, #dee2e6)}pre code{background-color:rgba(0,0,0,0);font-size:inherit;color:inherit;word-break:normal}code{font-size:0.875em;color:var(--bs-code-color);background-color:#f8f9fa;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.4rem .4rem;font-size:0.875em;color:#fff;background-color:#343a40}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:rgba(52,58,64,.75);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type=date]):not([type=datetime-local]):not([type=month]):not([type=week]):not([type=time])::-webkit-calendar-picker-indicator{display:none !important}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + 0.3vw);line-height:inherit}@media(min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:0.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:0.875em;color:#6c757d}.blockquote-footer::before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:0.875em;color:rgba(52,58,64,.75)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x)*.5);padding-left:calc(var(--bs-gutter-x)*.5);margin-right:auto;margin-left:auto}@media(min-width: 576px){.container-sm,.container{max-width:540px}}@media(min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media(min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media(min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media(min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media(min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media(min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media(min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media(min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media(min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: #343a40;--bs-table-bg: #fff;--bs-table-border-color: #dee2e6;--bs-table-accent-bg: transparent;--bs-table-striped-color: #343a40;--bs-table-striped-bg: rgba(0, 0, 0, 0.05);--bs-table-active-color: #343a40;--bs-table-active-bg: rgba(0, 0, 0, 0.1);--bs-table-hover-color: #343a40;--bs-table-hover-bg: rgba(0, 0, 0, 0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:1px;box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(1px*2) solid #b2bac1}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:1px 0}.table-bordered>:not(caption)>*>*{border-width:0 1px}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #d4e6f9;--bs-table-border-color: #bfcfe0;--bs-table-striped-bg: #c9dbed;--bs-table-striped-color: #000;--bs-table-active-bg: #bfcfe0;--bs-table-active-color: #000;--bs-table-hover-bg: #c4d5e6;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #d6d8d9;--bs-table-border-color: #c1c2c3;--bs-table-striped-bg: #cbcdce;--bs-table-striped-color: #000;--bs-table-active-bg: #c1c2c3;--bs-table-active-color: #000;--bs-table-hover-bg: #c6c8c9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d9f0d1;--bs-table-border-color: #c3d8bc;--bs-table-striped-bg: #cee4c7;--bs-table-striped-color: #000;--bs-table-active-bg: #c3d8bc;--bs-table-active-color: #000;--bs-table-hover-bg: #c9dec1;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #ebddf1;--bs-table-border-color: #d4c7d9;--bs-table-striped-bg: #dfd2e5;--bs-table-striped-color: #000;--bs-table-active-bg: #d4c7d9;--bs-table-active-color: #000;--bs-table-hover-bg: #d9ccdf;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #ffe3d1;--bs-table-border-color: #e6ccbc;--bs-table-striped-bg: #f2d8c7;--bs-table-striped-color: #000;--bs-table-active-bg: #e6ccbc;--bs-table-active-color: #000;--bs-table-hover-bg: #ecd2c1;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #ffccd7;--bs-table-border-color: #e6b8c2;--bs-table-striped-bg: #f2c2cc;--bs-table-striped-color: #000;--bs-table-active-bg: #e6b8c2;--bs-table-active-color: #000;--bs-table-hover-bg: #ecbdc7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #fff;--bs-table-bg: #343a40;--bs-table-border-color: #484e53;--bs-table-striped-bg: #3e444a;--bs-table-striped-color: #fff;--bs-table-active-bg: #484e53;--bs-table-active-color: #fff;--bs-table-hover-bg: #43494e;--bs-table-hover-color: #fff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media(max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(0.375rem + 1px);padding-bottom:calc(0.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(0.5rem + 1px);padding-bottom:calc(0.5rem + 1px);font-size:1.25rem}.col-form-label-sm{padding-top:calc(0.25rem + 1px);padding-bottom:calc(0.25rem + 1px);font-size:0.875rem}.form-text{margin-top:.25rem;font-size:0.875em;color:rgba(52,58,64,.75)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-clip:padding-box;border:1px solid #dee2e6;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type=file]{overflow:hidden}.form-control[type=file]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:#343a40;background-color:#fff;border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:rgba(52,58,64,.75);opacity:1}.form-control:disabled{background-color:#e9ecef;opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#343a40;background-color:#f8f9fa;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:#e9ecef}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:#343a40;background-color:rgba(0,0,0,0);border:solid rgba(0,0,0,0);border-width:1px 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2));padding:.25rem .5rem;font-size:0.875rem}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2));padding:.5rem 1rem;font-size:1.25rem}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + 0.75rem + calc(1px * 2))}textarea.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2))}.form-control-color{width:3rem;height:calc(1.5em + 0.75rem + calc(1px * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important}.form-control-color::-webkit-color-swatch{border:0 !important}.form-control-color.form-control-sm{height:calc(1.5em + 0.5rem + calc(1px * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(1px * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:1px solid #dee2e6;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:#e9ecef}.form-select:-moz-focusring{color:rgba(0,0,0,0);text-shadow:0 0 0 #343a40}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:0.875rem}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}[data-bs-theme=dark] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: #fff;width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:1px solid #dee2e6;print-color-adjust:exact}.form-check-input[type=radio],.shiny-input-container .checkbox input[type=radio],.shiny-input-container .checkbox-inline input[type=radio],.shiny-input-container .radio input[type=radio],.shiny-input-container .radio-inline input[type=radio]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#2780e3;border-color:#2780e3}.form-check-input:checked[type=checkbox],.shiny-input-container .checkbox input:checked[type=checkbox],.shiny-input-container .checkbox-inline input:checked[type=checkbox],.shiny-input-container .radio input:checked[type=checkbox],.shiny-input-container .radio-inline input:checked[type=checkbox]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type=radio],.shiny-input-container .checkbox input:checked[type=radio],.shiny-input-container .checkbox-inline input:checked[type=radio],.shiny-input-container .radio input:checked[type=radio],.shiny-input-container .radio-inline input:checked[type=radio]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e")}.form-check-input[type=checkbox]:indeterminate,.shiny-input-container .checkbox input[type=checkbox]:indeterminate,.shiny-input-container .checkbox-inline input[type=checkbox]:indeterminate,.shiny-input-container .radio input[type=checkbox]:indeterminate,.shiny-input-container .radio-inline input[type=checkbox]:indeterminate{background-color:#2780e3;border-color:#2780e3;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;transition:background-position .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2393c0f1'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme=dark] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255, 255, 255, 0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:rgba(0,0,0,0)}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-0.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#bed9f7}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0)}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#bed9f7}.form-range::-moz-range-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0)}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:rgba(52,58,64,.75)}.form-range:disabled::-moz-range-thumb{background-color:rgba(52,58,64,.75)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(1px * 2));min-height:calc(3.5rem + calc(1px * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:1px solid rgba(0,0,0,0);transform-origin:0 0;transition:opacity .1s ease-in-out,transform .1s ease-in-out}@media(prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:rgba(0,0,0,0)}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:#fff}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:1px 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:#e9ecef}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#343a40;text-align:center;white-space:nowrap;background-color:#f8f9fa;border:1px solid #dee2e6}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(1px*-1)}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#3fb618}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#3fb618}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#3fb618;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:#3fb618}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:#3fb618}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:#3fb618}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#3fb618}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#ff0039}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#ff0039}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#ff0039;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:#ff0039}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:#ff0039}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:#ff0039}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#ff0039}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: 0.75rem;--bs-btn-padding-y: 0.375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: #343a40;--bs-btn-bg: transparent;--bs-btn-border-width: 1px;--bs-btn-border-color: transparent;--bs-btn-border-radius: 0.25rem;--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.15), 0 1px 1px rgba(0, 0, 0, 0.075);--bs-btn-disabled-opacity: 0.65;--bs-btn-focus-box-shadow: 0 0 0 0.25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);background-color:var(--bs-btn-bg);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2c3136;--bs-btn-hover-border-color: #2a2e33;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2a2e33;--bs-btn-active-border-color: #272c30;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-primary{--bs-btn-color: #fff;--bs-btn-bg: #2780e3;--bs-btn-border-color: #2780e3;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #216dc1;--bs-btn-hover-border-color: #1f66b6;--bs-btn-focus-shadow-rgb: 71, 147, 231;--bs-btn-active-color: #fff;--bs-btn-active-bg: #1f66b6;--bs-btn-active-border-color: #1d60aa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #2780e3;--bs-btn-disabled-border-color: #2780e3}.btn-secondary{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2c3136;--bs-btn-hover-border-color: #2a2e33;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2a2e33;--bs-btn-active-border-color: #272c30;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-success{--bs-btn-color: #fff;--bs-btn-bg: #3fb618;--bs-btn-border-color: #3fb618;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #369b14;--bs-btn-hover-border-color: #329213;--bs-btn-focus-shadow-rgb: 92, 193, 59;--bs-btn-active-color: #fff;--bs-btn-active-bg: #329213;--bs-btn-active-border-color: #2f8912;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #3fb618;--bs-btn-disabled-border-color: #3fb618}.btn-info{--bs-btn-color: #fff;--bs-btn-bg: #9954bb;--bs-btn-border-color: #9954bb;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #82479f;--bs-btn-hover-border-color: #7a4396;--bs-btn-focus-shadow-rgb: 168, 110, 197;--bs-btn-active-color: #fff;--bs-btn-active-bg: #7a4396;--bs-btn-active-border-color: #733f8c;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #9954bb;--bs-btn-disabled-border-color: #9954bb}.btn-warning{--bs-btn-color: #fff;--bs-btn-bg: #ff7518;--bs-btn-border-color: #ff7518;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #d96314;--bs-btn-hover-border-color: #cc5e13;--bs-btn-focus-shadow-rgb: 255, 138, 59;--bs-btn-active-color: #fff;--bs-btn-active-bg: #cc5e13;--bs-btn-active-border-color: #bf5812;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #ff7518;--bs-btn-disabled-border-color: #ff7518}.btn-danger{--bs-btn-color: #fff;--bs-btn-bg: #ff0039;--bs-btn-border-color: #ff0039;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #d90030;--bs-btn-hover-border-color: #cc002e;--bs-btn-focus-shadow-rgb: 255, 38, 87;--bs-btn-active-color: #fff;--bs-btn-active-bg: #cc002e;--bs-btn-active-border-color: #bf002b;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #ff0039;--bs-btn-disabled-border-color: #ff0039}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211, 212, 213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #fff;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #52585d;--bs-btn-hover-border-color: #484e53;--bs-btn-focus-shadow-rgb: 82, 88, 93;--bs-btn-active-color: #fff;--bs-btn-active-bg: #5d6166;--bs-btn-active-border-color: #484e53;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}.btn-outline-default{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #2780e3;--bs-btn-border-color: #2780e3;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #2780e3;--bs-btn-hover-border-color: #2780e3;--bs-btn-focus-shadow-rgb: 39, 128, 227;--bs-btn-active-color: #fff;--bs-btn-active-bg: #2780e3;--bs-btn-active-border-color: #2780e3;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #2780e3;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #2780e3;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #3fb618;--bs-btn-border-color: #3fb618;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #3fb618;--bs-btn-hover-border-color: #3fb618;--bs-btn-focus-shadow-rgb: 63, 182, 24;--bs-btn-active-color: #fff;--bs-btn-active-bg: #3fb618;--bs-btn-active-border-color: #3fb618;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #3fb618;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #3fb618;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #9954bb;--bs-btn-border-color: #9954bb;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #9954bb;--bs-btn-hover-border-color: #9954bb;--bs-btn-focus-shadow-rgb: 153, 84, 187;--bs-btn-active-color: #fff;--bs-btn-active-bg: #9954bb;--bs-btn-active-border-color: #9954bb;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #9954bb;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #9954bb;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ff7518;--bs-btn-border-color: #ff7518;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #ff7518;--bs-btn-hover-border-color: #ff7518;--bs-btn-focus-shadow-rgb: 255, 117, 24;--bs-btn-active-color: #fff;--bs-btn-active-bg: #ff7518;--bs-btn-active-border-color: #ff7518;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ff7518;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ff7518;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #ff0039;--bs-btn-border-color: #ff0039;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #ff0039;--bs-btn-hover-border-color: #ff0039;--bs-btn-focus-shadow-rgb: 255, 0, 57;--bs-btn-active-color: #fff;--bs-btn-active-bg: #ff0039;--bs-btn-active-border-color: #ff0039;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ff0039;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ff0039;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248, 249, 250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #343a40;--bs-btn-hover-border-color: #343a40;--bs-btn-focus-shadow-rgb: 52, 58, 64;--bs-btn-active-color: #fff;--bs-btn-active-bg: #343a40;--bs-btn-active-border-color: #343a40;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #343a40;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #343a40;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: #2761e3;--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: #1f4eb6;--bs-btn-hover-border-color: transparent;--bs-btn-active-color: #1f4eb6;--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 71, 121, 231;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: 0.5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: 0.5rem}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: 0.25rem;--bs-btn-padding-x: 0.5rem;--bs-btn-font-size:0.875rem;--bs-btn-border-radius: 0.2em}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height .2s ease}@media(prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width .35s ease}@media(prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid rgba(0,0,0,0);border-bottom:0;border-left:.3em solid rgba(0,0,0,0)}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: 0.5rem;--bs-dropdown-spacer: 0.125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: #343a40;--bs-dropdown-bg: #fff;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-border-radius: 0.25rem;--bs-dropdown-border-width: 1px;--bs-dropdown-inner-border-radius: calc(0.25rem - 1px);--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-divider-margin-y: 0.5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-dropdown-link-color: #343a40;--bs-dropdown-link-hover-color: #343a40;--bs-dropdown-link-hover-bg: #f8f9fa;--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #2780e3;--bs-dropdown-link-disabled-color: rgba(52, 58, 64, 0.5);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: 0.25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: 0.5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media(min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid rgba(0,0,0,0);border-bottom:.3em solid;border-left:.3em solid rgba(0,0,0,0)}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:0;border-bottom:.3em solid rgba(0,0,0,0);border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:.3em solid;border-bottom:.3em solid rgba(0,0,0,0)}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:rgba(0,0,0,0);border:0}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:rgba(0,0,0,0)}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:0.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #fff;--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-link-hover-bg: rgba(255, 255, 255, 0.15);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #2780e3;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(1px*-1)}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(1px*-1)}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: #2761e3;--bs-nav-link-hover-color: #1f4eb6;--bs-nav-link-disabled-color: rgba(52, 58, 64, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out}@media(prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: 1px;--bs-nav-tabs-border-color: #dee2e6;--bs-nav-tabs-border-radius: 0.25rem;--bs-nav-tabs-link-hover-border-color: #e9ecef #e9ecef #dee2e6;--bs-nav-tabs-link-active-color: #000;--bs-nav-tabs-link-active-bg: #fff;--bs-nav-tabs-link-active-border-color: #dee2e6 #dee2e6 #fff;border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1*var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid rgba(0,0,0,0)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1*var(--bs-nav-tabs-border-width))}.nav-pills{--bs-nav-pills-border-radius: 0.25rem;--bs-nav-pills-link-active-color: #fff;--bs-nav-pills-link-active-bg: #2780e3}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: 0.125rem;--bs-nav-underline-link-active-color: #000;gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid rgba(0,0,0,0)}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: 0.5rem;--bs-navbar-color: #545555;--bs-navbar-hover-color: rgba(31, 78, 182, 0.8);--bs-navbar-disabled-color: rgba(84, 85, 85, 0.75);--bs-navbar-active-color: #1f4eb6;--bs-navbar-brand-padding-y: 0.3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: #545555;--bs-navbar-brand-hover-color: #1f4eb6;--bs-navbar-nav-link-padding-x: 0.5rem;--bs-navbar-toggler-padding-y: 0.25;--bs-navbar-toggler-padding-x: 0;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23545555' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(84, 85, 85, 0);--bs-navbar-toggler-border-radius: 0.25rem;--bs-navbar-toggler-focus-width: 0.25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out;position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:rgba(0,0,0,0);border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);transition:var(--bs-navbar-toggler-transition)}@media(prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media(min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,.navbar[data-bs-theme=dark]{--bs-navbar-color: #545555;--bs-navbar-hover-color: rgba(31, 78, 182, 0.8);--bs-navbar-disabled-color: rgba(84, 85, 85, 0.75);--bs-navbar-active-color: #1f4eb6;--bs-navbar-brand-color: #545555;--bs-navbar-brand-hover-color: #1f4eb6;--bs-navbar-toggler-border-color: rgba(84, 85, 85, 0);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23545555' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme=dark] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23545555' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: 0.5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: 1px;--bs-card-border-color: rgba(0, 0, 0, 0.175);--bs-card-border-radius: 0.25rem;--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(0.25rem - 1px);--bs-card-cap-padding-y: 0.5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(52, 58, 64, 0.25);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: #fff;--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: 0.75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0}.card>.list-group:last-child{border-bottom-width:0}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-0.5*var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header-tabs{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-bottom:calc(-1*var(--bs-card-cap-padding-y));margin-left:calc(-0.5*var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-left:calc(-0.5*var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media(min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}}.accordion{--bs-accordion-color: #343a40;--bs-accordion-bg: #fff;--bs-accordion-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out, border-radius 0.15s ease;--bs-accordion-border-color: #dee2e6;--bs-accordion-border-width: 1px;--bs-accordion-border-radius: 0.25rem;--bs-accordion-inner-border-radius: calc(0.25rem - 1px);--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: #343a40;--bs-accordion-btn-bg: #fff;--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23343a40'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%2310335b'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #93c0f1;--bs-accordion-btn-focus-box-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: #10335b;--bs-accordion-active-bg: #d4e6f9}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media(prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1*var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media(prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:not(:first-of-type){border-top:0}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}[data-bs-theme=dark] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%237db3ee'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%237db3ee'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: rgba(52, 58, 64, 0.75);--bs-breadcrumb-item-padding-x: 0.5rem;--bs-breadcrumb-item-active-color: rgba(52, 58, 64, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, ">") /* rtl: var(--bs-breadcrumb-divider, ">") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: 0.75rem;--bs-pagination-padding-y: 0.375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: #2761e3;--bs-pagination-bg: #fff;--bs-pagination-border-width: 1px;--bs-pagination-border-color: #dee2e6;--bs-pagination-border-radius: 0.25rem;--bs-pagination-hover-color: #1f4eb6;--bs-pagination-hover-bg: #f8f9fa;--bs-pagination-hover-border-color: #dee2e6;--bs-pagination-focus-color: #1f4eb6;--bs-pagination-focus-bg: #e9ecef;--bs-pagination-focus-box-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-pagination-active-color: #fff;--bs-pagination-active-bg: #2780e3;--bs-pagination-active-border-color: #2780e3;--bs-pagination-disabled-color: rgba(52, 58, 64, 0.75);--bs-pagination-disabled-bg: #e9ecef;--bs-pagination-disabled-border-color: #dee2e6;display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(1px*-1)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: 0.75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: 0.5rem}.pagination-sm{--bs-pagination-padding-x: 0.5rem;--bs-pagination-padding-y: 0.25rem;--bs-pagination-font-size:0.875rem;--bs-pagination-border-radius: 0.2em}.badge{--bs-badge-padding-x: 0.65em;--bs-badge-padding-y: 0.35em;--bs-badge-font-size:0.75em;--bs-badge-font-weight: 700;--bs-badge-color: #fff;--bs-badge-border-radius: 0.25rem;display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: 0 solid var(--bs-alert-border-color);--bs-alert-border-radius: 0.25rem;--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:.5rem}}.progress,.progress-stacked{--bs-progress-height: 0.5rem;--bs-progress-font-size:0.75rem;--bs-progress-bg: #e9ecef;--bs-progress-border-radius: 0.25rem;--bs-progress-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-progress-bar-color: #fff;--bs-progress-bar-bg: #2780e3;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media(prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: #343a40;--bs-list-group-bg: #fff;--bs-list-group-border-color: #dee2e6;--bs-list-group-border-width: 1px;--bs-list-group-border-radius: 0.25rem;--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: 0.5rem;--bs-list-group-action-color: rgba(52, 58, 64, 0.75);--bs-list-group-action-hover-color: #000;--bs-list-group-action-hover-bg: #f8f9fa;--bs-list-group-action-active-color: #343a40;--bs-list-group-action-active-bg: #e9ecef;--bs-list-group-disabled-color: rgba(52, 58, 64, 0.75);--bs-list-group-disabled-bg: #fff;--bs-list-group-active-color: #fff;--bs-list-group-active-bg: #2780e3;--bs-list-group-active-border-color: #2780e3;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1*var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media(min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: 0.5;--bs-btn-close-hover-opacity: 0.75;--bs-btn-close-focus-shadow: 0 0 0 0.25rem rgba(39, 128, 227, 0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: 0.25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:rgba(0,0,0,0) var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme=dark] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: 0.75rem;--bs-toast-padding-y: 0.5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:0.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(255, 255, 255, 0.85);--bs-toast-border-width: 1px;--bs-toast-border-color: rgba(0, 0, 0, 0.175);--bs-toast-border-radius: 0.25rem;--bs-toast-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-toast-header-color: rgba(52, 58, 64, 0.75);--bs-toast-header-bg: rgba(255, 255, 255, 0.85);--bs-toast-header-border-color: rgba(0, 0, 0, 0.175);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color)}.toast-header .btn-close{margin-right:calc(-0.5*var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: 0.5rem;--bs-modal-color: ;--bs-modal-bg: #fff;--bs-modal-border-color: rgba(0, 0, 0, 0.175);--bs-modal-border-width: 1px;--bs-modal-border-radius: 0.5rem;--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-modal-inner-border-radius: calc(0.5rem - 1px);--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: #dee2e6;--bs-modal-header-border-width: 1px;--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: 0.5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: #dee2e6;--bs-modal-footer-border-width: 1px;position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0, -50px)}@media(prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin)*2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin)*2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: 0.5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y)*.5) calc(var(--bs-modal-header-padding-x)*.5);margin:calc(-0.5*var(--bs-modal-header-padding-y)) calc(-0.5*var(--bs-modal-header-padding-x)) calc(-0.5*var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap)*.5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap)*.5)}@media(min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media(min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media(min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0}.modal-fullscreen .modal-body{overflow-y:auto}@media(max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media(max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media(max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media(max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media(max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: 0.5rem;--bs-tooltip-padding-y: 0.25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:0.875rem;--bs-tooltip-color: #fff;--bs-tooltip-bg: #000;--bs-tooltip-border-radius: 0.25rem;--bs-tooltip-opacity: 0.9;--bs-tooltip-arrow-width: 0.8rem;--bs-tooltip-arrow-height: 0.4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow{bottom:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow{left:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow{top:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow{right:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) 0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:0.875rem;--bs-popover-bg: #fff;--bs-popover-border-width: 1px;--bs-popover-border-color: rgba(0, 0, 0, 0.175);--bs-popover-border-radius: 0.5rem;--bs-popover-inner-border-radius: calc(0.5rem - 1px);--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: 0.5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: #e9ecef;--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: #343a40;--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: 0.5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:rgba(0,0,0,0);border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow{bottom:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow{left:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow{top:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-0.5*var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow{right:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) 0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid rgba(0,0,0,0);border-bottom:10px solid rgba(0,0,0,0);opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme=dark] .carousel .carousel-control-prev-icon,[data-bs-theme=dark] .carousel .carousel-control-next-icon,[data-bs-theme=dark].carousel .carousel-control-prev-icon,[data-bs-theme=dark].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme=dark] .carousel .carousel-indicators [data-bs-target],[data-bs-theme=dark].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme=dark] .carousel .carousel-caption,[data-bs-theme=dark].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-border-width: 0.25em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:rgba(0,0,0,0)}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: 0.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media(prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: #343a40;--bs-offcanvas-bg: #fff;--bs-offcanvas-border-width: 1px;--bs-offcanvas-border-color: rgba(0, 0, 0, 0.175);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-offcanvas-transition: transform 0.3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media(max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 575.98px)and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media(max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media(min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 767.98px)and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media(max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media(min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 991.98px)and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media(max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media(min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1199.98px)and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media(max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media(min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1399.98px)and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media(max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media(min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media(prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y)*.5) calc(var(--bs-offcanvas-padding-x)*.5);margin-top:calc(-0.5*var(--bs-offcanvas-padding-y));margin-right:calc(-0.5*var(--bs-offcanvas-padding-x));margin-bottom:calc(-0.5*var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#fff !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#fff !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#fff !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(31, 102, 182, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(31, 102, 182, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(50, 146, 19, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(50, 146, 19, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(122, 67, 150, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(122, 67, 150, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(204, 94, 19, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(204, 94, 19, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(204, 0, 46, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(204, 0, 46, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249, 250, 251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249, 250, 251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(42, 46, 51, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(42, 46, 51, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:.2s ease-in-out transform}@media(prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: 75%}.ratio-16x9{--bs-aspect-ratio: 56.25%}.ratio-21x9{--bs-aspect-ratio: 42.8571428571%}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media(min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:1px;min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15) !important}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: 0.1}.border-opacity-25{--bs-border-opacity: 0.25}.border-opacity-50{--bs-border-opacity: 0.5}.border-opacity-75{--bs-border-opacity: 0.75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.325rem + 0.9vw) !important}.fs-2{font-size:calc(1.29rem + 0.48vw) !important}.fs-3{font-size:calc(1.27rem + 0.24vw) !important}.fs-4{font-size:1.25rem !important}.fs-5{font-size:1.1rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: 0.25}.text-opacity-50{--bs-text-opacity: 0.5}.text-opacity-75{--bs-text-opacity: 0.75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: 0.1}.link-opacity-10-hover:hover{--bs-link-opacity: 0.1}.link-opacity-25{--bs-link-opacity: 0.25}.link-opacity-25-hover:hover{--bs-link-opacity: 0.25}.link-opacity-50{--bs-link-opacity: 0.5}.link-opacity-50-hover:hover{--bs-link-opacity: 0.5}.link-opacity-75{--bs-link-opacity: 0.75}.link-opacity-75-hover:hover{--bs-link-opacity: 0.75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: 0.1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: 0.1}.link-underline-opacity-25{--bs-link-underline-opacity: 0.25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: 0.25}.link-underline-opacity-50{--bs-link-underline-opacity: 0.5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: 0.5}.link-underline-opacity-75{--bs-link-underline-opacity: 0.75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: 0.75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: 0.1}.bg-opacity-25{--bs-bg-opacity: 0.25}.bg-opacity-50{--bs-bg-opacity: 0.5}.bg-opacity-75{--bs-bg-opacity: 0.75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media(min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media(min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media(min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media(min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media(min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#fff}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#fff}.bg-warning{color:#fff}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media(min-width: 1200px){.fs-1{font-size:2rem !important}.fs-2{font-size:1.65rem !important}.fs-3{font-size:1.45rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #2780e3;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #613d7c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #613d7c;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #e83e8c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #e83e8c;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #ff0039;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #f0ad4e;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #f0ad4e;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ff7518;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #3fb618;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #9954bb;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #343a40}.bg-default{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-primary{--bslib-color-fg: #2780e3}.bg-primary{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #343a40}.bg-secondary{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #3fb618}.bg-success{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #9954bb}.bg-info{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff}.text-warning{--bslib-color-fg: #ff7518}.bg-warning{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff}.text-danger{--bslib-color-fg: #ff0039}.bg-danger{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #343a40}.bg-dark{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4053e9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4053e9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3e65ba;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3e65ba;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #7466c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #7466c0;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #7d4d9f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #7d4d9f;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #7792a7;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #7792a7;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #7d7c92;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #7d7c92;color:#fff}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #319692;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #319692;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #fff;--bslib-color-bg: #249dc5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #249dc5;color:#fff}.bg-gradient-blue-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #556ed3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #556ed3;color:#fff}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4d3dec;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4d3dec;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6422c3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #6422c3;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #9a22c9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #9a22c9;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #a30aa8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a30aa8;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9d4fb0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9d4fb0;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a3389b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a3389b;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #56529b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #56529b;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #7a2bdc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #7a2bdc;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4a58a5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4a58a5;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #632bab;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #632bab;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #973d82;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #973d82;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #a02561;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a02561;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9a6a6a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9a6a6a;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a05354;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a05354;color:#fff}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #536d54;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #536d54;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #477587;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #477587;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #774695;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #774695;color:#fff}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #9b58af;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #9b58af;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b42cb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b42cb5;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b23e86;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b23e86;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #f1256b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f1256b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #fff;--bslib-color-bg: #eb6a73;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #eb6a73;color:#fff}.bg-gradient-pink-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #f1545e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f1545e;color:#fff}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #a46e5e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a46e5e;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #fff;--bslib-color-bg: #987690;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #987690;color:#fff}.bg-gradient-pink-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #c8479f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #c8479f;color:#fff}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a9337d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a9337d;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c20683;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c20683;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c01854;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c01854;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f6195a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f6195a;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #fff;--bslib-color-bg: #f94541;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f94541;color:#fff}.bg-gradient-red-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #ff2f2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #ff2f2c;color:#fff}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #b2492c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b2492c;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6505f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6505f;color:#fff}.bg-gradient-red-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d6226d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d6226d;color:#fff}.bg-gradient-orange-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a09b8a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a09b8a;color:#fff}.bg-gradient-orange-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b96e90;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b96e90;color:#fff}.bg-gradient-orange-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b78060;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b78060;color:#fff}.bg-gradient-orange-pink{--bslib-color-fg: #fff;--bslib-color-bg: #ed8167;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #ed8167;color:#fff}.bg-gradient-orange-red{--bslib-color-fg: #fff;--bslib-color-bg: #f66846;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f66846;color:#fff}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #f69738;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f69738;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a9b138;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a9b138;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #9db86b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #9db86b;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #cd897a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #cd897a;color:#fff}.bg-gradient-yellow-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a97969;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a97969;color:#fff}.bg-gradient-yellow-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c24d6f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c24d6f;color:#fff}.bg-gradient-yellow-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c05f40;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c05f40;color:#fff}.bg-gradient-yellow-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f65f46;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f65f46;color:#fff}.bg-gradient-yellow-red{--bslib-color-fg: #fff;--bslib-color-bg: #ff4625;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #ff4625;color:#fff}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #f98b2e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f98b2e;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #fff;--bslib-color-bg: #b28f18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b28f18;color:#fff}.bg-gradient-yellow-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6974b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6974b;color:#fff}.bg-gradient-yellow-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d66859;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d66859;color:#fff}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #35a069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #35a069;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4f746f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4f746f;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #4d8640;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #4d8640;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #838646;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #838646;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #8c6d25;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #8c6d25;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #86b22e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #86b22e;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #8c9c18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #8c9c18;color:#fff}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #33be4b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #33be4b;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #638f59;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #638f59;color:#fff}.bg-gradient-teal-blue{--bslib-color-fg: #fff;--bslib-color-bg: #23acb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #23acb5;color:#fff}.bg-gradient-teal-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#fff}.bg-gradient-teal-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3a918c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3a918c;color:#fff}.bg-gradient-teal-pink{--bslib-color-fg: #fff;--bslib-color-bg: #709193;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #709193;color:#fff}.bg-gradient-teal-red{--bslib-color-fg: #fff;--bslib-color-bg: #797971;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #797971;color:#fff}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #73be7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #73be7a;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #79a764;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #79a764;color:#fff}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #2cc164;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #2cc164;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #509aa5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #509aa5;color:#fff}.bg-gradient-cyan-blue{--bslib-color-fg: #fff;--bslib-color-bg: #6b66cb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #6b66cb;color:#fff}.bg-gradient-cyan-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #8539d1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #8539d1;color:#fff}.bg-gradient-cyan-purple{--bslib-color-fg: #fff;--bslib-color-bg: #834ba2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #834ba2;color:#fff}.bg-gradient-cyan-pink{--bslib-color-fg: #fff;--bslib-color-bg: #b94ba8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #b94ba8;color:#fff}.bg-gradient-cyan-red{--bslib-color-fg: #fff;--bslib-color-bg: #c23287;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #c23287;color:#fff}.bg-gradient-cyan-orange{--bslib-color-fg: #fff;--bslib-color-bg: #bc788f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #bc788f;color:#fff}.bg-gradient-cyan-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #c2617a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #c2617a;color:#fff}.bg-gradient-cyan-green{--bslib-color-fg: #fff;--bslib-color-bg: #757b7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #757b7a;color:#fff}.bg-gradient-cyan-teal{--bslib-color-fg: #fff;--bslib-color-bg: #6983ad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #6983ad;color:#fff}.bg-blue{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #2780e3;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #613d7c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #613d7c;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #e83e8c;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #e83e8c;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #ff0039;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #f0ad4e;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #f0ad4e;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ff7518;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #3fb618;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #9954bb;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #343a40}.bg-default{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-primary{--bslib-color-fg: #2780e3}.bg-primary{--bslib-color-bg: #2780e3;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #343a40}.bg-secondary{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #3fb618}.bg-success{--bslib-color-bg: #3fb618;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #9954bb}.bg-info{--bslib-color-bg: #9954bb;--bslib-color-fg: #fff}.text-warning{--bslib-color-fg: #ff7518}.bg-warning{--bslib-color-bg: #ff7518;--bslib-color-fg: #fff}.text-danger{--bslib-color-fg: #ff0039}.bg-danger{--bslib-color-bg: #ff0039;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #343a40}.bg-dark{--bslib-color-bg: #343a40;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4053e9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4053e9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3e65ba;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3e65ba;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #7466c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #7466c0;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #7d4d9f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #7d4d9f;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #7792a7;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #7792a7;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #7d7c92;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #7d7c92;color:#fff}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #319692;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #319692;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #fff;--bslib-color-bg: #249dc5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #249dc5;color:#fff}.bg-gradient-blue-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #556ed3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #2780e3 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #556ed3;color:#fff}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4d3dec;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4d3dec;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6422c3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #6422c3;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #9a22c9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #9a22c9;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #a30aa8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a30aa8;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9d4fb0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9d4fb0;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a3389b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a3389b;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #56529b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #56529b;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #7a2bdc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #7a2bdc;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4a58a5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #4a58a5;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #632bab;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #632bab;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #973d82;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #973d82;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #a02561;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #a02561;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #9a6a6a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #9a6a6a;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a05354;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #a05354;color:#fff}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #536d54;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #536d54;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #477587;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #477587;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #774695;background:linear-gradient(var(--bg-gradient-deg, 140deg), #613d7c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #774695;color:#fff}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #9b58af;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #9b58af;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b42cb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b42cb5;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b23e86;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b23e86;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #f1256b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f1256b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #fff;--bslib-color-bg: #eb6a73;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #eb6a73;color:#fff}.bg-gradient-pink-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #f1545e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f1545e;color:#fff}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #a46e5e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a46e5e;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #fff;--bslib-color-bg: #987690;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #987690;color:#fff}.bg-gradient-pink-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #c8479f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #e83e8c var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #c8479f;color:#fff}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a9337d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a9337d;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c20683;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c20683;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c01854;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c01854;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f6195a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f6195a;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #fff;--bslib-color-bg: #f94541;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f94541;color:#fff}.bg-gradient-red-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #ff2f2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #ff2f2c;color:#fff}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #b2492c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b2492c;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6505f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6505f;color:#fff}.bg-gradient-red-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d6226d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff0039 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d6226d;color:#fff}.bg-gradient-orange-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a09b8a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a09b8a;color:#fff}.bg-gradient-orange-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #b96e90;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #b96e90;color:#fff}.bg-gradient-orange-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b78060;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #b78060;color:#fff}.bg-gradient-orange-pink{--bslib-color-fg: #fff;--bslib-color-bg: #ed8167;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #ed8167;color:#fff}.bg-gradient-orange-red{--bslib-color-fg: #fff;--bslib-color-bg: #f66846;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #f66846;color:#fff}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #f69738;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #f69738;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a9b138;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #a9b138;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #9db86b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #9db86b;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #cd897a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #f0ad4e var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #cd897a;color:#fff}.bg-gradient-yellow-blue{--bslib-color-fg: #fff;--bslib-color-bg: #a97969;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #a97969;color:#fff}.bg-gradient-yellow-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #c24d6f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c24d6f;color:#fff}.bg-gradient-yellow-purple{--bslib-color-fg: #fff;--bslib-color-bg: #c05f40;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #c05f40;color:#fff}.bg-gradient-yellow-pink{--bslib-color-fg: #fff;--bslib-color-bg: #f65f46;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #f65f46;color:#fff}.bg-gradient-yellow-red{--bslib-color-fg: #fff;--bslib-color-bg: #ff4625;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #ff4625;color:#fff}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #f98b2e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #f98b2e;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #fff;--bslib-color-bg: #b28f18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #b28f18;color:#fff}.bg-gradient-yellow-teal{--bslib-color-fg: #fff;--bslib-color-bg: #a6974b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6974b;color:#fff}.bg-gradient-yellow-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #d66859;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ff7518 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #d66859;color:#fff}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #35a069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #35a069;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #4f746f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #4f746f;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #4d8640;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #4d8640;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #838646;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #838646;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #8c6d25;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #8c6d25;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #86b22e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #86b22e;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #8c9c18;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #8c9c18;color:#fff}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #33be4b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #33be4b;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #638f59;background:linear-gradient(var(--bg-gradient-deg, 140deg), #3fb618 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #638f59;color:#fff}.bg-gradient-teal-blue{--bslib-color-fg: #fff;--bslib-color-bg: #23acb5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #23acb5;color:#fff}.bg-gradient-teal-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#fff}.bg-gradient-teal-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3a918c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #3a918c;color:#fff}.bg-gradient-teal-pink{--bslib-color-fg: #fff;--bslib-color-bg: #709193;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #709193;color:#fff}.bg-gradient-teal-red{--bslib-color-fg: #fff;--bslib-color-bg: #797971;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #797971;color:#fff}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #73be7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #73be7a;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #79a764;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #79a764;color:#fff}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #2cc164;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #2cc164;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #509aa5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #9954bb var(--bg-gradient-end, 180%)) #509aa5;color:#fff}.bg-gradient-cyan-blue{--bslib-color-fg: #fff;--bslib-color-bg: #6b66cb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #2780e3 var(--bg-gradient-end, 180%)) #6b66cb;color:#fff}.bg-gradient-cyan-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #8539d1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #8539d1;color:#fff}.bg-gradient-cyan-purple{--bslib-color-fg: #fff;--bslib-color-bg: #834ba2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #613d7c var(--bg-gradient-end, 180%)) #834ba2;color:#fff}.bg-gradient-cyan-pink{--bslib-color-fg: #fff;--bslib-color-bg: #b94ba8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #e83e8c var(--bg-gradient-end, 180%)) #b94ba8;color:#fff}.bg-gradient-cyan-red{--bslib-color-fg: #fff;--bslib-color-bg: #c23287;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff0039 var(--bg-gradient-end, 180%)) #c23287;color:#fff}.bg-gradient-cyan-orange{--bslib-color-fg: #fff;--bslib-color-bg: #bc788f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #f0ad4e var(--bg-gradient-end, 180%)) #bc788f;color:#fff}.bg-gradient-cyan-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #c2617a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #ff7518 var(--bg-gradient-end, 180%)) #c2617a;color:#fff}.bg-gradient-cyan-green{--bslib-color-fg: #fff;--bslib-color-bg: #757b7a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #3fb618 var(--bg-gradient-end, 180%)) #757b7a;color:#fff}.bg-gradient-cyan-teal{--bslib-color-fg: #fff;--bslib-color-bg: #6983ad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #9954bb var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #6983ad;color:#fff}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.accordion .accordion-header{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2;color:var(--bs-heading-color);margin-bottom:0}@media(min-width: 1200px){.accordion .accordion-header{font-size:1.65rem}}.accordion .accordion-icon:not(:empty){margin-right:.75rem;display:flex}.accordion .accordion-button:not(.collapsed){box-shadow:none}.accordion .accordion-button:not(.collapsed):focus{box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.bslib-card{overflow:auto}.bslib-card .card-body+.card-body{padding-top:0}.bslib-card .card-body{overflow:auto}.bslib-card .card-body p{margin-top:0}.bslib-card .card-body p:last-child{margin-bottom:0}.bslib-card .card-body{max-height:var(--bslib-card-body-max-height, none)}.bslib-card[data-full-screen=true]>.card-body{max-height:var(--bslib-card-body-max-height-full-screen, none)}.bslib-card .card-header .form-group{margin-bottom:0}.bslib-card .card-header .selectize-control{margin-bottom:0}.bslib-card .card-header .selectize-control .item{margin-right:1.15rem}.bslib-card .card-footer{margin-top:auto}.bslib-card .bslib-navs-card-title{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center}.bslib-card .bslib-navs-card-title .nav{margin-left:auto}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border=true]){border:none}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border-radius=true]){border-top-left-radius:0;border-top-right-radius:0}[data-full-screen=true]{position:fixed;inset:3.5rem 1rem 1rem;height:auto !important;max-height:none !important;width:auto !important;z-index:1070}.bslib-full-screen-enter{display:none;position:absolute;bottom:var(--bslib-full-screen-enter-bottom, 0.2rem);right:var(--bslib-full-screen-enter-right, 0);top:var(--bslib-full-screen-enter-top);left:var(--bslib-full-screen-enter-left);color:var(--bslib-color-fg, var(--bs-card-color));background-color:var(--bslib-color-bg, var(--bs-card-bg, var(--bs-body-bg)));border:var(--bs-card-border-width) solid var(--bslib-color-fg, var(--bs-card-border-color));box-shadow:0 2px 4px rgba(0,0,0,.15);margin:.2rem .4rem;padding:.55rem !important;font-size:.8rem;cursor:pointer;opacity:.7;z-index:1070}.bslib-full-screen-enter:hover{opacity:1}.card[data-full-screen=false]:hover>*>.bslib-full-screen-enter{display:block}.bslib-has-full-screen .card:hover>*>.bslib-full-screen-enter{display:none}@media(max-width: 575.98px){.bslib-full-screen-enter{display:none !important}}.bslib-full-screen-exit{position:relative;top:1.35rem;font-size:.9rem;cursor:pointer;text-decoration:none;display:flex;float:right;margin-right:2.15rem;align-items:center;color:rgba(var(--bs-body-bg-rgb), 0.8)}.bslib-full-screen-exit:hover{color:rgba(var(--bs-body-bg-rgb), 1)}.bslib-full-screen-exit svg{margin-left:.5rem;font-size:1.5rem}#bslib-full-screen-overlay{position:fixed;inset:0;background-color:rgba(var(--bs-body-color-rgb), 0.6);backdrop-filter:blur(2px);-webkit-backdrop-filter:blur(2px);z-index:1069;animation:bslib-full-screen-overlay-enter 400ms cubic-bezier(0.6, 0.02, 0.65, 1) forwards}@keyframes bslib-full-screen-overlay-enter{0%{opacity:0}100%{opacity:1}}.bslib-grid{display:grid !important;gap:var(--bslib-spacer, 1rem);height:var(--bslib-grid-height)}.bslib-grid.grid{grid-template-columns:repeat(var(--bs-columns, 12), minmax(0, 1fr));grid-template-rows:unset;grid-auto-rows:var(--bslib-grid--row-heights);--bslib-grid--row-heights--xs: unset;--bslib-grid--row-heights--sm: unset;--bslib-grid--row-heights--md: unset;--bslib-grid--row-heights--lg: unset;--bslib-grid--row-heights--xl: unset;--bslib-grid--row-heights--xxl: unset}.bslib-grid.grid.bslib-grid--row-heights--xs{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xs)}@media(min-width: 576px){.bslib-grid.grid.bslib-grid--row-heights--sm{--bslib-grid--row-heights: var(--bslib-grid--row-heights--sm)}}@media(min-width: 768px){.bslib-grid.grid.bslib-grid--row-heights--md{--bslib-grid--row-heights: var(--bslib-grid--row-heights--md)}}@media(min-width: 992px){.bslib-grid.grid.bslib-grid--row-heights--lg{--bslib-grid--row-heights: var(--bslib-grid--row-heights--lg)}}@media(min-width: 1200px){.bslib-grid.grid.bslib-grid--row-heights--xl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xl)}}@media(min-width: 1400px){.bslib-grid.grid.bslib-grid--row-heights--xxl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xxl)}}.bslib-grid>*>.shiny-input-container{width:100%}.bslib-grid-item{grid-column:auto/span 1}@media(max-width: 767.98px){.bslib-grid-item{grid-column:1/-1}}@media(max-width: 575.98px){.bslib-grid{grid-template-columns:1fr !important;height:var(--bslib-grid-height-mobile)}.bslib-grid.grid{height:unset !important;grid-auto-rows:var(--bslib-grid--row-heights--xs, auto)}}@media(min-width: 576px){.nav:not(.nav-hidden){display:flex !important;display:-webkit-flex !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column){float:none !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.bslib-nav-spacer{margin-left:auto !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.form-inline{margin-top:auto;margin-bottom:auto}.nav:not(.nav-hidden).nav-stacked{flex-direction:column;-webkit-flex-direction:column;height:100%}.nav:not(.nav-hidden).nav-stacked>.bslib-nav-spacer{margin-top:auto !important}}html{height:100%}.bslib-page-fill{width:100%;height:100%;margin:0;padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}@media(max-width: 575.98px){.bslib-page-fill{height:var(--bslib-page-fill-mobile-height, auto)}}.navbar+.container-fluid:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-sm:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-md:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-lg:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xl:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xxl:has(>.tab-content>.tab-pane.active.html-fill-container){padding-left:0;padding-right:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container{padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child){padding:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]){border-left:none;border-right:none;border-bottom:none}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]){border-radius:0}.navbar+div>.bslib-sidebar-layout{border-top:var(--bslib-sidebar-border)}:root{--bslib-page-sidebar-title-bg: #f8f9fa;--bslib-page-sidebar-title-color: #000}.bslib-page-title{background-color:var(--bslib-page-sidebar-title-bg);color:var(--bslib-page-sidebar-title-color);font-size:1.25rem;font-weight:300;padding:var(--bslib-spacer, 1rem);padding-left:1.5rem;margin-bottom:0;border-bottom:1px solid #dee2e6}.bslib-sidebar-layout{--bslib-sidebar-transition-duration: 500ms;--bslib-sidebar-transition-easing-x: cubic-bezier(0.8, 0.78, 0.22, 1.07);--bslib-sidebar-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-border-radius: var(--bs-border-radius);--bslib-sidebar-vert-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.05);--bslib-sidebar-fg: var(--bs-emphasis-color, black);--bslib-sidebar-main-fg: var(--bs-card-color, var(--bs-body-color));--bslib-sidebar-main-bg: var(--bs-card-bg, var(--bs-body-bg));--bslib-sidebar-toggle-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.1);--bslib-sidebar-padding: calc(var(--bslib-spacer) * 1.5);--bslib-sidebar-icon-size: var(--bslib-spacer, 1rem);--bslib-sidebar-icon-button-size: calc(var(--bslib-sidebar-icon-size, 1rem) * 2);--bslib-sidebar-padding-icon: calc(var(--bslib-sidebar-icon-button-size, 2rem) * 1.5);--bslib-collapse-toggle-border-radius: var(--bs-border-radius, 0.25rem);--bslib-collapse-toggle-transform: 0deg;--bslib-sidebar-toggle-transition-easing: cubic-bezier(1, 0, 0, 1);--bslib-collapse-toggle-right-transform: 180deg;--bslib-sidebar-column-main: minmax(0, 1fr);display:grid !important;grid-template-columns:min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px)) var(--bslib-sidebar-column-main);position:relative;transition:grid-template-columns ease-in-out var(--bslib-sidebar-transition-duration);border:var(--bslib-sidebar-border);border-radius:var(--bslib-sidebar-border-radius)}@media(prefers-reduced-motion: reduce){.bslib-sidebar-layout{transition:none}}.bslib-sidebar-layout[data-bslib-sidebar-border=false]{border:none}.bslib-sidebar-layout[data-bslib-sidebar-border-radius=false]{border-radius:initial}.bslib-sidebar-layout>.main,.bslib-sidebar-layout>.sidebar{grid-row:1/2;border-radius:inherit;overflow:auto}.bslib-sidebar-layout>.main{grid-column:2/3;border-top-left-radius:0;border-bottom-left-radius:0;padding:var(--bslib-sidebar-padding);transition:padding var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration);color:var(--bslib-sidebar-main-fg);background-color:var(--bslib-sidebar-main-bg)}.bslib-sidebar-layout>.sidebar{grid-column:1/2;width:100%;height:100%;border-right:var(--bslib-sidebar-vert-border);border-top-right-radius:0;border-bottom-right-radius:0;color:var(--bslib-sidebar-fg);background-color:var(--bslib-sidebar-bg);backdrop-filter:blur(5px)}.bslib-sidebar-layout>.sidebar>.sidebar-content{display:flex;flex-direction:column;gap:var(--bslib-spacer, 1rem);padding:var(--bslib-sidebar-padding);padding-top:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout>.sidebar>.sidebar-content>:last-child:not(.sidebar-title){margin-bottom:0}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion{margin-left:calc(-1*var(--bslib-sidebar-padding));margin-right:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:last-child{margin-bottom:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child){margin-bottom:1rem}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion .accordion-body{display:flex;flex-direction:column}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:first-child) .accordion-item:first-child{border-top:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child) .accordion-item:last-child{border-bottom:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content.has-accordion>.sidebar-title{border-bottom:none;padding-bottom:0}.bslib-sidebar-layout>.sidebar .shiny-input-container{width:100%}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar>.sidebar-content{padding-top:var(--bslib-sidebar-padding)}.bslib-sidebar-layout>.collapse-toggle{grid-row:1/2;grid-column:1/2;display:inline-flex;align-items:center;position:absolute;right:calc(var(--bslib-sidebar-icon-size));top:calc(var(--bslib-sidebar-icon-size, 1rem)/2);border:none;border-radius:var(--bslib-collapse-toggle-border-radius);height:var(--bslib-sidebar-icon-button-size, 2rem);width:var(--bslib-sidebar-icon-button-size, 2rem);display:flex;align-items:center;justify-content:center;padding:0;color:var(--bslib-sidebar-fg);background-color:unset;transition:color var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),top var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),right var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),left var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover{background-color:var(--bslib-sidebar-toggle-bg)}.bslib-sidebar-layout>.collapse-toggle>.collapse-icon{opacity:.8;width:var(--bslib-sidebar-icon-size);height:var(--bslib-sidebar-icon-size);transform:rotateY(var(--bslib-collapse-toggle-transform));transition:transform var(--bslib-sidebar-toggle-transition-easing) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover>.collapse-icon{opacity:1}.bslib-sidebar-layout .sidebar-title{font-size:1.25rem;line-height:1.25;margin-top:0;margin-bottom:1rem;padding-bottom:1rem;border-bottom:var(--bslib-sidebar-border)}.bslib-sidebar-layout.sidebar-right{grid-template-columns:var(--bslib-sidebar-column-main) min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px))}.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/2;border-top-right-radius:0;border-bottom-right-radius:0;border-top-left-radius:inherit;border-bottom-left-radius:inherit}.bslib-sidebar-layout.sidebar-right>.sidebar{grid-column:2/3;border-right:none;border-left:var(--bslib-sidebar-vert-border);border-top-left-radius:0;border-bottom-left-radius:0}.bslib-sidebar-layout.sidebar-right>.collapse-toggle{grid-column:2/3;left:var(--bslib-sidebar-icon-size);right:unset;border:var(--bslib-collapse-toggle-border)}.bslib-sidebar-layout.sidebar-right>.collapse-toggle>.collapse-icon{transform:rotateY(var(--bslib-collapse-toggle-right-transform))}.bslib-sidebar-layout.sidebar-collapsed{--bslib-collapse-toggle-transform: 180deg;--bslib-collapse-toggle-right-transform: 0deg;--bslib-sidebar-vert-border: none;grid-template-columns:0 minmax(0, 1fr)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right{grid-template-columns:minmax(0, 1fr) 0}.bslib-sidebar-layout.sidebar-collapsed:not(.transitioning)>.sidebar>*{display:none}.bslib-sidebar-layout.sidebar-collapsed>.main{border-radius:inherit}.bslib-sidebar-layout.sidebar-collapsed:not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed>.collapse-toggle{color:var(--bslib-sidebar-main-fg);top:calc(var(--bslib-sidebar-overlap-counter, 0)*(var(--bslib-sidebar-icon-size) + var(--bslib-sidebar-padding)) + var(--bslib-sidebar-icon-size, 1rem)/2);right:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px))}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.collapse-toggle{left:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px));right:unset}@media(min-width: 576px){.bslib-sidebar-layout.transitioning>.sidebar>.sidebar-content{display:none}}@media(max-width: 575.98px){.bslib-sidebar-layout[data-bslib-sidebar-open=desktop]{--bslib-sidebar-js-init-collapsed: true}.bslib-sidebar-layout>.sidebar,.bslib-sidebar-layout.sidebar-right>.sidebar{border:none}.bslib-sidebar-layout>.main,.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/3}.bslib-sidebar-layout[data-bslib-sidebar-open=always]{display:block !important}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar{max-height:var(--bslib-sidebar-max-height-mobile);overflow-y:auto;border-top:var(--bslib-sidebar-vert-border)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]){grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.sidebar{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.collapse-toggle{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed.sidebar-right{grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always])>.main{opacity:0;transition:opacity var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed>.main{opacity:1}}:root{--bslib-value-box-shadow: none;--bslib-value-box-border-width-auto-yes: var(--bslib-value-box-border-width-baseline);--bslib-value-box-border-width-auto-no: 0;--bslib-value-box-border-width-baseline: 1px}.bslib-value-box{border-width:var(--bslib-value-box-border-width-auto-no, var(--bslib-value-box-border-width-baseline));container-name:bslib-value-box;container-type:inline-size}.bslib-value-box.card{box-shadow:var(--bslib-value-box-shadow)}.bslib-value-box.border-auto{border-width:var(--bslib-value-box-border-width-auto-yes, var(--bslib-value-box-border-width-baseline))}.bslib-value-box.default{--bslib-value-box-bg-default: var(--bs-card-bg, #fff);--bslib-value-box-border-color-default: var(--bs-card-border-color, rgba(0, 0, 0, 0.175));color:var(--bslib-value-box-color);background-color:var(--bslib-value-box-bg, var(--bslib-value-box-bg-default));border-color:var(--bslib-value-box-border-color, var(--bslib-value-box-border-color-default))}.bslib-value-box .value-box-grid{display:grid;grid-template-areas:"left right";align-items:center;overflow:hidden}.bslib-value-box .value-box-showcase{height:100%;max-height:var(---bslib-value-box-showcase-max-h, 100%)}.bslib-value-box .value-box-showcase,.bslib-value-box .value-box-showcase>.html-fill-item{width:100%}.bslib-value-box[data-full-screen=true] .value-box-showcase{max-height:var(---bslib-value-box-showcase-max-h-fs, 100%)}@media screen and (min-width: 575.98px){@container bslib-value-box (max-width: 300px){.bslib-value-box:not(.showcase-bottom) .value-box-grid{grid-template-columns:1fr !important;grid-template-rows:auto auto;grid-template-areas:"top" "bottom"}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-showcase{grid-area:top !important}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-area{grid-area:bottom !important;justify-content:end}}}.bslib-value-box .value-box-area{justify-content:center;padding:1.5rem 1rem;font-size:.9rem;font-weight:500}.bslib-value-box .value-box-area *{margin-bottom:0;margin-top:0}.bslib-value-box .value-box-title{font-size:1rem;margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2}.bslib-value-box .value-box-title:empty::after{content:" "}.bslib-value-box .value-box-value{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2}@media(min-width: 1200px){.bslib-value-box .value-box-value{font-size:1.65rem}}.bslib-value-box .value-box-value:empty::after{content:" "}.bslib-value-box .value-box-showcase{align-items:center;justify-content:center;margin-top:auto;margin-bottom:auto;padding:1rem}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{opacity:.85;min-width:50px;max-width:125%}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{font-size:4rem}.bslib-value-box.showcase-top-right .value-box-grid{grid-template-columns:1fr var(---bslib-value-box-showcase-w, 50%)}.bslib-value-box.showcase-top-right .value-box-grid .value-box-showcase{grid-area:right;margin-left:auto;align-self:start;align-items:end;padding-left:0;padding-bottom:0}.bslib-value-box.showcase-top-right .value-box-grid .value-box-area{grid-area:left;align-self:end}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid{grid-template-columns:auto var(---bslib-value-box-showcase-w-fs, 1fr)}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid>div{align-self:center}.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-showcase{margin-top:0}@container bslib-value-box (max-width: 300px){.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-grid .value-box-showcase{padding-left:1rem}}.bslib-value-box.showcase-left-center .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w, 30%) auto}.bslib-value-box.showcase-left-center[data-full-screen=true] .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w-fs, 1fr) auto}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-showcase{grid-area:left}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-area{grid-area:right}.bslib-value-box.showcase-bottom .value-box-grid{grid-template-columns:1fr;grid-template-rows:1fr var(---bslib-value-box-showcase-h, auto);grid-template-areas:"top" "bottom";overflow:hidden}.bslib-value-box.showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.bslib-value-box.showcase-bottom .value-box-grid .value-box-area{grid-area:top}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid{grid-template-rows:1fr var(---bslib-value-box-showcase-h-fs, 2fr)}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid .value-box-showcase{padding:1rem}[data-bs-theme=dark] .bslib-value-box{--bslib-value-box-shadow: 0 0.5rem 1rem rgb(0 0 0 / 50%)}.html-fill-container{display:flex;flex-direction:column;min-height:0;min-width:0}.html-fill-container>.html-fill-item{flex:1 1 auto;min-height:0;min-width:0}.html-fill-container>:not(.html-fill-item){flex:0 0 auto}.sidebar-item .chapter-number{color:#343a40}.quarto-container{min-height:calc(100vh - 132px)}body.hypothesis-enabled #quarto-header{margin-right:16px}footer.footer .nav-footer,#quarto-header>nav{padding-left:1em;padding-right:1em}footer.footer div.nav-footer p:first-child{margin-top:0}footer.footer div.nav-footer p:last-child{margin-bottom:0}#quarto-content>*{padding-top:14px}#quarto-content>#quarto-sidebar-glass{padding-top:0px}@media(max-width: 991.98px){#quarto-content>*{padding-top:0}#quarto-content .subtitle{padding-top:14px}#quarto-content section:first-of-type h2:first-of-type,#quarto-content section:first-of-type .h2:first-of-type{margin-top:1rem}}.headroom-target,header.headroom{will-change:transform;transition:position 200ms linear;transition:all 200ms linear}header.headroom--pinned{transform:translateY(0%)}header.headroom--unpinned{transform:translateY(-100%)}.navbar-container{width:100%}.navbar-brand{overflow:hidden;text-overflow:ellipsis}.navbar-brand-container{max-width:calc(100% - 115px);min-width:0;display:flex;align-items:center}@media(min-width: 992px){.navbar-brand-container{margin-right:1em}}.navbar-brand.navbar-brand-logo{margin-right:4px;display:inline-flex}.navbar-toggler{flex-basis:content;flex-shrink:0}.navbar .navbar-brand-container{order:2}.navbar .navbar-toggler{order:1}.navbar .navbar-container>.navbar-nav{order:20}.navbar .navbar-container>.navbar-brand-container{margin-left:0 !important;margin-right:0 !important}.navbar .navbar-collapse{order:20}.navbar #quarto-search{order:4;margin-left:auto}.navbar .navbar-toggler{margin-right:.5em}.navbar-collapse .quarto-navbar-tools{margin-left:.5em}.navbar-logo{max-height:24px;width:auto;padding-right:4px}nav .nav-item:not(.compact){padding-top:1px}nav .nav-link i,nav .dropdown-item i{padding-right:1px}.navbar-expand-lg .navbar-nav .nav-link{padding-left:.6rem;padding-right:.6rem}nav .nav-item.compact .nav-link{padding-left:.5rem;padding-right:.5rem;font-size:1.1rem}.navbar .quarto-navbar-tools{order:3}.navbar .quarto-navbar-tools div.dropdown{display:inline-block}.navbar .quarto-navbar-tools .quarto-navigation-tool{color:#545555}.navbar .quarto-navbar-tools .quarto-navigation-tool:hover{color:#1f4eb6}.navbar-nav .dropdown-menu{min-width:220px;font-size:.9rem}.navbar .navbar-nav .nav-link.dropdown-toggle::after{opacity:.75;vertical-align:.175em}.navbar ul.dropdown-menu{padding-top:0;padding-bottom:0}.navbar .dropdown-header{text-transform:uppercase;font-size:.8rem;padding:0 .5rem}.navbar .dropdown-item{padding:.4rem .5rem}.navbar .dropdown-item>i.bi{margin-left:.1rem;margin-right:.25em}.sidebar #quarto-search{margin-top:-1px}.sidebar #quarto-search svg.aa-SubmitIcon{width:16px;height:16px}.sidebar-navigation a{color:inherit}.sidebar-title{margin-top:.25rem;padding-bottom:.5rem;font-size:1.3rem;line-height:1.6rem;visibility:visible}.sidebar-title>a{font-size:inherit;text-decoration:none}.sidebar-title .sidebar-tools-main{margin-top:-6px}@media(max-width: 991.98px){#quarto-sidebar div.sidebar-header{padding-top:.2em}}.sidebar-header-stacked .sidebar-title{margin-top:.6rem}.sidebar-logo{max-width:90%;padding-bottom:.5rem}.sidebar-logo-link{text-decoration:none}.sidebar-navigation li a{text-decoration:none}.sidebar-navigation .quarto-navigation-tool{opacity:.7;font-size:.875rem}#quarto-sidebar>nav>.sidebar-tools-main{margin-left:14px}.sidebar-tools-main{display:inline-flex;margin-left:0px;order:2}.sidebar-tools-main:not(.tools-wide){vertical-align:middle}.sidebar-navigation .quarto-navigation-tool.dropdown-toggle::after{display:none}.sidebar.sidebar-navigation>*{padding-top:1em}.sidebar-item{margin-bottom:.2em;line-height:1rem;margin-top:.4rem}.sidebar-section{padding-left:.5em;padding-bottom:.2em}.sidebar-item .sidebar-item-container{display:flex;justify-content:space-between;cursor:pointer}.sidebar-item-toggle:hover{cursor:pointer}.sidebar-item .sidebar-item-toggle .bi{font-size:.7rem;text-align:center}.sidebar-item .sidebar-item-toggle .bi-chevron-right::before{transition:transform 200ms ease}.sidebar-item .sidebar-item-toggle[aria-expanded=false] .bi-chevron-right::before{transform:none}.sidebar-item .sidebar-item-toggle[aria-expanded=true] .bi-chevron-right::before{transform:rotate(90deg)}.sidebar-item-text{width:100%}.sidebar-navigation .sidebar-divider{margin-left:0;margin-right:0;margin-top:.5rem;margin-bottom:.5rem}@media(max-width: 991.98px){.quarto-secondary-nav{display:block}.quarto-secondary-nav button.quarto-search-button{padding-right:0em;padding-left:2em}.quarto-secondary-nav button.quarto-btn-toggle{margin-left:-0.75rem;margin-right:.15rem}.quarto-secondary-nav nav.quarto-title-breadcrumbs{display:none}.quarto-secondary-nav nav.quarto-page-breadcrumbs{display:flex;align-items:center;padding-right:1em;margin-left:-0.25em}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{text-decoration:none}.quarto-secondary-nav nav.quarto-page-breadcrumbs ol.breadcrumb{margin-bottom:0}}@media(min-width: 992px){.quarto-secondary-nav{display:none}}.quarto-title-breadcrumbs .breadcrumb{margin-bottom:.5em;font-size:.9rem}.quarto-title-breadcrumbs .breadcrumb li:last-of-type a{color:#6c757d}.quarto-secondary-nav .quarto-btn-toggle{color:#595959}.quarto-secondary-nav[aria-expanded=false] .quarto-btn-toggle .bi-chevron-right::before{transform:none}.quarto-secondary-nav[aria-expanded=true] .quarto-btn-toggle .bi-chevron-right::before{transform:rotate(90deg)}.quarto-secondary-nav .quarto-btn-toggle .bi-chevron-right::before{transition:transform 200ms ease}.quarto-secondary-nav{cursor:pointer}.no-decor{text-decoration:none}.quarto-secondary-nav-title{margin-top:.3em;color:#595959;padding-top:4px}.quarto-secondary-nav nav.quarto-page-breadcrumbs{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a:hover{color:rgba(33,81,191,.8)}.quarto-secondary-nav nav.quarto-page-breadcrumbs .breadcrumb-item::before{color:#8c8c8c}.breadcrumb-item{line-height:1.2rem}div.sidebar-item-container{color:#595959}div.sidebar-item-container:hover,div.sidebar-item-container:focus{color:rgba(33,81,191,.8)}div.sidebar-item-container.disabled{color:rgba(89,89,89,.75)}div.sidebar-item-container .active,div.sidebar-item-container .show>.nav-link,div.sidebar-item-container .sidebar-link>code{color:#2151bf}div.sidebar.sidebar-navigation.rollup.quarto-sidebar-toggle-contents,nav.sidebar.sidebar-navigation:not(.rollup){background-color:#fff}@media(max-width: 991.98px){.sidebar-navigation .sidebar-item a,.nav-page .nav-page-text,.sidebar-navigation{font-size:1rem}.sidebar-navigation ul.sidebar-section.depth1 .sidebar-section-item{font-size:1.1rem}.sidebar-logo{display:none}.sidebar.sidebar-navigation{position:static;border-bottom:1px solid #dee2e6}.sidebar.sidebar-navigation.collapsing{position:fixed;z-index:1000}.sidebar.sidebar-navigation.show{position:fixed;z-index:1000}.sidebar.sidebar-navigation{min-height:100%}nav.quarto-secondary-nav{background-color:#fff;border-bottom:1px solid #dee2e6}.quarto-banner nav.quarto-secondary-nav{background-color:#f8f9fa;color:#545555;border-top:1px solid #dee2e6}.sidebar .sidebar-footer{visibility:visible;padding-top:1rem;position:inherit}.sidebar-tools-collapse{display:block}}#quarto-sidebar{transition:width .15s ease-in}#quarto-sidebar>*{padding-right:1em}@media(max-width: 991.98px){#quarto-sidebar .sidebar-menu-container{white-space:nowrap;min-width:225px}#quarto-sidebar.show{transition:width .15s ease-out}}@media(min-width: 992px){#quarto-sidebar{display:flex;flex-direction:column}.nav-page .nav-page-text,.sidebar-navigation .sidebar-section .sidebar-item{font-size:.875rem}.sidebar-navigation .sidebar-item{font-size:.925rem}.sidebar.sidebar-navigation{display:block;position:sticky}.sidebar-search{width:100%}.sidebar .sidebar-footer{visibility:visible}}@media(min-width: 992px){#quarto-sidebar-glass{display:none}}@media(max-width: 991.98px){#quarto-sidebar-glass{position:fixed;top:0;bottom:0;left:0;right:0;background-color:rgba(255,255,255,0);transition:background-color .15s ease-in;z-index:-1}#quarto-sidebar-glass.collapsing{z-index:1000}#quarto-sidebar-glass.show{transition:background-color .15s ease-out;background-color:rgba(102,102,102,.4);z-index:1000}}.sidebar .sidebar-footer{padding:.5rem 1rem;align-self:flex-end;color:#6c757d;width:100%}.quarto-page-breadcrumbs .breadcrumb-item+.breadcrumb-item,.quarto-page-breadcrumbs .breadcrumb-item{padding-right:.33em;padding-left:0}.quarto-page-breadcrumbs .breadcrumb-item::before{padding-right:.33em}.quarto-sidebar-footer{font-size:.875em}.sidebar-section .bi-chevron-right{vertical-align:middle}.sidebar-section .bi-chevron-right::before{font-size:.9em}.notransition{-webkit-transition:none !important;-moz-transition:none !important;-o-transition:none !important;transition:none !important}.btn:focus:not(:focus-visible){box-shadow:none}.page-navigation{display:flex;justify-content:space-between}.nav-page{padding-bottom:.75em}.nav-page .bi{font-size:1.8rem;vertical-align:middle}.nav-page .nav-page-text{padding-left:.25em;padding-right:.25em}.nav-page a{color:#6c757d;text-decoration:none;display:flex;align-items:center}.nav-page a:hover{color:#1f4eb6}.nav-footer .toc-actions{padding-bottom:.5em;padding-top:.5em}.nav-footer .toc-actions a,.nav-footer .toc-actions a:hover{text-decoration:none}.nav-footer .toc-actions ul{display:flex;list-style:none}.nav-footer .toc-actions ul :first-child{margin-left:auto}.nav-footer .toc-actions ul :last-child{margin-right:auto}.nav-footer .toc-actions ul li{padding-right:1.5em}.nav-footer .toc-actions ul li i.bi{padding-right:.4em}.nav-footer .toc-actions ul li:last-of-type{padding-right:0}.nav-footer{display:flex;flex-direction:row;flex-wrap:wrap;justify-content:space-between;align-items:baseline;text-align:center;padding-top:.5rem;padding-bottom:.5rem;background-color:#fff}body.nav-fixed{padding-top:64px}.nav-footer-contents{color:#6c757d;margin-top:.25rem}.nav-footer{min-height:3.5em;color:#757575}.nav-footer a{color:#757575}.nav-footer .nav-footer-left{font-size:.825em}.nav-footer .nav-footer-center{font-size:.825em}.nav-footer .nav-footer-right{font-size:.825em}.nav-footer-left .footer-items,.nav-footer-center .footer-items,.nav-footer-right .footer-items{display:inline-flex;padding-top:.3em;padding-bottom:.3em;margin-bottom:0em}.nav-footer-left .footer-items .nav-link,.nav-footer-center .footer-items .nav-link,.nav-footer-right .footer-items .nav-link{padding-left:.6em;padding-right:.6em}@media(min-width: 768px){.nav-footer-left{flex:1 1 0px;text-align:left}}@media(max-width: 575.98px){.nav-footer-left{margin-bottom:1em;flex:100%}}@media(min-width: 768px){.nav-footer-right{flex:1 1 0px;text-align:right}}@media(max-width: 575.98px){.nav-footer-right{margin-bottom:1em;flex:100%}}.nav-footer-center{text-align:center;min-height:3em}@media(min-width: 768px){.nav-footer-center{flex:1 1 0px}}.nav-footer-center .footer-items{justify-content:center}@media(max-width: 767.98px){.nav-footer-center{margin-bottom:1em;flex:100%}}@media(max-width: 767.98px){.nav-footer-center{margin-top:3em;order:10}}.navbar .quarto-reader-toggle.reader .quarto-reader-toggle-btn{background-color:#545555;border-radius:3px}@media(max-width: 991.98px){.quarto-reader-toggle{display:none}}.quarto-reader-toggle.reader.quarto-navigation-tool .quarto-reader-toggle-btn{background-color:#595959;border-radius:3px}.quarto-reader-toggle .quarto-reader-toggle-btn{display:inline-flex;padding-left:.2em;padding-right:.2em;margin-left:-0.2em;margin-right:-0.2em;text-align:center}.navbar .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.navbar .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(248, 249, 250, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.sidebar-navigation .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(89, 89, 89, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.sidebar-navigation .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(255, 255, 255, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}#quarto-back-to-top{display:none;position:fixed;bottom:50px;background-color:#fff;border-radius:.25rem;box-shadow:0 .2rem .5rem #6c757d,0 0 .05rem #6c757d;color:#6c757d;text-decoration:none;font-size:.9em;text-align:center;left:50%;padding:.4rem .8rem;transform:translate(-50%, 0)}#quarto-announcement{padding:.5em;display:flex;justify-content:space-between;margin-bottom:0;font-size:.9em}#quarto-announcement .quarto-announcement-content{margin-right:auto}#quarto-announcement .quarto-announcement-content p{margin-bottom:0}#quarto-announcement .quarto-announcement-icon{margin-right:.5em;font-size:1.2em;margin-top:-0.15em}#quarto-announcement .quarto-announcement-action{cursor:pointer}.aa-DetachedSearchButtonQuery{display:none}.aa-DetachedOverlay ul.aa-List,#quarto-search-results ul.aa-List{list-style:none;padding-left:0}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{background-color:#fff;position:absolute;z-index:2000}#quarto-search-results .aa-Panel{max-width:400px}#quarto-search input{font-size:.925rem}@media(min-width: 992px){.navbar #quarto-search{margin-left:.25rem;order:999}}.navbar.navbar-expand-sm #quarto-search,.navbar.navbar-expand-md #quarto-search{order:999}@media(min-width: 992px){.navbar .quarto-navbar-tools{order:900}}@media(min-width: 992px){.navbar .quarto-navbar-tools.tools-end{margin-left:auto !important}}@media(max-width: 991.98px){#quarto-sidebar .sidebar-search{display:none}}#quarto-sidebar .sidebar-search .aa-Autocomplete{width:100%}.navbar .aa-Autocomplete .aa-Form{width:180px}.navbar #quarto-search.type-overlay .aa-Autocomplete{width:40px}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form{background-color:inherit;border:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form:focus-within{box-shadow:none;outline:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper{display:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper:focus-within{display:inherit}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-Label svg,.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-LoadingIndicator svg{width:26px;height:26px;color:#545555;opacity:1}.navbar #quarto-search.type-overlay .aa-Autocomplete svg.aa-SubmitIcon{width:26px;height:26px;color:#545555;opacity:1}.aa-Autocomplete .aa-Form,.aa-DetachedFormContainer .aa-Form{align-items:center;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem;color:#343a40;display:flex;line-height:1em;margin:0;position:relative;width:100%}.aa-Autocomplete .aa-Form:focus-within,.aa-DetachedFormContainer .aa-Form:focus-within{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix{align-items:center;display:flex;flex-shrink:0;order:1}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{cursor:initial;flex-shrink:0;padding:0;text-align:left}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg{color:#343a40;opacity:.5}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton{appearance:none;background:none;border:0;margin:0}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{align-items:center;display:flex;justify-content:center}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapper,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper{order:3;position:relative;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input{appearance:none;background:none;border:0;color:#343a40;font:inherit;height:calc(1.5em + .1rem + 2px);padding:0;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::placeholder,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::placeholder{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input:focus{border-color:none;box-shadow:none;outline:none}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix{align-items:center;display:flex;order:4}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton{align-items:center;background:none;border:0;color:#343a40;opacity:.8;cursor:pointer;display:flex;margin:0;width:calc(1.5em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg{width:calc(1.5em + 0.75rem + calc(1px * 2))}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton{border:none;align-items:center;background:none;color:#343a40;opacity:.4;font-size:.7rem;cursor:pointer;display:none;margin:0;width:calc(1em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus{color:#343a40;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden]{display:none}.aa-PanelLayout:empty{display:none}.quarto-search-no-results.no-query{display:none}.aa-Source:has(.no-query){display:none}#quarto-search-results .aa-Panel{border:solid #dee2e6 1px}#quarto-search-results .aa-SourceNoResults{width:398px}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{max-height:65vh;overflow-y:auto;font-size:.925rem}.aa-DetachedOverlay .aa-SourceNoResults,#quarto-search-results .aa-SourceNoResults{height:60px;display:flex;justify-content:center;align-items:center}.aa-DetachedOverlay .search-error,#quarto-search-results .search-error{padding-top:10px;padding-left:20px;padding-right:20px;cursor:default}.aa-DetachedOverlay .search-error .search-error-title,#quarto-search-results .search-error .search-error-title{font-size:1.1rem;margin-bottom:.5rem}.aa-DetachedOverlay .search-error .search-error-title .search-error-icon,#quarto-search-results .search-error .search-error-title .search-error-icon{margin-right:8px}.aa-DetachedOverlay .search-error .search-error-text,#quarto-search-results .search-error .search-error-text{font-weight:300}.aa-DetachedOverlay .search-result-text,#quarto-search-results .search-result-text{font-weight:300;overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-line-clamp:2;-webkit-box-orient:vertical;line-height:1.2rem;max-height:2.4rem}.aa-DetachedOverlay .aa-SourceHeader .search-result-header,#quarto-search-results .aa-SourceHeader .search-result-header{font-size:.875rem;background-color:#f2f2f2;padding-left:14px;padding-bottom:4px;padding-top:4px}.aa-DetachedOverlay .aa-SourceHeader .search-result-header-no-results,#quarto-search-results .aa-SourceHeader .search-result-header-no-results{display:none}.aa-DetachedOverlay .aa-SourceFooter .algolia-search-logo,#quarto-search-results .aa-SourceFooter .algolia-search-logo{width:110px;opacity:.85;margin:8px;float:right}.aa-DetachedOverlay .search-result-section,#quarto-search-results .search-result-section{font-size:.925em}.aa-DetachedOverlay a.search-result-link,#quarto-search-results a.search-result-link{color:inherit;text-decoration:none}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item,#quarto-search-results li.aa-Item[aria-selected=true] .search-item{background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text-container{color:#fff;background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=true] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-match.mark{color:#fff;background-color:#4b95e8}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item,#quarto-search-results li.aa-Item[aria-selected=false] .search-item{background-color:#fff}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text-container{color:#343a40}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=false] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-match.mark{color:inherit;background-color:#e5effc}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container{background-color:#fff;color:#343a40}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container{padding-top:0px}.aa-DetachedOverlay li.aa-Item .search-result-doc.document-selectable .search-result-text-container,#quarto-search-results li.aa-Item .search-result-doc.document-selectable .search-result-text-container{margin-top:-4px}.aa-DetachedOverlay .aa-Item,#quarto-search-results .aa-Item{cursor:pointer}.aa-DetachedOverlay .aa-Item .search-item,#quarto-search-results .aa-Item .search-item{border-left:none;border-right:none;border-top:none;background-color:#fff;border-color:#dee2e6;color:#343a40}.aa-DetachedOverlay .aa-Item .search-item p,#quarto-search-results .aa-Item .search-item p{margin-top:0;margin-bottom:0}.aa-DetachedOverlay .aa-Item .search-item i.bi,#quarto-search-results .aa-Item .search-item i.bi{padding-left:8px;padding-right:8px;font-size:1.3em}.aa-DetachedOverlay .aa-Item .search-item .search-result-title,#quarto-search-results .aa-Item .search-item .search-result-title{margin-top:.3em;margin-bottom:0em}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs,#quarto-search-results .aa-Item .search-item .search-result-crumbs{white-space:nowrap;text-overflow:ellipsis;font-size:.8em;font-weight:300;margin-right:1em}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs:not(.search-result-crumbs-wrap),#quarto-search-results .aa-Item .search-item .search-result-crumbs:not(.search-result-crumbs-wrap){max-width:30%;margin-left:auto;margin-top:.5em;margin-bottom:.1rem}.aa-DetachedOverlay .aa-Item .search-item .search-result-crumbs.search-result-crumbs-wrap,#quarto-search-results .aa-Item .search-item .search-result-crumbs.search-result-crumbs-wrap{flex-basis:100%;margin-top:0em;margin-bottom:.2em;margin-left:37px}.aa-DetachedOverlay .aa-Item .search-result-title-container,#quarto-search-results .aa-Item .search-result-title-container{font-size:1em;display:flex;flex-wrap:wrap;padding:6px 4px 6px 4px}.aa-DetachedOverlay .aa-Item .search-result-text-container,#quarto-search-results .aa-Item .search-result-text-container{padding-bottom:8px;padding-right:8px;margin-left:42px}.aa-DetachedOverlay .aa-Item .search-result-doc-section,.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-doc-section,#quarto-search-results .aa-Item .search-result-more{padding-top:8px;padding-bottom:8px;padding-left:44px}.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-more{font-size:.8em;font-weight:400}.aa-DetachedOverlay .aa-Item .search-result-doc,#quarto-search-results .aa-Item .search-result-doc{border-top:1px solid #dee2e6}.aa-DetachedSearchButton{background:none;border:none}.aa-DetachedSearchButton .aa-DetachedSearchButtonPlaceholder{display:none}.navbar .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#545555}.sidebar-tools-collapse #quarto-search,.sidebar-tools-main #quarto-search{display:inline}.sidebar-tools-collapse #quarto-search .aa-Autocomplete,.sidebar-tools-main #quarto-search .aa-Autocomplete{display:inline}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton{padding-left:4px;padding-right:4px}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#595959}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon{margin-top:-3px}.aa-DetachedContainer{background:rgba(255,255,255,.65);width:90%;bottom:0;box-shadow:rgba(222,226,230,.6) 0 0 0 1px;outline:currentColor none medium;display:flex;flex-direction:column;left:0;margin:0;overflow:hidden;padding:0;position:fixed;right:0;top:0;z-index:1101}.aa-DetachedContainer::after{height:32px}.aa-DetachedContainer .aa-SourceHeader{margin:var(--aa-spacing-half) 0 var(--aa-spacing-half) 2px}.aa-DetachedContainer .aa-Panel{background-color:#fff;border-radius:0;box-shadow:none;flex-grow:1;margin:0;padding:0;position:relative}.aa-DetachedContainer .aa-PanelLayout{bottom:0;box-shadow:none;left:0;margin:0;max-height:none;overflow-y:auto;position:absolute;right:0;top:0;width:100%}.aa-DetachedFormContainer{background-color:#fff;border-bottom:1px solid #dee2e6;display:flex;flex-direction:row;justify-content:space-between;margin:0;padding:.5em}.aa-DetachedCancelButton{background:none;font-size:.8em;border:0;border-radius:3px;color:#343a40;cursor:pointer;margin:0 0 0 .5em;padding:0 .5em}.aa-DetachedCancelButton:hover,.aa-DetachedCancelButton:focus{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-DetachedContainer--modal{bottom:inherit;height:auto;margin:0 auto;position:absolute;top:100px;border-radius:6px;max-width:850px}@media(max-width: 575.98px){.aa-DetachedContainer--modal{width:100%;top:0px;border-radius:0px;border:none}}.aa-DetachedContainer--modal .aa-PanelLayout{max-height:var(--aa-detached-modal-max-height);padding-bottom:var(--aa-spacing-half);position:static}.aa-Detached{height:100vh;overflow:hidden}.aa-DetachedOverlay{background-color:rgba(52,58,64,.4);position:fixed;left:0;right:0;top:0;margin:0;padding:0;height:100vh;z-index:1100}.quarto-dashboard.nav-fixed.dashboard-sidebar #quarto-content.quarto-dashboard-content{padding:0em}.quarto-dashboard #quarto-content.quarto-dashboard-content{padding:1em}.quarto-dashboard #quarto-content.quarto-dashboard-content>*{padding-top:0}@media(min-width: 576px){.quarto-dashboard{height:100%}}.quarto-dashboard .card.valuebox.bslib-card.bg-primary{background-color:#5397e9 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-secondary{background-color:#343a40 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-success{background-color:#3aa716 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-info{background-color:rgba(153,84,187,.7019607843) !important}.quarto-dashboard .card.valuebox.bslib-card.bg-warning{background-color:#fa6400 !important}.quarto-dashboard .card.valuebox.bslib-card.bg-danger{background-color:rgba(255,0,57,.7019607843) !important}.quarto-dashboard .card.valuebox.bslib-card.bg-light{background-color:#f8f9fa !important}.quarto-dashboard .card.valuebox.bslib-card.bg-dark{background-color:#343a40 !important}.quarto-dashboard.dashboard-fill{display:flex;flex-direction:column}.quarto-dashboard #quarto-appendix{display:none}.quarto-dashboard #quarto-header #quarto-dashboard-header{border-top:solid 1px #dae0e5;border-bottom:solid 1px #dae0e5}.quarto-dashboard #quarto-header #quarto-dashboard-header>nav{padding-left:1em;padding-right:1em}.quarto-dashboard #quarto-header #quarto-dashboard-header>nav .navbar-brand-container{padding-left:0}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-toggler{margin-right:0}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-toggler-icon{height:1em;width:1em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(84, 85, 85)" class="bi bi-menu-button-wide" viewBox="0 0 16 16"><path d="M0 1.5A1.5 1.5 0 0 1 1.5 0h13A1.5 1.5 0 0 1 16 1.5v2A1.5 1.5 0 0 1 14.5 5h-13A1.5 1.5 0 0 1 0 3.5v-2zM1.5 1a.5.5 0 0 0-.5.5v2a.5.5 0 0 0 .5.5h13a.5.5 0 0 0 .5-.5v-2a.5.5 0 0 0-.5-.5h-13z"/><path d="M2 2.5a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5zm10.823.323-.396-.396A.25.25 0 0 1 12.604 2h.792a.25.25 0 0 1 .177.427l-.396.396a.25.25 0 0 1-.354 0zM0 8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v5a2 2 0 0 1-2 2H2a2 2 0 0 1-2-2V8zm1 3v2a1 1 0 0 0 1 1h12a1 1 0 0 0 1-1v-2H1zm14-1V8a1 1 0 0 0-1-1H2a1 1 0 0 0-1 1v2h14zM2 8.5a.5.5 0 0 1 .5-.5h9a.5.5 0 0 1 0 1h-9a.5.5 0 0 1-.5-.5zm0 4a.5.5 0 0 1 .5-.5h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5z"/></svg>')}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-brand-container{padding-right:1em}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-title{font-size:1.1em}.quarto-dashboard #quarto-header #quarto-dashboard-header .navbar-nav{font-size:.9em}.quarto-dashboard #quarto-dashboard-header .navbar{padding:0}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-container{padding-left:1em}.quarto-dashboard #quarto-dashboard-header .navbar.slim .navbar-brand-container .nav-link,.quarto-dashboard #quarto-dashboard-header .navbar.slim .navbar-nav .nav-link{padding:.7em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-color-scheme-toggle{order:9}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-toggler{margin-left:.5em;order:10}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-nav .nav-link{padding:.5em;height:100%;display:flex;align-items:center}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-nav .active{background-color:#e0e5e9}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-brand-container{padding:.5em .5em .5em 0;display:flex;flex-direction:row;margin-right:2em;align-items:center}@media(max-width: 767.98px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-brand-container{margin-right:auto}}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{align-self:stretch}@media(min-width: 768px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{order:8}}@media(max-width: 767.98px){.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse{order:1000;padding-bottom:.5em}}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-collapse .navbar-nav{align-self:stretch}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title{font-size:1.25em;line-height:1.1em;display:flex;flex-direction:row;flex-wrap:wrap;align-items:baseline}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title .navbar-title-text{margin-right:.4em}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-title a{text-decoration:none;color:inherit}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-subtitle,.quarto-dashboard #quarto-dashboard-header .navbar .navbar-author{font-size:.9rem;margin-right:.5em}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-author{margin-left:auto}.quarto-dashboard #quarto-dashboard-header .navbar .navbar-logo{max-height:48px;min-height:30px;object-fit:cover;margin-right:1em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-links{order:9;padding-right:1em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-link-text{margin-left:.25em}.quarto-dashboard #quarto-dashboard-header .navbar .quarto-dashboard-link{padding-right:0em;padding-left:.7em;text-decoration:none;color:#545555}.quarto-dashboard .page-layout-custom .tab-content{padding:0;border:none}.quarto-dashboard-img-contain{height:100%;width:100%;object-fit:contain}@media(max-width: 575.98px){.quarto-dashboard .bslib-grid{grid-template-rows:minmax(1em, max-content) !important}.quarto-dashboard .sidebar-content{height:inherit}.quarto-dashboard .page-layout-custom{min-height:100vh}}.quarto-dashboard.dashboard-toolbar>.page-layout-custom,.quarto-dashboard.dashboard-sidebar>.page-layout-custom{padding:0}.quarto-dashboard .quarto-dashboard-content.quarto-dashboard-pages{padding:0}.quarto-dashboard .callout{margin-bottom:0;margin-top:0}.quarto-dashboard .html-fill-container figure{overflow:hidden}.quarto-dashboard bslib-tooltip .rounded-pill{border:solid #6c757d 1px}.quarto-dashboard bslib-tooltip .rounded-pill .svg{fill:#343a40}.quarto-dashboard .tabset .dashboard-card-no-title .nav-tabs{margin-left:0;margin-right:auto}.quarto-dashboard .tabset .tab-content{border:none}.quarto-dashboard .tabset .card-header .nav-link[role=tab]{margin-top:-6px;padding-top:6px;padding-bottom:6px}.quarto-dashboard .card.valuebox,.quarto-dashboard .card.bslib-value-box{min-height:3rem}.quarto-dashboard .card.valuebox .card-body,.quarto-dashboard .card.bslib-value-box .card-body{padding:0}.quarto-dashboard .bslib-value-box .value-box-value{font-size:clamp(.1em,15cqw,5em)}.quarto-dashboard .bslib-value-box .value-box-showcase .bi{font-size:clamp(.1em,max(18cqw,5.2cqh),5em);text-align:center;height:1em}.quarto-dashboard .bslib-value-box .value-box-showcase .bi::before{vertical-align:1em}.quarto-dashboard .bslib-value-box .value-box-area{margin-top:auto;margin-bottom:auto}.quarto-dashboard .card figure.quarto-float{display:flex;flex-direction:column;align-items:center}.quarto-dashboard .dashboard-scrolling{padding:1em}.quarto-dashboard .full-height{height:100%}.quarto-dashboard .showcase-bottom .value-box-grid{display:grid;grid-template-columns:1fr;grid-template-rows:1fr auto;grid-template-areas:"top" "bottom"}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-showcase i.bi{font-size:4rem}.quarto-dashboard .showcase-bottom .value-box-grid .value-box-area{grid-area:top}.quarto-dashboard .tab-content{margin-bottom:0}.quarto-dashboard .bslib-card .bslib-navs-card-title{justify-content:stretch;align-items:end}.quarto-dashboard .card-header{display:flex;flex-wrap:wrap;justify-content:space-between}.quarto-dashboard .card-header .card-title{display:flex;flex-direction:column;justify-content:center;margin-bottom:0}.quarto-dashboard .tabset .card-toolbar{margin-bottom:1em}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout{border:none;gap:var(--bslib-spacer, 1rem)}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.main{padding:0}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.sidebar{border-radius:.25rem;border:1px solid rgba(0,0,0,.175)}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.collapse-toggle{display:none}@media(max-width: 767.98px){.quarto-dashboard .bslib-grid>.bslib-sidebar-layout{grid-template-columns:1fr;grid-template-rows:max-content 1fr}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout>.main{grid-column:1;grid-row:2}.quarto-dashboard .bslib-grid>.bslib-sidebar-layout .sidebar{grid-column:1;grid-row:1}}.quarto-dashboard .sidebar-right .sidebar{padding-left:2.5em}.quarto-dashboard .sidebar-right .collapse-toggle{left:2px}.quarto-dashboard .quarto-dashboard .sidebar-right button.collapse-toggle:not(.transitioning){left:unset}.quarto-dashboard aside.sidebar{padding-left:1em;padding-right:1em;background-color:rgba(52,58,64,.25);color:#343a40}.quarto-dashboard .bslib-sidebar-layout>div.main{padding:.7em}.quarto-dashboard .bslib-sidebar-layout button.collapse-toggle{margin-top:.3em}.quarto-dashboard .bslib-sidebar-layout .collapse-toggle{top:0}.quarto-dashboard .bslib-sidebar-layout.sidebar-collapsed:not(.transitioning):not(.sidebar-right) .collapse-toggle{left:2px}.quarto-dashboard .sidebar>section>.h3:first-of-type{margin-top:0em}.quarto-dashboard .sidebar .h3,.quarto-dashboard .sidebar .h4,.quarto-dashboard .sidebar .h5,.quarto-dashboard .sidebar .h6{margin-top:.5em}.quarto-dashboard .sidebar form{flex-direction:column;align-items:start;margin-bottom:1em}.quarto-dashboard .sidebar form div[class*=oi-][class$=-input]{flex-direction:column}.quarto-dashboard .sidebar form[class*=oi-][class$=-toggle]{flex-direction:row-reverse;align-items:center;justify-content:start}.quarto-dashboard .sidebar form input[type=range]{margin-top:.5em;margin-right:.8em;margin-left:1em}.quarto-dashboard .sidebar label{width:fit-content}.quarto-dashboard .sidebar .card-body{margin-bottom:2em}.quarto-dashboard .sidebar .shiny-input-container{margin-bottom:1em}.quarto-dashboard .sidebar .shiny-options-group{margin-top:0}.quarto-dashboard .sidebar .control-label{margin-bottom:.3em}.quarto-dashboard .card .card-body .quarto-layout-row{align-items:stretch}.quarto-dashboard .toolbar{font-size:.9em;display:flex;flex-direction:row;border-top:solid 1px #bcbfc0;padding:1em;flex-wrap:wrap;background-color:rgba(52,58,64,.25)}.quarto-dashboard .toolbar .cell-output-display{display:flex}.quarto-dashboard .toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .toolbar>*:last-child{margin-right:0}.quarto-dashboard .toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .toolbar .shiny-input-container{padding-bottom:0;margin-bottom:0}.quarto-dashboard .toolbar .shiny-input-container>*{flex-shrink:0;flex-grow:0}.quarto-dashboard .toolbar .form-group.shiny-input-container:not([role=group])>label{margin-bottom:0}.quarto-dashboard .toolbar .shiny-input-container.no-baseline{align-items:start;padding-top:6px}.quarto-dashboard .toolbar .shiny-input-container{display:flex;align-items:baseline}.quarto-dashboard .toolbar .shiny-input-container label{padding-right:.4em}.quarto-dashboard .toolbar .shiny-input-container .bslib-input-switch{margin-top:6px}.quarto-dashboard .toolbar input[type=text]{line-height:1;width:inherit}.quarto-dashboard .toolbar .input-daterange{width:inherit}.quarto-dashboard .toolbar .input-daterange input[type=text]{height:2.4em;width:10em}.quarto-dashboard .toolbar .input-daterange .input-group-addon{height:auto;padding:0;margin-left:-5px !important;margin-right:-5px}.quarto-dashboard .toolbar .input-daterange .input-group-addon .input-group-text{padding-top:0;padding-bottom:0;height:100%}.quarto-dashboard .toolbar span.irs.irs--shiny{width:10em}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-line{top:9px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-min,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-max,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-from,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-to,.quarto-dashboard .toolbar span.irs.irs--shiny .irs-single{top:20px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-bar{top:8px}.quarto-dashboard .toolbar span.irs.irs--shiny .irs-handle{top:0px}.quarto-dashboard .toolbar .shiny-input-checkboxgroup>label{margin-top:6px}.quarto-dashboard .toolbar .shiny-input-checkboxgroup>.shiny-options-group{margin-top:0;align-items:baseline}.quarto-dashboard .toolbar .shiny-input-radiogroup>label{margin-top:6px}.quarto-dashboard .toolbar .shiny-input-radiogroup>.shiny-options-group{align-items:baseline;margin-top:0}.quarto-dashboard .toolbar .shiny-input-radiogroup>.shiny-options-group>.radio{margin-right:.3em}.quarto-dashboard .toolbar .form-select{padding-top:.2em;padding-bottom:.2em}.quarto-dashboard .toolbar .shiny-input-select{min-width:6em}.quarto-dashboard .toolbar div.checkbox{margin-bottom:0px}.quarto-dashboard .toolbar>.checkbox:first-child{margin-top:6px}.quarto-dashboard .toolbar form{width:fit-content}.quarto-dashboard .toolbar form label{padding-top:.2em;padding-bottom:.2em;width:fit-content}.quarto-dashboard .toolbar form input[type=date]{width:fit-content}.quarto-dashboard .toolbar form input[type=color]{width:3em}.quarto-dashboard .toolbar form button{padding:.4em}.quarto-dashboard .toolbar form select{width:fit-content}.quarto-dashboard .toolbar>*{font-size:.9em;flex-grow:0}.quarto-dashboard .toolbar .shiny-input-container label{margin-bottom:1px}.quarto-dashboard .toolbar-bottom{margin-top:1em;margin-bottom:0 !important;order:2}.quarto-dashboard .quarto-dashboard-content>.dashboard-toolbar-container>.toolbar-content>.tab-content>.tab-pane>*:not(.bslib-sidebar-layout){padding:1em}.quarto-dashboard .quarto-dashboard-content>.dashboard-toolbar-container>.toolbar-content>*:not(.tab-content){padding:1em}.quarto-dashboard .quarto-dashboard-content>.tab-content>.dashboard-page>.dashboard-toolbar-container>.toolbar-content,.quarto-dashboard .quarto-dashboard-content>.tab-content>.dashboard-page:not(.dashboard-sidebar-container)>*:not(.dashboard-toolbar-container){padding:1em}.quarto-dashboard .toolbar-content{padding:0}.quarto-dashboard .quarto-dashboard-content.quarto-dashboard-pages .tab-pane>.dashboard-toolbar-container .toolbar{border-radius:0;margin-bottom:0}.quarto-dashboard .dashboard-toolbar-container.toolbar-toplevel .toolbar{border-bottom:1px solid rgba(0,0,0,.175)}.quarto-dashboard .dashboard-toolbar-container.toolbar-toplevel .toolbar-bottom{margin-top:0}.quarto-dashboard .dashboard-toolbar-container:not(.toolbar-toplevel) .toolbar{margin-bottom:1em;border-top:none;border-radius:.25rem;border:1px solid rgba(0,0,0,.175)}.quarto-dashboard .vega-embed.has-actions details{width:1.7em;height:2em;position:absolute !important;top:0;right:0}.quarto-dashboard .dashboard-toolbar-container{padding:0}.quarto-dashboard .card .card-header p:last-child,.quarto-dashboard .card .card-footer p:last-child{margin-bottom:0}.quarto-dashboard .card .card-body>.h4:first-child{margin-top:0}.quarto-dashboard .card .card-body{z-index:4}@media(max-width: 767.98px){.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_length,.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_info,.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_paginate{text-align:initial}.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_filter{text-align:right}.quarto-dashboard .card .card-body .itables div.dataTables_wrapper div.dataTables_paginate ul.pagination{justify-content:initial}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center;padding-top:0}.quarto-dashboard .card .card-body .itables .dataTables_wrapper table{flex-shrink:0}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons{margin-bottom:.5em;margin-left:auto;width:fit-content;float:right}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons.btn-group{background:#fff;border:none}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons .btn-secondary{background-color:#fff;background-image:none;border:solid #dee2e6 1px;padding:.2em .7em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dt-buttons .btn span{font-size:.8em;color:#343a40}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{margin-left:.5em;margin-bottom:.5em;padding-top:0}@media(min-width: 768px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{font-size:.875em}}@media(max-width: 767.98px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_info{font-size:.8em}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_filter{margin-bottom:.5em;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_filter input[type=search]{padding:1px 5px 1px 5px;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_length{flex-basis:1 1 50%;margin-bottom:.5em;font-size:.875em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_length select{padding:.4em 3em .4em .5em;font-size:.875em;margin-left:.2em;margin-right:.2em}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate{flex-shrink:0}@media(min-width: 768px){.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate{margin-left:auto}}.quarto-dashboard .card .card-body .itables .dataTables_wrapper .dataTables_paginate ul.pagination .paginate_button .page-link{font-size:.8em}.quarto-dashboard .card .card-footer{font-size:.9em}.quarto-dashboard .card .card-toolbar{display:flex;flex-grow:1;flex-direction:row;width:100%;flex-wrap:wrap}.quarto-dashboard .card .card-toolbar>*{font-size:.8em;flex-grow:0}.quarto-dashboard .card .card-toolbar>.card-title{font-size:1em;flex-grow:1;align-self:flex-start;margin-top:.1em}.quarto-dashboard .card .card-toolbar .cell-output-display{display:flex}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .card .card-toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card .card-toolbar>*:last-child{margin-right:0}.quarto-dashboard .card .card-toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .card .card-toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .card .card-toolbar form{width:fit-content}.quarto-dashboard .card .card-toolbar form label{padding-top:.2em;padding-bottom:.2em;width:fit-content}.quarto-dashboard .card .card-toolbar form input[type=date]{width:fit-content}.quarto-dashboard .card .card-toolbar form input[type=color]{width:3em}.quarto-dashboard .card .card-toolbar form button{padding:.4em}.quarto-dashboard .card .card-toolbar form select{width:fit-content}.quarto-dashboard .card .card-toolbar .cell-output-display{display:flex}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:.5em;margin-bottom:.5em;width:inherit}.quarto-dashboard .card .card-toolbar .shiny-input-container>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card .card-toolbar>*:last-child{margin-right:0}.quarto-dashboard .card .card-toolbar>*>*{margin-right:1em;align-items:baseline}.quarto-dashboard .card .card-toolbar>*>*>a{text-decoration:none;margin-top:auto;margin-bottom:auto}.quarto-dashboard .card .card-toolbar .shiny-input-container{padding-bottom:0;margin-bottom:0}.quarto-dashboard .card .card-toolbar .shiny-input-container>*{flex-shrink:0;flex-grow:0}.quarto-dashboard .card .card-toolbar .form-group.shiny-input-container:not([role=group])>label{margin-bottom:0}.quarto-dashboard .card .card-toolbar .shiny-input-container.no-baseline{align-items:start;padding-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-container{display:flex;align-items:baseline}.quarto-dashboard .card .card-toolbar .shiny-input-container label{padding-right:.4em}.quarto-dashboard .card .card-toolbar .shiny-input-container .bslib-input-switch{margin-top:6px}.quarto-dashboard .card .card-toolbar input[type=text]{line-height:1;width:inherit}.quarto-dashboard .card .card-toolbar .input-daterange{width:inherit}.quarto-dashboard .card .card-toolbar .input-daterange input[type=text]{height:2.4em;width:10em}.quarto-dashboard .card .card-toolbar .input-daterange .input-group-addon{height:auto;padding:0;margin-left:-5px !important;margin-right:-5px}.quarto-dashboard .card .card-toolbar .input-daterange .input-group-addon .input-group-text{padding-top:0;padding-bottom:0;height:100%}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny{width:10em}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-line{top:9px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-min,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-max,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-from,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-to,.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-single{top:20px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-bar{top:8px}.quarto-dashboard .card .card-toolbar span.irs.irs--shiny .irs-handle{top:0px}.quarto-dashboard .card .card-toolbar .shiny-input-checkboxgroup>label{margin-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-checkboxgroup>.shiny-options-group{margin-top:0;align-items:baseline}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>label{margin-top:6px}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>.shiny-options-group{align-items:baseline;margin-top:0}.quarto-dashboard .card .card-toolbar .shiny-input-radiogroup>.shiny-options-group>.radio{margin-right:.3em}.quarto-dashboard .card .card-toolbar .form-select{padding-top:.2em;padding-bottom:.2em}.quarto-dashboard .card .card-toolbar .shiny-input-select{min-width:6em}.quarto-dashboard .card .card-toolbar div.checkbox{margin-bottom:0px}.quarto-dashboard .card .card-toolbar>.checkbox:first-child{margin-top:6px}.quarto-dashboard .card-body>table>thead{border-top:none}.quarto-dashboard .card-body>.table>:not(caption)>*>*{background-color:#fff}.tableFloatingHeaderOriginal{background-color:#fff;position:sticky !important;top:0 !important}.dashboard-data-table{margin-top:-1px}div.value-box-area span.observablehq--number{font-size:calc(clamp(.1em,15cqw,5em)*1.25);line-height:1.2;color:inherit;font-family:var(--bs-body-font-family)}.quarto-listing{padding-bottom:1em}.listing-pagination{padding-top:.5em}ul.pagination{float:right;padding-left:8px;padding-top:.5em}ul.pagination li{padding-right:.75em}ul.pagination li.disabled a,ul.pagination li.active a{color:#fff;text-decoration:none}ul.pagination li:last-of-type{padding-right:0}.listing-actions-group{display:flex}.quarto-listing-filter{margin-bottom:1em;width:200px;margin-left:auto}.quarto-listing-sort{margin-bottom:1em;margin-right:auto;width:auto}.quarto-listing-sort .input-group-text{font-size:.8em}.input-group-text{border-right:none}.quarto-listing-sort select.form-select{font-size:.8em}.listing-no-matching{text-align:center;padding-top:2em;padding-bottom:3em;font-size:1em}#quarto-margin-sidebar .quarto-listing-category{padding-top:0;font-size:1rem}#quarto-margin-sidebar .quarto-listing-category-title{cursor:pointer;font-weight:600;font-size:1rem}.quarto-listing-category .category{cursor:pointer}.quarto-listing-category .category.active{font-weight:600}.quarto-listing-category.category-cloud{display:flex;flex-wrap:wrap;align-items:baseline}.quarto-listing-category.category-cloud .category{padding-right:5px}.quarto-listing-category.category-cloud .category-cloud-1{font-size:.75em}.quarto-listing-category.category-cloud .category-cloud-2{font-size:.95em}.quarto-listing-category.category-cloud .category-cloud-3{font-size:1.15em}.quarto-listing-category.category-cloud .category-cloud-4{font-size:1.35em}.quarto-listing-category.category-cloud .category-cloud-5{font-size:1.55em}.quarto-listing-category.category-cloud .category-cloud-6{font-size:1.75em}.quarto-listing-category.category-cloud .category-cloud-7{font-size:1.95em}.quarto-listing-category.category-cloud .category-cloud-8{font-size:2.15em}.quarto-listing-category.category-cloud .category-cloud-9{font-size:2.35em}.quarto-listing-category.category-cloud .category-cloud-10{font-size:2.55em}.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-1{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-2{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-3{grid-template-columns:repeat(3, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-3{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-3{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-4{grid-template-columns:repeat(4, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-4{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-4{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-5{grid-template-columns:repeat(5, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-5{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-5{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-6{grid-template-columns:repeat(6, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-6{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-6{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-7{grid-template-columns:repeat(7, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-7{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-7{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-8{grid-template-columns:repeat(8, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-8{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-8{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-9{grid-template-columns:repeat(9, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-9{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-9{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-10{grid-template-columns:repeat(10, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-10{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-10{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-11{grid-template-columns:repeat(11, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-11{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-11{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-12{grid-template-columns:repeat(12, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-12{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-12{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-grid{gap:1.5em}.quarto-grid-item.borderless{border:none}.quarto-grid-item.borderless .listing-categories .listing-category:last-of-type,.quarto-grid-item.borderless .listing-categories .listing-category:first-of-type{padding-left:0}.quarto-grid-item.borderless .listing-categories .listing-category{border:0}.quarto-grid-link{text-decoration:none;color:inherit}.quarto-grid-link:hover{text-decoration:none;color:inherit}.quarto-grid-item h5.title,.quarto-grid-item .title.h5{margin-top:0;margin-bottom:0}.quarto-grid-item .card-footer{display:flex;justify-content:space-between;font-size:.8em}.quarto-grid-item .card-footer p{margin-bottom:0}.quarto-grid-item p.card-img-top{margin-bottom:0}.quarto-grid-item p.card-img-top>img{object-fit:cover}.quarto-grid-item .card-other-values{margin-top:.5em;font-size:.8em}.quarto-grid-item .card-other-values tr{margin-bottom:.5em}.quarto-grid-item .card-other-values tr>td:first-of-type{font-weight:600;padding-right:1em;padding-left:1em;vertical-align:top}.quarto-grid-item div.post-contents{display:flex;flex-direction:column;text-decoration:none;height:100%}.quarto-grid-item .listing-item-img-placeholder{background-color:rgba(52,58,64,.25);flex-shrink:0}.quarto-grid-item .card-attribution{padding-top:1em;display:flex;gap:1em;text-transform:uppercase;color:#6c757d;font-weight:500;flex-grow:10;align-items:flex-end}.quarto-grid-item .description{padding-bottom:1em}.quarto-grid-item .card-attribution .date{align-self:flex-end}.quarto-grid-item .card-attribution.justify{justify-content:space-between}.quarto-grid-item .card-attribution.start{justify-content:flex-start}.quarto-grid-item .card-attribution.end{justify-content:flex-end}.quarto-grid-item .card-title{margin-bottom:.1em}.quarto-grid-item .card-subtitle{padding-top:.25em}.quarto-grid-item .card-text{font-size:.9em}.quarto-grid-item .listing-reading-time{padding-bottom:.25em}.quarto-grid-item .card-text-small{font-size:.8em}.quarto-grid-item .card-subtitle.subtitle{font-size:.9em;font-weight:600;padding-bottom:.5em}.quarto-grid-item .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}.quarto-grid-item .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}.quarto-grid-item.card-right{text-align:right}.quarto-grid-item.card-right .listing-categories{justify-content:flex-end}.quarto-grid-item.card-left{text-align:left}.quarto-grid-item.card-center{text-align:center}.quarto-grid-item.card-center .listing-description{text-align:justify}.quarto-grid-item.card-center .listing-categories{justify-content:center}table.quarto-listing-table td.image{padding:0px}table.quarto-listing-table td.image img{width:100%;max-width:50px;object-fit:contain}table.quarto-listing-table a{text-decoration:none;word-break:keep-all}table.quarto-listing-table th a{color:inherit}table.quarto-listing-table th a.asc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-sort-up" viewBox="0 0 16 16"><path d="M3.5 12.5a.5.5 0 0 1-1 0V3.707L1.354 4.854a.5.5 0 1 1-.708-.708l2-1.999.007-.007a.498.498 0 0 1 .7.006l2 2a.5.5 0 1 1-.707.708L3.5 3.707V12.5zm3.5-9a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5zM7.5 6a.5.5 0 0 0 0 1h5a.5.5 0 0 0 0-1h-5zm0 3a.5.5 0 0 0 0 1h3a.5.5 0 0 0 0-1h-3zm0 3a.5.5 0 0 0 0 1h1a.5.5 0 0 0 0-1h-1z"/></svg>');content:""}table.quarto-listing-table th a.desc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-sort-down" viewBox="0 0 16 16"><path d="M3.5 2.5a.5.5 0 0 0-1 0v8.793l-1.146-1.147a.5.5 0 0 0-.708.708l2 1.999.007.007a.497.497 0 0 0 .7-.006l2-2a.5.5 0 0 0-.707-.708L3.5 11.293V2.5zm3.5 1a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5zM7.5 6a.5.5 0 0 0 0 1h5a.5.5 0 0 0 0-1h-5zm0 3a.5.5 0 0 0 0 1h3a.5.5 0 0 0 0-1h-3zm0 3a.5.5 0 0 0 0 1h1a.5.5 0 0 0 0-1h-1z"/></svg>');content:""}table.quarto-listing-table.table-hover td{cursor:pointer}.quarto-post.image-left{flex-direction:row}.quarto-post.image-right{flex-direction:row-reverse}@media(max-width: 767.98px){.quarto-post.image-right,.quarto-post.image-left{gap:0em;flex-direction:column}.quarto-post .metadata{padding-bottom:1em;order:2}.quarto-post .body{order:1}.quarto-post .thumbnail{order:3}}.list.quarto-listing-default div:last-of-type{border-bottom:none}@media(min-width: 992px){.quarto-listing-container-default{margin-right:2em}}div.quarto-post{display:flex;gap:2em;margin-bottom:1.5em;border-bottom:1px solid #dee2e6}@media(max-width: 767.98px){div.quarto-post{padding-bottom:1em}}div.quarto-post .metadata{flex-basis:20%;flex-grow:0;margin-top:.2em;flex-shrink:10}div.quarto-post .thumbnail{flex-basis:30%;flex-grow:0;flex-shrink:0}div.quarto-post .thumbnail img{margin-top:.4em;width:100%;object-fit:cover}div.quarto-post .body{flex-basis:45%;flex-grow:1;flex-shrink:0}div.quarto-post .body h3.listing-title,div.quarto-post .body .listing-title.h3{margin-top:0px;margin-bottom:0px;border-bottom:none}div.quarto-post .body .listing-subtitle{font-size:.875em;margin-bottom:.5em;margin-top:.2em}div.quarto-post .body .description{font-size:.9em}div.quarto-post .body pre code{white-space:pre-wrap}div.quarto-post a{color:#343a40;text-decoration:none}div.quarto-post .metadata{display:flex;flex-direction:column;font-size:.8em;font-family:"Source Sans Pro",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";flex-basis:33%}div.quarto-post .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}div.quarto-post .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}div.quarto-post .listing-description{margin-bottom:.5em}div.quarto-about-jolla{display:flex !important;flex-direction:column;align-items:center;margin-top:10%;padding-bottom:1em}div.quarto-about-jolla .about-image{object-fit:cover;margin-left:auto;margin-right:auto;margin-bottom:1.5em}div.quarto-about-jolla img.round{border-radius:50%}div.quarto-about-jolla img.rounded{border-radius:10px}div.quarto-about-jolla .quarto-title h1.title,div.quarto-about-jolla .quarto-title .title.h1{text-align:center}div.quarto-about-jolla .quarto-title .description{text-align:center}div.quarto-about-jolla h2,div.quarto-about-jolla .h2{border-bottom:none}div.quarto-about-jolla .about-sep{width:60%}div.quarto-about-jolla main{text-align:center}div.quarto-about-jolla .about-links{display:flex}@media(min-width: 992px){div.quarto-about-jolla .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-jolla .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-jolla .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-jolla .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-jolla .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-jolla .about-link:hover{color:#2761e3}div.quarto-about-jolla .about-link i.bi{margin-right:.15em}div.quarto-about-solana{display:flex !important;flex-direction:column;padding-top:3em !important;padding-bottom:1em}div.quarto-about-solana .about-entity{display:flex !important;align-items:start;justify-content:space-between}@media(min-width: 992px){div.quarto-about-solana .about-entity{flex-direction:row}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity{flex-direction:column-reverse;align-items:center;text-align:center}}div.quarto-about-solana .about-entity .entity-contents{display:flex;flex-direction:column}@media(max-width: 767.98px){div.quarto-about-solana .about-entity .entity-contents{width:100%}}div.quarto-about-solana .about-entity .about-image{object-fit:cover}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-image{margin-bottom:1.5em}}div.quarto-about-solana .about-entity img.round{border-radius:50%}div.quarto-about-solana .about-entity img.rounded{border-radius:10px}div.quarto-about-solana .about-entity .about-links{display:flex;justify-content:left;padding-bottom:1.2em}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-solana .about-entity .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-solana .about-entity .about-link:hover{color:#2761e3}div.quarto-about-solana .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-solana .about-contents{padding-right:1.5em;flex-basis:0;flex-grow:1}div.quarto-about-solana .about-contents main.content{margin-top:0}div.quarto-about-solana .about-contents h2,div.quarto-about-solana .about-contents .h2{border-bottom:none}div.quarto-about-trestles{display:flex !important;flex-direction:row;padding-top:3em !important;padding-bottom:1em}@media(max-width: 991.98px){div.quarto-about-trestles{flex-direction:column;padding-top:0em !important}}div.quarto-about-trestles .about-entity{display:flex !important;flex-direction:column;align-items:center;text-align:center;padding-right:1em}@media(min-width: 992px){div.quarto-about-trestles .about-entity{flex:0 0 42%}}div.quarto-about-trestles .about-entity .about-image{object-fit:cover;margin-bottom:1.5em}div.quarto-about-trestles .about-entity img.round{border-radius:50%}div.quarto-about-trestles .about-entity img.rounded{border-radius:10px}div.quarto-about-trestles .about-entity .about-links{display:flex;justify-content:center}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-trestles .about-entity .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-trestles .about-entity .about-link:hover{color:#2761e3}div.quarto-about-trestles .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-trestles .about-contents{flex-basis:0;flex-grow:1}div.quarto-about-trestles .about-contents h2,div.quarto-about-trestles .about-contents .h2{border-bottom:none}@media(min-width: 992px){div.quarto-about-trestles .about-contents{border-left:solid 1px #dee2e6;padding-left:1.5em}}div.quarto-about-trestles .about-contents main.content{margin-top:0}div.quarto-about-marquee{padding-bottom:1em}div.quarto-about-marquee .about-contents{display:flex;flex-direction:column}div.quarto-about-marquee .about-image{max-height:550px;margin-bottom:1.5em;object-fit:cover}div.quarto-about-marquee img.round{border-radius:50%}div.quarto-about-marquee img.rounded{border-radius:10px}div.quarto-about-marquee h2,div.quarto-about-marquee .h2{border-bottom:none}div.quarto-about-marquee .about-links{display:flex;justify-content:center;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-marquee .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-marquee .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-marquee .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-marquee .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-marquee .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-marquee .about-link:hover{color:#2761e3}div.quarto-about-marquee .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-marquee .about-link{border:none}}div.quarto-about-broadside{display:flex;flex-direction:column;padding-bottom:1em}div.quarto-about-broadside .about-main{display:flex !important;padding-top:0 !important}@media(min-width: 992px){div.quarto-about-broadside .about-main{flex-direction:row;align-items:flex-start}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main{flex-direction:column}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main .about-entity{flex-shrink:0;width:100%;height:450px;margin-bottom:1.5em;background-size:cover;background-repeat:no-repeat}}@media(min-width: 992px){div.quarto-about-broadside .about-main .about-entity{flex:0 10 50%;margin-right:1.5em;width:100%;height:100%;background-size:100%;background-repeat:no-repeat}}div.quarto-about-broadside .about-main .about-contents{padding-top:14px;flex:0 0 50%}div.quarto-about-broadside h2,div.quarto-about-broadside .h2{border-bottom:none}div.quarto-about-broadside .about-sep{margin-top:1.5em;width:60%;align-self:center}div.quarto-about-broadside .about-links{display:flex;justify-content:center;column-gap:20px;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-broadside .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-broadside .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-broadside .about-link{color:#626d78;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-broadside .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-broadside .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-broadside .about-link:hover{color:#2761e3}div.quarto-about-broadside .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-broadside .about-link{border:none}}.tippy-box[data-theme~=quarto]{background-color:#fff;border:solid 1px #dee2e6;border-radius:.25rem;color:#343a40;font-size:.875rem}.tippy-box[data-theme~=quarto]>.tippy-backdrop{background-color:#fff}.tippy-box[data-theme~=quarto]>.tippy-arrow:after,.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{content:"";position:absolute;z-index:-1}.tippy-box[data-theme~=quarto]>.tippy-arrow:after{border-color:rgba(0,0,0,0);border-style:solid}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-6px}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-6px}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-6px}.tippy-box[data-placement^=left]>.tippy-arrow:before{right:-6px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:before{border-top-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:after{border-top-color:#dee2e6;border-width:7px 7px 0;top:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow>svg{top:16px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow:after{top:17px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:before{border-bottom-color:#fff;bottom:16px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:after{border-bottom-color:#dee2e6;border-width:0 7px 7px;bottom:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow>svg{bottom:15px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow:after{bottom:17px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:before{border-left-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:after{border-left-color:#dee2e6;border-width:7px 0 7px 7px;left:17px;top:1px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow>svg{left:11px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow:after{left:12px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:before{border-right-color:#fff;right:16px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:after{border-width:7px 7px 7px 0;right:17px;top:1px;border-right-color:#dee2e6}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow>svg{right:11px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow:after{right:12px}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow{fill:#343a40}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{background-image:url();background-size:16px 6px;width:16px;height:6px}.top-right{position:absolute;top:1em;right:1em}.visually-hidden{border:0;clip:rect(0 0 0 0);height:auto;margin:0;overflow:hidden;padding:0;position:absolute;width:1px;white-space:nowrap}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:.5em}figure>figcaption.quarto-float-caption-top{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,.h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,.h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,.h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,.h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1,#title-block-header .quarto-title-block>div>.h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}@media(min-width: 992px){#title-block-header .quarto-title-block>div>button{margin-top:5px}}tr.header>th>p:last-of-type{margin-bottom:0px}table{margin-top:.5rem;margin-bottom:.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-top{margin-top:.5rem;margin-bottom:.25rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-bottom{padding-top:.25rem;margin-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:#6c757d}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}dd code:not(.sourceCode),p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.footnote-back{margin-left:.2em}.tippy-content{overflow-x:auto}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*!
+*
+* ansi colors from IPython notebook's
+*
+* we also add `bright-[color]-` synonyms for the `-[color]-intense` classes since
+* that seems to be what ansi_up emits
+*
+*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-black,.ansi-bright-black-fg{color:#282c36}.ansi-black-intense-black,.ansi-bright-black-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-red,.ansi-bright-red-fg{color:#b22b31}.ansi-red-intense-red,.ansi-bright-red-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-green,.ansi-bright-green-fg{color:#007427}.ansi-green-intense-green,.ansi-bright-green-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-yellow,.ansi-bright-yellow-fg{color:#b27d12}.ansi-yellow-intense-yellow,.ansi-bright-yellow-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-blue,.ansi-bright-blue-fg{color:#0065ca}.ansi-blue-intense-blue,.ansi-bright-blue-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-magenta,.ansi-bright-magenta-fg{color:#a03196}.ansi-magenta-intense-magenta,.ansi-bright-magenta-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-cyan,.ansi-bright-cyan-fg{color:#258f8f}.ansi-cyan-intense-cyan,.ansi-bright-cyan-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-white,.ansi-bright-white-fg{color:#a1a6b2}.ansi-white-intense-white,.ansi-bright-white-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: #fff;--quarto-body-color: #343a40;--quarto-text-muted: #6c757d;--quarto-border-color: #dee2e6;--quarto-border-width: 1px;--quarto-border-radius: 0.25rem}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:relative;float:right;background-color:rgba(0,0,0,0)}input[type=checkbox]{margin-right:.5ch}:root{--mermaid-bg-color: #fff;--mermaid-edge-color: #343a40;--mermaid-node-fg-color: #343a40;--mermaid-fg-color: #343a40;--mermaid-fg-color--lighter: #4b545c;--mermaid-fg-color--lightest: #626d78;--mermaid-font-family: Source Sans Pro, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol;--mermaid-label-bg-color: #fff;--mermaid-label-fg-color: #2780e3;--mermaid-node-bg-color: rgba(39, 128, 227, 0.1);--mermaid-node-fg-color: #343a40}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(94, 94, 94)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>');background-repeat:no-repeat;background-size:1rem 1rem}.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(94, 94, 94)" viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(71, 88, 171)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>')}.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(71, 88, 171)"  viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}main ol ol,main ul ul,main ol ul,main ul ol{margin-bottom:1em}ul>li:not(:has(>p))>ul,ol>li:not(:has(>p))>ul,ul>li:not(:has(>p))>ol,ol>li:not(:has(>p))>ol{margin-bottom:0}ul>li:not(:has(>p))>ul>li:has(>p),ol>li:not(:has(>p))>ul>li:has(>p),ul>li:not(:has(>p))>ol>li:has(>p),ol>li:not(:has(>p))>ol>li:has(>p){margin-top:1rem}body{margin:0}main.page-columns>header>h1.title,main.page-columns>header>.title.h1{margin-bottom:0}@media(min-width: 992px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] 35px [page-end-inset page-end] 5fr [screen-end-inset] 1.5em}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 3em [body-end] 50px [body-end-outset] minmax(0px, 250px) [page-end-inset] minmax(50px, 100px) [page-end] 1fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 100px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 150px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 991.98px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(1250px - 3em)) [body-content-end body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1.5em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 767.98px){body .page-columns,body.fullcontent:not(.floating):not(.docked) .page-columns,body.slimcontent:not(.floating):not(.docked) .page-columns,body.docked .page-columns,body.docked.slimcontent .page-columns,body.docked.fullcontent .page-columns,body.floating .page-columns,body.floating.slimcontent .page-columns,body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}nav[role=doc-toc]{display:none}}body,.page-row-navigation{grid-template-rows:[page-top] max-content [contents-top] max-content [contents-bottom] max-content [page-bottom]}.page-rows-contents{grid-template-rows:[content-top] minmax(max-content, 1fr) [content-bottom] minmax(60px, max-content) [page-bottom]}.page-full{grid-column:screen-start/screen-end !important}.page-columns>*{grid-column:body-content-start/body-content-end}.page-columns.column-page>*{grid-column:page-start/page-end}.page-columns.column-page-left .page-columns.page-full>*,.page-columns.column-page-left>*{grid-column:page-start/body-content-end}.page-columns.column-page-right .page-columns.page-full>*,.page-columns.column-page-right>*{grid-column:body-content-start/page-end}.page-rows{grid-auto-rows:auto}.header{grid-column:screen-start/screen-end;grid-row:page-top/contents-top}#quarto-content{padding:0;grid-column:screen-start/screen-end;grid-row:contents-top/contents-bottom}body.floating .sidebar.sidebar-navigation{grid-column:page-start/body-start;grid-row:content-top/page-bottom}body.docked .sidebar.sidebar-navigation{grid-column:screen-start/body-start;grid-row:content-top/page-bottom}.sidebar.toc-left{grid-column:page-start/body-start;grid-row:content-top/page-bottom}.sidebar.margin-sidebar{grid-column:body-end/page-end;grid-row:content-top/page-bottom}.page-columns .content{grid-column:body-content-start/body-content-end;grid-row:content-top/content-bottom;align-content:flex-start}.page-columns .page-navigation{grid-column:body-content-start/body-content-end;grid-row:content-bottom/page-bottom}.page-columns .footer{grid-column:screen-start/screen-end;grid-row:contents-bottom/page-bottom}.page-columns .column-body{grid-column:body-content-start/body-content-end}.page-columns .column-body-fullbleed{grid-column:body-start/body-end}.page-columns .column-body-outset{grid-column:body-start-outset/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset table{background:#fff}.page-columns .column-body-outset-left{grid-column:body-start-outset/body-content-end;z-index:998;opacity:.999}.page-columns .column-body-outset-left table{background:#fff}.page-columns .column-body-outset-right{grid-column:body-content-start/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset-right table{background:#fff}.page-columns .column-page{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-page table{background:#fff}.page-columns .column-page-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset table{background:#fff}.page-columns .column-page-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-inset-left table{background:#fff}.page-columns .column-page-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset-right figcaption table{background:#fff}.page-columns .column-page-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-left table{background:#fff}.page-columns .column-page-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-page-right figcaption table{background:#fff}#quarto-content.page-columns #quarto-margin-sidebar,#quarto-content.page-columns #quarto-sidebar{z-index:1}@media(max-width: 991.98px){#quarto-content.page-columns #quarto-margin-sidebar.collapse,#quarto-content.page-columns #quarto-sidebar.collapse,#quarto-content.page-columns #quarto-margin-sidebar.collapsing,#quarto-content.page-columns #quarto-sidebar.collapsing{z-index:1055}}#quarto-content.page-columns main.column-page,#quarto-content.page-columns main.column-page-right,#quarto-content.page-columns main.column-page-left{z-index:0}.page-columns .column-screen-inset{grid-column:screen-start-inset/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:screen-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:screen-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:screen-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:screen-start/screen-end;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}.zindex-content{z-index:998;opacity:.999}.zindex-modal{z-index:1055;opacity:.999}.zindex-over-content{z-index:999;opacity:.999}img.img-fluid.column-screen,img.img-fluid.column-screen-inset-shaded,img.img-fluid.column-screen-inset,img.img-fluid.column-screen-inset-left,img.img-fluid.column-screen-inset-right,img.img-fluid.column-screen-left,img.img-fluid.column-screen-right{width:100%}@media(min-width: 992px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.column-sidebar{grid-column:page-start/body-start !important;z-index:998}.column-leftmargin{grid-column:screen-start-inset/body-start !important;z-index:998}.no-row-height{height:1em;overflow:visible}}@media(max-width: 991.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.no-row-height{height:1em;overflow:visible}.page-columns.page-full{overflow:visible}.page-columns.toc-left .margin-caption,.page-columns.toc-left div.aside,.page-columns.toc-left aside:not(.footnotes):not(.sidebar),.page-columns.toc-left .column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.page-columns.toc-left .no-row-height{height:initial;overflow:initial}}@media(max-width: 767.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.no-row-height{height:initial;overflow:initial}#quarto-margin-sidebar{display:none}#quarto-sidebar-toc-left{display:none}.hidden-sm{display:none}}.panel-grid{display:grid;grid-template-rows:repeat(1, 1fr);grid-template-columns:repeat(24, 1fr);gap:1em}.panel-grid .g-col-1{grid-column:auto/span 1}.panel-grid .g-col-2{grid-column:auto/span 2}.panel-grid .g-col-3{grid-column:auto/span 3}.panel-grid .g-col-4{grid-column:auto/span 4}.panel-grid .g-col-5{grid-column:auto/span 5}.panel-grid .g-col-6{grid-column:auto/span 6}.panel-grid .g-col-7{grid-column:auto/span 7}.panel-grid .g-col-8{grid-column:auto/span 8}.panel-grid .g-col-9{grid-column:auto/span 9}.panel-grid .g-col-10{grid-column:auto/span 10}.panel-grid .g-col-11{grid-column:auto/span 11}.panel-grid .g-col-12{grid-column:auto/span 12}.panel-grid .g-col-13{grid-column:auto/span 13}.panel-grid .g-col-14{grid-column:auto/span 14}.panel-grid .g-col-15{grid-column:auto/span 15}.panel-grid .g-col-16{grid-column:auto/span 16}.panel-grid .g-col-17{grid-column:auto/span 17}.panel-grid .g-col-18{grid-column:auto/span 18}.panel-grid .g-col-19{grid-column:auto/span 19}.panel-grid .g-col-20{grid-column:auto/span 20}.panel-grid .g-col-21{grid-column:auto/span 21}.panel-grid .g-col-22{grid-column:auto/span 22}.panel-grid .g-col-23{grid-column:auto/span 23}.panel-grid .g-col-24{grid-column:auto/span 24}.panel-grid .g-start-1{grid-column-start:1}.panel-grid .g-start-2{grid-column-start:2}.panel-grid .g-start-3{grid-column-start:3}.panel-grid .g-start-4{grid-column-start:4}.panel-grid .g-start-5{grid-column-start:5}.panel-grid .g-start-6{grid-column-start:6}.panel-grid .g-start-7{grid-column-start:7}.panel-grid .g-start-8{grid-column-start:8}.panel-grid .g-start-9{grid-column-start:9}.panel-grid .g-start-10{grid-column-start:10}.panel-grid .g-start-11{grid-column-start:11}.panel-grid .g-start-12{grid-column-start:12}.panel-grid .g-start-13{grid-column-start:13}.panel-grid .g-start-14{grid-column-start:14}.panel-grid .g-start-15{grid-column-start:15}.panel-grid .g-start-16{grid-column-start:16}.panel-grid .g-start-17{grid-column-start:17}.panel-grid .g-start-18{grid-column-start:18}.panel-grid .g-start-19{grid-column-start:19}.panel-grid .g-start-20{grid-column-start:20}.panel-grid .g-start-21{grid-column-start:21}.panel-grid .g-start-22{grid-column-start:22}.panel-grid .g-start-23{grid-column-start:23}@media(min-width: 576px){.panel-grid .g-col-sm-1{grid-column:auto/span 1}.panel-grid .g-col-sm-2{grid-column:auto/span 2}.panel-grid .g-col-sm-3{grid-column:auto/span 3}.panel-grid .g-col-sm-4{grid-column:auto/span 4}.panel-grid .g-col-sm-5{grid-column:auto/span 5}.panel-grid .g-col-sm-6{grid-column:auto/span 6}.panel-grid .g-col-sm-7{grid-column:auto/span 7}.panel-grid .g-col-sm-8{grid-column:auto/span 8}.panel-grid .g-col-sm-9{grid-column:auto/span 9}.panel-grid .g-col-sm-10{grid-column:auto/span 10}.panel-grid .g-col-sm-11{grid-column:auto/span 11}.panel-grid .g-col-sm-12{grid-column:auto/span 12}.panel-grid .g-col-sm-13{grid-column:auto/span 13}.panel-grid .g-col-sm-14{grid-column:auto/span 14}.panel-grid .g-col-sm-15{grid-column:auto/span 15}.panel-grid .g-col-sm-16{grid-column:auto/span 16}.panel-grid .g-col-sm-17{grid-column:auto/span 17}.panel-grid .g-col-sm-18{grid-column:auto/span 18}.panel-grid .g-col-sm-19{grid-column:auto/span 19}.panel-grid .g-col-sm-20{grid-column:auto/span 20}.panel-grid .g-col-sm-21{grid-column:auto/span 21}.panel-grid .g-col-sm-22{grid-column:auto/span 22}.panel-grid .g-col-sm-23{grid-column:auto/span 23}.panel-grid .g-col-sm-24{grid-column:auto/span 24}.panel-grid .g-start-sm-1{grid-column-start:1}.panel-grid .g-start-sm-2{grid-column-start:2}.panel-grid .g-start-sm-3{grid-column-start:3}.panel-grid .g-start-sm-4{grid-column-start:4}.panel-grid .g-start-sm-5{grid-column-start:5}.panel-grid .g-start-sm-6{grid-column-start:6}.panel-grid .g-start-sm-7{grid-column-start:7}.panel-grid .g-start-sm-8{grid-column-start:8}.panel-grid .g-start-sm-9{grid-column-start:9}.panel-grid .g-start-sm-10{grid-column-start:10}.panel-grid .g-start-sm-11{grid-column-start:11}.panel-grid .g-start-sm-12{grid-column-start:12}.panel-grid .g-start-sm-13{grid-column-start:13}.panel-grid .g-start-sm-14{grid-column-start:14}.panel-grid .g-start-sm-15{grid-column-start:15}.panel-grid .g-start-sm-16{grid-column-start:16}.panel-grid .g-start-sm-17{grid-column-start:17}.panel-grid .g-start-sm-18{grid-column-start:18}.panel-grid .g-start-sm-19{grid-column-start:19}.panel-grid .g-start-sm-20{grid-column-start:20}.panel-grid .g-start-sm-21{grid-column-start:21}.panel-grid .g-start-sm-22{grid-column-start:22}.panel-grid .g-start-sm-23{grid-column-start:23}}@media(min-width: 768px){.panel-grid .g-col-md-1{grid-column:auto/span 1}.panel-grid .g-col-md-2{grid-column:auto/span 2}.panel-grid .g-col-md-3{grid-column:auto/span 3}.panel-grid .g-col-md-4{grid-column:auto/span 4}.panel-grid .g-col-md-5{grid-column:auto/span 5}.panel-grid .g-col-md-6{grid-column:auto/span 6}.panel-grid .g-col-md-7{grid-column:auto/span 7}.panel-grid .g-col-md-8{grid-column:auto/span 8}.panel-grid .g-col-md-9{grid-column:auto/span 9}.panel-grid .g-col-md-10{grid-column:auto/span 10}.panel-grid .g-col-md-11{grid-column:auto/span 11}.panel-grid .g-col-md-12{grid-column:auto/span 12}.panel-grid .g-col-md-13{grid-column:auto/span 13}.panel-grid .g-col-md-14{grid-column:auto/span 14}.panel-grid .g-col-md-15{grid-column:auto/span 15}.panel-grid .g-col-md-16{grid-column:auto/span 16}.panel-grid .g-col-md-17{grid-column:auto/span 17}.panel-grid .g-col-md-18{grid-column:auto/span 18}.panel-grid .g-col-md-19{grid-column:auto/span 19}.panel-grid .g-col-md-20{grid-column:auto/span 20}.panel-grid .g-col-md-21{grid-column:auto/span 21}.panel-grid .g-col-md-22{grid-column:auto/span 22}.panel-grid .g-col-md-23{grid-column:auto/span 23}.panel-grid .g-col-md-24{grid-column:auto/span 24}.panel-grid .g-start-md-1{grid-column-start:1}.panel-grid .g-start-md-2{grid-column-start:2}.panel-grid .g-start-md-3{grid-column-start:3}.panel-grid .g-start-md-4{grid-column-start:4}.panel-grid .g-start-md-5{grid-column-start:5}.panel-grid .g-start-md-6{grid-column-start:6}.panel-grid .g-start-md-7{grid-column-start:7}.panel-grid .g-start-md-8{grid-column-start:8}.panel-grid .g-start-md-9{grid-column-start:9}.panel-grid .g-start-md-10{grid-column-start:10}.panel-grid .g-start-md-11{grid-column-start:11}.panel-grid .g-start-md-12{grid-column-start:12}.panel-grid .g-start-md-13{grid-column-start:13}.panel-grid .g-start-md-14{grid-column-start:14}.panel-grid .g-start-md-15{grid-column-start:15}.panel-grid .g-start-md-16{grid-column-start:16}.panel-grid .g-start-md-17{grid-column-start:17}.panel-grid .g-start-md-18{grid-column-start:18}.panel-grid .g-start-md-19{grid-column-start:19}.panel-grid .g-start-md-20{grid-column-start:20}.panel-grid .g-start-md-21{grid-column-start:21}.panel-grid .g-start-md-22{grid-column-start:22}.panel-grid .g-start-md-23{grid-column-start:23}}@media(min-width: 992px){.panel-grid .g-col-lg-1{grid-column:auto/span 1}.panel-grid .g-col-lg-2{grid-column:auto/span 2}.panel-grid .g-col-lg-3{grid-column:auto/span 3}.panel-grid .g-col-lg-4{grid-column:auto/span 4}.panel-grid .g-col-lg-5{grid-column:auto/span 5}.panel-grid .g-col-lg-6{grid-column:auto/span 6}.panel-grid .g-col-lg-7{grid-column:auto/span 7}.panel-grid .g-col-lg-8{grid-column:auto/span 8}.panel-grid .g-col-lg-9{grid-column:auto/span 9}.panel-grid .g-col-lg-10{grid-column:auto/span 10}.panel-grid .g-col-lg-11{grid-column:auto/span 11}.panel-grid .g-col-lg-12{grid-column:auto/span 12}.panel-grid .g-col-lg-13{grid-column:auto/span 13}.panel-grid .g-col-lg-14{grid-column:auto/span 14}.panel-grid .g-col-lg-15{grid-column:auto/span 15}.panel-grid .g-col-lg-16{grid-column:auto/span 16}.panel-grid .g-col-lg-17{grid-column:auto/span 17}.panel-grid .g-col-lg-18{grid-column:auto/span 18}.panel-grid .g-col-lg-19{grid-column:auto/span 19}.panel-grid .g-col-lg-20{grid-column:auto/span 20}.panel-grid .g-col-lg-21{grid-column:auto/span 21}.panel-grid .g-col-lg-22{grid-column:auto/span 22}.panel-grid .g-col-lg-23{grid-column:auto/span 23}.panel-grid .g-col-lg-24{grid-column:auto/span 24}.panel-grid .g-start-lg-1{grid-column-start:1}.panel-grid .g-start-lg-2{grid-column-start:2}.panel-grid .g-start-lg-3{grid-column-start:3}.panel-grid .g-start-lg-4{grid-column-start:4}.panel-grid .g-start-lg-5{grid-column-start:5}.panel-grid .g-start-lg-6{grid-column-start:6}.panel-grid .g-start-lg-7{grid-column-start:7}.panel-grid .g-start-lg-8{grid-column-start:8}.panel-grid .g-start-lg-9{grid-column-start:9}.panel-grid .g-start-lg-10{grid-column-start:10}.panel-grid .g-start-lg-11{grid-column-start:11}.panel-grid .g-start-lg-12{grid-column-start:12}.panel-grid .g-start-lg-13{grid-column-start:13}.panel-grid .g-start-lg-14{grid-column-start:14}.panel-grid .g-start-lg-15{grid-column-start:15}.panel-grid .g-start-lg-16{grid-column-start:16}.panel-grid .g-start-lg-17{grid-column-start:17}.panel-grid .g-start-lg-18{grid-column-start:18}.panel-grid .g-start-lg-19{grid-column-start:19}.panel-grid .g-start-lg-20{grid-column-start:20}.panel-grid .g-start-lg-21{grid-column-start:21}.panel-grid .g-start-lg-22{grid-column-start:22}.panel-grid .g-start-lg-23{grid-column-start:23}}@media(min-width: 1200px){.panel-grid .g-col-xl-1{grid-column:auto/span 1}.panel-grid .g-col-xl-2{grid-column:auto/span 2}.panel-grid .g-col-xl-3{grid-column:auto/span 3}.panel-grid .g-col-xl-4{grid-column:auto/span 4}.panel-grid .g-col-xl-5{grid-column:auto/span 5}.panel-grid .g-col-xl-6{grid-column:auto/span 6}.panel-grid .g-col-xl-7{grid-column:auto/span 7}.panel-grid .g-col-xl-8{grid-column:auto/span 8}.panel-grid .g-col-xl-9{grid-column:auto/span 9}.panel-grid .g-col-xl-10{grid-column:auto/span 10}.panel-grid .g-col-xl-11{grid-column:auto/span 11}.panel-grid .g-col-xl-12{grid-column:auto/span 12}.panel-grid .g-col-xl-13{grid-column:auto/span 13}.panel-grid .g-col-xl-14{grid-column:auto/span 14}.panel-grid .g-col-xl-15{grid-column:auto/span 15}.panel-grid .g-col-xl-16{grid-column:auto/span 16}.panel-grid .g-col-xl-17{grid-column:auto/span 17}.panel-grid .g-col-xl-18{grid-column:auto/span 18}.panel-grid .g-col-xl-19{grid-column:auto/span 19}.panel-grid .g-col-xl-20{grid-column:auto/span 20}.panel-grid .g-col-xl-21{grid-column:auto/span 21}.panel-grid .g-col-xl-22{grid-column:auto/span 22}.panel-grid .g-col-xl-23{grid-column:auto/span 23}.panel-grid .g-col-xl-24{grid-column:auto/span 24}.panel-grid .g-start-xl-1{grid-column-start:1}.panel-grid .g-start-xl-2{grid-column-start:2}.panel-grid .g-start-xl-3{grid-column-start:3}.panel-grid .g-start-xl-4{grid-column-start:4}.panel-grid .g-start-xl-5{grid-column-start:5}.panel-grid .g-start-xl-6{grid-column-start:6}.panel-grid .g-start-xl-7{grid-column-start:7}.panel-grid .g-start-xl-8{grid-column-start:8}.panel-grid .g-start-xl-9{grid-column-start:9}.panel-grid .g-start-xl-10{grid-column-start:10}.panel-grid .g-start-xl-11{grid-column-start:11}.panel-grid .g-start-xl-12{grid-column-start:12}.panel-grid .g-start-xl-13{grid-column-start:13}.panel-grid .g-start-xl-14{grid-column-start:14}.panel-grid .g-start-xl-15{grid-column-start:15}.panel-grid .g-start-xl-16{grid-column-start:16}.panel-grid .g-start-xl-17{grid-column-start:17}.panel-grid .g-start-xl-18{grid-column-start:18}.panel-grid .g-start-xl-19{grid-column-start:19}.panel-grid .g-start-xl-20{grid-column-start:20}.panel-grid .g-start-xl-21{grid-column-start:21}.panel-grid .g-start-xl-22{grid-column-start:22}.panel-grid .g-start-xl-23{grid-column-start:23}}@media(min-width: 1400px){.panel-grid .g-col-xxl-1{grid-column:auto/span 1}.panel-grid .g-col-xxl-2{grid-column:auto/span 2}.panel-grid .g-col-xxl-3{grid-column:auto/span 3}.panel-grid .g-col-xxl-4{grid-column:auto/span 4}.panel-grid .g-col-xxl-5{grid-column:auto/span 5}.panel-grid .g-col-xxl-6{grid-column:auto/span 6}.panel-grid .g-col-xxl-7{grid-column:auto/span 7}.panel-grid .g-col-xxl-8{grid-column:auto/span 8}.panel-grid .g-col-xxl-9{grid-column:auto/span 9}.panel-grid .g-col-xxl-10{grid-column:auto/span 10}.panel-grid .g-col-xxl-11{grid-column:auto/span 11}.panel-grid .g-col-xxl-12{grid-column:auto/span 12}.panel-grid .g-col-xxl-13{grid-column:auto/span 13}.panel-grid .g-col-xxl-14{grid-column:auto/span 14}.panel-grid .g-col-xxl-15{grid-column:auto/span 15}.panel-grid .g-col-xxl-16{grid-column:auto/span 16}.panel-grid .g-col-xxl-17{grid-column:auto/span 17}.panel-grid .g-col-xxl-18{grid-column:auto/span 18}.panel-grid .g-col-xxl-19{grid-column:auto/span 19}.panel-grid .g-col-xxl-20{grid-column:auto/span 20}.panel-grid .g-col-xxl-21{grid-column:auto/span 21}.panel-grid .g-col-xxl-22{grid-column:auto/span 22}.panel-grid .g-col-xxl-23{grid-column:auto/span 23}.panel-grid .g-col-xxl-24{grid-column:auto/span 24}.panel-grid .g-start-xxl-1{grid-column-start:1}.panel-grid .g-start-xxl-2{grid-column-start:2}.panel-grid .g-start-xxl-3{grid-column-start:3}.panel-grid .g-start-xxl-4{grid-column-start:4}.panel-grid .g-start-xxl-5{grid-column-start:5}.panel-grid .g-start-xxl-6{grid-column-start:6}.panel-grid .g-start-xxl-7{grid-column-start:7}.panel-grid .g-start-xxl-8{grid-column-start:8}.panel-grid .g-start-xxl-9{grid-column-start:9}.panel-grid .g-start-xxl-10{grid-column-start:10}.panel-grid .g-start-xxl-11{grid-column-start:11}.panel-grid .g-start-xxl-12{grid-column-start:12}.panel-grid .g-start-xxl-13{grid-column-start:13}.panel-grid .g-start-xxl-14{grid-column-start:14}.panel-grid .g-start-xxl-15{grid-column-start:15}.panel-grid .g-start-xxl-16{grid-column-start:16}.panel-grid .g-start-xxl-17{grid-column-start:17}.panel-grid .g-start-xxl-18{grid-column-start:18}.panel-grid .g-start-xxl-19{grid-column-start:19}.panel-grid .g-start-xxl-20{grid-column-start:20}.panel-grid .g-start-xxl-21{grid-column-start:21}.panel-grid .g-start-xxl-22{grid-column-start:22}.panel-grid .g-start-xxl-23{grid-column-start:23}}main{margin-top:1em;margin-bottom:1em}h1,.h1,h2,.h2{color:inherit;margin-top:2rem;margin-bottom:1rem;font-weight:600}h1.title,.title.h1{margin-top:0}main.content>section:first-of-type>h2:first-child,main.content>section:first-of-type>.h2:first-child{margin-top:0}h2,.h2{border-bottom:1px solid #dee2e6;padding-bottom:.5rem}h3,.h3{font-weight:600}h3,.h3,h4,.h4{opacity:.9;margin-top:1.5rem}h5,.h5,h6,.h6{opacity:.9}.header-section-number{color:#6d7a86}.nav-link.active .header-section-number{color:inherit}mark,.mark{padding:0em}.panel-caption,.figure-caption,.subfigure-caption,.table-caption,figcaption,caption{font-size:.9rem;color:#6d7a86}.quarto-layout-cell[data-ref-parent] caption{color:#6d7a86}.column-margin figcaption,.margin-caption,div.aside,aside,.column-margin{color:#6d7a86;font-size:.825rem}.panel-caption.margin-caption{text-align:inherit}.column-margin.column-container p{margin-bottom:0}.column-margin.column-container>*:not(.collapse):first-child{padding-bottom:.5em;display:block}.column-margin.column-container>*:not(.collapse):not(:first-child){padding-top:.5em;padding-bottom:.5em;display:block}.column-margin.column-container>*.collapse:not(.show){display:none}@media(min-width: 768px){.column-margin.column-container .callout-margin-content:first-child{margin-top:4.5em}.column-margin.column-container .callout-margin-content-simple:first-child{margin-top:3.5em}}.margin-caption>*{padding-top:.5em;padding-bottom:.5em}@media(max-width: 767.98px){.quarto-layout-row{flex-direction:column}}.nav-tabs .nav-item{margin-top:1px;cursor:pointer}.tab-content{margin-top:0px;border-left:#dee2e6 1px solid;border-right:#dee2e6 1px solid;border-bottom:#dee2e6 1px solid;margin-left:0;padding:1em;margin-bottom:1em}@media(max-width: 767.98px){.layout-sidebar{margin-left:0;margin-right:0}}.panel-sidebar,.panel-sidebar .form-control,.panel-input,.panel-input .form-control,.selectize-dropdown{font-size:.9rem}.panel-sidebar .form-control,.panel-input .form-control{padding-top:.1rem}.tab-pane div.sourceCode{margin-top:0px}.tab-pane>p{padding-top:0}.tab-pane>p:nth-child(1){padding-top:0}.tab-pane>p:last-child{margin-bottom:0}.tab-pane>pre:last-child{margin-bottom:0}.tab-content>.tab-pane:not(.active){display:none !important}div.sourceCode{background-color:rgba(233,236,239,.65);border:1px solid rgba(233,236,239,.65);border-radius:.25rem}pre.sourceCode{background-color:rgba(0,0,0,0)}pre.sourceCode{border:none;font-size:.875em;overflow:visible !important;padding:.4em}.callout pre.sourceCode{padding-left:0}div.sourceCode{overflow-y:hidden}.callout div.sourceCode{margin-left:initial}.blockquote{font-size:inherit;padding-left:1rem;padding-right:1.5rem;color:#6d7a86}.blockquote h1:first-child,.blockquote .h1:first-child,.blockquote h2:first-child,.blockquote .h2:first-child,.blockquote h3:first-child,.blockquote .h3:first-child,.blockquote h4:first-child,.blockquote .h4:first-child,.blockquote h5:first-child,.blockquote .h5:first-child{margin-top:0}pre{background-color:initial;padding:initial;border:initial}p pre code:not(.sourceCode),li pre code:not(.sourceCode),pre code:not(.sourceCode){background-color:initial}p code:not(.sourceCode),li code:not(.sourceCode),td code:not(.sourceCode){background-color:#f8f9fa;padding:.2em}nav p code:not(.sourceCode),nav li code:not(.sourceCode),nav td code:not(.sourceCode){background-color:rgba(0,0,0,0);padding:0}td code:not(.sourceCode){white-space:pre-wrap}#quarto-embedded-source-code-modal>.modal-dialog{max-width:1000px;padding-left:1.75rem;padding-right:1.75rem}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body{padding:0}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body div.sourceCode{margin:0;padding:.2rem .2rem;border-radius:0px;border:none}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-header{padding:.7rem}.code-tools-button{font-size:1rem;padding:.15rem .15rem;margin-left:5px;color:#6c757d;background-color:rgba(0,0,0,0);transition:initial;cursor:pointer}.code-tools-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>');background-repeat:no-repeat;background-size:1rem 1rem}.code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}#quarto-embedded-source-code-modal .code-copy-button>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>')}#quarto-embedded-source-code-modal .code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}.sidebar{will-change:top;transition:top 200ms linear;position:sticky;overflow-y:auto;padding-top:1.2em;max-height:100vh}.sidebar.toc-left,.sidebar.margin-sidebar{top:0px;padding-top:1em}.sidebar.quarto-banner-title-block-sidebar>*{padding-top:1.65em}figure .quarto-notebook-link{margin-top:.5em}.quarto-notebook-link{font-size:.75em;color:#6c757d;margin-bottom:1em;text-decoration:none;display:block}.quarto-notebook-link:hover{text-decoration:underline;color:#2761e3}.quarto-notebook-link::before{display:inline-block;height:.75rem;width:.75rem;margin-bottom:0em;margin-right:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" class="bi bi-journal-code" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.646 5.646a.5.5 0 0 1 .708 0l2 2a.5.5 0 0 1 0 .708l-2 2a.5.5 0 0 1-.708-.708L10.293 8 8.646 6.354a.5.5 0 0 1 0-.708zm-1.292 0a.5.5 0 0 0-.708 0l-2 2a.5.5 0 0 0 0 .708l2 2a.5.5 0 0 0 .708-.708L5.707 8l1.647-1.646a.5.5 0 0 0 0-.708z"/><path d="M3 0h10a2 2 0 0 1 2 2v12a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2v-1h1v1a1 1 0 0 0 1 1h10a1 1 0 0 0 1-1V2a1 1 0 0 0-1-1H3a1 1 0 0 0-1 1v1H1V2a2 2 0 0 1 2-2z"/><path d="M1 5v-.5a.5.5 0 0 1 1 0V5h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1zm0 3v-.5a.5.5 0 0 1 1 0V8h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1zm0 3v-.5a.5.5 0 0 1 1 0v.5h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1z"/></svg>');background-repeat:no-repeat;background-size:.75rem .75rem}.toc-actions i.bi,.quarto-code-links i.bi,.quarto-other-links i.bi,.quarto-alternate-notebooks i.bi,.quarto-alternate-formats i.bi{margin-right:.4em;font-size:.8rem}.quarto-other-links-text-target .quarto-code-links i.bi,.quarto-other-links-text-target .quarto-other-links i.bi{margin-right:.2em}.quarto-other-formats-text-target .quarto-alternate-formats i.bi{margin-right:.1em}.toc-actions i.bi.empty,.quarto-code-links i.bi.empty,.quarto-other-links i.bi.empty,.quarto-alternate-notebooks i.bi.empty,.quarto-alternate-formats i.bi.empty{padding-left:1em}.quarto-notebook h2,.quarto-notebook .h2{border-bottom:none}.quarto-notebook .cell-container{display:flex}.quarto-notebook .cell-container .cell{flex-grow:4}.quarto-notebook .cell-container .cell-decorator{padding-top:1.5em;padding-right:1em;text-align:right}.quarto-notebook .cell-container.code-fold .cell-decorator{padding-top:3em}.quarto-notebook .cell-code code{white-space:pre-wrap}.quarto-notebook .cell .cell-output-stderr pre code,.quarto-notebook .cell .cell-output-stdout pre code{white-space:pre-wrap;overflow-wrap:anywhere}.toc-actions,.quarto-alternate-formats,.quarto-other-links,.quarto-code-links,.quarto-alternate-notebooks{padding-left:0em}.sidebar .toc-actions a,.sidebar .quarto-alternate-formats a,.sidebar .quarto-other-links a,.sidebar .quarto-code-links a,.sidebar .quarto-alternate-notebooks a,.sidebar nav[role=doc-toc] a{text-decoration:none}.sidebar .toc-actions a:hover,.sidebar .quarto-other-links a:hover,.sidebar .quarto-code-links a:hover,.sidebar .quarto-alternate-formats a:hover,.sidebar .quarto-alternate-notebooks a:hover{color:#2761e3}.sidebar .toc-actions h2,.sidebar .toc-actions .h2,.sidebar .quarto-code-links h2,.sidebar .quarto-code-links .h2,.sidebar .quarto-other-links h2,.sidebar .quarto-other-links .h2,.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2,.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-weight:500;margin-bottom:.2rem;margin-top:.3rem;font-family:inherit;border-bottom:0;padding-bottom:0;padding-top:0px}.sidebar .toc-actions>h2,.sidebar .toc-actions>.h2,.sidebar .quarto-code-links>h2,.sidebar .quarto-code-links>.h2,.sidebar .quarto-other-links>h2,.sidebar .quarto-other-links>.h2,.sidebar .quarto-alternate-notebooks>h2,.sidebar .quarto-alternate-notebooks>.h2,.sidebar .quarto-alternate-formats>h2,.sidebar .quarto-alternate-formats>.h2{font-size:.8rem}.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-size:.875rem}.sidebar nav[role=doc-toc]>ul a{border-left:1px solid #e9ecef;padding-left:.6rem}.sidebar .toc-actions h2>ul a,.sidebar .toc-actions .h2>ul a,.sidebar .quarto-code-links h2>ul a,.sidebar .quarto-code-links .h2>ul a,.sidebar .quarto-other-links h2>ul a,.sidebar .quarto-other-links .h2>ul a,.sidebar .quarto-alternate-notebooks h2>ul a,.sidebar .quarto-alternate-notebooks .h2>ul a,.sidebar .quarto-alternate-formats h2>ul a,.sidebar .quarto-alternate-formats .h2>ul a{border-left:none;padding-left:.6rem}.sidebar .toc-actions ul a:empty,.sidebar .quarto-code-links ul a:empty,.sidebar .quarto-other-links ul a:empty,.sidebar .quarto-alternate-notebooks ul a:empty,.sidebar .quarto-alternate-formats ul a:empty,.sidebar nav[role=doc-toc]>ul a:empty{display:none}.sidebar .toc-actions ul,.sidebar .quarto-code-links ul,.sidebar .quarto-other-links ul,.sidebar .quarto-alternate-notebooks ul,.sidebar .quarto-alternate-formats ul{padding-left:0;list-style:none}.sidebar nav[role=doc-toc] ul{list-style:none;padding-left:0;list-style:none}.sidebar nav[role=doc-toc]>ul{margin-left:.45em}.quarto-margin-sidebar nav[role=doc-toc]{padding-left:.5em}.sidebar .toc-actions>ul,.sidebar .quarto-code-links>ul,.sidebar .quarto-other-links>ul,.sidebar .quarto-alternate-notebooks>ul,.sidebar .quarto-alternate-formats>ul{font-size:.8rem}.sidebar nav[role=doc-toc]>ul{font-size:.875rem}.sidebar .toc-actions ul li a,.sidebar .quarto-code-links ul li a,.sidebar .quarto-other-links ul li a,.sidebar .quarto-alternate-notebooks ul li a,.sidebar .quarto-alternate-formats ul li a,.sidebar nav[role=doc-toc]>ul li a{line-height:1.1rem;padding-bottom:.2rem;padding-top:.2rem;color:inherit}.sidebar nav[role=doc-toc] ul>li>ul>li>a{padding-left:1.2em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>a{padding-left:2.4em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>a{padding-left:3.6em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:4.8em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:6em}.sidebar nav[role=doc-toc] ul>li>a.active,.sidebar nav[role=doc-toc] ul>li>ul>li>a.active{border-left:1px solid #2761e3;color:#2761e3 !important}.sidebar nav[role=doc-toc] ul>li>a:hover,.sidebar nav[role=doc-toc] ul>li>ul>li>a:hover{color:#2761e3 !important}kbd,.kbd{color:#343a40;background-color:#f8f9fa;border:1px solid;border-radius:5px;border-color:#dee2e6}.quarto-appendix-contents div.hanging-indent{margin-left:0em}.quarto-appendix-contents div.hanging-indent div.csl-entry{margin-left:1em;text-indent:-1em}.citation a,.footnote-ref{text-decoration:none}.footnotes ol{padding-left:1em}.tippy-content>*{margin-bottom:.7em}.tippy-content>*:last-child{margin-bottom:0}.callout{margin-top:1.25rem;margin-bottom:1.25rem;border-radius:.25rem;overflow-wrap:break-word}.callout .callout-title-container{overflow-wrap:anywhere}.callout.callout-style-simple{padding:.4em .7em;border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout.callout-style-default{border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout .callout-body-container{flex-grow:1}.callout.callout-style-simple .callout-body{font-size:.9rem;font-weight:400}.callout.callout-style-default .callout-body{font-size:.9rem;font-weight:400}.callout:not(.no-icon).callout-titled.callout-style-simple .callout-body{padding-left:1.6em}.callout.callout-titled>.callout-header{padding-top:.2em;margin-bottom:-0.2em}.callout.callout-style-simple>div.callout-header{border-bottom:none;font-size:.9rem;font-weight:600;opacity:75%}.callout.callout-style-default>div.callout-header{border-bottom:none;font-weight:600;opacity:85%;font-size:.9rem;padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body{padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body>:first-child{padding-top:.5rem;margin-top:0}.callout>div.callout-header[data-bs-toggle=collapse]{cursor:pointer}.callout.callout-style-default .callout-header[aria-expanded=false],.callout.callout-style-default .callout-header[aria-expanded=true]{padding-top:0px;margin-bottom:0px;align-items:center}.callout.callout-titled .callout-body>:last-child:not(.sourceCode),.callout.callout-titled .callout-body>div>:last-child:not(.sourceCode){padding-bottom:.5rem;margin-bottom:0}.callout:not(.callout-titled) .callout-body>:first-child,.callout:not(.callout-titled) .callout-body>div>:first-child{margin-top:.25rem}.callout:not(.callout-titled) .callout-body>:last-child,.callout:not(.callout-titled) .callout-body>div>:last-child{margin-bottom:.2rem}.callout.callout-style-simple .callout-icon::before,.callout.callout-style-simple .callout-toggle::before{height:1rem;width:1rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.callout.callout-style-default .callout-icon::before,.callout.callout-style-default .callout-toggle::before{height:.9rem;width:.9rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:.9rem .9rem}.callout.callout-style-default .callout-toggle::before{margin-top:5px}.callout .callout-btn-toggle .callout-toggle::before{transition:transform .2s linear}.callout .callout-header[aria-expanded=false] .callout-toggle::before{transform:rotate(-90deg)}.callout .callout-header[aria-expanded=true] .callout-toggle::before{transform:none}.callout.callout-style-simple:not(.no-icon) div.callout-icon-container{padding-top:.2em;padding-right:.55em}.callout.callout-style-default:not(.no-icon) div.callout-icon-container{padding-top:.1em;padding-right:.35em}.callout.callout-style-default:not(.no-icon) div.callout-title-container{margin-top:-1px}.callout.callout-style-default.callout-caution:not(.no-icon) div.callout-icon-container{padding-top:.3em;padding-right:.35em}.callout>.callout-body>.callout-icon-container>.no-icon,.callout>.callout-header>.callout-icon-container>.no-icon{display:none}div.callout.callout{border-left-color:#6c757d}div.callout.callout-style-default>.callout-header{background-color:#6c757d}div.callout-note.callout{border-left-color:#2780e3}div.callout-note.callout-style-default>.callout-header{background-color:#e9f2fc}div.callout-note:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %232373cc" class="bi bi-info-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="m8.93 6.588-2.29.287-.082.38.45.083c.294.07.352.176.288.469l-.738 3.468c-.194.897.105 1.319.808 1.319.545 0 1.178-.252 1.465-.598l.088-.416c-.2.176-.492.246-.686.246-.275 0-.375-.193-.304-.533L8.93 6.588zM9 4.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0z"/></svg>');}div.callout-note.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %232373cc" class="bi bi-info-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="m8.93 6.588-2.29.287-.082.38.45.083c.294.07.352.176.288.469l-.738 3.468c-.194.897.105 1.319.808 1.319.545 0 1.178-.252 1.465-.598l.088-.416c-.2.176-.492.246-.686.246-.275 0-.375-.193-.304-.533L8.93 6.588zM9 4.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0z"/></svg>');}div.callout-note .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-tip.callout{border-left-color:#3fb618}div.callout-tip.callout-style-default>.callout-header{background-color:#ecf8e8}div.callout-tip:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %2339a416" class="bi bi-lightbulb" viewBox="0 0 16 16"><path d="M2 6a6 6 0 1 1 10.174 4.31c-.203.196-.359.4-.453.619l-.762 1.769A.5.5 0 0 1 10.5 13a.5.5 0 0 1 0 1 .5.5 0 0 1 0 1l-.224.447a1 1 0 0 1-.894.553H6.618a1 1 0 0 1-.894-.553L5.5 15a.5.5 0 0 1 0-1 .5.5 0 0 1 0-1 .5.5 0 0 1-.46-.302l-.761-1.77a1.964 1.964 0 0 0-.453-.618A5.984 5.984 0 0 1 2 6zm6-5a5 5 0 0 0-3.479 8.592c.263.254.514.564.676.941L5.83 12h4.342l.632-1.467c.162-.377.413-.687.676-.941A5 5 0 0 0 8 1z"/></svg>');}div.callout-tip.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %2339a416" class="bi bi-lightbulb" viewBox="0 0 16 16"><path d="M2 6a6 6 0 1 1 10.174 4.31c-.203.196-.359.4-.453.619l-.762 1.769A.5.5 0 0 1 10.5 13a.5.5 0 0 1 0 1 .5.5 0 0 1 0 1l-.224.447a1 1 0 0 1-.894.553H6.618a1 1 0 0 1-.894-.553L5.5 15a.5.5 0 0 1 0-1 .5.5 0 0 1 0-1 .5.5 0 0 1-.46-.302l-.761-1.77a1.964 1.964 0 0 0-.453-.618A5.984 5.984 0 0 1 2 6zm6-5a5 5 0 0 0-3.479 8.592c.263.254.514.564.676.941L5.83 12h4.342l.632-1.467c.162-.377.413-.687.676-.941A5 5 0 0 0 8 1z"/></svg>');}div.callout-tip .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-warning.callout{border-left-color:#ff7518}div.callout-warning.callout-style-default>.callout-header{background-color:#fff1e8}div.callout-warning:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e66916" class="bi bi-exclamation-triangle" viewBox="0 0 16 16"><path d="M7.938 2.016A.13.13 0 0 1 8.002 2a.13.13 0 0 1 .063.016.146.146 0 0 1 .054.057l6.857 11.667c.036.06.035.124.002.183a.163.163 0 0 1-.054.06.116.116 0 0 1-.066.017H1.146a.115.115 0 0 1-.066-.017.163.163 0 0 1-.054-.06.176.176 0 0 1 .002-.183L7.884 2.073a.147.147 0 0 1 .054-.057zm1.044-.45a1.13 1.13 0 0 0-1.96 0L.165 13.233c-.457.778.091 1.767.98 1.767h13.713c.889 0 1.438-.99.98-1.767L8.982 1.566z"/><path d="M7.002 12a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 5.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 5.995z"/></svg>');}div.callout-warning.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e66916" class="bi bi-exclamation-triangle" viewBox="0 0 16 16"><path d="M7.938 2.016A.13.13 0 0 1 8.002 2a.13.13 0 0 1 .063.016.146.146 0 0 1 .054.057l6.857 11.667c.036.06.035.124.002.183a.163.163 0 0 1-.054.06.116.116 0 0 1-.066.017H1.146a.115.115 0 0 1-.066-.017.163.163 0 0 1-.054-.06.176.176 0 0 1 .002-.183L7.884 2.073a.147.147 0 0 1 .054-.057zm1.044-.45a1.13 1.13 0 0 0-1.96 0L.165 13.233c-.457.778.091 1.767.98 1.767h13.713c.889 0 1.438-.99.98-1.767L8.982 1.566z"/><path d="M7.002 12a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 5.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 5.995z"/></svg>');}div.callout-warning .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-caution.callout{border-left-color:#f0ad4e}div.callout-caution.callout-style-default>.callout-header{background-color:#fef7ed}div.callout-caution:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23d89c46" class="bi bi-cone-striped" viewBox="0 0 16 16"><path d="M9.97 4.88l.953 3.811C10.158 8.878 9.14 9 8 9c-1.14 0-2.159-.122-2.923-.309L6.03 4.88C6.635 4.957 7.3 5 8 5s1.365-.043 1.97-.12zm-.245-.978L8.97.88C8.718-.13 7.282-.13 7.03.88L6.274 3.9C6.8 3.965 7.382 4 8 4c.618 0 1.2-.036 1.725-.098zm4.396 8.613a.5.5 0 0 1 .037.96l-6 2a.5.5 0 0 1-.316 0l-6-2a.5.5 0 0 1 .037-.96l2.391-.598.565-2.257c.862.212 1.964.339 3.165.339s2.303-.127 3.165-.339l.565 2.257 2.391.598z"/></svg>');}div.callout-caution.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23d89c46" class="bi bi-cone-striped" viewBox="0 0 16 16"><path d="M9.97 4.88l.953 3.811C10.158 8.878 9.14 9 8 9c-1.14 0-2.159-.122-2.923-.309L6.03 4.88C6.635 4.957 7.3 5 8 5s1.365-.043 1.97-.12zm-.245-.978L8.97.88C8.718-.13 7.282-.13 7.03.88L6.274 3.9C6.8 3.965 7.382 4 8 4c.618 0 1.2-.036 1.725-.098zm4.396 8.613a.5.5 0 0 1 .037.96l-6 2a.5.5 0 0 1-.316 0l-6-2a.5.5 0 0 1 .037-.96l2.391-.598.565-2.257c.862.212 1.964.339 3.165.339s2.303-.127 3.165-.339l.565 2.257 2.391.598z"/></svg>');}div.callout-caution .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-important.callout{border-left-color:#ff0039}div.callout-important.callout-style-default>.callout-header{background-color:#ffe6eb}div.callout-important:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e60033" class="bi bi-exclamation-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="M7.002 11a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 4.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 4.995z"/></svg>');}div.callout-important.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e60033" class="bi bi-exclamation-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="M7.002 11a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 4.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 4.995z"/></svg>');}div.callout-important .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(52, 58, 64)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}.quarto-toggle-container{display:flex;align-items:center}.quarto-reader-toggle .bi::before,.quarto-color-scheme-toggle .bi::before{display:inline-block;height:1rem;width:1rem;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.sidebar-navigation{padding-left:20px}.navbar{background-color:#f8f9fa;color:#545555}.navbar .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.navbar .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}.sidebar-navigation .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(75, 84, 92, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.sidebar-navigation .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(75, 84, 92, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}.quarto-sidebar-toggle{border-color:#dee2e6;border-bottom-left-radius:.25rem;border-bottom-right-radius:.25rem;border-style:solid;border-width:1px;overflow:hidden;border-top-width:0px;padding-top:0px !important}.quarto-sidebar-toggle-title{cursor:pointer;padding-bottom:2px;margin-left:.25em;text-align:center;font-weight:400;font-size:.775em}#quarto-content .quarto-sidebar-toggle{background:#fafafa}#quarto-content .quarto-sidebar-toggle-title{color:#343a40}.quarto-sidebar-toggle-icon{color:#dee2e6;margin-right:.5em;float:right;transition:transform .2s ease}.quarto-sidebar-toggle-icon::before{padding-top:5px}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-icon{transform:rotate(-180deg)}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-title{border-bottom:solid #dee2e6 1px}.quarto-sidebar-toggle-contents{background-color:#fff;padding-right:10px;padding-left:10px;margin-top:0px !important;transition:max-height .5s ease}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-contents{padding-top:1em;padding-bottom:10px}@media(max-width: 767.98px){.sidebar-menu-container{padding-bottom:5em}}.quarto-sidebar-toggle:not(.expanded) .quarto-sidebar-toggle-contents{padding-top:0px !important;padding-bottom:0px}nav[role=doc-toc]{z-index:1020}#quarto-sidebar>*,nav[role=doc-toc]>*{transition:opacity .1s ease,border .1s ease}#quarto-sidebar.slow>*,nav[role=doc-toc].slow>*{transition:opacity .4s ease,border .4s ease}.quarto-color-scheme-toggle:not(.alternate).top-right .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(136, 147, 158, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.quarto-color-scheme-toggle.alternate.top-right .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(98, 109, 120, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}#quarto-appendix.default{border-top:1px solid #dee2e6}#quarto-appendix.default{background-color:#fff;padding-top:1.5em;margin-top:2em;z-index:998}#quarto-appendix.default .quarto-appendix-heading{margin-top:0;line-height:1.4em;font-weight:600;opacity:.9;border-bottom:none;margin-bottom:0}#quarto-appendix.default .footnotes ol,#quarto-appendix.default .footnotes ol li>p:last-of-type,#quarto-appendix.default .quarto-appendix-contents>p:last-of-type{margin-bottom:0}#quarto-appendix.default .footnotes ol{margin-left:.5em}#quarto-appendix.default .quarto-appendix-secondary-label{margin-bottom:.4em}#quarto-appendix.default .quarto-appendix-bibtex{font-size:.7em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-bibtex code.sourceCode{white-space:pre-wrap}#quarto-appendix.default .quarto-appendix-citeas{font-size:.9em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-heading{font-size:1em !important}#quarto-appendix.default *[role=doc-endnotes]>ol,#quarto-appendix.default .quarto-appendix-contents>*:not(h2):not(.h2){font-size:.9em}#quarto-appendix.default section{padding-bottom:1.5em}#quarto-appendix.default section *[role=doc-endnotes],#quarto-appendix.default section>*:not(a){opacity:.9;word-wrap:break-word}.btn.btn-quarto,div.cell-output-display .btn-quarto{--bs-btn-color: #cacccd;--bs-btn-bg: #343a40;--bs-btn-border-color: #343a40;--bs-btn-hover-color: #cacccd;--bs-btn-hover-bg: #52585d;--bs-btn-hover-border-color: #484e53;--bs-btn-focus-shadow-rgb: 75, 80, 85;--bs-btn-active-color: #fff;--bs-btn-active-bg: #5d6166;--bs-btn-active-border-color: #484e53;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #343a40;--bs-btn-disabled-border-color: #343a40}nav.quarto-secondary-nav.color-navbar{background-color:#f8f9fa;color:#545555}nav.quarto-secondary-nav.color-navbar h1,nav.quarto-secondary-nav.color-navbar .h1,nav.quarto-secondary-nav.color-navbar .quarto-btn-toggle{color:#545555}@media(max-width: 991.98px){body.nav-sidebar .quarto-title-banner{margin-bottom:0;padding-bottom:1em}body.nav-sidebar #title-block-header{margin-block-end:0}}p.subtitle{margin-top:.25em;margin-bottom:.5em}code a:any-link{color:inherit;text-decoration-color:#6c757d}/*! light */div.observablehq table thead tr th{background-color:var(--bs-body-bg)}input,button,select,optgroup,textarea{background-color:var(--bs-body-bg)}.code-annotated .code-copy-button{margin-right:1.25em;margin-top:0;padding-bottom:0;padding-top:3px}.code-annotation-gutter-bg{background-color:#fff}.code-annotation-gutter{background-color:rgba(233,236,239,.65)}.code-annotation-gutter,.code-annotation-gutter-bg{height:100%;width:calc(20px + .5em);position:absolute;top:0;right:0}dl.code-annotation-container-grid dt{margin-right:1em;margin-top:.25rem}dl.code-annotation-container-grid dt{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:#4b545c;border:solid #4b545c 1px;border-radius:50%;height:22px;width:22px;line-height:22px;font-size:11px;text-align:center;vertical-align:middle;text-decoration:none}dl.code-annotation-container-grid dt[data-target-cell]{cursor:pointer}dl.code-annotation-container-grid dt[data-target-cell].code-annotation-active{color:#fff;border:solid #aaa 1px;background-color:#aaa}pre.code-annotation-code{padding-top:0;padding-bottom:0}pre.code-annotation-code code{z-index:3}#code-annotation-line-highlight-gutter{width:100%;border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}#code-annotation-line-highlight{margin-left:-4em;width:calc(100% + 4em);border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#e9ecef;font-weight:bolder}code.sourceCode .code-annotation-anchor{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;height:18px;width:18px;font-size:9px;margin-top:2px}code.sourceCode button.code-annotation-anchor{padding:2px;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none}code.sourceCode a.code-annotation-anchor{line-height:18px;text-align:center;vertical-align:middle;cursor:default;text-decoration:none}@media print{.page-columns .column-screen-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:page-start-inset/page-end-inset;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}}.quarto-video{margin-bottom:1em}.table{border-top:1px solid #ebedee;border-bottom:1px solid #ebedee}.table>thead{border-top-width:0;border-bottom:1px solid #b2bac1}.table a{word-break:break-word}.table>:not(caption)>*>*{background-color:unset;color:unset}#quarto-document-content .crosstalk-input .checkbox input[type=checkbox],#quarto-document-content .crosstalk-input .checkbox-inline input[type=checkbox]{position:unset;margin-top:unset;margin-left:unset}#quarto-document-content .row{margin-left:unset;margin-right:unset}.quarto-xref{white-space:nowrap}#quarto-draft-alert{margin-top:0px;margin-bottom:0px;padding:.3em;text-align:center;font-size:.9em}#quarto-draft-alert i{margin-right:.3em}#quarto-back-to-top{z-index:1000}a.external:after{content:"";background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(39, 97, 227)" class="bi bi-box-arrow-up-right" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.636 3.5a.5.5 0 0 0-.5-.5H1.5A1.5 1.5 0 0 0 0 4.5v10A1.5 1.5 0 0 0 1.5 16h10a1.5 1.5 0 0 0 1.5-1.5V7.864a.5.5 0 0 0-1 0V14.5a.5.5 0 0 1-.5.5h-10a.5.5 0 0 1-.5-.5v-10a.5.5 0 0 1 .5-.5h6.636a.5.5 0 0 0 .5-.5z"/><path fill-rule="evenodd" d="M16 .5a.5.5 0 0 0-.5-.5h-5a.5.5 0 0 0 0 1h3.793L6.146 9.146a.5.5 0 1 0 .708.708L15 1.707V5.5a.5.5 0 0 0 1 0v-5z"/></svg>');background-size:contain;background-repeat:no-repeat;background-position:center center;margin-left:.2em;padding-right:.75em}div.sourceCode code a.external:after{content:none}a.external:after:hover{cursor:pointer}.quarto-ext-icon{display:inline-block;font-size:.75em;padding-left:.3em}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.quarto-title-banner{margin-bottom:1em;color:#545555;background:#f8f9fa}.quarto-title-banner a{color:#545555}.quarto-title-banner h1,.quarto-title-banner .h1,.quarto-title-banner h2,.quarto-title-banner .h2{color:#545555}.quarto-title-banner .code-tools-button{color:#878888}.quarto-title-banner .code-tools-button:hover{color:#545555}.quarto-title-banner .code-tools-button>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(135, 136, 136)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}.quarto-title-banner .code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(84, 85, 85)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}.quarto-title-banner .quarto-title .title{font-weight:600}.quarto-title-banner .quarto-categories{margin-top:.75em}@media(min-width: 992px){.quarto-title-banner{padding-top:2.5em;padding-bottom:2.5em}}@media(max-width: 991.98px){.quarto-title-banner{padding-top:1em;padding-bottom:1em}}@media(max-width: 767.98px){body.hypothesis-enabled #title-block-header>*{padding-right:20px}}main.quarto-banner-title-block>section:first-child>h2,main.quarto-banner-title-block>section:first-child>.h2,main.quarto-banner-title-block>section:first-child>h3,main.quarto-banner-title-block>section:first-child>.h3,main.quarto-banner-title-block>section:first-child>h4,main.quarto-banner-title-block>section:first-child>.h4{margin-top:0}.quarto-title .quarto-categories{display:flex;flex-wrap:wrap;row-gap:.5em;column-gap:.4em;padding-bottom:.5em;margin-top:.75em}.quarto-title .quarto-categories .quarto-category{padding:.25em .75em;font-size:.65em;text-transform:uppercase;border:solid 1px;border-radius:.25rem;opacity:.6}.quarto-title .quarto-categories .quarto-category a{color:inherit}.quarto-title-meta-container{display:grid;grid-template-columns:1fr auto}.quarto-title-meta-column-end{display:flex;flex-direction:column;padding-left:1em}.quarto-title-meta-column-end a .bi{margin-right:.3em}#title-block-header.quarto-title-block.default .quarto-title-meta{display:grid;grid-template-columns:repeat(2, 1fr);grid-column-gap:1em}#title-block-header.quarto-title-block.default .quarto-title .title{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-author-orcid img{margin-top:-0.2em;height:.8em;width:.8em}#title-block-header.quarto-title-block.default .quarto-title-author-email{opacity:.7}#title-block-header.quarto-title-block.default .quarto-description p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p,#title-block-header.quarto-title-block.default .quarto-title-authors p,#title-block-header.quarto-title-block.default .quarto-title-affiliations p{margin-bottom:.1em}#title-block-header.quarto-title-block.default .quarto-title-meta-heading{text-transform:uppercase;margin-top:1em;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-contents{font-size:.9em}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p.affiliation:last-of-type{margin-bottom:.1em}#title-block-header.quarto-title-block.default p.affiliation{margin-bottom:.1em}#title-block-header.quarto-title-block.default .keywords,#title-block-header.quarto-title-block.default .description,#title-block-header.quarto-title-block.default .abstract{margin-top:0}#title-block-header.quarto-title-block.default .keywords>p,#title-block-header.quarto-title-block.default .description>p,#title-block-header.quarto-title-block.default .abstract>p{font-size:.9em}#title-block-header.quarto-title-block.default .keywords>p:last-of-type,#title-block-header.quarto-title-block.default .description>p:last-of-type,#title-block-header.quarto-title-block.default .abstract>p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .keywords .block-title,#title-block-header.quarto-title-block.default .description .block-title,#title-block-header.quarto-title-block.default .abstract .block-title{margin-top:1em;text-transform:uppercase;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-author{display:grid;grid-template-columns:minmax(max-content, 1fr) 1fr;grid-column-gap:1em}.quarto-title-tools-only{display:flex;justify-content:right}body{-webkit-font-smoothing:antialiased}.badge.bg-light{color:#343a40}.progress .progress-bar{font-size:8px;line-height:8px}:root{--quarto-scss-export-gray-300: #dee2e6;--quarto-scss-export-gray-500: #adb5bd;--quarto-scss-export-gray-600: #6c757d;--quarto-scss-export-gray-800: #343a40;--quarto-scss-export-card-cap-bg: rgba(52, 58, 64, 0.25);--quarto-scss-export-border-color: #dee2e6;--quarto-scss-export-text-muted: #6c757d;--quarto-scss-export-white: #fff;--quarto-scss-export-gray-100: #f8f9fa;--quarto-scss-export-gray-200: #e9ecef;--quarto-scss-export-gray-400: #ced4da;--quarto-scss-export-gray-700: #495057;--quarto-scss-export-gray-900: #212529;--quarto-scss-export-black: #000;--quarto-scss-export-blue: #2780e3;--quarto-scss-export-indigo: #6610f2;--quarto-scss-export-purple: #613d7c;--quarto-scss-export-pink: #e83e8c;--quarto-scss-export-red: #ff0039;--quarto-scss-export-orange: #f0ad4e;--quarto-scss-export-yellow: #ff7518;--quarto-scss-export-green: #3fb618;--quarto-scss-export-teal: #20c997;--quarto-scss-export-cyan: #9954bb;--quarto-scss-export-primary: #2780e3;--quarto-scss-export-secondary: #343a40;--quarto-scss-export-success: #3fb618;--quarto-scss-export-info: #9954bb;--quarto-scss-export-warning: #ff7518;--quarto-scss-export-danger: #ff0039;--quarto-scss-export-light: #f8f9fa;--quarto-scss-export-dark: #343a40;--quarto-scss-export-body-color: #343a40;--quarto-scss-export-title-banner-color: ;--quarto-scss-export-title-banner-bg: ;--quarto-scss-export-btn-code-copy-color: #5E5E5E;--quarto-scss-export-btn-code-copy-color-active: #4758AB;--quarto-scss-export-sidebar-bg: #fff;--quarto-scss-export-link-color: #2761e3;--quarto-scss-export-code-color: #7d12ba;--quarto-scss-export-code-bg: #f8f9fa;--quarto-scss-export-toc-color: #2761e3;--quarto-scss-export-toc-active-border: #2761e3;--quarto-scss-export-toc-inactive-border: #e9ecef;--quarto-scss-export-navbar-default: #2780e3;--quarto-scss-export-navbar-hl-override: false;--quarto-scss-export-navbar-bg: #f8f9fa;--quarto-scss-export-btn-bg: #343a40;--quarto-scss-export-btn-fg: #cacccd;--quarto-scss-export-body-contrast-bg: #fff;--quarto-scss-export-body-contrast-color: #343a40;--quarto-scss-export-navbar-fg: #545555;--quarto-scss-export-navbar-hl: #1f4eb6;--quarto-scss-export-navbar-brand: #545555;--quarto-scss-export-navbar-brand-hl: #1f4eb6;--quarto-scss-export-navbar-toggler-border-color: rgba(84, 85, 85, 0);--quarto-scss-export-navbar-hover-color: rgba(31, 78, 182, 0.8);--quarto-scss-export-navbar-disabled-color: rgba(84, 85, 85, 0.75);--quarto-scss-export-sidebar-fg: #595959;--quarto-scss-export-title-block-color: #343a40;--quarto-scss-export-title-block-contast-color: #fff;--quarto-scss-export-footer-bg: #fff;--quarto-scss-export-footer-fg: #757575;--quarto-scss-export-popover-bg: #fff;--quarto-scss-export-input-bg: #fff;--quarto-scss-export-input-border-color: #dee2e6;--quarto-scss-export-code-annotation-higlight-color: rgba(170, 170, 170, 0.2666666667);--quarto-scss-export-code-annotation-higlight-bg: rgba(170, 170, 170, 0.1333333333);--quarto-scss-export-table-group-separator-color: #b2bac1;--quarto-scss-export-table-group-separator-color-lighter: #ebedee;--quarto-scss-export-sidebar-glass-bg: rgba(102, 102, 102, 0.4);--quarto-scss-export-color-contrast-dark: #000;--quarto-scss-export-color-contrast-light: #fff;--quarto-scss-export-blue-100: #d4e6f9;--quarto-scss-export-blue-200: #a9ccf4;--quarto-scss-export-blue-300: #7db3ee;--quarto-scss-export-blue-400: #5299e9;--quarto-scss-export-blue-500: #2780e3;--quarto-scss-export-blue-600: #1f66b6;--quarto-scss-export-blue-700: #174d88;--quarto-scss-export-blue-800: #10335b;--quarto-scss-export-blue-900: #081a2d;--quarto-scss-export-indigo-100: #e0cffc;--quarto-scss-export-indigo-200: #c29ffa;--quarto-scss-export-indigo-300: #a370f7;--quarto-scss-export-indigo-400: #8540f5;--quarto-scss-export-indigo-500: #6610f2;--quarto-scss-export-indigo-600: #520dc2;--quarto-scss-export-indigo-700: #3d0a91;--quarto-scss-export-indigo-800: #290661;--quarto-scss-export-indigo-900: #140330;--quarto-scss-export-purple-100: #dfd8e5;--quarto-scss-export-purple-200: #c0b1cb;--quarto-scss-export-purple-300: #a08bb0;--quarto-scss-export-purple-400: #816496;--quarto-scss-export-purple-500: #613d7c;--quarto-scss-export-purple-600: #4e3163;--quarto-scss-export-purple-700: #3a254a;--quarto-scss-export-purple-800: #271832;--quarto-scss-export-purple-900: #130c19;--quarto-scss-export-pink-100: #fad8e8;--quarto-scss-export-pink-200: #f6b2d1;--quarto-scss-export-pink-300: #f18bba;--quarto-scss-export-pink-400: #ed65a3;--quarto-scss-export-pink-500: #e83e8c;--quarto-scss-export-pink-600: #ba3270;--quarto-scss-export-pink-700: #8b2554;--quarto-scss-export-pink-800: #5d1938;--quarto-scss-export-pink-900: #2e0c1c;--quarto-scss-export-red-100: #ffccd7;--quarto-scss-export-red-200: #ff99b0;--quarto-scss-export-red-300: #ff6688;--quarto-scss-export-red-400: #ff3361;--quarto-scss-export-red-500: #ff0039;--quarto-scss-export-red-600: #cc002e;--quarto-scss-export-red-700: #990022;--quarto-scss-export-red-800: #660017;--quarto-scss-export-red-900: #33000b;--quarto-scss-export-orange-100: #fcefdc;--quarto-scss-export-orange-200: #f9deb8;--quarto-scss-export-orange-300: #f6ce95;--quarto-scss-export-orange-400: #f3bd71;--quarto-scss-export-orange-500: #f0ad4e;--quarto-scss-export-orange-600: #c08a3e;--quarto-scss-export-orange-700: #90682f;--quarto-scss-export-orange-800: #60451f;--quarto-scss-export-orange-900: #302310;--quarto-scss-export-yellow-100: #ffe3d1;--quarto-scss-export-yellow-200: #ffc8a3;--quarto-scss-export-yellow-300: #ffac74;--quarto-scss-export-yellow-400: #ff9146;--quarto-scss-export-yellow-500: #ff7518;--quarto-scss-export-yellow-600: #cc5e13;--quarto-scss-export-yellow-700: #99460e;--quarto-scss-export-yellow-800: #662f0a;--quarto-scss-export-yellow-900: #331705;--quarto-scss-export-green-100: #d9f0d1;--quarto-scss-export-green-200: #b2e2a3;--quarto-scss-export-green-300: #8cd374;--quarto-scss-export-green-400: #65c546;--quarto-scss-export-green-500: #3fb618;--quarto-scss-export-green-600: #329213;--quarto-scss-export-green-700: #266d0e;--quarto-scss-export-green-800: #19490a;--quarto-scss-export-green-900: #0d2405;--quarto-scss-export-teal-100: #d2f4ea;--quarto-scss-export-teal-200: #a6e9d5;--quarto-scss-export-teal-300: #79dfc1;--quarto-scss-export-teal-400: #4dd4ac;--quarto-scss-export-teal-500: #20c997;--quarto-scss-export-teal-600: #1aa179;--quarto-scss-export-teal-700: #13795b;--quarto-scss-export-teal-800: #0d503c;--quarto-scss-export-teal-900: #06281e;--quarto-scss-export-cyan-100: #ebddf1;--quarto-scss-export-cyan-200: #d6bbe4;--quarto-scss-export-cyan-300: #c298d6;--quarto-scss-export-cyan-400: #ad76c9;--quarto-scss-export-cyan-500: #9954bb;--quarto-scss-export-cyan-600: #7a4396;--quarto-scss-export-cyan-700: #5c3270;--quarto-scss-export-cyan-800: #3d224b;--quarto-scss-export-cyan-900: #1f1125;--quarto-scss-export-default: #343a40;--quarto-scss-export-primary-text-emphasis: #10335b;--quarto-scss-export-secondary-text-emphasis: #15171a;--quarto-scss-export-success-text-emphasis: #19490a;--quarto-scss-export-info-text-emphasis: #3d224b;--quarto-scss-export-warning-text-emphasis: #662f0a;--quarto-scss-export-danger-text-emphasis: #660017;--quarto-scss-export-light-text-emphasis: #495057;--quarto-scss-export-dark-text-emphasis: #495057;--quarto-scss-export-primary-bg-subtle: #d4e6f9;--quarto-scss-export-secondary-bg-subtle: #d6d8d9;--quarto-scss-export-success-bg-subtle: #d9f0d1;--quarto-scss-export-info-bg-subtle: #ebddf1;--quarto-scss-export-warning-bg-subtle: #ffe3d1;--quarto-scss-export-danger-bg-subtle: #ffccd7;--quarto-scss-export-light-bg-subtle: #fcfcfd;--quarto-scss-export-dark-bg-subtle: #ced4da;--quarto-scss-export-primary-border-subtle: #a9ccf4;--quarto-scss-export-secondary-border-subtle: #aeb0b3;--quarto-scss-export-success-border-subtle: #b2e2a3;--quarto-scss-export-info-border-subtle: #d6bbe4;--quarto-scss-export-warning-border-subtle: #ffc8a3;--quarto-scss-export-danger-border-subtle: #ff99b0;--quarto-scss-export-light-border-subtle: #e9ecef;--quarto-scss-export-dark-border-subtle: #adb5bd;--quarto-scss-export-body-text-align: ;--quarto-scss-export-body-bg: #fff;--quarto-scss-export-body-secondary-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-body-secondary-bg: #e9ecef;--quarto-scss-export-body-tertiary-color: rgba(52, 58, 64, 0.5);--quarto-scss-export-body-tertiary-bg: #f8f9fa;--quarto-scss-export-body-emphasis-color: #000;--quarto-scss-export-link-hover-color: #1f4eb6;--quarto-scss-export-link-hover-decoration: ;--quarto-scss-export-border-color-translucent: rgba(0, 0, 0, 0.175);--quarto-scss-export-component-active-bg: #2780e3;--quarto-scss-export-component-active-color: #fff;--quarto-scss-export-focus-ring-color: rgba(39, 128, 227, 0.25);--quarto-scss-export-headings-font-family: ;--quarto-scss-export-headings-font-style: ;--quarto-scss-export-display-font-family: ;--quarto-scss-export-display-font-style: ;--quarto-scss-export-blockquote-footer-color: #6c757d;--quarto-scss-export-blockquote-border-color: #e9ecef;--quarto-scss-export-hr-bg-color: ;--quarto-scss-export-hr-height: ;--quarto-scss-export-hr-border-color: ;--quarto-scss-export-legend-font-weight: ;--quarto-scss-export-mark-bg: #ffe3d1;--quarto-scss-export-table-color: #343a40;--quarto-scss-export-table-bg: #fff;--quarto-scss-export-table-accent-bg: transparent;--quarto-scss-export-table-th-font-weight: ;--quarto-scss-export-table-striped-color: #343a40;--quarto-scss-export-table-striped-bg: rgba(0, 0, 0, 0.05);--quarto-scss-export-table-active-color: #343a40;--quarto-scss-export-table-active-bg: rgba(0, 0, 0, 0.1);--quarto-scss-export-table-hover-color: #343a40;--quarto-scss-export-table-hover-bg: rgba(0, 0, 0, 0.075);--quarto-scss-export-table-border-color: #dee2e6;--quarto-scss-export-table-caption-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-input-btn-font-family: ;--quarto-scss-export-input-btn-focus-color: rgba(39, 128, 227, 0.25);--quarto-scss-export-btn-color: #343a40;--quarto-scss-export-btn-font-family: ;--quarto-scss-export-btn-white-space: ;--quarto-scss-export-btn-link-color: #2761e3;--quarto-scss-export-btn-link-hover-color: #1f4eb6;--quarto-scss-export-btn-link-disabled-color: #6c757d;--quarto-scss-export-form-text-font-style: ;--quarto-scss-export-form-text-font-weight: ;--quarto-scss-export-form-text-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-form-label-font-size: ;--quarto-scss-export-form-label-font-style: ;--quarto-scss-export-form-label-font-weight: ;--quarto-scss-export-form-label-color: ;--quarto-scss-export-input-font-family: ;--quarto-scss-export-input-disabled-color: ;--quarto-scss-export-input-disabled-bg: #e9ecef;--quarto-scss-export-input-disabled-border-color: ;--quarto-scss-export-input-color: #343a40;--quarto-scss-export-input-focus-bg: #fff;--quarto-scss-export-input-focus-border-color: #93c0f1;--quarto-scss-export-input-focus-color: #343a40;--quarto-scss-export-input-placeholder-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-input-plaintext-color: #343a40;--quarto-scss-export-form-check-label-color: ;--quarto-scss-export-form-check-transition: ;--quarto-scss-export-form-check-input-bg: #fff;--quarto-scss-export-form-check-input-focus-border: #93c0f1;--quarto-scss-export-form-check-input-checked-color: #fff;--quarto-scss-export-form-check-input-checked-bg-color: #2780e3;--quarto-scss-export-form-check-input-checked-border-color: #2780e3;--quarto-scss-export-form-check-input-indeterminate-color: #fff;--quarto-scss-export-form-check-input-indeterminate-bg-color: #2780e3;--quarto-scss-export-form-check-input-indeterminate-border-color: #2780e3;--quarto-scss-export-form-switch-color: rgba(0, 0, 0, 0.25);--quarto-scss-export-form-switch-focus-color: #93c0f1;--quarto-scss-export-form-switch-checked-color: #fff;--quarto-scss-export-input-group-addon-color: #343a40;--quarto-scss-export-input-group-addon-bg: #f8f9fa;--quarto-scss-export-input-group-addon-border-color: #dee2e6;--quarto-scss-export-form-select-font-family: ;--quarto-scss-export-form-select-color: #343a40;--quarto-scss-export-form-select-bg: #fff;--quarto-scss-export-form-select-disabled-color: ;--quarto-scss-export-form-select-disabled-bg: #e9ecef;--quarto-scss-export-form-select-disabled-border-color: ;--quarto-scss-export-form-select-indicator-color: #343a40;--quarto-scss-export-form-select-border-color: #dee2e6;--quarto-scss-export-form-select-focus-border-color: #93c0f1;--quarto-scss-export-form-range-track-bg: #f8f9fa;--quarto-scss-export-form-range-thumb-bg: #2780e3;--quarto-scss-export-form-range-thumb-active-bg: #bed9f7;--quarto-scss-export-form-range-thumb-disabled-bg: rgba(52, 58, 64, 0.75);--quarto-scss-export-form-file-button-color: #343a40;--quarto-scss-export-form-file-button-bg: #f8f9fa;--quarto-scss-export-form-file-button-hover-bg: #e9ecef;--quarto-scss-export-form-floating-label-disabled-color: #6c757d;--quarto-scss-export-form-feedback-font-style: ;--quarto-scss-export-form-feedback-valid-color: #3fb618;--quarto-scss-export-form-feedback-invalid-color: #ff0039;--quarto-scss-export-form-feedback-icon-valid-color: #3fb618;--quarto-scss-export-form-feedback-icon-invalid-color: #ff0039;--quarto-scss-export-form-valid-color: #3fb618;--quarto-scss-export-form-valid-border-color: #3fb618;--quarto-scss-export-form-invalid-color: #ff0039;--quarto-scss-export-form-invalid-border-color: #ff0039;--quarto-scss-export-nav-link-font-size: ;--quarto-scss-export-nav-link-font-weight: ;--quarto-scss-export-nav-link-color: #2761e3;--quarto-scss-export-nav-link-hover-color: #1f4eb6;--quarto-scss-export-nav-link-disabled-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-nav-tabs-border-color: #dee2e6;--quarto-scss-export-nav-tabs-link-hover-border-color: #e9ecef #e9ecef #dee2e6;--quarto-scss-export-nav-tabs-link-active-color: #000;--quarto-scss-export-nav-tabs-link-active-bg: #fff;--quarto-scss-export-nav-pills-link-active-bg: #2780e3;--quarto-scss-export-nav-pills-link-active-color: #fff;--quarto-scss-export-nav-underline-link-active-color: #000;--quarto-scss-export-navbar-padding-x: ;--quarto-scss-export-navbar-light-contrast: #000;--quarto-scss-export-navbar-dark-contrast: #000;--quarto-scss-export-navbar-light-icon-color: rgba(0, 0, 0, 0.75);--quarto-scss-export-navbar-dark-icon-color: rgba(0, 0, 0, 0.75);--quarto-scss-export-dropdown-color: #343a40;--quarto-scss-export-dropdown-bg: #fff;--quarto-scss-export-dropdown-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--quarto-scss-export-dropdown-link-color: #343a40;--quarto-scss-export-dropdown-link-hover-color: #343a40;--quarto-scss-export-dropdown-link-hover-bg: #f8f9fa;--quarto-scss-export-dropdown-link-active-bg: #2780e3;--quarto-scss-export-dropdown-link-active-color: #fff;--quarto-scss-export-dropdown-link-disabled-color: rgba(52, 58, 64, 0.5);--quarto-scss-export-dropdown-header-color: #6c757d;--quarto-scss-export-dropdown-dark-color: #dee2e6;--quarto-scss-export-dropdown-dark-bg: #343a40;--quarto-scss-export-dropdown-dark-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-dropdown-dark-divider-bg: rgba(0, 0, 0, 0.175);--quarto-scss-export-dropdown-dark-box-shadow: ;--quarto-scss-export-dropdown-dark-link-color: #dee2e6;--quarto-scss-export-dropdown-dark-link-hover-color: #fff;--quarto-scss-export-dropdown-dark-link-hover-bg: rgba(255, 255, 255, 0.15);--quarto-scss-export-dropdown-dark-link-active-color: #fff;--quarto-scss-export-dropdown-dark-link-active-bg: #2780e3;--quarto-scss-export-dropdown-dark-link-disabled-color: #adb5bd;--quarto-scss-export-dropdown-dark-header-color: #adb5bd;--quarto-scss-export-pagination-color: #2761e3;--quarto-scss-export-pagination-bg: #fff;--quarto-scss-export-pagination-border-color: #dee2e6;--quarto-scss-export-pagination-focus-color: #1f4eb6;--quarto-scss-export-pagination-focus-bg: #e9ecef;--quarto-scss-export-pagination-hover-color: #1f4eb6;--quarto-scss-export-pagination-hover-bg: #f8f9fa;--quarto-scss-export-pagination-hover-border-color: #dee2e6;--quarto-scss-export-pagination-active-color: #fff;--quarto-scss-export-pagination-active-bg: #2780e3;--quarto-scss-export-pagination-active-border-color: #2780e3;--quarto-scss-export-pagination-disabled-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-pagination-disabled-bg: #e9ecef;--quarto-scss-export-pagination-disabled-border-color: #dee2e6;--quarto-scss-export-card-title-color: ;--quarto-scss-export-card-subtitle-color: ;--quarto-scss-export-card-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-card-box-shadow: ;--quarto-scss-export-card-cap-color: ;--quarto-scss-export-card-height: ;--quarto-scss-export-card-color: ;--quarto-scss-export-card-bg: #fff;--quarto-scss-export-accordion-color: #343a40;--quarto-scss-export-accordion-bg: #fff;--quarto-scss-export-accordion-border-color: #dee2e6;--quarto-scss-export-accordion-button-color: #343a40;--quarto-scss-export-accordion-button-bg: #fff;--quarto-scss-export-accordion-button-active-bg: #d4e6f9;--quarto-scss-export-accordion-button-active-color: #10335b;--quarto-scss-export-accordion-button-focus-border-color: #93c0f1;--quarto-scss-export-accordion-icon-color: #343a40;--quarto-scss-export-accordion-icon-active-color: #10335b;--quarto-scss-export-tooltip-color: #fff;--quarto-scss-export-tooltip-bg: #000;--quarto-scss-export-tooltip-margin: ;--quarto-scss-export-tooltip-arrow-color: ;--quarto-scss-export-form-feedback-tooltip-line-height: ;--quarto-scss-export-popover-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-popover-header-bg: #e9ecef;--quarto-scss-export-popover-body-color: #343a40;--quarto-scss-export-popover-arrow-color: #fff;--quarto-scss-export-popover-arrow-outer-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-toast-color: ;--quarto-scss-export-toast-background-color: rgba(255, 255, 255, 0.85);--quarto-scss-export-toast-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-toast-header-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-toast-header-background-color: rgba(255, 255, 255, 0.85);--quarto-scss-export-toast-header-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-badge-color: #fff;--quarto-scss-export-modal-content-color: ;--quarto-scss-export-modal-content-bg: #fff;--quarto-scss-export-modal-content-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-modal-backdrop-bg: #000;--quarto-scss-export-modal-header-border-color: #dee2e6;--quarto-scss-export-modal-footer-bg: ;--quarto-scss-export-modal-footer-border-color: #dee2e6;--quarto-scss-export-progress-bg: #e9ecef;--quarto-scss-export-progress-bar-color: #fff;--quarto-scss-export-progress-bar-bg: #2780e3;--quarto-scss-export-list-group-color: #343a40;--quarto-scss-export-list-group-bg: #fff;--quarto-scss-export-list-group-border-color: #dee2e6;--quarto-scss-export-list-group-hover-bg: #f8f9fa;--quarto-scss-export-list-group-active-bg: #2780e3;--quarto-scss-export-list-group-active-color: #fff;--quarto-scss-export-list-group-active-border-color: #2780e3;--quarto-scss-export-list-group-disabled-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-list-group-disabled-bg: #fff;--quarto-scss-export-list-group-action-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-list-group-action-hover-color: #000;--quarto-scss-export-list-group-action-active-color: #343a40;--quarto-scss-export-list-group-action-active-bg: #e9ecef;--quarto-scss-export-thumbnail-bg: #fff;--quarto-scss-export-thumbnail-border-color: #dee2e6;--quarto-scss-export-figure-caption-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-breadcrumb-font-size: ;--quarto-scss-export-breadcrumb-bg: ;--quarto-scss-export-breadcrumb-divider-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-breadcrumb-active-color: rgba(52, 58, 64, 0.75);--quarto-scss-export-breadcrumb-border-radius: ;--quarto-scss-export-carousel-control-color: #fff;--quarto-scss-export-carousel-indicator-active-bg: #fff;--quarto-scss-export-carousel-caption-color: #fff;--quarto-scss-export-carousel-dark-indicator-active-bg: #000;--quarto-scss-export-carousel-dark-caption-color: #000;--quarto-scss-export-btn-close-color: #000;--quarto-scss-export-offcanvas-border-color: rgba(0, 0, 0, 0.175);--quarto-scss-export-offcanvas-bg-color: #fff;--quarto-scss-export-offcanvas-color: #343a40;--quarto-scss-export-offcanvas-backdrop-bg: #000;--quarto-scss-export-code-color-dark: white;--quarto-scss-export-kbd-color: #fff;--quarto-scss-export-kbd-bg: #343a40;--quarto-scss-export-nested-kbd-font-weight: ;--quarto-scss-export-pre-bg: #f8f9fa;--quarto-scss-export-pre-color: #000;--quarto-scss-export-bslib-page-sidebar-title-bg: #f8f9fa;--quarto-scss-export-bslib-page-sidebar-title-color: #000;--quarto-scss-export-bslib-sidebar-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.05);--quarto-scss-export-bslib-sidebar-toggle-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.1);--quarto-scss-export-sidebar-color: #595959;--quarto-scss-export-sidebar-hover-color: rgba(33, 81, 191, 0.8);--quarto-scss-export-sidebar-disabled-color: rgba(89, 89, 89, 0.75);--quarto-scss-export-valuebox-bg-primary: #5397e9;--quarto-scss-export-valuebox-bg-secondary: #343a40;--quarto-scss-export-valuebox-bg-success: #3aa716;--quarto-scss-export-valuebox-bg-info: rgba(153, 84, 187, 0.7019607843);--quarto-scss-export-valuebox-bg-warning: #fa6400;--quarto-scss-export-valuebox-bg-danger: rgba(255, 0, 57, 0.7019607843);--quarto-scss-export-valuebox-bg-light: #f8f9fa;--quarto-scss-export-valuebox-bg-dark: #343a40;--quarto-scss-export-mermaid-bg-color: #fff;--quarto-scss-export-mermaid-edge-color: #343a40;--quarto-scss-export-mermaid-node-fg-color: #343a40;--quarto-scss-export-mermaid-fg-color: #343a40;--quarto-scss-export-mermaid-fg-color--lighter: #4b545c;--quarto-scss-export-mermaid-fg-color--lightest: #626d78;--quarto-scss-export-mermaid-label-bg-color: #fff;--quarto-scss-export-mermaid-label-fg-color: #2780e3;--quarto-scss-export-mermaid-node-bg-color: rgba(39, 128, 227, 0.1);--quarto-scss-export-code-block-border-left-color: #dee2e6;--quarto-scss-export-callout-color-note: #2780e3;--quarto-scss-export-callout-color-tip: #3fb618;--quarto-scss-export-callout-color-important: #ff0039;--quarto-scss-export-callout-color-caution: #f0ad4e;--quarto-scss-export-callout-color-warning: #ff7518}
diff --git a/docs/site_libs/bootstrap/bootstrap-icons.css b/docs/site_libs/bootstrap/bootstrap-icons.css
index 94f1940..285e444 100644
--- a/docs/site_libs/bootstrap/bootstrap-icons.css
+++ b/docs/site_libs/bootstrap/bootstrap-icons.css
@@ -1,8 +1,14 @@
+/*!
+ * Bootstrap Icons v1.11.1 (https://icons.getbootstrap.com/)
+ * Copyright 2019-2023 The Bootstrap Authors
+ * Licensed under MIT (https://github.com/twbs/icons/blob/main/LICENSE)
+ */
+
 @font-face {
   font-display: block;
   font-family: "bootstrap-icons";
   src: 
-url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
+url("./bootstrap-icons.woff?2820a3852bdb9a5832199cc61cec4e65") format("woff");
 }
 
 .bi::before,
@@ -441,7 +447,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-cloud-fog2::before { content: "\f2a2"; }
 .bi-cloud-hail-fill::before { content: "\f2a3"; }
 .bi-cloud-hail::before { content: "\f2a4"; }
-.bi-cloud-haze-1::before { content: "\f2a5"; }
 .bi-cloud-haze-fill::before { content: "\f2a6"; }
 .bi-cloud-haze::before { content: "\f2a7"; }
 .bi-cloud-haze2-fill::before { content: "\f2a8"; }
@@ -1437,21 +1442,16 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-dpad::before { content: "\f687"; }
 .bi-ear-fill::before { content: "\f688"; }
 .bi-ear::before { content: "\f689"; }
-.bi-envelope-check-1::before { content: "\f68a"; }
 .bi-envelope-check-fill::before { content: "\f68b"; }
 .bi-envelope-check::before { content: "\f68c"; }
-.bi-envelope-dash-1::before { content: "\f68d"; }
 .bi-envelope-dash-fill::before { content: "\f68e"; }
 .bi-envelope-dash::before { content: "\f68f"; }
-.bi-envelope-exclamation-1::before { content: "\f690"; }
 .bi-envelope-exclamation-fill::before { content: "\f691"; }
 .bi-envelope-exclamation::before { content: "\f692"; }
 .bi-envelope-plus-fill::before { content: "\f693"; }
 .bi-envelope-plus::before { content: "\f694"; }
-.bi-envelope-slash-1::before { content: "\f695"; }
 .bi-envelope-slash-fill::before { content: "\f696"; }
 .bi-envelope-slash::before { content: "\f697"; }
-.bi-envelope-x-1::before { content: "\f698"; }
 .bi-envelope-x-fill::before { content: "\f699"; }
 .bi-envelope-x::before { content: "\f69a"; }
 .bi-explicit-fill::before { content: "\f69b"; }
@@ -1461,8 +1461,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-list-columns-reverse::before { content: "\f69f"; }
 .bi-list-columns::before { content: "\f6a0"; }
 .bi-meta::before { content: "\f6a1"; }
-.bi-mortorboard-fill::before { content: "\f6a2"; }
-.bi-mortorboard::before { content: "\f6a3"; }
 .bi-nintendo-switch::before { content: "\f6a4"; }
 .bi-pc-display-horizontal::before { content: "\f6a5"; }
 .bi-pc-display::before { content: "\f6a6"; }
@@ -1481,7 +1479,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-send-check::before { content: "\f6b3"; }
 .bi-send-dash-fill::before { content: "\f6b4"; }
 .bi-send-dash::before { content: "\f6b5"; }
-.bi-send-exclamation-1::before { content: "\f6b6"; }
 .bi-send-exclamation-fill::before { content: "\f6b7"; }
 .bi-send-exclamation::before { content: "\f6b8"; }
 .bi-send-fill::before { content: "\f6b9"; }
@@ -1493,7 +1490,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-send-x::before { content: "\f6bf"; }
 .bi-send::before { content: "\f6c0"; }
 .bi-steam::before { content: "\f6c1"; }
-.bi-terminal-dash-1::before { content: "\f6c2"; }
 .bi-terminal-dash::before { content: "\f6c3"; }
 .bi-terminal-plus::before { content: "\f6c4"; }
 .bi-terminal-split::before { content: "\f6c5"; }
@@ -1523,7 +1519,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-usb-symbol::before { content: "\f6dd"; }
 .bi-usb::before { content: "\f6de"; }
 .bi-boombox-fill::before { content: "\f6df"; }
-.bi-displayport-1::before { content: "\f6e0"; }
 .bi-displayport::before { content: "\f6e1"; }
 .bi-gpu-card::before { content: "\f6e2"; }
 .bi-memory::before { content: "\f6e3"; }
@@ -1536,8 +1531,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-pci-card::before { content: "\f6ea"; }
 .bi-router-fill::before { content: "\f6eb"; }
 .bi-router::before { content: "\f6ec"; }
-.bi-ssd-fill::before { content: "\f6ed"; }
-.bi-ssd::before { content: "\f6ee"; }
 .bi-thunderbolt-fill::before { content: "\f6ef"; }
 .bi-thunderbolt::before { content: "\f6f0"; }
 .bi-usb-drive-fill::before { content: "\f6f1"; }
@@ -1644,7 +1637,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-filetype-pdf::before { content: "\f756"; }
 .bi-filetype-php::before { content: "\f757"; }
 .bi-filetype-png::before { content: "\f758"; }
-.bi-filetype-ppt-1::before { content: "\f759"; }
 .bi-filetype-ppt::before { content: "\f75a"; }
 .bi-filetype-psd::before { content: "\f75b"; }
 .bi-filetype-py::before { content: "\f75c"; }
@@ -1660,7 +1652,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-filetype-txt::before { content: "\f766"; }
 .bi-filetype-wav::before { content: "\f767"; }
 .bi-filetype-woff::before { content: "\f768"; }
-.bi-filetype-xls-1::before { content: "\f769"; }
 .bi-filetype-xls::before { content: "\f76a"; }
 .bi-filetype-xml::before { content: "\f76b"; }
 .bi-filetype-yml::before { content: "\f76c"; }
@@ -1703,56 +1694,38 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-filetype-json::before { content: "\f791"; }
 .bi-filetype-pptx::before { content: "\f792"; }
 .bi-filetype-xlsx::before { content: "\f793"; }
-.bi-1-circle-1::before { content: "\f794"; }
-.bi-1-circle-fill-1::before { content: "\f795"; }
 .bi-1-circle-fill::before { content: "\f796"; }
 .bi-1-circle::before { content: "\f797"; }
 .bi-1-square-fill::before { content: "\f798"; }
 .bi-1-square::before { content: "\f799"; }
-.bi-2-circle-1::before { content: "\f79a"; }
-.bi-2-circle-fill-1::before { content: "\f79b"; }
 .bi-2-circle-fill::before { content: "\f79c"; }
 .bi-2-circle::before { content: "\f79d"; }
 .bi-2-square-fill::before { content: "\f79e"; }
 .bi-2-square::before { content: "\f79f"; }
-.bi-3-circle-1::before { content: "\f7a0"; }
-.bi-3-circle-fill-1::before { content: "\f7a1"; }
 .bi-3-circle-fill::before { content: "\f7a2"; }
 .bi-3-circle::before { content: "\f7a3"; }
 .bi-3-square-fill::before { content: "\f7a4"; }
 .bi-3-square::before { content: "\f7a5"; }
-.bi-4-circle-1::before { content: "\f7a6"; }
-.bi-4-circle-fill-1::before { content: "\f7a7"; }
 .bi-4-circle-fill::before { content: "\f7a8"; }
 .bi-4-circle::before { content: "\f7a9"; }
 .bi-4-square-fill::before { content: "\f7aa"; }
 .bi-4-square::before { content: "\f7ab"; }
-.bi-5-circle-1::before { content: "\f7ac"; }
-.bi-5-circle-fill-1::before { content: "\f7ad"; }
 .bi-5-circle-fill::before { content: "\f7ae"; }
 .bi-5-circle::before { content: "\f7af"; }
 .bi-5-square-fill::before { content: "\f7b0"; }
 .bi-5-square::before { content: "\f7b1"; }
-.bi-6-circle-1::before { content: "\f7b2"; }
-.bi-6-circle-fill-1::before { content: "\f7b3"; }
 .bi-6-circle-fill::before { content: "\f7b4"; }
 .bi-6-circle::before { content: "\f7b5"; }
 .bi-6-square-fill::before { content: "\f7b6"; }
 .bi-6-square::before { content: "\f7b7"; }
-.bi-7-circle-1::before { content: "\f7b8"; }
-.bi-7-circle-fill-1::before { content: "\f7b9"; }
 .bi-7-circle-fill::before { content: "\f7ba"; }
 .bi-7-circle::before { content: "\f7bb"; }
 .bi-7-square-fill::before { content: "\f7bc"; }
 .bi-7-square::before { content: "\f7bd"; }
-.bi-8-circle-1::before { content: "\f7be"; }
-.bi-8-circle-fill-1::before { content: "\f7bf"; }
 .bi-8-circle-fill::before { content: "\f7c0"; }
 .bi-8-circle::before { content: "\f7c1"; }
 .bi-8-square-fill::before { content: "\f7c2"; }
 .bi-8-square::before { content: "\f7c3"; }
-.bi-9-circle-1::before { content: "\f7c4"; }
-.bi-9-circle-fill-1::before { content: "\f7c5"; }
 .bi-9-circle-fill::before { content: "\f7c6"; }
 .bi-9-circle::before { content: "\f7c7"; }
 .bi-9-square-fill::before { content: "\f7c8"; }
@@ -1771,8 +1744,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-browser-edge::before { content: "\f7d5"; }
 .bi-browser-firefox::before { content: "\f7d6"; }
 .bi-browser-safari::before { content: "\f7d7"; }
-.bi-c-circle-1::before { content: "\f7d8"; }
-.bi-c-circle-fill-1::before { content: "\f7d9"; }
 .bi-c-circle-fill::before { content: "\f7da"; }
 .bi-c-circle::before { content: "\f7db"; }
 .bi-c-square-fill::before { content: "\f7dc"; }
@@ -1783,8 +1754,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-car-front::before { content: "\f7e1"; }
 .bi-cassette-fill::before { content: "\f7e2"; }
 .bi-cassette::before { content: "\f7e3"; }
-.bi-cc-circle-1::before { content: "\f7e4"; }
-.bi-cc-circle-fill-1::before { content: "\f7e5"; }
 .bi-cc-circle-fill::before { content: "\f7e6"; }
 .bi-cc-circle::before { content: "\f7e7"; }
 .bi-cc-square-fill::before { content: "\f7e8"; }
@@ -1803,8 +1772,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-filetype-sql::before { content: "\f7f5"; }
 .bi-fire::before { content: "\f7f6"; }
 .bi-google-play::before { content: "\f7f7"; }
-.bi-h-circle-1::before { content: "\f7f8"; }
-.bi-h-circle-fill-1::before { content: "\f7f9"; }
 .bi-h-circle-fill::before { content: "\f7fa"; }
 .bi-h-circle::before { content: "\f7fb"; }
 .bi-h-square-fill::before { content: "\f7fc"; }
@@ -1813,8 +1780,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-lungs-fill::before { content: "\f7ff"; }
 .bi-lungs::before { content: "\f800"; }
 .bi-microsoft-teams::before { content: "\f801"; }
-.bi-p-circle-1::before { content: "\f802"; }
-.bi-p-circle-fill-1::before { content: "\f803"; }
 .bi-p-circle-fill::before { content: "\f804"; }
 .bi-p-circle::before { content: "\f805"; }
 .bi-p-square-fill::before { content: "\f806"; }
@@ -1823,8 +1788,6 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-pass::before { content: "\f809"; }
 .bi-prescription::before { content: "\f80a"; }
 .bi-prescription2::before { content: "\f80b"; }
-.bi-r-circle-1::before { content: "\f80c"; }
-.bi-r-circle-fill-1::before { content: "\f80d"; }
 .bi-r-circle-fill::before { content: "\f80e"; }
 .bi-r-circle::before { content: "\f80f"; }
 .bi-r-square-fill::before { content: "\f810"; }
@@ -2016,3 +1979,100 @@ url("./bootstrap-icons.woff?2ab2cbbe07fcebb53bdaa7313bb290f2") format("woff");
 .bi-sina-weibo::before { content: "\f8ca"; }
 .bi-tencent-qq::before { content: "\f8cb"; }
 .bi-wikipedia::before { content: "\f8cc"; }
+.bi-alphabet-uppercase::before { content: "\f2a5"; }
+.bi-alphabet::before { content: "\f68a"; }
+.bi-amazon::before { content: "\f68d"; }
+.bi-arrows-collapse-vertical::before { content: "\f690"; }
+.bi-arrows-expand-vertical::before { content: "\f695"; }
+.bi-arrows-vertical::before { content: "\f698"; }
+.bi-arrows::before { content: "\f6a2"; }
+.bi-ban-fill::before { content: "\f6a3"; }
+.bi-ban::before { content: "\f6b6"; }
+.bi-bing::before { content: "\f6c2"; }
+.bi-cake::before { content: "\f6e0"; }
+.bi-cake2::before { content: "\f6ed"; }
+.bi-cookie::before { content: "\f6ee"; }
+.bi-copy::before { content: "\f759"; }
+.bi-crosshair::before { content: "\f769"; }
+.bi-crosshair2::before { content: "\f794"; }
+.bi-emoji-astonished-fill::before { content: "\f795"; }
+.bi-emoji-astonished::before { content: "\f79a"; }
+.bi-emoji-grimace-fill::before { content: "\f79b"; }
+.bi-emoji-grimace::before { content: "\f7a0"; }
+.bi-emoji-grin-fill::before { content: "\f7a1"; }
+.bi-emoji-grin::before { content: "\f7a6"; }
+.bi-emoji-surprise-fill::before { content: "\f7a7"; }
+.bi-emoji-surprise::before { content: "\f7ac"; }
+.bi-emoji-tear-fill::before { content: "\f7ad"; }
+.bi-emoji-tear::before { content: "\f7b2"; }
+.bi-envelope-arrow-down-fill::before { content: "\f7b3"; }
+.bi-envelope-arrow-down::before { content: "\f7b8"; }
+.bi-envelope-arrow-up-fill::before { content: "\f7b9"; }
+.bi-envelope-arrow-up::before { content: "\f7be"; }
+.bi-feather::before { content: "\f7bf"; }
+.bi-feather2::before { content: "\f7c4"; }
+.bi-floppy-fill::before { content: "\f7c5"; }
+.bi-floppy::before { content: "\f7d8"; }
+.bi-floppy2-fill::before { content: "\f7d9"; }
+.bi-floppy2::before { content: "\f7e4"; }
+.bi-gitlab::before { content: "\f7e5"; }
+.bi-highlighter::before { content: "\f7f8"; }
+.bi-marker-tip::before { content: "\f802"; }
+.bi-nvme-fill::before { content: "\f803"; }
+.bi-nvme::before { content: "\f80c"; }
+.bi-opencollective::before { content: "\f80d"; }
+.bi-pci-card-network::before { content: "\f8cd"; }
+.bi-pci-card-sound::before { content: "\f8ce"; }
+.bi-radar::before { content: "\f8cf"; }
+.bi-send-arrow-down-fill::before { content: "\f8d0"; }
+.bi-send-arrow-down::before { content: "\f8d1"; }
+.bi-send-arrow-up-fill::before { content: "\f8d2"; }
+.bi-send-arrow-up::before { content: "\f8d3"; }
+.bi-sim-slash-fill::before { content: "\f8d4"; }
+.bi-sim-slash::before { content: "\f8d5"; }
+.bi-sourceforge::before { content: "\f8d6"; }
+.bi-substack::before { content: "\f8d7"; }
+.bi-threads-fill::before { content: "\f8d8"; }
+.bi-threads::before { content: "\f8d9"; }
+.bi-transparency::before { content: "\f8da"; }
+.bi-twitter-x::before { content: "\f8db"; }
+.bi-type-h4::before { content: "\f8dc"; }
+.bi-type-h5::before { content: "\f8dd"; }
+.bi-type-h6::before { content: "\f8de"; }
+.bi-backpack-fill::before { content: "\f8df"; }
+.bi-backpack::before { content: "\f8e0"; }
+.bi-backpack2-fill::before { content: "\f8e1"; }
+.bi-backpack2::before { content: "\f8e2"; }
+.bi-backpack3-fill::before { content: "\f8e3"; }
+.bi-backpack3::before { content: "\f8e4"; }
+.bi-backpack4-fill::before { content: "\f8e5"; }
+.bi-backpack4::before { content: "\f8e6"; }
+.bi-brilliance::before { content: "\f8e7"; }
+.bi-cake-fill::before { content: "\f8e8"; }
+.bi-cake2-fill::before { content: "\f8e9"; }
+.bi-duffle-fill::before { content: "\f8ea"; }
+.bi-duffle::before { content: "\f8eb"; }
+.bi-exposure::before { content: "\f8ec"; }
+.bi-gender-neuter::before { content: "\f8ed"; }
+.bi-highlights::before { content: "\f8ee"; }
+.bi-luggage-fill::before { content: "\f8ef"; }
+.bi-luggage::before { content: "\f8f0"; }
+.bi-mailbox-flag::before { content: "\f8f1"; }
+.bi-mailbox2-flag::before { content: "\f8f2"; }
+.bi-noise-reduction::before { content: "\f8f3"; }
+.bi-passport-fill::before { content: "\f8f4"; }
+.bi-passport::before { content: "\f8f5"; }
+.bi-person-arms-up::before { content: "\f8f6"; }
+.bi-person-raised-hand::before { content: "\f8f7"; }
+.bi-person-standing-dress::before { content: "\f8f8"; }
+.bi-person-standing::before { content: "\f8f9"; }
+.bi-person-walking::before { content: "\f8fa"; }
+.bi-person-wheelchair::before { content: "\f8fb"; }
+.bi-shadows::before { content: "\f8fc"; }
+.bi-suitcase-fill::before { content: "\f8fd"; }
+.bi-suitcase-lg-fill::before { content: "\f8fe"; }
+.bi-suitcase-lg::before { content: "\f8ff"; }
+.bi-suitcase::before { content: "\f900"; }
+.bi-suitcase2-fill::before { content: "\f901"; }
+.bi-suitcase2::before { content: "\f902"; }
+.bi-vignette::before { content: "\f903"; }
diff --git a/docs/site_libs/bootstrap/bootstrap-icons.woff b/docs/site_libs/bootstrap/bootstrap-icons.woff
index 18d21d4..dbeeb05 100644
Binary files a/docs/site_libs/bootstrap/bootstrap-icons.woff and b/docs/site_libs/bootstrap/bootstrap-icons.woff differ
diff --git a/docs/site_libs/bootstrap/bootstrap.min.css b/docs/site_libs/bootstrap/bootstrap.min.css
deleted file mode 100644
index 0ce6420..0000000
--- a/docs/site_libs/bootstrap/bootstrap.min.css
+++ /dev/null
@@ -1,10 +0,0 @@
-/*!
- * Bootstrap v5.1.3 (https://getbootstrap.com/)
- * Copyright 2011-2021 The Bootstrap Authors
- * Copyright 2011-2021 Twitter, Inc.
- * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)
- */@import"https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;700&display=swap";:root{--bs-blue: #2780e3;--bs-indigo: #6610f2;--bs-purple: #613d7c;--bs-pink: #e83e8c;--bs-red: #ff0039;--bs-orange: #f0ad4e;--bs-yellow: #ff7518;--bs-green: #3fb618;--bs-teal: #20c997;--bs-cyan: #9954bb;--bs-white: #fff;--bs-gray: #6c757d;--bs-gray-dark: #373a3c;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #373a3c;--bs-gray-900: #212529;--bs-default: #373a3c;--bs-primary: #2780e3;--bs-secondary: #373a3c;--bs-success: #3fb618;--bs-info: #9954bb;--bs-warning: #ff7518;--bs-danger: #ff0039;--bs-light: #f8f9fa;--bs-dark: #373a3c;--bs-default-rgb: 55, 58, 60;--bs-primary-rgb: 39, 128, 227;--bs-secondary-rgb: 55, 58, 60;--bs-success-rgb: 63, 182, 24;--bs-info-rgb: 153, 84, 187;--bs-warning-rgb: 255, 117, 24;--bs-danger-rgb: 255, 0, 57;--bs-light-rgb: 248, 249, 250;--bs-dark-rgb: 55, 58, 60;--bs-white-rgb: 255, 255, 255;--bs-black-rgb: 0, 0, 0;--bs-body-color-rgb: 55, 58, 60;--bs-body-bg-rgb: 255, 255, 255;--bs-font-sans-serif: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";--bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;--bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0));--bs-root-font-size: 17px;--bs-body-font-family: var(--bs-font-sans-serif);--bs-body-font-size: 1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #373a3c;--bs-body-bg: #fff}*,*::before,*::after{box-sizing:border-box}:root{font-size:var(--bs-root-font-size)}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;background-color:currentColor;border:0;opacity:.25}hr:not([size]){height:1px}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-weight:400;line-height:1.2}h1,.h1{font-size:calc(1.325rem + 0.9vw)}@media(min-width: 1200px){h1,.h1{font-size:2rem}}h2,.h2{font-size:calc(1.29rem + 0.48vw)}@media(min-width: 1200px){h2,.h2{font-size:1.65rem}}h3,.h3{font-size:calc(1.27rem + 0.24vw)}@media(min-width: 1200px){h3,.h3{font-size:1.45rem}}h4,.h4{font-size:1.25rem}h5,.h5{font-size:1.1rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title],abbr[data-bs-original-title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:0.875em}mark,.mark{padding:.2em;background-color:#fcf8e3}sub,sup{position:relative;font-size:0.75em;line-height:0;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}a{color:#2780e3;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{color:#1f66b6}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:var(--bs-font-monospace);font-size:1em;direction:ltr /* rtl:ignore */;unicode-bidi:bidi-override}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:0.875em;color:#000;background-color:#f7f7f7;padding:.5rem;border:1px solid #dee2e6}pre code{background-color:rgba(0,0,0,0);font-size:inherit;color:inherit;word-break:normal}code{font-size:0.875em;color:#9753b8;background-color:#f7f7f7;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.4rem .4rem;font-size:0.875em;color:#fff;background-color:#212529}kbd kbd{padding:0;font-size:1em;font-weight:700}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:#6c757d;text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]::-webkit-calendar-picker-indicator{display:none}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + 0.3vw);line-height:inherit}@media(min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:textfield}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:0.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:0.875em;color:#6c757d}.blockquote-footer::before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:0.875em;color:#6c757d}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media(min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media(min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media(min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media(min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media(min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.table{--bs-table-bg: transparent;--bs-table-accent-bg: transparent;--bs-table-striped-color: #373a3c;--bs-table-striped-bg: rgba(0, 0, 0, 0.05);--bs-table-active-color: #373a3c;--bs-table-active-bg: rgba(0, 0, 0, 0.1);--bs-table-hover-color: #373a3c;--bs-table-hover-bg: rgba(0, 0, 0, 0.075);width:100%;margin-bottom:1rem;color:#373a3c;vertical-align:top;border-color:#dee2e6}.table>:not(caption)>*>*{padding:.5rem .5rem;background-color:var(--bs-table-bg);border-bottom-width:1px;box-shadow:inset 0 0 0 9999px var(--bs-table-accent-bg)}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table>:not(:first-child){border-top:2px solid #b6babc}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:1px 0}.table-bordered>:not(caption)>*>*{border-width:0 1px}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-accent-bg: var(--bs-table-striped-bg);color:var(--bs-table-striped-color)}.table-active{--bs-table-accent-bg: var(--bs-table-active-bg);color:var(--bs-table-active-color)}.table-hover>tbody>tr:hover>*{--bs-table-accent-bg: var(--bs-table-hover-bg);color:var(--bs-table-hover-color)}.table-primary{--bs-table-bg: #d4e6f9;--bs-table-striped-bg: #c9dbed;--bs-table-striped-color: #000;--bs-table-active-bg: #bfcfe0;--bs-table-active-color: #000;--bs-table-hover-bg: #c4d5e6;--bs-table-hover-color: #000;color:#000;border-color:#bfcfe0}.table-secondary{--bs-table-bg: #d7d8d8;--bs-table-striped-bg: #cccdcd;--bs-table-striped-color: #000;--bs-table-active-bg: #c2c2c2;--bs-table-active-color: #000;--bs-table-hover-bg: #c7c8c8;--bs-table-hover-color: #000;color:#000;border-color:#c2c2c2}.table-success{--bs-table-bg: #d9f0d1;--bs-table-striped-bg: #cee4c7;--bs-table-striped-color: #000;--bs-table-active-bg: #c3d8bc;--bs-table-active-color: #000;--bs-table-hover-bg: #c9dec1;--bs-table-hover-color: #000;color:#000;border-color:#c3d8bc}.table-info{--bs-table-bg: #ebddf1;--bs-table-striped-bg: #dfd2e5;--bs-table-striped-color: #000;--bs-table-active-bg: #d4c7d9;--bs-table-active-color: #000;--bs-table-hover-bg: #d9ccdf;--bs-table-hover-color: #000;color:#000;border-color:#d4c7d9}.table-warning{--bs-table-bg: #ffe3d1;--bs-table-striped-bg: #f2d8c7;--bs-table-striped-color: #000;--bs-table-active-bg: #e6ccbc;--bs-table-active-color: #000;--bs-table-hover-bg: #ecd2c1;--bs-table-hover-color: #000;color:#000;border-color:#e6ccbc}.table-danger{--bs-table-bg: #ffccd7;--bs-table-striped-bg: #f2c2cc;--bs-table-striped-color: #000;--bs-table-active-bg: #e6b8c2;--bs-table-active-color: #000;--bs-table-hover-bg: #ecbdc7;--bs-table-hover-color: #000;color:#000;border-color:#e6b8c2}.table-light{--bs-table-bg: #f8f9fa;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:#000;border-color:#dfe0e1}.table-dark{--bs-table-bg: #373a3c;--bs-table-striped-bg: #414446;--bs-table-striped-color: #fff;--bs-table-active-bg: #4b4e50;--bs-table-active-color: #fff;--bs-table-hover-bg: #46494b;--bs-table-hover-color: #fff;color:#fff;border-color:#4b4e50}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media(max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(0.375rem + 1px);padding-bottom:calc(0.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(0.5rem + 1px);padding-bottom:calc(0.5rem + 1px);font-size:1.25rem}.col-form-label-sm{padding-top:calc(0.25rem + 1px);padding-bottom:calc(0.25rem + 1px);font-size:0.875rem}.form-text{margin-top:.25rem;font-size:0.875em;color:#6c757d}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#373a3c;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type=file]{overflow:hidden}.form-control[type=file]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:#373a3c;background-color:#fff;border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-control::-webkit-date-and-time-value{height:1.5em}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#373a3c;background-color:#e9ecef;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:#dde0e3}.form-control::-webkit-file-upload-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#373a3c;background-color:#e9ecef;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::-webkit-file-upload-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::-webkit-file-upload-button{background-color:#dde0e3}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:#373a3c;background-color:rgba(0,0,0,0);border:solid rgba(0,0,0,0);border-width:1px 0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + 0.5rem + 2px);padding:.25rem .5rem;font-size:0.875rem}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-sm::-webkit-file-upload-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}.form-control-lg::-webkit-file-upload-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + 0.75rem + 2px)}textarea.form-control-sm{min-height:calc(1.5em + 0.5rem + 2px)}textarea.form-control-lg{min-height:calc(1.5em + 1rem + 2px)}.form-control-color{width:3rem;height:auto;padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{height:1.5em}.form-control-color::-webkit-color-swatch{height:1.5em}.form-select{display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;-moz-padding-start:calc(0.75rem - 3px);font-size:1rem;font-weight:400;line-height:1.5;color:#373a3c;background-color:#fff;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23373a3c' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:1px solid #ced4da;border-radius:0;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none}@media(prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:#e9ecef}.form-select:-moz-focusring{color:rgba(0,0,0,0);text-shadow:0 0 0 #373a3c}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:0.875rem}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{width:1em;height:1em;margin-top:.25em;vertical-align:top;background-color:#fff;background-repeat:no-repeat;background-position:center;background-size:contain;border:1px solid rgba(0,0,0,.25);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;color-adjust:exact;-webkit-print-color-adjust:exact}.form-check-input[type=radio],.shiny-input-container .checkbox input[type=radio],.shiny-input-container .checkbox-inline input[type=radio],.shiny-input-container .radio input[type=radio],.shiny-input-container .radio-inline input[type=radio]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#2780e3;border-color:#2780e3}.form-check-input:checked[type=checkbox],.shiny-input-container .checkbox input:checked[type=checkbox],.shiny-input-container .checkbox-inline input:checked[type=checkbox],.shiny-input-container .radio input:checked[type=checkbox],.shiny-input-container .radio-inline input:checked[type=checkbox]{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10l3 3l6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type=radio],.shiny-input-container .checkbox input:checked[type=radio],.shiny-input-container .checkbox-inline input:checked[type=radio],.shiny-input-container .radio input:checked[type=radio],.shiny-input-container .radio-inline input:checked[type=radio]{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e")}.form-check-input[type=checkbox]:indeterminate,.shiny-input-container .checkbox input[type=checkbox]:indeterminate,.shiny-input-container .checkbox-inline input[type=checkbox]:indeterminate,.shiny-input-container .radio input[type=checkbox]:indeterminate,.shiny-input-container .radio-inline input[type=checkbox]:indeterminate{background-color:#2780e3;border-color:#2780e3;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{width:2em;margin-left:-2.5em;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e");background-position:left center;transition:background-position .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2393c0f1'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.form-check-inline,.shiny-input-container .checkbox-inline,.shiny-input-container .radio-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}.form-range{width:100%;height:1.5rem;padding:0;background-color:rgba(0,0,0,0);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(39,128,227,.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-0.25rem;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none}@media(prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#bed9f7}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#dee2e6;border-color:rgba(0,0,0,0)}.form-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#2780e3;border:0;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none}@media(prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#bed9f7}.form-range::-moz-range-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#dee2e6;border-color:rgba(0,0,0,0)}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.form-range:disabled::-moz-range-thumb{background-color:#adb5bd}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-select{height:calc(3.5rem + 2px);line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;height:100%;padding:1rem .75rem;pointer-events:none;border:1px solid rgba(0,0,0,0);transform-origin:0 0;transition:opacity .1s ease-in-out,transform .1s ease-in-out}@media(prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control{padding:1rem .75rem}.form-floating>.form-control::placeholder{color:rgba(0,0,0,0)}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-select~label{opacity:.65;transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:-webkit-autofill~label{opacity:.65;transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus{z-index:3}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:3}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#373a3c;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:-1px}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#3fb618}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:rgba(63,182,24,.9)}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#3fb618;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:#3fb618}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{padding-right:4.125rem;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23373a3c' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e"),url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%233fb618' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:#3fb618;box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:#3fb618}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:#3fb618}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(63,182,24,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#3fb618}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group .form-control:valid,.input-group .form-control.is-valid,.was-validated .input-group .form-select:valid,.input-group .form-select.is-valid{z-index:1}.was-validated .input-group .form-control:valid:focus,.input-group .form-control.is-valid:focus,.was-validated .input-group .form-select:valid:focus,.input-group .form-select.is-valid:focus{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#ff0039}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:rgba(255,0,57,.9)}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#ff0039;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:#ff0039}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{padding-right:4.125rem;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23373a3c' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e"),url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23ff0039'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23ff0039' stroke='none'/%3e%3c/svg%3e");background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:#ff0039;box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:#ff0039}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:#ff0039}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(255,0,57,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#ff0039}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group .form-control:invalid,.input-group .form-control.is-invalid,.was-validated .input-group .form-select:invalid,.input-group .form-select.is-invalid{z-index:2}.was-validated .input-group .form-control:invalid:focus,.input-group .form-control.is-invalid:focus,.was-validated .input-group .form-select:invalid:focus,.input-group .form-select.is-invalid:focus{z-index:3}.btn{display:inline-block;font-weight:400;line-height:1.5;color:#373a3c;text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;background-color:rgba(0,0,0,0);border:1px solid rgba(0,0,0,0);padding:.375rem .75rem;font-size:1rem;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:#373a3c}.btn-check:focus+.btn,.btn:focus{outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{pointer-events:none;opacity:.65}.btn-default{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-default:hover{color:#fff;background-color:#2f3133;border-color:#2c2e30}.btn-check:focus+.btn-default,.btn-default:focus{color:#fff;background-color:#2f3133;border-color:#2c2e30;box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-check:checked+.btn-default,.btn-check:active+.btn-default,.btn-default:active,.btn-default.active,.show>.btn-default.dropdown-toggle{color:#fff;background-color:#2c2e30;border-color:#292c2d}.btn-check:checked+.btn-default:focus,.btn-check:active+.btn-default:focus,.btn-default:active:focus,.btn-default.active:focus,.show>.btn-default.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-default:disabled,.btn-default.disabled{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-primary{color:#fff;background-color:#2780e3;border-color:#2780e3}.btn-primary:hover{color:#fff;background-color:#216dc1;border-color:#1f66b6}.btn-check:focus+.btn-primary,.btn-primary:focus{color:#fff;background-color:#216dc1;border-color:#1f66b6;box-shadow:0 0 0 .25rem rgba(71,147,231,.5)}.btn-check:checked+.btn-primary,.btn-check:active+.btn-primary,.btn-primary:active,.btn-primary.active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#1f66b6;border-color:#1d60aa}.btn-check:checked+.btn-primary:focus,.btn-check:active+.btn-primary:focus,.btn-primary:active:focus,.btn-primary.active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(71,147,231,.5)}.btn-primary:disabled,.btn-primary.disabled{color:#fff;background-color:#2780e3;border-color:#2780e3}.btn-secondary{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-secondary:hover{color:#fff;background-color:#2f3133;border-color:#2c2e30}.btn-check:focus+.btn-secondary,.btn-secondary:focus{color:#fff;background-color:#2f3133;border-color:#2c2e30;box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-check:checked+.btn-secondary,.btn-check:active+.btn-secondary,.btn-secondary:active,.btn-secondary.active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#2c2e30;border-color:#292c2d}.btn-check:checked+.btn-secondary:focus,.btn-check:active+.btn-secondary:focus,.btn-secondary:active:focus,.btn-secondary.active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-secondary:disabled,.btn-secondary.disabled{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-success{color:#fff;background-color:#3fb618;border-color:#3fb618}.btn-success:hover{color:#fff;background-color:#369b14;border-color:#329213}.btn-check:focus+.btn-success,.btn-success:focus{color:#fff;background-color:#369b14;border-color:#329213;box-shadow:0 0 0 .25rem rgba(92,193,59,.5)}.btn-check:checked+.btn-success,.btn-check:active+.btn-success,.btn-success:active,.btn-success.active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#329213;border-color:#2f8912}.btn-check:checked+.btn-success:focus,.btn-check:active+.btn-success:focus,.btn-success:active:focus,.btn-success.active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(92,193,59,.5)}.btn-success:disabled,.btn-success.disabled{color:#fff;background-color:#3fb618;border-color:#3fb618}.btn-info{color:#fff;background-color:#9954bb;border-color:#9954bb}.btn-info:hover{color:#fff;background-color:#82479f;border-color:#7a4396}.btn-check:focus+.btn-info,.btn-info:focus{color:#fff;background-color:#82479f;border-color:#7a4396;box-shadow:0 0 0 .25rem rgba(168,110,197,.5)}.btn-check:checked+.btn-info,.btn-check:active+.btn-info,.btn-info:active,.btn-info.active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#7a4396;border-color:#733f8c}.btn-check:checked+.btn-info:focus,.btn-check:active+.btn-info:focus,.btn-info:active:focus,.btn-info.active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(168,110,197,.5)}.btn-info:disabled,.btn-info.disabled{color:#fff;background-color:#9954bb;border-color:#9954bb}.btn-warning{color:#fff;background-color:#ff7518;border-color:#ff7518}.btn-warning:hover{color:#fff;background-color:#d96314;border-color:#cc5e13}.btn-check:focus+.btn-warning,.btn-warning:focus{color:#fff;background-color:#d96314;border-color:#cc5e13;box-shadow:0 0 0 .25rem rgba(255,138,59,.5)}.btn-check:checked+.btn-warning,.btn-check:active+.btn-warning,.btn-warning:active,.btn-warning.active,.show>.btn-warning.dropdown-toggle{color:#fff;background-color:#cc5e13;border-color:#bf5812}.btn-check:checked+.btn-warning:focus,.btn-check:active+.btn-warning:focus,.btn-warning:active:focus,.btn-warning.active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(255,138,59,.5)}.btn-warning:disabled,.btn-warning.disabled{color:#fff;background-color:#ff7518;border-color:#ff7518}.btn-danger{color:#fff;background-color:#ff0039;border-color:#ff0039}.btn-danger:hover{color:#fff;background-color:#d90030;border-color:#cc002e}.btn-check:focus+.btn-danger,.btn-danger:focus{color:#fff;background-color:#d90030;border-color:#cc002e;box-shadow:0 0 0 .25rem rgba(255,38,87,.5)}.btn-check:checked+.btn-danger,.btn-check:active+.btn-danger,.btn-danger:active,.btn-danger.active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#cc002e;border-color:#bf002b}.btn-check:checked+.btn-danger:focus,.btn-check:active+.btn-danger:focus,.btn-danger:active:focus,.btn-danger.active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(255,38,87,.5)}.btn-danger:disabled,.btn-danger.disabled{color:#fff;background-color:#ff0039;border-color:#ff0039}.btn-light{color:#000;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:hover{color:#000;background-color:#f9fafb;border-color:#f9fafb}.btn-check:focus+.btn-light,.btn-light:focus{color:#000;background-color:#f9fafb;border-color:#f9fafb;box-shadow:0 0 0 .25rem rgba(211,212,213,.5)}.btn-check:checked+.btn-light,.btn-check:active+.btn-light,.btn-light:active,.btn-light.active,.show>.btn-light.dropdown-toggle{color:#000;background-color:#f9fafb;border-color:#f9fafb}.btn-check:checked+.btn-light:focus,.btn-check:active+.btn-light:focus,.btn-light:active:focus,.btn-light.active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(211,212,213,.5)}.btn-light:disabled,.btn-light.disabled{color:#000;background-color:#f8f9fa;border-color:#f8f9fa}.btn-dark{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-dark:hover{color:#fff;background-color:#2f3133;border-color:#2c2e30}.btn-check:focus+.btn-dark,.btn-dark:focus{color:#fff;background-color:#2f3133;border-color:#2c2e30;box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-check:checked+.btn-dark,.btn-check:active+.btn-dark,.btn-dark:active,.btn-dark.active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#2c2e30;border-color:#292c2d}.btn-check:checked+.btn-dark:focus,.btn-check:active+.btn-dark:focus,.btn-dark:active:focus,.btn-dark.active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(85,88,89,.5)}.btn-dark:disabled,.btn-dark.disabled{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-outline-default{color:#373a3c;border-color:#373a3c;background-color:rgba(0,0,0,0)}.btn-outline-default:hover{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:focus+.btn-outline-default,.btn-outline-default:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-check:checked+.btn-outline-default,.btn-check:active+.btn-outline-default,.btn-outline-default:active,.btn-outline-default.active,.btn-outline-default.dropdown-toggle.show{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:checked+.btn-outline-default:focus,.btn-check:active+.btn-outline-default:focus,.btn-outline-default:active:focus,.btn-outline-default.active:focus,.btn-outline-default.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-outline-default:disabled,.btn-outline-default.disabled{color:#373a3c;background-color:rgba(0,0,0,0)}.btn-outline-primary{color:#2780e3;border-color:#2780e3;background-color:rgba(0,0,0,0)}.btn-outline-primary:hover{color:#fff;background-color:#2780e3;border-color:#2780e3}.btn-check:focus+.btn-outline-primary,.btn-outline-primary:focus{box-shadow:0 0 0 .25rem rgba(39,128,227,.5)}.btn-check:checked+.btn-outline-primary,.btn-check:active+.btn-outline-primary,.btn-outline-primary:active,.btn-outline-primary.active,.btn-outline-primary.dropdown-toggle.show{color:#fff;background-color:#2780e3;border-color:#2780e3}.btn-check:checked+.btn-outline-primary:focus,.btn-check:active+.btn-outline-primary:focus,.btn-outline-primary:active:focus,.btn-outline-primary.active:focus,.btn-outline-primary.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(39,128,227,.5)}.btn-outline-primary:disabled,.btn-outline-primary.disabled{color:#2780e3;background-color:rgba(0,0,0,0)}.btn-outline-secondary{color:#373a3c;border-color:#373a3c;background-color:rgba(0,0,0,0)}.btn-outline-secondary:hover{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:focus+.btn-outline-secondary,.btn-outline-secondary:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-check:checked+.btn-outline-secondary,.btn-check:active+.btn-outline-secondary,.btn-outline-secondary:active,.btn-outline-secondary.active,.btn-outline-secondary.dropdown-toggle.show{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:checked+.btn-outline-secondary:focus,.btn-check:active+.btn-outline-secondary:focus,.btn-outline-secondary:active:focus,.btn-outline-secondary.active:focus,.btn-outline-secondary.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-outline-secondary:disabled,.btn-outline-secondary.disabled{color:#373a3c;background-color:rgba(0,0,0,0)}.btn-outline-success{color:#3fb618;border-color:#3fb618;background-color:rgba(0,0,0,0)}.btn-outline-success:hover{color:#fff;background-color:#3fb618;border-color:#3fb618}.btn-check:focus+.btn-outline-success,.btn-outline-success:focus{box-shadow:0 0 0 .25rem rgba(63,182,24,.5)}.btn-check:checked+.btn-outline-success,.btn-check:active+.btn-outline-success,.btn-outline-success:active,.btn-outline-success.active,.btn-outline-success.dropdown-toggle.show{color:#fff;background-color:#3fb618;border-color:#3fb618}.btn-check:checked+.btn-outline-success:focus,.btn-check:active+.btn-outline-success:focus,.btn-outline-success:active:focus,.btn-outline-success.active:focus,.btn-outline-success.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(63,182,24,.5)}.btn-outline-success:disabled,.btn-outline-success.disabled{color:#3fb618;background-color:rgba(0,0,0,0)}.btn-outline-info{color:#9954bb;border-color:#9954bb;background-color:rgba(0,0,0,0)}.btn-outline-info:hover{color:#fff;background-color:#9954bb;border-color:#9954bb}.btn-check:focus+.btn-outline-info,.btn-outline-info:focus{box-shadow:0 0 0 .25rem rgba(153,84,187,.5)}.btn-check:checked+.btn-outline-info,.btn-check:active+.btn-outline-info,.btn-outline-info:active,.btn-outline-info.active,.btn-outline-info.dropdown-toggle.show{color:#fff;background-color:#9954bb;border-color:#9954bb}.btn-check:checked+.btn-outline-info:focus,.btn-check:active+.btn-outline-info:focus,.btn-outline-info:active:focus,.btn-outline-info.active:focus,.btn-outline-info.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(153,84,187,.5)}.btn-outline-info:disabled,.btn-outline-info.disabled{color:#9954bb;background-color:rgba(0,0,0,0)}.btn-outline-warning{color:#ff7518;border-color:#ff7518;background-color:rgba(0,0,0,0)}.btn-outline-warning:hover{color:#fff;background-color:#ff7518;border-color:#ff7518}.btn-check:focus+.btn-outline-warning,.btn-outline-warning:focus{box-shadow:0 0 0 .25rem rgba(255,117,24,.5)}.btn-check:checked+.btn-outline-warning,.btn-check:active+.btn-outline-warning,.btn-outline-warning:active,.btn-outline-warning.active,.btn-outline-warning.dropdown-toggle.show{color:#fff;background-color:#ff7518;border-color:#ff7518}.btn-check:checked+.btn-outline-warning:focus,.btn-check:active+.btn-outline-warning:focus,.btn-outline-warning:active:focus,.btn-outline-warning.active:focus,.btn-outline-warning.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(255,117,24,.5)}.btn-outline-warning:disabled,.btn-outline-warning.disabled{color:#ff7518;background-color:rgba(0,0,0,0)}.btn-outline-danger{color:#ff0039;border-color:#ff0039;background-color:rgba(0,0,0,0)}.btn-outline-danger:hover{color:#fff;background-color:#ff0039;border-color:#ff0039}.btn-check:focus+.btn-outline-danger,.btn-outline-danger:focus{box-shadow:0 0 0 .25rem rgba(255,0,57,.5)}.btn-check:checked+.btn-outline-danger,.btn-check:active+.btn-outline-danger,.btn-outline-danger:active,.btn-outline-danger.active,.btn-outline-danger.dropdown-toggle.show{color:#fff;background-color:#ff0039;border-color:#ff0039}.btn-check:checked+.btn-outline-danger:focus,.btn-check:active+.btn-outline-danger:focus,.btn-outline-danger:active:focus,.btn-outline-danger.active:focus,.btn-outline-danger.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(255,0,57,.5)}.btn-outline-danger:disabled,.btn-outline-danger.disabled{color:#ff0039;background-color:rgba(0,0,0,0)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa;background-color:rgba(0,0,0,0)}.btn-outline-light:hover{color:#000;background-color:#f8f9fa;border-color:#f8f9fa}.btn-check:focus+.btn-outline-light,.btn-outline-light:focus{box-shadow:0 0 0 .25rem rgba(248,249,250,.5)}.btn-check:checked+.btn-outline-light,.btn-check:active+.btn-outline-light,.btn-outline-light:active,.btn-outline-light.active,.btn-outline-light.dropdown-toggle.show{color:#000;background-color:#f8f9fa;border-color:#f8f9fa}.btn-check:checked+.btn-outline-light:focus,.btn-check:active+.btn-outline-light:focus,.btn-outline-light:active:focus,.btn-outline-light.active:focus,.btn-outline-light.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(248,249,250,.5)}.btn-outline-light:disabled,.btn-outline-light.disabled{color:#f8f9fa;background-color:rgba(0,0,0,0)}.btn-outline-dark{color:#373a3c;border-color:#373a3c;background-color:rgba(0,0,0,0)}.btn-outline-dark:hover{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:focus+.btn-outline-dark,.btn-outline-dark:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-check:checked+.btn-outline-dark,.btn-check:active+.btn-outline-dark,.btn-outline-dark:active,.btn-outline-dark.active,.btn-outline-dark.dropdown-toggle.show{color:#fff;background-color:#373a3c;border-color:#373a3c}.btn-check:checked+.btn-outline-dark:focus,.btn-check:active+.btn-outline-dark:focus,.btn-outline-dark:active:focus,.btn-outline-dark.active:focus,.btn-outline-dark.dropdown-toggle.show:focus{box-shadow:0 0 0 .25rem rgba(55,58,60,.5)}.btn-outline-dark:disabled,.btn-outline-dark.disabled{color:#373a3c;background-color:rgba(0,0,0,0)}.btn-link{font-weight:400;color:#2780e3;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:hover{color:#1f66b6}.btn-link:disabled,.btn-link.disabled{color:#6c757d}.btn-lg,.btn-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;border-radius:0}.btn-sm,.btn-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem;border-radius:0}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height .2s ease}@media(prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width .35s ease}@media(prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid rgba(0,0,0,0);border-bottom:0;border-left:.3em solid rgba(0,0,0,0)}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{position:absolute;z-index:1000;display:none;min-width:10rem;padding:.5rem 0;margin:0;font-size:1rem;color:#373a3c;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:.125rem}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media(min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid rgba(0,0,0,0);border-bottom:.3em solid;border-left:.3em solid rgba(0,0,0,0)}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:0;border-bottom:.3em solid rgba(0,0,0,0);border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:.3em solid;border-bottom:.3em solid rgba(0,0,0,0)}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid rgba(0,0,0,.15)}.dropdown-item{display:block;width:100%;padding:.25rem 1rem;clear:both;font-weight:400;color:#212529;text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:rgba(0,0,0,0);border:0}.dropdown-item:hover,.dropdown-item:focus{color:#1e2125;background-color:#e9ecef}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#2780e3}.dropdown-item.disabled,.dropdown-item:disabled{color:#adb5bd;pointer-events:none;background-color:rgba(0,0,0,0)}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1rem;margin-bottom:0;font-size:0.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1rem;color:#212529}.dropdown-menu-dark{color:#dee2e6;background-color:#373a3c;border-color:rgba(0,0,0,.15)}.dropdown-menu-dark .dropdown-item{color:#dee2e6}.dropdown-menu-dark .dropdown-item:hover,.dropdown-menu-dark .dropdown-item:focus{color:#fff;background-color:rgba(255,255,255,.15)}.dropdown-menu-dark .dropdown-item.active,.dropdown-menu-dark .dropdown-item:active{color:#fff;background-color:#2780e3}.dropdown-menu-dark .dropdown-item.disabled,.dropdown-menu-dark .dropdown-item:disabled{color:#adb5bd}.dropdown-menu-dark .dropdown-divider{border-color:rgba(0,0,0,.15)}.dropdown-menu-dark .dropdown-item-text{color:#dee2e6}.dropdown-menu-dark .dropdown-header{color:#adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn:not(:first-child),.btn-group>.btn-group:not(:first-child){margin-left:-1px}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:-1px}.nav{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem;color:#2780e3;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out}@media(prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:#1f66b6}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-link{margin-bottom:-1px;background:none;border:1px solid rgba(0,0,0,0)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{border-color:#e9ecef #e9ecef #dee2e6;isolation:isolate}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:rgba(0,0,0,0);border-color:rgba(0,0,0,0)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px}.nav-pills .nav-link{background:none;border:0}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#2780e3}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding-top:.5rem;padding-bottom:.5rem}.navbar>.container-xxl,.navbar>.container-xl,.navbar>.container-lg,.navbar>.container-md,.navbar>.container-sm,.navbar>.container,.navbar>.container-fluid{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:.3125rem;padding-bottom:.3125rem;margin-right:1rem;font-size:1.25rem;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-nav{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:.25 0;font-size:1.25rem;line-height:1;background-color:rgba(0,0,0,0);border:1px solid rgba(0,0,0,0);transition:box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 .25rem}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media(min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas-header{display:none}.navbar-expand-sm .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand-sm .offcanvas-top,.navbar-expand-sm .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas-header{display:none}.navbar-expand-md .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand-md .offcanvas-top,.navbar-expand-md .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas-header{display:none}.navbar-expand-lg .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand-lg .offcanvas-top,.navbar-expand-lg .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas-header{display:none}.navbar-expand-xl .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand-xl .offcanvas-top,.navbar-expand-xl .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand-xxl .offcanvas-top,.navbar-expand-xxl .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas-header{display:none}.navbar-expand .offcanvas{position:inherit;bottom:0;z-index:1000;flex-grow:1;-webkit-flex-grow:1;visibility:visible !important;background-color:rgba(0,0,0,0);border-right:0;border-left:0;transition:none;transform:none}.navbar-expand .offcanvas-top,.navbar-expand .offcanvas-bottom{height:auto;border-top:0;border-bottom:0}.navbar-expand .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-light{background-color:#f8f9fa}.navbar-light .navbar-brand{color:#545555}.navbar-light .navbar-brand:hover,.navbar-light .navbar-brand:focus{color:#1a5698}.navbar-light .navbar-nav .nav-link{color:#545555}.navbar-light .navbar-nav .nav-link:hover,.navbar-light .navbar-nav .nav-link:focus{color:rgba(26,86,152,.8)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(84,85,85,.75)}.navbar-light .navbar-nav .show>.nav-link,.navbar-light .navbar-nav .nav-link.active{color:#1a5698}.navbar-light .navbar-toggler{color:#545555;border-color:rgba(84,85,85,0)}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23545555' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-light .navbar-text{color:#545555}.navbar-light .navbar-text a,.navbar-light .navbar-text a:hover,.navbar-light .navbar-text a:focus{color:#1a5698}.navbar-dark{background-color:#f8f9fa}.navbar-dark .navbar-brand{color:#545555}.navbar-dark .navbar-brand:hover,.navbar-dark .navbar-brand:focus{color:#1a5698}.navbar-dark .navbar-nav .nav-link{color:#545555}.navbar-dark .navbar-nav .nav-link:hover,.navbar-dark .navbar-nav .nav-link:focus{color:rgba(26,86,152,.8)}.navbar-dark .navbar-nav .nav-link.disabled{color:rgba(84,85,85,.75)}.navbar-dark .navbar-nav .show>.nav-link,.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active{color:#1a5698}.navbar-dark .navbar-toggler{color:#545555;border-color:rgba(84,85,85,0)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23545555' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-dark .navbar-text{color:#545555}.navbar-dark .navbar-text a,.navbar-dark .navbar-text a:hover,.navbar-dark .navbar-text a:focus{color:#1a5698}.card{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0}.card>.list-group:last-child{border-bottom-width:0}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:1rem 1rem}.card-title{margin-bottom:.5rem}.card-subtitle{margin-top:-0.25rem;margin-bottom:0}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:1rem}.card-header{padding:.5rem 1rem;margin-bottom:0;background-color:#adb5bd;border-bottom:1px solid rgba(0,0,0,.125)}.card-footer{padding:.5rem 1rem;background-color:#adb5bd;border-top:1px solid rgba(0,0,0,.125)}.card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-group>.card{margin-bottom:.75rem}@media(min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:1rem 1.25rem;font-size:1rem;color:#373a3c;text-align:left;background-color:#fff;border:0;overflow-anchor:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out,border-radius .15s ease}@media(prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:#2373cc;background-color:#e9f2fc;box-shadow:inset 0 -1px 0 rgba(0,0,0,.125)}.accordion-button:not(.collapsed)::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%232373cc'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");transform:rotate(-180deg)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:1.25rem;height:1.25rem;margin-left:auto;content:"";background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23373a3c'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-size:1.25rem;transition:transform .2s ease-in-out}@media(prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:#93c0f1;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.accordion-header{margin-bottom:0}.accordion-item{background-color:#fff;border:1px solid rgba(0,0,0,.125)}.accordion-item:not(:first-of-type){border-top:0}.accordion-body{padding:1rem 1.25rem}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}.breadcrumb{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:0 0;margin-bottom:1rem;list-style:none}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:.5rem;color:#6c757d;content:var(--bs-breadcrumb-divider, ">") /* rtl: var(--bs-breadcrumb-divider, ">") */}.breadcrumb-item.active{color:#6c757d}.pagination{display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;color:#2780e3;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:#fff;border:1px solid #dee2e6;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:#1f66b6;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;color:#1f66b6;background-color:#e9ecef;outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25)}.page-item:not(:first-child) .page-link{margin-left:-1px}.page-item.active .page-link{z-index:3;color:#fff;background-color:#2780e3;border-color:#2780e3}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;background-color:#fff;border-color:#dee2e6}.page-link{padding:.375rem .75rem}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:0.875rem}.badge{display:inline-block;padding:.35em .65em;font-size:0.75em;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:baseline}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{position:relative;padding:1rem 1rem;margin-bottom:1rem;border:0 solid rgba(0,0,0,0)}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{color:#212324;background-color:#d7d8d8;border-color:#c3c4c5}.alert-default .alert-link{color:#1a1c1d}.alert-primary{color:#174d88;background-color:#d4e6f9;border-color:#bed9f7}.alert-primary .alert-link{color:#123e6d}.alert-secondary{color:#212324;background-color:#d7d8d8;border-color:#c3c4c5}.alert-secondary .alert-link{color:#1a1c1d}.alert-success{color:#266d0e;background-color:#d9f0d1;border-color:#c5e9ba}.alert-success .alert-link{color:#1e570b}.alert-info{color:#5c3270;background-color:#ebddf1;border-color:#e0cceb}.alert-info .alert-link{color:#4a285a}.alert-warning{color:#99460e;background-color:#ffe3d1;border-color:#ffd6ba}.alert-warning .alert-link{color:#7a380b}.alert-danger{color:#902;background-color:#ffccd7;border-color:#ffb3c4}.alert-danger .alert-link{color:#7a001b}.alert-light{color:#959596;background-color:#fefefe;border-color:#fdfdfe}.alert-light .alert-link{color:#777778}.alert-dark{color:#212324;background-color:#d7d8d8;border-color:#c3c4c5}.alert-dark .alert-link{color:#1a1c1d}@keyframes progress-bar-stripes{0%{background-position-x:.5rem}}.progress{display:flex;display:-webkit-flex;height:.5rem;overflow:hidden;font-size:0.75rem;background-color:#e9ecef}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:#fff;text-align:center;white-space:nowrap;background-color:#2780e3;transition:width .6s ease}@media(prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);background-size:.5rem .5rem}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>li::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#373a3c;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.5rem 1rem;color:#212529;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#2780e3;border-color:#2780e3}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media(min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{color:#212324;background-color:#d7d8d8}.list-group-item-default.list-group-item-action:hover,.list-group-item-default.list-group-item-action:focus{color:#212324;background-color:#c2c2c2}.list-group-item-default.list-group-item-action.active{color:#fff;background-color:#212324;border-color:#212324}.list-group-item-primary{color:#174d88;background-color:#d4e6f9}.list-group-item-primary.list-group-item-action:hover,.list-group-item-primary.list-group-item-action:focus{color:#174d88;background-color:#bfcfe0}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#174d88;border-color:#174d88}.list-group-item-secondary{color:#212324;background-color:#d7d8d8}.list-group-item-secondary.list-group-item-action:hover,.list-group-item-secondary.list-group-item-action:focus{color:#212324;background-color:#c2c2c2}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#212324;border-color:#212324}.list-group-item-success{color:#266d0e;background-color:#d9f0d1}.list-group-item-success.list-group-item-action:hover,.list-group-item-success.list-group-item-action:focus{color:#266d0e;background-color:#c3d8bc}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#266d0e;border-color:#266d0e}.list-group-item-info{color:#5c3270;background-color:#ebddf1}.list-group-item-info.list-group-item-action:hover,.list-group-item-info.list-group-item-action:focus{color:#5c3270;background-color:#d4c7d9}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#5c3270;border-color:#5c3270}.list-group-item-warning{color:#99460e;background-color:#ffe3d1}.list-group-item-warning.list-group-item-action:hover,.list-group-item-warning.list-group-item-action:focus{color:#99460e;background-color:#e6ccbc}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#99460e;border-color:#99460e}.list-group-item-danger{color:#902;background-color:#ffccd7}.list-group-item-danger.list-group-item-action:hover,.list-group-item-danger.list-group-item-action:focus{color:#902;background-color:#e6b8c2}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#902;border-color:#902}.list-group-item-light{color:#959596;background-color:#fefefe}.list-group-item-light.list-group-item-action:hover,.list-group-item-light.list-group-item-action:focus{color:#959596;background-color:#e5e5e5}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#959596;border-color:#959596}.list-group-item-dark{color:#212324;background-color:#d7d8d8}.list-group-item-dark.list-group-item-action:hover,.list-group-item-dark.list-group-item-action:focus{color:#212324;background-color:#c2c2c2}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#212324;border-color:#212324}.btn-close{box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:#000;background:rgba(0,0,0,0) url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 011.414 0L8 6.586 14.293.293a1 1 0 111.414 1.414L9.414 8l6.293 6.293a1 1 0 01-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 01-1.414-1.414L6.586 8 .293 1.707a1 1 0 010-1.414z'/%3e%3c/svg%3e") center/1em auto no-repeat;border:0;opacity:.5}.btn-close:hover{color:#000;text-decoration:none;opacity:.75}.btn-close:focus{outline:0;box-shadow:0 0 0 .25rem rgba(39,128,227,.25);opacity:1}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:.25}.btn-close-white{filter:invert(1) grayscale(100%) brightness(200%)}.toast{width:350px;max-width:100%;font-size:0.875rem;pointer-events:auto;background-color:rgba(255,255,255,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .5rem 1rem rgba(0,0,0,.15)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:.75rem}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.5rem .75rem;color:#6c757d;background-color:rgba(255,255,255,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,.05)}.toast-header .btn-close{margin-right:-0.375rem;margin-left:.75rem}.toast-body{padding:.75rem;word-wrap:break-word}.modal{position:fixed;top:0;left:0;z-index:1055;display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0, -50px)}@media(prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - 1rem)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1050;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:1rem 1rem;border-bottom:1px solid #dee2e6}.modal-header .btn-close{padding:.5rem .5rem;margin:-0.5rem -0.5rem -0.5rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:1rem}.modal-footer{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6}.modal-footer>*{margin:.25rem}@media(min-width: 576px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{height:calc(100% - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-sm{max-width:300px}}@media(min-width: 992px){.modal-lg,.modal-xl{max-width:800px}}@media(min-width: 1200px){.modal-xl{max-width:1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0}.modal-fullscreen .modal-body{overflow-y:auto}@media(max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media(max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media(max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media(max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media(max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{position:absolute;z-index:1080;display:block;margin:0;font-family:var(--bs-font-sans-serif);font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:0.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .tooltip-arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-tooltip-top,.bs-tooltip-auto[data-popper-placement^=top]{padding:.4rem 0}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow{bottom:0}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before{top:-1px;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-end,.bs-tooltip-auto[data-popper-placement^=right]{padding:0 .4rem}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before{right:-1px;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-bottom,.bs-tooltip-auto[data-popper-placement^=bottom]{padding:.4rem 0}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow{top:0}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before{bottom:-1px;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-start,.bs-tooltip-auto[data-popper-placement^=left]{padding:0 .4rem}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before{left:-1px;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000}.popover{position:absolute;top:0;left:0 /* rtl:ignore */;z-index:1070;display:block;max-width:276px;font-family:var(--bs-font-sans-serif);font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:0.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2)}.popover .popover-arrow{position:absolute;display:block;width:1rem;height:.5rem}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow{bottom:calc(-0.5rem - 1px)}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow{left:calc(-0.5rem - 1px);width:.5rem;height:1rem}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow{top:calc(-0.5rem - 1px)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before{top:0;border-width:0 .5rem .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{top:1px;border-width:0 .5rem .5rem .5rem;border-bottom-color:#fff}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-0.5rem;content:"";border-bottom:1px solid #f0f0f0}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow{right:calc(-0.5rem - 1px);width:.5rem;height:1rem}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem 1rem;margin-bottom:0;font-size:1rem;background-color:#f0f0f0;border-bottom:1px solid rgba(0,0,0,.2)}.popover-header:empty{display:none}.popover-body{padding:1rem 1rem;color:#373a3c}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%;list-style:none}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid rgba(0,0,0,0);border-bottom:10px solid rgba(0,0,0,0);opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:-0.125em;border:.25em solid currentColor;border-right-color:rgba(0,0,0,0);border-radius:50%;animation:.75s linear infinite spinner-border}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:-0.125em;background-color:currentColor;border-radius:50%;opacity:0;animation:.75s linear infinite spinner-grow}.spinner-grow-sm{width:1rem;height:1rem}@media(prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{animation-duration:1.5s;-webkit-animation-duration:1.5s;-moz-animation-duration:1.5s;-ms-animation-duration:1.5s;-o-animation-duration:1.5s}}.offcanvas{position:fixed;bottom:0;z-index:1045;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;visibility:hidden;background-color:#fff;background-clip:padding-box;outline:0;transition:transform .3s ease-in-out}@media(prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:1rem 1rem}.offcanvas-header .btn-close{padding:.5rem .5rem;margin-top:-0.5rem;margin-right:-0.5rem;margin-bottom:-0.5rem}.offcanvas-title{margin-bottom:0;line-height:1.5}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:1rem 1rem;overflow-y:auto}.offcanvas-start{top:0;left:0;width:400px;border-right:1px solid rgba(0,0,0,.2);transform:translateX(-100%)}.offcanvas-end{top:0;right:0;width:400px;border-left:1px solid rgba(0,0,0,.2);transform:translateX(100%)}.offcanvas-top{top:0;right:0;left:0;height:30vh;max-height:100%;border-bottom:1px solid rgba(0,0,0,.2);transform:translateY(-100%)}.offcanvas-bottom{right:0;left:0;height:30vh;max-height:100%;border-top:1px solid rgba(0,0,0,.2);transform:translateY(100%)}.offcanvas.show{transform:none}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentColor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.link-default{color:#373a3c}.link-default:hover,.link-default:focus{color:#2c2e30}.link-primary{color:#2780e3}.link-primary:hover,.link-primary:focus{color:#1f66b6}.link-secondary{color:#373a3c}.link-secondary:hover,.link-secondary:focus{color:#2c2e30}.link-success{color:#3fb618}.link-success:hover,.link-success:focus{color:#329213}.link-info{color:#9954bb}.link-info:hover,.link-info:focus{color:#7a4396}.link-warning{color:#ff7518}.link-warning:hover,.link-warning:focus{color:#cc5e13}.link-danger{color:#ff0039}.link-danger:hover,.link-danger:focus{color:#cc002e}.link-light{color:#f8f9fa}.link-light:hover,.link-light:focus{color:#f9fafb}.link-dark{color:#373a3c}.link-dark:hover,.link-dark:focus{color:#2c2e30}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: 75%}.ratio-16x9{--bs-aspect-ratio: 56.25%}.ratio-21x9{--bs-aspect-ratio: 42.8571428571%}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}@media(min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}}@media(min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}}@media(min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}}@media(min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}}@media(min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){position:absolute !important;width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:1px;min-height:1em;background-color:currentColor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15) !important}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175) !important}.shadow-none{box-shadow:none !important}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:1px solid #dee2e6 !important}.border-0{border:0 !important}.border-top{border-top:1px solid #dee2e6 !important}.border-top-0{border-top:0 !important}.border-end{border-right:1px solid #dee2e6 !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:1px solid #dee2e6 !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:1px solid #dee2e6 !important}.border-start-0{border-left:0 !important}.border-default{border-color:#373a3c !important}.border-primary{border-color:#2780e3 !important}.border-secondary{border-color:#373a3c !important}.border-success{border-color:#3fb618 !important}.border-info{border-color:#9954bb !important}.border-warning{border-color:#ff7518 !important}.border-danger{border-color:#ff0039 !important}.border-light{border-color:#f8f9fa !important}.border-dark{border-color:#373a3c !important}.border-white{border-color:#fff !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.325rem + 0.9vw) !important}.fs-2{font-size:calc(1.29rem + 0.48vw) !important}.fs-3{font-size:calc(1.27rem + 0.24vw) !important}.fs-4{font-size:1.25rem !important}.fs-5{font-size:1.1rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-light{font-weight:300 !important}.fw-lighter{font-weight:lighter !important}.fw-normal{font-weight:400 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:#6c757d !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,.5) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: 0.25}.text-opacity-50{--bs-text-opacity: 0.5}.text-opacity-75{--bs-text-opacity: 0.75}.text-opacity-100{--bs-text-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-opacity-10{--bs-bg-opacity: 0.1}.bg-opacity-25{--bs-bg-opacity: 0.25}.bg-opacity-50{--bs-bg-opacity: 0.5}.bg-opacity-75{--bs-bg-opacity: 0.75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:.25rem !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:.2em !important}.rounded-2{border-radius:.25rem !important}.rounded-3{border-radius:.3rem !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:50rem !important}.rounded-top{border-top-left-radius:.25rem !important;border-top-right-radius:.25rem !important}.rounded-end{border-top-right-radius:.25rem !important;border-bottom-right-radius:.25rem !important}.rounded-bottom{border-bottom-right-radius:.25rem !important;border-bottom-left-radius:.25rem !important}.rounded-start{border-bottom-left-radius:.25rem !important;border-top-left-radius:.25rem !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}@media(min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media(min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media(min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media(min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media(min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#fff}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#fff}.bg-warning{color:#fff}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media(min-width: 1200px){.fs-1{font-size:2rem !important}.fs-2{font-size:1.65rem !important}.fs-3{font-size:1.45rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}.sidebar-item .chapter-number{color:#373a3c}.quarto-container{min-height:calc(100vh - 132px)}footer.footer .nav-footer,#quarto-header>nav{padding-left:1em;padding-right:1em}nav[role=doc-toc]{padding-left:.5em}#quarto-content>*{padding-top:14px}@media(max-width: 991.98px){#quarto-content>*{padding-top:0}#quarto-content .subtitle{padding-top:14px}#quarto-content section:first-of-type h2:first-of-type,#quarto-content section:first-of-type .h2:first-of-type{margin-top:1rem}}.headroom-target,header.headroom{will-change:transform;transition:position 200ms linear;transition:all 200ms linear}header.headroom--pinned{transform:translateY(0%)}header.headroom--unpinned{transform:translateY(-100%)}.navbar-container{width:100%}.navbar-brand{overflow:hidden;text-overflow:ellipsis}.navbar-brand-container{max-width:calc(100% - 115px);min-width:0;display:flex;align-items:center}@media(min-width: 992px){.navbar-brand-container{margin-right:1em}}.navbar-brand.navbar-brand-logo{margin-right:4px;display:inline-flex}.navbar-toggler{flex-basis:content;flex-shrink:0}.navbar .navbar-toggler{order:-1;margin-right:.5em}.navbar-logo{max-height:24px;width:auto;padding-right:4px}nav .nav-item:not(.compact){padding-top:1px}nav .nav-link i,nav .dropdown-item i{padding-right:1px}.navbar-expand-lg .navbar-nav .nav-link{padding-left:.6rem;padding-right:.6rem}nav .nav-item.compact .nav-link{padding-left:.5rem;padding-right:.5rem;font-size:1.1rem}.navbar .quarto-navbar-tools div.dropdown{display:inline-block}.navbar .quarto-navbar-tools .quarto-navigation-tool{color:#545555}.navbar .quarto-navbar-tools .quarto-navigation-tool:hover{color:#1a5698}@media(max-width: 991.98px){.navbar .quarto-navbar-tools{margin-top:.25em;padding-top:.75em;display:block;color:solid #d4d4d4 1px;text-align:center;vertical-align:middle;margin-right:auto}}.navbar-nav .dropdown-menu{min-width:220px;font-size:.9rem}.navbar .navbar-nav .nav-link.dropdown-toggle::after{opacity:.75;vertical-align:.175em}.navbar ul.dropdown-menu{padding-top:0;padding-bottom:0}.navbar .dropdown-header{text-transform:uppercase;font-size:.8rem;padding:0 .5rem}.navbar .dropdown-item{padding:.4rem .5rem}.navbar .dropdown-item>i.bi{margin-left:.1rem;margin-right:.25em}.sidebar #quarto-search{margin-top:-1px}.sidebar #quarto-search svg.aa-SubmitIcon{width:16px;height:16px}.sidebar-navigation a{color:inherit}.sidebar-title{margin-top:.25rem;padding-bottom:.5rem;font-size:1.3rem;line-height:1.6rem;visibility:visible}.sidebar-title>a{font-size:inherit;text-decoration:none}.sidebar-title .sidebar-tools-main{margin-top:-6px}@media(max-width: 991.98px){#quarto-sidebar div.sidebar-header{padding-top:.2em}}.sidebar-header-stacked .sidebar-title{margin-top:.6rem}.sidebar-logo{max-width:90%;padding-bottom:.5rem}.sidebar-logo-link{text-decoration:none}.sidebar-navigation li a{text-decoration:none}.sidebar-navigation .quarto-navigation-tool{opacity:.7;font-size:.875rem}#quarto-sidebar>nav>.sidebar-tools-main{margin-left:14px}.sidebar-tools-main{display:inline-flex;margin-left:0px;order:2}.sidebar-tools-main:not(.tools-wide){vertical-align:middle}.sidebar-navigation .quarto-navigation-tool.dropdown-toggle::after{display:none}.sidebar.sidebar-navigation>*{padding-top:1em}.sidebar-item{margin-bottom:.2em}.sidebar-section{margin-top:.2em;padding-left:.5em;padding-bottom:.2em}.sidebar-item .sidebar-item-container{display:flex;justify-content:space-between}.sidebar-item-toggle:hover{cursor:pointer}.sidebar-item .sidebar-item-toggle .bi{font-size:.7rem;text-align:center}.sidebar-item .sidebar-item-toggle .bi-chevron-right::before{transition:transform 200ms ease}.sidebar-item .sidebar-item-toggle[aria-expanded=false] .bi-chevron-right::before{transform:none}.sidebar-item .sidebar-item-toggle[aria-expanded=true] .bi-chevron-right::before{transform:rotate(90deg)}.sidebar-navigation .sidebar-divider{margin-left:0;margin-right:0;margin-top:.5rem;margin-bottom:.5rem}@media(max-width: 991.98px){.quarto-secondary-nav{display:block}.quarto-secondary-nav button.quarto-search-button{padding-right:0em;padding-left:2em}.quarto-secondary-nav button.quarto-btn-toggle{margin-left:-0.75rem;margin-right:.15rem}.quarto-secondary-nav nav.quarto-page-breadcrumbs{display:flex;align-items:center;padding-right:1em;margin-left:-0.25em}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{text-decoration:none}.quarto-secondary-nav nav.quarto-page-breadcrumbs ol.breadcrumb{margin-bottom:0}}@media(min-width: 992px){.quarto-secondary-nav{display:none}}.quarto-secondary-nav .quarto-btn-toggle{color:#595959}.quarto-secondary-nav[aria-expanded=false] .quarto-btn-toggle .bi-chevron-right::before{transform:none}.quarto-secondary-nav[aria-expanded=true] .quarto-btn-toggle .bi-chevron-right::before{transform:rotate(90deg)}.quarto-secondary-nav .quarto-btn-toggle .bi-chevron-right::before{transition:transform 200ms ease}.quarto-secondary-nav{cursor:pointer}.quarto-secondary-nav-title{margin-top:.3em;color:#595959;padding-top:4px}.quarto-secondary-nav nav.quarto-page-breadcrumbs{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a{color:#595959}.quarto-secondary-nav nav.quarto-page-breadcrumbs a:hover{color:rgba(27,88,157,.8)}.quarto-secondary-nav nav.quarto-page-breadcrumbs .breadcrumb-item::before{color:#8c8c8c}div.sidebar-item-container{color:#595959}div.sidebar-item-container:hover,div.sidebar-item-container:focus{color:rgba(27,88,157,.8)}div.sidebar-item-container.disabled{color:rgba(89,89,89,.75)}div.sidebar-item-container .active,div.sidebar-item-container .show>.nav-link,div.sidebar-item-container .sidebar-link>code{color:#1b589d}div.sidebar.sidebar-navigation.rollup.quarto-sidebar-toggle-contents,nav.sidebar.sidebar-navigation:not(.rollup){background-color:#fff}@media(max-width: 991.98px){.sidebar-navigation .sidebar-item a,.nav-page .nav-page-text,.sidebar-navigation{font-size:1rem}.sidebar-navigation ul.sidebar-section.depth1 .sidebar-section-item{font-size:1.1rem}.sidebar-logo{display:none}.sidebar.sidebar-navigation{position:static;border-bottom:1px solid #dee2e6}.sidebar.sidebar-navigation.collapsing{position:fixed;z-index:1000}.sidebar.sidebar-navigation.show{position:fixed;z-index:1000}.sidebar.sidebar-navigation{min-height:100%}nav.quarto-secondary-nav{background-color:#fff;border-bottom:1px solid #dee2e6}.sidebar .sidebar-footer{visibility:visible;padding-top:1rem;position:inherit}.sidebar-tools-collapse{display:block}}#quarto-sidebar{transition:width .15s ease-in}#quarto-sidebar>*{padding-right:1em}@media(max-width: 991.98px){#quarto-sidebar .sidebar-menu-container{white-space:nowrap;min-width:225px}#quarto-sidebar.show{transition:width .15s ease-out}}@media(min-width: 992px){#quarto-sidebar{display:flex;flex-direction:column}.nav-page .nav-page-text,.sidebar-navigation .sidebar-section .sidebar-item{font-size:.875rem}.sidebar-navigation .sidebar-item{font-size:.925rem}.sidebar.sidebar-navigation{display:block;position:sticky}.sidebar-search{width:100%}.sidebar .sidebar-footer{visibility:visible}}@media(max-width: 991.98px){#quarto-sidebar-glass{position:fixed;top:0;bottom:0;left:0;right:0;background-color:rgba(255,255,255,0);transition:background-color .15s ease-in;z-index:-1}#quarto-sidebar-glass.collapsing{z-index:1000}#quarto-sidebar-glass.show{transition:background-color .15s ease-out;background-color:rgba(102,102,102,.4);z-index:1000}}.sidebar .sidebar-footer{padding:.5rem 1rem;align-self:flex-end;color:#6c757d;width:100%}.quarto-page-breadcrumbs .breadcrumb-item+.breadcrumb-item,.quarto-page-breadcrumbs .breadcrumb-item{padding-right:.33em;padding-left:0}.quarto-page-breadcrumbs .breadcrumb-item::before{padding-right:.33em}.quarto-sidebar-footer{font-size:.875em}.sidebar-section .bi-chevron-right{vertical-align:middle}.sidebar-section .bi-chevron-right::before{font-size:.9em}.notransition{-webkit-transition:none !important;-moz-transition:none !important;-o-transition:none !important;transition:none !important}.btn:focus:not(:focus-visible){box-shadow:none}.page-navigation{display:flex;justify-content:space-between}.nav-page{padding-bottom:.75em}.nav-page .bi{font-size:1.8rem;vertical-align:middle}.nav-page .nav-page-text{padding-left:.25em;padding-right:.25em}.nav-page a{color:#6c757d;text-decoration:none;display:flex;align-items:center}.nav-page a:hover{color:#1f66b6}.toc-actions{display:flex}.toc-actions p{margin-block-start:0;margin-block-end:0}.toc-actions a{text-decoration:none;color:inherit;font-weight:400}.toc-actions a:hover{color:#1f66b6}.toc-actions .action-links{margin-left:4px}.sidebar nav[role=doc-toc] .toc-actions .bi{margin-left:-4px;font-size:.7rem;color:#6c757d}.sidebar nav[role=doc-toc] .toc-actions .bi:before{padding-top:3px}#quarto-margin-sidebar .toc-actions .bi:before{margin-top:.3rem;font-size:.7rem;color:#6c757d;vertical-align:top}.sidebar nav[role=doc-toc] .toc-actions>div:first-of-type{margin-top:-3px}#quarto-margin-sidebar .toc-actions p,.sidebar nav[role=doc-toc] .toc-actions p{font-size:.875rem}.nav-footer .toc-actions{padding-bottom:.5em;padding-top:.5em}.nav-footer .toc-actions :first-child{margin-left:auto}.nav-footer .toc-actions :last-child{margin-right:auto}.nav-footer .toc-actions .action-links{display:flex}.nav-footer .toc-actions .action-links p{padding-right:1.5em}.nav-footer .toc-actions .action-links p:last-of-type{padding-right:0}.nav-footer{display:flex;flex-direction:row;flex-wrap:wrap;justify-content:space-between;align-items:baseline;text-align:center;padding-top:.5rem;padding-bottom:.5rem;background-color:#fff}body.nav-fixed{padding-top:64px}.nav-footer-contents{color:#6c757d;margin-top:.25rem}.nav-footer{min-height:3.5em;color:#757575}.nav-footer a{color:#757575}.nav-footer .nav-footer-left{font-size:.825em}.nav-footer .nav-footer-center{font-size:.825em}.nav-footer .nav-footer-right{font-size:.825em}.nav-footer-left .footer-items,.nav-footer-center .footer-items,.nav-footer-right .footer-items{display:inline-flex;padding-top:.3em;padding-bottom:.3em;margin-bottom:0em}.nav-footer-left .footer-items .nav-link,.nav-footer-center .footer-items .nav-link,.nav-footer-right .footer-items .nav-link{padding-left:.6em;padding-right:.6em}.nav-footer-left{flex:1 1 0px;text-align:left}.nav-footer-right{flex:1 1 0px;text-align:right}.nav-footer-center{flex:1 1 0px;min-height:3em;text-align:center}.nav-footer-center .footer-items{justify-content:center}@media(max-width: 767.98px){.nav-footer-center{margin-top:3em}}.navbar .quarto-reader-toggle.reader .quarto-reader-toggle-btn{background-color:#545555;border-radius:3px}.quarto-reader-toggle.reader.quarto-navigation-tool .quarto-reader-toggle-btn{background-color:#595959;border-radius:3px}.quarto-reader-toggle .quarto-reader-toggle-btn{display:inline-flex;padding-left:.2em;padding-right:.2em;margin-left:-0.2em;margin-right:-0.2em;text-align:center}.navbar .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.navbar .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(248, 249, 250, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.sidebar-navigation .quarto-reader-toggle:not(.reader) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(89, 89, 89, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}.sidebar-navigation .quarto-reader-toggle.reader .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(255, 255, 255, 1)" class="bi bi-body-text" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M0 .5A.5.5 0 0 1 .5 0h4a.5.5 0 0 1 0 1h-4A.5.5 0 0 1 0 .5Zm0 2A.5.5 0 0 1 .5 2h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm9 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-9 2A.5.5 0 0 1 .5 4h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm5 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 0 1h-3a.5.5 0 0 1-.5-.5Zm-12 2A.5.5 0 0 1 .5 6h6a.5.5 0 0 1 0 1h-6a.5.5 0 0 1-.5-.5Zm8 0a.5.5 0 0 1 .5-.5h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm-8 2A.5.5 0 0 1 .5 8h5a.5.5 0 0 1 0 1h-5a.5.5 0 0 1-.5-.5Zm7 0a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5Zm-7 2a.5.5 0 0 1 .5-.5h8a.5.5 0 0 1 0 1h-8a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h4a.5.5 0 0 1 0 1h-4a.5.5 0 0 1-.5-.5Zm0 2a.5.5 0 0 1 .5-.5h2a.5.5 0 0 1 0 1h-2a.5.5 0 0 1-.5-.5Z"/></svg>')}#quarto-back-to-top{display:none;position:fixed;bottom:50px;background-color:#fff;border-radius:.25rem;box-shadow:0 .2rem .5rem #6c757d,0 0 .05rem #6c757d;color:#6c757d;text-decoration:none;font-size:.9em;text-align:center;left:50%;padding:.4rem .8rem;transform:translate(-50%, 0)}.aa-DetachedOverlay ul.aa-List,#quarto-search-results ul.aa-List{list-style:none;padding-left:0}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{background-color:#fff;position:absolute;z-index:2000}#quarto-search-results .aa-Panel{max-width:400px}#quarto-search input{font-size:.925rem}@media(min-width: 992px){.navbar #quarto-search{margin-left:.25rem;order:999}}@media(max-width: 991.98px){#quarto-sidebar .sidebar-search{display:none}}#quarto-sidebar .sidebar-search .aa-Autocomplete{width:100%}.navbar .aa-Autocomplete .aa-Form{width:180px}.navbar #quarto-search.type-overlay .aa-Autocomplete{width:40px}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form{background-color:inherit;border:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form:focus-within{box-shadow:none;outline:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper{display:none}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-InputWrapper:focus-within{display:inherit}.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-Label svg,.navbar #quarto-search.type-overlay .aa-Autocomplete .aa-Form .aa-LoadingIndicator svg{width:26px;height:26px;color:#545555;opacity:1}.navbar #quarto-search.type-overlay .aa-Autocomplete svg.aa-SubmitIcon{width:26px;height:26px;color:#545555;opacity:1}.aa-Autocomplete .aa-Form,.aa-DetachedFormContainer .aa-Form{align-items:center;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem;color:#373a3c;display:flex;line-height:1em;margin:0;position:relative;width:100%}.aa-Autocomplete .aa-Form:focus-within,.aa-DetachedFormContainer .aa-Form:focus-within{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix{align-items:center;display:flex;flex-shrink:0;order:1}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{cursor:initial;flex-shrink:0;padding:0;text-align:left}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-Label svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator svg{color:#373a3c;opacity:.5}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-SubmitButton{appearance:none;background:none;border:0;margin:0}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator{align-items:center;display:flex;justify-content:center}.aa-Autocomplete .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperPrefix .aa-LoadingIndicator[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapper,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper{order:3;position:relative;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input{appearance:none;background:none;border:0;color:#373a3c;font:inherit;height:calc(1.5em + .1rem + 2px);padding:0;width:100%}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::placeholder,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::placeholder{color:#373a3c;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input:focus{border-color:none;box-shadow:none;outline:none}.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-Autocomplete .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-decoration,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-cancel-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-button,.aa-DetachedFormContainer .aa-Form .aa-InputWrapper .aa-Input::-webkit-search-results-decoration{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix{align-items:center;display:flex;order:4}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton{align-items:center;background:none;border:0;color:#373a3c;opacity:.8;cursor:pointer;display:flex;margin:0;width:calc(1.5em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton:focus{color:#373a3c;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton[hidden]{display:none}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-ClearButton svg{width:calc(1.5em + 0.75rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton{border:none;align-items:center;background:none;color:#373a3c;opacity:.4;font-size:.7rem;cursor:pointer;display:none;margin:0;width:calc(1em + .1rem + 2px)}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:hover,.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton:focus{color:#373a3c;opacity:.8}.aa-Autocomplete .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden],.aa-DetachedFormContainer .aa-Form .aa-InputWrapperSuffix .aa-CopyButton[hidden]{display:none}.aa-PanelLayout:empty{display:none}.quarto-search-no-results.no-query{display:none}.aa-Source:has(.no-query){display:none}#quarto-search-results .aa-Panel{border:solid #ced4da 1px}#quarto-search-results .aa-SourceNoResults{width:398px}.aa-DetachedOverlay .aa-Panel,#quarto-search-results .aa-Panel{max-height:65vh;overflow-y:auto;font-size:.925rem}.aa-DetachedOverlay .aa-SourceNoResults,#quarto-search-results .aa-SourceNoResults{height:60px;display:flex;justify-content:center;align-items:center}.aa-DetachedOverlay .search-error,#quarto-search-results .search-error{padding-top:10px;padding-left:20px;padding-right:20px;cursor:default}.aa-DetachedOverlay .search-error .search-error-title,#quarto-search-results .search-error .search-error-title{font-size:1.1rem;margin-bottom:.5rem}.aa-DetachedOverlay .search-error .search-error-title .search-error-icon,#quarto-search-results .search-error .search-error-title .search-error-icon{margin-right:8px}.aa-DetachedOverlay .search-error .search-error-text,#quarto-search-results .search-error .search-error-text{font-weight:300}.aa-DetachedOverlay .search-result-text,#quarto-search-results .search-result-text{font-weight:300;overflow:hidden;text-overflow:ellipsis;display:-webkit-box;-webkit-line-clamp:2;-webkit-box-orient:vertical;line-height:1.2rem;max-height:2.4rem}.aa-DetachedOverlay .aa-SourceHeader .search-result-header,#quarto-search-results .aa-SourceHeader .search-result-header{font-size:.875rem;background-color:#f2f2f2;padding-left:14px;padding-bottom:4px;padding-top:4px}.aa-DetachedOverlay .aa-SourceHeader .search-result-header-no-results,#quarto-search-results .aa-SourceHeader .search-result-header-no-results{display:none}.aa-DetachedOverlay .aa-SourceFooter .algolia-search-logo,#quarto-search-results .aa-SourceFooter .algolia-search-logo{width:110px;opacity:.85;margin:8px;float:right}.aa-DetachedOverlay .search-result-section,#quarto-search-results .search-result-section{font-size:.925em}.aa-DetachedOverlay a.search-result-link,#quarto-search-results a.search-result-link{color:inherit;text-decoration:none}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item,#quarto-search-results li.aa-Item[aria-selected=true] .search-item{background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-result-text-container{color:#fff;background-color:#2780e3}.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=true] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=true] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=true] .search-item .search-match.mark{color:#fff;background-color:#4b95e8}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item,#quarto-search-results li.aa-Item[aria-selected=false] .search-item{background-color:#fff}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item.search-result-more,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-section,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-title-container,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-result-text-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item.search-result-more,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-section,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-title-container,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-result-text-container{color:#373a3c}.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item mark.search-match,.aa-DetachedOverlay li.aa-Item[aria-selected=false] .search-item .search-match.mark,#quarto-search-results li.aa-Item[aria-selected=false] .search-item mark.search-match,#quarto-search-results li.aa-Item[aria-selected=false] .search-item .search-match.mark{color:inherit;background-color:#e5effc}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-title-container{background-color:#fff;color:#373a3c}.aa-DetachedOverlay .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container,#quarto-search-results .aa-Item .search-result-doc:not(.document-selectable) .search-result-text-container{padding-top:0px}.aa-DetachedOverlay li.aa-Item .search-result-doc.document-selectable .search-result-text-container,#quarto-search-results li.aa-Item .search-result-doc.document-selectable .search-result-text-container{margin-top:-4px}.aa-DetachedOverlay .aa-Item,#quarto-search-results .aa-Item{cursor:pointer}.aa-DetachedOverlay .aa-Item .search-item,#quarto-search-results .aa-Item .search-item{border-left:none;border-right:none;border-top:none;background-color:#fff;border-color:#ced4da;color:#373a3c}.aa-DetachedOverlay .aa-Item .search-item p,#quarto-search-results .aa-Item .search-item p{margin-top:0;margin-bottom:0}.aa-DetachedOverlay .aa-Item .search-item i.bi,#quarto-search-results .aa-Item .search-item i.bi{padding-left:8px;padding-right:8px;font-size:1.3em}.aa-DetachedOverlay .aa-Item .search-item .search-result-title,#quarto-search-results .aa-Item .search-item .search-result-title{margin-top:.3em;margin-bottom:.1rem}.aa-DetachedOverlay .aa-Item .search-result-title-container,#quarto-search-results .aa-Item .search-result-title-container{font-size:1em;display:flex;padding:6px 4px 6px 4px}.aa-DetachedOverlay .aa-Item .search-result-text-container,#quarto-search-results .aa-Item .search-result-text-container{padding-bottom:8px;padding-right:8px;margin-left:44px}.aa-DetachedOverlay .aa-Item .search-result-doc-section,.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-doc-section,#quarto-search-results .aa-Item .search-result-more{padding-top:8px;padding-bottom:8px;padding-left:44px}.aa-DetachedOverlay .aa-Item .search-result-more,#quarto-search-results .aa-Item .search-result-more{font-size:.8em;font-weight:400}.aa-DetachedOverlay .aa-Item .search-result-doc,#quarto-search-results .aa-Item .search-result-doc{border-top:1px solid #ced4da}.aa-DetachedSearchButton{background:none;border:none}.aa-DetachedSearchButton .aa-DetachedSearchButtonPlaceholder{display:none}.navbar .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#545555}.sidebar-tools-collapse #quarto-search,.sidebar-tools-main #quarto-search{display:inline}.sidebar-tools-collapse #quarto-search .aa-Autocomplete,.sidebar-tools-main #quarto-search .aa-Autocomplete{display:inline}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton{padding-left:4px;padding-right:4px}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon{color:#595959}.sidebar-tools-collapse #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon,.sidebar-tools-main #quarto-search .aa-DetachedSearchButton .aa-DetachedSearchButtonIcon .aa-SubmitIcon{margin-top:-3px}.aa-DetachedContainer{background:rgba(255,255,255,.65);width:90%;bottom:0;box-shadow:rgba(206,212,218,.6) 0 0 0 1px;outline:currentColor none medium;display:flex;flex-direction:column;left:0;margin:0;overflow:hidden;padding:0;position:fixed;right:0;top:0;z-index:1101}.aa-DetachedContainer::after{height:32px}.aa-DetachedContainer .aa-SourceHeader{margin:var(--aa-spacing-half) 0 var(--aa-spacing-half) 2px}.aa-DetachedContainer .aa-Panel{background-color:#fff;border-radius:0;box-shadow:none;flex-grow:1;margin:0;padding:0;position:relative}.aa-DetachedContainer .aa-PanelLayout{bottom:0;box-shadow:none;left:0;margin:0;max-height:none;overflow-y:auto;position:absolute;right:0;top:0;width:100%}.aa-DetachedFormContainer{background-color:#fff;border-bottom:1px solid #ced4da;display:flex;flex-direction:row;justify-content:space-between;margin:0;padding:.5em}.aa-DetachedCancelButton{background:none;font-size:.8em;border:0;border-radius:3px;color:#373a3c;cursor:pointer;margin:0 0 0 .5em;padding:0 .5em}.aa-DetachedCancelButton:hover,.aa-DetachedCancelButton:focus{box-shadow:rgba(39,128,227,.6) 0 0 0 1px;outline:currentColor none medium}.aa-DetachedContainer--modal{bottom:inherit;height:auto;margin:0 auto;position:absolute;top:100px;border-radius:6px;max-width:850px}@media(max-width: 575.98px){.aa-DetachedContainer--modal{width:100%;top:0px;border-radius:0px;border:none}}.aa-DetachedContainer--modal .aa-PanelLayout{max-height:var(--aa-detached-modal-max-height);padding-bottom:var(--aa-spacing-half);position:static}.aa-Detached{height:100vh;overflow:hidden}.aa-DetachedOverlay{background-color:rgba(55,58,60,.4);position:fixed;left:0;right:0;top:0;margin:0;padding:0;height:100vh;z-index:1100}.quarto-listing{padding-bottom:1em}.listing-pagination{padding-top:.5em}ul.pagination{float:right;padding-left:8px;padding-top:.5em}ul.pagination li{padding-right:.75em}ul.pagination li.disabled a,ul.pagination li.active a{color:#373a3c;text-decoration:none}ul.pagination li:last-of-type{padding-right:0}.listing-actions-group{display:flex}.quarto-listing-filter{margin-bottom:1em;width:200px;margin-left:auto}.quarto-listing-sort{margin-bottom:1em;margin-right:auto;width:auto}.quarto-listing-sort .input-group-text{font-size:.8em}.input-group-text{border-right:none}.quarto-listing-sort select.form-select{font-size:.8em}.listing-no-matching{text-align:center;padding-top:2em;padding-bottom:3em;font-size:1em}#quarto-margin-sidebar .quarto-listing-category{padding-top:0;font-size:1rem}#quarto-margin-sidebar .quarto-listing-category-title{cursor:pointer;font-weight:600;font-size:1rem}.quarto-listing-category .category{cursor:pointer}.quarto-listing-category .category.active{font-weight:600}.quarto-listing-category.category-cloud{display:flex;flex-wrap:wrap;align-items:baseline}.quarto-listing-category.category-cloud .category{padding-right:5px}.quarto-listing-category.category-cloud .category-cloud-1{font-size:.75em}.quarto-listing-category.category-cloud .category-cloud-2{font-size:.95em}.quarto-listing-category.category-cloud .category-cloud-3{font-size:1.15em}.quarto-listing-category.category-cloud .category-cloud-4{font-size:1.35em}.quarto-listing-category.category-cloud .category-cloud-5{font-size:1.55em}.quarto-listing-category.category-cloud .category-cloud-6{font-size:1.75em}.quarto-listing-category.category-cloud .category-cloud-7{font-size:1.95em}.quarto-listing-category.category-cloud .category-cloud-8{font-size:2.15em}.quarto-listing-category.category-cloud .category-cloud-9{font-size:2.35em}.quarto-listing-category.category-cloud .category-cloud-10{font-size:2.55em}.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-1{grid-template-columns:repeat(1, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-1{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-2{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-2{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-3{grid-template-columns:repeat(3, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-3{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-3{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-4{grid-template-columns:repeat(4, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-4{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-4{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-5{grid-template-columns:repeat(5, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-5{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-5{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-6{grid-template-columns:repeat(6, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-6{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-6{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-7{grid-template-columns:repeat(7, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-7{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-7{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-8{grid-template-columns:repeat(8, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-8{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-8{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-9{grid-template-columns:repeat(9, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-9{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-9{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-10{grid-template-columns:repeat(10, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-10{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-10{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-11{grid-template-columns:repeat(11, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-11{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-11{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-cols-12{grid-template-columns:repeat(12, minmax(0, 1fr));gap:1.5em}@media(max-width: 767.98px){.quarto-listing-cols-12{grid-template-columns:repeat(2, minmax(0, 1fr));gap:1.5em}}@media(max-width: 575.98px){.quarto-listing-cols-12{grid-template-columns:minmax(0, 1fr);gap:1.5em}}.quarto-listing-grid{gap:1.5em}.quarto-grid-item.borderless{border:none}.quarto-grid-item.borderless .listing-categories .listing-category:last-of-type,.quarto-grid-item.borderless .listing-categories .listing-category:first-of-type{padding-left:0}.quarto-grid-item.borderless .listing-categories .listing-category{border:0}.quarto-grid-link{text-decoration:none;color:inherit}.quarto-grid-link:hover{text-decoration:none;color:inherit}.quarto-grid-item h5.title,.quarto-grid-item .title.h5{margin-top:0;margin-bottom:0}.quarto-grid-item .card-footer{display:flex;justify-content:space-between;font-size:.8em}.quarto-grid-item .card-footer p{margin-bottom:0}.quarto-grid-item p.card-img-top{margin-bottom:0}.quarto-grid-item p.card-img-top>img{object-fit:cover}.quarto-grid-item .card-other-values{margin-top:.5em;font-size:.8em}.quarto-grid-item .card-other-values tr{margin-bottom:.5em}.quarto-grid-item .card-other-values tr>td:first-of-type{font-weight:600;padding-right:1em;padding-left:1em;vertical-align:top}.quarto-grid-item div.post-contents{display:flex;flex-direction:column;text-decoration:none;height:100%}.quarto-grid-item .listing-item-img-placeholder{background-color:#adb5bd;flex-shrink:0}.quarto-grid-item .card-attribution{padding-top:1em;display:flex;gap:1em;text-transform:uppercase;color:#6c757d;font-weight:500;flex-grow:10;align-items:flex-end}.quarto-grid-item .description{padding-bottom:1em}.quarto-grid-item .card-attribution .date{align-self:flex-end}.quarto-grid-item .card-attribution.justify{justify-content:space-between}.quarto-grid-item .card-attribution.start{justify-content:flex-start}.quarto-grid-item .card-attribution.end{justify-content:flex-end}.quarto-grid-item .card-title{margin-bottom:.1em}.quarto-grid-item .card-subtitle{padding-top:.25em}.quarto-grid-item .card-text{font-size:.9em}.quarto-grid-item .listing-reading-time{padding-bottom:.25em}.quarto-grid-item .card-text-small{font-size:.8em}.quarto-grid-item .card-subtitle.subtitle{font-size:.9em;font-weight:600;padding-bottom:.5em}.quarto-grid-item .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}.quarto-grid-item .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}.quarto-grid-item.card-right{text-align:right}.quarto-grid-item.card-right .listing-categories{justify-content:flex-end}.quarto-grid-item.card-left{text-align:left}.quarto-grid-item.card-center{text-align:center}.quarto-grid-item.card-center .listing-description{text-align:justify}.quarto-grid-item.card-center .listing-categories{justify-content:center}table.quarto-listing-table td.image{padding:0px}table.quarto-listing-table td.image img{width:100%;max-width:50px;object-fit:contain}table.quarto-listing-table a{text-decoration:none}table.quarto-listing-table th a{color:inherit}table.quarto-listing-table th a.asc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-sort-up" viewBox="0 0 16 16"><path d="M3.5 12.5a.5.5 0 0 1-1 0V3.707L1.354 4.854a.5.5 0 1 1-.708-.708l2-1.999.007-.007a.498.498 0 0 1 .7.006l2 2a.5.5 0 1 1-.707.708L3.5 3.707V12.5zm3.5-9a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5zM7.5 6a.5.5 0 0 0 0 1h5a.5.5 0 0 0 0-1h-5zm0 3a.5.5 0 0 0 0 1h3a.5.5 0 0 0 0-1h-3zm0 3a.5.5 0 0 0 0 1h1a.5.5 0 0 0 0-1h-1z"/></svg>');content:""}table.quarto-listing-table th a.desc:after{margin-bottom:-2px;margin-left:5px;display:inline-block;height:1rem;width:1rem;background-repeat:no-repeat;background-size:1rem 1rem;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-sort-down" viewBox="0 0 16 16"><path d="M3.5 2.5a.5.5 0 0 0-1 0v8.793l-1.146-1.147a.5.5 0 0 0-.708.708l2 1.999.007.007a.497.497 0 0 0 .7-.006l2-2a.5.5 0 0 0-.707-.708L3.5 11.293V2.5zm3.5 1a.5.5 0 0 1 .5-.5h7a.5.5 0 0 1 0 1h-7a.5.5 0 0 1-.5-.5zM7.5 6a.5.5 0 0 0 0 1h5a.5.5 0 0 0 0-1h-5zm0 3a.5.5 0 0 0 0 1h3a.5.5 0 0 0 0-1h-3zm0 3a.5.5 0 0 0 0 1h1a.5.5 0 0 0 0-1h-1z"/></svg>');content:""}table.quarto-listing-table.table-hover td{cursor:pointer}.quarto-post.image-left{flex-direction:row}.quarto-post.image-right{flex-direction:row-reverse}@media(max-width: 767.98px){.quarto-post.image-right,.quarto-post.image-left{gap:0em;flex-direction:column}.quarto-post .metadata{padding-bottom:1em;order:2}.quarto-post .body{order:1}.quarto-post .thumbnail{order:3}}.list.quarto-listing-default div:last-of-type{border-bottom:none}@media(min-width: 992px){.quarto-listing-container-default{margin-right:2em}}div.quarto-post{display:flex;gap:2em;margin-bottom:1.5em;border-bottom:1px solid #dee2e6}@media(max-width: 767.98px){div.quarto-post{padding-bottom:1em}}div.quarto-post .metadata{flex-basis:20%;flex-grow:0;margin-top:.2em;flex-shrink:10}div.quarto-post .thumbnail{flex-basis:30%;flex-grow:0;flex-shrink:0}div.quarto-post .thumbnail img{margin-top:.4em;width:100%;object-fit:cover}div.quarto-post .body{flex-basis:45%;flex-grow:1;flex-shrink:0}div.quarto-post .body h3.listing-title,div.quarto-post .body .listing-title.h3{margin-top:0px;margin-bottom:0px;border-bottom:none}div.quarto-post .body .listing-subtitle{font-size:.875em;margin-bottom:.5em;margin-top:.2em}div.quarto-post .body .description{font-size:.9em}div.quarto-post a{color:#373a3c;display:flex;flex-direction:column;text-decoration:none}div.quarto-post a div.description{flex-shrink:0}div.quarto-post .metadata{display:flex;flex-direction:column;font-size:.8em;font-family:var(--bs-font-sans-serif);flex-basis:33%}div.quarto-post .listing-categories{display:flex;flex-wrap:wrap;padding-bottom:5px}div.quarto-post .listing-categories .listing-category{color:#6c757d;border:solid 1px #dee2e6;border-radius:.25rem;text-transform:uppercase;font-size:.65em;padding-left:.5em;padding-right:.5em;padding-top:.15em;padding-bottom:.15em;cursor:pointer;margin-right:4px;margin-bottom:4px}div.quarto-post .listing-description{margin-bottom:.5em}div.quarto-about-jolla{display:flex !important;flex-direction:column;align-items:center;margin-top:10%;padding-bottom:1em}div.quarto-about-jolla .about-image{object-fit:cover;margin-left:auto;margin-right:auto;margin-bottom:1.5em}div.quarto-about-jolla img.round{border-radius:50%}div.quarto-about-jolla img.rounded{border-radius:10px}div.quarto-about-jolla .quarto-title h1.title,div.quarto-about-jolla .quarto-title .title.h1{text-align:center}div.quarto-about-jolla .quarto-title .description{text-align:center}div.quarto-about-jolla h2,div.quarto-about-jolla .h2{border-bottom:none}div.quarto-about-jolla .about-sep{width:60%}div.quarto-about-jolla main{text-align:center}div.quarto-about-jolla .about-links{display:flex}@media(min-width: 992px){div.quarto-about-jolla .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-jolla .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-jolla .about-link{color:#686d71;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-jolla .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-jolla .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-jolla .about-link:hover{color:#2780e3}div.quarto-about-jolla .about-link i.bi{margin-right:.15em}div.quarto-about-solana{display:flex !important;flex-direction:column;padding-top:3em !important;padding-bottom:1em}div.quarto-about-solana .about-entity{display:flex !important;align-items:start;justify-content:space-between}@media(min-width: 992px){div.quarto-about-solana .about-entity{flex-direction:row}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity{flex-direction:column-reverse;align-items:center;text-align:center}}div.quarto-about-solana .about-entity .entity-contents{display:flex;flex-direction:column}@media(max-width: 767.98px){div.quarto-about-solana .about-entity .entity-contents{width:100%}}div.quarto-about-solana .about-entity .about-image{object-fit:cover}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-image{margin-bottom:1.5em}}div.quarto-about-solana .about-entity img.round{border-radius:50%}div.quarto-about-solana .about-entity img.rounded{border-radius:10px}div.quarto-about-solana .about-entity .about-links{display:flex;justify-content:left;padding-bottom:1.2em}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-solana .about-entity .about-link{color:#686d71;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-solana .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-solana .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-solana .about-entity .about-link:hover{color:#2780e3}div.quarto-about-solana .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-solana .about-contents{padding-right:1.5em;flex-basis:0;flex-grow:1}div.quarto-about-solana .about-contents main.content{margin-top:0}div.quarto-about-solana .about-contents h2,div.quarto-about-solana .about-contents .h2{border-bottom:none}div.quarto-about-trestles{display:flex !important;flex-direction:row;padding-top:3em !important;padding-bottom:1em}@media(max-width: 991.98px){div.quarto-about-trestles{flex-direction:column;padding-top:0em !important}}div.quarto-about-trestles .about-entity{display:flex !important;flex-direction:column;align-items:center;text-align:center;padding-right:1em}@media(min-width: 992px){div.quarto-about-trestles .about-entity{flex:0 0 42%}}div.quarto-about-trestles .about-entity .about-image{object-fit:cover;margin-bottom:1.5em}div.quarto-about-trestles .about-entity img.round{border-radius:50%}div.quarto-about-trestles .about-entity img.rounded{border-radius:10px}div.quarto-about-trestles .about-entity .about-links{display:flex;justify-content:center}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-trestles .about-entity .about-link{color:#686d71;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-trestles .about-entity .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-trestles .about-entity .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-trestles .about-entity .about-link:hover{color:#2780e3}div.quarto-about-trestles .about-entity .about-link i.bi{margin-right:.15em}div.quarto-about-trestles .about-contents{flex-basis:0;flex-grow:1}div.quarto-about-trestles .about-contents h2,div.quarto-about-trestles .about-contents .h2{border-bottom:none}@media(min-width: 992px){div.quarto-about-trestles .about-contents{border-left:solid 1px #dee2e6;padding-left:1.5em}}div.quarto-about-trestles .about-contents main.content{margin-top:0}div.quarto-about-marquee{padding-bottom:1em}div.quarto-about-marquee .about-contents{display:flex;flex-direction:column}div.quarto-about-marquee .about-image{max-height:550px;margin-bottom:1.5em;object-fit:cover}div.quarto-about-marquee img.round{border-radius:50%}div.quarto-about-marquee img.rounded{border-radius:10px}div.quarto-about-marquee h2,div.quarto-about-marquee .h2{border-bottom:none}div.quarto-about-marquee .about-links{display:flex;justify-content:center;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-marquee .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-marquee .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-marquee .about-link{color:#686d71;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-marquee .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-marquee .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-marquee .about-link:hover{color:#2780e3}div.quarto-about-marquee .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-marquee .about-link{border:none}}div.quarto-about-broadside{display:flex;flex-direction:column;padding-bottom:1em}div.quarto-about-broadside .about-main{display:flex !important;padding-top:0 !important}@media(min-width: 992px){div.quarto-about-broadside .about-main{flex-direction:row;align-items:flex-start}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main{flex-direction:column}}@media(max-width: 991.98px){div.quarto-about-broadside .about-main .about-entity{flex-shrink:0;width:100%;height:450px;margin-bottom:1.5em;background-size:cover;background-repeat:no-repeat}}@media(min-width: 992px){div.quarto-about-broadside .about-main .about-entity{flex:0 10 50%;margin-right:1.5em;width:100%;height:100%;background-size:100%;background-repeat:no-repeat}}div.quarto-about-broadside .about-main .about-contents{padding-top:14px;flex:0 0 50%}div.quarto-about-broadside h2,div.quarto-about-broadside .h2{border-bottom:none}div.quarto-about-broadside .about-sep{margin-top:1.5em;width:60%;align-self:center}div.quarto-about-broadside .about-links{display:flex;justify-content:center;column-gap:20px;padding-top:1.5em}@media(min-width: 992px){div.quarto-about-broadside .about-links{flex-direction:row;column-gap:.8em;row-gap:15px;flex-wrap:wrap}}@media(max-width: 991.98px){div.quarto-about-broadside .about-links{flex-direction:column;row-gap:1em;width:100%;padding-bottom:1.5em}}div.quarto-about-broadside .about-link{color:#686d71;text-decoration:none;border:solid 1px}@media(min-width: 992px){div.quarto-about-broadside .about-link{font-size:.8em;padding:.25em .5em;border-radius:4px}}@media(max-width: 991.98px){div.quarto-about-broadside .about-link{font-size:1.1em;padding:.5em .5em;text-align:center;border-radius:6px}}div.quarto-about-broadside .about-link:hover{color:#2780e3}div.quarto-about-broadside .about-link i.bi{margin-right:.15em}@media(min-width: 992px){div.quarto-about-broadside .about-link{border:none}}.tippy-box[data-theme~=quarto]{background-color:#fff;border:solid 1px #dee2e6;border-radius:.25rem;color:#373a3c;font-size:.875rem}.tippy-box[data-theme~=quarto]>.tippy-backdrop{background-color:#fff}.tippy-box[data-theme~=quarto]>.tippy-arrow:after,.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{content:"";position:absolute;z-index:-1}.tippy-box[data-theme~=quarto]>.tippy-arrow:after{border-color:rgba(0,0,0,0);border-style:solid}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-6px}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-6px}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-6px}.tippy-box[data-placement^=left]>.tippy-arrow:before{right:-6px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:before{border-top-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:after{border-top-color:#dee2e6;border-width:7px 7px 0;top:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow>svg{top:16px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow:after{top:17px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:before{border-bottom-color:#fff;bottom:16px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:after{border-bottom-color:#dee2e6;border-width:0 7px 7px;bottom:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow>svg{bottom:15px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow:after{bottom:17px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:before{border-left-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:after{border-left-color:#dee2e6;border-width:7px 0 7px 7px;left:17px;top:1px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow>svg{left:11px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow:after{left:12px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:before{border-right-color:#fff;right:16px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:after{border-width:7px 7px 7px 0;right:17px;top:1px;border-right-color:#dee2e6}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow>svg{right:11px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow:after{right:12px}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow{fill:#373a3c}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{background-image:url();background-size:16px 6px;width:16px;height:6px}.top-right{position:absolute;top:1em;right:1em}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:inline-block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,.h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,.h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,.h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,.h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1,#title-block-header .quarto-title-block>div>.h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}@media(min-width: 992px){#title-block-header .quarto-title-block>div>button{margin-top:5px}}tr.header>th>p:last-of-type{margin-bottom:0px}table,.table{caption-side:top;margin-bottom:1.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:#6c757d}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}div.ansi-escaped-output{font-family:monospace;display:block}/*!
-*
-* ansi colors from IPython notebook's
-*
-*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-fg{color:#282c36}.ansi-black-intense-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-fg{color:#b22b31}.ansi-red-intense-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-fg{color:#007427}.ansi-green-intense-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-fg{color:#b27d12}.ansi-yellow-intense-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-fg{color:#0065ca}.ansi-blue-intense-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-fg{color:#a03196}.ansi-magenta-intense-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-fg{color:#258f8f}.ansi-cyan-intense-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-fg{color:#a1a6b2}.ansi-white-intense-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: #fff;--quarto-body-color: #373a3c;--quarto-text-muted: #6c757d;--quarto-border-color: #dee2e6;--quarto-border-width: 1px;--quarto-border-radius: 0.25rem}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:absolute;right:.5em;left:inherit;background-color:rgba(0,0,0,0)}:root{--mermaid-bg-color: #fff;--mermaid-edge-color: #373a3c;--mermaid-node-fg-color: #373a3c;--mermaid-fg-color: #373a3c;--mermaid-fg-color--lighter: #4f5457;--mermaid-fg-color--lightest: #686d71;--mermaid-font-family: Source Sans Pro, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol;--mermaid-label-bg-color: #fff;--mermaid-label-fg-color: #2780e3;--mermaid-node-bg-color: rgba(39, 128, 227, 0.1);--mermaid-node-fg-color: #373a3c}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(94, 94, 94)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>');background-repeat:no-repeat;background-size:1rem 1rem}.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(94, 94, 94)" viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(71, 88, 171)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>')}.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(71, 88, 171)"  viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}main ol ol,main ul ul,main ol ul,main ul ol{margin-bottom:1em}ul>li:not(:has(>p))>ul,ol>li:not(:has(>p))>ul,ul>li:not(:has(>p))>ol,ol>li:not(:has(>p))>ol{margin-bottom:0}ul>li:not(:has(>p))>ul>li:has(>p),ol>li:not(:has(>p))>ul>li:has(>p),ul>li:not(:has(>p))>ol>li:has(>p),ol>li:not(:has(>p))>ol>li:has(>p){margin-top:1rem}body{margin:0}main.page-columns>header>h1.title,main.page-columns>header>.title.h1{margin-bottom:0}@media(min-width: 992px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc( 850px - 3em )) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc( 850px - 3em )) [body-content-end] 1.5em [body-end] 35px [body-end-outset] 35px [page-end-inset page-end] 5fr [screen-end-inset] 1.5em}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc( 850px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc( 850px - 3em )) [body-content-end] 3em [body-end] 50px [body-end-outset] minmax(0px, 250px) [page-end-inset] minmax(50px, 100px) [page-end] 1fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc( 1000px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 100px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc( 1000px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc( 1000px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 150px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 991.98px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc( 1250px - 3em )) [body-content-end body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1.5em [body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc( 1000px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc( 800px - 3em )) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc( 750px - 3em )) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 767.98px){body .page-columns,body.fullcontent:not(.floating):not(.docked) .page-columns,body.slimcontent:not(.floating):not(.docked) .page-columns,body.docked .page-columns,body.docked.slimcontent .page-columns,body.docked.fullcontent .page-columns,body.floating .page-columns,body.floating.slimcontent .page-columns,body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}nav[role=doc-toc]{display:none}}body,.page-row-navigation{grid-template-rows:[page-top] max-content [contents-top] max-content [contents-bottom] max-content [page-bottom]}.page-rows-contents{grid-template-rows:[content-top] minmax(max-content, 1fr) [content-bottom] minmax(60px, max-content) [page-bottom]}.page-full{grid-column:screen-start/screen-end !important}.page-columns>*{grid-column:body-content-start/body-content-end}.page-columns.column-page>*{grid-column:page-start/page-end}.page-columns.column-page-left>*{grid-column:page-start/body-content-end}.page-columns.column-page-right>*{grid-column:body-content-start/page-end}.page-rows{grid-auto-rows:auto}.header{grid-column:screen-start/screen-end;grid-row:page-top/contents-top}#quarto-content{padding:0;grid-column:screen-start/screen-end;grid-row:contents-top/contents-bottom}body.floating .sidebar.sidebar-navigation{grid-column:page-start/body-start;grid-row:content-top/page-bottom}body.docked .sidebar.sidebar-navigation{grid-column:screen-start/body-start;grid-row:content-top/page-bottom}.sidebar.toc-left{grid-column:page-start/body-start;grid-row:content-top/page-bottom}.sidebar.margin-sidebar{grid-column:body-end/page-end;grid-row:content-top/page-bottom}.page-columns .content{grid-column:body-content-start/body-content-end;grid-row:content-top/content-bottom;align-content:flex-start}.page-columns .page-navigation{grid-column:body-content-start/body-content-end;grid-row:content-bottom/page-bottom}.page-columns .footer{grid-column:screen-start/screen-end;grid-row:contents-bottom/page-bottom}.page-columns .column-body{grid-column:body-content-start/body-content-end}.page-columns .column-body-fullbleed{grid-column:body-start/body-end}.page-columns .column-body-outset{grid-column:body-start-outset/body-end-outset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-body-outset table{background:#fff}.page-columns .column-body-outset-left{grid-column:body-start-outset/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-body-outset-left table{background:#fff}.page-columns .column-body-outset-right{grid-column:body-content-start/body-end-outset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-body-outset-right table{background:#fff}.page-columns .column-page{grid-column:page-start/page-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page table{background:#fff}.page-columns .column-page-inset{grid-column:page-start-inset/page-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page-inset table{background:#fff}.page-columns .column-page-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page-inset-left table{background:#fff}.page-columns .column-page-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page-inset-right figcaption table{background:#fff}.page-columns .column-page-left{grid-column:page-start/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page-left table{background:#fff}.page-columns .column-page-right{grid-column:body-content-start/page-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-page-right figcaption table{background:#fff}#quarto-content.page-columns #quarto-margin-sidebar,#quarto-content.page-columns #quarto-sidebar{z-index:1}@media(max-width: 991.98px){#quarto-content.page-columns #quarto-margin-sidebar.collapse,#quarto-content.page-columns #quarto-sidebar.collapse,#quarto-content.page-columns #quarto-margin-sidebar.collapsing,#quarto-content.page-columns #quarto-sidebar.collapsing{z-index:1055}}#quarto-content.page-columns main.column-page,#quarto-content.page-columns main.column-page-right,#quarto-content.page-columns main.column-page-left{z-index:0}.page-columns .column-screen-inset{grid-column:screen-start-inset/screen-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:screen-start-inset/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/screen-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:screen-start/screen-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:screen-start/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/screen-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:screen-start/screen-end;padding:1em;background:#f8f9fa;z-index:998;transform:translate3d(0, 0, 0);margin-bottom:1em}.zindex-content{z-index:998;transform:translate3d(0, 0, 0)}.zindex-modal{z-index:1055;transform:translate3d(0, 0, 0)}.zindex-over-content{z-index:999;transform:translate3d(0, 0, 0)}img.img-fluid.column-screen,img.img-fluid.column-screen-inset-shaded,img.img-fluid.column-screen-inset,img.img-fluid.column-screen-inset-left,img.img-fluid.column-screen-inset-right,img.img-fluid.column-screen-left,img.img-fluid.column-screen-right{width:100%}@media(min-width: 992px){.margin-caption,div.aside,aside,.column-margin{grid-column:body-end/page-end !important;z-index:998}.column-sidebar{grid-column:page-start/body-start !important;z-index:998}.column-leftmargin{grid-column:screen-start-inset/body-start !important;z-index:998}.no-row-height{height:1em;overflow:visible}}@media(max-width: 991.98px){.margin-caption,div.aside,aside,.column-margin{grid-column:body-end/page-end !important;z-index:998}.no-row-height{height:1em;overflow:visible}.page-columns.page-full{overflow:visible}.page-columns.toc-left .margin-caption,.page-columns.toc-left div.aside,.page-columns.toc-left aside,.page-columns.toc-left .column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;transform:translate3d(0, 0, 0)}.page-columns.toc-left .no-row-height{height:initial;overflow:initial}}@media(max-width: 767.98px){.margin-caption,div.aside,aside,.column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;transform:translate3d(0, 0, 0)}.no-row-height{height:initial;overflow:initial}#quarto-margin-sidebar{display:none}#quarto-sidebar-toc-left{display:none}.hidden-sm{display:none}}.panel-grid{display:grid;grid-template-rows:repeat(1, 1fr);grid-template-columns:repeat(24, 1fr);gap:1em}.panel-grid .g-col-1{grid-column:auto/span 1}.panel-grid .g-col-2{grid-column:auto/span 2}.panel-grid .g-col-3{grid-column:auto/span 3}.panel-grid .g-col-4{grid-column:auto/span 4}.panel-grid .g-col-5{grid-column:auto/span 5}.panel-grid .g-col-6{grid-column:auto/span 6}.panel-grid .g-col-7{grid-column:auto/span 7}.panel-grid .g-col-8{grid-column:auto/span 8}.panel-grid .g-col-9{grid-column:auto/span 9}.panel-grid .g-col-10{grid-column:auto/span 10}.panel-grid .g-col-11{grid-column:auto/span 11}.panel-grid .g-col-12{grid-column:auto/span 12}.panel-grid .g-col-13{grid-column:auto/span 13}.panel-grid .g-col-14{grid-column:auto/span 14}.panel-grid .g-col-15{grid-column:auto/span 15}.panel-grid .g-col-16{grid-column:auto/span 16}.panel-grid .g-col-17{grid-column:auto/span 17}.panel-grid .g-col-18{grid-column:auto/span 18}.panel-grid .g-col-19{grid-column:auto/span 19}.panel-grid .g-col-20{grid-column:auto/span 20}.panel-grid .g-col-21{grid-column:auto/span 21}.panel-grid .g-col-22{grid-column:auto/span 22}.panel-grid .g-col-23{grid-column:auto/span 23}.panel-grid .g-col-24{grid-column:auto/span 24}.panel-grid .g-start-1{grid-column-start:1}.panel-grid .g-start-2{grid-column-start:2}.panel-grid .g-start-3{grid-column-start:3}.panel-grid .g-start-4{grid-column-start:4}.panel-grid .g-start-5{grid-column-start:5}.panel-grid .g-start-6{grid-column-start:6}.panel-grid .g-start-7{grid-column-start:7}.panel-grid .g-start-8{grid-column-start:8}.panel-grid .g-start-9{grid-column-start:9}.panel-grid .g-start-10{grid-column-start:10}.panel-grid .g-start-11{grid-column-start:11}.panel-grid .g-start-12{grid-column-start:12}.panel-grid .g-start-13{grid-column-start:13}.panel-grid .g-start-14{grid-column-start:14}.panel-grid .g-start-15{grid-column-start:15}.panel-grid .g-start-16{grid-column-start:16}.panel-grid .g-start-17{grid-column-start:17}.panel-grid .g-start-18{grid-column-start:18}.panel-grid .g-start-19{grid-column-start:19}.panel-grid .g-start-20{grid-column-start:20}.panel-grid .g-start-21{grid-column-start:21}.panel-grid .g-start-22{grid-column-start:22}.panel-grid .g-start-23{grid-column-start:23}@media(min-width: 576px){.panel-grid .g-col-sm-1{grid-column:auto/span 1}.panel-grid .g-col-sm-2{grid-column:auto/span 2}.panel-grid .g-col-sm-3{grid-column:auto/span 3}.panel-grid .g-col-sm-4{grid-column:auto/span 4}.panel-grid .g-col-sm-5{grid-column:auto/span 5}.panel-grid .g-col-sm-6{grid-column:auto/span 6}.panel-grid .g-col-sm-7{grid-column:auto/span 7}.panel-grid .g-col-sm-8{grid-column:auto/span 8}.panel-grid .g-col-sm-9{grid-column:auto/span 9}.panel-grid .g-col-sm-10{grid-column:auto/span 10}.panel-grid .g-col-sm-11{grid-column:auto/span 11}.panel-grid .g-col-sm-12{grid-column:auto/span 12}.panel-grid .g-col-sm-13{grid-column:auto/span 13}.panel-grid .g-col-sm-14{grid-column:auto/span 14}.panel-grid .g-col-sm-15{grid-column:auto/span 15}.panel-grid .g-col-sm-16{grid-column:auto/span 16}.panel-grid .g-col-sm-17{grid-column:auto/span 17}.panel-grid .g-col-sm-18{grid-column:auto/span 18}.panel-grid .g-col-sm-19{grid-column:auto/span 19}.panel-grid .g-col-sm-20{grid-column:auto/span 20}.panel-grid .g-col-sm-21{grid-column:auto/span 21}.panel-grid .g-col-sm-22{grid-column:auto/span 22}.panel-grid .g-col-sm-23{grid-column:auto/span 23}.panel-grid .g-col-sm-24{grid-column:auto/span 24}.panel-grid .g-start-sm-1{grid-column-start:1}.panel-grid .g-start-sm-2{grid-column-start:2}.panel-grid .g-start-sm-3{grid-column-start:3}.panel-grid .g-start-sm-4{grid-column-start:4}.panel-grid .g-start-sm-5{grid-column-start:5}.panel-grid .g-start-sm-6{grid-column-start:6}.panel-grid .g-start-sm-7{grid-column-start:7}.panel-grid .g-start-sm-8{grid-column-start:8}.panel-grid .g-start-sm-9{grid-column-start:9}.panel-grid .g-start-sm-10{grid-column-start:10}.panel-grid .g-start-sm-11{grid-column-start:11}.panel-grid .g-start-sm-12{grid-column-start:12}.panel-grid .g-start-sm-13{grid-column-start:13}.panel-grid .g-start-sm-14{grid-column-start:14}.panel-grid .g-start-sm-15{grid-column-start:15}.panel-grid .g-start-sm-16{grid-column-start:16}.panel-grid .g-start-sm-17{grid-column-start:17}.panel-grid .g-start-sm-18{grid-column-start:18}.panel-grid .g-start-sm-19{grid-column-start:19}.panel-grid .g-start-sm-20{grid-column-start:20}.panel-grid .g-start-sm-21{grid-column-start:21}.panel-grid .g-start-sm-22{grid-column-start:22}.panel-grid .g-start-sm-23{grid-column-start:23}}@media(min-width: 768px){.panel-grid .g-col-md-1{grid-column:auto/span 1}.panel-grid .g-col-md-2{grid-column:auto/span 2}.panel-grid .g-col-md-3{grid-column:auto/span 3}.panel-grid .g-col-md-4{grid-column:auto/span 4}.panel-grid .g-col-md-5{grid-column:auto/span 5}.panel-grid .g-col-md-6{grid-column:auto/span 6}.panel-grid .g-col-md-7{grid-column:auto/span 7}.panel-grid .g-col-md-8{grid-column:auto/span 8}.panel-grid .g-col-md-9{grid-column:auto/span 9}.panel-grid .g-col-md-10{grid-column:auto/span 10}.panel-grid .g-col-md-11{grid-column:auto/span 11}.panel-grid .g-col-md-12{grid-column:auto/span 12}.panel-grid .g-col-md-13{grid-column:auto/span 13}.panel-grid .g-col-md-14{grid-column:auto/span 14}.panel-grid .g-col-md-15{grid-column:auto/span 15}.panel-grid .g-col-md-16{grid-column:auto/span 16}.panel-grid .g-col-md-17{grid-column:auto/span 17}.panel-grid .g-col-md-18{grid-column:auto/span 18}.panel-grid .g-col-md-19{grid-column:auto/span 19}.panel-grid .g-col-md-20{grid-column:auto/span 20}.panel-grid .g-col-md-21{grid-column:auto/span 21}.panel-grid .g-col-md-22{grid-column:auto/span 22}.panel-grid .g-col-md-23{grid-column:auto/span 23}.panel-grid .g-col-md-24{grid-column:auto/span 24}.panel-grid .g-start-md-1{grid-column-start:1}.panel-grid .g-start-md-2{grid-column-start:2}.panel-grid .g-start-md-3{grid-column-start:3}.panel-grid .g-start-md-4{grid-column-start:4}.panel-grid .g-start-md-5{grid-column-start:5}.panel-grid .g-start-md-6{grid-column-start:6}.panel-grid .g-start-md-7{grid-column-start:7}.panel-grid .g-start-md-8{grid-column-start:8}.panel-grid .g-start-md-9{grid-column-start:9}.panel-grid .g-start-md-10{grid-column-start:10}.panel-grid .g-start-md-11{grid-column-start:11}.panel-grid .g-start-md-12{grid-column-start:12}.panel-grid .g-start-md-13{grid-column-start:13}.panel-grid .g-start-md-14{grid-column-start:14}.panel-grid .g-start-md-15{grid-column-start:15}.panel-grid .g-start-md-16{grid-column-start:16}.panel-grid .g-start-md-17{grid-column-start:17}.panel-grid .g-start-md-18{grid-column-start:18}.panel-grid .g-start-md-19{grid-column-start:19}.panel-grid .g-start-md-20{grid-column-start:20}.panel-grid .g-start-md-21{grid-column-start:21}.panel-grid .g-start-md-22{grid-column-start:22}.panel-grid .g-start-md-23{grid-column-start:23}}@media(min-width: 992px){.panel-grid .g-col-lg-1{grid-column:auto/span 1}.panel-grid .g-col-lg-2{grid-column:auto/span 2}.panel-grid .g-col-lg-3{grid-column:auto/span 3}.panel-grid .g-col-lg-4{grid-column:auto/span 4}.panel-grid .g-col-lg-5{grid-column:auto/span 5}.panel-grid .g-col-lg-6{grid-column:auto/span 6}.panel-grid .g-col-lg-7{grid-column:auto/span 7}.panel-grid .g-col-lg-8{grid-column:auto/span 8}.panel-grid .g-col-lg-9{grid-column:auto/span 9}.panel-grid .g-col-lg-10{grid-column:auto/span 10}.panel-grid .g-col-lg-11{grid-column:auto/span 11}.panel-grid .g-col-lg-12{grid-column:auto/span 12}.panel-grid .g-col-lg-13{grid-column:auto/span 13}.panel-grid .g-col-lg-14{grid-column:auto/span 14}.panel-grid .g-col-lg-15{grid-column:auto/span 15}.panel-grid .g-col-lg-16{grid-column:auto/span 16}.panel-grid .g-col-lg-17{grid-column:auto/span 17}.panel-grid .g-col-lg-18{grid-column:auto/span 18}.panel-grid .g-col-lg-19{grid-column:auto/span 19}.panel-grid .g-col-lg-20{grid-column:auto/span 20}.panel-grid .g-col-lg-21{grid-column:auto/span 21}.panel-grid .g-col-lg-22{grid-column:auto/span 22}.panel-grid .g-col-lg-23{grid-column:auto/span 23}.panel-grid .g-col-lg-24{grid-column:auto/span 24}.panel-grid .g-start-lg-1{grid-column-start:1}.panel-grid .g-start-lg-2{grid-column-start:2}.panel-grid .g-start-lg-3{grid-column-start:3}.panel-grid .g-start-lg-4{grid-column-start:4}.panel-grid .g-start-lg-5{grid-column-start:5}.panel-grid .g-start-lg-6{grid-column-start:6}.panel-grid .g-start-lg-7{grid-column-start:7}.panel-grid .g-start-lg-8{grid-column-start:8}.panel-grid .g-start-lg-9{grid-column-start:9}.panel-grid .g-start-lg-10{grid-column-start:10}.panel-grid .g-start-lg-11{grid-column-start:11}.panel-grid .g-start-lg-12{grid-column-start:12}.panel-grid .g-start-lg-13{grid-column-start:13}.panel-grid .g-start-lg-14{grid-column-start:14}.panel-grid .g-start-lg-15{grid-column-start:15}.panel-grid .g-start-lg-16{grid-column-start:16}.panel-grid .g-start-lg-17{grid-column-start:17}.panel-grid .g-start-lg-18{grid-column-start:18}.panel-grid .g-start-lg-19{grid-column-start:19}.panel-grid .g-start-lg-20{grid-column-start:20}.panel-grid .g-start-lg-21{grid-column-start:21}.panel-grid .g-start-lg-22{grid-column-start:22}.panel-grid .g-start-lg-23{grid-column-start:23}}@media(min-width: 1200px){.panel-grid .g-col-xl-1{grid-column:auto/span 1}.panel-grid .g-col-xl-2{grid-column:auto/span 2}.panel-grid .g-col-xl-3{grid-column:auto/span 3}.panel-grid .g-col-xl-4{grid-column:auto/span 4}.panel-grid .g-col-xl-5{grid-column:auto/span 5}.panel-grid .g-col-xl-6{grid-column:auto/span 6}.panel-grid .g-col-xl-7{grid-column:auto/span 7}.panel-grid .g-col-xl-8{grid-column:auto/span 8}.panel-grid .g-col-xl-9{grid-column:auto/span 9}.panel-grid .g-col-xl-10{grid-column:auto/span 10}.panel-grid .g-col-xl-11{grid-column:auto/span 11}.panel-grid .g-col-xl-12{grid-column:auto/span 12}.panel-grid .g-col-xl-13{grid-column:auto/span 13}.panel-grid .g-col-xl-14{grid-column:auto/span 14}.panel-grid .g-col-xl-15{grid-column:auto/span 15}.panel-grid .g-col-xl-16{grid-column:auto/span 16}.panel-grid .g-col-xl-17{grid-column:auto/span 17}.panel-grid .g-col-xl-18{grid-column:auto/span 18}.panel-grid .g-col-xl-19{grid-column:auto/span 19}.panel-grid .g-col-xl-20{grid-column:auto/span 20}.panel-grid .g-col-xl-21{grid-column:auto/span 21}.panel-grid .g-col-xl-22{grid-column:auto/span 22}.panel-grid .g-col-xl-23{grid-column:auto/span 23}.panel-grid .g-col-xl-24{grid-column:auto/span 24}.panel-grid .g-start-xl-1{grid-column-start:1}.panel-grid .g-start-xl-2{grid-column-start:2}.panel-grid .g-start-xl-3{grid-column-start:3}.panel-grid .g-start-xl-4{grid-column-start:4}.panel-grid .g-start-xl-5{grid-column-start:5}.panel-grid .g-start-xl-6{grid-column-start:6}.panel-grid .g-start-xl-7{grid-column-start:7}.panel-grid .g-start-xl-8{grid-column-start:8}.panel-grid .g-start-xl-9{grid-column-start:9}.panel-grid .g-start-xl-10{grid-column-start:10}.panel-grid .g-start-xl-11{grid-column-start:11}.panel-grid .g-start-xl-12{grid-column-start:12}.panel-grid .g-start-xl-13{grid-column-start:13}.panel-grid .g-start-xl-14{grid-column-start:14}.panel-grid .g-start-xl-15{grid-column-start:15}.panel-grid .g-start-xl-16{grid-column-start:16}.panel-grid .g-start-xl-17{grid-column-start:17}.panel-grid .g-start-xl-18{grid-column-start:18}.panel-grid .g-start-xl-19{grid-column-start:19}.panel-grid .g-start-xl-20{grid-column-start:20}.panel-grid .g-start-xl-21{grid-column-start:21}.panel-grid .g-start-xl-22{grid-column-start:22}.panel-grid .g-start-xl-23{grid-column-start:23}}@media(min-width: 1400px){.panel-grid .g-col-xxl-1{grid-column:auto/span 1}.panel-grid .g-col-xxl-2{grid-column:auto/span 2}.panel-grid .g-col-xxl-3{grid-column:auto/span 3}.panel-grid .g-col-xxl-4{grid-column:auto/span 4}.panel-grid .g-col-xxl-5{grid-column:auto/span 5}.panel-grid .g-col-xxl-6{grid-column:auto/span 6}.panel-grid .g-col-xxl-7{grid-column:auto/span 7}.panel-grid .g-col-xxl-8{grid-column:auto/span 8}.panel-grid .g-col-xxl-9{grid-column:auto/span 9}.panel-grid .g-col-xxl-10{grid-column:auto/span 10}.panel-grid .g-col-xxl-11{grid-column:auto/span 11}.panel-grid .g-col-xxl-12{grid-column:auto/span 12}.panel-grid .g-col-xxl-13{grid-column:auto/span 13}.panel-grid .g-col-xxl-14{grid-column:auto/span 14}.panel-grid .g-col-xxl-15{grid-column:auto/span 15}.panel-grid .g-col-xxl-16{grid-column:auto/span 16}.panel-grid .g-col-xxl-17{grid-column:auto/span 17}.panel-grid .g-col-xxl-18{grid-column:auto/span 18}.panel-grid .g-col-xxl-19{grid-column:auto/span 19}.panel-grid .g-col-xxl-20{grid-column:auto/span 20}.panel-grid .g-col-xxl-21{grid-column:auto/span 21}.panel-grid .g-col-xxl-22{grid-column:auto/span 22}.panel-grid .g-col-xxl-23{grid-column:auto/span 23}.panel-grid .g-col-xxl-24{grid-column:auto/span 24}.panel-grid .g-start-xxl-1{grid-column-start:1}.panel-grid .g-start-xxl-2{grid-column-start:2}.panel-grid .g-start-xxl-3{grid-column-start:3}.panel-grid .g-start-xxl-4{grid-column-start:4}.panel-grid .g-start-xxl-5{grid-column-start:5}.panel-grid .g-start-xxl-6{grid-column-start:6}.panel-grid .g-start-xxl-7{grid-column-start:7}.panel-grid .g-start-xxl-8{grid-column-start:8}.panel-grid .g-start-xxl-9{grid-column-start:9}.panel-grid .g-start-xxl-10{grid-column-start:10}.panel-grid .g-start-xxl-11{grid-column-start:11}.panel-grid .g-start-xxl-12{grid-column-start:12}.panel-grid .g-start-xxl-13{grid-column-start:13}.panel-grid .g-start-xxl-14{grid-column-start:14}.panel-grid .g-start-xxl-15{grid-column-start:15}.panel-grid .g-start-xxl-16{grid-column-start:16}.panel-grid .g-start-xxl-17{grid-column-start:17}.panel-grid .g-start-xxl-18{grid-column-start:18}.panel-grid .g-start-xxl-19{grid-column-start:19}.panel-grid .g-start-xxl-20{grid-column-start:20}.panel-grid .g-start-xxl-21{grid-column-start:21}.panel-grid .g-start-xxl-22{grid-column-start:22}.panel-grid .g-start-xxl-23{grid-column-start:23}}main{margin-top:1em;margin-bottom:1em}h1,.h1,h2,.h2{opacity:.9;margin-top:2rem;margin-bottom:1rem;font-weight:600}h1.title,.title.h1{margin-top:0}h2,.h2{border-bottom:1px solid #dee2e6;padding-bottom:.5rem}h3,.h3{font-weight:600}h3,.h3,h4,.h4{opacity:.9;margin-top:1.5rem}h5,.h5,h6,.h6{opacity:.9}.header-section-number{color:#747a7f}.nav-link.active .header-section-number{color:inherit}mark,.mark{padding:0em}.panel-caption,caption,.figure-caption{font-size:.9rem}.panel-caption,.figure-caption,figcaption{color:#747a7f}.table-caption,caption{color:#373a3c}.quarto-layout-cell[data-ref-parent] caption{color:#747a7f}.column-margin figcaption,.margin-caption,div.aside,aside,.column-margin{color:#747a7f;font-size:.825rem}.panel-caption.margin-caption{text-align:inherit}.column-margin.column-container p{margin-bottom:0}.column-margin.column-container>*:not(.collapse){padding-top:.5em;padding-bottom:.5em;display:block}.column-margin.column-container>*.collapse:not(.show){display:none}@media(min-width: 768px){.column-margin.column-container .callout-margin-content:first-child{margin-top:4.5em}.column-margin.column-container .callout-margin-content-simple:first-child{margin-top:3.5em}}.margin-caption>*{padding-top:.5em;padding-bottom:.5em}@media(max-width: 767.98px){.quarto-layout-row{flex-direction:column}}.nav-tabs .nav-item{margin-top:1px}.tab-content{margin-top:0px;border-left:#dee2e6 1px solid;border-right:#dee2e6 1px solid;border-bottom:#dee2e6 1px solid;margin-left:0;padding:1em;margin-bottom:1em}@media(max-width: 767.98px){.layout-sidebar{margin-left:0;margin-right:0}}.panel-sidebar,.panel-sidebar .form-control,.panel-input,.panel-input .form-control,.selectize-dropdown{font-size:.9rem}.panel-sidebar .form-control,.panel-input .form-control{padding-top:.1rem}.tab-pane div.sourceCode{margin-top:0px}.tab-pane>p{padding-top:1em}.tab-content>.tab-pane:not(.active){display:none !important}div.sourceCode{background-color:rgba(233,236,239,.65);border:1px solid rgba(233,236,239,.65);border-radius:.25rem}pre.sourceCode{background-color:rgba(0,0,0,0)}pre.sourceCode{border:none;font-size:.875em;overflow:visible !important;padding:.4em}.callout pre.sourceCode{padding-left:0}div.sourceCode{overflow-y:hidden}.callout div.sourceCode{margin-left:initial}.blockquote{font-size:inherit;padding-left:1rem;padding-right:1.5rem;color:#747a7f}.blockquote h1:first-child,.blockquote .h1:first-child,.blockquote h2:first-child,.blockquote .h2:first-child,.blockquote h3:first-child,.blockquote .h3:first-child,.blockquote h4:first-child,.blockquote .h4:first-child,.blockquote h5:first-child,.blockquote .h5:first-child{margin-top:0}pre{background-color:initial;padding:initial;border:initial}p code:not(.sourceCode),li code:not(.sourceCode),td code:not(.sourceCode){background-color:#f7f7f7;padding:.2em}nav p code:not(.sourceCode),nav li code:not(.sourceCode),nav td code:not(.sourceCode){background-color:rgba(0,0,0,0);padding:0}td code:not(.sourceCode){white-space:pre-wrap}#quarto-embedded-source-code-modal>.modal-dialog{max-width:1000px;padding-left:1.75rem;padding-right:1.75rem}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body{padding:0}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body div.sourceCode{margin:0;padding:.2rem .2rem;border-radius:0px;border:none}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-header{padding:.7rem}.code-tools-button{font-size:1rem;padding:.15rem .15rem;margin-left:5px;color:#6c757d;background-color:rgba(0,0,0,0);transition:initial;cursor:pointer}.code-tools-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>');background-repeat:no-repeat;background-size:1rem 1rem}.code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}#quarto-embedded-source-code-modal .code-copy-button>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/><path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/></svg>')}#quarto-embedded-source-code-modal .code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" viewBox="0 0 16 16"><path d="M13.854 3.646a.5.5 0 0 1 0 .708l-7 7a.5.5 0 0 1-.708 0l-3.5-3.5a.5.5 0 1 1 .708-.708L6.5 10.293l6.646-6.647a.5.5 0 0 1 .708 0z"/></svg>')}.sidebar{will-change:top;transition:top 200ms linear;position:sticky;overflow-y:auto;padding-top:1.2em;max-height:100vh}.sidebar.toc-left,.sidebar.margin-sidebar{top:0px;padding-top:1em}.sidebar.toc-left>*,.sidebar.margin-sidebar>*{padding-top:.5em}.sidebar.quarto-banner-title-block-sidebar>*{padding-top:1.65em}figure .quarto-notebook-link{margin-top:.5em}.quarto-notebook-link{font-size:.75em;color:#6c757d;margin-bottom:1em;text-decoration:none;display:block}.quarto-notebook-link:hover{text-decoration:underline;color:#2780e3}.quarto-notebook-link::before{display:inline-block;height:.75rem;width:.75rem;margin-bottom:0em;margin-right:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(108, 117, 125)" class="bi bi-journal-code" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.646 5.646a.5.5 0 0 1 .708 0l2 2a.5.5 0 0 1 0 .708l-2 2a.5.5 0 0 1-.708-.708L10.293 8 8.646 6.354a.5.5 0 0 1 0-.708zm-1.292 0a.5.5 0 0 0-.708 0l-2 2a.5.5 0 0 0 0 .708l2 2a.5.5 0 0 0 .708-.708L5.707 8l1.647-1.646a.5.5 0 0 0 0-.708z"/><path d="M3 0h10a2 2 0 0 1 2 2v12a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2v-1h1v1a1 1 0 0 0 1 1h10a1 1 0 0 0 1-1V2a1 1 0 0 0-1-1H3a1 1 0 0 0-1 1v1H1V2a2 2 0 0 1 2-2z"/><path d="M1 5v-.5a.5.5 0 0 1 1 0V5h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1zm0 3v-.5a.5.5 0 0 1 1 0V8h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1zm0 3v-.5a.5.5 0 0 1 1 0v.5h.5a.5.5 0 0 1 0 1h-2a.5.5 0 0 1 0-1H1z"/></svg>');background-repeat:no-repeat;background-size:.75rem .75rem}.quarto-alternate-notebooks i.bi,.quarto-alternate-formats i.bi{margin-right:.4em}.quarto-notebook .cell-container{display:flex}.quarto-notebook .cell-container .cell{flex-grow:4}.quarto-notebook .cell-container .cell-decorator{padding-top:1.5em;padding-right:1em;text-align:right}.quarto-notebook h2,.quarto-notebook .h2{border-bottom:none}.sidebar .quarto-alternate-formats a,.sidebar .quarto-alternate-notebooks a{text-decoration:none}.sidebar .quarto-alternate-formats a:hover,.sidebar .quarto-alternate-notebooks a:hover{color:#2780e3}.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2,.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-size:.875rem;font-weight:400;margin-bottom:.5rem;margin-top:.3rem;font-family:inherit;border-bottom:0;padding-bottom:0;padding-top:0px}.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2{margin-top:1rem}.sidebar nav[role=doc-toc]>ul a{border-left:1px solid #e9ecef;padding-left:.6rem}.sidebar .quarto-alternate-notebooks h2>ul a,.sidebar .quarto-alternate-notebooks .h2>ul a,.sidebar .quarto-alternate-formats h2>ul a,.sidebar .quarto-alternate-formats .h2>ul a{border-left:none;padding-left:.6rem}.sidebar .quarto-alternate-notebooks ul a:empty,.sidebar .quarto-alternate-formats ul a:empty,.sidebar nav[role=doc-toc]>ul a:empty{display:none}.sidebar .quarto-alternate-notebooks ul,.sidebar .quarto-alternate-formats ul,.sidebar nav[role=doc-toc] ul{padding-left:0;list-style:none;font-size:.875rem;font-weight:300}.sidebar .quarto-alternate-notebooks ul li a,.sidebar .quarto-alternate-formats ul li a,.sidebar nav[role=doc-toc]>ul li a{line-height:1.1rem;padding-bottom:.2rem;padding-top:.2rem;color:inherit}.sidebar nav[role=doc-toc] ul>li>ul>li>a{padding-left:1.2em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>a{padding-left:2.4em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>a{padding-left:3.6em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:4.8em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:6em}.sidebar nav[role=doc-toc] ul>li>a.active,.sidebar nav[role=doc-toc] ul>li>ul>li>a.active{border-left:1px solid #2780e3;color:#2780e3 !important}.sidebar nav[role=doc-toc] ul>li>a:hover,.sidebar nav[role=doc-toc] ul>li>ul>li>a:hover{color:#2780e3 !important}kbd,.kbd{color:#373a3c;background-color:#f8f9fa;border:1px solid;border-radius:5px;border-color:#dee2e6}div.hanging-indent{margin-left:1em;text-indent:-1em}.citation a,.footnote-ref{text-decoration:none}.footnotes ol{padding-left:1em}.tippy-content>*{margin-bottom:.7em}.tippy-content>*:last-child{margin-bottom:0}.table a{word-break:break-word}.table>thead{border-top-width:1px;border-top-color:#dee2e6;border-bottom:1px solid #b6babc}.callout{margin-top:1.25rem;margin-bottom:1.25rem;border-radius:.25rem;overflow-wrap:break-word}.callout .callout-title-container{overflow-wrap:anywhere}.callout.callout-style-simple{padding:.4em .7em;border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout.callout-style-default{border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout .callout-body-container{flex-grow:1}.callout.callout-style-simple .callout-body{font-size:.9rem;font-weight:400}.callout.callout-style-default .callout-body{font-size:.9rem;font-weight:400}.callout.callout-titled .callout-body{margin-top:.2em}.callout:not(.no-icon).callout-titled.callout-style-simple .callout-body{padding-left:1.6em}.callout.callout-titled>.callout-header{padding-top:.2em;margin-bottom:-0.2em}.callout.callout-style-simple>div.callout-header{border-bottom:none;font-size:.9rem;font-weight:600;opacity:75%}.callout.callout-style-default>div.callout-header{border-bottom:none;font-weight:600;opacity:85%;font-size:.9rem;padding-left:.5em;padding-right:.5em}.callout.callout-style-default div.callout-body{padding-left:.5em;padding-right:.5em}.callout.callout-style-default div.callout-body>:first-child{margin-top:.5em}.callout>div.callout-header[data-bs-toggle=collapse]{cursor:pointer}.callout.callout-style-default .callout-header[aria-expanded=false],.callout.callout-style-default .callout-header[aria-expanded=true]{padding-top:0px;margin-bottom:0px;align-items:center}.callout.callout-titled .callout-body>:last-child:not(.sourceCode),.callout.callout-titled .callout-body>div>:last-child:not(.sourceCode){margin-bottom:.5rem}.callout:not(.callout-titled) .callout-body>:first-child,.callout:not(.callout-titled) .callout-body>div>:first-child{margin-top:.25rem}.callout:not(.callout-titled) .callout-body>:last-child,.callout:not(.callout-titled) .callout-body>div>:last-child{margin-bottom:.2rem}.callout.callout-style-simple .callout-icon::before,.callout.callout-style-simple .callout-toggle::before{height:1rem;width:1rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.callout.callout-style-default .callout-icon::before,.callout.callout-style-default .callout-toggle::before{height:.9rem;width:.9rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:.9rem .9rem}.callout.callout-style-default .callout-toggle::before{margin-top:5px}.callout .callout-btn-toggle .callout-toggle::before{transition:transform .2s linear}.callout .callout-header[aria-expanded=false] .callout-toggle::before{transform:rotate(-90deg)}.callout .callout-header[aria-expanded=true] .callout-toggle::before{transform:none}.callout.callout-style-simple:not(.no-icon) div.callout-icon-container{padding-top:.2em;padding-right:.55em}.callout.callout-style-default:not(.no-icon) div.callout-icon-container{padding-top:.1em;padding-right:.35em}.callout.callout-style-default:not(.no-icon) div.callout-title-container{margin-top:-1px}.callout.callout-style-default.callout-caution:not(.no-icon) div.callout-icon-container{padding-top:.3em;padding-right:.35em}.callout>.callout-body>.callout-icon-container>.no-icon,.callout>.callout-header>.callout-icon-container>.no-icon{display:none}div.callout.callout{border-left-color:#6c757d}div.callout.callout-style-default>.callout-header{background-color:#6c757d}div.callout-note.callout{border-left-color:#2780e3}div.callout-note.callout-style-default>.callout-header{background-color:#e9f2fc}div.callout-note:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %232373cc" class="bi bi-info-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="m8.93 6.588-2.29.287-.082.38.45.083c.294.07.352.176.288.469l-.738 3.468c-.194.897.105 1.319.808 1.319.545 0 1.178-.252 1.465-.598l.088-.416c-.2.176-.492.246-.686.246-.275 0-.375-.193-.304-.533L8.93 6.588zM9 4.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0z"/></svg>');}div.callout-note.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %232373cc" class="bi bi-info-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="m8.93 6.588-2.29.287-.082.38.45.083c.294.07.352.176.288.469l-.738 3.468c-.194.897.105 1.319.808 1.319.545 0 1.178-.252 1.465-.598l.088-.416c-.2.176-.492.246-.686.246-.275 0-.375-.193-.304-.533L8.93 6.588zM9 4.5a1 1 0 1 1-2 0 1 1 0 0 1 2 0z"/></svg>');}div.callout-note .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-tip.callout{border-left-color:#3fb618}div.callout-tip.callout-style-default>.callout-header{background-color:#ecf8e8}div.callout-tip:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %2339a416" class="bi bi-lightbulb" viewBox="0 0 16 16"><path d="M2 6a6 6 0 1 1 10.174 4.31c-.203.196-.359.4-.453.619l-.762 1.769A.5.5 0 0 1 10.5 13a.5.5 0 0 1 0 1 .5.5 0 0 1 0 1l-.224.447a1 1 0 0 1-.894.553H6.618a1 1 0 0 1-.894-.553L5.5 15a.5.5 0 0 1 0-1 .5.5 0 0 1 0-1 .5.5 0 0 1-.46-.302l-.761-1.77a1.964 1.964 0 0 0-.453-.618A5.984 5.984 0 0 1 2 6zm6-5a5 5 0 0 0-3.479 8.592c.263.254.514.564.676.941L5.83 12h4.342l.632-1.467c.162-.377.413-.687.676-.941A5 5 0 0 0 8 1z"/></svg>');}div.callout-tip.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %2339a416" class="bi bi-lightbulb" viewBox="0 0 16 16"><path d="M2 6a6 6 0 1 1 10.174 4.31c-.203.196-.359.4-.453.619l-.762 1.769A.5.5 0 0 1 10.5 13a.5.5 0 0 1 0 1 .5.5 0 0 1 0 1l-.224.447a1 1 0 0 1-.894.553H6.618a1 1 0 0 1-.894-.553L5.5 15a.5.5 0 0 1 0-1 .5.5 0 0 1 0-1 .5.5 0 0 1-.46-.302l-.761-1.77a1.964 1.964 0 0 0-.453-.618A5.984 5.984 0 0 1 2 6zm6-5a5 5 0 0 0-3.479 8.592c.263.254.514.564.676.941L5.83 12h4.342l.632-1.467c.162-.377.413-.687.676-.941A5 5 0 0 0 8 1z"/></svg>');}div.callout-tip .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-warning.callout{border-left-color:#ff7518}div.callout-warning.callout-style-default>.callout-header{background-color:#fff1e8}div.callout-warning:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e66916" class="bi bi-exclamation-triangle" viewBox="0 0 16 16"><path d="M7.938 2.016A.13.13 0 0 1 8.002 2a.13.13 0 0 1 .063.016.146.146 0 0 1 .054.057l6.857 11.667c.036.06.035.124.002.183a.163.163 0 0 1-.054.06.116.116 0 0 1-.066.017H1.146a.115.115 0 0 1-.066-.017.163.163 0 0 1-.054-.06.176.176 0 0 1 .002-.183L7.884 2.073a.147.147 0 0 1 .054-.057zm1.044-.45a1.13 1.13 0 0 0-1.96 0L.165 13.233c-.457.778.091 1.767.98 1.767h13.713c.889 0 1.438-.99.98-1.767L8.982 1.566z"/><path d="M7.002 12a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 5.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 5.995z"/></svg>');}div.callout-warning.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e66916" class="bi bi-exclamation-triangle" viewBox="0 0 16 16"><path d="M7.938 2.016A.13.13 0 0 1 8.002 2a.13.13 0 0 1 .063.016.146.146 0 0 1 .054.057l6.857 11.667c.036.06.035.124.002.183a.163.163 0 0 1-.054.06.116.116 0 0 1-.066.017H1.146a.115.115 0 0 1-.066-.017.163.163 0 0 1-.054-.06.176.176 0 0 1 .002-.183L7.884 2.073a.147.147 0 0 1 .054-.057zm1.044-.45a1.13 1.13 0 0 0-1.96 0L.165 13.233c-.457.778.091 1.767.98 1.767h13.713c.889 0 1.438-.99.98-1.767L8.982 1.566z"/><path d="M7.002 12a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 5.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 5.995z"/></svg>');}div.callout-warning .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-caution.callout{border-left-color:#f0ad4e}div.callout-caution.callout-style-default>.callout-header{background-color:#fef7ed}div.callout-caution:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23d89c46" class="bi bi-cone-striped" viewBox="0 0 16 16"><path d="M9.97 4.88l.953 3.811C10.158 8.878 9.14 9 8 9c-1.14 0-2.159-.122-2.923-.309L6.03 4.88C6.635 4.957 7.3 5 8 5s1.365-.043 1.97-.12zm-.245-.978L8.97.88C8.718-.13 7.282-.13 7.03.88L6.274 3.9C6.8 3.965 7.382 4 8 4c.618 0 1.2-.036 1.725-.098zm4.396 8.613a.5.5 0 0 1 .037.96l-6 2a.5.5 0 0 1-.316 0l-6-2a.5.5 0 0 1 .037-.96l2.391-.598.565-2.257c.862.212 1.964.339 3.165.339s2.303-.127 3.165-.339l.565 2.257 2.391.598z"/></svg>');}div.callout-caution.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23d89c46" class="bi bi-cone-striped" viewBox="0 0 16 16"><path d="M9.97 4.88l.953 3.811C10.158 8.878 9.14 9 8 9c-1.14 0-2.159-.122-2.923-.309L6.03 4.88C6.635 4.957 7.3 5 8 5s1.365-.043 1.97-.12zm-.245-.978L8.97.88C8.718-.13 7.282-.13 7.03.88L6.274 3.9C6.8 3.965 7.382 4 8 4c.618 0 1.2-.036 1.725-.098zm4.396 8.613a.5.5 0 0 1 .037.96l-6 2a.5.5 0 0 1-.316 0l-6-2a.5.5 0 0 1 .037-.96l2.391-.598.565-2.257c.862.212 1.964.339 3.165.339s2.303-.127 3.165-.339l.565 2.257 2.391.598z"/></svg>');}div.callout-caution .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}div.callout-important.callout{border-left-color:#ff0039}div.callout-important.callout-style-default>.callout-header{background-color:#ffe6eb}div.callout-important:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e60033" class="bi bi-exclamation-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="M7.002 11a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 4.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 4.995z"/></svg>');}div.callout-important.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" style="fill: %23e60033" class="bi bi-exclamation-circle" viewBox="0 0 16 16"><path d="M8 15A7 7 0 1 1 8 1a7 7 0 0 1 0 14zm0 1A8 8 0 1 0 8 0a8 8 0 0 0 0 16z"/><path d="M7.002 11a1 1 0 1 1 2 0 1 1 0 0 1-2 0zM7.1 4.995a.905.905 0 1 1 1.8 0l-.35 3.507a.552.552 0 0 1-1.1 0L7.1 4.995z"/></svg>');}div.callout-important .callout-toggle::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(55, 58, 60)" class="bi bi-chevron-down" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z"/></svg>')}.quarto-toggle-container{display:flex;align-items:center}.quarto-reader-toggle .bi::before,.quarto-color-scheme-toggle .bi::before{display:inline-block;height:1rem;width:1rem;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.sidebar-navigation{padding-left:20px}.navbar .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.navbar .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(84, 85, 85, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}.sidebar-navigation .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(79, 84, 87, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.sidebar-navigation .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(79, 84, 87, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}.quarto-sidebar-toggle{border-color:#dee2e6;border-bottom-left-radius:.25rem;border-bottom-right-radius:.25rem;border-style:solid;border-width:1px;overflow:hidden;border-top-width:0px;padding-top:0px !important}.quarto-sidebar-toggle-title{cursor:pointer;padding-bottom:2px;margin-left:.25em;text-align:center;font-weight:400;font-size:.775em}#quarto-content .quarto-sidebar-toggle{background:#fafafa}#quarto-content .quarto-sidebar-toggle-title{color:#373a3c}.quarto-sidebar-toggle-icon{color:#dee2e6;margin-right:.5em;float:right;transition:transform .2s ease}.quarto-sidebar-toggle-icon::before{padding-top:5px}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-icon{transform:rotate(-180deg)}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-title{border-bottom:solid #dee2e6 1px}.quarto-sidebar-toggle-contents{background-color:#fff;padding-right:10px;padding-left:10px;margin-top:0px !important;transition:max-height .5s ease}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-contents{padding-top:1em;padding-bottom:10px}.quarto-sidebar-toggle:not(.expanded) .quarto-sidebar-toggle-contents{padding-top:0px !important;padding-bottom:0px}nav[role=doc-toc]{z-index:1020}#quarto-sidebar>*,nav[role=doc-toc]>*{transition:opacity .1s ease,border .1s ease}#quarto-sidebar.slow>*,nav[role=doc-toc].slow>*{transition:opacity .4s ease,border .4s ease}.quarto-color-scheme-toggle:not(.alternate).top-right .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(142, 148, 151, 1)" class="bi bi-toggle-off" viewBox="0 0 16 16"><path d="M11 4a4 4 0 0 1 0 8H8a4.992 4.992 0 0 0 2-4 4.992 4.992 0 0 0-2-4h3zm-6 8a4 4 0 1 1 0-8 4 4 0 0 1 0 8zM0 8a5 5 0 0 0 5 5h6a5 5 0 0 0 0-10H5a5 5 0 0 0-5 5z"/></svg>')}.quarto-color-scheme-toggle.alternate.top-right .bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgba(104, 109, 113, 1)" class="bi bi-toggle-on" viewBox="0 0 16 16"><path d="M5 3a5 5 0 0 0 0 10h6a5 5 0 0 0 0-10H5zm6 9a4 4 0 1 1 0-8 4 4 0 0 1 0 8z"/></svg>')}#quarto-appendix.default{border-top:1px solid #dee2e6}#quarto-appendix.default{background-color:#fff;padding-top:1.5em;margin-top:2em;z-index:998}#quarto-appendix.default .quarto-appendix-heading{margin-top:0;line-height:1.4em;font-weight:600;opacity:.9;border-bottom:none;margin-bottom:0}#quarto-appendix.default .footnotes ol,#quarto-appendix.default .footnotes ol li>p:last-of-type,#quarto-appendix.default .quarto-appendix-contents>p:last-of-type{margin-bottom:0}#quarto-appendix.default .quarto-appendix-secondary-label{margin-bottom:.4em}#quarto-appendix.default .quarto-appendix-bibtex{font-size:.7em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-bibtex code.sourceCode{white-space:pre-wrap}#quarto-appendix.default .quarto-appendix-citeas{font-size:.9em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-heading{font-size:1em !important}#quarto-appendix.default *[role=doc-endnotes]>ol,#quarto-appendix.default .quarto-appendix-contents>*:not(h2):not(.h2){font-size:.9em}#quarto-appendix.default section{padding-bottom:1.5em}#quarto-appendix.default section *[role=doc-endnotes],#quarto-appendix.default section>*:not(a){opacity:.9;word-wrap:break-word}.btn.btn-quarto,div.cell-output-display .btn-quarto{color:#cbcccc;background-color:#373a3c;border-color:#373a3c}.btn.btn-quarto:hover,div.cell-output-display .btn-quarto:hover{color:#cbcccc;background-color:#555859;border-color:#4b4e50}.btn-check:focus+.btn.btn-quarto,.btn.btn-quarto:focus,.btn-check:focus+div.cell-output-display .btn-quarto,div.cell-output-display .btn-quarto:focus{color:#cbcccc;background-color:#555859;border-color:#4b4e50;box-shadow:0 0 0 .25rem rgba(77,80,82,.5)}.btn-check:checked+.btn.btn-quarto,.btn-check:active+.btn.btn-quarto,.btn.btn-quarto:active,.btn.btn-quarto.active,.show>.btn.btn-quarto.dropdown-toggle,.btn-check:checked+div.cell-output-display .btn-quarto,.btn-check:active+div.cell-output-display .btn-quarto,div.cell-output-display .btn-quarto:active,div.cell-output-display .btn-quarto.active,.show>div.cell-output-display .btn-quarto.dropdown-toggle{color:#fff;background-color:#5f6163;border-color:#4b4e50}.btn-check:checked+.btn.btn-quarto:focus,.btn-check:active+.btn.btn-quarto:focus,.btn.btn-quarto:active:focus,.btn.btn-quarto.active:focus,.show>.btn.btn-quarto.dropdown-toggle:focus,.btn-check:checked+div.cell-output-display .btn-quarto:focus,.btn-check:active+div.cell-output-display .btn-quarto:focus,div.cell-output-display .btn-quarto:active:focus,div.cell-output-display .btn-quarto.active:focus,.show>div.cell-output-display .btn-quarto.dropdown-toggle:focus{box-shadow:0 0 0 .25rem rgba(77,80,82,.5)}.btn.btn-quarto:disabled,.btn.btn-quarto.disabled,div.cell-output-display .btn-quarto:disabled,div.cell-output-display .btn-quarto.disabled{color:#fff;background-color:#373a3c;border-color:#373a3c}nav.quarto-secondary-nav.color-navbar{background-color:#f8f9fa;color:#545555}nav.quarto-secondary-nav.color-navbar h1,nav.quarto-secondary-nav.color-navbar .h1,nav.quarto-secondary-nav.color-navbar .quarto-btn-toggle{color:#545555}@media(max-width: 991.98px){body.nav-sidebar .quarto-title-banner,body.nav-sidebar .quarto-title-banner{display:none}}p.subtitle{margin-top:.25em;margin-bottom:.5em}code a:any-link{color:inherit;text-decoration-color:#6c757d}/*! light */div.observablehq table thead tr th{background-color:var(--bs-body-bg)}input,button,select,optgroup,textarea{background-color:var(--bs-body-bg)}.code-annotated .code-copy-button{margin-right:1.25em;margin-top:0;padding-bottom:0;padding-top:3px}.code-annotation-gutter-bg{background-color:#fff}.code-annotation-gutter{background-color:rgba(233,236,239,.65)}.code-annotation-gutter,.code-annotation-gutter-bg{height:100%;width:calc(20px + .5em);position:absolute;top:0;right:0}dl.code-annotation-container-grid dt{margin-right:1em;margin-top:.25rem}dl.code-annotation-container-grid dt{font-family:var(--bs-font-monospace);color:#4f5457;border:solid #4f5457 1px;border-radius:50%;height:22px;width:22px;line-height:22px;font-size:11px;text-align:center;vertical-align:middle;text-decoration:none}dl.code-annotation-container-grid dt[data-target-cell]{cursor:pointer}dl.code-annotation-container-grid dt[data-target-cell].code-annotation-active{color:#fff;border:solid #aaa 1px;background-color:#aaa}pre.code-annotation-code{padding-top:0;padding-bottom:0}pre.code-annotation-code code{z-index:3}#code-annotation-line-highlight-gutter{width:100%;border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}#code-annotation-line-highlight{margin-left:-4em;width:calc(100% + 4em);border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#e9ecef;font-weight:bolder}code.sourceCode .code-annotation-anchor{font-family:var(--bs-font-monospace);color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;height:18px;width:18px;font-size:9px;margin-top:2px}code.sourceCode button.code-annotation-anchor{padding:2px}code.sourceCode a.code-annotation-anchor{line-height:18px;text-align:center;vertical-align:middle;cursor:default;text-decoration:none}@media print{.page-columns .column-screen-inset{grid-column:page-start-inset/page-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:page-start/page-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:page-start/body-content-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/page-end;z-index:998;transform:translate3d(0, 0, 0)}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:page-start-inset/page-end-inset;padding:1em;background:#f8f9fa;z-index:998;transform:translate3d(0, 0, 0);margin-bottom:1em}}.quarto-video{margin-bottom:1em}.table>thead{border-top-width:0}.table>:not(caption)>*:not(:last-child)>*{border-bottom-color:#ebeced;border-bottom-style:solid;border-bottom-width:1px}.table>:not(:first-child){border-top:1px solid #b6babc;border-bottom:1px solid inherit}.table tbody{border-bottom-color:#b6babc}a.external:after{display:inline-block;height:.75rem;width:.75rem;margin-bottom:.15em;margin-left:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(39, 128, 227)" class="bi bi-box-arrow-up-right" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.636 3.5a.5.5 0 0 0-.5-.5H1.5A1.5 1.5 0 0 0 0 4.5v10A1.5 1.5 0 0 0 1.5 16h10a1.5 1.5 0 0 0 1.5-1.5V7.864a.5.5 0 0 0-1 0V14.5a.5.5 0 0 1-.5.5h-10a.5.5 0 0 1-.5-.5v-10a.5.5 0 0 1 .5-.5h6.636a.5.5 0 0 0 .5-.5z"/><path fill-rule="evenodd" d="M16 .5a.5.5 0 0 0-.5-.5h-5a.5.5 0 0 0 0 1h3.793L6.146 9.146a.5.5 0 1 0 .708.708L15 1.707V5.5a.5.5 0 0 0 1 0v-5z"/></svg>');background-repeat:no-repeat;background-size:.75rem .75rem}div.sourceCode code a.external:after{content:none}a.external:after:hover{cursor:pointer}.quarto-ext-icon{display:inline-block;font-size:.75em;padding-left:.3em}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file,.code-with-filename .code-with-filename-file pre{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file,.quarto-dark .code-with-filename .code-with-filename-file pre{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.quarto-title-banner{margin-bottom:1em;color:#545555;background:#f8f9fa}.quarto-title-banner .code-tools-button{color:#878888}.quarto-title-banner .code-tools-button:hover{color:#545555}.quarto-title-banner .code-tools-button>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(135, 136, 136)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}.quarto-title-banner .code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="rgb(84, 85, 85)" viewBox="0 0 16 16"><path d="M10.478 1.647a.5.5 0 1 0-.956-.294l-4 13a.5.5 0 0 0 .956.294l4-13zM4.854 4.146a.5.5 0 0 1 0 .708L1.707 8l3.147 3.146a.5.5 0 0 1-.708.708l-3.5-3.5a.5.5 0 0 1 0-.708l3.5-3.5a.5.5 0 0 1 .708 0zm6.292 0a.5.5 0 0 0 0 .708L14.293 8l-3.147 3.146a.5.5 0 0 0 .708.708l3.5-3.5a.5.5 0 0 0 0-.708l-3.5-3.5a.5.5 0 0 0-.708 0z"/></svg>')}.quarto-title-banner .quarto-title .title{font-weight:600}.quarto-title-banner .quarto-categories{margin-top:.75em}@media(min-width: 992px){.quarto-title-banner{padding-top:2.5em;padding-bottom:2.5em}}@media(max-width: 991.98px){.quarto-title-banner{padding-top:1em;padding-bottom:1em}}main.quarto-banner-title-block>section:first-child>h2,main.quarto-banner-title-block>section:first-child>.h2,main.quarto-banner-title-block>section:first-child>h3,main.quarto-banner-title-block>section:first-child>.h3,main.quarto-banner-title-block>section:first-child>h4,main.quarto-banner-title-block>section:first-child>.h4{margin-top:0}.quarto-title .quarto-categories{display:flex;flex-wrap:wrap;row-gap:.5em;column-gap:.4em;padding-bottom:.5em;margin-top:.75em}.quarto-title .quarto-categories .quarto-category{padding:.25em .75em;font-size:.65em;text-transform:uppercase;border:solid 1px;border-radius:.25rem;opacity:.6}.quarto-title .quarto-categories .quarto-category a{color:inherit}#title-block-header.quarto-title-block.default .quarto-title-meta{display:grid;grid-template-columns:repeat(2, 1fr)}#title-block-header.quarto-title-block.default .quarto-title .title{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-author-orcid img{margin-top:-5px}#title-block-header.quarto-title-block.default .quarto-description p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p,#title-block-header.quarto-title-block.default .quarto-title-authors p,#title-block-header.quarto-title-block.default .quarto-title-affiliations p{margin-bottom:.1em}#title-block-header.quarto-title-block.default .quarto-title-meta-heading{text-transform:uppercase;margin-top:1em;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-contents{font-size:.9em}#title-block-header.quarto-title-block.default .quarto-title-meta-contents a{color:#373a3c}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p.affiliation:last-of-type{margin-bottom:.7em}#title-block-header.quarto-title-block.default p.affiliation{margin-bottom:.1em}#title-block-header.quarto-title-block.default .description,#title-block-header.quarto-title-block.default .abstract{margin-top:0}#title-block-header.quarto-title-block.default .description>p,#title-block-header.quarto-title-block.default .abstract>p{font-size:.9em}#title-block-header.quarto-title-block.default .description>p:last-of-type,#title-block-header.quarto-title-block.default .abstract>p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .description .abstract-title,#title-block-header.quarto-title-block.default .abstract .abstract-title{margin-top:1em;text-transform:uppercase;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-author{display:grid;grid-template-columns:1fr 1fr}.quarto-title-tools-only{display:flex;justify-content:right}body{-webkit-font-smoothing:antialiased}.badge.bg-light{color:#373a3c}.progress .progress-bar{font-size:8px;line-height:8px}/*# sourceMappingURL=3e9908a2b8dd080a40c4a116c9d9e9f9.css.map */
diff --git a/docs/site_libs/bootstrap/bootstrap.min.js b/docs/site_libs/bootstrap/bootstrap.min.js
index cc0a255..e8f21f7 100644
--- a/docs/site_libs/bootstrap/bootstrap.min.js
+++ b/docs/site_libs/bootstrap/bootstrap.min.js
@@ -1,7 +1,7 @@
 /*!
-  * Bootstrap v5.1.3 (https://getbootstrap.com/)
-  * Copyright 2011-2021 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)
+  * Bootstrap v5.3.1 (https://getbootstrap.com/)
+  * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)
   * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)
   */
-!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t="transitionend",e=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return e},i=t=>{const i=e(t);return i&&document.querySelector(i)?i:null},n=t=>{const i=e(t);return i?document.querySelector(i):null},s=e=>{e.dispatchEvent(new Event(t))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(t):null,a=(t,e,i)=>{Object.keys(i).forEach((n=>{const s=i[n],r=e[n],a=r&&o(r)?"element":null==(l=r)?`${l}`:{}.toString.call(l).match(/\s([a-z]+)/i)[1].toLowerCase();var l;if(!new RegExp(s).test(a))throw new TypeError(`${t.toUpperCase()}: Option "${n}" provided type "${a}" but expected type "${s}".`)}))},l=t=>!(!o(t)||0===t.getClientRects().length)&&"visible"===getComputedStyle(t).getPropertyValue("visibility"),c=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),h=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?h(t.parentNode):null},d=()=>{},u=t=>{t.offsetHeight},f=()=>{const{jQuery:t}=window;return t&&!document.body.hasAttribute("data-bs-no-jquery")?t:null},p=[],m=()=>"rtl"===document.documentElement.dir,g=t=>{var e;e=()=>{const e=f();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(p.length||document.addEventListener("DOMContentLoaded",(()=>{p.forEach((t=>t()))})),p.push(e)):e()},_=t=>{"function"==typeof t&&t()},b=(e,i,n=!0)=>{if(!n)return void _(e);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(i)+5;let r=!1;const a=({target:n})=>{n===i&&(r=!0,i.removeEventListener(t,a),_(e))};i.addEventListener(t,a),setTimeout((()=>{r||s(i)}),o)},v=(t,e,i,n)=>{let s=t.indexOf(e);if(-1===s)return t[!i&&n?t.length-1:0];const o=t.length;return s+=i?1:-1,n&&(s=(s+o)%o),t[Math.max(0,Math.min(s,o-1))]},y=/[^.]*(?=\..*)\.|.*/,w=/\..*/,E=/::\d+$/,A={};let T=1;const O={mouseenter:"mouseover",mouseleave:"mouseout"},C=/^(mouseenter|mouseleave)/i,k=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function L(t,e){return e&&`${e}::${T++}`||t.uidEvent||T++}function x(t){const e=L(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function D(t,e,i=null){const n=Object.keys(t);for(let s=0,o=n.length;s<o;s++){const o=t[n[s]];if(o.originalHandler===e&&o.delegationSelector===i)return o}return null}function S(t,e,i){const n="string"==typeof e,s=n?i:e;let o=P(t);return k.has(o)||(o=t),[n,s,o]}function N(t,e,i,n,s){if("string"!=typeof e||!t)return;if(i||(i=n,n=null),C.test(e)){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};n?n=t(n):i=t(i)}const[o,r,a]=S(e,i,n),l=x(t),c=l[a]||(l[a]={}),h=D(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=L(r,e.replace(y,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(let a=o.length;a--;)if(o[a]===r)return s.delegateTarget=r,n.oneOff&&j.off(t,s.type,e,i),i.apply(r,[s]);return null}}(t,i,n):function(t,e){return function i(n){return n.delegateTarget=t,i.oneOff&&j.off(t,n.type,e),e.apply(t,[n])}}(t,i);u.delegationSelector=o?i:null,u.originalHandler=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function I(t,e,i,n,s){const o=D(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function P(t){return t=t.replace(w,""),O[t]||t}const j={on(t,e,i,n){N(t,e,i,n,!1)},one(t,e,i,n){N(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=S(e,i,n),a=r!==e,l=x(t),c=e.startsWith(".");if(void 0!==o){if(!l||!l[r])return;return void I(t,l,r,o,s?i:null)}c&&Object.keys(l).forEach((i=>{!function(t,e,i,n){const s=e[i]||{};Object.keys(s).forEach((o=>{if(o.includes(n)){const n=s[o];I(t,e,i,n.originalHandler,n.delegationSelector)}}))}(t,l,i,e.slice(1))}));const h=l[r]||{};Object.keys(h).forEach((i=>{const n=i.replace(E,"");if(!a||e.includes(n)){const e=h[i];I(t,l,r,e.originalHandler,e.delegationSelector)}}))},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=f(),s=P(e),o=e!==s,r=k.has(s);let a,l=!0,c=!0,h=!1,d=null;return o&&n&&(a=n.Event(e,i),n(t).trigger(a),l=!a.isPropagationStopped(),c=!a.isImmediatePropagationStopped(),h=a.isDefaultPrevented()),r?(d=document.createEvent("HTMLEvents"),d.initEvent(s,l,!0)):d=new CustomEvent(e,{bubbles:l,cancelable:!0}),void 0!==i&&Object.keys(i).forEach((t=>{Object.defineProperty(d,t,{get:()=>i[t]})})),h&&d.preventDefault(),c&&t.dispatchEvent(d),d.defaultPrevented&&void 0!==a&&a.preventDefault(),d}},M=new Map,H={set(t,e,i){M.has(t)||M.set(t,new Map);const n=M.get(t);n.has(e)||0===n.size?n.set(e,i):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(n.keys())[0]}.`)},get:(t,e)=>M.has(t)&&M.get(t).get(e)||null,remove(t,e){if(!M.has(t))return;const i=M.get(t);i.delete(e),0===i.size&&M.delete(t)}};class B{constructor(t){(t=r(t))&&(this._element=t,H.set(this._element,this.constructor.DATA_KEY,this))}dispose(){H.remove(this._element,this.constructor.DATA_KEY),j.off(this._element,this.constructor.EVENT_KEY),Object.getOwnPropertyNames(this).forEach((t=>{this[t]=null}))}_queueCallback(t,e,i=!0){b(t,e,i)}static getInstance(t){return H.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.1.3"}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}}const R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,s=t.NAME;j.on(document,i,`[data-bs-dismiss="${s}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),c(this))return;const o=n(this)||this.closest(`.${s}`);t.getOrCreateInstance(o)[e]()}))};class W extends B{static get NAME(){return"alert"}close(){if(j.trigger(this._element,"close.bs.alert").defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),j.trigger(this._element,"closed.bs.alert"),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=W.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(W,"close"),g(W);const $='[data-bs-toggle="button"]';class z extends B{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=z.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}function q(t){return"true"===t||"false"!==t&&(t===Number(t).toString()?Number(t):""===t||"null"===t?null:t)}function F(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}j.on(document,"click.bs.button.data-api",$,(t=>{t.preventDefault();const e=t.target.closest($);z.getOrCreateInstance(e).toggle()})),g(z);const U={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${F(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${F(e)}`)},getDataAttributes(t){if(!t)return{};const e={};return Object.keys(t.dataset).filter((t=>t.startsWith("bs"))).forEach((i=>{let n=i.replace(/^bs/,"");n=n.charAt(0).toLowerCase()+n.slice(1,n.length),e[n]=q(t.dataset[i])})),e},getDataAttribute:(t,e)=>q(t.getAttribute(`data-bs-${F(e)}`)),offset(t){const e=t.getBoundingClientRect();return{top:e.top+window.pageYOffset,left:e.left+window.pageXOffset}},position:t=>({top:t.offsetTop,left:t.offsetLeft})},V={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode;for(;n&&n.nodeType===Node.ELEMENT_NODE&&3!==n.nodeType;)n.matches(e)&&i.push(n),n=n.parentNode;return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(", ");return this.find(e,t).filter((t=>!c(t)&&l(t)))}},K="carousel",X={interval:5e3,keyboard:!0,slide:!1,pause:"hover",wrap:!0,touch:!0},Y={interval:"(number|boolean)",keyboard:"boolean",slide:"(boolean|string)",pause:"(string|boolean)",wrap:"boolean",touch:"boolean"},Q="next",G="prev",Z="left",J="right",tt={ArrowLeft:J,ArrowRight:Z},et="slid.bs.carousel",it="active",nt=".active.carousel-item";class st extends B{constructor(t,e){super(t),this._items=null,this._interval=null,this._activeElement=null,this._isPaused=!1,this._isSliding=!1,this.touchTimeout=null,this.touchStartX=0,this.touchDeltaX=0,this._config=this._getConfig(e),this._indicatorsElement=V.findOne(".carousel-indicators",this._element),this._touchSupported="ontouchstart"in document.documentElement||navigator.maxTouchPoints>0,this._pointerEvent=Boolean(window.PointerEvent),this._addEventListeners()}static get Default(){return X}static get NAME(){return K}next(){this._slide(Q)}nextWhenVisible(){!document.hidden&&l(this._element)&&this.next()}prev(){this._slide(G)}pause(t){t||(this._isPaused=!0),V.findOne(".carousel-item-next, .carousel-item-prev",this._element)&&(s(this._element),this.cycle(!0)),clearInterval(this._interval),this._interval=null}cycle(t){t||(this._isPaused=!1),this._interval&&(clearInterval(this._interval),this._interval=null),this._config&&this._config.interval&&!this._isPaused&&(this._updateInterval(),this._interval=setInterval((document.visibilityState?this.nextWhenVisible:this.next).bind(this),this._config.interval))}to(t){this._activeElement=V.findOne(nt,this._element);const e=this._getItemIndex(this._activeElement);if(t>this._items.length-1||t<0)return;if(this._isSliding)return void j.one(this._element,et,(()=>this.to(t)));if(e===t)return this.pause(),void this.cycle();const i=t>e?Q:G;this._slide(i,this._items[t])}_getConfig(t){return t={...X,...U.getDataAttributes(this._element),..."object"==typeof t?t:{}},a(K,t,Y),t}_handleSwipe(){const t=Math.abs(this.touchDeltaX);if(t<=40)return;const e=t/this.touchDeltaX;this.touchDeltaX=0,e&&this._slide(e>0?J:Z)}_addEventListeners(){this._config.keyboard&&j.on(this._element,"keydown.bs.carousel",(t=>this._keydown(t))),"hover"===this._config.pause&&(j.on(this._element,"mouseenter.bs.carousel",(t=>this.pause(t))),j.on(this._element,"mouseleave.bs.carousel",(t=>this.cycle(t)))),this._config.touch&&this._touchSupported&&this._addTouchEventListeners()}_addTouchEventListeners(){const t=t=>this._pointerEvent&&("pen"===t.pointerType||"touch"===t.pointerType),e=e=>{t(e)?this.touchStartX=e.clientX:this._pointerEvent||(this.touchStartX=e.touches[0].clientX)},i=t=>{this.touchDeltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this.touchStartX},n=e=>{t(e)&&(this.touchDeltaX=e.clientX-this.touchStartX),this._handleSwipe(),"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((t=>this.cycle(t)),500+this._config.interval))};V.find(".carousel-item img",this._element).forEach((t=>{j.on(t,"dragstart.bs.carousel",(t=>t.preventDefault()))})),this._pointerEvent?(j.on(this._element,"pointerdown.bs.carousel",(t=>e(t))),j.on(this._element,"pointerup.bs.carousel",(t=>n(t))),this._element.classList.add("pointer-event")):(j.on(this._element,"touchstart.bs.carousel",(t=>e(t))),j.on(this._element,"touchmove.bs.carousel",(t=>i(t))),j.on(this._element,"touchend.bs.carousel",(t=>n(t))))}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=tt[t.key];e&&(t.preventDefault(),this._slide(e))}_getItemIndex(t){return this._items=t&&t.parentNode?V.find(".carousel-item",t.parentNode):[],this._items.indexOf(t)}_getItemByOrder(t,e){const i=t===Q;return v(this._items,e,i,this._config.wrap)}_triggerSlideEvent(t,e){const i=this._getItemIndex(t),n=this._getItemIndex(V.findOne(nt,this._element));return j.trigger(this._element,"slide.bs.carousel",{relatedTarget:t,direction:e,from:n,to:i})}_setActiveIndicatorElement(t){if(this._indicatorsElement){const e=V.findOne(".active",this._indicatorsElement);e.classList.remove(it),e.removeAttribute("aria-current");const i=V.find("[data-bs-target]",this._indicatorsElement);for(let e=0;e<i.length;e++)if(Number.parseInt(i[e].getAttribute("data-bs-slide-to"),10)===this._getItemIndex(t)){i[e].classList.add(it),i[e].setAttribute("aria-current","true");break}}}_updateInterval(){const t=this._activeElement||V.findOne(nt,this._element);if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);e?(this._config.defaultInterval=this._config.defaultInterval||this._config.interval,this._config.interval=e):this._config.interval=this._config.defaultInterval||this._config.interval}_slide(t,e){const i=this._directionToOrder(t),n=V.findOne(nt,this._element),s=this._getItemIndex(n),o=e||this._getItemByOrder(i,n),r=this._getItemIndex(o),a=Boolean(this._interval),l=i===Q,c=l?"carousel-item-start":"carousel-item-end",h=l?"carousel-item-next":"carousel-item-prev",d=this._orderToDirection(i);if(o&&o.classList.contains(it))return void(this._isSliding=!1);if(this._isSliding)return;if(this._triggerSlideEvent(o,d).defaultPrevented)return;if(!n||!o)return;this._isSliding=!0,a&&this.pause(),this._setActiveIndicatorElement(o),this._activeElement=o;const f=()=>{j.trigger(this._element,et,{relatedTarget:o,direction:d,from:s,to:r})};if(this._element.classList.contains("slide")){o.classList.add(h),u(o),n.classList.add(c),o.classList.add(c);const t=()=>{o.classList.remove(c,h),o.classList.add(it),n.classList.remove(it,h,c),this._isSliding=!1,setTimeout(f,0)};this._queueCallback(t,n,!0)}else n.classList.remove(it),o.classList.add(it),this._isSliding=!1,f();a&&this.cycle()}_directionToOrder(t){return[J,Z].includes(t)?m()?t===Z?G:Q:t===Z?Q:G:t}_orderToDirection(t){return[Q,G].includes(t)?m()?t===G?Z:J:t===G?J:Z:t}static carouselInterface(t,e){const i=st.getOrCreateInstance(t,e);let{_config:n}=i;"object"==typeof e&&(n={...n,...e});const s="string"==typeof e?e:n.slide;if("number"==typeof e)i.to(e);else if("string"==typeof s){if(void 0===i[s])throw new TypeError(`No method named "${s}"`);i[s]()}else n.interval&&n.ride&&(i.pause(),i.cycle())}static jQueryInterface(t){return this.each((function(){st.carouselInterface(this,t)}))}static dataApiClickHandler(t){const e=n(this);if(!e||!e.classList.contains("carousel"))return;const i={...U.getDataAttributes(e),...U.getDataAttributes(this)},s=this.getAttribute("data-bs-slide-to");s&&(i.interval=!1),st.carouselInterface(e,i),s&&st.getInstance(e).to(s),t.preventDefault()}}j.on(document,"click.bs.carousel.data-api","[data-bs-slide], [data-bs-slide-to]",st.dataApiClickHandler),j.on(window,"load.bs.carousel.data-api",(()=>{const t=V.find('[data-bs-ride="carousel"]');for(let e=0,i=t.length;e<i;e++)st.carouselInterface(t[e],st.getInstance(t[e]))})),g(st);const ot="collapse",rt={toggle:!0,parent:null},at={toggle:"boolean",parent:"(null|element)"},lt="show",ct="collapse",ht="collapsing",dt="collapsed",ut=":scope .collapse .collapse",ft='[data-bs-toggle="collapse"]';class pt extends B{constructor(t,e){super(t),this._isTransitioning=!1,this._config=this._getConfig(e),this._triggerArray=[];const n=V.find(ft);for(let t=0,e=n.length;t<e;t++){const e=n[t],s=i(e),o=V.find(s).filter((t=>t===this._element));null!==s&&o.length&&(this._selector=s,this._triggerArray.push(e))}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return rt}static get NAME(){return ot}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t,e=[];if(this._config.parent){const t=V.find(ut,this._config.parent);e=V.find(".collapse.show, .collapse.collapsing",this._config.parent).filter((e=>!t.includes(e)))}const i=V.findOne(this._selector);if(e.length){const n=e.find((t=>i!==t));if(t=n?pt.getInstance(n):null,t&&t._isTransitioning)return}if(j.trigger(this._element,"show.bs.collapse").defaultPrevented)return;e.forEach((e=>{i!==e&&pt.getOrCreateInstance(e,{toggle:!1}).hide(),t||H.set(e,"bs.collapse",null)}));const n=this._getDimension();this._element.classList.remove(ct),this._element.classList.add(ht),this._element.style[n]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const s=`scroll${n[0].toUpperCase()+n.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(ht),this._element.classList.add(ct,lt),this._element.style[n]="",j.trigger(this._element,"shown.bs.collapse")}),this._element,!0),this._element.style[n]=`${this._element[s]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(j.trigger(this._element,"hide.bs.collapse").defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,u(this._element),this._element.classList.add(ht),this._element.classList.remove(ct,lt);const e=this._triggerArray.length;for(let t=0;t<e;t++){const e=this._triggerArray[t],i=n(e);i&&!this._isShown(i)&&this._addAriaAndCollapsedClass([e],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(ht),this._element.classList.add(ct),j.trigger(this._element,"hidden.bs.collapse")}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(lt)}_getConfig(t){return(t={...rt,...U.getDataAttributes(this._element),...t}).toggle=Boolean(t.toggle),t.parent=r(t.parent),a(ot,t,at),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=V.find(ut,this._config.parent);V.find(ft,this._config.parent).filter((e=>!t.includes(e))).forEach((t=>{const e=n(t);e&&this._addAriaAndCollapsedClass([t],this._isShown(e))}))}_addAriaAndCollapsedClass(t,e){t.length&&t.forEach((t=>{e?t.classList.remove(dt):t.classList.add(dt),t.setAttribute("aria-expanded",e)}))}static jQueryInterface(t){return this.each((function(){const e={};"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1);const i=pt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}j.on(document,"click.bs.collapse.data-api",ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();const e=i(this);V.find(e).forEach((t=>{pt.getOrCreateInstance(t,{toggle:!1}).toggle()}))})),g(pt);var mt="top",gt="bottom",_t="right",bt="left",vt="auto",yt=[mt,gt,_t,bt],wt="start",Et="end",At="clippingParents",Tt="viewport",Ot="popper",Ct="reference",kt=yt.reduce((function(t,e){return t.concat([e+"-"+wt,e+"-"+Et])}),[]),Lt=[].concat(yt,[vt]).reduce((function(t,e){return t.concat([e,e+"-"+wt,e+"-"+Et])}),[]),xt="beforeRead",Dt="read",St="afterRead",Nt="beforeMain",It="main",Pt="afterMain",jt="beforeWrite",Mt="write",Ht="afterWrite",Bt=[xt,Dt,St,Nt,It,Pt,jt,Mt,Ht];function Rt(t){return t?(t.nodeName||"").toLowerCase():null}function Wt(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function $t(t){return t instanceof Wt(t).Element||t instanceof Element}function zt(t){return t instanceof Wt(t).HTMLElement||t instanceof HTMLElement}function qt(t){return"undefined"!=typeof ShadowRoot&&(t instanceof Wt(t).ShadowRoot||t instanceof ShadowRoot)}const Ft={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];zt(s)&&Rt(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});zt(n)&&Rt(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function Ut(t){return t.split("-")[0]}function Vt(t,e){var i=t.getBoundingClientRect();return{width:i.width/1,height:i.height/1,top:i.top/1,right:i.right/1,bottom:i.bottom/1,left:i.left/1,x:i.left/1,y:i.top/1}}function Kt(t){var e=Vt(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Xt(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&qt(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function Yt(t){return Wt(t).getComputedStyle(t)}function Qt(t){return["table","td","th"].indexOf(Rt(t))>=0}function Gt(t){return(($t(t)?t.ownerDocument:t.document)||window.document).documentElement}function Zt(t){return"html"===Rt(t)?t:t.assignedSlot||t.parentNode||(qt(t)?t.host:null)||Gt(t)}function Jt(t){return zt(t)&&"fixed"!==Yt(t).position?t.offsetParent:null}function te(t){for(var e=Wt(t),i=Jt(t);i&&Qt(i)&&"static"===Yt(i).position;)i=Jt(i);return i&&("html"===Rt(i)||"body"===Rt(i)&&"static"===Yt(i).position)?e:i||function(t){var e=-1!==navigator.userAgent.toLowerCase().indexOf("firefox");if(-1!==navigator.userAgent.indexOf("Trident")&&zt(t)&&"fixed"===Yt(t).position)return null;for(var i=Zt(t);zt(i)&&["html","body"].indexOf(Rt(i))<0;){var n=Yt(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function ee(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}var ie=Math.max,ne=Math.min,se=Math.round;function oe(t,e,i){return ie(t,ne(e,i))}function re(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function ae(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const le={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=Ut(i.placement),l=ee(a),c=[bt,_t].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return re("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:ae(t,yt))}(s.padding,i),d=Kt(o),u="y"===l?mt:bt,f="y"===l?gt:_t,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=te(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,E=oe(v,w,y),A=l;i.modifiersData[n]=((e={})[A]=E,e.centerOffset=E-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Xt(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function ce(t){return t.split("-")[1]}var he={top:"auto",right:"auto",bottom:"auto",left:"auto"};function de(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=!0===h?function(t){var e=t.x,i=t.y,n=window.devicePixelRatio||1;return{x:se(se(e*n)/n)||0,y:se(se(i*n)/n)||0}}(r):"function"==typeof h?h(r):r,u=d.x,f=void 0===u?0:u,p=d.y,m=void 0===p?0:p,g=r.hasOwnProperty("x"),_=r.hasOwnProperty("y"),b=bt,v=mt,y=window;if(c){var w=te(i),E="clientHeight",A="clientWidth";w===Wt(i)&&"static"!==Yt(w=Gt(i)).position&&"absolute"===a&&(E="scrollHeight",A="scrollWidth"),w=w,s!==mt&&(s!==bt&&s!==_t||o!==Et)||(v=gt,m-=w[E]-n.height,m*=l?1:-1),s!==bt&&(s!==mt&&s!==gt||o!==Et)||(b=_t,f-=w[A]-n.width,f*=l?1:-1)}var T,O=Object.assign({position:a},c&&he);return l?Object.assign({},O,((T={})[v]=_?"0":"",T[b]=g?"0":"",T.transform=(y.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",T)):Object.assign({},O,((e={})[v]=_?m+"px":"",e[b]=g?f+"px":"",e.transform="",e))}const ue={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:Ut(e.placement),variation:ce(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,de(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,de(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var fe={passive:!0};const pe={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=Wt(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,fe)})),a&&l.addEventListener("resize",i.update,fe),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,fe)})),a&&l.removeEventListener("resize",i.update,fe)}},data:{}};var me={left:"right",right:"left",bottom:"top",top:"bottom"};function ge(t){return t.replace(/left|right|bottom|top/g,(function(t){return me[t]}))}var _e={start:"end",end:"start"};function be(t){return t.replace(/start|end/g,(function(t){return _e[t]}))}function ve(t){var e=Wt(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ye(t){return Vt(Gt(t)).left+ve(t).scrollLeft}function we(t){var e=Yt(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ee(t){return["html","body","#document"].indexOf(Rt(t))>=0?t.ownerDocument.body:zt(t)&&we(t)?t:Ee(Zt(t))}function Ae(t,e){var i;void 0===e&&(e=[]);var n=Ee(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=Wt(n),r=s?[o].concat(o.visualViewport||[],we(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Ae(Zt(r)))}function Te(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function Oe(t,e){return e===Tt?Te(function(t){var e=Wt(t),i=Gt(t),n=e.visualViewport,s=i.clientWidth,o=i.clientHeight,r=0,a=0;return n&&(s=n.width,o=n.height,/^((?!chrome|android).)*safari/i.test(navigator.userAgent)||(r=n.offsetLeft,a=n.offsetTop)),{width:s,height:o,x:r+ye(t),y:a}}(t)):zt(e)?function(t){var e=Vt(t);return e.top=e.top+t.clientTop,e.left=e.left+t.clientLeft,e.bottom=e.top+t.clientHeight,e.right=e.left+t.clientWidth,e.width=t.clientWidth,e.height=t.clientHeight,e.x=e.left,e.y=e.top,e}(e):Te(function(t){var e,i=Gt(t),n=ve(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ie(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ie(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ye(t),l=-n.scrollTop;return"rtl"===Yt(s||i).direction&&(a+=ie(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Gt(t)))}function Ce(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?Ut(s):null,r=s?ce(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case mt:e={x:a,y:i.y-n.height};break;case gt:e={x:a,y:i.y+i.height};break;case _t:e={x:i.x+i.width,y:l};break;case bt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?ee(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case wt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Et:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ke(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.boundary,r=void 0===o?At:o,a=i.rootBoundary,l=void 0===a?Tt:a,c=i.elementContext,h=void 0===c?Ot:c,d=i.altBoundary,u=void 0!==d&&d,f=i.padding,p=void 0===f?0:f,m=re("number"!=typeof p?p:ae(p,yt)),g=h===Ot?Ct:Ot,_=t.rects.popper,b=t.elements[u?g:h],v=function(t,e,i){var n="clippingParents"===e?function(t){var e=Ae(Zt(t)),i=["absolute","fixed"].indexOf(Yt(t).position)>=0&&zt(t)?te(t):t;return $t(i)?e.filter((function(t){return $t(t)&&Xt(t,i)&&"body"!==Rt(t)})):[]}(t):[].concat(e),s=[].concat(n,[i]),o=s[0],r=s.reduce((function(e,i){var n=Oe(t,i);return e.top=ie(n.top,e.top),e.right=ne(n.right,e.right),e.bottom=ne(n.bottom,e.bottom),e.left=ie(n.left,e.left),e}),Oe(t,o));return r.width=r.right-r.left,r.height=r.bottom-r.top,r.x=r.left,r.y=r.top,r}($t(b)?b:b.contextElement||Gt(t.elements.popper),r,l),y=Vt(t.elements.reference),w=Ce({reference:y,element:_,strategy:"absolute",placement:s}),E=Te(Object.assign({},_,w)),A=h===Ot?E:y,T={top:v.top-A.top+m.top,bottom:A.bottom-v.bottom+m.bottom,left:v.left-A.left+m.left,right:A.right-v.right+m.right},O=t.modifiersData.offset;if(h===Ot&&O){var C=O[s];Object.keys(T).forEach((function(t){var e=[_t,gt].indexOf(t)>=0?1:-1,i=[mt,gt].indexOf(t)>=0?"y":"x";T[t]+=C[i]*e}))}return T}function Le(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?Lt:l,h=ce(n),d=h?a?kt:kt.filter((function(t){return ce(t)===h})):yt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ke(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[Ut(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const xe={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=Ut(g),b=l||(_!==g&&p?function(t){if(Ut(t)===vt)return[];var e=ge(t);return[be(t),e,be(e)]}(g):[ge(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(Ut(i)===vt?Le(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,E=new Map,A=!0,T=v[0],O=0;O<v.length;O++){var C=v[O],k=Ut(C),L=ce(C)===wt,x=[mt,gt].indexOf(k)>=0,D=x?"width":"height",S=ke(e,{placement:C,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),N=x?L?_t:bt:L?gt:mt;y[D]>w[D]&&(N=ge(N));var I=ge(N),P=[];if(o&&P.push(S[k]<=0),a&&P.push(S[N]<=0,S[I]<=0),P.every((function(t){return t}))){T=C,A=!1;break}E.set(C,P)}if(A)for(var j=function(t){var e=v.find((function(e){var i=E.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==j(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function De(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function Se(t){return[mt,_t,gt,bt].some((function(e){return t[e]>=0}))}const Ne={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ke(e,{elementContext:"reference"}),a=ke(e,{altBoundary:!0}),l=De(r,n),c=De(a,s,o),h=Se(l),d=Se(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Ie={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=Lt.reduce((function(t,i){return t[i]=function(t,e,i){var n=Ut(t),s=[bt,mt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[bt,_t].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},Pe={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=Ce({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},je={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ke(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=Ut(e.placement),b=ce(e.placement),v=!b,y=ee(_),w="x"===y?"y":"x",E=e.modifiersData.popperOffsets,A=e.rects.reference,T=e.rects.popper,O="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,C={x:0,y:0};if(E){if(o||a){var k="y"===y?mt:bt,L="y"===y?gt:_t,x="y"===y?"height":"width",D=E[y],S=E[y]+g[k],N=E[y]-g[L],I=f?-T[x]/2:0,P=b===wt?A[x]:T[x],j=b===wt?-T[x]:-A[x],M=e.elements.arrow,H=f&&M?Kt(M):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},R=B[k],W=B[L],$=oe(0,A[x],H[x]),z=v?A[x]/2-I-$-R-O:P-$-R-O,q=v?-A[x]/2+I+$+W+O:j+$+W+O,F=e.elements.arrow&&te(e.elements.arrow),U=F?"y"===y?F.clientTop||0:F.clientLeft||0:0,V=e.modifiersData.offset?e.modifiersData.offset[e.placement][y]:0,K=E[y]+z-V-U,X=E[y]+q-V;if(o){var Y=oe(f?ne(S,K):S,D,f?ie(N,X):N);E[y]=Y,C[y]=Y-D}if(a){var Q="x"===y?mt:bt,G="x"===y?gt:_t,Z=E[w],J=Z+g[Q],tt=Z-g[G],et=oe(f?ne(J,K):J,Z,f?ie(tt,X):tt);E[w]=et,C[w]=et-Z}}e.modifiersData[n]=C}},requiresIfExists:["offset"]};function Me(t,e,i){void 0===i&&(i=!1);var n=zt(e);zt(e)&&function(t){var e=t.getBoundingClientRect();e.width,t.offsetWidth,e.height,t.offsetHeight}(e);var s,o,r=Gt(e),a=Vt(t),l={scrollLeft:0,scrollTop:0},c={x:0,y:0};return(n||!n&&!i)&&(("body"!==Rt(e)||we(r))&&(l=(s=e)!==Wt(s)&&zt(s)?{scrollLeft:(o=s).scrollLeft,scrollTop:o.scrollTop}:ve(s)),zt(e)?((c=Vt(e)).x+=e.clientLeft,c.y+=e.clientTop):r&&(c.x=ye(r))),{x:a.left+l.scrollLeft-c.x,y:a.top+l.scrollTop-c.y,width:a.width,height:a.height}}function He(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var Be={placement:"bottom",modifiers:[],strategy:"absolute"};function Re(){for(var t=arguments.length,e=new Array(t),i=0;i<t;i++)e[i]=arguments[i];return!e.some((function(t){return!(t&&"function"==typeof t.getBoundingClientRect)}))}function We(t){void 0===t&&(t={});var e=t,i=e.defaultModifiers,n=void 0===i?[]:i,s=e.defaultOptions,o=void 0===s?Be:s;return function(t,e,i){void 0===i&&(i=o);var s,r,a={placement:"bottom",orderedModifiers:[],options:Object.assign({},Be,o),modifiersData:{},elements:{reference:t,popper:e},attributes:{},styles:{}},l=[],c=!1,h={state:a,setOptions:function(i){var s="function"==typeof i?i(a.options):i;d(),a.options=Object.assign({},o,a.options,s),a.scrollParents={reference:$t(t)?Ae(t):t.contextElement?Ae(t.contextElement):[],popper:Ae(e)};var r,c,u=function(t){var e=He(t);return Bt.reduce((function(t,i){return t.concat(e.filter((function(t){return t.phase===i})))}),[])}((r=[].concat(n,a.options.modifiers),c=r.reduce((function(t,e){var i=t[e.name];return t[e.name]=i?Object.assign({},i,e,{options:Object.assign({},i.options,e.options),data:Object.assign({},i.data,e.data)}):e,t}),{}),Object.keys(c).map((function(t){return c[t]}))));return a.orderedModifiers=u.filter((function(t){return t.enabled})),a.orderedModifiers.forEach((function(t){var e=t.name,i=t.options,n=void 0===i?{}:i,s=t.effect;if("function"==typeof s){var o=s({state:a,name:e,instance:h,options:n});l.push(o||function(){})}})),h.update()},forceUpdate:function(){if(!c){var t=a.elements,e=t.reference,i=t.popper;if(Re(e,i)){a.rects={reference:Me(e,te(i),"fixed"===a.options.strategy),popper:Kt(i)},a.reset=!1,a.placement=a.options.placement,a.orderedModifiers.forEach((function(t){return a.modifiersData[t.name]=Object.assign({},t.data)}));for(var n=0;n<a.orderedModifiers.length;n++)if(!0!==a.reset){var s=a.orderedModifiers[n],o=s.fn,r=s.options,l=void 0===r?{}:r,d=s.name;"function"==typeof o&&(a=o({state:a,options:l,name:d,instance:h})||a)}else a.reset=!1,n=-1}}},update:(s=function(){return new Promise((function(t){h.forceUpdate(),t(a)}))},function(){return r||(r=new Promise((function(t){Promise.resolve().then((function(){r=void 0,t(s())}))}))),r}),destroy:function(){d(),c=!0}};if(!Re(t,e))return h;function d(){l.forEach((function(t){return t()})),l=[]}return h.setOptions(i).then((function(t){!c&&i.onFirstUpdate&&i.onFirstUpdate(t)})),h}}var $e=We(),ze=We({defaultModifiers:[pe,Pe,ue,Ft]}),qe=We({defaultModifiers:[pe,Pe,ue,Ft,Ie,xe,je,le,Ne]});const Fe=Object.freeze({__proto__:null,popperGenerator:We,detectOverflow:ke,createPopperBase:$e,createPopper:qe,createPopperLite:ze,top:mt,bottom:gt,right:_t,left:bt,auto:vt,basePlacements:yt,start:wt,end:Et,clippingParents:At,viewport:Tt,popper:Ot,reference:Ct,variationPlacements:kt,placements:Lt,beforeRead:xt,read:Dt,afterRead:St,beforeMain:Nt,main:It,afterMain:Pt,beforeWrite:jt,write:Mt,afterWrite:Ht,modifierPhases:Bt,applyStyles:Ft,arrow:le,computeStyles:ue,eventListeners:pe,flip:xe,hide:Ne,offset:Ie,popperOffsets:Pe,preventOverflow:je}),Ue="dropdown",Ve="Escape",Ke="Space",Xe="ArrowUp",Ye="ArrowDown",Qe=new RegExp("ArrowUp|ArrowDown|Escape"),Ge="click.bs.dropdown.data-api",Ze="keydown.bs.dropdown.data-api",Je="show",ti='[data-bs-toggle="dropdown"]',ei=".dropdown-menu",ii=m()?"top-end":"top-start",ni=m()?"top-start":"top-end",si=m()?"bottom-end":"bottom-start",oi=m()?"bottom-start":"bottom-end",ri=m()?"left-start":"right-start",ai=m()?"right-start":"left-start",li={offset:[0,2],boundary:"clippingParents",reference:"toggle",display:"dynamic",popperConfig:null,autoClose:!0},ci={offset:"(array|string|function)",boundary:"(string|element)",reference:"(string|element|object)",display:"string",popperConfig:"(null|object|function)",autoClose:"(boolean|string)"};class hi extends B{constructor(t,e){super(t),this._popper=null,this._config=this._getConfig(e),this._menu=this._getMenuElement(),this._inNavbar=this._detectNavbar()}static get Default(){return li}static get DefaultType(){return ci}static get NAME(){return Ue}toggle(){return this._isShown()?this.hide():this.show()}show(){if(c(this._element)||this._isShown(this._menu))return;const t={relatedTarget:this._element};if(j.trigger(this._element,"show.bs.dropdown",t).defaultPrevented)return;const e=hi.getParentFromElement(this._element);this._inNavbar?U.setDataAttribute(this._menu,"popper","none"):this._createPopper(e),"ontouchstart"in document.documentElement&&!e.closest(".navbar-nav")&&[].concat(...document.body.children).forEach((t=>j.on(t,"mouseover",d))),this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Je),this._element.classList.add(Je),j.trigger(this._element,"shown.bs.dropdown",t)}hide(){if(c(this._element)||!this._isShown(this._menu))return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){j.trigger(this._element,"hide.bs.dropdown",t).defaultPrevented||("ontouchstart"in document.documentElement&&[].concat(...document.body.children).forEach((t=>j.off(t,"mouseover",d))),this._popper&&this._popper.destroy(),this._menu.classList.remove(Je),this._element.classList.remove(Je),this._element.setAttribute("aria-expanded","false"),U.removeDataAttribute(this._menu,"popper"),j.trigger(this._element,"hidden.bs.dropdown",t))}_getConfig(t){if(t={...this.constructor.Default,...U.getDataAttributes(this._element),...t},a(Ue,t,this.constructor.DefaultType),"object"==typeof t.reference&&!o(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${Ue.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(t){if(void 0===Fe)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let e=this._element;"parent"===this._config.reference?e=t:o(this._config.reference)?e=r(this._config.reference):"object"==typeof this._config.reference&&(e=this._config.reference);const i=this._getPopperConfig(),n=i.modifiers.find((t=>"applyStyles"===t.name&&!1===t.enabled));this._popper=qe(e,this._menu,i),n&&U.setDataAttribute(this._menu,"popper","static")}_isShown(t=this._element){return t.classList.contains(Je)}_getMenuElement(){return V.next(this._element,ei)[0]}_getPlacement(){const t=this._element.parentNode;if(t.classList.contains("dropend"))return ri;if(t.classList.contains("dropstart"))return ai;const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?ni:ii:e?oi:si}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return"static"===this._config.display&&(t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,..."function"==typeof this._config.popperConfig?this._config.popperConfig(t):this._config.popperConfig}}_selectMenuItem({key:t,target:e}){const i=V.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter(l);i.length&&v(i,e,t===Ye,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=hi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(t&&(2===t.button||"keyup"===t.type&&"Tab"!==t.key))return;const e=V.find(ti);for(let i=0,n=e.length;i<n;i++){const n=hi.getInstance(e[i]);if(!n||!1===n._config.autoClose)continue;if(!n._isShown())continue;const s={relatedTarget:n._element};if(t){const e=t.composedPath(),i=e.includes(n._menu);if(e.includes(n._element)||"inside"===n._config.autoClose&&!i||"outside"===n._config.autoClose&&i)continue;if(n._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;"click"===t.type&&(s.clickEvent=t)}n._completeHide(s)}}static getParentFromElement(t){return n(t)||t.parentNode}static dataApiKeydownHandler(t){if(/input|textarea/i.test(t.target.tagName)?t.key===Ke||t.key!==Ve&&(t.key!==Ye&&t.key!==Xe||t.target.closest(ei)):!Qe.test(t.key))return;const e=this.classList.contains(Je);if(!e&&t.key===Ve)return;if(t.preventDefault(),t.stopPropagation(),c(this))return;const i=this.matches(ti)?this:V.prev(this,ti)[0],n=hi.getOrCreateInstance(i);if(t.key!==Ve)return t.key===Xe||t.key===Ye?(e||n.show(),void n._selectMenuItem(t)):void(e&&t.key!==Ke||hi.clearMenus());n.hide()}}j.on(document,Ze,ti,hi.dataApiKeydownHandler),j.on(document,Ze,ei,hi.dataApiKeydownHandler),j.on(document,Ge,hi.clearMenus),j.on(document,"keyup.bs.dropdown.data-api",hi.clearMenus),j.on(document,Ge,ti,(function(t){t.preventDefault(),hi.getOrCreateInstance(this).toggle()})),g(hi);const di=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",ui=".sticky-top";class fi{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,"paddingRight",(e=>e+t)),this._setElementAttributes(di,"paddingRight",(e=>e+t)),this._setElementAttributes(ui,"marginRight",(e=>e-t))}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t)[e];t.style[e]=`${i(Number.parseFloat(s))}px`}))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,"paddingRight"),this._resetElementAttributes(di,"paddingRight"),this._resetElementAttributes(ui,"marginRight")}_saveInitialAttribute(t,e){const i=t.style[e];i&&U.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=U.getDataAttribute(t,e);void 0===i?t.style.removeProperty(e):(U.removeDataAttribute(t,e),t.style[e]=i)}))}_applyManipulationCallback(t,e){o(t)?e(t):V.find(t,this._element).forEach(e)}isOverflowing(){return this.getWidth()>0}}const pi={className:"modal-backdrop",isVisible:!0,isAnimated:!1,rootElement:"body",clickCallback:null},mi={className:"string",isVisible:"boolean",isAnimated:"boolean",rootElement:"(element|string)",clickCallback:"(function|null)"},gi="show",_i="mousedown.bs.backdrop";class bi{constructor(t){this._config=this._getConfig(t),this._isAppended=!1,this._element=null}show(t){this._config.isVisible?(this._append(),this._config.isAnimated&&u(this._getElement()),this._getElement().classList.add(gi),this._emulateAnimation((()=>{_(t)}))):_(t)}hide(t){this._config.isVisible?(this._getElement().classList.remove(gi),this._emulateAnimation((()=>{this.dispose(),_(t)}))):_(t)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_getConfig(t){return(t={...pi,..."object"==typeof t?t:{}}).rootElement=r(t.rootElement),a("backdrop",t,mi),t}_append(){this._isAppended||(this._config.rootElement.append(this._getElement()),j.on(this._getElement(),_i,(()=>{_(this._config.clickCallback)})),this._isAppended=!0)}dispose(){this._isAppended&&(j.off(this._element,_i),this._element.remove(),this._isAppended=!1)}_emulateAnimation(t){b(t,this._getElement(),this._config.isAnimated)}}const vi={trapElement:null,autofocus:!0},yi={trapElement:"element",autofocus:"boolean"},wi=".bs.focustrap",Ei="backward";class Ai{constructor(t){this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}activate(){const{trapElement:t,autofocus:e}=this._config;this._isActive||(e&&t.focus(),j.off(document,wi),j.on(document,"focusin.bs.focustrap",(t=>this._handleFocusin(t))),j.on(document,"keydown.tab.bs.focustrap",(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,j.off(document,wi))}_handleFocusin(t){const{target:e}=t,{trapElement:i}=this._config;if(e===document||e===i||i.contains(e))return;const n=V.focusableChildren(i);0===n.length?i.focus():this._lastTabNavDirection===Ei?n[n.length-1].focus():n[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?Ei:"forward")}_getConfig(t){return t={...vi,..."object"==typeof t?t:{}},a("focustrap",t,yi),t}}const Ti="modal",Oi="Escape",Ci={backdrop:!0,keyboard:!0,focus:!0},ki={backdrop:"(boolean|string)",keyboard:"boolean",focus:"boolean"},Li="hidden.bs.modal",xi="show.bs.modal",Di="resize.bs.modal",Si="click.dismiss.bs.modal",Ni="keydown.dismiss.bs.modal",Ii="mousedown.dismiss.bs.modal",Pi="modal-open",ji="show",Mi="modal-static";class Hi extends B{constructor(t,e){super(t),this._config=this._getConfig(e),this._dialog=V.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._ignoreBackdropClick=!1,this._isTransitioning=!1,this._scrollBar=new fi}static get Default(){return Ci}static get NAME(){return Ti}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||j.trigger(this._element,xi,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isAnimated()&&(this._isTransitioning=!0),this._scrollBar.hide(),document.body.classList.add(Pi),this._adjustDialog(),this._setEscapeEvent(),this._setResizeEvent(),j.on(this._dialog,Ii,(()=>{j.one(this._element,"mouseup.dismiss.bs.modal",(t=>{t.target===this._element&&(this._ignoreBackdropClick=!0)}))})),this._showBackdrop((()=>this._showElement(t))))}hide(){if(!this._isShown||this._isTransitioning)return;if(j.trigger(this._element,"hide.bs.modal").defaultPrevented)return;this._isShown=!1;const t=this._isAnimated();t&&(this._isTransitioning=!0),this._setEscapeEvent(),this._setResizeEvent(),this._focustrap.deactivate(),this._element.classList.remove(ji),j.off(this._element,Si),j.off(this._dialog,Ii),this._queueCallback((()=>this._hideModal()),this._element,t)}dispose(){[window,this._dialog].forEach((t=>j.off(t,".bs.modal"))),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new bi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new Ai({trapElement:this._element})}_getConfig(t){return t={...Ci,...U.getDataAttributes(this._element),..."object"==typeof t?t:{}},a(Ti,t,ki),t}_showElement(t){const e=this._isAnimated(),i=V.findOne(".modal-body",this._dialog);this._element.parentNode&&this._element.parentNode.nodeType===Node.ELEMENT_NODE||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0,i&&(i.scrollTop=0),e&&u(this._element),this._element.classList.add(ji),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,j.trigger(this._element,"shown.bs.modal",{relatedTarget:t})}),this._dialog,e)}_setEscapeEvent(){this._isShown?j.on(this._element,Ni,(t=>{this._config.keyboard&&t.key===Oi?(t.preventDefault(),this.hide()):this._config.keyboard||t.key!==Oi||this._triggerBackdropTransition()})):j.off(this._element,Ni)}_setResizeEvent(){this._isShown?j.on(window,Di,(()=>this._adjustDialog())):j.off(window,Di)}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(Pi),this._resetAdjustments(),this._scrollBar.reset(),j.trigger(this._element,Li)}))}_showBackdrop(t){j.on(this._element,Si,(t=>{this._ignoreBackdropClick?this._ignoreBackdropClick=!1:t.target===t.currentTarget&&(!0===this._config.backdrop?this.hide():"static"===this._config.backdrop&&this._triggerBackdropTransition())})),this._backdrop.show(t)}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(j.trigger(this._element,"hidePrevented.bs.modal").defaultPrevented)return;const{classList:t,scrollHeight:e,style:i}=this._element,n=e>document.documentElement.clientHeight;!n&&"hidden"===i.overflowY||t.contains(Mi)||(n||(i.overflowY="hidden"),t.add(Mi),this._queueCallback((()=>{t.remove(Mi),n||this._queueCallback((()=>{i.overflowY=""}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;(!i&&t&&!m()||i&&!t&&m())&&(this._element.style.paddingLeft=`${e}px`),(i&&!t&&!m()||!i&&t&&m())&&(this._element.style.paddingRight=`${e}px`)}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=Hi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}j.on(document,"click.bs.modal.data-api",'[data-bs-toggle="modal"]',(function(t){const e=n(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),j.one(e,xi,(t=>{t.defaultPrevented||j.one(e,Li,(()=>{l(this)&&this.focus()}))}));const i=V.findOne(".modal.show");i&&Hi.getInstance(i).hide(),Hi.getOrCreateInstance(e).toggle(this)})),R(Hi),g(Hi);const Bi="offcanvas",Ri={backdrop:!0,keyboard:!0,scroll:!1},Wi={backdrop:"boolean",keyboard:"boolean",scroll:"boolean"},$i="show",zi=".offcanvas.show",qi="hidden.bs.offcanvas";class Fi extends B{constructor(t,e){super(t),this._config=this._getConfig(e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get NAME(){return Bi}static get Default(){return Ri}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||j.trigger(this._element,"show.bs.offcanvas",{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._element.style.visibility="visible",this._backdrop.show(),this._config.scroll||(new fi).hide(),this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add($i),this._queueCallback((()=>{this._config.scroll||this._focustrap.activate(),j.trigger(this._element,"shown.bs.offcanvas",{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(j.trigger(this._element,"hide.bs.offcanvas").defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.remove($i),this._backdrop.hide(),this._queueCallback((()=>{this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._element.style.visibility="hidden",this._config.scroll||(new fi).reset(),j.trigger(this._element,qi)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_getConfig(t){return t={...Ri,...U.getDataAttributes(this._element),..."object"==typeof t?t:{}},a(Bi,t,Wi),t}_initializeBackDrop(){return new bi({className:"offcanvas-backdrop",isVisible:this._config.backdrop,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:()=>this.hide()})}_initializeFocusTrap(){return new Ai({trapElement:this._element})}_addEventListeners(){j.on(this._element,"keydown.dismiss.bs.offcanvas",(t=>{this._config.keyboard&&"Escape"===t.key&&this.hide()}))}static jQueryInterface(t){return this.each((function(){const e=Fi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}j.on(document,"click.bs.offcanvas.data-api",'[data-bs-toggle="offcanvas"]',(function(t){const e=n(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),c(this))return;j.one(e,qi,(()=>{l(this)&&this.focus()}));const i=V.findOne(zi);i&&i!==e&&Fi.getInstance(i).hide(),Fi.getOrCreateInstance(e).toggle(this)})),j.on(window,"load.bs.offcanvas.data-api",(()=>V.find(zi).forEach((t=>Fi.getOrCreateInstance(t).show())))),R(Fi),g(Fi);const Ui=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Vi=/^(?:(?:https?|mailto|ftp|tel|file|sms):|[^#&/:?]*(?:[#/?]|$))/i,Ki=/^data:(?:image\/(?:bmp|gif|jpeg|jpg|png|tiff|webp)|video\/(?:mpeg|mp4|ogg|webm)|audio\/(?:mp3|oga|ogg|opus));base64,[\d+/a-z]+=*$/i,Xi=(t,e)=>{const i=t.nodeName.toLowerCase();if(e.includes(i))return!Ui.has(i)||Boolean(Vi.test(t.nodeValue)||Ki.test(t.nodeValue));const n=e.filter((t=>t instanceof RegExp));for(let t=0,e=n.length;t<e;t++)if(n[t].test(i))return!0;return!1};function Yi(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(let t=0,i=s.length;t<i;t++){const i=s[t],n=i.nodeName.toLowerCase();if(!Object.keys(e).includes(n)){i.remove();continue}const o=[].concat(...i.attributes),r=[].concat(e["*"]||[],e[n]||[]);o.forEach((t=>{Xi(t,r)||i.removeAttribute(t.nodeName)}))}return n.body.innerHTML}const Qi="tooltip",Gi=new Set(["sanitize","allowList","sanitizeFn"]),Zi={animation:"boolean",template:"string",title:"(string|element|function)",trigger:"string",delay:"(number|object)",html:"boolean",selector:"(string|boolean)",placement:"(string|function)",offset:"(array|string|function)",container:"(string|element|boolean)",fallbackPlacements:"array",boundary:"(string|element)",customClass:"(string|function)",sanitize:"boolean",sanitizeFn:"(null|function)",allowList:"object",popperConfig:"(null|object|function)"},Ji={AUTO:"auto",TOP:"top",RIGHT:m()?"left":"right",BOTTOM:"bottom",LEFT:m()?"right":"left"},tn={animation:!0,template:'<div class="tooltip" role="tooltip"><div class="tooltip-arrow"></div><div class="tooltip-inner"></div></div>',trigger:"hover focus",title:"",delay:0,html:!1,selector:!1,placement:"top",offset:[0,0],container:!1,fallbackPlacements:["top","right","bottom","left"],boundary:"clippingParents",customClass:"",sanitize:!0,sanitizeFn:null,allowList:{"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},popperConfig:null},en={HIDE:"hide.bs.tooltip",HIDDEN:"hidden.bs.tooltip",SHOW:"show.bs.tooltip",SHOWN:"shown.bs.tooltip",INSERTED:"inserted.bs.tooltip",CLICK:"click.bs.tooltip",FOCUSIN:"focusin.bs.tooltip",FOCUSOUT:"focusout.bs.tooltip",MOUSEENTER:"mouseenter.bs.tooltip",MOUSELEAVE:"mouseleave.bs.tooltip"},nn="fade",sn="show",on="show",rn="out",an=".tooltip-inner",ln=".modal",cn="hide.bs.modal",hn="hover",dn="focus";class un extends B{constructor(t,e){if(void 0===Fe)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t),this._isEnabled=!0,this._timeout=0,this._hoverState="",this._activeTrigger={},this._popper=null,this._config=this._getConfig(e),this.tip=null,this._setListeners()}static get Default(){return tn}static get NAME(){return Qi}static get Event(){return en}static get DefaultType(){return Zi}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(t){if(this._isEnabled)if(t){const e=this._initializeOnDelegatedTarget(t);e._activeTrigger.click=!e._activeTrigger.click,e._isWithActiveTrigger()?e._enter(null,e):e._leave(null,e)}else{if(this.getTipElement().classList.contains(sn))return void this._leave(null,this);this._enter(null,this)}}dispose(){clearTimeout(this._timeout),j.off(this._element.closest(ln),cn,this._hideModalHandler),this.tip&&this.tip.remove(),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this.isWithContent()||!this._isEnabled)return;const t=j.trigger(this._element,this.constructor.Event.SHOW),e=h(this._element),i=null===e?this._element.ownerDocument.documentElement.contains(this._element):e.contains(this._element);if(t.defaultPrevented||!i)return;"tooltip"===this.constructor.NAME&&this.tip&&this.getTitle()!==this.tip.querySelector(an).innerHTML&&(this._disposePopper(),this.tip.remove(),this.tip=null);const n=this.getTipElement(),s=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME);n.setAttribute("id",s),this._element.setAttribute("aria-describedby",s),this._config.animation&&n.classList.add(nn);const o="function"==typeof this._config.placement?this._config.placement.call(this,n,this._element):this._config.placement,r=this._getAttachment(o);this._addAttachmentClass(r);const{container:a}=this._config;H.set(n,this.constructor.DATA_KEY,this),this._element.ownerDocument.documentElement.contains(this.tip)||(a.append(n),j.trigger(this._element,this.constructor.Event.INSERTED)),this._popper?this._popper.update():this._popper=qe(this._element,n,this._getPopperConfig(r)),n.classList.add(sn);const l=this._resolvePossibleFunction(this._config.customClass);l&&n.classList.add(...l.split(" ")),"ontouchstart"in document.documentElement&&[].concat(...document.body.children).forEach((t=>{j.on(t,"mouseover",d)}));const c=this.tip.classList.contains(nn);this._queueCallback((()=>{const t=this._hoverState;this._hoverState=null,j.trigger(this._element,this.constructor.Event.SHOWN),t===rn&&this._leave(null,this)}),this.tip,c)}hide(){if(!this._popper)return;const t=this.getTipElement();if(j.trigger(this._element,this.constructor.Event.HIDE).defaultPrevented)return;t.classList.remove(sn),"ontouchstart"in document.documentElement&&[].concat(...document.body.children).forEach((t=>j.off(t,"mouseover",d))),this._activeTrigger.click=!1,this._activeTrigger.focus=!1,this._activeTrigger.hover=!1;const e=this.tip.classList.contains(nn);this._queueCallback((()=>{this._isWithActiveTrigger()||(this._hoverState!==on&&t.remove(),this._cleanTipClass(),this._element.removeAttribute("aria-describedby"),j.trigger(this._element,this.constructor.Event.HIDDEN),this._disposePopper())}),this.tip,e),this._hoverState=""}update(){null!==this._popper&&this._popper.update()}isWithContent(){return Boolean(this.getTitle())}getTipElement(){if(this.tip)return this.tip;const t=document.createElement("div");t.innerHTML=this._config.template;const e=t.children[0];return this.setContent(e),e.classList.remove(nn,sn),this.tip=e,this.tip}setContent(t){this._sanitizeAndSetContent(t,this.getTitle(),an)}_sanitizeAndSetContent(t,e,i){const n=V.findOne(i,t);e||!n?this.setElementContent(n,e):n.remove()}setElementContent(t,e){if(null!==t)return o(e)?(e=r(e),void(this._config.html?e.parentNode!==t&&(t.innerHTML="",t.append(e)):t.textContent=e.textContent)):void(this._config.html?(this._config.sanitize&&(e=Yi(e,this._config.allowList,this._config.sanitizeFn)),t.innerHTML=e):t.textContent=e)}getTitle(){const t=this._element.getAttribute("data-bs-original-title")||this._config.title;return this._resolvePossibleFunction(t)}updateAttachment(t){return"right"===t?"end":"left"===t?"start":t}_initializeOnDelegatedTarget(t,e){return e||this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return"function"==typeof t?t.call(this._element):t}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"onChange",enabled:!0,phase:"afterWrite",fn:t=>this._handlePopperPlacementChange(t)}],onFirstUpdate:t=>{t.options.placement!==t.placement&&this._handlePopperPlacementChange(t)}};return{...e,..."function"==typeof this._config.popperConfig?this._config.popperConfig(e):this._config.popperConfig}}_addAttachmentClass(t){this.getTipElement().classList.add(`${this._getBasicClassPrefix()}-${this.updateAttachment(t)}`)}_getAttachment(t){return Ji[t.toUpperCase()]}_setListeners(){this._config.trigger.split(" ").forEach((t=>{if("click"===t)j.on(this._element,this.constructor.Event.CLICK,this._config.selector,(t=>this.toggle(t)));else if("manual"!==t){const e=t===hn?this.constructor.Event.MOUSEENTER:this.constructor.Event.FOCUSIN,i=t===hn?this.constructor.Event.MOUSELEAVE:this.constructor.Event.FOCUSOUT;j.on(this._element,e,this._config.selector,(t=>this._enter(t))),j.on(this._element,i,this._config.selector,(t=>this._leave(t)))}})),this._hideModalHandler=()=>{this._element&&this.hide()},j.on(this._element.closest(ln),cn,this._hideModalHandler),this._config.selector?this._config={...this._config,trigger:"manual",selector:""}:this._fixTitle()}_fixTitle(){const t=this._element.getAttribute("title"),e=typeof this._element.getAttribute("data-bs-original-title");(t||"string"!==e)&&(this._element.setAttribute("data-bs-original-title",t||""),!t||this._element.getAttribute("aria-label")||this._element.textContent||this._element.setAttribute("aria-label",t),this._element.setAttribute("title",""))}_enter(t,e){e=this._initializeOnDelegatedTarget(t,e),t&&(e._activeTrigger["focusin"===t.type?dn:hn]=!0),e.getTipElement().classList.contains(sn)||e._hoverState===on?e._hoverState=on:(clearTimeout(e._timeout),e._hoverState=on,e._config.delay&&e._config.delay.show?e._timeout=setTimeout((()=>{e._hoverState===on&&e.show()}),e._config.delay.show):e.show())}_leave(t,e){e=this._initializeOnDelegatedTarget(t,e),t&&(e._activeTrigger["focusout"===t.type?dn:hn]=e._element.contains(t.relatedTarget)),e._isWithActiveTrigger()||(clearTimeout(e._timeout),e._hoverState=rn,e._config.delay&&e._config.delay.hide?e._timeout=setTimeout((()=>{e._hoverState===rn&&e.hide()}),e._config.delay.hide):e.hide())}_isWithActiveTrigger(){for(const t in this._activeTrigger)if(this._activeTrigger[t])return!0;return!1}_getConfig(t){const e=U.getDataAttributes(this._element);return Object.keys(e).forEach((t=>{Gi.has(t)&&delete e[t]})),(t={...this.constructor.Default,...e,..."object"==typeof t&&t?t:{}}).container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),a(Qi,t,this.constructor.DefaultType),t.sanitize&&(t.template=Yi(t.template,t.allowList,t.sanitizeFn)),t}_getDelegateConfig(){const t={};for(const e in this._config)this.constructor.Default[e]!==this._config[e]&&(t[e]=this._config[e]);return t}_cleanTipClass(){const t=this.getTipElement(),e=new RegExp(`(^|\\s)${this._getBasicClassPrefix()}\\S+`,"g"),i=t.getAttribute("class").match(e);null!==i&&i.length>0&&i.map((t=>t.trim())).forEach((e=>t.classList.remove(e)))}_getBasicClassPrefix(){return"bs-tooltip"}_handlePopperPlacementChange(t){const{state:e}=t;e&&(this.tip=e.elements.popper,this._cleanTipClass(),this._addAttachmentClass(this._getAttachment(e.placement)))}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null)}static jQueryInterface(t){return this.each((function(){const e=un.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}g(un);const fn={...un.Default,placement:"right",offset:[0,8],trigger:"click",content:"",template:'<div class="popover" role="tooltip"><div class="popover-arrow"></div><h3 class="popover-header"></h3><div class="popover-body"></div></div>'},pn={...un.DefaultType,content:"(string|element|function)"},mn={HIDE:"hide.bs.popover",HIDDEN:"hidden.bs.popover",SHOW:"show.bs.popover",SHOWN:"shown.bs.popover",INSERTED:"inserted.bs.popover",CLICK:"click.bs.popover",FOCUSIN:"focusin.bs.popover",FOCUSOUT:"focusout.bs.popover",MOUSEENTER:"mouseenter.bs.popover",MOUSELEAVE:"mouseleave.bs.popover"};class gn extends un{static get Default(){return fn}static get NAME(){return"popover"}static get Event(){return mn}static get DefaultType(){return pn}isWithContent(){return this.getTitle()||this._getContent()}setContent(t){this._sanitizeAndSetContent(t,this.getTitle(),".popover-header"),this._sanitizeAndSetContent(t,this._getContent(),".popover-body")}_getContent(){return this._resolvePossibleFunction(this._config.content)}_getBasicClassPrefix(){return"bs-popover"}static jQueryInterface(t){return this.each((function(){const e=gn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}g(gn);const _n="scrollspy",bn={offset:10,method:"auto",target:""},vn={offset:"number",method:"string",target:"(string|element)"},yn="active",wn=".nav-link, .list-group-item, .dropdown-item",En="position";class An extends B{constructor(t,e){super(t),this._scrollElement="BODY"===this._element.tagName?window:this._element,this._config=this._getConfig(e),this._offsets=[],this._targets=[],this._activeTarget=null,this._scrollHeight=0,j.on(this._scrollElement,"scroll.bs.scrollspy",(()=>this._process())),this.refresh(),this._process()}static get Default(){return bn}static get NAME(){return _n}refresh(){const t=this._scrollElement===this._scrollElement.window?"offset":En,e="auto"===this._config.method?t:this._config.method,n=e===En?this._getScrollTop():0;this._offsets=[],this._targets=[],this._scrollHeight=this._getScrollHeight(),V.find(wn,this._config.target).map((t=>{const s=i(t),o=s?V.findOne(s):null;if(o){const t=o.getBoundingClientRect();if(t.width||t.height)return[U[e](o).top+n,s]}return null})).filter((t=>t)).sort(((t,e)=>t[0]-e[0])).forEach((t=>{this._offsets.push(t[0]),this._targets.push(t[1])}))}dispose(){j.off(this._scrollElement,".bs.scrollspy"),super.dispose()}_getConfig(t){return(t={...bn,...U.getDataAttributes(this._element),..."object"==typeof t&&t?t:{}}).target=r(t.target)||document.documentElement,a(_n,t,vn),t}_getScrollTop(){return this._scrollElement===window?this._scrollElement.pageYOffset:this._scrollElement.scrollTop}_getScrollHeight(){return this._scrollElement.scrollHeight||Math.max(document.body.scrollHeight,document.documentElement.scrollHeight)}_getOffsetHeight(){return this._scrollElement===window?window.innerHeight:this._scrollElement.getBoundingClientRect().height}_process(){const t=this._getScrollTop()+this._config.offset,e=this._getScrollHeight(),i=this._config.offset+e-this._getOffsetHeight();if(this._scrollHeight!==e&&this.refresh(),t>=i){const t=this._targets[this._targets.length-1];this._activeTarget!==t&&this._activate(t)}else{if(this._activeTarget&&t<this._offsets[0]&&this._offsets[0]>0)return this._activeTarget=null,void this._clear();for(let e=this._offsets.length;e--;)this._activeTarget!==this._targets[e]&&t>=this._offsets[e]&&(void 0===this._offsets[e+1]||t<this._offsets[e+1])&&this._activate(this._targets[e])}}_activate(t){this._activeTarget=t,this._clear();const e=wn.split(",").map((e=>`${e}[data-bs-target="${t}"],${e}[href="${t}"]`)),i=V.findOne(e.join(","),this._config.target);i.classList.add(yn),i.classList.contains("dropdown-item")?V.findOne(".dropdown-toggle",i.closest(".dropdown")).classList.add(yn):V.parents(i,".nav, .list-group").forEach((t=>{V.prev(t,".nav-link, .list-group-item").forEach((t=>t.classList.add(yn))),V.prev(t,".nav-item").forEach((t=>{V.children(t,".nav-link").forEach((t=>t.classList.add(yn)))}))})),j.trigger(this._scrollElement,"activate.bs.scrollspy",{relatedTarget:t})}_clear(){V.find(wn,this._config.target).filter((t=>t.classList.contains(yn))).forEach((t=>t.classList.remove(yn)))}static jQueryInterface(t){return this.each((function(){const e=An.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}j.on(window,"load.bs.scrollspy.data-api",(()=>{V.find('[data-bs-spy="scroll"]').forEach((t=>new An(t)))})),g(An);const Tn="active",On="fade",Cn="show",kn=".active",Ln=":scope > li > .active";class xn extends B{static get NAME(){return"tab"}show(){if(this._element.parentNode&&this._element.parentNode.nodeType===Node.ELEMENT_NODE&&this._element.classList.contains(Tn))return;let t;const e=n(this._element),i=this._element.closest(".nav, .list-group");if(i){const e="UL"===i.nodeName||"OL"===i.nodeName?Ln:kn;t=V.find(e,i),t=t[t.length-1]}const s=t?j.trigger(t,"hide.bs.tab",{relatedTarget:this._element}):null;if(j.trigger(this._element,"show.bs.tab",{relatedTarget:t}).defaultPrevented||null!==s&&s.defaultPrevented)return;this._activate(this._element,i);const o=()=>{j.trigger(t,"hidden.bs.tab",{relatedTarget:this._element}),j.trigger(this._element,"shown.bs.tab",{relatedTarget:t})};e?this._activate(e,e.parentNode,o):o()}_activate(t,e,i){const n=(!e||"UL"!==e.nodeName&&"OL"!==e.nodeName?V.children(e,kn):V.find(Ln,e))[0],s=i&&n&&n.classList.contains(On),o=()=>this._transitionComplete(t,n,i);n&&s?(n.classList.remove(Cn),this._queueCallback(o,t,!0)):o()}_transitionComplete(t,e,i){if(e){e.classList.remove(Tn);const t=V.findOne(":scope > .dropdown-menu .active",e.parentNode);t&&t.classList.remove(Tn),"tab"===e.getAttribute("role")&&e.setAttribute("aria-selected",!1)}t.classList.add(Tn),"tab"===t.getAttribute("role")&&t.setAttribute("aria-selected",!0),u(t),t.classList.contains(On)&&t.classList.add(Cn);let n=t.parentNode;if(n&&"LI"===n.nodeName&&(n=n.parentNode),n&&n.classList.contains("dropdown-menu")){const e=t.closest(".dropdown");e&&V.find(".dropdown-toggle",e).forEach((t=>t.classList.add(Tn))),t.setAttribute("aria-expanded",!0)}i&&i()}static jQueryInterface(t){return this.each((function(){const e=xn.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}j.on(document,"click.bs.tab.data-api",'[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),c(this)||xn.getOrCreateInstance(this).show()})),g(xn);const Dn="toast",Sn="hide",Nn="show",In="showing",Pn={animation:"boolean",autohide:"boolean",delay:"number"},jn={animation:!0,autohide:!0,delay:5e3};class Mn extends B{constructor(t,e){super(t),this._config=this._getConfig(e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get DefaultType(){return Pn}static get Default(){return jn}static get NAME(){return Dn}show(){j.trigger(this._element,"show.bs.toast").defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(Sn),u(this._element),this._element.classList.add(Nn),this._element.classList.add(In),this._queueCallback((()=>{this._element.classList.remove(In),j.trigger(this._element,"shown.bs.toast"),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this._element.classList.contains(Nn)&&(j.trigger(this._element,"hide.bs.toast").defaultPrevented||(this._element.classList.add(In),this._queueCallback((()=>{this._element.classList.add(Sn),this._element.classList.remove(In),this._element.classList.remove(Nn),j.trigger(this._element,"hidden.bs.toast")}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this._element.classList.contains(Nn)&&this._element.classList.remove(Nn),super.dispose()}_getConfig(t){return t={...jn,...U.getDataAttributes(this._element),..."object"==typeof t&&t?t:{}},a(Dn,t,this.constructor.DefaultType),t}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){j.on(this._element,"mouseover.bs.toast",(t=>this._onInteraction(t,!0))),j.on(this._element,"mouseout.bs.toast",(t=>this._onInteraction(t,!1))),j.on(this._element,"focusin.bs.toast",(t=>this._onInteraction(t,!0))),j.on(this._element,"focusout.bs.toast",(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=Mn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(Mn),g(Mn),{Alert:W,Button:z,Carousel:st,Collapse:pt,Dropdown:hi,Modal:Hi,Offcanvas:Fi,Popover:gn,ScrollSpy:An,Tab:xn,Toast:Mn,Tooltip:un}}));
+!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t=new Map,e={set(e,i,n){t.has(e)||t.set(e,new Map);const s=t.get(e);s.has(i)||0===s.size?s.set(i,n):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(s.keys())[0]}.`)},get:(e,i)=>t.has(e)&&t.get(e).get(i)||null,remove(e,i){if(!t.has(e))return;const n=t.get(e);n.delete(i),0===n.size&&t.delete(e)}},i="transitionend",n=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),s=t=>{t.dispatchEvent(new Event(i))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(n(t)):null,a=t=>{if(!o(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},l=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),c=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?c(t.parentNode):null},h=()=>{},d=t=>{t.offsetHeight},u=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,f=[],p=()=>"rtl"===document.documentElement.dir,m=t=>{var e;e=()=>{const e=u();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(f.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of f)t()})),f.push(e)):e()},g=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,_=(t,e,n=!0)=>{if(!n)return void g(t);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let r=!1;const a=({target:n})=>{n===e&&(r=!0,e.removeEventListener(i,a),g(t))};e.addEventListener(i,a),setTimeout((()=>{r||s(e)}),o)},b=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},v=/[^.]*(?=\..*)\.|.*/,y=/\..*/,w=/::\d+$/,A={};let E=1;const T={mouseenter:"mouseover",mouseleave:"mouseout"},C=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function O(t,e){return e&&`${e}::${E++}`||t.uidEvent||E++}function x(t){const e=O(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function k(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function L(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=I(t);return C.has(o)||(o=t),[n,s,o]}function S(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=L(e,i,n);if(e in T){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=x(t),c=l[a]||(l[a]={}),h=k(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=O(r,e.replace(v,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return P(s,{delegateTarget:r}),n.oneOff&&N.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return P(n,{delegateTarget:t}),i.oneOff&&N.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function D(t,e,i,n,s){const o=k(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function $(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&D(t,e,i,r.callable,r.delegationSelector)}function I(t){return t=t.replace(y,""),T[t]||t}const N={on(t,e,i,n){S(t,e,i,n,!1)},one(t,e,i,n){S(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=L(e,i,n),a=r!==e,l=x(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))$(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(w,"");a&&!e.includes(s)||D(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;D(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=u();let s=null,o=!0,r=!0,a=!1;e!==I(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=P(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function P(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function M(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function j(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const F={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${j(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${j(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=M(t.dataset[n])}return e},getDataAttribute:(t,e)=>M(t.getAttribute(`data-bs-${j(e)}`))};class H{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=o(e)?F.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...o(e)?F.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],r=o(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(r))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${r}" but expected type "${s}".`)}var i}}class W extends H{constructor(t,i){super(),(t=r(t))&&(this._element=t,this._config=this._getConfig(i),e.set(this._element,this.constructor.DATA_KEY,this))}dispose(){e.remove(this._element,this.constructor.DATA_KEY),N.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){_(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return e.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.1"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const B=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return n(e)},z={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!l(t)&&a(t)))},getSelectorFromElement(t){const e=B(t);return e&&z.findOne(e)?e:null},getElementFromSelector(t){const e=B(t);return e?z.findOne(e):null},getMultipleElementsFromSelector(t){const e=B(t);return e?z.find(e):[]}},R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;N.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),l(this))return;const s=z.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},q=".bs.alert",V=`close${q}`,K=`closed${q}`;class Q extends W{static get NAME(){return"alert"}close(){if(N.trigger(this._element,V).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),N.trigger(this._element,K),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Q.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(Q,"close"),m(Q);const X='[data-bs-toggle="button"]';class Y extends W{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=Y.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}N.on(document,"click.bs.button.data-api",X,(t=>{t.preventDefault();const e=t.target.closest(X);Y.getOrCreateInstance(e).toggle()})),m(Y);const U=".bs.swipe",G=`touchstart${U}`,J=`touchmove${U}`,Z=`touchend${U}`,tt=`pointerdown${U}`,et=`pointerup${U}`,it={endCallback:null,leftCallback:null,rightCallback:null},nt={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class st extends H{constructor(t,e){super(),this._element=t,t&&st.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return it}static get DefaultType(){return nt}static get NAME(){return"swipe"}dispose(){N.off(this._element,U)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),g(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&g(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(N.on(this._element,tt,(t=>this._start(t))),N.on(this._element,et,(t=>this._end(t))),this._element.classList.add("pointer-event")):(N.on(this._element,G,(t=>this._start(t))),N.on(this._element,J,(t=>this._move(t))),N.on(this._element,Z,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const ot=".bs.carousel",rt=".data-api",at="next",lt="prev",ct="left",ht="right",dt=`slide${ot}`,ut=`slid${ot}`,ft=`keydown${ot}`,pt=`mouseenter${ot}`,mt=`mouseleave${ot}`,gt=`dragstart${ot}`,_t=`load${ot}${rt}`,bt=`click${ot}${rt}`,vt="carousel",yt="active",wt=".active",At=".carousel-item",Et=wt+At,Tt={ArrowLeft:ht,ArrowRight:ct},Ct={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},Ot={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class xt extends W{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=z.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===vt&&this.cycle()}static get Default(){return Ct}static get DefaultType(){return Ot}static get NAME(){return"carousel"}next(){this._slide(at)}nextWhenVisible(){!document.hidden&&a(this._element)&&this.next()}prev(){this._slide(lt)}pause(){this._isSliding&&s(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?N.one(this._element,ut,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void N.one(this._element,ut,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?at:lt;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&N.on(this._element,ft,(t=>this._keydown(t))),"hover"===this._config.pause&&(N.on(this._element,pt,(()=>this.pause())),N.on(this._element,mt,(()=>this._maybeEnableCycle()))),this._config.touch&&st.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of z.find(".carousel-item img",this._element))N.on(t,gt,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ct)),rightCallback:()=>this._slide(this._directionToOrder(ht)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new st(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=Tt[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=z.findOne(wt,this._indicatorsElement);e.classList.remove(yt),e.removeAttribute("aria-current");const i=z.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(yt),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===at,s=e||b(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>N.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(dt).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),d(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(yt),i.classList.remove(yt,c,l),this._isSliding=!1,r(ut)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return z.findOne(Et,this._element)}_getItems(){return z.find(At,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return p()?t===ct?lt:at:t===ct?at:lt}_orderToDirection(t){return p()?t===lt?ct:ht:t===lt?ht:ct}static jQueryInterface(t){return this.each((function(){const e=xt.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}N.on(document,bt,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=z.getElementFromSelector(this);if(!e||!e.classList.contains(vt))return;t.preventDefault();const i=xt.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===F.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),N.on(window,_t,(()=>{const t=z.find('[data-bs-ride="carousel"]');for(const e of t)xt.getOrCreateInstance(e)})),m(xt);const kt=".bs.collapse",Lt=`show${kt}`,St=`shown${kt}`,Dt=`hide${kt}`,$t=`hidden${kt}`,It=`click${kt}.data-api`,Nt="show",Pt="collapse",Mt="collapsing",jt=`:scope .${Pt} .${Pt}`,Ft='[data-bs-toggle="collapse"]',Ht={parent:null,toggle:!0},Wt={parent:"(null|element)",toggle:"boolean"};class Bt extends W{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=z.find(Ft);for(const t of i){const e=z.getSelectorFromElement(t),i=z.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return Ht}static get DefaultType(){return Wt}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Bt.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(N.trigger(this._element,Lt).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(Pt),this._element.classList.add(Mt),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt,Nt),this._element.style[e]="",N.trigger(this._element,St)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(N.trigger(this._element,Dt).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,d(this._element),this._element.classList.add(Mt),this._element.classList.remove(Pt,Nt);for(const t of this._triggerArray){const e=z.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt),N.trigger(this._element,$t)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(Nt)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=r(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(Ft);for(const e of t){const t=z.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=z.find(jt,this._config.parent);return z.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Bt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}N.on(document,It,Ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of z.getMultipleElementsFromSelector(this))Bt.getOrCreateInstance(t,{toggle:!1}).toggle()})),m(Bt);var zt="top",Rt="bottom",qt="right",Vt="left",Kt="auto",Qt=[zt,Rt,qt,Vt],Xt="start",Yt="end",Ut="clippingParents",Gt="viewport",Jt="popper",Zt="reference",te=Qt.reduce((function(t,e){return t.concat([e+"-"+Xt,e+"-"+Yt])}),[]),ee=[].concat(Qt,[Kt]).reduce((function(t,e){return t.concat([e,e+"-"+Xt,e+"-"+Yt])}),[]),ie="beforeRead",ne="read",se="afterRead",oe="beforeMain",re="main",ae="afterMain",le="beforeWrite",ce="write",he="afterWrite",de=[ie,ne,se,oe,re,ae,le,ce,he];function ue(t){return t?(t.nodeName||"").toLowerCase():null}function fe(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function pe(t){return t instanceof fe(t).Element||t instanceof Element}function me(t){return t instanceof fe(t).HTMLElement||t instanceof HTMLElement}function ge(t){return"undefined"!=typeof ShadowRoot&&(t instanceof fe(t).ShadowRoot||t instanceof ShadowRoot)}const _e={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];me(s)&&ue(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});me(n)&&ue(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function be(t){return t.split("-")[0]}var ve=Math.max,ye=Math.min,we=Math.round;function Ae(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function Ee(){return!/^((?!chrome|android).)*safari/i.test(Ae())}function Te(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&me(t)&&(s=t.offsetWidth>0&&we(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&we(n.height)/t.offsetHeight||1);var r=(pe(t)?fe(t):window).visualViewport,a=!Ee()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function Ce(t){var e=Te(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Oe(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&ge(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function xe(t){return fe(t).getComputedStyle(t)}function ke(t){return["table","td","th"].indexOf(ue(t))>=0}function Le(t){return((pe(t)?t.ownerDocument:t.document)||window.document).documentElement}function Se(t){return"html"===ue(t)?t:t.assignedSlot||t.parentNode||(ge(t)?t.host:null)||Le(t)}function De(t){return me(t)&&"fixed"!==xe(t).position?t.offsetParent:null}function $e(t){for(var e=fe(t),i=De(t);i&&ke(i)&&"static"===xe(i).position;)i=De(i);return i&&("html"===ue(i)||"body"===ue(i)&&"static"===xe(i).position)?e:i||function(t){var e=/firefox/i.test(Ae());if(/Trident/i.test(Ae())&&me(t)&&"fixed"===xe(t).position)return null;var i=Se(t);for(ge(i)&&(i=i.host);me(i)&&["html","body"].indexOf(ue(i))<0;){var n=xe(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Ie(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function Ne(t,e,i){return ve(t,ye(e,i))}function Pe(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function Me(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const je={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=be(i.placement),l=Ie(a),c=[Vt,qt].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return Pe("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:Me(t,Qt))}(s.padding,i),d=Ce(o),u="y"===l?zt:Vt,f="y"===l?Rt:qt,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=$e(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,A=Ne(v,w,y),E=l;i.modifiersData[n]=((e={})[E]=A,e.centerOffset=A-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Oe(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Fe(t){return t.split("-")[1]}var He={top:"auto",right:"auto",bottom:"auto",left:"auto"};function We(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=t.isFixed,u=r.x,f=void 0===u?0:u,p=r.y,m=void 0===p?0:p,g="function"==typeof h?h({x:f,y:m}):{x:f,y:m};f=g.x,m=g.y;var _=r.hasOwnProperty("x"),b=r.hasOwnProperty("y"),v=Vt,y=zt,w=window;if(c){var A=$e(i),E="clientHeight",T="clientWidth";A===fe(i)&&"static"!==xe(A=Le(i)).position&&"absolute"===a&&(E="scrollHeight",T="scrollWidth"),(s===zt||(s===Vt||s===qt)&&o===Yt)&&(y=Rt,m-=(d&&A===w&&w.visualViewport?w.visualViewport.height:A[E])-n.height,m*=l?1:-1),s!==Vt&&(s!==zt&&s!==Rt||o!==Yt)||(v=qt,f-=(d&&A===w&&w.visualViewport?w.visualViewport.width:A[T])-n.width,f*=l?1:-1)}var C,O=Object.assign({position:a},c&&He),x=!0===h?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:we(i*s)/s||0,y:we(n*s)/s||0}}({x:f,y:m},fe(i)):{x:f,y:m};return f=x.x,m=x.y,l?Object.assign({},O,((C={})[y]=b?"0":"",C[v]=_?"0":"",C.transform=(w.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",C)):Object.assign({},O,((e={})[y]=b?m+"px":"",e[v]=_?f+"px":"",e.transform="",e))}const Be={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:be(e.placement),variation:Fe(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,We(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,We(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var ze={passive:!0};const Re={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=fe(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,ze)})),a&&l.addEventListener("resize",i.update,ze),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,ze)})),a&&l.removeEventListener("resize",i.update,ze)}},data:{}};var qe={left:"right",right:"left",bottom:"top",top:"bottom"};function Ve(t){return t.replace(/left|right|bottom|top/g,(function(t){return qe[t]}))}var Ke={start:"end",end:"start"};function Qe(t){return t.replace(/start|end/g,(function(t){return Ke[t]}))}function Xe(t){var e=fe(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function Ye(t){return Te(Le(t)).left+Xe(t).scrollLeft}function Ue(t){var e=xe(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ge(t){return["html","body","#document"].indexOf(ue(t))>=0?t.ownerDocument.body:me(t)&&Ue(t)?t:Ge(Se(t))}function Je(t,e){var i;void 0===e&&(e=[]);var n=Ge(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=fe(n),r=s?[o].concat(o.visualViewport||[],Ue(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Je(Se(r)))}function Ze(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function ti(t,e,i){return e===Gt?Ze(function(t,e){var i=fe(t),n=Le(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=Ee();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+Ye(t),y:l}}(t,i)):pe(e)?function(t,e){var i=Te(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):Ze(function(t){var e,i=Le(t),n=Xe(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ve(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ve(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+Ye(t),l=-n.scrollTop;return"rtl"===xe(s||i).direction&&(a+=ve(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Le(t)))}function ei(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?be(s):null,r=s?Fe(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case zt:e={x:a,y:i.y-n.height};break;case Rt:e={x:a,y:i.y+i.height};break;case qt:e={x:i.x+i.width,y:l};break;case Vt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?Ie(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case Xt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Yt:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ii(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.strategy,r=void 0===o?t.strategy:o,a=i.boundary,l=void 0===a?Ut:a,c=i.rootBoundary,h=void 0===c?Gt:c,d=i.elementContext,u=void 0===d?Jt:d,f=i.altBoundary,p=void 0!==f&&f,m=i.padding,g=void 0===m?0:m,_=Pe("number"!=typeof g?g:Me(g,Qt)),b=u===Jt?Zt:Jt,v=t.rects.popper,y=t.elements[p?b:u],w=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=Je(Se(t)),i=["absolute","fixed"].indexOf(xe(t).position)>=0&&me(t)?$e(t):t;return pe(i)?e.filter((function(t){return pe(t)&&Oe(t,i)&&"body"!==ue(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=ti(t,i,n);return e.top=ve(s.top,e.top),e.right=ye(s.right,e.right),e.bottom=ye(s.bottom,e.bottom),e.left=ve(s.left,e.left),e}),ti(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(pe(y)?y:y.contextElement||Le(t.elements.popper),l,h,r),A=Te(t.elements.reference),E=ei({reference:A,element:v,strategy:"absolute",placement:s}),T=Ze(Object.assign({},v,E)),C=u===Jt?T:A,O={top:w.top-C.top+_.top,bottom:C.bottom-w.bottom+_.bottom,left:w.left-C.left+_.left,right:C.right-w.right+_.right},x=t.modifiersData.offset;if(u===Jt&&x){var k=x[s];Object.keys(O).forEach((function(t){var e=[qt,Rt].indexOf(t)>=0?1:-1,i=[zt,Rt].indexOf(t)>=0?"y":"x";O[t]+=k[i]*e}))}return O}function ni(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?ee:l,h=Fe(n),d=h?a?te:te.filter((function(t){return Fe(t)===h})):Qt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ii(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[be(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const si={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=be(g),b=l||(_!==g&&p?function(t){if(be(t)===Kt)return[];var e=Ve(t);return[Qe(t),e,Qe(e)]}(g):[Ve(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(be(i)===Kt?ni(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,A=new Map,E=!0,T=v[0],C=0;C<v.length;C++){var O=v[C],x=be(O),k=Fe(O)===Xt,L=[zt,Rt].indexOf(x)>=0,S=L?"width":"height",D=ii(e,{placement:O,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),$=L?k?qt:Vt:k?Rt:zt;y[S]>w[S]&&($=Ve($));var I=Ve($),N=[];if(o&&N.push(D[x]<=0),a&&N.push(D[$]<=0,D[I]<=0),N.every((function(t){return t}))){T=O,E=!1;break}A.set(O,N)}if(E)for(var P=function(t){var e=v.find((function(e){var i=A.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==P(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function oi(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function ri(t){return[zt,qt,Rt,Vt].some((function(e){return t[e]>=0}))}const ai={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ii(e,{elementContext:"reference"}),a=ii(e,{altBoundary:!0}),l=oi(r,n),c=oi(a,s,o),h=ri(l),d=ri(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},li={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=ee.reduce((function(t,i){return t[i]=function(t,e,i){var n=be(t),s=[Vt,zt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[Vt,qt].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},ci={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=ei({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},hi={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ii(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=be(e.placement),b=Fe(e.placement),v=!b,y=Ie(_),w="x"===y?"y":"x",A=e.modifiersData.popperOffsets,E=e.rects.reference,T=e.rects.popper,C="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,O="number"==typeof C?{mainAxis:C,altAxis:C}:Object.assign({mainAxis:0,altAxis:0},C),x=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,k={x:0,y:0};if(A){if(o){var L,S="y"===y?zt:Vt,D="y"===y?Rt:qt,$="y"===y?"height":"width",I=A[y],N=I+g[S],P=I-g[D],M=f?-T[$]/2:0,j=b===Xt?E[$]:T[$],F=b===Xt?-T[$]:-E[$],H=e.elements.arrow,W=f&&H?Ce(H):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},z=B[S],R=B[D],q=Ne(0,E[$],W[$]),V=v?E[$]/2-M-q-z-O.mainAxis:j-q-z-O.mainAxis,K=v?-E[$]/2+M+q+R+O.mainAxis:F+q+R+O.mainAxis,Q=e.elements.arrow&&$e(e.elements.arrow),X=Q?"y"===y?Q.clientTop||0:Q.clientLeft||0:0,Y=null!=(L=null==x?void 0:x[y])?L:0,U=I+K-Y,G=Ne(f?ye(N,I+V-Y-X):N,I,f?ve(P,U):P);A[y]=G,k[y]=G-I}if(a){var J,Z="x"===y?zt:Vt,tt="x"===y?Rt:qt,et=A[w],it="y"===w?"height":"width",nt=et+g[Z],st=et-g[tt],ot=-1!==[zt,Vt].indexOf(_),rt=null!=(J=null==x?void 0:x[w])?J:0,at=ot?nt:et-E[it]-T[it]-rt+O.altAxis,lt=ot?et+E[it]+T[it]-rt-O.altAxis:st,ct=f&&ot?function(t,e,i){var n=Ne(t,e,i);return n>i?i:n}(at,et,lt):Ne(f?at:nt,et,f?lt:st);A[w]=ct,k[w]=ct-et}e.modifiersData[n]=k}},requiresIfExists:["offset"]};function di(t,e,i){void 0===i&&(i=!1);var n,s,o=me(e),r=me(e)&&function(t){var e=t.getBoundingClientRect(),i=we(e.width)/t.offsetWidth||1,n=we(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=Le(e),l=Te(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==ue(e)||Ue(a))&&(c=(n=e)!==fe(n)&&me(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:Xe(n)),me(e)?((h=Te(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=Ye(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function ui(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var fi={placement:"bottom",modifiers:[],strategy:"absolute"};function pi(){for(var t=arguments.length,e=new Array(t),i=0;i<t;i++)e[i]=arguments[i];return!e.some((function(t){return!(t&&"function"==typeof t.getBoundingClientRect)}))}function mi(t){void 0===t&&(t={});var e=t,i=e.defaultModifiers,n=void 0===i?[]:i,s=e.defaultOptions,o=void 0===s?fi:s;return function(t,e,i){void 0===i&&(i=o);var s,r,a={placement:"bottom",orderedModifiers:[],options:Object.assign({},fi,o),modifiersData:{},elements:{reference:t,popper:e},attributes:{},styles:{}},l=[],c=!1,h={state:a,setOptions:function(i){var s="function"==typeof i?i(a.options):i;d(),a.options=Object.assign({},o,a.options,s),a.scrollParents={reference:pe(t)?Je(t):t.contextElement?Je(t.contextElement):[],popper:Je(e)};var r,c,u=function(t){var e=ui(t);return de.reduce((function(t,i){return t.concat(e.filter((function(t){return t.phase===i})))}),[])}((r=[].concat(n,a.options.modifiers),c=r.reduce((function(t,e){var i=t[e.name];return t[e.name]=i?Object.assign({},i,e,{options:Object.assign({},i.options,e.options),data:Object.assign({},i.data,e.data)}):e,t}),{}),Object.keys(c).map((function(t){return c[t]}))));return a.orderedModifiers=u.filter((function(t){return t.enabled})),a.orderedModifiers.forEach((function(t){var e=t.name,i=t.options,n=void 0===i?{}:i,s=t.effect;if("function"==typeof s){var o=s({state:a,name:e,instance:h,options:n});l.push(o||function(){})}})),h.update()},forceUpdate:function(){if(!c){var t=a.elements,e=t.reference,i=t.popper;if(pi(e,i)){a.rects={reference:di(e,$e(i),"fixed"===a.options.strategy),popper:Ce(i)},a.reset=!1,a.placement=a.options.placement,a.orderedModifiers.forEach((function(t){return a.modifiersData[t.name]=Object.assign({},t.data)}));for(var n=0;n<a.orderedModifiers.length;n++)if(!0!==a.reset){var s=a.orderedModifiers[n],o=s.fn,r=s.options,l=void 0===r?{}:r,d=s.name;"function"==typeof o&&(a=o({state:a,options:l,name:d,instance:h})||a)}else a.reset=!1,n=-1}}},update:(s=function(){return new Promise((function(t){h.forceUpdate(),t(a)}))},function(){return r||(r=new Promise((function(t){Promise.resolve().then((function(){r=void 0,t(s())}))}))),r}),destroy:function(){d(),c=!0}};if(!pi(t,e))return h;function d(){l.forEach((function(t){return t()})),l=[]}return h.setOptions(i).then((function(t){!c&&i.onFirstUpdate&&i.onFirstUpdate(t)})),h}}var gi=mi(),_i=mi({defaultModifiers:[Re,ci,Be,_e]}),bi=mi({defaultModifiers:[Re,ci,Be,_e,li,si,hi,je,ai]});const vi=Object.freeze(Object.defineProperty({__proto__:null,afterMain:ae,afterRead:se,afterWrite:he,applyStyles:_e,arrow:je,auto:Kt,basePlacements:Qt,beforeMain:oe,beforeRead:ie,beforeWrite:le,bottom:Rt,clippingParents:Ut,computeStyles:Be,createPopper:bi,createPopperBase:gi,createPopperLite:_i,detectOverflow:ii,end:Yt,eventListeners:Re,flip:si,hide:ai,left:Vt,main:re,modifierPhases:de,offset:li,placements:ee,popper:Jt,popperGenerator:mi,popperOffsets:ci,preventOverflow:hi,read:ne,reference:Zt,right:qt,start:Xt,top:zt,variationPlacements:te,viewport:Gt,write:ce},Symbol.toStringTag,{value:"Module"})),yi="dropdown",wi=".bs.dropdown",Ai=".data-api",Ei="ArrowUp",Ti="ArrowDown",Ci=`hide${wi}`,Oi=`hidden${wi}`,xi=`show${wi}`,ki=`shown${wi}`,Li=`click${wi}${Ai}`,Si=`keydown${wi}${Ai}`,Di=`keyup${wi}${Ai}`,$i="show",Ii='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',Ni=`${Ii}.${$i}`,Pi=".dropdown-menu",Mi=p()?"top-end":"top-start",ji=p()?"top-start":"top-end",Fi=p()?"bottom-end":"bottom-start",Hi=p()?"bottom-start":"bottom-end",Wi=p()?"left-start":"right-start",Bi=p()?"right-start":"left-start",zi={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},Ri={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class qi extends W{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=z.next(this._element,Pi)[0]||z.prev(this._element,Pi)[0]||z.findOne(Pi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return zi}static get DefaultType(){return Ri}static get NAME(){return yi}toggle(){return this._isShown()?this.hide():this.show()}show(){if(l(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!N.trigger(this._element,xi,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add($i),this._element.classList.add($i),N.trigger(this._element,ki,t)}}hide(){if(l(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!N.trigger(this._element,Ci,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._popper&&this._popper.destroy(),this._menu.classList.remove($i),this._element.classList.remove($i),this._element.setAttribute("aria-expanded","false"),F.removeDataAttribute(this._menu,"popper"),N.trigger(this._element,Oi,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!o(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${yi.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===vi)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:o(this._config.reference)?t=r(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const e=this._getPopperConfig();this._popper=bi(t,this._menu,e)}_isShown(){return this._menu.classList.contains($i)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Wi;if(t.classList.contains("dropstart"))return Bi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?ji:Mi:e?Hi:Fi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(F.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...g(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=z.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>a(t)));i.length&&b(i,e,t===Ti,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=qi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=z.find(Ni);for(const i of e){const e=qi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ei,Ti].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ii)?this:z.prev(this,Ii)[0]||z.next(this,Ii)[0]||z.findOne(Ii,t.delegateTarget.parentNode),o=qi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}N.on(document,Si,Ii,qi.dataApiKeydownHandler),N.on(document,Si,Pi,qi.dataApiKeydownHandler),N.on(document,Li,qi.clearMenus),N.on(document,Di,qi.clearMenus),N.on(document,Li,Ii,(function(t){t.preventDefault(),qi.getOrCreateInstance(this).toggle()})),m(qi);const Vi="backdrop",Ki="show",Qi=`mousedown.bs.${Vi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Yi={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Ui extends H{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Yi}static get NAME(){return Vi}show(t){if(!this._config.isVisible)return void g(t);this._append();const e=this._getElement();this._config.isAnimated&&d(e),e.classList.add(Ki),this._emulateAnimation((()=>{g(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),g(t)}))):g(t)}dispose(){this._isAppended&&(N.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=r(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),N.on(t,Qi,(()=>{g(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){_(t,this._getElement(),this._config.isAnimated)}}const Gi=".bs.focustrap",Ji=`focusin${Gi}`,Zi=`keydown.tab${Gi}`,tn="backward",en={autofocus:!0,trapElement:null},nn={autofocus:"boolean",trapElement:"element"};class sn extends H{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return en}static get DefaultType(){return nn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),N.off(document,Gi),N.on(document,Ji,(t=>this._handleFocusin(t))),N.on(document,Zi,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,N.off(document,Gi))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=z.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===tn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?tn:"forward")}}const on=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",rn=".sticky-top",an="padding-right",ln="margin-right";class cn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,an,(e=>e+t)),this._setElementAttributes(on,an,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,an),this._resetElementAttributes(on,an),this._resetElementAttributes(rn,ln)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&F.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=F.getDataAttribute(t,e);null!==i?(F.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(o(t))e(t);else for(const i of z.find(t,this._element))e(i)}}const hn=".bs.modal",dn=`hide${hn}`,un=`hidePrevented${hn}`,fn=`hidden${hn}`,pn=`show${hn}`,mn=`shown${hn}`,gn=`resize${hn}`,_n=`click.dismiss${hn}`,bn=`mousedown.dismiss${hn}`,vn=`keydown.dismiss${hn}`,yn=`click${hn}.data-api`,wn="modal-open",An="show",En="modal-static",Tn={backdrop:!0,focus:!0,keyboard:!0},Cn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class On extends W{constructor(t,e){super(t,e),this._dialog=z.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new cn,this._addEventListeners()}static get Default(){return Tn}static get DefaultType(){return Cn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||N.trigger(this._element,pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(wn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(N.trigger(this._element,dn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){N.off(window,hn),N.off(this._dialog,hn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Ui({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=z.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),d(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,N.trigger(this._element,mn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){N.on(this._element,vn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),N.on(window,gn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),N.on(this._element,bn,(t=>{N.one(this._element,_n,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(wn),this._resetAdjustments(),this._scrollBar.reset(),N.trigger(this._element,fn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(N.trigger(this._element,un).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(En)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(En),this._queueCallback((()=>{this._element.classList.remove(En),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=p()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=p()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=On.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}N.on(document,yn,'[data-bs-toggle="modal"]',(function(t){const e=z.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),N.one(e,pn,(t=>{t.defaultPrevented||N.one(e,fn,(()=>{a(this)&&this.focus()}))}));const i=z.findOne(".modal.show");i&&On.getInstance(i).hide(),On.getOrCreateInstance(e).toggle(this)})),R(On),m(On);const xn=".bs.offcanvas",kn=".data-api",Ln=`load${xn}${kn}`,Sn="show",Dn="showing",$n="hiding",In=".offcanvas.show",Nn=`show${xn}`,Pn=`shown${xn}`,Mn=`hide${xn}`,jn=`hidePrevented${xn}`,Fn=`hidden${xn}`,Hn=`resize${xn}`,Wn=`click${xn}${kn}`,Bn=`keydown.dismiss${xn}`,zn={backdrop:!0,keyboard:!0,scroll:!1},Rn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class qn extends W{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return zn}static get DefaultType(){return Rn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||N.trigger(this._element,Nn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new cn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Dn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Sn),this._element.classList.remove(Dn),N.trigger(this._element,Pn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(N.trigger(this._element,Mn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add($n),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Sn,$n),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new cn).reset(),N.trigger(this._element,Fn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Ui({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():N.trigger(this._element,jn)}:null})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_addEventListeners(){N.on(this._element,Bn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():N.trigger(this._element,jn))}))}static jQueryInterface(t){return this.each((function(){const e=qn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}N.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=z.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this))return;N.one(e,Fn,(()=>{a(this)&&this.focus()}));const i=z.findOne(In);i&&i!==e&&qn.getInstance(i).hide(),qn.getOrCreateInstance(e).toggle(this)})),N.on(window,Ln,(()=>{for(const t of z.find(In))qn.getOrCreateInstance(t).show()})),N.on(window,Hn,(()=>{for(const t of z.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&qn.getOrCreateInstance(t).hide()})),R(qn),m(qn);const Vn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Yn={allowList:Vn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"<div></div>"},Un={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Gn={entry:"(string|element|function|null)",selector:"(string|element)"};class Jn extends H{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Yn}static get DefaultType(){return Un}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Gn)}_setContent(t,e,i){const n=z.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?o(e)?this._putElementInTemplate(r(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return g(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const Zn=new Set(["sanitize","allowList","sanitizeFn"]),ts="fade",es="show",is=".modal",ns="hide.bs.modal",ss="hover",os="focus",rs={AUTO:"auto",TOP:"top",RIGHT:p()?"left":"right",BOTTOM:"bottom",LEFT:p()?"right":"left"},as={allowList:Vn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'<div class="tooltip" role="tooltip"><div class="tooltip-arrow"></div><div class="tooltip-inner"></div></div>',title:"",trigger:"hover focus"},ls={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class cs extends W{constructor(t,e){if(void 0===vi)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,e),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return as}static get DefaultType(){return ls}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),N.off(this._element.closest(is),ns,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=N.trigger(this._element,this.constructor.eventName("show")),e=(c(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),N.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._queueCallback((()=>{N.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!N.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._activeTrigger.click=!1,this._activeTrigger[os]=!1,this._activeTrigger[ss]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),N.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ts,es),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ts),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Jn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ts)}_isShown(){return this.tip&&this.tip.classList.contains(es)}_createPopper(t){const e=g(this._config.placement,[this,t,this._element]),i=rs[e.toUpperCase()];return bi(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return g(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...g(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)N.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ss?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ss?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");N.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?os:ss]=!0,e._enter()})),N.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?os:ss]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},N.on(this._element.closest(is),ns,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=F.getDataAttributes(this._element);for(const t of Object.keys(e))Zn.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=cs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(cs);const hs={...cs.Default,content:"",offset:[0,8],placement:"right",template:'<div class="popover" role="tooltip"><div class="popover-arrow"></div><h3 class="popover-header"></h3><div class="popover-body"></div></div>',trigger:"click"},ds={...cs.DefaultType,content:"(null|string|element|function)"};class us extends cs{static get Default(){return hs}static get DefaultType(){return ds}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=us.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(us);const fs=".bs.scrollspy",ps=`activate${fs}`,ms=`click${fs}`,gs=`load${fs}.data-api`,_s="active",bs="[href]",vs=".nav-link",ys=`${vs}, .nav-item > ${vs}, .list-group-item`,ws={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Es extends W{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return ws}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=r(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(N.off(this._config.target,ms),N.on(this._config.target,ms,bs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=z.find(bs,this._config.target);for(const e of t){if(!e.hash||l(e))continue;const t=z.findOne(decodeURI(e.hash),this._element);a(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(_s),this._activateParents(t),N.trigger(this._element,ps,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))z.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(_s);else for(const e of z.parents(t,".nav, .list-group"))for(const t of z.prev(e,ys))t.classList.add(_s)}_clearActiveClass(t){t.classList.remove(_s);const e=z.find(`${bs}.${_s}`,t);for(const t of e)t.classList.remove(_s)}static jQueryInterface(t){return this.each((function(){const e=Es.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(window,gs,(()=>{for(const t of z.find('[data-bs-spy="scroll"]'))Es.getOrCreateInstance(t)})),m(Es);const Ts=".bs.tab",Cs=`hide${Ts}`,Os=`hidden${Ts}`,xs=`show${Ts}`,ks=`shown${Ts}`,Ls=`click${Ts}`,Ss=`keydown${Ts}`,Ds=`load${Ts}`,$s="ArrowLeft",Is="ArrowRight",Ns="ArrowUp",Ps="ArrowDown",Ms="Home",js="End",Fs="active",Hs="fade",Ws="show",Bs=":not(.dropdown-toggle)",zs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Rs=`.nav-link${Bs}, .list-group-item${Bs}, [role="tab"]${Bs}, ${zs}`,qs=`.${Fs}[data-bs-toggle="tab"], .${Fs}[data-bs-toggle="pill"], .${Fs}[data-bs-toggle="list"]`;class Vs extends W{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),N.on(this._element,Ss,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?N.trigger(e,Cs,{relatedTarget:t}):null;N.trigger(t,xs,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Fs),this._activate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),N.trigger(t,ks,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Hs)))}_deactivate(t,e){t&&(t.classList.remove(Fs),t.blur(),this._deactivate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),N.trigger(t,Os,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Hs)))}_keydown(t){if(![$s,Is,Ns,Ps,Ms,js].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!l(t)));let i;if([Ms,js].includes(t.key))i=e[t.key===Ms?0:e.length-1];else{const n=[Is,Ps].includes(t.key);i=b(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Vs.getOrCreateInstance(i).show())}_getChildren(){return z.find(Rs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=z.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=z.findOne(t,i);s&&s.classList.toggle(n,e)};n(".dropdown-toggle",Fs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Fs)}_getInnerElement(t){return t.matches(Rs)?t:z.findOne(Rs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Vs.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(document,Ls,zs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this)||Vs.getOrCreateInstance(this).show()})),N.on(window,Ds,(()=>{for(const t of z.find(qs))Vs.getOrCreateInstance(t)})),m(Vs);const Ks=".bs.toast",Qs=`mouseover${Ks}`,Xs=`mouseout${Ks}`,Ys=`focusin${Ks}`,Us=`focusout${Ks}`,Gs=`hide${Ks}`,Js=`hidden${Ks}`,Zs=`show${Ks}`,to=`shown${Ks}`,eo="hide",io="show",no="showing",so={animation:"boolean",autohide:"boolean",delay:"number"},oo={animation:!0,autohide:!0,delay:5e3};class ro extends W{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return oo}static get DefaultType(){return so}static get NAME(){return"toast"}show(){N.trigger(this._element,Zs).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(eo),d(this._element),this._element.classList.add(io,no),this._queueCallback((()=>{this._element.classList.remove(no),N.trigger(this._element,to),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(N.trigger(this._element,Gs).defaultPrevented||(this._element.classList.add(no),this._queueCallback((()=>{this._element.classList.add(eo),this._element.classList.remove(no,io),N.trigger(this._element,Js)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(io),super.dispose()}isShown(){return this._element.classList.contains(io)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){N.on(this._element,Qs,(t=>this._onInteraction(t,!0))),N.on(this._element,Xs,(t=>this._onInteraction(t,!1))),N.on(this._element,Ys,(t=>this._onInteraction(t,!0))),N.on(this._element,Us,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=ro.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(ro),m(ro),{Alert:Q,Button:Y,Carousel:xt,Collapse:Bt,Dropdown:qi,Modal:On,Offcanvas:qn,Popover:us,ScrollSpy:Es,Tab:Vs,Toast:ro,Tooltip:cs}}));
 //# sourceMappingURL=bootstrap.bundle.min.js.map
\ No newline at end of file
diff --git a/docs/site_libs/quarto-html/anchor.min.js b/docs/site_libs/quarto-html/anchor.min.js
index 1c2b86f..5ac814d 100644
--- a/docs/site_libs/quarto-html/anchor.min.js
+++ b/docs/site_libs/quarto-html/anchor.min.js
@@ -1,9 +1,9 @@
 // @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt Expat
 //
-// AnchorJS - v4.3.1 - 2021-04-17
+// AnchorJS - v5.0.0 - 2023-01-18
 // https://www.bryanbraun.com/anchorjs/
-// Copyright (c) 2021 Bryan Braun; Licensed MIT
+// Copyright (c) 2023 Bryan Braun; Licensed MIT
 //
 // @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt Expat
-!function(A,e){"use strict";"function"==typeof define&&define.amd?define([],e):"object"==typeof module&&module.exports?module.exports=e():(A.AnchorJS=e(),A.anchors=new A.AnchorJS)}(this,function(){"use strict";return function(A){function d(A){A.icon=Object.prototype.hasOwnProperty.call(A,"icon")?A.icon:"",A.visible=Object.prototype.hasOwnProperty.call(A,"visible")?A.visible:"hover",A.placement=Object.prototype.hasOwnProperty.call(A,"placement")?A.placement:"right",A.ariaLabel=Object.prototype.hasOwnProperty.call(A,"ariaLabel")?A.ariaLabel:"Anchor",A.class=Object.prototype.hasOwnProperty.call(A,"class")?A.class:"",A.base=Object.prototype.hasOwnProperty.call(A,"base")?A.base:"",A.truncate=Object.prototype.hasOwnProperty.call(A,"truncate")?Math.floor(A.truncate):64,A.titleText=Object.prototype.hasOwnProperty.call(A,"titleText")?A.titleText:""}function w(A){var e;if("string"==typeof A||A instanceof String)e=[].slice.call(document.querySelectorAll(A));else{if(!(Array.isArray(A)||A instanceof NodeList))throw new TypeError("The selector provided to AnchorJS was invalid.");e=[].slice.call(A)}return e}this.options=A||{},this.elements=[],d(this.options),this.isTouchDevice=function(){return Boolean("ontouchstart"in window||window.TouchEvent||window.DocumentTouch&&document instanceof DocumentTouch)},this.add=function(A){var e,t,o,i,n,s,a,c,r,l,h,u,p=[];if(d(this.options),"touch"===(l=this.options.visible)&&(l=this.isTouchDevice()?"always":"hover"),0===(e=w(A=A||"h2, h3, h4, h5, h6")).length)return this;for(null===document.head.querySelector("style.anchorjs")&&((u=document.createElement("style")).className="anchorjs",u.appendChild(document.createTextNode("")),void 0===(A=document.head.querySelector('[rel="stylesheet"],style'))?document.head.appendChild(u):document.head.insertBefore(u,A),u.sheet.insertRule(".anchorjs-link{opacity:0;text-decoration:none;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}",u.sheet.cssRules.length),u.sheet.insertRule(":hover>.anchorjs-link,.anchorjs-link:focus{opacity:1}",u.sheet.cssRules.length),u.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",u.sheet.cssRules.length),u.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',u.sheet.cssRules.length)),u=document.querySelectorAll("[id]"),t=[].map.call(u,function(A){return A.id}),i=0;i<e.length;i++)if(this.hasAnchorJSLink(e[i]))p.push(i);else{if(e[i].hasAttribute("id"))o=e[i].getAttribute("id");else if(e[i].hasAttribute("data-anchor-id"))o=e[i].getAttribute("data-anchor-id");else{for(c=a=this.urlify(e[i].textContent),s=0;n=t.indexOf(c=void 0!==n?a+"-"+s:c),s+=1,-1!==n;);n=void 0,t.push(c),e[i].setAttribute("id",c),o=c}(r=document.createElement("a")).className="anchorjs-link "+this.options.class,r.setAttribute("aria-label",this.options.ariaLabel),r.setAttribute("data-anchorjs-icon",this.options.icon),this.options.titleText&&(r.title=this.options.titleText),h=document.querySelector("base")?window.location.pathname+window.location.search:"",h=this.options.base||h,r.href=h+"#"+o,"always"===l&&(r.style.opacity="1"),""===this.options.icon&&(r.style.font="1em/1 anchorjs-icons","left"===this.options.placement&&(r.style.lineHeight="inherit")),"left"===this.options.placement?(r.style.position="absolute",r.style.marginLeft="-1em",r.style.paddingRight=".5em",e[i].insertBefore(r,e[i].firstChild)):(r.style.paddingLeft=".375em",e[i].appendChild(r))}for(i=0;i<p.length;i++)e.splice(p[i]-i,1);return this.elements=this.elements.concat(e),this},this.remove=function(A){for(var e,t,o=w(A),i=0;i<o.length;i++)(t=o[i].querySelector(".anchorjs-link"))&&(-1!==(e=this.elements.indexOf(o[i]))&&this.elements.splice(e,1),o[i].removeChild(t));return this},this.removeAll=function(){this.remove(this.elements)},this.urlify=function(A){var e=document.createElement("textarea");return e.innerHTML=A,A=e.value,this.options.truncate||d(this.options),A.trim().replace(/'/gi,"").replace(/[& +$,:;=?@"#{}|^~[`%!'<>\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),A=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||A||!1}}});
+!function(A,e){"use strict";"function"==typeof define&&define.amd?define([],e):"object"==typeof module&&module.exports?module.exports=e():(A.AnchorJS=e(),A.anchors=new A.AnchorJS)}(globalThis,function(){"use strict";return function(A){function u(A){A.icon=Object.prototype.hasOwnProperty.call(A,"icon")?A.icon:"",A.visible=Object.prototype.hasOwnProperty.call(A,"visible")?A.visible:"hover",A.placement=Object.prototype.hasOwnProperty.call(A,"placement")?A.placement:"right",A.ariaLabel=Object.prototype.hasOwnProperty.call(A,"ariaLabel")?A.ariaLabel:"Anchor",A.class=Object.prototype.hasOwnProperty.call(A,"class")?A.class:"",A.base=Object.prototype.hasOwnProperty.call(A,"base")?A.base:"",A.truncate=Object.prototype.hasOwnProperty.call(A,"truncate")?Math.floor(A.truncate):64,A.titleText=Object.prototype.hasOwnProperty.call(A,"titleText")?A.titleText:""}function d(A){var e;if("string"==typeof A||A instanceof String)e=[].slice.call(document.querySelectorAll(A));else{if(!(Array.isArray(A)||A instanceof NodeList))throw new TypeError("The selector provided to AnchorJS was invalid.");e=[].slice.call(A)}return e}this.options=A||{},this.elements=[],u(this.options),this.add=function(A){var e,t,o,i,n,s,a,r,l,c,h,p=[];if(u(this.options),0!==(e=d(A=A||"h2, h3, h4, h5, h6")).length){for(null===document.head.querySelector("style.anchorjs")&&((A=document.createElement("style")).className="anchorjs",A.appendChild(document.createTextNode("")),void 0===(h=document.head.querySelector('[rel="stylesheet"],style'))?document.head.appendChild(A):document.head.insertBefore(A,h),A.sheet.insertRule(".anchorjs-link{opacity:0;text-decoration:none;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}",A.sheet.cssRules.length),A.sheet.insertRule(":hover>.anchorjs-link,.anchorjs-link:focus{opacity:1}",A.sheet.cssRules.length),A.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",A.sheet.cssRules.length),A.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',A.sheet.cssRules.length)),h=document.querySelectorAll("[id]"),t=[].map.call(h,function(A){return A.id}),i=0;i<e.length;i++)if(this.hasAnchorJSLink(e[i]))p.push(i);else{if(e[i].hasAttribute("id"))o=e[i].getAttribute("id");else if(e[i].hasAttribute("data-anchor-id"))o=e[i].getAttribute("data-anchor-id");else{for(r=a=this.urlify(e[i].textContent),s=0;n=t.indexOf(r=void 0!==n?a+"-"+s:r),s+=1,-1!==n;);n=void 0,t.push(r),e[i].setAttribute("id",r),o=r}(l=document.createElement("a")).className="anchorjs-link "+this.options.class,l.setAttribute("aria-label",this.options.ariaLabel),l.setAttribute("data-anchorjs-icon",this.options.icon),this.options.titleText&&(l.title=this.options.titleText),c=document.querySelector("base")?window.location.pathname+window.location.search:"",c=this.options.base||c,l.href=c+"#"+o,"always"===this.options.visible&&(l.style.opacity="1"),""===this.options.icon&&(l.style.font="1em/1 anchorjs-icons","left"===this.options.placement)&&(l.style.lineHeight="inherit"),"left"===this.options.placement?(l.style.position="absolute",l.style.marginLeft="-1.25em",l.style.paddingRight=".25em",l.style.paddingLeft=".25em",e[i].insertBefore(l,e[i].firstChild)):(l.style.marginLeft=".1875em",l.style.paddingRight=".1875em",l.style.paddingLeft=".1875em",e[i].appendChild(l))}for(i=0;i<p.length;i++)e.splice(p[i]-i,1);this.elements=this.elements.concat(e)}return this},this.remove=function(A){for(var e,t,o=d(A),i=0;i<o.length;i++)(t=o[i].querySelector(".anchorjs-link"))&&(-1!==(e=this.elements.indexOf(o[i]))&&this.elements.splice(e,1),o[i].removeChild(t));return this},this.removeAll=function(){this.remove(this.elements)},this.urlify=function(A){var e=document.createElement("textarea");return e.innerHTML=A,A=e.value,this.options.truncate||u(this.options),A.trim().replace(/'/gi,"").replace(/[& +$,:;=?@"#{}|^~[`%!'<>\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),A=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||A||!1}}});
 // @license-end
\ No newline at end of file
diff --git a/docs/site_libs/quarto-html/popper.min.js b/docs/site_libs/quarto-html/popper.min.js
index 2269d66..e3726d7 100644
--- a/docs/site_libs/quarto-html/popper.min.js
+++ b/docs/site_libs/quarto-html/popper.min.js
@@ -1,6 +1,6 @@
 /**
- * @popperjs/core v2.11.4 - MIT License
+ * @popperjs/core v2.11.7 - MIT License
  */
 
-!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){"use strict";function t(e){if(null==e)return window;if("[object Window]"!==e.toString()){var t=e.ownerDocument;return t&&t.defaultView||window}return e}function n(e){return e instanceof t(e).Element||e instanceof Element}function r(e){return e instanceof t(e).HTMLElement||e instanceof HTMLElement}function o(e){return"undefined"!=typeof ShadowRoot&&(e instanceof t(e).ShadowRoot||e instanceof ShadowRoot)}var i=Math.max,a=Math.min,s=Math.round;function f(e,t){void 0===t&&(t=!1);var n=e.getBoundingClientRect(),o=1,i=1;if(r(e)&&t){var a=e.offsetHeight,f=e.offsetWidth;f>0&&(o=s(n.width)/f||1),a>0&&(i=s(n.height)/a||1)}return{width:n.width/o,height:n.height/i,top:n.top/i,right:n.right/o,bottom:n.bottom/i,left:n.left/o,x:n.left/o,y:n.top/i}}function c(e){var n=t(e);return{scrollLeft:n.pageXOffset,scrollTop:n.pageYOffset}}function p(e){return e?(e.nodeName||"").toLowerCase():null}function u(e){return((n(e)?e.ownerDocument:e.document)||window.document).documentElement}function l(e){return f(u(e)).left+c(e).scrollLeft}function d(e){return t(e).getComputedStyle(e)}function h(e){var t=d(e),n=t.overflow,r=t.overflowX,o=t.overflowY;return/auto|scroll|overlay|hidden/.test(n+o+r)}function m(e,n,o){void 0===o&&(o=!1);var i,a,d=r(n),m=r(n)&&function(e){var t=e.getBoundingClientRect(),n=s(t.width)/e.offsetWidth||1,r=s(t.height)/e.offsetHeight||1;return 1!==n||1!==r}(n),v=u(n),g=f(e,m),y={scrollLeft:0,scrollTop:0},b={x:0,y:0};return(d||!d&&!o)&&(("body"!==p(n)||h(v))&&(y=(i=n)!==t(i)&&r(i)?{scrollLeft:(a=i).scrollLeft,scrollTop:a.scrollTop}:c(i)),r(n)?((b=f(n,!0)).x+=n.clientLeft,b.y+=n.clientTop):v&&(b.x=l(v))),{x:g.left+y.scrollLeft-b.x,y:g.top+y.scrollTop-b.y,width:g.width,height:g.height}}function v(e){var t=f(e),n=e.offsetWidth,r=e.offsetHeight;return Math.abs(t.width-n)<=1&&(n=t.width),Math.abs(t.height-r)<=1&&(r=t.height),{x:e.offsetLeft,y:e.offsetTop,width:n,height:r}}function g(e){return"html"===p(e)?e:e.assignedSlot||e.parentNode||(o(e)?e.host:null)||u(e)}function y(e){return["html","body","#document"].indexOf(p(e))>=0?e.ownerDocument.body:r(e)&&h(e)?e:y(g(e))}function b(e,n){var r;void 0===n&&(n=[]);var o=y(e),i=o===(null==(r=e.ownerDocument)?void 0:r.body),a=t(o),s=i?[a].concat(a.visualViewport||[],h(o)?o:[]):o,f=n.concat(s);return i?f:f.concat(b(g(s)))}function x(e){return["table","td","th"].indexOf(p(e))>=0}function w(e){return r(e)&&"fixed"!==d(e).position?e.offsetParent:null}function O(e){for(var n=t(e),i=w(e);i&&x(i)&&"static"===d(i).position;)i=w(i);return i&&("html"===p(i)||"body"===p(i)&&"static"===d(i).position)?n:i||function(e){var t=-1!==navigator.userAgent.toLowerCase().indexOf("firefox");if(-1!==navigator.userAgent.indexOf("Trident")&&r(e)&&"fixed"===d(e).position)return null;var n=g(e);for(o(n)&&(n=n.host);r(n)&&["html","body"].indexOf(p(n))<0;){var i=d(n);if("none"!==i.transform||"none"!==i.perspective||"paint"===i.contain||-1!==["transform","perspective"].indexOf(i.willChange)||t&&"filter"===i.willChange||t&&i.filter&&"none"!==i.filter)return n;n=n.parentNode}return null}(e)||n}var j="top",E="bottom",D="right",A="left",L="auto",P=[j,E,D,A],M="start",k="end",W="viewport",B="popper",H=P.reduce((function(e,t){return e.concat([t+"-"+M,t+"-"+k])}),[]),T=[].concat(P,[L]).reduce((function(e,t){return e.concat([t,t+"-"+M,t+"-"+k])}),[]),R=["beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite"];function S(e){var t=new Map,n=new Set,r=[];function o(e){n.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){if(!n.has(e)){var r=t.get(e);r&&o(r)}})),r.push(e)}return e.forEach((function(e){t.set(e.name,e)})),e.forEach((function(e){n.has(e.name)||o(e)})),r}function C(e){return e.split("-")[0]}function q(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&o(n)){var r=t;do{if(r&&e.isSameNode(r))return!0;r=r.parentNode||r.host}while(r)}return!1}function V(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function N(e,r){return r===W?V(function(e){var n=t(e),r=u(e),o=n.visualViewport,i=r.clientWidth,a=r.clientHeight,s=0,f=0;return o&&(i=o.width,a=o.height,/^((?!chrome|android).)*safari/i.test(navigator.userAgent)||(s=o.offsetLeft,f=o.offsetTop)),{width:i,height:a,x:s+l(e),y:f}}(e)):n(r)?function(e){var t=f(e);return t.top=t.top+e.clientTop,t.left=t.left+e.clientLeft,t.bottom=t.top+e.clientHeight,t.right=t.left+e.clientWidth,t.width=e.clientWidth,t.height=e.clientHeight,t.x=t.left,t.y=t.top,t}(r):V(function(e){var t,n=u(e),r=c(e),o=null==(t=e.ownerDocument)?void 0:t.body,a=i(n.scrollWidth,n.clientWidth,o?o.scrollWidth:0,o?o.clientWidth:0),s=i(n.scrollHeight,n.clientHeight,o?o.scrollHeight:0,o?o.clientHeight:0),f=-r.scrollLeft+l(e),p=-r.scrollTop;return"rtl"===d(o||n).direction&&(f+=i(n.clientWidth,o?o.clientWidth:0)-a),{width:a,height:s,x:f,y:p}}(u(e)))}function I(e,t,o){var s="clippingParents"===t?function(e){var t=b(g(e)),o=["absolute","fixed"].indexOf(d(e).position)>=0&&r(e)?O(e):e;return n(o)?t.filter((function(e){return n(e)&&q(e,o)&&"body"!==p(e)})):[]}(e):[].concat(t),f=[].concat(s,[o]),c=f[0],u=f.reduce((function(t,n){var r=N(e,n);return t.top=i(r.top,t.top),t.right=a(r.right,t.right),t.bottom=a(r.bottom,t.bottom),t.left=i(r.left,t.left),t}),N(e,c));return u.width=u.right-u.left,u.height=u.bottom-u.top,u.x=u.left,u.y=u.top,u}function _(e){return e.split("-")[1]}function F(e){return["top","bottom"].indexOf(e)>=0?"x":"y"}function U(e){var t,n=e.reference,r=e.element,o=e.placement,i=o?C(o):null,a=o?_(o):null,s=n.x+n.width/2-r.width/2,f=n.y+n.height/2-r.height/2;switch(i){case j:t={x:s,y:n.y-r.height};break;case E:t={x:s,y:n.y+n.height};break;case D:t={x:n.x+n.width,y:f};break;case A:t={x:n.x-r.width,y:f};break;default:t={x:n.x,y:n.y}}var c=i?F(i):null;if(null!=c){var p="y"===c?"height":"width";switch(a){case M:t[c]=t[c]-(n[p]/2-r[p]/2);break;case k:t[c]=t[c]+(n[p]/2-r[p]/2)}}return t}function z(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function X(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function Y(e,t){void 0===t&&(t={});var r=t,o=r.placement,i=void 0===o?e.placement:o,a=r.boundary,s=void 0===a?"clippingParents":a,c=r.rootBoundary,p=void 0===c?W:c,l=r.elementContext,d=void 0===l?B:l,h=r.altBoundary,m=void 0!==h&&h,v=r.padding,g=void 0===v?0:v,y=z("number"!=typeof g?g:X(g,P)),b=d===B?"reference":B,x=e.rects.popper,w=e.elements[m?b:d],O=I(n(w)?w:w.contextElement||u(e.elements.popper),s,p),A=f(e.elements.reference),L=U({reference:A,element:x,strategy:"absolute",placement:i}),M=V(Object.assign({},x,L)),k=d===B?M:A,H={top:O.top-k.top+y.top,bottom:k.bottom-O.bottom+y.bottom,left:O.left-k.left+y.left,right:k.right-O.right+y.right},T=e.modifiersData.offset;if(d===B&&T){var R=T[i];Object.keys(H).forEach((function(e){var t=[D,E].indexOf(e)>=0?1:-1,n=[j,E].indexOf(e)>=0?"y":"x";H[e]+=R[n]*t}))}return H}var G={placement:"bottom",modifiers:[],strategy:"absolute"};function J(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return!t.some((function(e){return!(e&&"function"==typeof e.getBoundingClientRect)}))}function K(e){void 0===e&&(e={});var t=e,r=t.defaultModifiers,o=void 0===r?[]:r,i=t.defaultOptions,a=void 0===i?G:i;return function(e,t,r){void 0===r&&(r=a);var i,s,f={placement:"bottom",orderedModifiers:[],options:Object.assign({},G,a),modifiersData:{},elements:{reference:e,popper:t},attributes:{},styles:{}},c=[],p=!1,u={state:f,setOptions:function(r){var i="function"==typeof r?r(f.options):r;l(),f.options=Object.assign({},a,f.options,i),f.scrollParents={reference:n(e)?b(e):e.contextElement?b(e.contextElement):[],popper:b(t)};var s,p,d=function(e){var t=S(e);return R.reduce((function(e,n){return e.concat(t.filter((function(e){return e.phase===n})))}),[])}((s=[].concat(o,f.options.modifiers),p=s.reduce((function(e,t){var n=e[t.name];return e[t.name]=n?Object.assign({},n,t,{options:Object.assign({},n.options,t.options),data:Object.assign({},n.data,t.data)}):t,e}),{}),Object.keys(p).map((function(e){return p[e]}))));return f.orderedModifiers=d.filter((function(e){return e.enabled})),f.orderedModifiers.forEach((function(e){var t=e.name,n=e.options,r=void 0===n?{}:n,o=e.effect;if("function"==typeof o){var i=o({state:f,name:t,instance:u,options:r}),a=function(){};c.push(i||a)}})),u.update()},forceUpdate:function(){if(!p){var e=f.elements,t=e.reference,n=e.popper;if(J(t,n)){f.rects={reference:m(t,O(n),"fixed"===f.options.strategy),popper:v(n)},f.reset=!1,f.placement=f.options.placement,f.orderedModifiers.forEach((function(e){return f.modifiersData[e.name]=Object.assign({},e.data)}));for(var r=0;r<f.orderedModifiers.length;r++)if(!0!==f.reset){var o=f.orderedModifiers[r],i=o.fn,a=o.options,s=void 0===a?{}:a,c=o.name;"function"==typeof i&&(f=i({state:f,options:s,name:c,instance:u})||f)}else f.reset=!1,r=-1}}},update:(i=function(){return new Promise((function(e){u.forceUpdate(),e(f)}))},function(){return s||(s=new Promise((function(e){Promise.resolve().then((function(){s=void 0,e(i())}))}))),s}),destroy:function(){l(),p=!0}};if(!J(e,t))return u;function l(){c.forEach((function(e){return e()})),c=[]}return u.setOptions(r).then((function(e){!p&&r.onFirstUpdate&&r.onFirstUpdate(e)})),u}}var Q={passive:!0};var Z={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(e){var n=e.state,r=e.instance,o=e.options,i=o.scroll,a=void 0===i||i,s=o.resize,f=void 0===s||s,c=t(n.elements.popper),p=[].concat(n.scrollParents.reference,n.scrollParents.popper);return a&&p.forEach((function(e){e.addEventListener("scroll",r.update,Q)})),f&&c.addEventListener("resize",r.update,Q),function(){a&&p.forEach((function(e){e.removeEventListener("scroll",r.update,Q)})),f&&c.removeEventListener("resize",r.update,Q)}},data:{}};var $={name:"popperOffsets",enabled:!0,phase:"read",fn:function(e){var t=e.state,n=e.name;t.modifiersData[n]=U({reference:t.rects.reference,element:t.rects.popper,strategy:"absolute",placement:t.placement})},data:{}},ee={top:"auto",right:"auto",bottom:"auto",left:"auto"};function te(e){var n,r=e.popper,o=e.popperRect,i=e.placement,a=e.variation,f=e.offsets,c=e.position,p=e.gpuAcceleration,l=e.adaptive,h=e.roundOffsets,m=e.isFixed,v=f.x,g=void 0===v?0:v,y=f.y,b=void 0===y?0:y,x="function"==typeof h?h({x:g,y:b}):{x:g,y:b};g=x.x,b=x.y;var w=f.hasOwnProperty("x"),L=f.hasOwnProperty("y"),P=A,M=j,W=window;if(l){var B=O(r),H="clientHeight",T="clientWidth";if(B===t(r)&&"static"!==d(B=u(r)).position&&"absolute"===c&&(H="scrollHeight",T="scrollWidth"),B=B,i===j||(i===A||i===D)&&a===k)M=E,b-=(m&&B===W&&W.visualViewport?W.visualViewport.height:B[H])-o.height,b*=p?1:-1;if(i===A||(i===j||i===E)&&a===k)P=D,g-=(m&&B===W&&W.visualViewport?W.visualViewport.width:B[T])-o.width,g*=p?1:-1}var R,S=Object.assign({position:c},l&&ee),C=!0===h?function(e){var t=e.x,n=e.y,r=window.devicePixelRatio||1;return{x:s(t*r)/r||0,y:s(n*r)/r||0}}({x:g,y:b}):{x:g,y:b};return g=C.x,b=C.y,p?Object.assign({},S,((R={})[M]=L?"0":"",R[P]=w?"0":"",R.transform=(W.devicePixelRatio||1)<=1?"translate("+g+"px, "+b+"px)":"translate3d("+g+"px, "+b+"px, 0)",R)):Object.assign({},S,((n={})[M]=L?b+"px":"",n[P]=w?g+"px":"",n.transform="",n))}var ne={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(e){var t=e.state,n=e.options,r=n.gpuAcceleration,o=void 0===r||r,i=n.adaptive,a=void 0===i||i,s=n.roundOffsets,f=void 0===s||s,c={placement:C(t.placement),variation:_(t.placement),popper:t.elements.popper,popperRect:t.rects.popper,gpuAcceleration:o,isFixed:"fixed"===t.options.strategy};null!=t.modifiersData.popperOffsets&&(t.styles.popper=Object.assign({},t.styles.popper,te(Object.assign({},c,{offsets:t.modifiersData.popperOffsets,position:t.options.strategy,adaptive:a,roundOffsets:f})))),null!=t.modifiersData.arrow&&(t.styles.arrow=Object.assign({},t.styles.arrow,te(Object.assign({},c,{offsets:t.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:f})))),t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-placement":t.placement})},data:{}};var re={name:"applyStyles",enabled:!0,phase:"write",fn:function(e){var t=e.state;Object.keys(t.elements).forEach((function(e){var n=t.styles[e]||{},o=t.attributes[e]||{},i=t.elements[e];r(i)&&p(i)&&(Object.assign(i.style,n),Object.keys(o).forEach((function(e){var t=o[e];!1===t?i.removeAttribute(e):i.setAttribute(e,!0===t?"":t)})))}))},effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow),function(){Object.keys(t.elements).forEach((function(e){var o=t.elements[e],i=t.attributes[e]||{},a=Object.keys(t.styles.hasOwnProperty(e)?t.styles[e]:n[e]).reduce((function(e,t){return e[t]="",e}),{});r(o)&&p(o)&&(Object.assign(o.style,a),Object.keys(i).forEach((function(e){o.removeAttribute(e)})))}))}},requires:["computeStyles"]};var oe={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.offset,i=void 0===o?[0,0]:o,a=T.reduce((function(e,n){return e[n]=function(e,t,n){var r=C(e),o=[A,j].indexOf(r)>=0?-1:1,i="function"==typeof n?n(Object.assign({},t,{placement:e})):n,a=i[0],s=i[1];return a=a||0,s=(s||0)*o,[A,D].indexOf(r)>=0?{x:s,y:a}:{x:a,y:s}}(n,t.rects,i),e}),{}),s=a[t.placement],f=s.x,c=s.y;null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=f,t.modifiersData.popperOffsets.y+=c),t.modifiersData[r]=a}},ie={left:"right",right:"left",bottom:"top",top:"bottom"};function ae(e){return e.replace(/left|right|bottom|top/g,(function(e){return ie[e]}))}var se={start:"end",end:"start"};function fe(e){return e.replace(/start|end/g,(function(e){return se[e]}))}function ce(e,t){void 0===t&&(t={});var n=t,r=n.placement,o=n.boundary,i=n.rootBoundary,a=n.padding,s=n.flipVariations,f=n.allowedAutoPlacements,c=void 0===f?T:f,p=_(r),u=p?s?H:H.filter((function(e){return _(e)===p})):P,l=u.filter((function(e){return c.indexOf(e)>=0}));0===l.length&&(l=u);var d=l.reduce((function(t,n){return t[n]=Y(e,{placement:n,boundary:o,rootBoundary:i,padding:a})[C(n)],t}),{});return Object.keys(d).sort((function(e,t){return d[e]-d[t]}))}var pe={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name;if(!t.modifiersData[r]._skip){for(var o=n.mainAxis,i=void 0===o||o,a=n.altAxis,s=void 0===a||a,f=n.fallbackPlacements,c=n.padding,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.flipVariations,h=void 0===d||d,m=n.allowedAutoPlacements,v=t.options.placement,g=C(v),y=f||(g===v||!h?[ae(v)]:function(e){if(C(e)===L)return[];var t=ae(e);return[fe(e),t,fe(t)]}(v)),b=[v].concat(y).reduce((function(e,n){return e.concat(C(n)===L?ce(t,{placement:n,boundary:p,rootBoundary:u,padding:c,flipVariations:h,allowedAutoPlacements:m}):n)}),[]),x=t.rects.reference,w=t.rects.popper,O=new Map,P=!0,k=b[0],W=0;W<b.length;W++){var B=b[W],H=C(B),T=_(B)===M,R=[j,E].indexOf(H)>=0,S=R?"width":"height",q=Y(t,{placement:B,boundary:p,rootBoundary:u,altBoundary:l,padding:c}),V=R?T?D:A:T?E:j;x[S]>w[S]&&(V=ae(V));var N=ae(V),I=[];if(i&&I.push(q[H]<=0),s&&I.push(q[V]<=0,q[N]<=0),I.every((function(e){return e}))){k=B,P=!1;break}O.set(B,I)}if(P)for(var F=function(e){var t=b.find((function(t){var n=O.get(t);if(n)return n.slice(0,e).every((function(e){return e}))}));if(t)return k=t,"break"},U=h?3:1;U>0;U--){if("break"===F(U))break}t.placement!==k&&(t.modifiersData[r]._skip=!0,t.placement=k,t.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function ue(e,t,n){return i(e,a(t,n))}var le={name:"preventOverflow",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.mainAxis,s=void 0===o||o,f=n.altAxis,c=void 0!==f&&f,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.padding,h=n.tether,m=void 0===h||h,g=n.tetherOffset,y=void 0===g?0:g,b=Y(t,{boundary:p,rootBoundary:u,padding:d,altBoundary:l}),x=C(t.placement),w=_(t.placement),L=!w,P=F(x),k="x"===P?"y":"x",W=t.modifiersData.popperOffsets,B=t.rects.reference,H=t.rects.popper,T="function"==typeof y?y(Object.assign({},t.rects,{placement:t.placement})):y,R="number"==typeof T?{mainAxis:T,altAxis:T}:Object.assign({mainAxis:0,altAxis:0},T),S=t.modifiersData.offset?t.modifiersData.offset[t.placement]:null,q={x:0,y:0};if(W){if(s){var V,N="y"===P?j:A,I="y"===P?E:D,U="y"===P?"height":"width",z=W[P],X=z+b[N],G=z-b[I],J=m?-H[U]/2:0,K=w===M?B[U]:H[U],Q=w===M?-H[U]:-B[U],Z=t.elements.arrow,$=m&&Z?v(Z):{width:0,height:0},ee=t.modifiersData["arrow#persistent"]?t.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},te=ee[N],ne=ee[I],re=ue(0,B[U],$[U]),oe=L?B[U]/2-J-re-te-R.mainAxis:K-re-te-R.mainAxis,ie=L?-B[U]/2+J+re+ne+R.mainAxis:Q+re+ne+R.mainAxis,ae=t.elements.arrow&&O(t.elements.arrow),se=ae?"y"===P?ae.clientTop||0:ae.clientLeft||0:0,fe=null!=(V=null==S?void 0:S[P])?V:0,ce=z+ie-fe,pe=ue(m?a(X,z+oe-fe-se):X,z,m?i(G,ce):G);W[P]=pe,q[P]=pe-z}if(c){var le,de="x"===P?j:A,he="x"===P?E:D,me=W[k],ve="y"===k?"height":"width",ge=me+b[de],ye=me-b[he],be=-1!==[j,A].indexOf(x),xe=null!=(le=null==S?void 0:S[k])?le:0,we=be?ge:me-B[ve]-H[ve]-xe+R.altAxis,Oe=be?me+B[ve]+H[ve]-xe-R.altAxis:ye,je=m&&be?function(e,t,n){var r=ue(e,t,n);return r>n?n:r}(we,me,Oe):ue(m?we:ge,me,m?Oe:ye);W[k]=je,q[k]=je-me}t.modifiersData[r]=q}},requiresIfExists:["offset"]};var de={name:"arrow",enabled:!0,phase:"main",fn:function(e){var t,n=e.state,r=e.name,o=e.options,i=n.elements.arrow,a=n.modifiersData.popperOffsets,s=C(n.placement),f=F(s),c=[A,D].indexOf(s)>=0?"height":"width";if(i&&a){var p=function(e,t){return z("number"!=typeof(e="function"==typeof e?e(Object.assign({},t.rects,{placement:t.placement})):e)?e:X(e,P))}(o.padding,n),u=v(i),l="y"===f?j:A,d="y"===f?E:D,h=n.rects.reference[c]+n.rects.reference[f]-a[f]-n.rects.popper[c],m=a[f]-n.rects.reference[f],g=O(i),y=g?"y"===f?g.clientHeight||0:g.clientWidth||0:0,b=h/2-m/2,x=p[l],w=y-u[c]-p[d],L=y/2-u[c]/2+b,M=ue(x,L,w),k=f;n.modifiersData[r]=((t={})[k]=M,t.centerOffset=M-L,t)}},effect:function(e){var t=e.state,n=e.options.element,r=void 0===n?"[data-popper-arrow]":n;null!=r&&("string"!=typeof r||(r=t.elements.popper.querySelector(r)))&&q(t.elements.popper,r)&&(t.elements.arrow=r)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function he(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function me(e){return[j,D,E,A].some((function(t){return e[t]>=0}))}var ve={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(e){var t=e.state,n=e.name,r=t.rects.reference,o=t.rects.popper,i=t.modifiersData.preventOverflow,a=Y(t,{elementContext:"reference"}),s=Y(t,{altBoundary:!0}),f=he(a,r),c=he(s,o,i),p=me(f),u=me(c);t.modifiersData[n]={referenceClippingOffsets:f,popperEscapeOffsets:c,isReferenceHidden:p,hasPopperEscaped:u},t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-reference-hidden":p,"data-popper-escaped":u})}},ge=K({defaultModifiers:[Z,$,ne,re]}),ye=[Z,$,ne,re,oe,pe,le,de,ve],be=K({defaultModifiers:ye});e.applyStyles=re,e.arrow=de,e.computeStyles=ne,e.createPopper=be,e.createPopperLite=ge,e.defaultModifiers=ye,e.detectOverflow=Y,e.eventListeners=Z,e.flip=pe,e.hide=ve,e.offset=oe,e.popperGenerator=K,e.popperOffsets=$,e.preventOverflow=le,Object.defineProperty(e,"__esModule",{value:!0})}));
+!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){"use strict";function t(e){if(null==e)return window;if("[object Window]"!==e.toString()){var t=e.ownerDocument;return t&&t.defaultView||window}return e}function n(e){return e instanceof t(e).Element||e instanceof Element}function r(e){return e instanceof t(e).HTMLElement||e instanceof HTMLElement}function o(e){return"undefined"!=typeof ShadowRoot&&(e instanceof t(e).ShadowRoot||e instanceof ShadowRoot)}var i=Math.max,a=Math.min,s=Math.round;function f(){var e=navigator.userAgentData;return null!=e&&e.brands&&Array.isArray(e.brands)?e.brands.map((function(e){return e.brand+"/"+e.version})).join(" "):navigator.userAgent}function c(){return!/^((?!chrome|android).)*safari/i.test(f())}function p(e,o,i){void 0===o&&(o=!1),void 0===i&&(i=!1);var a=e.getBoundingClientRect(),f=1,p=1;o&&r(e)&&(f=e.offsetWidth>0&&s(a.width)/e.offsetWidth||1,p=e.offsetHeight>0&&s(a.height)/e.offsetHeight||1);var u=(n(e)?t(e):window).visualViewport,l=!c()&&i,d=(a.left+(l&&u?u.offsetLeft:0))/f,h=(a.top+(l&&u?u.offsetTop:0))/p,m=a.width/f,v=a.height/p;return{width:m,height:v,top:h,right:d+m,bottom:h+v,left:d,x:d,y:h}}function u(e){var n=t(e);return{scrollLeft:n.pageXOffset,scrollTop:n.pageYOffset}}function l(e){return e?(e.nodeName||"").toLowerCase():null}function d(e){return((n(e)?e.ownerDocument:e.document)||window.document).documentElement}function h(e){return p(d(e)).left+u(e).scrollLeft}function m(e){return t(e).getComputedStyle(e)}function v(e){var t=m(e),n=t.overflow,r=t.overflowX,o=t.overflowY;return/auto|scroll|overlay|hidden/.test(n+o+r)}function y(e,n,o){void 0===o&&(o=!1);var i,a,f=r(n),c=r(n)&&function(e){var t=e.getBoundingClientRect(),n=s(t.width)/e.offsetWidth||1,r=s(t.height)/e.offsetHeight||1;return 1!==n||1!==r}(n),m=d(n),y=p(e,c,o),g={scrollLeft:0,scrollTop:0},b={x:0,y:0};return(f||!f&&!o)&&(("body"!==l(n)||v(m))&&(g=(i=n)!==t(i)&&r(i)?{scrollLeft:(a=i).scrollLeft,scrollTop:a.scrollTop}:u(i)),r(n)?((b=p(n,!0)).x+=n.clientLeft,b.y+=n.clientTop):m&&(b.x=h(m))),{x:y.left+g.scrollLeft-b.x,y:y.top+g.scrollTop-b.y,width:y.width,height:y.height}}function g(e){var t=p(e),n=e.offsetWidth,r=e.offsetHeight;return Math.abs(t.width-n)<=1&&(n=t.width),Math.abs(t.height-r)<=1&&(r=t.height),{x:e.offsetLeft,y:e.offsetTop,width:n,height:r}}function b(e){return"html"===l(e)?e:e.assignedSlot||e.parentNode||(o(e)?e.host:null)||d(e)}function x(e){return["html","body","#document"].indexOf(l(e))>=0?e.ownerDocument.body:r(e)&&v(e)?e:x(b(e))}function w(e,n){var r;void 0===n&&(n=[]);var o=x(e),i=o===(null==(r=e.ownerDocument)?void 0:r.body),a=t(o),s=i?[a].concat(a.visualViewport||[],v(o)?o:[]):o,f=n.concat(s);return i?f:f.concat(w(b(s)))}function O(e){return["table","td","th"].indexOf(l(e))>=0}function j(e){return r(e)&&"fixed"!==m(e).position?e.offsetParent:null}function E(e){for(var n=t(e),i=j(e);i&&O(i)&&"static"===m(i).position;)i=j(i);return i&&("html"===l(i)||"body"===l(i)&&"static"===m(i).position)?n:i||function(e){var t=/firefox/i.test(f());if(/Trident/i.test(f())&&r(e)&&"fixed"===m(e).position)return null;var n=b(e);for(o(n)&&(n=n.host);r(n)&&["html","body"].indexOf(l(n))<0;){var i=m(n);if("none"!==i.transform||"none"!==i.perspective||"paint"===i.contain||-1!==["transform","perspective"].indexOf(i.willChange)||t&&"filter"===i.willChange||t&&i.filter&&"none"!==i.filter)return n;n=n.parentNode}return null}(e)||n}var D="top",A="bottom",L="right",P="left",M="auto",k=[D,A,L,P],W="start",B="end",H="viewport",T="popper",R=k.reduce((function(e,t){return e.concat([t+"-"+W,t+"-"+B])}),[]),S=[].concat(k,[M]).reduce((function(e,t){return e.concat([t,t+"-"+W,t+"-"+B])}),[]),V=["beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite"];function q(e){var t=new Map,n=new Set,r=[];function o(e){n.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){if(!n.has(e)){var r=t.get(e);r&&o(r)}})),r.push(e)}return e.forEach((function(e){t.set(e.name,e)})),e.forEach((function(e){n.has(e.name)||o(e)})),r}function C(e){return e.split("-")[0]}function N(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&o(n)){var r=t;do{if(r&&e.isSameNode(r))return!0;r=r.parentNode||r.host}while(r)}return!1}function I(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function _(e,r,o){return r===H?I(function(e,n){var r=t(e),o=d(e),i=r.visualViewport,a=o.clientWidth,s=o.clientHeight,f=0,p=0;if(i){a=i.width,s=i.height;var u=c();(u||!u&&"fixed"===n)&&(f=i.offsetLeft,p=i.offsetTop)}return{width:a,height:s,x:f+h(e),y:p}}(e,o)):n(r)?function(e,t){var n=p(e,!1,"fixed"===t);return n.top=n.top+e.clientTop,n.left=n.left+e.clientLeft,n.bottom=n.top+e.clientHeight,n.right=n.left+e.clientWidth,n.width=e.clientWidth,n.height=e.clientHeight,n.x=n.left,n.y=n.top,n}(r,o):I(function(e){var t,n=d(e),r=u(e),o=null==(t=e.ownerDocument)?void 0:t.body,a=i(n.scrollWidth,n.clientWidth,o?o.scrollWidth:0,o?o.clientWidth:0),s=i(n.scrollHeight,n.clientHeight,o?o.scrollHeight:0,o?o.clientHeight:0),f=-r.scrollLeft+h(e),c=-r.scrollTop;return"rtl"===m(o||n).direction&&(f+=i(n.clientWidth,o?o.clientWidth:0)-a),{width:a,height:s,x:f,y:c}}(d(e)))}function F(e,t,o,s){var f="clippingParents"===t?function(e){var t=w(b(e)),o=["absolute","fixed"].indexOf(m(e).position)>=0&&r(e)?E(e):e;return n(o)?t.filter((function(e){return n(e)&&N(e,o)&&"body"!==l(e)})):[]}(e):[].concat(t),c=[].concat(f,[o]),p=c[0],u=c.reduce((function(t,n){var r=_(e,n,s);return t.top=i(r.top,t.top),t.right=a(r.right,t.right),t.bottom=a(r.bottom,t.bottom),t.left=i(r.left,t.left),t}),_(e,p,s));return u.width=u.right-u.left,u.height=u.bottom-u.top,u.x=u.left,u.y=u.top,u}function U(e){return e.split("-")[1]}function z(e){return["top","bottom"].indexOf(e)>=0?"x":"y"}function X(e){var t,n=e.reference,r=e.element,o=e.placement,i=o?C(o):null,a=o?U(o):null,s=n.x+n.width/2-r.width/2,f=n.y+n.height/2-r.height/2;switch(i){case D:t={x:s,y:n.y-r.height};break;case A:t={x:s,y:n.y+n.height};break;case L:t={x:n.x+n.width,y:f};break;case P:t={x:n.x-r.width,y:f};break;default:t={x:n.x,y:n.y}}var c=i?z(i):null;if(null!=c){var p="y"===c?"height":"width";switch(a){case W:t[c]=t[c]-(n[p]/2-r[p]/2);break;case B:t[c]=t[c]+(n[p]/2-r[p]/2)}}return t}function Y(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function G(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function J(e,t){void 0===t&&(t={});var r=t,o=r.placement,i=void 0===o?e.placement:o,a=r.strategy,s=void 0===a?e.strategy:a,f=r.boundary,c=void 0===f?"clippingParents":f,u=r.rootBoundary,l=void 0===u?H:u,h=r.elementContext,m=void 0===h?T:h,v=r.altBoundary,y=void 0!==v&&v,g=r.padding,b=void 0===g?0:g,x=Y("number"!=typeof b?b:G(b,k)),w=m===T?"reference":T,O=e.rects.popper,j=e.elements[y?w:m],E=F(n(j)?j:j.contextElement||d(e.elements.popper),c,l,s),P=p(e.elements.reference),M=X({reference:P,element:O,strategy:"absolute",placement:i}),W=I(Object.assign({},O,M)),B=m===T?W:P,R={top:E.top-B.top+x.top,bottom:B.bottom-E.bottom+x.bottom,left:E.left-B.left+x.left,right:B.right-E.right+x.right},S=e.modifiersData.offset;if(m===T&&S){var V=S[i];Object.keys(R).forEach((function(e){var t=[L,A].indexOf(e)>=0?1:-1,n=[D,A].indexOf(e)>=0?"y":"x";R[e]+=V[n]*t}))}return R}var K={placement:"bottom",modifiers:[],strategy:"absolute"};function Q(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return!t.some((function(e){return!(e&&"function"==typeof e.getBoundingClientRect)}))}function Z(e){void 0===e&&(e={});var t=e,r=t.defaultModifiers,o=void 0===r?[]:r,i=t.defaultOptions,a=void 0===i?K:i;return function(e,t,r){void 0===r&&(r=a);var i,s,f={placement:"bottom",orderedModifiers:[],options:Object.assign({},K,a),modifiersData:{},elements:{reference:e,popper:t},attributes:{},styles:{}},c=[],p=!1,u={state:f,setOptions:function(r){var i="function"==typeof r?r(f.options):r;l(),f.options=Object.assign({},a,f.options,i),f.scrollParents={reference:n(e)?w(e):e.contextElement?w(e.contextElement):[],popper:w(t)};var s,p,d=function(e){var t=q(e);return V.reduce((function(e,n){return e.concat(t.filter((function(e){return e.phase===n})))}),[])}((s=[].concat(o,f.options.modifiers),p=s.reduce((function(e,t){var n=e[t.name];return e[t.name]=n?Object.assign({},n,t,{options:Object.assign({},n.options,t.options),data:Object.assign({},n.data,t.data)}):t,e}),{}),Object.keys(p).map((function(e){return p[e]}))));return f.orderedModifiers=d.filter((function(e){return e.enabled})),f.orderedModifiers.forEach((function(e){var t=e.name,n=e.options,r=void 0===n?{}:n,o=e.effect;if("function"==typeof o){var i=o({state:f,name:t,instance:u,options:r}),a=function(){};c.push(i||a)}})),u.update()},forceUpdate:function(){if(!p){var e=f.elements,t=e.reference,n=e.popper;if(Q(t,n)){f.rects={reference:y(t,E(n),"fixed"===f.options.strategy),popper:g(n)},f.reset=!1,f.placement=f.options.placement,f.orderedModifiers.forEach((function(e){return f.modifiersData[e.name]=Object.assign({},e.data)}));for(var r=0;r<f.orderedModifiers.length;r++)if(!0!==f.reset){var o=f.orderedModifiers[r],i=o.fn,a=o.options,s=void 0===a?{}:a,c=o.name;"function"==typeof i&&(f=i({state:f,options:s,name:c,instance:u})||f)}else f.reset=!1,r=-1}}},update:(i=function(){return new Promise((function(e){u.forceUpdate(),e(f)}))},function(){return s||(s=new Promise((function(e){Promise.resolve().then((function(){s=void 0,e(i())}))}))),s}),destroy:function(){l(),p=!0}};if(!Q(e,t))return u;function l(){c.forEach((function(e){return e()})),c=[]}return u.setOptions(r).then((function(e){!p&&r.onFirstUpdate&&r.onFirstUpdate(e)})),u}}var $={passive:!0};var ee={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(e){var n=e.state,r=e.instance,o=e.options,i=o.scroll,a=void 0===i||i,s=o.resize,f=void 0===s||s,c=t(n.elements.popper),p=[].concat(n.scrollParents.reference,n.scrollParents.popper);return a&&p.forEach((function(e){e.addEventListener("scroll",r.update,$)})),f&&c.addEventListener("resize",r.update,$),function(){a&&p.forEach((function(e){e.removeEventListener("scroll",r.update,$)})),f&&c.removeEventListener("resize",r.update,$)}},data:{}};var te={name:"popperOffsets",enabled:!0,phase:"read",fn:function(e){var t=e.state,n=e.name;t.modifiersData[n]=X({reference:t.rects.reference,element:t.rects.popper,strategy:"absolute",placement:t.placement})},data:{}},ne={top:"auto",right:"auto",bottom:"auto",left:"auto"};function re(e){var n,r=e.popper,o=e.popperRect,i=e.placement,a=e.variation,f=e.offsets,c=e.position,p=e.gpuAcceleration,u=e.adaptive,l=e.roundOffsets,h=e.isFixed,v=f.x,y=void 0===v?0:v,g=f.y,b=void 0===g?0:g,x="function"==typeof l?l({x:y,y:b}):{x:y,y:b};y=x.x,b=x.y;var w=f.hasOwnProperty("x"),O=f.hasOwnProperty("y"),j=P,M=D,k=window;if(u){var W=E(r),H="clientHeight",T="clientWidth";if(W===t(r)&&"static"!==m(W=d(r)).position&&"absolute"===c&&(H="scrollHeight",T="scrollWidth"),W=W,i===D||(i===P||i===L)&&a===B)M=A,b-=(h&&W===k&&k.visualViewport?k.visualViewport.height:W[H])-o.height,b*=p?1:-1;if(i===P||(i===D||i===A)&&a===B)j=L,y-=(h&&W===k&&k.visualViewport?k.visualViewport.width:W[T])-o.width,y*=p?1:-1}var R,S=Object.assign({position:c},u&&ne),V=!0===l?function(e,t){var n=e.x,r=e.y,o=t.devicePixelRatio||1;return{x:s(n*o)/o||0,y:s(r*o)/o||0}}({x:y,y:b},t(r)):{x:y,y:b};return y=V.x,b=V.y,p?Object.assign({},S,((R={})[M]=O?"0":"",R[j]=w?"0":"",R.transform=(k.devicePixelRatio||1)<=1?"translate("+y+"px, "+b+"px)":"translate3d("+y+"px, "+b+"px, 0)",R)):Object.assign({},S,((n={})[M]=O?b+"px":"",n[j]=w?y+"px":"",n.transform="",n))}var oe={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(e){var t=e.state,n=e.options,r=n.gpuAcceleration,o=void 0===r||r,i=n.adaptive,a=void 0===i||i,s=n.roundOffsets,f=void 0===s||s,c={placement:C(t.placement),variation:U(t.placement),popper:t.elements.popper,popperRect:t.rects.popper,gpuAcceleration:o,isFixed:"fixed"===t.options.strategy};null!=t.modifiersData.popperOffsets&&(t.styles.popper=Object.assign({},t.styles.popper,re(Object.assign({},c,{offsets:t.modifiersData.popperOffsets,position:t.options.strategy,adaptive:a,roundOffsets:f})))),null!=t.modifiersData.arrow&&(t.styles.arrow=Object.assign({},t.styles.arrow,re(Object.assign({},c,{offsets:t.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:f})))),t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-placement":t.placement})},data:{}};var ie={name:"applyStyles",enabled:!0,phase:"write",fn:function(e){var t=e.state;Object.keys(t.elements).forEach((function(e){var n=t.styles[e]||{},o=t.attributes[e]||{},i=t.elements[e];r(i)&&l(i)&&(Object.assign(i.style,n),Object.keys(o).forEach((function(e){var t=o[e];!1===t?i.removeAttribute(e):i.setAttribute(e,!0===t?"":t)})))}))},effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow),function(){Object.keys(t.elements).forEach((function(e){var o=t.elements[e],i=t.attributes[e]||{},a=Object.keys(t.styles.hasOwnProperty(e)?t.styles[e]:n[e]).reduce((function(e,t){return e[t]="",e}),{});r(o)&&l(o)&&(Object.assign(o.style,a),Object.keys(i).forEach((function(e){o.removeAttribute(e)})))}))}},requires:["computeStyles"]};var ae={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.offset,i=void 0===o?[0,0]:o,a=S.reduce((function(e,n){return e[n]=function(e,t,n){var r=C(e),o=[P,D].indexOf(r)>=0?-1:1,i="function"==typeof n?n(Object.assign({},t,{placement:e})):n,a=i[0],s=i[1];return a=a||0,s=(s||0)*o,[P,L].indexOf(r)>=0?{x:s,y:a}:{x:a,y:s}}(n,t.rects,i),e}),{}),s=a[t.placement],f=s.x,c=s.y;null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=f,t.modifiersData.popperOffsets.y+=c),t.modifiersData[r]=a}},se={left:"right",right:"left",bottom:"top",top:"bottom"};function fe(e){return e.replace(/left|right|bottom|top/g,(function(e){return se[e]}))}var ce={start:"end",end:"start"};function pe(e){return e.replace(/start|end/g,(function(e){return ce[e]}))}function ue(e,t){void 0===t&&(t={});var n=t,r=n.placement,o=n.boundary,i=n.rootBoundary,a=n.padding,s=n.flipVariations,f=n.allowedAutoPlacements,c=void 0===f?S:f,p=U(r),u=p?s?R:R.filter((function(e){return U(e)===p})):k,l=u.filter((function(e){return c.indexOf(e)>=0}));0===l.length&&(l=u);var d=l.reduce((function(t,n){return t[n]=J(e,{placement:n,boundary:o,rootBoundary:i,padding:a})[C(n)],t}),{});return Object.keys(d).sort((function(e,t){return d[e]-d[t]}))}var le={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name;if(!t.modifiersData[r]._skip){for(var o=n.mainAxis,i=void 0===o||o,a=n.altAxis,s=void 0===a||a,f=n.fallbackPlacements,c=n.padding,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.flipVariations,h=void 0===d||d,m=n.allowedAutoPlacements,v=t.options.placement,y=C(v),g=f||(y===v||!h?[fe(v)]:function(e){if(C(e)===M)return[];var t=fe(e);return[pe(e),t,pe(t)]}(v)),b=[v].concat(g).reduce((function(e,n){return e.concat(C(n)===M?ue(t,{placement:n,boundary:p,rootBoundary:u,padding:c,flipVariations:h,allowedAutoPlacements:m}):n)}),[]),x=t.rects.reference,w=t.rects.popper,O=new Map,j=!0,E=b[0],k=0;k<b.length;k++){var B=b[k],H=C(B),T=U(B)===W,R=[D,A].indexOf(H)>=0,S=R?"width":"height",V=J(t,{placement:B,boundary:p,rootBoundary:u,altBoundary:l,padding:c}),q=R?T?L:P:T?A:D;x[S]>w[S]&&(q=fe(q));var N=fe(q),I=[];if(i&&I.push(V[H]<=0),s&&I.push(V[q]<=0,V[N]<=0),I.every((function(e){return e}))){E=B,j=!1;break}O.set(B,I)}if(j)for(var _=function(e){var t=b.find((function(t){var n=O.get(t);if(n)return n.slice(0,e).every((function(e){return e}))}));if(t)return E=t,"break"},F=h?3:1;F>0;F--){if("break"===_(F))break}t.placement!==E&&(t.modifiersData[r]._skip=!0,t.placement=E,t.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function de(e,t,n){return i(e,a(t,n))}var he={name:"preventOverflow",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.mainAxis,s=void 0===o||o,f=n.altAxis,c=void 0!==f&&f,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.padding,h=n.tether,m=void 0===h||h,v=n.tetherOffset,y=void 0===v?0:v,b=J(t,{boundary:p,rootBoundary:u,padding:d,altBoundary:l}),x=C(t.placement),w=U(t.placement),O=!w,j=z(x),M="x"===j?"y":"x",k=t.modifiersData.popperOffsets,B=t.rects.reference,H=t.rects.popper,T="function"==typeof y?y(Object.assign({},t.rects,{placement:t.placement})):y,R="number"==typeof T?{mainAxis:T,altAxis:T}:Object.assign({mainAxis:0,altAxis:0},T),S=t.modifiersData.offset?t.modifiersData.offset[t.placement]:null,V={x:0,y:0};if(k){if(s){var q,N="y"===j?D:P,I="y"===j?A:L,_="y"===j?"height":"width",F=k[j],X=F+b[N],Y=F-b[I],G=m?-H[_]/2:0,K=w===W?B[_]:H[_],Q=w===W?-H[_]:-B[_],Z=t.elements.arrow,$=m&&Z?g(Z):{width:0,height:0},ee=t.modifiersData["arrow#persistent"]?t.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},te=ee[N],ne=ee[I],re=de(0,B[_],$[_]),oe=O?B[_]/2-G-re-te-R.mainAxis:K-re-te-R.mainAxis,ie=O?-B[_]/2+G+re+ne+R.mainAxis:Q+re+ne+R.mainAxis,ae=t.elements.arrow&&E(t.elements.arrow),se=ae?"y"===j?ae.clientTop||0:ae.clientLeft||0:0,fe=null!=(q=null==S?void 0:S[j])?q:0,ce=F+ie-fe,pe=de(m?a(X,F+oe-fe-se):X,F,m?i(Y,ce):Y);k[j]=pe,V[j]=pe-F}if(c){var ue,le="x"===j?D:P,he="x"===j?A:L,me=k[M],ve="y"===M?"height":"width",ye=me+b[le],ge=me-b[he],be=-1!==[D,P].indexOf(x),xe=null!=(ue=null==S?void 0:S[M])?ue:0,we=be?ye:me-B[ve]-H[ve]-xe+R.altAxis,Oe=be?me+B[ve]+H[ve]-xe-R.altAxis:ge,je=m&&be?function(e,t,n){var r=de(e,t,n);return r>n?n:r}(we,me,Oe):de(m?we:ye,me,m?Oe:ge);k[M]=je,V[M]=je-me}t.modifiersData[r]=V}},requiresIfExists:["offset"]};var me={name:"arrow",enabled:!0,phase:"main",fn:function(e){var t,n=e.state,r=e.name,o=e.options,i=n.elements.arrow,a=n.modifiersData.popperOffsets,s=C(n.placement),f=z(s),c=[P,L].indexOf(s)>=0?"height":"width";if(i&&a){var p=function(e,t){return Y("number"!=typeof(e="function"==typeof e?e(Object.assign({},t.rects,{placement:t.placement})):e)?e:G(e,k))}(o.padding,n),u=g(i),l="y"===f?D:P,d="y"===f?A:L,h=n.rects.reference[c]+n.rects.reference[f]-a[f]-n.rects.popper[c],m=a[f]-n.rects.reference[f],v=E(i),y=v?"y"===f?v.clientHeight||0:v.clientWidth||0:0,b=h/2-m/2,x=p[l],w=y-u[c]-p[d],O=y/2-u[c]/2+b,j=de(x,O,w),M=f;n.modifiersData[r]=((t={})[M]=j,t.centerOffset=j-O,t)}},effect:function(e){var t=e.state,n=e.options.element,r=void 0===n?"[data-popper-arrow]":n;null!=r&&("string"!=typeof r||(r=t.elements.popper.querySelector(r)))&&N(t.elements.popper,r)&&(t.elements.arrow=r)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function ve(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function ye(e){return[D,L,A,P].some((function(t){return e[t]>=0}))}var ge={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(e){var t=e.state,n=e.name,r=t.rects.reference,o=t.rects.popper,i=t.modifiersData.preventOverflow,a=J(t,{elementContext:"reference"}),s=J(t,{altBoundary:!0}),f=ve(a,r),c=ve(s,o,i),p=ye(f),u=ye(c);t.modifiersData[n]={referenceClippingOffsets:f,popperEscapeOffsets:c,isReferenceHidden:p,hasPopperEscaped:u},t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-reference-hidden":p,"data-popper-escaped":u})}},be=Z({defaultModifiers:[ee,te,oe,ie]}),xe=[ee,te,oe,ie,ae,le,he,me,ge],we=Z({defaultModifiers:xe});e.applyStyles=ie,e.arrow=me,e.computeStyles=oe,e.createPopper=we,e.createPopperLite=be,e.defaultModifiers=xe,e.detectOverflow=J,e.eventListeners=ee,e.flip=le,e.hide=ge,e.offset=ae,e.popperGenerator=Z,e.popperOffsets=te,e.preventOverflow=he,Object.defineProperty(e,"__esModule",{value:!0})}));
 
diff --git a/docs/site_libs/quarto-html/quarto-syntax-highlighting.css b/docs/site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css
similarity index 96%
rename from docs/site_libs/quarto-html/quarto-syntax-highlighting.css
rename to docs/site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css
index d9fd98f..2256bbe 100644
--- a/docs/site_libs/quarto-html/quarto-syntax-highlighting.css
+++ b/docs/site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css
@@ -85,6 +85,7 @@ code span.st {
 
 code span.cf {
   color: #003B4F;
+  font-weight: bold;
   font-style: inherit;
 }
 
@@ -193,6 +194,7 @@ code span.dv {
 
 code span.kw {
   color: #003B4F;
+  font-weight: bold;
   font-style: inherit;
 }
 
@@ -200,4 +202,4 @@ code span.kw {
   content: "</";
 }
 
-/*# sourceMappingURL=debc5d5d77c3f9108843748ff7464032.css.map */
+/*# sourceMappingURL=c2936e5f1fd09423e11af5a0cbfe170a.css.map */
diff --git a/docs/site_libs/quarto-html/quarto.js b/docs/site_libs/quarto-html/quarto.js
index deb7dff..3c24c29 100644
--- a/docs/site_libs/quarto-html/quarto.js
+++ b/docs/site_libs/quarto-html/quarto.js
@@ -5,7 +5,49 @@ const sectionChanged = new CustomEvent("quarto-sectionChanged", {
   composed: false,
 });
 
+const layoutMarginEls = () => {
+  // Find any conflicting margin elements and add margins to the
+  // top to prevent overlap
+  const marginChildren = window.document.querySelectorAll(
+    ".column-margin.column-container > *, .margin-caption, .aside"
+  );
+
+  let lastBottom = 0;
+  for (const marginChild of marginChildren) {
+    if (marginChild.offsetParent !== null) {
+      // clear the top margin so we recompute it
+      marginChild.style.marginTop = null;
+      const top = marginChild.getBoundingClientRect().top + window.scrollY;
+      if (top < lastBottom) {
+        const marginChildStyle = window.getComputedStyle(marginChild);
+        const marginBottom = parseFloat(marginChildStyle["marginBottom"]);
+        const margin = lastBottom - top + marginBottom;
+        marginChild.style.marginTop = `${margin}px`;
+      }
+      const styles = window.getComputedStyle(marginChild);
+      const marginTop = parseFloat(styles["marginTop"]);
+      lastBottom = top + marginChild.getBoundingClientRect().height + marginTop;
+    }
+  }
+};
+
 window.document.addEventListener("DOMContentLoaded", function (_event) {
+  // Recompute the position of margin elements anytime the body size changes
+  if (window.ResizeObserver) {
+    const resizeObserver = new window.ResizeObserver(
+      throttle(() => {
+        layoutMarginEls();
+        if (
+          window.document.body.getBoundingClientRect().width < 990 &&
+          isReaderMode()
+        ) {
+          quartoToggleReader();
+        }
+      }, 50)
+    );
+    resizeObserver.observe(window.document.body);
+  }
+
   const tocEl = window.document.querySelector('nav.toc-active[role="doc-toc"]');
   const sidebarEl = window.document.getElementById("quarto-sidebar");
   const leftTocEl = window.document.getElementById("quarto-sidebar-toc-left");
@@ -52,7 +94,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
       if (link.href.indexOf("#") !== -1) {
         const anchor = link.href.split("#")[1];
         const heading = window.document.querySelector(
-          `[data-anchor-id=${anchor}]`
+          `[data-anchor-id="${anchor}"]`
         );
         if (heading) {
           // Add the class
@@ -92,8 +134,10 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
       window.innerHeight + window.pageYOffset >=
       window.document.body.offsetHeight
     ) {
+      // This is the no-scroll case where last section should be the active one
       sectionIndex = 0;
     } else {
+      // This finds the last section visible on screen that should be made active
       sectionIndex = [...sections].reverse().findIndex((section) => {
         if (section) {
           return window.pageYOffset >= section.offsetTop - sectionMargin;
@@ -181,7 +225,10 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
   }
 
   async function findAndActivateCategories() {
-    const currentPagePath = offsetAbsoluteUrl(window.location.href);
+    // Categories search with listing only use path without query
+    const currentPagePath = offsetAbsoluteUrl(
+      window.location.origin + window.location.pathname
+    );
     const response = await fetch(offsetRelativeUrl("listings.json"));
     if (response.status == 200) {
       return response.json().then(function (listingPaths) {
@@ -275,6 +322,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
           for (const child of el.children) {
             child.style.opacity = 0;
             child.style.overflow = "hidden";
+            child.style.pointerEvents = "none";
           }
 
           nexttick(() => {
@@ -316,6 +364,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
 
               const clone = child.cloneNode(true);
               clone.style.opacity = 1;
+              clone.style.pointerEvents = null;
               clone.style.display = null;
               toggleContents.append(clone);
             }
@@ -390,6 +439,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
           for (const child of el.children) {
             child.style.opacity = 1;
             child.style.overflow = null;
+            child.style.pointerEvents = null;
           }
 
           const placeholderEl = window.document.getElementById(
@@ -431,32 +481,6 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
     };
   };
 
-  // Find any conflicting margin elements and add margins to the
-  // top to prevent overlap
-  const marginChildren = window.document.querySelectorAll(
-    ".column-margin.column-container > * "
-  );
-
-  const layoutMarginEls = () => {
-    let lastBottom = 0;
-    for (const marginChild of marginChildren) {
-      if (marginChild.offsetParent !== null) {
-        // clear the top margin so we recompute it
-        marginChild.style.marginTop = null;
-        const top = marginChild.getBoundingClientRect().top + window.scrollY;
-        if (top < lastBottom) {
-          const margin = lastBottom - top;
-          marginChild.style.marginTop = `${margin}px`;
-        }
-        const styles = window.getComputedStyle(marginChild);
-        const marginTop = parseFloat(styles["marginTop"]);
-        lastBottom =
-          top + marginChild.getBoundingClientRect().height + marginTop;
-      }
-    }
-  };
-  nexttick(layoutMarginEls);
-
   const tabEls = document.querySelectorAll('a[data-bs-toggle="tab"]');
   for (const tabEl of tabEls) {
     const id = tabEl.getAttribute("data-bs-target");
@@ -466,7 +490,6 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
       );
       if (columnEl)
         tabEl.addEventListener("shown.bs.tab", function (event) {
-
           const el = event.srcElement;
           if (el) {
             const visibleCls = `${el.id}-margin-content`;
@@ -724,6 +747,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
     // Process the collapse state if this is an UL
     if (el.tagName === "UL") {
       if (tocOpenDepth === -1 && depth > 1) {
+        // toc-expand: false
         el.classList.add("collapse");
       } else if (
         depth <= tocOpenDepth ||
@@ -742,10 +766,9 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
   };
 
   // walk the TOC and expand / collapse any items that should be shown
-
   if (tocEl) {
-    walk(tocEl, 0);
     updateActiveLink();
+    walk(tocEl, 0);
   }
 
   // Throttle the scroll event and walk peridiocally
@@ -764,6 +787,10 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
   window.addEventListener(
     "resize",
     throttle(() => {
+      if (tocEl) {
+        updateActiveLink();
+        walk(tocEl, 0);
+      }
       if (!isReaderMode()) {
         hideOverlappedSidebars();
       }
diff --git a/docs/site_libs/quarto-nav/quarto-nav.js b/docs/site_libs/quarto-nav/quarto-nav.js
index c83857e..38cc430 100644
--- a/docs/site_libs/quarto-nav/quarto-nav.js
+++ b/docs/site_libs/quarto-nav/quarto-nav.js
@@ -5,9 +5,45 @@ const headroomChanged = new CustomEvent("quarto-hrChanged", {
   composed: false,
 });
 
+const announceDismiss = () => {
+  const annEl = window.document.getElementById("quarto-announcement");
+  if (annEl) {
+    annEl.remove();
+
+    const annId = annEl.getAttribute("data-announcement-id");
+    window.localStorage.setItem(`quarto-announce-${annId}`, "true");
+  }
+};
+
+const announceRegister = () => {
+  const annEl = window.document.getElementById("quarto-announcement");
+  if (annEl) {
+    const annId = annEl.getAttribute("data-announcement-id");
+    const isDismissed =
+      window.localStorage.getItem(`quarto-announce-${annId}`) || false;
+    if (isDismissed) {
+      announceDismiss();
+      return;
+    } else {
+      annEl.classList.remove("hidden");
+    }
+
+    const actionEl = annEl.querySelector(".quarto-announcement-action");
+    if (actionEl) {
+      actionEl.addEventListener("click", function (e) {
+        e.preventDefault();
+        // Hide the bar immediately
+        announceDismiss();
+      });
+    }
+  }
+};
+
 window.document.addEventListener("DOMContentLoaded", function () {
   let init = false;
 
+  announceRegister();
+
   // Manage the back to top button, if one is present.
   let lastScrollTop = window.pageYOffset || document.documentElement.scrollTop;
   const scrollDownBuffer = 5;
@@ -85,6 +121,17 @@ window.document.addEventListener("DOMContentLoaded", function () {
     }
   }
 
+  function dashboardOffset() {
+    const dashboardNavEl = window.document.getElementById(
+      "quarto-dashboard-header"
+    );
+    if (dashboardNavEl !== null) {
+      return dashboardNavEl.clientHeight;
+    } else {
+      return 0;
+    }
+  }
+
   function updateDocumentOffsetWithoutAnimation() {
     updateDocumentOffset(false);
   }
@@ -92,7 +139,7 @@ window.document.addEventListener("DOMContentLoaded", function () {
   function updateDocumentOffset(animated) {
     // set body offset
     const topOffset = headerOffset();
-    const bodyOffset = topOffset + footerOffset();
+    const bodyOffset = topOffset + footerOffset() + dashboardOffset();
     const bodyEl = window.document.body;
     bodyEl.setAttribute("data-bs-offset", topOffset);
     bodyEl.style.paddingTop = topOffset + "px";
@@ -193,7 +240,11 @@ window.document.addEventListener("DOMContentLoaded", function () {
   window.addEventListener(
     "hashchange",
     function (e) {
-      window.scrollTo(0, window.pageYOffset - headerOffset());
+      if (
+        getComputedStyle(document.documentElement).scrollBehavior !== "smooth"
+      ) {
+        window.scrollTo(0, window.pageYOffset - headerOffset());
+      }
     },
     false
   );
@@ -201,9 +252,9 @@ window.document.addEventListener("DOMContentLoaded", function () {
   // Observe size changed for the header
   const headerEl = window.document.querySelector("header.fixed-top");
   if (headerEl && window.ResizeObserver) {
-    const observer = new window.ResizeObserver(
-      updateDocumentOffsetWithoutAnimation
-    );
+    const observer = new window.ResizeObserver(() => {
+      setTimeout(updateDocumentOffsetWithoutAnimation, 0);
+    });
     observer.observe(headerEl, {
       attributes: true,
       childList: true,
@@ -222,6 +273,7 @@ window.document.addEventListener("DOMContentLoaded", function () {
     const links = window.document.querySelectorAll("a");
     for (let i = 0; i < links.length; i++) {
       if (links[i].href) {
+        links[i].dataset.originalHref = links[i].href;
         links[i].href = links[i].href.replace(/\/index\.html/, "/");
       }
     }
@@ -229,7 +281,7 @@ window.document.addEventListener("DOMContentLoaded", function () {
     // Fixup any sharing links that require urls
     // Append url to any sharing urls
     const sharingLinks = window.document.querySelectorAll(
-      "a.sidebar-tools-main-item"
+      "a.sidebar-tools-main-item, a.quarto-navigation-tool, a.quarto-navbar-tools, a.quarto-navbar-tools-item"
     );
     for (let i = 0; i < sharingLinks.length; i++) {
       const sharingLink = sharingLinks[i];
diff --git a/docs/site_libs/quarto-search/autocomplete.umd.js b/docs/site_libs/quarto-search/autocomplete.umd.js
index 619c57c..ae0063a 100644
--- a/docs/site_libs/quarto-search/autocomplete.umd.js
+++ b/docs/site_libs/quarto-search/autocomplete.umd.js
@@ -1,3 +1,3 @@
-/*! @algolia/autocomplete-js 1.7.3 | MIT License | © Algolia, Inc. and contributors | https://github.com/algolia/autocomplete */
-!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self)["@algolia/autocomplete-js"]={})}(this,(function(e){"use strict";function t(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function n(e){for(var n=1;n<arguments.length;n++){var r=null!=arguments[n]?arguments[n]:{};n%2?t(Object(r),!0).forEach((function(t){o(e,t,r[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(r)):t(Object(r)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(r,t))}))}return e}function r(e){return r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},r(e)}function o(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function i(){return i=Object.assign||function(e){for(var t=1;t<arguments.length;t++){var n=arguments[t];for(var r in n)Object.prototype.hasOwnProperty.call(n,r)&&(e[r]=n[r])}return e},i.apply(this,arguments)}function u(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function a(e,t){return function(e){if(Array.isArray(e))return e}(e)||function(e,t){var n=null==e?null:"undefined"!=typeof Symbol&&e[Symbol.iterator]||e["@@iterator"];if(null==n)return;var r,o,i=[],u=!0,a=!1;try{for(n=n.call(e);!(u=(r=n.next()).done)&&(i.push(r.value),!t||i.length!==t);u=!0);}catch(e){a=!0,o=e}finally{try{u||null==n.return||n.return()}finally{if(a)throw o}}return i}(e,t)||l(e,t)||function(){throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function c(e){return function(e){if(Array.isArray(e))return s(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||l(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function l(e,t){if(e){if("string"==typeof e)return s(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);return"Object"===n&&e.constructor&&(n=e.constructor.name),"Map"===n||"Set"===n?Array.from(e):"Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)?s(e,t):void 0}}function s(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function p(e){return{current:e}}function f(e,t){var n=void 0;return function(){for(var r=arguments.length,o=new Array(r),i=0;i<r;i++)o[i]=arguments[i];n&&clearTimeout(n),n=setTimeout((function(){return e.apply(void 0,o)}),t)}}function d(e){return e.reduce((function(e,t){return e.concat(t)}),[])}var m=0;function v(){return"autocomplete-".concat(m++)}function h(e,t){return t.reduce((function(e,t){return e&&e[t]}),e)}function g(e){return 0===e.collections.length?0:e.collections.reduce((function(e,t){return e+t.items.length}),0)}var y=function(){},b="1.7.3",O=[{segment:"autocomplete-core",version:b}];function _(e,t){var n=t;return{then:function(t,r){return _(e.then(j(t,n,e),j(r,n,e)),n)},catch:function(t){return _(e.catch(j(t,n,e)),n)},finally:function(t){return t&&n.onCancelList.push(t),_(e.finally(j(t&&function(){return n.onCancelList=[],t()},n,e)),n)},cancel:function(){n.isCanceled=!0;var e=n.onCancelList;n.onCancelList=[],e.forEach((function(e){e()}))},isCanceled:function(){return!0===n.isCanceled}}}function P(e){return _(e,{isCanceled:!1,onCancelList:[]})}function j(e,t,n){return e?function(n){return t.isCanceled?n:e(n)}:n}function w(e,t,n,r){if(!n)return null;if(e<0&&(null===t||null!==r&&0===t))return n+e;var o=(null===t?-1:t)+e;return o<=-1||o>=n?null===r?null:0:o}function S(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function I(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function E(e,t){var n=[];return Promise.resolve(e(t)).then((function(e){return Promise.all(e.filter((function(e){return Boolean(e)})).map((function(e){if(e.sourceId,n.includes(e.sourceId))throw new Error("[Autocomplete] The `sourceId` ".concat(JSON.stringify(e.sourceId)," is not unique."));n.push(e.sourceId);var t=function(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?S(Object(n),!0).forEach((function(t){I(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):S(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}({getItemInputValue:function(e){return e.state.query},getItemUrl:function(){},onSelect:function(e){(0,e.setIsOpen)(!1)},onActive:y},e);return Promise.resolve(t)})))}))}function A(e){var t=function(e){var t=e.collections.map((function(e){return e.items.length})).reduce((function(e,t,n){var r=(e[n-1]||0)+t;return e.push(r),e}),[]).reduce((function(t,n){return n<=e.activeItemId?t+1:t}),0);return e.collections[t]}(e);if(!t)return null;var n=t.items[function(e){for(var t=e.state,n=e.collection,r=!1,o=0,i=0;!1===r;){var u=t.collections[o];if(u===n){r=!0;break}i+=u.items.length,o++}return t.activeItemId-i}({state:e,collection:t})],r=t.source;return{item:n,itemInputValue:r.getItemInputValue({item:n,state:e}),itemUrl:r.getItemUrl({item:n,state:e}),source:r}}var C=/((gt|sm)-|galaxy nexus)|samsung[- ]/i;function D(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function k(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?D(Object(n),!0).forEach((function(t){x(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):D(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function x(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function N(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function q(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function R(e,t,n){var r,o=t.initialState;return{getState:function(){return o},dispatch:function(r,i){var u=function(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?N(Object(n),!0).forEach((function(t){q(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):N(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}({},o);o=e(o,{type:r,props:t,payload:i}),n({state:o,prevState:u})},pendingRequests:(r=[],{add:function(e){return r.push(e),e.finally((function(){r=r.filter((function(t){return t!==e}))}))},cancelAll:function(){r.forEach((function(e){return e.cancel()}))},isEmpty:function(){return 0===r.length}})}}function T(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function L(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?T(Object(n),!0).forEach((function(t){B(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):T(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function B(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function F(e){return function(e){if(Array.isArray(e))return M(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return M(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return M(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function M(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function U(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function H(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?U(Object(n),!0).forEach((function(t){V(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):U(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function V(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function W(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Q(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?W(Object(n),!0).forEach((function(t){$(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):W(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function $(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function z(e){return function(e){if(Array.isArray(e))return G(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return G(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return G(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function G(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function K(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function J(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?K(Object(n),!0).forEach((function(t){Y(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):K(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Y(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function X(e){return Boolean(e.execute)}function Z(e,t){return n=e,Boolean(null==n?void 0:n.execute)?J(J({},e),{},{requests:e.queries.map((function(n){return{query:n,sourceId:t,transformResponse:e.transformResponse}}))}):{items:e,sourceId:t};var n}function ee(e){var t=e.reduce((function(e,t){if(!X(t))return e.push(t),e;var n=t.searchClient,r=t.execute,o=t.requesterId,i=t.requests,u=e.find((function(e){return X(t)&&X(e)&&e.searchClient===n&&Boolean(o)&&e.requesterId===o}));if(u){var a;(a=u.items).push.apply(a,z(i))}else{var c={execute:r,requesterId:o,items:i,searchClient:n};e.push(c)}return e}),[]).map((function(e){if(!X(e))return Promise.resolve(e);var t=e,n=t.execute,r=t.items;return n({searchClient:t.searchClient,requests:r})}));return Promise.all(t).then((function(e){return d(e)}))}function te(e,t){return t.map((function(t){var n=e.filter((function(e){return e.sourceId===t.sourceId})),r=n.map((function(e){return e.items})),o=n[0].transformResponse,i=o?o(function(e){var t=e.map((function(e){var t;return k(k({},e),{},{hits:null===(t=e.hits)||void 0===t?void 0:t.map((function(t){return k(k({},t),{},{__autocomplete_indexName:e.index,__autocomplete_queryID:e.queryID})}))})}));return{results:t,hits:t.map((function(e){return e.hits})).filter(Boolean),facetHits:t.map((function(e){var t;return null===(t=e.facetHits)||void 0===t?void 0:t.map((function(e){return{label:e.value,count:e.count,_highlightResult:{label:{value:e.highlighted}}}}))})).filter(Boolean)}}(r)):r;return i.every(Boolean),'The `getItems` function from source "'.concat(t.sourceId,'" must return an array of items but returned ').concat(JSON.stringify(void 0),".\n\nDid you forget to return items?\n\nSee: https://www.algolia.com/doc/ui-libraries/autocomplete/core-concepts/sources/#param-getitems"),{source:t,items:i}}))}var ne=["event","nextState","props","query","refresh","store"];function re(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function oe(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?re(Object(n),!0).forEach((function(t){ie(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):re(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function ie(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function ue(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}var ae,ce,le,se=null,pe=(ae=-1,ce=-1,le=void 0,function(e){var t=++ae;return Promise.resolve(e).then((function(e){return le&&t<ce?le:(ce=t,le=e,e)}))});function fe(e){var t=e.event,n=e.nextState,r=void 0===n?{}:n,o=e.props,i=e.query,u=e.refresh,a=e.store,c=ue(e,ne);se&&o.environment.clearTimeout(se);var l=c.setCollections,s=c.setIsOpen,p=c.setQuery,f=c.setActiveItemId,m=c.setStatus;if(p(i),f(o.defaultActiveItemId),!i&&!1===o.openOnFocus){var v,h=a.getState().collections.map((function(e){return oe(oe({},e),{},{items:[]})}));m("idle"),l(h),s(null!==(v=r.isOpen)&&void 0!==v?v:o.shouldPanelOpen({state:a.getState()}));var g=P(pe(h).then((function(){return Promise.resolve()})));return a.pendingRequests.add(g)}m("loading"),se=o.environment.setTimeout((function(){m("stalled")}),o.stallThreshold);var y=P(pe(o.getSources(oe({query:i,refresh:u,state:a.getState()},c)).then((function(e){return Promise.all(e.map((function(e){return Promise.resolve(e.getItems(oe({query:i,refresh:u,state:a.getState()},c))).then((function(t){return Z(t,e.sourceId)}))}))).then(ee).then((function(t){return te(t,e)})).then((function(e){return function(e){var t=e.collections,n=e.props,r=e.state,o=t.reduce((function(e,t){return Q(Q({},e),{},$({},t.source.sourceId,Q(Q({},t.source),{},{getItems:function(){return d(t.items)}})))}),{});return d(n.reshape({sources:Object.values(o),sourcesBySourceId:o,state:r})).filter(Boolean).map((function(e){return{source:e,items:e.getItems()}}))}({collections:e,props:o,state:a.getState()})}))})))).then((function(e){var n;m("idle"),l(e);var p=o.shouldPanelOpen({state:a.getState()});s(null!==(n=r.isOpen)&&void 0!==n?n:o.openOnFocus&&!i&&p||p);var f=A(a.getState());if(null!==a.getState().activeItemId&&f){var d=f.item,v=f.itemInputValue,h=f.itemUrl,g=f.source;g.onActive(oe({event:t,item:d,itemInputValue:v,itemUrl:h,refresh:u,source:g,state:a.getState()},c))}})).finally((function(){m("idle"),se&&o.environment.clearTimeout(se)}));return a.pendingRequests.add(y)}var de=["event","props","refresh","store"];function me(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function ve(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?me(Object(n),!0).forEach((function(t){he(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):me(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function he(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function ge(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}var ye=["props","refresh","store"],be=["inputElement","formElement","panelElement"],Oe=["inputElement"],_e=["inputElement","maxLength"],Pe=["item","source"];function je(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function we(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?je(Object(n),!0).forEach((function(t){Se(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):je(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Se(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Ie(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function Ee(e){var t=e.props,n=e.refresh,r=e.store,o=Ie(e,ye);return{getEnvironmentProps:function(e){var n=e.inputElement,o=e.formElement,i=e.panelElement;function u(e){!r.getState().isOpen&&r.pendingRequests.isEmpty()||e.target===n||!1===[o,i].some((function(t){return n=t,r=e.target,n===r||n.contains(r);var n,r}))&&(r.dispatch("blur",null),t.debug||r.pendingRequests.cancelAll())}return we({onTouchStart:u,onMouseDown:u,onTouchMove:function(e){!1!==r.getState().isOpen&&n===t.environment.document.activeElement&&e.target!==n&&n.blur()}},Ie(e,be))},getRootProps:function(e){return we({role:"combobox","aria-expanded":r.getState().isOpen,"aria-haspopup":"listbox","aria-owns":r.getState().isOpen?"".concat(t.id,"-list"):void 0,"aria-labelledby":"".concat(t.id,"-label")},e)},getFormProps:function(e){return e.inputElement,we({action:"",noValidate:!0,role:"search",onSubmit:function(i){var u;i.preventDefault(),t.onSubmit(we({event:i,refresh:n,state:r.getState()},o)),r.dispatch("submit",null),null===(u=e.inputElement)||void 0===u||u.blur()},onReset:function(i){var u;i.preventDefault(),t.onReset(we({event:i,refresh:n,state:r.getState()},o)),r.dispatch("reset",null),null===(u=e.inputElement)||void 0===u||u.focus()}},Ie(e,Oe))},getLabelProps:function(e){return we({htmlFor:"".concat(t.id,"-input"),id:"".concat(t.id,"-label")},e)},getInputProps:function(e){var i;function u(e){(t.openOnFocus||Boolean(r.getState().query))&&fe(we({event:e,props:t,query:r.getState().completion||r.getState().query,refresh:n,store:r},o)),r.dispatch("focus",null)}var a=e||{};a.inputElement;var c=a.maxLength,l=void 0===c?512:c,s=Ie(a,_e),p=A(r.getState()),f=function(e){return Boolean(e&&e.match(C))}((null===(i=t.environment.navigator)||void 0===i?void 0:i.userAgent)||""),d=null!=p&&p.itemUrl&&!f?"go":"search";return we({"aria-autocomplete":"both","aria-activedescendant":r.getState().isOpen&&null!==r.getState().activeItemId?"".concat(t.id,"-item-").concat(r.getState().activeItemId):void 0,"aria-controls":r.getState().isOpen?"".concat(t.id,"-list"):void 0,"aria-labelledby":"".concat(t.id,"-label"),value:r.getState().completion||r.getState().query,id:"".concat(t.id,"-input"),autoComplete:"off",autoCorrect:"off",autoCapitalize:"off",enterKeyHint:d,spellCheck:"false",autoFocus:t.autoFocus,placeholder:t.placeholder,maxLength:l,type:"search",onChange:function(e){fe(we({event:e,props:t,query:e.currentTarget.value.slice(0,l),refresh:n,store:r},o))},onKeyDown:function(e){!function(e){var t=e.event,n=e.props,r=e.refresh,o=e.store,i=ge(e,de);if("ArrowUp"===t.key||"ArrowDown"===t.key){var u=function(){var e=n.environment.document.getElementById("".concat(n.id,"-item-").concat(o.getState().activeItemId));e&&(e.scrollIntoViewIfNeeded?e.scrollIntoViewIfNeeded(!1):e.scrollIntoView(!1))},a=function(){var e=A(o.getState());if(null!==o.getState().activeItemId&&e){var n=e.item,u=e.itemInputValue,a=e.itemUrl,c=e.source;c.onActive(ve({event:t,item:n,itemInputValue:u,itemUrl:a,refresh:r,source:c,state:o.getState()},i))}};t.preventDefault(),!1===o.getState().isOpen&&(n.openOnFocus||Boolean(o.getState().query))?fe(ve({event:t,props:n,query:o.getState().query,refresh:r,store:o},i)).then((function(){o.dispatch(t.key,{nextActiveItemId:n.defaultActiveItemId}),a(),setTimeout(u,0)})):(o.dispatch(t.key,{}),a(),u())}else if("Escape"===t.key)t.preventDefault(),o.dispatch(t.key,null),o.pendingRequests.cancelAll();else if("Tab"===t.key)o.dispatch("blur",null),o.pendingRequests.cancelAll();else if("Enter"===t.key){if(null===o.getState().activeItemId||o.getState().collections.every((function(e){return 0===e.items.length})))return void(n.debug||o.pendingRequests.cancelAll());t.preventDefault();var c=A(o.getState()),l=c.item,s=c.itemInputValue,p=c.itemUrl,f=c.source;if(t.metaKey||t.ctrlKey)void 0!==p&&(f.onSelect(ve({event:t,item:l,itemInputValue:s,itemUrl:p,refresh:r,source:f,state:o.getState()},i)),n.navigator.navigateNewTab({itemUrl:p,item:l,state:o.getState()}));else if(t.shiftKey)void 0!==p&&(f.onSelect(ve({event:t,item:l,itemInputValue:s,itemUrl:p,refresh:r,source:f,state:o.getState()},i)),n.navigator.navigateNewWindow({itemUrl:p,item:l,state:o.getState()}));else if(t.altKey);else{if(void 0!==p)return f.onSelect(ve({event:t,item:l,itemInputValue:s,itemUrl:p,refresh:r,source:f,state:o.getState()},i)),void n.navigator.navigate({itemUrl:p,item:l,state:o.getState()});fe(ve({event:t,nextState:{isOpen:!1},props:n,query:s,refresh:r,store:o},i)).then((function(){f.onSelect(ve({event:t,item:l,itemInputValue:s,itemUrl:p,refresh:r,source:f,state:o.getState()},i))}))}}}(we({event:e,props:t,refresh:n,store:r},o))},onFocus:u,onBlur:y,onClick:function(n){e.inputElement!==t.environment.document.activeElement||r.getState().isOpen||u(n)}},s)},getPanelProps:function(e){return we({onMouseDown:function(e){e.preventDefault()},onMouseLeave:function(){r.dispatch("mouseleave",null)}},e)},getListProps:function(e){return we({role:"listbox","aria-labelledby":"".concat(t.id,"-label"),id:"".concat(t.id,"-list")},e)},getItemProps:function(e){var i=e.item,u=e.source,a=Ie(e,Pe);return we({id:"".concat(t.id,"-item-").concat(i.__autocomplete_id),role:"option","aria-selected":r.getState().activeItemId===i.__autocomplete_id,onMouseMove:function(e){if(i.__autocomplete_id!==r.getState().activeItemId){r.dispatch("mousemove",i.__autocomplete_id);var t=A(r.getState());if(null!==r.getState().activeItemId&&t){var u=t.item,a=t.itemInputValue,c=t.itemUrl,l=t.source;l.onActive(we({event:e,item:u,itemInputValue:a,itemUrl:c,refresh:n,source:l,state:r.getState()},o))}}},onMouseDown:function(e){e.preventDefault()},onClick:function(e){var a=u.getItemInputValue({item:i,state:r.getState()}),c=u.getItemUrl({item:i,state:r.getState()});(c?Promise.resolve():fe(we({event:e,nextState:{isOpen:!1},props:t,query:a,refresh:n,store:r},o))).then((function(){u.onSelect(we({event:e,item:i,itemInputValue:a,itemUrl:c,refresh:n,source:u,state:r.getState()},o))}))}},a)}}}function Ae(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Ce(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Ae(Object(n),!0).forEach((function(t){De(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Ae(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function De(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function ke(e){var t,n,r,o,i=e.plugins,u=e.options,a=null===(t=((null===(n=u.__autocomplete_metadata)||void 0===n?void 0:n.userAgents)||[])[0])||void 0===t?void 0:t.segment,c=a?De({},a,Object.keys((null===(r=u.__autocomplete_metadata)||void 0===r?void 0:r.options)||{})):{};return{plugins:i.map((function(e){return{name:e.name,options:Object.keys(e.__autocomplete_pluginOptions||[])}})),options:Ce({"autocomplete-core":Object.keys(u)},c),ua:O.concat((null===(o=u.__autocomplete_metadata)||void 0===o?void 0:o.userAgents)||[])}}function xe(e){var t,n=e.state;return!1===n.isOpen||null===n.activeItemId?null:(null===(t=A(n))||void 0===t?void 0:t.itemInputValue)||null}function Ne(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function qe(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Ne(Object(n),!0).forEach((function(t){Re(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Ne(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Re(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}var Te=function(e,t){switch(t.type){case"setActiveItemId":case"mousemove":return qe(qe({},e),{},{activeItemId:t.payload});case"setQuery":return qe(qe({},e),{},{query:t.payload,completion:null});case"setCollections":return qe(qe({},e),{},{collections:t.payload});case"setIsOpen":return qe(qe({},e),{},{isOpen:t.payload});case"setStatus":return qe(qe({},e),{},{status:t.payload});case"setContext":return qe(qe({},e),{},{context:qe(qe({},e.context),t.payload)});case"ArrowDown":var n=qe(qe({},e),{},{activeItemId:t.payload.hasOwnProperty("nextActiveItemId")?t.payload.nextActiveItemId:w(1,e.activeItemId,g(e),t.props.defaultActiveItemId)});return qe(qe({},n),{},{completion:xe({state:n})});case"ArrowUp":var r=qe(qe({},e),{},{activeItemId:w(-1,e.activeItemId,g(e),t.props.defaultActiveItemId)});return qe(qe({},r),{},{completion:xe({state:r})});case"Escape":return e.isOpen?qe(qe({},e),{},{activeItemId:null,isOpen:!1,completion:null}):qe(qe({},e),{},{activeItemId:null,query:"",status:"idle",collections:[]});case"submit":return qe(qe({},e),{},{activeItemId:null,isOpen:!1,status:"idle"});case"reset":return qe(qe({},e),{},{activeItemId:!0===t.props.openOnFocus?t.props.defaultActiveItemId:null,status:"idle",query:""});case"focus":return qe(qe({},e),{},{activeItemId:t.props.defaultActiveItemId,isOpen:(t.props.openOnFocus||Boolean(e.query))&&t.props.shouldPanelOpen({state:e})});case"blur":return t.props.debug?e:qe(qe({},e),{},{isOpen:!1,activeItemId:null});case"mouseleave":return qe(qe({},e),{},{activeItemId:t.props.defaultActiveItemId});default:return"The reducer action ".concat(JSON.stringify(t.type)," is not supported."),e}};function Le(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Be(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Le(Object(n),!0).forEach((function(t){Fe(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Le(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Fe(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Me(e){var t=[],n=function(e,t){var n,r="undefined"!=typeof window?window:{},o=e.plugins||[];return H(H({debug:!1,openOnFocus:!1,placeholder:"",autoFocus:!1,defaultActiveItemId:null,stallThreshold:300,environment:r,shouldPanelOpen:function(e){return g(e.state)>0},reshape:function(e){return e.sources}},e),{},{id:null!==(n=e.id)&&void 0!==n?n:v(),plugins:o,initialState:H({activeItemId:null,query:"",completion:null,collections:[],isOpen:!1,status:"idle",context:{}},e.initialState),onStateChange:function(t){var n;null===(n=e.onStateChange)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onStateChange)||void 0===n?void 0:n.call(e,t)}))},onSubmit:function(t){var n;null===(n=e.onSubmit)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onSubmit)||void 0===n?void 0:n.call(e,t)}))},onReset:function(t){var n;null===(n=e.onReset)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onReset)||void 0===n?void 0:n.call(e,t)}))},getSources:function(n){return Promise.all([].concat(F(o.map((function(e){return e.getSources}))),[e.getSources]).filter(Boolean).map((function(e){return E(e,n)}))).then((function(e){return d(e)})).then((function(e){return e.map((function(e){return H(H({},e),{},{onSelect:function(n){e.onSelect(n),t.forEach((function(e){var t;return null===(t=e.onSelect)||void 0===t?void 0:t.call(e,n)}))},onActive:function(n){e.onActive(n),t.forEach((function(e){var t;return null===(t=e.onActive)||void 0===t?void 0:t.call(e,n)}))}})}))}))},navigator:H({navigate:function(e){var t=e.itemUrl;r.location.assign(t)},navigateNewTab:function(e){var t=e.itemUrl,n=r.open(t,"_blank","noopener");null==n||n.focus()},navigateNewWindow:function(e){var t=e.itemUrl;r.open(t,"_blank","noopener")}},e.navigator)})}(e,t),r=R(Te,n,(function(e){var t=e.prevState,r=e.state;n.onStateChange(Be({prevState:t,state:r,refresh:u},o))})),o=function(e){var t=e.store;return{setActiveItemId:function(e){t.dispatch("setActiveItemId",e)},setQuery:function(e){t.dispatch("setQuery",e)},setCollections:function(e){var n=0,r=e.map((function(e){return L(L({},e),{},{items:d(e.items).map((function(e){return L(L({},e),{},{__autocomplete_id:n++})}))})}));t.dispatch("setCollections",r)},setIsOpen:function(e){t.dispatch("setIsOpen",e)},setStatus:function(e){t.dispatch("setStatus",e)},setContext:function(e){t.dispatch("setContext",e)}}}({store:r}),i=Ee(Be({props:n,refresh:u,store:r},o));function u(){return fe(Be({event:new Event("input"),nextState:{isOpen:r.getState().isOpen},props:n,query:r.getState().query,refresh:u,store:r},o))}return n.plugins.forEach((function(e){var n;return null===(n=e.subscribe)||void 0===n?void 0:n.call(e,Be(Be({},o),{},{refresh:u,onSelect:function(e){t.push({onSelect:e})},onActive:function(e){t.push({onActive:e})}}))})),function(e){var t,n,r=e.metadata,o=e.environment;if(null===(t=o.navigator)||void 0===t||null===(n=t.userAgent)||void 0===n?void 0:n.includes("Algolia Crawler")){var i=o.document.createElement("meta"),u=o.document.querySelector("head");i.name="algolia:metadata",setTimeout((function(){i.content=JSON.stringify(r),u.appendChild(i)}),0)}}({metadata:ke({plugins:n.plugins,options:e}),environment:n.environment}),Be(Be({refresh:u},i),o)}var Ue=function(e,t,n,r){var o;t[0]=0;for(var i=1;i<t.length;i++){var u=t[i++],a=t[i]?(t[0]|=u?1:2,n[t[i++]]):t[++i];3===u?r[0]=a:4===u?r[1]=Object.assign(r[1]||{},a):5===u?(r[1]=r[1]||{})[t[++i]]=a:6===u?r[1][t[++i]]+=a+"":u?(o=e.apply(a,Ue(e,a,n,["",null])),r.push(o),a[0]?t[0]|=2:(t[i-2]=0,t[i]=o)):r.push(a)}return r},He=new Map;function Ve(e){var t=He.get(this);return t||(t=new Map,He.set(this,t)),(t=Ue(this,t.get(e)||(t.set(e,t=function(e){for(var t,n,r=1,o="",i="",u=[0],a=function(e){1===r&&(e||(o=o.replace(/^\s*\n\s*|\s*\n\s*$/g,"")))?u.push(0,e,o):3===r&&(e||o)?(u.push(3,e,o),r=2):2===r&&"..."===o&&e?u.push(4,e,0):2===r&&o&&!e?u.push(5,0,!0,o):r>=5&&((o||!e&&5===r)&&(u.push(r,0,o,n),r=6),e&&(u.push(r,e,0,n),r=6)),o=""},c=0;c<e.length;c++){c&&(1===r&&a(),a(c));for(var l=0;l<e[c].length;l++)t=e[c][l],1===r?"<"===t?(a(),u=[u],r=3):o+=t:4===r?"--"===o&&">"===t?(r=1,o=""):o=t+o[0]:i?t===i?i="":o+=t:'"'===t||"'"===t?i=t:">"===t?(a(),r=1):r&&("="===t?(r=5,n=o,o=""):"/"===t&&(r<5||">"===e[c][l+1])?(a(),3===r&&(u=u[0]),r=u,(u=u[0]).push(2,0,r),r=0):" "===t||"\t"===t||"\n"===t||"\r"===t?(a(),r=2):o+=t),3===r&&"!--"===o&&(r=4,u=u[0])}return a(),u}(e)),t),arguments,[])).length>1?t:t[0]}var We=function(e){var t=e.environment,n=t.document.createElementNS("http://www.w3.org/2000/svg","svg");n.setAttribute("class","aa-ClearIcon"),n.setAttribute("viewBox","0 0 24 24"),n.setAttribute("width","18"),n.setAttribute("height","18"),n.setAttribute("fill","currentColor");var r=t.document.createElementNS("http://www.w3.org/2000/svg","path");return r.setAttribute("d","M5.293 6.707l5.293 5.293-5.293 5.293c-0.391 0.391-0.391 1.024 0 1.414s1.024 0.391 1.414 0l5.293-5.293 5.293 5.293c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414l-5.293-5.293 5.293-5.293c0.391-0.391 0.391-1.024 0-1.414s-1.024-0.391-1.414 0l-5.293 5.293-5.293-5.293c-0.391-0.391-1.024-0.391-1.414 0s-0.391 1.024 0 1.414z"),n.appendChild(r),n};function Qe(e,t){if("string"==typeof t){var n=e.document.querySelector(t);return"The element ".concat(JSON.stringify(t)," is not in the document."),n}return t}function $e(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return t.reduce((function(e,t){return Object.keys(t).forEach((function(n){var r=e[n],o=t[n];r!==o&&(e[n]=[r,o].filter(Boolean).join(" "))})),e}),{})}var ze=function(e){return e&&"object"===r(e)&&"[object Object]"===Object.prototype.toString.call(e)};function Ge(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return t.reduce((function(e,t){return Object.keys(t).forEach((function(n){var r=e[n],o=t[n];Array.isArray(r)&&Array.isArray(o)?e[n]=r.concat.apply(r,c(o)):ze(r)&&ze(o)?e[n]=Ge(r,o):e[n]=o})),e}),{})}function Ke(e,t){return Object.entries(e).reduce((function(e,r){var i=a(r,2),u=i[0],c=i[1];return t({key:u,value:c})?n(n({},e),{},o({},u,c)):e}),{})}var Je=["ontouchstart","ontouchend","ontouchmove","ontouchcancel"];function Ye(e,t,n){e[t]=null===n?"":"number"!=typeof n?n:n+"px"}function Xe(e){this._listeners[e.type](e)}function Ze(e,t,n){var r,o,i=e[t];if("style"===t)if("string"==typeof n)e.style=n;else if(null===n)e.style="";else for(t in n)i&&n[t]===i[t]||Ye(e.style,t,n[t]);else"o"===t[0]&&"n"===t[1]?(r=t!==(t=t.replace(/Capture$/,"")),((o=t.toLowerCase())in e||Je.includes(o))&&(t=o),t=t.slice(2),e._listeners||(e._listeners={}),e._listeners[t]=n,n?i||e.addEventListener(t,Xe,r):e.removeEventListener(t,Xe,r)):"list"!==t&&"tagName"!==t&&"form"!==t&&"type"!==t&&"size"!==t&&"download"!==t&&"href"!==t&&t in e?e[t]=null==n?"":n:"function"!=typeof n&&"dangerouslySetInnerHTML"!==t&&(null==n||!1===n&&!/^ar/.test(t)?e.removeAttribute(t):e.setAttribute(t,n))}function et(e){return"onChange"===e?"onInput":e}function tt(e,t){for(var n in t)Ze(e,et(n),t[n])}function nt(e,t){for(var n in t)"o"===n[0]&&"n"===n[1]||Ze(e,et(n),t[n])}var rt=["children"];function ot(e){return function(t,n){var r=n.children,o=void 0===r?[]:r,i=u(n,rt),a=e.document.createElement(t);return tt(a,i),a.append.apply(a,c(o)),a}}var it=["autocompleteScopeApi","environment","classNames","getInputProps","getInputPropsCore","isDetached","state"],ut=function(e){var t=e.environment.document.createElementNS("http://www.w3.org/2000/svg","svg");return t.setAttribute("class","aa-LoadingIcon"),t.setAttribute("viewBox","0 0 100 100"),t.setAttribute("width","20"),t.setAttribute("height","20"),t.innerHTML='<circle\n  cx="50"\n  cy="50"\n  fill="none"\n  r="35"\n  stroke="currentColor"\n  stroke-dasharray="164.93361431346415 56.97787143782138"\n  stroke-width="6"\n>\n  <animateTransform\n    attributeName="transform"\n    type="rotate"\n    repeatCount="indefinite"\n    dur="1s"\n    values="0 50 50;90 50 50;180 50 50;360 50 50"\n    keyTimes="0;0.40;0.65;1"\n  />\n</circle>',t},at=function(e){var t=e.environment,n=t.document.createElementNS("http://www.w3.org/2000/svg","svg");n.setAttribute("class","aa-SubmitIcon"),n.setAttribute("viewBox","0 0 24 24"),n.setAttribute("width","20"),n.setAttribute("height","20"),n.setAttribute("fill","currentColor");var r=t.document.createElementNS("http://www.w3.org/2000/svg","path");return r.setAttribute("d","M16.041 15.856c-0.034 0.026-0.067 0.055-0.099 0.087s-0.060 0.064-0.087 0.099c-1.258 1.213-2.969 1.958-4.855 1.958-1.933 0-3.682-0.782-4.95-2.050s-2.050-3.017-2.050-4.95 0.782-3.682 2.050-4.95 3.017-2.050 4.95-2.050 3.682 0.782 4.95 2.050 2.050 3.017 2.050 4.95c0 1.886-0.745 3.597-1.959 4.856zM21.707 20.293l-3.675-3.675c1.231-1.54 1.968-3.493 1.968-5.618 0-2.485-1.008-4.736-2.636-6.364s-3.879-2.636-6.364-2.636-4.736 1.008-6.364 2.636-2.636 3.879-2.636 6.364 1.008 4.736 2.636 6.364 3.879 2.636 6.364 2.636c2.125 0 4.078-0.737 5.618-1.968l3.675 3.675c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414z"),n.appendChild(r),n};function ct(e){var t=e.autocomplete,r=e.autocompleteScopeApi,o=e.classNames,i=e.environment,a=e.isDetached,c=e.placeholder,l=void 0===c?"Search":c,s=e.propGetters,p=e.setIsModalOpen,f=e.state,d=e.translations,m=ot(i),v=s.getRootProps(n({state:f,props:t.getRootProps({})},r)),h=m("div",n({class:o.root},v)),g=m("div",{class:o.detachedContainer,onMouseDown:function(e){e.stopPropagation()}}),y=m("div",{class:o.detachedOverlay,children:[g],onMouseDown:function(){p(!1),t.setIsOpen(!1)}}),b=s.getLabelProps(n({state:f,props:t.getLabelProps({})},r)),O=m("button",{class:o.submitButton,type:"submit",title:d.submitButtonTitle,children:[at({environment:i})]}),_=m("label",n({class:o.label,children:[O]},b)),P=m("button",{class:o.clearButton,type:"reset",title:d.clearButtonTitle,children:[We({environment:i})]}),j=m("div",{class:o.loadingIndicator,children:[ut({environment:i})]}),w=function(e){var t=e.autocompleteScopeApi,r=e.environment;e.classNames;var o=e.getInputProps,i=e.getInputPropsCore,a=e.isDetached,c=e.state,l=u(e,it),s=ot(r)("input",l),p=o(n({state:c,props:i({inputElement:s}),inputElement:s},t));return tt(s,n(n({},p),{},{onKeyDown:function(e){a&&"Tab"===e.key||p.onKeyDown(e)}})),s}({class:o.input,environment:i,state:f,getInputProps:s.getInputProps,getInputPropsCore:t.getInputProps,autocompleteScopeApi:r,isDetached:a}),S=m("div",{class:o.inputWrapperPrefix,children:[_,j]}),I=m("div",{class:o.inputWrapperSuffix,children:[P]}),E=m("div",{class:o.inputWrapper,children:[w]}),A=s.getFormProps(n({state:f,props:t.getFormProps({inputElement:w})},r)),C=m("form",n({class:o.form,children:[S,E,I]},A)),D=s.getPanelProps(n({state:f,props:t.getPanelProps({})},r)),k=m("div",n({class:o.panel},D));if(a){var x=m("div",{class:o.detachedSearchButtonIcon,children:[at({environment:i})]}),N=m("div",{class:o.detachedSearchButtonPlaceholder,textContent:l}),q=m("button",{type:"button",class:o.detachedSearchButton,onClick:function(){p(!0)},children:[x,N]}),R=m("button",{type:"button",class:o.detachedCancelButton,textContent:d.detachedCancelButtonText,onTouchStart:function(e){e.stopPropagation()},onClick:function(){t.setIsOpen(!1),p(!1)}}),T=m("div",{class:o.detachedFormContainer,children:[C,R]});g.appendChild(T),h.appendChild(q)}else h.appendChild(C);return{detachedContainer:g,detachedOverlay:y,inputWrapper:E,input:w,root:h,form:C,label:_,submitButton:O,clearButton:P,loadingIndicator:j,panel:k}}var lt,st,pt,ft,dt,mt,vt={},ht=[],gt=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i;function yt(e,t){for(var n in t)e[n]=t[n];return e}function bt(e){var t=e.parentNode;t&&t.removeChild(e)}function Ot(e,t,n){var r,o,i,u={};for(i in t)"key"==i?r=t[i]:"ref"==i?o=t[i]:u[i]=t[i];if(arguments.length>2&&(u.children=arguments.length>3?lt.call(arguments,2):n),"function"==typeof e&&null!=e.defaultProps)for(i in e.defaultProps)void 0===u[i]&&(u[i]=e.defaultProps[i]);return _t(e,u,r,o,null)}function _t(e,t,n,r,o){var i={type:e,props:t,key:n,ref:r,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,__h:null,constructor:void 0,__v:null==o?++pt:o};return null==o&&null!=st.vnode&&st.vnode(i),i}function Pt(e){return e.children}function jt(e,t){this.props=e,this.context=t}function wt(e,t){if(null==t)return e.__?wt(e.__,e.__.__k.indexOf(e)+1):null;for(var n;t<e.__k.length;t++)if(null!=(n=e.__k[t])&&null!=n.__e)return n.__e;return"function"==typeof e.type?wt(e):null}function St(e){var t,n;if(null!=(e=e.__)&&null!=e.__c){for(e.__e=e.__c.base=null,t=0;t<e.__k.length;t++)if(null!=(n=e.__k[t])&&null!=n.__e){e.__e=e.__c.base=n.__e;break}return St(e)}}function It(e){(!e.__d&&(e.__d=!0)&&ft.push(e)&&!Et.__r++||mt!==st.debounceRendering)&&((mt=st.debounceRendering)||dt)(Et)}function Et(){for(var e;Et.__r=ft.length;)e=ft.sort((function(e,t){return e.__v.__b-t.__v.__b})),ft=[],e.some((function(e){var t,n,r,o,i,u;e.__d&&(i=(o=(t=e).__v).__e,(u=t.__P)&&(n=[],(r=yt({},o)).__v=o.__v+1,Rt(u,o,r,t.__n,void 0!==u.ownerSVGElement,null!=o.__h?[i]:null,n,null==i?wt(o):i,o.__h),Tt(n,o),o.__e!=i&&St(o)))}))}function At(e,t,n,r,o,i,u,a,c,l){var s,p,f,d,m,v,h,g=r&&r.__k||ht,y=g.length;for(n.__k=[],s=0;s<t.length;s++)if(null!=(d=n.__k[s]=null==(d=t[s])||"boolean"==typeof d?null:"string"==typeof d||"number"==typeof d||"bigint"==typeof d?_t(null,d,null,null,d):Array.isArray(d)?_t(Pt,{children:d},null,null,null):d.__b>0?_t(d.type,d.props,d.key,null,d.__v):d)){if(d.__=n,d.__b=n.__b+1,null===(f=g[s])||f&&d.key==f.key&&d.type===f.type)g[s]=void 0;else for(p=0;p<y;p++){if((f=g[p])&&d.key==f.key&&d.type===f.type){g[p]=void 0;break}f=null}Rt(e,d,f=f||vt,o,i,u,a,c,l),m=d.__e,(p=d.ref)&&f.ref!=p&&(h||(h=[]),f.ref&&h.push(f.ref,null,d),h.push(p,d.__c||m,d)),null!=m?(null==v&&(v=m),"function"==typeof d.type&&d.__k===f.__k?d.__d=c=Ct(d,c,e):c=Dt(e,d,f,g,m,c),"function"==typeof n.type&&(n.__d=c)):c&&f.__e==c&&c.parentNode!=e&&(c=wt(f))}for(n.__e=v,s=y;s--;)null!=g[s]&&("function"==typeof n.type&&null!=g[s].__e&&g[s].__e==n.__d&&(n.__d=wt(r,s+1)),Ft(g[s],g[s]));if(h)for(s=0;s<h.length;s++)Bt(h[s],h[++s],h[++s])}function Ct(e,t,n){for(var r,o=e.__k,i=0;o&&i<o.length;i++)(r=o[i])&&(r.__=e,t="function"==typeof r.type?Ct(r,t,n):Dt(n,r,r,o,r.__e,t));return t}function Dt(e,t,n,r,o,i){var u,a,c;if(void 0!==t.__d)u=t.__d,t.__d=void 0;else if(null==n||o!=i||null==o.parentNode)e:if(null==i||i.parentNode!==e)e.appendChild(o),u=null;else{for(a=i,c=0;(a=a.nextSibling)&&c<r.length;c+=2)if(a==o)break e;e.insertBefore(o,i),u=i}return void 0!==u?u:o.nextSibling}function kt(e,t,n){"-"===t[0]?e.setProperty(t,n):e[t]=null==n?"":"number"!=typeof n||gt.test(t)?n:n+"px"}function xt(e,t,n,r,o){var i;e:if("style"===t)if("string"==typeof n)e.style.cssText=n;else{if("string"==typeof r&&(e.style.cssText=r=""),r)for(t in r)n&&t in n||kt(e.style,t,"");if(n)for(t in n)r&&n[t]===r[t]||kt(e.style,t,n[t])}else if("o"===t[0]&&"n"===t[1])i=t!==(t=t.replace(/Capture$/,"")),t=t.toLowerCase()in e?t.toLowerCase().slice(2):t.slice(2),e.l||(e.l={}),e.l[t+i]=n,n?r||e.addEventListener(t,i?qt:Nt,i):e.removeEventListener(t,i?qt:Nt,i);else if("dangerouslySetInnerHTML"!==t){if(o)t=t.replace(/xlink[H:h]/,"h").replace(/sName$/,"s");else if("href"!==t&&"list"!==t&&"form"!==t&&"tabIndex"!==t&&"download"!==t&&t in e)try{e[t]=null==n?"":n;break e}catch(e){}"function"==typeof n||(null!=n&&(!1!==n||"a"===t[0]&&"r"===t[1])?e.setAttribute(t,n):e.removeAttribute(t))}}function Nt(e){this.l[e.type+!1](st.event?st.event(e):e)}function qt(e){this.l[e.type+!0](st.event?st.event(e):e)}function Rt(e,t,n,r,o,i,u,a,c){var l,s,p,f,d,m,v,h,g,y,b,O=t.type;if(void 0!==t.constructor)return null;null!=n.__h&&(c=n.__h,a=t.__e=n.__e,t.__h=null,i=[a]),(l=st.__b)&&l(t);try{e:if("function"==typeof O){if(h=t.props,g=(l=O.contextType)&&r[l.__c],y=l?g?g.props.value:l.__:r,n.__c?v=(s=t.__c=n.__c).__=s.__E:("prototype"in O&&O.prototype.render?t.__c=s=new O(h,y):(t.__c=s=new jt(h,y),s.constructor=O,s.render=Mt),g&&g.sub(s),s.props=h,s.state||(s.state={}),s.context=y,s.__n=r,p=s.__d=!0,s.__h=[]),null==s.__s&&(s.__s=s.state),null!=O.getDerivedStateFromProps&&(s.__s==s.state&&(s.__s=yt({},s.__s)),yt(s.__s,O.getDerivedStateFromProps(h,s.__s))),f=s.props,d=s.state,p)null==O.getDerivedStateFromProps&&null!=s.componentWillMount&&s.componentWillMount(),null!=s.componentDidMount&&s.__h.push(s.componentDidMount);else{if(null==O.getDerivedStateFromProps&&h!==f&&null!=s.componentWillReceiveProps&&s.componentWillReceiveProps(h,y),!s.__e&&null!=s.shouldComponentUpdate&&!1===s.shouldComponentUpdate(h,s.__s,y)||t.__v===n.__v){s.props=h,s.state=s.__s,t.__v!==n.__v&&(s.__d=!1),s.__v=t,t.__e=n.__e,t.__k=n.__k,t.__k.forEach((function(e){e&&(e.__=t)})),s.__h.length&&u.push(s);break e}null!=s.componentWillUpdate&&s.componentWillUpdate(h,s.__s,y),null!=s.componentDidUpdate&&s.__h.push((function(){s.componentDidUpdate(f,d,m)}))}s.context=y,s.props=h,s.state=s.__s,(l=st.__r)&&l(t),s.__d=!1,s.__v=t,s.__P=e,l=s.render(s.props,s.state,s.context),s.state=s.__s,null!=s.getChildContext&&(r=yt(yt({},r),s.getChildContext())),p||null==s.getSnapshotBeforeUpdate||(m=s.getSnapshotBeforeUpdate(f,d)),b=null!=l&&l.type===Pt&&null==l.key?l.props.children:l,At(e,Array.isArray(b)?b:[b],t,n,r,o,i,u,a,c),s.base=t.__e,t.__h=null,s.__h.length&&u.push(s),v&&(s.__E=s.__=null),s.__e=!1}else null==i&&t.__v===n.__v?(t.__k=n.__k,t.__e=n.__e):t.__e=Lt(n.__e,t,n,r,o,i,u,c);(l=st.diffed)&&l(t)}catch(e){t.__v=null,(c||null!=i)&&(t.__e=a,t.__h=!!c,i[i.indexOf(a)]=null),st.__e(e,t,n)}}function Tt(e,t){st.__c&&st.__c(t,e),e.some((function(t){try{e=t.__h,t.__h=[],e.some((function(e){e.call(t)}))}catch(e){st.__e(e,t.__v)}}))}function Lt(e,t,n,r,o,i,u,a){var c,l,s,p=n.props,f=t.props,d=t.type,m=0;if("svg"===d&&(o=!0),null!=i)for(;m<i.length;m++)if((c=i[m])&&"setAttribute"in c==!!d&&(d?c.localName===d:3===c.nodeType)){e=c,i[m]=null;break}if(null==e){if(null===d)return document.createTextNode(f);e=o?document.createElementNS("http://www.w3.org/2000/svg",d):document.createElement(d,f.is&&f),i=null,a=!1}if(null===d)p===f||a&&e.data===f||(e.data=f);else{if(i=i&&lt.call(e.childNodes),l=(p=n.props||vt).dangerouslySetInnerHTML,s=f.dangerouslySetInnerHTML,!a){if(null!=i)for(p={},m=0;m<e.attributes.length;m++)p[e.attributes[m].name]=e.attributes[m].value;(s||l)&&(s&&(l&&s.__html==l.__html||s.__html===e.innerHTML)||(e.innerHTML=s&&s.__html||""))}if(function(e,t,n,r,o){var i;for(i in n)"children"===i||"key"===i||i in t||xt(e,i,null,n[i],r);for(i in t)o&&"function"!=typeof t[i]||"children"===i||"key"===i||"value"===i||"checked"===i||n[i]===t[i]||xt(e,i,t[i],n[i],r)}(e,f,p,o,a),s)t.__k=[];else if(m=t.props.children,At(e,Array.isArray(m)?m:[m],t,n,r,o&&"foreignObject"!==d,i,u,i?i[0]:n.__k&&wt(n,0),a),null!=i)for(m=i.length;m--;)null!=i[m]&&bt(i[m]);a||("value"in f&&void 0!==(m=f.value)&&(m!==p.value||m!==e.value||"progress"===d&&!m)&&xt(e,"value",m,p.value,!1),"checked"in f&&void 0!==(m=f.checked)&&m!==e.checked&&xt(e,"checked",m,p.checked,!1))}return e}function Bt(e,t,n){try{"function"==typeof e?e(t):e.current=t}catch(e){st.__e(e,n)}}function Ft(e,t,n){var r,o;if(st.unmount&&st.unmount(e),(r=e.ref)&&(r.current&&r.current!==e.__e||Bt(r,null,t)),null!=(r=e.__c)){if(r.componentWillUnmount)try{r.componentWillUnmount()}catch(e){st.__e(e,t)}r.base=r.__P=null}if(r=e.__k)for(o=0;o<r.length;o++)r[o]&&Ft(r[o],t,"function"!=typeof e.type);n||null==e.__e||bt(e.__e),e.__e=e.__d=void 0}function Mt(e,t,n){return this.constructor(e,n)}lt=ht.slice,st={__e:function(e,t){for(var n,r,o;t=t.__;)if((n=t.__c)&&!n.__)try{if((r=n.constructor)&&null!=r.getDerivedStateFromError&&(n.setState(r.getDerivedStateFromError(e)),o=n.__d),null!=n.componentDidCatch&&(n.componentDidCatch(e),o=n.__d),o)return n.__E=n}catch(t){e=t}throw e}},pt=0,jt.prototype.setState=function(e,t){var n;n=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=yt({},this.state),"function"==typeof e&&(e=e(yt({},n),this.props)),e&&yt(n,e),null!=e&&this.__v&&(t&&this.__h.push(t),It(this))},jt.prototype.forceUpdate=function(e){this.__v&&(this.__e=!0,e&&this.__h.push(e),It(this))},jt.prototype.render=Pt,ft=[],dt="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,Et.__r=0;var Ut="__aa-highlight__",Ht="__/aa-highlight__";function Vt(e){var t=e.highlightedValue.split(Ut),n=t.shift(),r=function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[];return{get:function(){return e},add:function(t){var n=e[e.length-1];(null==n?void 0:n.isHighlighted)===t.isHighlighted?e[e.length-1]={value:n.value+t.value,isHighlighted:n.isHighlighted}:e.push(t)}}}(n?[{value:n,isHighlighted:!1}]:[]);return t.forEach((function(e){var t=e.split(Ht);r.add({value:t[0],isHighlighted:!0}),""!==t[1]&&r.add({value:t[1],isHighlighted:!1})})),r.get()}function Wt(e){return function(e){if(Array.isArray(e))return Qt(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return Qt(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return Qt(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function Qt(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function $t(e){var t=e.hit,n=e.attribute,r=Array.isArray(n)?n:[n],o=h(t,["_highlightResult"].concat(Wt(r),["value"]));return"string"!=typeof o&&(o=h(t,r)||""),Vt({highlightedValue:o})}var zt={"&amp;":"&","&lt;":"<","&gt;":">","&quot;":'"',"&#39;":"'"},Gt=new RegExp(/\w/i),Kt=/&(amp|quot|lt|gt|#39);/g,Jt=RegExp(Kt.source);function Yt(e,t){var n,r,o,i=e[t],u=(null===(n=e[t+1])||void 0===n?void 0:n.isHighlighted)||!0,a=(null===(r=e[t-1])||void 0===r?void 0:r.isHighlighted)||!0;return Gt.test((o=i.value)&&Jt.test(o)?o.replace(Kt,(function(e){return zt[e]})):o)||a!==u?i.isHighlighted:a}function Xt(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Zt(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Xt(Object(n),!0).forEach((function(t){en(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Xt(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function en(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function tn(e){return e.some((function(e){return e.isHighlighted}))?e.map((function(t,n){return Zt(Zt({},t),{},{isHighlighted:!Yt(e,n)})})):e.map((function(e){return Zt(Zt({},e),{},{isHighlighted:!1})}))}function nn(e){return function(e){if(Array.isArray(e))return rn(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return rn(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return rn(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function rn(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function on(e){var t=e.hit,n=e.attribute,r=Array.isArray(n)?n:[n],o=h(t,["_snippetResult"].concat(nn(r),["value"]));return"string"!=typeof o&&(o=h(t,r)||""),Vt({highlightedValue:o})}function un(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function an(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?un(Object(n),!0).forEach((function(t){cn(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):un(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function cn(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}var ln=["params"];function sn(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function pn(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?sn(Object(n),!0).forEach((function(t){fn(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):sn(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function fn(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function dn(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function mn(e){return function(e){if(Array.isArray(e))return vn(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return vn(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return vn(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function vn(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function hn(e){var t=e.createElement,n=e.Fragment;function r(e){var r=e.hit,o=e.attribute,i=e.tagName,u=void 0===i?"mark":i;return t(n,{},$t({hit:r,attribute:o}).map((function(e,n){return e.isHighlighted?t(u,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="Highlight",r}function gn(e){var t=e.createElement,n=e.Fragment;function r(e){var r,o=e.hit,i=e.attribute,u=e.tagName,a=void 0===u?"mark":u;return t(n,{},(r={hit:o,attribute:i},tn($t(r))).map((function(e,n){return e.isHighlighted?t(a,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="ReverseHighlight",r}function yn(e){var t=e.createElement,n=e.Fragment;function r(e){var r,o=e.hit,i=e.attribute,u=e.tagName,a=void 0===u?"mark":u;return t(n,{},(r={hit:o,attribute:i},tn(on(r))).map((function(e,n){return e.isHighlighted?t(a,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="ReverseSnippet",r}function bn(e){var t=e.createElement,n=e.Fragment;function r(e){var r=e.hit,o=e.attribute,i=e.tagName,u=void 0===i?"mark":i;return t(n,{},on({hit:r,attribute:o}).map((function(e,n){return e.isHighlighted?t(u,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="Snippet",r}var On=["classNames","container","getEnvironmentProps","getFormProps","getInputProps","getItemProps","getLabelProps","getListProps","getPanelProps","getRootProps","panelContainer","panelPlacement","render","renderNoResults","renderer","detachedMediaQuery","components","translations"],_n={clearButton:"aa-ClearButton",detachedCancelButton:"aa-DetachedCancelButton",detachedContainer:"aa-DetachedContainer",detachedFormContainer:"aa-DetachedFormContainer",detachedOverlay:"aa-DetachedOverlay",detachedSearchButton:"aa-DetachedSearchButton",detachedSearchButtonIcon:"aa-DetachedSearchButtonIcon",detachedSearchButtonPlaceholder:"aa-DetachedSearchButtonPlaceholder",form:"aa-Form",input:"aa-Input",inputWrapper:"aa-InputWrapper",inputWrapperPrefix:"aa-InputWrapperPrefix",inputWrapperSuffix:"aa-InputWrapperSuffix",item:"aa-Item",label:"aa-Label",list:"aa-List",loadingIndicator:"aa-LoadingIndicator",panel:"aa-Panel",panelLayout:"aa-PanelLayout aa-Panel--scrollable",root:"aa-Autocomplete",source:"aa-Source",sourceFooter:"aa-SourceFooter",sourceHeader:"aa-SourceHeader",sourceNoResults:"aa-SourceNoResults",submitButton:"aa-SubmitButton"},Pn=function(e,t){var n=e.children;(0,e.render)(n,t)},jn={createElement:Ot,Fragment:Pt,render:function(e,t,n){var r,o,i;st.__&&st.__(e,t),o=(r="function"==typeof n)?null:n&&n.__k||t.__k,i=[],Rt(t,e=(!r&&n||t).__k=Ot(Pt,null,[e]),o||vt,vt,void 0!==t.ownerSVGElement,!r&&n?[n]:o?null:t.firstChild?lt.call(t.childNodes):null,i,!r&&n?n:o?o.__e:t.firstChild,r),Tt(i,e)}};function wn(e){var t=e.panelPlacement,n=e.container,r=e.form,o=e.environment,i=n.getBoundingClientRect(),u=(o.pageYOffset||o.document.documentElement.scrollTop||o.document.body.scrollTop||0)+i.top+i.height;switch(t){case"start":return{top:u,left:i.left};case"end":return{top:u,right:o.document.documentElement.clientWidth-(i.left+i.width)};case"full-width":return{top:u,left:0,right:0,width:"unset",maxWidth:"unset"};case"input-wrapper-width":var a=r.getBoundingClientRect();return{top:u,left:a.left,right:o.document.documentElement.clientWidth-(a.left+a.width),width:"unset",maxWidth:"unset"};default:throw new Error("[Autocomplete] The `panelPlacement` value ".concat(JSON.stringify(t)," is not valid."))}}var Sn=[{segment:"autocomplete-js",version:b}],In=["components"];var En=function(e,t){function n(t){return e({searchClient:t.searchClient,queries:t.requests.map((function(e){return e.query}))}).then((function(e){return e.map((function(e,n){var r=t.requests[n];return{items:e,sourceId:r.sourceId,transformResponse:r.transformResponse}}))}))}return function(e){return function(r){return an(an({requesterId:t,execute:n},e),r)}}}((function(e){return function(e){var t=e.searchClient,n=e.queries,r=e.userAgents,o=void 0===r?[]:r;return"function"==typeof t.addAlgoliaAgent&&[].concat(mn(O),mn(o)).forEach((function(e){var n=e.segment,r=e.version;t.addAlgoliaAgent(n,r)})),t.search(n.map((function(e){var t=e.params;return pn(pn({},dn(e,ln)),{},{params:pn({hitsPerPage:5,highlightPreTag:Ut,highlightPostTag:Ht},t)})}))).then((function(e){return e.results}))}(n(n({},e),{},{userAgents:Sn}))}),"algolia");var An=En({transformResponse:function(e){return e.hits}});e.autocomplete=function(e){var t,r=function(){var e=[],t=[];function n(n){e.push(n);var r=n();t.push(r)}return{runEffect:n,cleanupEffects:function(){var e=t;t=[],e.forEach((function(e){e()}))},runEffects:function(){var t=e;e=[],t.forEach((function(e){n(e)}))}}}(),a=r.runEffect,c=r.cleanupEffects,l=r.runEffects,s=(t=[],{reactive:function(e){var n=e(),r={_fn:e,_ref:{current:n},get value(){return this._ref.current},set value(e){this._ref.current=e}};return t.push(r),r},runReactives:function(){t.forEach((function(e){e._ref.current=e._fn()}))}}),d=s.reactive,m=s.runReactives,h=p(!1),y=p(e),b=p(void 0),O=d((function(){return function(e){var t,r=e.classNames,o=e.container,i=e.getEnvironmentProps,a=e.getFormProps,c=e.getInputProps,l=e.getItemProps,s=e.getLabelProps,p=e.getListProps,f=e.getPanelProps,d=e.getRootProps,m=e.panelContainer,h=e.panelPlacement,g=e.render,y=e.renderNoResults,b=e.renderer,O=e.detachedMediaQuery,_=e.components,P=e.translations,j=u(e,On),w="undefined"!=typeof window?window:{},S=Qe(w,o);S.tagName;var I=n(n({},jn),b),E={Highlight:hn(I),ReverseHighlight:gn(I),ReverseSnippet:yn(I),Snippet:bn(I)};return{renderer:{classNames:$e(_n,null!=r?r:{}),container:S,getEnvironmentProps:null!=i?i:function(e){return e.props},getFormProps:null!=a?a:function(e){return e.props},getInputProps:null!=c?c:function(e){return e.props},getItemProps:null!=l?l:function(e){return e.props},getLabelProps:null!=s?s:function(e){return e.props},getListProps:null!=p?p:function(e){return e.props},getPanelProps:null!=f?f:function(e){return e.props},getRootProps:null!=d?d:function(e){return e.props},panelContainer:m?Qe(w,m):w.document.body,panelPlacement:null!=h?h:"input-wrapper-width",render:null!=g?g:Pn,renderNoResults:y,renderer:I,detachedMediaQuery:null!=O?O:getComputedStyle(w.document.documentElement).getPropertyValue("--aa-detached-media-query"),components:n(n({},E),_),translations:n(n({},{clearButtonTitle:"Clear",detachedCancelButtonText:"Cancel",submitButtonTitle:"Submit"}),P)},core:n(n({},j),{},{id:null!==(t=j.id)&&void 0!==t?t:v(),environment:w})}}(y.current)})),_=d((function(){return O.value.core.environment.matchMedia(O.value.renderer.detachedMediaQuery).matches})),P=d((function(){return Me(n(n({},O.value.core),{},{onStateChange:function(e){var t,n,r;h.current=e.state.collections.some((function(e){return e.source.templates.noResults})),null===(t=b.current)||void 0===t||t.call(b,e),null===(n=(r=O.value.core).onStateChange)||void 0===n||n.call(r,e)},shouldPanelOpen:y.current.shouldPanelOpen||function(e){var t=e.state;if(_.value)return!0;var n=g(t)>0;if(!O.value.core.openOnFocus&&!t.query)return n;var r=Boolean(h.current||O.value.renderer.renderNoResults);return!n&&r||n},__autocomplete_metadata:{userAgents:Sn,options:e}}))})),j=p(n({collections:[],completion:null,context:{},isOpen:!1,query:"",activeItemId:null,status:"idle"},O.value.core.initialState)),w={getEnvironmentProps:O.value.renderer.getEnvironmentProps,getFormProps:O.value.renderer.getFormProps,getInputProps:O.value.renderer.getInputProps,getItemProps:O.value.renderer.getItemProps,getLabelProps:O.value.renderer.getLabelProps,getListProps:O.value.renderer.getListProps,getPanelProps:O.value.renderer.getPanelProps,getRootProps:O.value.renderer.getRootProps},S={setActiveItemId:P.value.setActiveItemId,setQuery:P.value.setQuery,setCollections:P.value.setCollections,setIsOpen:P.value.setIsOpen,setStatus:P.value.setStatus,setContext:P.value.setContext,refresh:P.value.refresh},I=d((function(){return Ve.bind(O.value.renderer.renderer.createElement)})),E=d((function(){return ct({autocomplete:P.value,autocompleteScopeApi:S,classNames:O.value.renderer.classNames,environment:O.value.core.environment,isDetached:_.value,placeholder:O.value.core.placeholder,propGetters:w,setIsModalOpen:k,state:j.current,translations:O.value.renderer.translations})}));function A(){tt(E.value.panel,{style:_.value?{}:wn({panelPlacement:O.value.renderer.panelPlacement,container:E.value.root,form:E.value.form,environment:O.value.core.environment})})}function C(e){j.current=e;var t={autocomplete:P.value,autocompleteScopeApi:S,classNames:O.value.renderer.classNames,components:O.value.renderer.components,container:O.value.renderer.container,html:I.value,dom:E.value,panelContainer:_.value?E.value.detachedContainer:O.value.renderer.panelContainer,propGetters:w,state:j.current,renderer:O.value.renderer.renderer},r=!g(e)&&!h.current&&O.value.renderer.renderNoResults||O.value.renderer.render;!function(e){var t=e.autocomplete,r=e.autocompleteScopeApi,o=e.dom,i=e.propGetters,u=e.state;nt(o.root,i.getRootProps(n({state:u,props:t.getRootProps({})},r))),nt(o.input,i.getInputProps(n({state:u,props:t.getInputProps({inputElement:o.input}),inputElement:o.input},r))),tt(o.label,{hidden:"stalled"===u.status}),tt(o.loadingIndicator,{hidden:"stalled"!==u.status}),tt(o.clearButton,{hidden:!u.query})}(t),function(e,t){var r=t.autocomplete,o=t.autocompleteScopeApi,u=t.classNames,a=t.html,c=t.dom,l=t.panelContainer,s=t.propGetters,p=t.state,f=t.components,d=t.renderer;if(p.isOpen){l.contains(c.panel)||"loading"===p.status||l.appendChild(c.panel),c.panel.classList.toggle("aa-Panel--stalled","stalled"===p.status);var m=p.collections.filter((function(e){var t=e.source,n=e.items;return t.templates.noResults||n.length>0})).map((function(e,t){var c=e.source,l=e.items;return d.createElement("section",{key:t,className:u.source,"data-autocomplete-source-id":c.sourceId},c.templates.header&&d.createElement("div",{className:u.sourceHeader},c.templates.header({components:f,createElement:d.createElement,Fragment:d.Fragment,items:l,source:c,state:p,html:a})),c.templates.noResults&&0===l.length?d.createElement("div",{className:u.sourceNoResults},c.templates.noResults({components:f,createElement:d.createElement,Fragment:d.Fragment,source:c,state:p,html:a})):d.createElement("ul",i({className:u.list},s.getListProps(n({state:p,props:r.getListProps({})},o))),l.map((function(e){var t=r.getItemProps({item:e,source:c});return d.createElement("li",i({key:t.id,className:u.item},s.getItemProps(n({state:p,props:t},o))),c.templates.item({components:f,createElement:d.createElement,Fragment:d.Fragment,item:e,state:p,html:a}))}))),c.templates.footer&&d.createElement("div",{className:u.sourceFooter},c.templates.footer({components:f,createElement:d.createElement,Fragment:d.Fragment,items:l,source:c,state:p,html:a})))})),v=d.createElement(d.Fragment,null,d.createElement("div",{className:u.panelLayout},m),d.createElement("div",{className:"aa-GradientBottom"})),h=m.reduce((function(e,t){return e[t.props["data-autocomplete-source-id"]]=t,e}),{});e(n(n({children:v,state:p,sections:m,elements:h},d),{},{components:f,html:a},o),c.panel)}else l.contains(c.panel)&&l.removeChild(c.panel)}(r,t)}function D(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};c();var t=O.value.renderer,n=t.components,r=u(t,In);y.current=Ge(r,O.value.core,{components:Ke(n,(function(e){return!e.value.hasOwnProperty("__autocomplete_componentName")})),initialState:j.current},e),m(),l(),P.value.refresh().then((function(){C(j.current)}))}function k(e){requestAnimationFrame((function(){var t=O.value.core.environment.document.body.contains(E.value.detachedOverlay);e!==t&&(e?(O.value.core.environment.document.body.appendChild(E.value.detachedOverlay),O.value.core.environment.document.body.classList.add("aa-Detached"),E.value.input.focus()):(O.value.core.environment.document.body.removeChild(E.value.detachedOverlay),O.value.core.environment.document.body.classList.remove("aa-Detached"),P.value.setQuery(""),P.value.refresh()))}))}return a((function(){var e=P.value.getEnvironmentProps({formElement:E.value.form,panelElement:E.value.panel,inputElement:E.value.input});return tt(O.value.core.environment,e),function(){tt(O.value.core.environment,Object.keys(e).reduce((function(e,t){return n(n({},e),{},o({},t,void 0))}),{}))}})),a((function(){var e=_.value?O.value.core.environment.document.body:O.value.renderer.panelContainer,t=_.value?E.value.detachedOverlay:E.value.panel;return _.value&&j.current.isOpen&&k(!0),C(j.current),function(){e.contains(t)&&e.removeChild(t)}})),a((function(){var e=O.value.renderer.container;return e.appendChild(E.value.root),function(){e.removeChild(E.value.root)}})),a((function(){var e=f((function(e){C(e.state)}),0);return b.current=function(t){var n=t.state,r=t.prevState;(_.value&&r.isOpen!==n.isOpen&&k(n.isOpen),_.value||!n.isOpen||r.isOpen||A(),n.query!==r.query)&&O.value.core.environment.document.querySelectorAll(".aa-Panel--scrollable").forEach((function(e){0!==e.scrollTop&&(e.scrollTop=0)}));e({state:n})},function(){b.current=void 0}})),a((function(){var e=f((function(){var e=_.value;_.value=O.value.core.environment.matchMedia(O.value.renderer.detachedMediaQuery).matches,e!==_.value?D({}):requestAnimationFrame(A)}),20);return O.value.core.environment.addEventListener("resize",e),function(){O.value.core.environment.removeEventListener("resize",e)}})),a((function(){if(!_.value)return function(){};function e(e){E.value.detachedContainer.classList.toggle("aa-DetachedContainer--modal",e)}function t(t){e(t.matches)}var n=O.value.core.environment.matchMedia(getComputedStyle(O.value.core.environment.document.documentElement).getPropertyValue("--aa-detached-modal-media-query"));e(n.matches);var r=Boolean(n.addEventListener);return r?n.addEventListener("change",t):n.addListener(t),function(){r?n.removeEventListener("change",t):n.removeListener(t)}})),a((function(){return requestAnimationFrame(A),function(){}})),n(n({},S),{},{update:D,destroy:function(){c()}})},e.getAlgoliaFacets=function(e){var t=En({transformResponse:function(e){return e.facetHits}}),r=e.queries.map((function(e){return n(n({},e),{},{type:"facet"})}));return t(n(n({},e),{},{queries:r}))},e.getAlgoliaResults=An,Object.defineProperty(e,"__esModule",{value:!0})}));
+/*! @algolia/autocomplete-js 1.11.1 | MIT License | © Algolia, Inc. and contributors | https://github.com/algolia/autocomplete */
+!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self)["@algolia/autocomplete-js"]={})}(this,(function(e){"use strict";function t(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function n(e){for(var n=1;n<arguments.length;n++){var r=null!=arguments[n]?arguments[n]:{};n%2?t(Object(r),!0).forEach((function(t){o(e,t,r[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(r)):t(Object(r)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(r,t))}))}return e}function r(e){return r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},r(e)}function o(e,t,n){return(t=function(e){var t=function(e,t){if("object"!=typeof e||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!=typeof r)return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"==typeof t?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function i(){return i=Object.assign?Object.assign.bind():function(e){for(var t=1;t<arguments.length;t++){var n=arguments[t];for(var r in n)Object.prototype.hasOwnProperty.call(n,r)&&(e[r]=n[r])}return e},i.apply(this,arguments)}function u(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function a(e,t){return function(e){if(Array.isArray(e))return e}(e)||function(e,t){var n=null==e?null:"undefined"!=typeof Symbol&&e[Symbol.iterator]||e["@@iterator"];if(null!=n){var r,o,i,u,a=[],l=!0,c=!1;try{if(i=(n=n.call(e)).next,0===t){if(Object(n)!==n)return;l=!1}else for(;!(l=(r=i.call(n)).done)&&(a.push(r.value),a.length!==t);l=!0);}catch(e){c=!0,o=e}finally{try{if(!l&&null!=n.return&&(u=n.return(),Object(u)!==u))return}finally{if(c)throw o}}return a}}(e,t)||c(e,t)||function(){throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function l(e){return function(e){if(Array.isArray(e))return s(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||c(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function c(e,t){if(e){if("string"==typeof e)return s(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);return"Object"===n&&e.constructor&&(n=e.constructor.name),"Map"===n||"Set"===n?Array.from(e):"Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)?s(e,t):void 0}}function s(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function f(e){return{current:e}}function p(e,t){var n=void 0;return function(){for(var r=arguments.length,o=new Array(r),i=0;i<r;i++)o[i]=arguments[i];n&&clearTimeout(n),n=setTimeout((function(){return e.apply(void 0,o)}),t)}}function m(e){return e.reduce((function(e,t){return e.concat(t)}),[])}var v=0;function d(){return"autocomplete-".concat(v++)}function y(e,t){return t.reduce((function(e,t){return e&&e[t]}),e)}function b(e){return 0===e.collections.length?0:e.collections.reduce((function(e,t){return e+t.items.length}),0)}function g(e){return e!==Object(e)}function h(e,t){if(e===t)return!0;if(g(e)||g(t)||"function"==typeof e||"function"==typeof t)return e===t;if(Object.keys(e).length!==Object.keys(t).length)return!1;for(var n=0,r=Object.keys(e);n<r.length;n++){var o=r[n];if(!(o in t))return!1;if(!h(e[o],t[o]))return!1}return!0}var O=function(){};var _="1.11.1",S=[{segment:"autocomplete-core",version:_}];function j(e){var t=e.item,n=e.items,r=void 0===n?[]:n;return{index:t.__autocomplete_indexName,items:[t],positions:[1+r.findIndex((function(e){return e.objectID===t.objectID}))],queryID:t.__autocomplete_queryID,algoliaSource:["autocomplete"]}}function P(e,t){return function(e){if(Array.isArray(e))return e}(e)||function(e,t){var n=null==e?null:"undefined"!=typeof Symbol&&e[Symbol.iterator]||e["@@iterator"];if(null!=n){var r,o,i,u,a=[],l=!0,c=!1;try{if(i=(n=n.call(e)).next,0===t){if(Object(n)!==n)return;l=!1}else for(;!(l=(r=i.call(n)).done)&&(a.push(r.value),a.length!==t);l=!0);}catch(e){c=!0,o=e}finally{try{if(!l&&null!=n.return&&(u=n.return(),Object(u)!==u))return}finally{if(c)throw o}}return a}}(e,t)||function(e,t){if(!e)return;if("string"==typeof e)return w(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return w(e,t)}(e,t)||function(){throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function w(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}var I=["items"],A=["items"];function E(e){return E="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},E(e)}function D(e){return function(e){if(Array.isArray(e))return C(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return C(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return C(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function C(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function k(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function x(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function N(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?x(Object(n),!0).forEach((function(t){T(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):x(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function T(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==E(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==E(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===E(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function q(e){for(var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:20,n=[],r=0;r<e.objectIDs.length;r+=t)n.push(N(N({},e),{},{objectIDs:e.objectIDs.slice(r,r+t)}));return n}function B(e){return e.map((function(e){var t=e.items,n=k(e,I);return N(N({},n),{},{objectIDs:(null==t?void 0:t.map((function(e){return e.objectID})))||n.objectIDs})}))}function R(e){var t,n,r,o=(t=P((e.version||"").split(".").map(Number),2),n=t[0],r=t[1],n>=3||2===n&&r>=4||1===n&&r>=10);function i(t,n,r){if(o&&void 0!==r){var i=r[0].__autocomplete_algoliaCredentials,u={"X-Algolia-Application-Id":i.appId,"X-Algolia-API-Key":i.apiKey};e.apply(void 0,[t].concat(D(n),[{headers:u}]))}else e.apply(void 0,[t].concat(D(n)))}return{init:function(t,n){e("init",{appId:t,apiKey:n})},setUserToken:function(t){e("setUserToken",t)},clickedObjectIDsAfterSearch:function(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];t.length>0&&i("clickedObjectIDsAfterSearch",B(t),t[0].items)},clickedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];t.length>0&&i("clickedObjectIDs",B(t),t[0].items)},clickedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r<t;r++)n[r]=arguments[r];n.length>0&&e.apply(void 0,["clickedFilters"].concat(n))},convertedObjectIDsAfterSearch:function(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];t.length>0&&i("convertedObjectIDsAfterSearch",B(t),t[0].items)},convertedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];t.length>0&&i("convertedObjectIDs",B(t),t[0].items)},convertedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r<t;r++)n[r]=arguments[r];n.length>0&&e.apply(void 0,["convertedFilters"].concat(n))},viewedObjectIDs:function(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];t.length>0&&t.reduce((function(e,t){var n=t.items,r=k(t,A);return[].concat(D(e),D(q(N(N({},r),{},{objectIDs:(null==n?void 0:n.map((function(e){return e.objectID})))||r.objectIDs})).map((function(e){return{items:n,payload:e}}))))}),[]).forEach((function(e){var t=e.items;return i("viewedObjectIDs",[e.payload],t)}))},viewedFilters:function(){for(var t=arguments.length,n=new Array(t),r=0;r<t;r++)n[r]=arguments[r];n.length>0&&e.apply(void 0,["viewedFilters"].concat(n))}}}function F(e){var t=e.items.reduce((function(e,t){var n;return e[t.__autocomplete_indexName]=(null!==(n=e[t.__autocomplete_indexName])&&void 0!==n?n:[]).concat(t),e}),{});return Object.keys(t).map((function(e){return{index:e,items:t[e],algoliaSource:["autocomplete"]}}))}function L(e){return e.objectID&&e.__autocomplete_indexName&&e.__autocomplete_queryID}function U(e){return U="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},U(e)}function M(e){return function(e){if(Array.isArray(e))return H(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return H(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return H(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function H(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function V(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function W(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?V(Object(n),!0).forEach((function(t){K(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):V(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function K(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==U(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==U(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===U(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}var Q="2.6.0",$="https://cdn.jsdelivr.net/npm/search-insights@".concat(Q,"/dist/search-insights.min.js"),z=p((function(e){var t=e.onItemsChange,n=e.items,r=e.insights,o=e.state;t({insights:r,insightsEvents:F({items:n}).map((function(e){return W({eventName:"Items Viewed"},e)})),state:o})}),400);function G(e){var t=function(e){return W({onItemsChange:function(e){var t=e.insights,n=e.insightsEvents;t.viewedObjectIDs.apply(t,M(n.map((function(e){return W(W({},e),{},{algoliaSource:[].concat(M(e.algoliaSource||[]),["autocomplete-internal"])})}))))},onSelect:function(e){var t=e.insights,n=e.insightsEvents;t.clickedObjectIDsAfterSearch.apply(t,M(n.map((function(e){return W(W({},e),{},{algoliaSource:[].concat(M(e.algoliaSource||[]),["autocomplete-internal"])})}))))},onActive:O},e)}(e),n=t.insightsClient,r=t.onItemsChange,o=t.onSelect,i=t.onActive,u=n;n||function(e){if("undefined"!=typeof window)e({window:window})}((function(e){var t=e.window,n=t.AlgoliaAnalyticsObject||"aa";"string"==typeof n&&(u=t[n]),u||(t.AlgoliaAnalyticsObject=n,t[n]||(t[n]=function(){t[n].queue||(t[n].queue=[]);for(var e=arguments.length,r=new Array(e),o=0;o<e;o++)r[o]=arguments[o];t[n].queue.push(r)}),t[n].version=Q,u=t[n],function(e){var t="[Autocomplete]: Could not load search-insights.js. Please load it manually following https://alg.li/insights-autocomplete";try{var n=e.document.createElement("script");n.async=!0,n.src=$,n.onerror=function(){console.error(t)},document.body.appendChild(n)}catch(e){console.error(t)}}(t))}));var a=R(u),l=f([]),c=p((function(e){var t=e.state;if(t.isOpen){var n=t.collections.reduce((function(e,t){return[].concat(M(e),M(t.items))}),[]).filter(L);h(l.current.map((function(e){return e.objectID})),n.map((function(e){return e.objectID})))||(l.current=n,n.length>0&&z({onItemsChange:r,items:n,insights:a,state:t}))}}),0);return{name:"aa.algoliaInsightsPlugin",subscribe:function(e){var t=e.setContext,n=e.onSelect,r=e.onActive;function l(e){t({algoliaInsightsPlugin:{__algoliaSearchParameters:W({clickAnalytics:!0},e?{userToken:e}:{}),insights:a}})}u("addAlgoliaAgent","insights-plugin"),l(),u("onUserTokenChange",l),u("getUserToken",null,(function(e,t){l(t)})),n((function(e){var t=e.item,n=e.state,r=e.event,i=e.source;L(t)&&o({state:n,event:r,insights:a,item:t,insightsEvents:[W({eventName:"Item Selected"},j({item:t,items:i.getItems().filter(L)}))]})})),r((function(e){var t=e.item,n=e.source,r=e.state,o=e.event;L(t)&&i({state:r,event:o,insights:a,item:t,insightsEvents:[W({eventName:"Item Active"},j({item:t,items:n.getItems().filter(L)}))]})}))},onStateChange:function(e){var t=e.state;c({state:t})},__autocomplete_pluginOptions:e}}function J(e,t){var n=t;return{then:function(t,r){return J(e.then(Y(t,n,e),Y(r,n,e)),n)},catch:function(t){return J(e.catch(Y(t,n,e)),n)},finally:function(t){return t&&n.onCancelList.push(t),J(e.finally(Y(t&&function(){return n.onCancelList=[],t()},n,e)),n)},cancel:function(){n.isCanceled=!0;var e=n.onCancelList;n.onCancelList=[],e.forEach((function(e){e()}))},isCanceled:function(){return!0===n.isCanceled}}}function X(e){return J(e,{isCanceled:!1,onCancelList:[]})}function Y(e,t,n){return e?function(n){return t.isCanceled?n:e(n)}:n}function Z(e,t,n,r){if(!n)return null;if(e<0&&(null===t||null!==r&&0===t))return n+e;var o=(null===t?-1:t)+e;return o<=-1||o>=n?null===r?null:0:o}function ee(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function te(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?ee(Object(n),!0).forEach((function(t){ne(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):ee(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function ne(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==re(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==re(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===re(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function re(e){return re="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},re(e)}function oe(e){var t=function(e){var t=e.collections.map((function(e){return e.items.length})).reduce((function(e,t,n){var r=(e[n-1]||0)+t;return e.push(r),e}),[]).reduce((function(t,n){return n<=e.activeItemId?t+1:t}),0);return e.collections[t]}(e);if(!t)return null;var n=t.items[function(e){for(var t=e.state,n=e.collection,r=!1,o=0,i=0;!1===r;){var u=t.collections[o];if(u===n){r=!0;break}i+=u.items.length,o++}return t.activeItemId-i}({state:e,collection:t})],r=t.source;return{item:n,itemInputValue:r.getItemInputValue({item:n,state:e}),itemUrl:r.getItemUrl({item:n,state:e}),source:r}}function ie(e,t,n){return[e,null==n?void 0:n.sourceId,t].filter(Boolean).join("-").replace(/\s/g,"")}var ue=/((gt|sm)-|galaxy nexus)|samsung[- ]|samsungbrowser/i;function ae(e){return ae="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},ae(e)}function le(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function ce(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==ae(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==ae(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===ae(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function se(e,t,n){var r,o=t.initialState;return{getState:function(){return o},dispatch:function(r,i){var u=function(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?le(Object(n),!0).forEach((function(t){ce(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):le(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}({},o);o=e(o,{type:r,props:t,payload:i}),n({state:o,prevState:u})},pendingRequests:(r=[],{add:function(e){return r.push(e),e.finally((function(){r=r.filter((function(t){return t!==e}))}))},cancelAll:function(){r.forEach((function(e){return e.cancel()}))},isEmpty:function(){return 0===r.length}})}}function fe(e){return fe="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},fe(e)}function pe(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function me(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?pe(Object(n),!0).forEach((function(t){ve(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):pe(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function ve(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==fe(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==fe(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===fe(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function de(e){return de="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},de(e)}function ye(e){return function(e){if(Array.isArray(e))return be(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return be(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return be(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function be(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function ge(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function he(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?ge(Object(n),!0).forEach((function(t){Oe(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):ge(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Oe(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==de(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==de(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===de(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function _e(e,t){var n,r="undefined"!=typeof window?window:{},o=e.plugins||[];return he(he({debug:!1,openOnFocus:!1,enterKeyHint:void 0,placeholder:"",autoFocus:!1,defaultActiveItemId:null,stallThreshold:300,insights:!1,environment:r,shouldPanelOpen:function(e){return b(e.state)>0},reshape:function(e){return e.sources}},e),{},{id:null!==(n=e.id)&&void 0!==n?n:d(),plugins:o,initialState:he({activeItemId:null,query:"",completion:null,collections:[],isOpen:!1,status:"idle",context:{}},e.initialState),onStateChange:function(t){var n;null===(n=e.onStateChange)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onStateChange)||void 0===n?void 0:n.call(e,t)}))},onSubmit:function(t){var n;null===(n=e.onSubmit)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onSubmit)||void 0===n?void 0:n.call(e,t)}))},onReset:function(t){var n;null===(n=e.onReset)||void 0===n||n.call(e,t),o.forEach((function(e){var n;return null===(n=e.onReset)||void 0===n?void 0:n.call(e,t)}))},getSources:function(n){return Promise.all([].concat(ye(o.map((function(e){return e.getSources}))),[e.getSources]).filter(Boolean).map((function(e){return function(e,t){var n=[];return Promise.resolve(e(t)).then((function(e){return Promise.all(e.filter((function(e){return Boolean(e)})).map((function(e){if(e.sourceId,n.includes(e.sourceId))throw new Error("[Autocomplete] The `sourceId` ".concat(JSON.stringify(e.sourceId)," is not unique."));n.push(e.sourceId);var t={getItemInputValue:function(e){return e.state.query},getItemUrl:function(){},onSelect:function(e){(0,e.setIsOpen)(!1)},onActive:O,onResolve:O};Object.keys(t).forEach((function(e){t[e].__default=!0}));var r=te(te({},t),e);return Promise.resolve(r)})))}))}(e,n)}))).then((function(e){return m(e)})).then((function(e){return e.map((function(e){return he(he({},e),{},{onSelect:function(n){e.onSelect(n),t.forEach((function(e){var t;return null===(t=e.onSelect)||void 0===t?void 0:t.call(e,n)}))},onActive:function(n){e.onActive(n),t.forEach((function(e){var t;return null===(t=e.onActive)||void 0===t?void 0:t.call(e,n)}))},onResolve:function(n){e.onResolve(n),t.forEach((function(e){var t;return null===(t=e.onResolve)||void 0===t?void 0:t.call(e,n)}))}})}))}))},navigator:he({navigate:function(e){var t=e.itemUrl;r.location.assign(t)},navigateNewTab:function(e){var t=e.itemUrl,n=r.open(t,"_blank","noopener");null==n||n.focus()},navigateNewWindow:function(e){var t=e.itemUrl;r.open(t,"_blank","noopener")}},e.navigator)})}function Se(e){return Se="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Se(e)}function je(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Pe(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?je(Object(n),!0).forEach((function(t){we(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):je(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function we(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==Se(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==Se(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===Se(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Ie(e){return Ie="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Ie(e)}function Ae(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Ee(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Ae(Object(n),!0).forEach((function(t){De(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Ae(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function De(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==Ie(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==Ie(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===Ie(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Ce(e){return function(e){if(Array.isArray(e))return ke(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return ke(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return ke(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function ke(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function xe(e){return Boolean(e.execute)}function Ne(e,t,n){if(o=e,Boolean(null==o?void 0:o.execute)){var r="algolia"===e.requesterId?Object.assign.apply(Object,[{}].concat(Ce(Object.keys(n.context).map((function(e){var t;return null===(t=n.context[e])||void 0===t?void 0:t.__algoliaSearchParameters}))))):{};return Ee(Ee({},e),{},{requests:e.queries.map((function(n){return{query:"algolia"===e.requesterId?Ee(Ee({},n),{},{params:Ee(Ee({},r),n.params)}):n,sourceId:t,transformResponse:e.transformResponse}}))})}var o;return{items:e,sourceId:t}}function Te(e){var t=e.reduce((function(e,t){if(!xe(t))return e.push(t),e;var n=t.searchClient,r=t.execute,o=t.requesterId,i=t.requests,u=e.find((function(e){return xe(t)&&xe(e)&&e.searchClient===n&&Boolean(o)&&e.requesterId===o}));if(u){var a;(a=u.items).push.apply(a,Ce(i))}else{var l={execute:r,requesterId:o,items:i,searchClient:n};e.push(l)}return e}),[]).map((function(e){if(!xe(e))return Promise.resolve(e);var t=e,n=t.execute,r=t.items;return n({searchClient:t.searchClient,requests:r})}));return Promise.all(t).then((function(e){return m(e)}))}function qe(e,t,n){return t.map((function(t){var r,o=e.filter((function(e){return e.sourceId===t.sourceId})),i=o.map((function(e){return e.items})),u=o[0].transformResponse,a=u?u({results:r=i,hits:r.map((function(e){return e.hits})).filter(Boolean),facetHits:r.map((function(e){var t;return null===(t=e.facetHits)||void 0===t?void 0:t.map((function(e){return{label:e.value,count:e.count,_highlightResult:{label:{value:e.highlighted}}}}))})).filter(Boolean)}):i;return t.onResolve({source:t,results:i,items:a,state:n.getState()}),a.every(Boolean),'The `getItems` function from source "'.concat(t.sourceId,'" must return an array of items but returned ').concat(JSON.stringify(void 0),".\n\nDid you forget to return items?\n\nSee: https://www.algolia.com/doc/ui-libraries/autocomplete/core-concepts/sources/#param-getitems"),{source:t,items:a}}))}function Be(e){return Be="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Be(e)}var Re=["event","nextState","props","query","refresh","store"];function Fe(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Le(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Fe(Object(n),!0).forEach((function(t){Ue(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Fe(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Ue(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==Be(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==Be(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===Be(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Me(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}var He,Ve,We,Ke=null,Qe=(He=-1,Ve=-1,We=void 0,function(e){var t=++He;return Promise.resolve(e).then((function(e){return We&&t<Ve?We:(Ve=t,We=e,e)}))});function $e(e){var t=e.event,n=e.nextState,r=void 0===n?{}:n,o=e.props,i=e.query,u=e.refresh,a=e.store,l=Me(e,Re);Ke&&o.environment.clearTimeout(Ke);var c=l.setCollections,s=l.setIsOpen,f=l.setQuery,p=l.setActiveItemId,v=l.setStatus;if(f(i),p(o.defaultActiveItemId),!i&&!1===o.openOnFocus){var d,y=a.getState().collections.map((function(e){return Le(Le({},e),{},{items:[]})}));v("idle"),c(y),s(null!==(d=r.isOpen)&&void 0!==d?d:o.shouldPanelOpen({state:a.getState()}));var b=X(Qe(y).then((function(){return Promise.resolve()})));return a.pendingRequests.add(b)}v("loading"),Ke=o.environment.setTimeout((function(){v("stalled")}),o.stallThreshold);var g=X(Qe(o.getSources(Le({query:i,refresh:u,state:a.getState()},l)).then((function(e){return Promise.all(e.map((function(e){return Promise.resolve(e.getItems(Le({query:i,refresh:u,state:a.getState()},l))).then((function(t){return Ne(t,e.sourceId,a.getState())}))}))).then(Te).then((function(t){return qe(t,e,a)})).then((function(e){return function(e){var t=e.collections,n=e.props,r=e.state,o=t.reduce((function(e,t){return Pe(Pe({},e),{},we({},t.source.sourceId,Pe(Pe({},t.source),{},{getItems:function(){return m(t.items)}})))}),{}),i=n.plugins.reduce((function(e,t){return t.reshape?t.reshape(e):e}),{sourcesBySourceId:o,state:r}).sourcesBySourceId;return m(n.reshape({sourcesBySourceId:i,sources:Object.values(i),state:r})).filter(Boolean).map((function(e){return{source:e,items:e.getItems()}}))}({collections:e,props:o,state:a.getState()})}))})))).then((function(e){var n;v("idle"),c(e);var f=o.shouldPanelOpen({state:a.getState()});s(null!==(n=r.isOpen)&&void 0!==n?n:o.openOnFocus&&!i&&f||f);var p=oe(a.getState());if(null!==a.getState().activeItemId&&p){var m=p.item,d=p.itemInputValue,y=p.itemUrl,b=p.source;b.onActive(Le({event:t,item:m,itemInputValue:d,itemUrl:y,refresh:u,source:b,state:a.getState()},l))}})).finally((function(){v("idle"),Ke&&o.environment.clearTimeout(Ke)}));return a.pendingRequests.add(g)}function ze(e){return ze="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},ze(e)}var Ge=["event","props","refresh","store"];function Je(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Xe(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Je(Object(n),!0).forEach((function(t){Ye(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Je(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Ye(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==ze(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==ze(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===ze(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Ze(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function et(e){return et="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},et(e)}var tt=["props","refresh","store"],nt=["inputElement","formElement","panelElement"],rt=["inputElement"],ot=["inputElement","maxLength"],it=["source"],ut=["item","source"];function at(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function lt(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?at(Object(n),!0).forEach((function(t){ct(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):at(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function ct(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==et(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==et(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===et(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function st(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function ft(e){var t=e.props,n=e.refresh,r=e.store,o=st(e,tt);return{getEnvironmentProps:function(e){var n=e.inputElement,o=e.formElement,i=e.panelElement;function u(e){!r.getState().isOpen&&r.pendingRequests.isEmpty()||e.target===n||!1===[o,i].some((function(t){return n=t,r=e.target,n===r||n.contains(r);var n,r}))&&(r.dispatch("blur",null),t.debug||r.pendingRequests.cancelAll())}return lt({onTouchStart:u,onMouseDown:u,onTouchMove:function(e){!1!==r.getState().isOpen&&n===t.environment.document.activeElement&&e.target!==n&&n.blur()}},st(e,nt))},getRootProps:function(e){return lt({role:"combobox","aria-expanded":r.getState().isOpen,"aria-haspopup":"listbox","aria-owns":r.getState().isOpen?r.getState().collections.map((function(e){var n=e.source;return ie(t.id,"list",n)})).join(" "):void 0,"aria-labelledby":ie(t.id,"label")},e)},getFormProps:function(e){return e.inputElement,lt({action:"",noValidate:!0,role:"search",onSubmit:function(i){var u;i.preventDefault(),t.onSubmit(lt({event:i,refresh:n,state:r.getState()},o)),r.dispatch("submit",null),null===(u=e.inputElement)||void 0===u||u.blur()},onReset:function(i){var u;i.preventDefault(),t.onReset(lt({event:i,refresh:n,state:r.getState()},o)),r.dispatch("reset",null),null===(u=e.inputElement)||void 0===u||u.focus()}},st(e,rt))},getLabelProps:function(e){return lt({htmlFor:ie(t.id,"input"),id:ie(t.id,"label")},e)},getInputProps:function(e){var i;function u(e){(t.openOnFocus||Boolean(r.getState().query))&&$e(lt({event:e,props:t,query:r.getState().completion||r.getState().query,refresh:n,store:r},o)),r.dispatch("focus",null)}var a=e||{};a.inputElement;var l=a.maxLength,c=void 0===l?512:l,s=st(a,ot),f=oe(r.getState()),p=function(e){return Boolean(e&&e.match(ue))}((null===(i=t.environment.navigator)||void 0===i?void 0:i.userAgent)||""),m=t.enterKeyHint||(null!=f&&f.itemUrl&&!p?"go":"search");return lt({"aria-autocomplete":"both","aria-activedescendant":r.getState().isOpen&&null!==r.getState().activeItemId?ie(t.id,"item-".concat(r.getState().activeItemId),null==f?void 0:f.source):void 0,"aria-controls":r.getState().isOpen?r.getState().collections.map((function(e){var n=e.source;return ie(t.id,"list",n)})).join(" "):void 0,"aria-labelledby":ie(t.id,"label"),value:r.getState().completion||r.getState().query,id:ie(t.id,"input"),autoComplete:"off",autoCorrect:"off",autoCapitalize:"off",enterKeyHint:m,spellCheck:"false",autoFocus:t.autoFocus,placeholder:t.placeholder,maxLength:c,type:"search",onChange:function(e){$e(lt({event:e,props:t,query:e.currentTarget.value.slice(0,c),refresh:n,store:r},o))},onKeyDown:function(e){!function(e){var t=e.event,n=e.props,r=e.refresh,o=e.store,i=Ze(e,Ge);if("ArrowUp"===t.key||"ArrowDown"===t.key){var u=function(){var e=oe(o.getState()),t=n.environment.document.getElementById(ie(n.id,"item-".concat(o.getState().activeItemId),null==e?void 0:e.source));t&&(t.scrollIntoViewIfNeeded?t.scrollIntoViewIfNeeded(!1):t.scrollIntoView(!1))},a=function(){var e=oe(o.getState());if(null!==o.getState().activeItemId&&e){var n=e.item,u=e.itemInputValue,a=e.itemUrl,l=e.source;l.onActive(Xe({event:t,item:n,itemInputValue:u,itemUrl:a,refresh:r,source:l,state:o.getState()},i))}};t.preventDefault(),!1===o.getState().isOpen&&(n.openOnFocus||Boolean(o.getState().query))?$e(Xe({event:t,props:n,query:o.getState().query,refresh:r,store:o},i)).then((function(){o.dispatch(t.key,{nextActiveItemId:n.defaultActiveItemId}),a(),setTimeout(u,0)})):(o.dispatch(t.key,{}),a(),u())}else if("Escape"===t.key)t.preventDefault(),o.dispatch(t.key,null),o.pendingRequests.cancelAll();else if("Tab"===t.key)o.dispatch("blur",null),o.pendingRequests.cancelAll();else if("Enter"===t.key){if(null===o.getState().activeItemId||o.getState().collections.every((function(e){return 0===e.items.length})))return void(n.debug||o.pendingRequests.cancelAll());t.preventDefault();var l=oe(o.getState()),c=l.item,s=l.itemInputValue,f=l.itemUrl,p=l.source;if(t.metaKey||t.ctrlKey)void 0!==f&&(p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),n.navigator.navigateNewTab({itemUrl:f,item:c,state:o.getState()}));else if(t.shiftKey)void 0!==f&&(p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),n.navigator.navigateNewWindow({itemUrl:f,item:c,state:o.getState()}));else if(t.altKey);else{if(void 0!==f)return p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i)),void n.navigator.navigate({itemUrl:f,item:c,state:o.getState()});$e(Xe({event:t,nextState:{isOpen:!1},props:n,query:s,refresh:r,store:o},i)).then((function(){p.onSelect(Xe({event:t,item:c,itemInputValue:s,itemUrl:f,refresh:r,source:p,state:o.getState()},i))}))}}}(lt({event:e,props:t,refresh:n,store:r},o))},onFocus:u,onBlur:O,onClick:function(n){e.inputElement!==t.environment.document.activeElement||r.getState().isOpen||u(n)}},s)},getPanelProps:function(e){return lt({onMouseDown:function(e){e.preventDefault()},onMouseLeave:function(){r.dispatch("mouseleave",null)}},e)},getListProps:function(e){var n=e||{},r=n.source,o=st(n,it);return lt({role:"listbox","aria-labelledby":ie(t.id,"label"),id:ie(t.id,"list",r)},o)},getItemProps:function(e){var i=e.item,u=e.source,a=st(e,ut);return lt({id:ie(t.id,"item-".concat(i.__autocomplete_id),u),role:"option","aria-selected":r.getState().activeItemId===i.__autocomplete_id,onMouseMove:function(e){if(i.__autocomplete_id!==r.getState().activeItemId){r.dispatch("mousemove",i.__autocomplete_id);var t=oe(r.getState());if(null!==r.getState().activeItemId&&t){var u=t.item,a=t.itemInputValue,l=t.itemUrl,c=t.source;c.onActive(lt({event:e,item:u,itemInputValue:a,itemUrl:l,refresh:n,source:c,state:r.getState()},o))}}},onMouseDown:function(e){e.preventDefault()},onClick:function(e){var a=u.getItemInputValue({item:i,state:r.getState()}),l=u.getItemUrl({item:i,state:r.getState()});(l?Promise.resolve():$e(lt({event:e,nextState:{isOpen:!1},props:t,query:a,refresh:n,store:r},o))).then((function(){u.onSelect(lt({event:e,item:i,itemInputValue:a,itemUrl:l,refresh:n,source:u,state:r.getState()},o))}))}},a)}}}function pt(e){return pt="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},pt(e)}function mt(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function vt(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?mt(Object(n),!0).forEach((function(t){dt(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):mt(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function dt(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==pt(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==pt(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===pt(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function yt(e){var t,n,r,o,i=e.plugins,u=e.options,a=null===(t=((null===(n=u.__autocomplete_metadata)||void 0===n?void 0:n.userAgents)||[])[0])||void 0===t?void 0:t.segment,l=a?dt({},a,Object.keys((null===(r=u.__autocomplete_metadata)||void 0===r?void 0:r.options)||{})):{};return{plugins:i.map((function(e){return{name:e.name,options:Object.keys(e.__autocomplete_pluginOptions||[])}})),options:vt({"autocomplete-core":Object.keys(u)},l),ua:S.concat((null===(o=u.__autocomplete_metadata)||void 0===o?void 0:o.userAgents)||[])}}function bt(e){var t,n=e.state;return!1===n.isOpen||null===n.activeItemId?null:(null===(t=oe(n))||void 0===t?void 0:t.itemInputValue)||null}function gt(e){return gt="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},gt(e)}function ht(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Ot(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?ht(Object(n),!0).forEach((function(t){_t(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):ht(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function _t(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==gt(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==gt(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===gt(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}var St=function(e,t){switch(t.type){case"setActiveItemId":case"mousemove":return Ot(Ot({},e),{},{activeItemId:t.payload});case"setQuery":return Ot(Ot({},e),{},{query:t.payload,completion:null});case"setCollections":return Ot(Ot({},e),{},{collections:t.payload});case"setIsOpen":return Ot(Ot({},e),{},{isOpen:t.payload});case"setStatus":return Ot(Ot({},e),{},{status:t.payload});case"setContext":return Ot(Ot({},e),{},{context:Ot(Ot({},e.context),t.payload)});case"ArrowDown":var n=Ot(Ot({},e),{},{activeItemId:t.payload.hasOwnProperty("nextActiveItemId")?t.payload.nextActiveItemId:Z(1,e.activeItemId,b(e),t.props.defaultActiveItemId)});return Ot(Ot({},n),{},{completion:bt({state:n})});case"ArrowUp":var r=Ot(Ot({},e),{},{activeItemId:Z(-1,e.activeItemId,b(e),t.props.defaultActiveItemId)});return Ot(Ot({},r),{},{completion:bt({state:r})});case"Escape":return e.isOpen?Ot(Ot({},e),{},{activeItemId:null,isOpen:!1,completion:null}):Ot(Ot({},e),{},{activeItemId:null,query:"",status:"idle",collections:[]});case"submit":return Ot(Ot({},e),{},{activeItemId:null,isOpen:!1,status:"idle"});case"reset":return Ot(Ot({},e),{},{activeItemId:!0===t.props.openOnFocus?t.props.defaultActiveItemId:null,status:"idle",query:""});case"focus":return Ot(Ot({},e),{},{activeItemId:t.props.defaultActiveItemId,isOpen:(t.props.openOnFocus||Boolean(e.query))&&t.props.shouldPanelOpen({state:e})});case"blur":return t.props.debug?e:Ot(Ot({},e),{},{isOpen:!1,activeItemId:null});case"mouseleave":return Ot(Ot({},e),{},{activeItemId:t.props.defaultActiveItemId});default:return"The reducer action ".concat(JSON.stringify(t.type)," is not supported."),e}};function jt(e){return jt="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},jt(e)}function Pt(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function wt(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Pt(Object(n),!0).forEach((function(t){It(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Pt(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function It(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==jt(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==jt(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===jt(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function At(e){var t=[],n=_e(e,t),r=se(St,n,(function(e){var t=e.prevState,r=e.state;n.onStateChange(wt({prevState:t,state:r,refresh:u,navigator:n.navigator},o))})),o=function(e){var t=e.store;return{setActiveItemId:function(e){t.dispatch("setActiveItemId",e)},setQuery:function(e){t.dispatch("setQuery",e)},setCollections:function(e){var n=0,r=e.map((function(e){return me(me({},e),{},{items:m(e.items).map((function(e){return me(me({},e),{},{__autocomplete_id:n++})}))})}));t.dispatch("setCollections",r)},setIsOpen:function(e){t.dispatch("setIsOpen",e)},setStatus:function(e){t.dispatch("setStatus",e)},setContext:function(e){t.dispatch("setContext",e)}}}({store:r}),i=ft(wt({props:n,refresh:u,store:r,navigator:n.navigator},o));function u(){return $e(wt({event:new Event("input"),nextState:{isOpen:r.getState().isOpen},props:n,navigator:n.navigator,query:r.getState().query,refresh:u,store:r},o))}if(e.insights&&!n.plugins.some((function(e){return"aa.algoliaInsightsPlugin"===e.name}))){var a="boolean"==typeof e.insights?{}:e.insights;n.plugins.push(G(a))}return n.plugins.forEach((function(e){var r;return null===(r=e.subscribe)||void 0===r?void 0:r.call(e,wt(wt({},o),{},{navigator:n.navigator,refresh:u,onSelect:function(e){t.push({onSelect:e})},onActive:function(e){t.push({onActive:e})},onResolve:function(e){t.push({onResolve:e})}}))})),function(e){var t,n,r=e.metadata,o=e.environment;if(null===(t=o.navigator)||void 0===t||null===(n=t.userAgent)||void 0===n?void 0:n.includes("Algolia Crawler")){var i=o.document.createElement("meta"),u=o.document.querySelector("head");i.name="algolia:metadata",setTimeout((function(){i.content=JSON.stringify(r),u.appendChild(i)}),0)}}({metadata:yt({plugins:n.plugins,options:e}),environment:n.environment}),wt(wt({refresh:u,navigator:n.navigator},i),o)}var Et=function(e,t,n,r){var o;t[0]=0;for(var i=1;i<t.length;i++){var u=t[i++],a=t[i]?(t[0]|=u?1:2,n[t[i++]]):t[++i];3===u?r[0]=a:4===u?r[1]=Object.assign(r[1]||{},a):5===u?(r[1]=r[1]||{})[t[++i]]=a:6===u?r[1][t[++i]]+=a+"":u?(o=e.apply(a,Et(e,a,n,["",null])),r.push(o),a[0]?t[0]|=2:(t[i-2]=0,t[i]=o)):r.push(a)}return r},Dt=new Map;function Ct(e){var t=Dt.get(this);return t||(t=new Map,Dt.set(this,t)),(t=Et(this,t.get(e)||(t.set(e,t=function(e){for(var t,n,r=1,o="",i="",u=[0],a=function(e){1===r&&(e||(o=o.replace(/^\s*\n\s*|\s*\n\s*$/g,"")))?u.push(0,e,o):3===r&&(e||o)?(u.push(3,e,o),r=2):2===r&&"..."===o&&e?u.push(4,e,0):2===r&&o&&!e?u.push(5,0,!0,o):r>=5&&((o||!e&&5===r)&&(u.push(r,0,o,n),r=6),e&&(u.push(r,e,0,n),r=6)),o=""},l=0;l<e.length;l++){l&&(1===r&&a(),a(l));for(var c=0;c<e[l].length;c++)t=e[l][c],1===r?"<"===t?(a(),u=[u],r=3):o+=t:4===r?"--"===o&&">"===t?(r=1,o=""):o=t+o[0]:i?t===i?i="":o+=t:'"'===t||"'"===t?i=t:">"===t?(a(),r=1):r&&("="===t?(r=5,n=o,o=""):"/"===t&&(r<5||">"===e[l][c+1])?(a(),3===r&&(u=u[0]),r=u,(u=u[0]).push(2,0,r),r=0):" "===t||"\t"===t||"\n"===t||"\r"===t?(a(),r=2):o+=t),3===r&&"!--"===o&&(r=4,u=u[0])}return a(),u}(e)),t),arguments,[])).length>1?t:t[0]}var kt=function(e){var t=e.environment,n=t.document.createElementNS("http://www.w3.org/2000/svg","svg");n.setAttribute("class","aa-ClearIcon"),n.setAttribute("viewBox","0 0 24 24"),n.setAttribute("width","18"),n.setAttribute("height","18"),n.setAttribute("fill","currentColor");var r=t.document.createElementNS("http://www.w3.org/2000/svg","path");return r.setAttribute("d","M5.293 6.707l5.293 5.293-5.293 5.293c-0.391 0.391-0.391 1.024 0 1.414s1.024 0.391 1.414 0l5.293-5.293 5.293 5.293c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414l-5.293-5.293 5.293-5.293c0.391-0.391 0.391-1.024 0-1.414s-1.024-0.391-1.414 0l-5.293 5.293-5.293-5.293c-0.391-0.391-1.024-0.391-1.414 0s-0.391 1.024 0 1.414z"),n.appendChild(r),n};function xt(e,t){if("string"==typeof t){var n=e.document.querySelector(t);return"The element ".concat(JSON.stringify(t)," is not in the document."),n}return t}function Nt(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return t.reduce((function(e,t){return Object.keys(t).forEach((function(n){var r=e[n],o=t[n];r!==o&&(e[n]=[r,o].filter(Boolean).join(" "))})),e}),{})}var Tt=function(e){return e&&"object"===r(e)&&"[object Object]"===Object.prototype.toString.call(e)};function qt(){for(var e=arguments.length,t=new Array(e),n=0;n<e;n++)t[n]=arguments[n];return t.reduce((function(e,t){return Object.keys(t).forEach((function(n){var r=e[n],o=t[n];Array.isArray(r)&&Array.isArray(o)?e[n]=r.concat.apply(r,l(o)):Tt(r)&&Tt(o)?e[n]=qt(r,o):e[n]=o})),e}),{})}function Bt(e,t){return Object.entries(e).reduce((function(e,r){var i=a(r,2),u=i[0],l=i[1];return t({key:u,value:l})?n(n({},e),{},o({},u,l)):e}),{})}var Rt=["ontouchstart","ontouchend","ontouchmove","ontouchcancel"];function Ft(e,t,n){e[t]=null===n?"":"number"!=typeof n?n:n+"px"}function Lt(e){this._listeners[e.type](e)}function Ut(e,t,n){var r,o,i=e[t];if("style"===t)if("string"==typeof n)e.style=n;else if(null===n)e.style="";else for(t in n)i&&n[t]===i[t]||Ft(e.style,t,n[t]);else"o"===t[0]&&"n"===t[1]?(r=t!==(t=t.replace(/Capture$/,"")),((o=t.toLowerCase())in e||Rt.includes(o))&&(t=o),t=t.slice(2),e._listeners||(e._listeners={}),e._listeners[t]=n,n?i||e.addEventListener(t,Lt,r):e.removeEventListener(t,Lt,r)):"list"!==t&&"tagName"!==t&&"form"!==t&&"type"!==t&&"size"!==t&&"download"!==t&&"href"!==t&&t in e?e[t]=null==n?"":n:"function"!=typeof n&&"dangerouslySetInnerHTML"!==t&&(null==n||!1===n&&!/^ar/.test(t)?e.removeAttribute(t):e.setAttribute(t,n))}function Mt(e){return"onChange"===e?"onInput":e}function Ht(e,t){for(var n in t)Ut(e,Mt(n),t[n])}function Vt(e,t){for(var n in t)"o"===n[0]&&"n"===n[1]||Ut(e,Mt(n),t[n])}var Wt=["children"];function Kt(e){return function(t,n){var r=n.children,o=void 0===r?[]:r,i=u(n,Wt),a=e.document.createElement(t);return Ht(a,i),a.append.apply(a,l(o)),a}}var Qt=["autocompleteScopeApi","environment","classNames","getInputProps","getInputPropsCore","isDetached","state"],$t=function(e){var t=e.environment.document.createElementNS("http://www.w3.org/2000/svg","svg");return t.setAttribute("class","aa-LoadingIcon"),t.setAttribute("viewBox","0 0 100 100"),t.setAttribute("width","20"),t.setAttribute("height","20"),t.innerHTML='<circle\n  cx="50"\n  cy="50"\n  fill="none"\n  r="35"\n  stroke="currentColor"\n  stroke-dasharray="164.93361431346415 56.97787143782138"\n  stroke-width="6"\n>\n  <animateTransform\n    attributeName="transform"\n    type="rotate"\n    repeatCount="indefinite"\n    dur="1s"\n    values="0 50 50;90 50 50;180 50 50;360 50 50"\n    keyTimes="0;0.40;0.65;1"\n  />\n</circle>',t},zt=function(e){var t=e.environment,n=t.document.createElementNS("http://www.w3.org/2000/svg","svg");n.setAttribute("class","aa-SubmitIcon"),n.setAttribute("viewBox","0 0 24 24"),n.setAttribute("width","20"),n.setAttribute("height","20"),n.setAttribute("fill","currentColor");var r=t.document.createElementNS("http://www.w3.org/2000/svg","path");return r.setAttribute("d","M16.041 15.856c-0.034 0.026-0.067 0.055-0.099 0.087s-0.060 0.064-0.087 0.099c-1.258 1.213-2.969 1.958-4.855 1.958-1.933 0-3.682-0.782-4.95-2.050s-2.050-3.017-2.050-4.95 0.782-3.682 2.050-4.95 3.017-2.050 4.95-2.050 3.682 0.782 4.95 2.050 2.050 3.017 2.050 4.95c0 1.886-0.745 3.597-1.959 4.856zM21.707 20.293l-3.675-3.675c1.231-1.54 1.968-3.493 1.968-5.618 0-2.485-1.008-4.736-2.636-6.364s-3.879-2.636-6.364-2.636-4.736 1.008-6.364 2.636-2.636 3.879-2.636 6.364 1.008 4.736 2.636 6.364 3.879 2.636 6.364 2.636c2.125 0 4.078-0.737 5.618-1.968l3.675 3.675c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414z"),n.appendChild(r),n};function Gt(e){var t=e.autocomplete,r=e.autocompleteScopeApi,o=e.classNames,i=e.environment,a=e.isDetached,l=e.placeholder,c=void 0===l?"Search":l,s=e.propGetters,f=e.setIsModalOpen,p=e.state,m=e.translations,v=Kt(i),d=s.getRootProps(n({state:p,props:t.getRootProps({})},r)),y=v("div",n({class:o.root},d)),b=v("div",{class:o.detachedContainer,onMouseDown:function(e){e.stopPropagation()}}),g=v("div",{class:o.detachedOverlay,children:[b],onMouseDown:function(){f(!1),t.setIsOpen(!1)}}),h=s.getLabelProps(n({state:p,props:t.getLabelProps({})},r)),O=v("button",{class:o.submitButton,type:"submit",title:m.submitButtonTitle,children:[zt({environment:i})]}),_=v("label",n({class:o.label,children:[O]},h)),S=v("button",{class:o.clearButton,type:"reset",title:m.clearButtonTitle,children:[kt({environment:i})]}),j=v("div",{class:o.loadingIndicator,children:[$t({environment:i})]}),P=function(e){var t=e.autocompleteScopeApi,r=e.environment;e.classNames;var o=e.getInputProps,i=e.getInputPropsCore,a=e.isDetached,l=e.state,c=u(e,Qt),s=Kt(r)("input",c),f=o(n({state:l,props:i({inputElement:s}),inputElement:s},t));return Ht(s,n(n({},f),{},{onKeyDown:function(e){a&&"Tab"===e.key||f.onKeyDown(e)}})),s}({class:o.input,environment:i,state:p,getInputProps:s.getInputProps,getInputPropsCore:t.getInputProps,autocompleteScopeApi:r,isDetached:a}),w=v("div",{class:o.inputWrapperPrefix,children:[_,j]}),I=v("div",{class:o.inputWrapperSuffix,children:[S]}),A=v("div",{class:o.inputWrapper,children:[P]}),E=s.getFormProps(n({state:p,props:t.getFormProps({inputElement:P})},r)),D=v("form",n({class:o.form,children:[w,A,I]},E)),C=s.getPanelProps(n({state:p,props:t.getPanelProps({})},r)),k=v("div",n({class:o.panel},C)),x=v("div",{class:o.detachedSearchButtonQuery,textContent:p.query}),N=v("div",{class:o.detachedSearchButtonPlaceholder,hidden:Boolean(p.query),textContent:c});if(a){var T=v("div",{class:o.detachedSearchButtonIcon,children:[zt({environment:i})]}),q=v("button",{type:"button",class:o.detachedSearchButton,onClick:function(){f(!0)},children:[T,N,x]}),B=v("button",{type:"button",class:o.detachedCancelButton,textContent:m.detachedCancelButtonText,onTouchStart:function(e){e.stopPropagation()},onClick:function(){t.setIsOpen(!1),f(!1)}}),R=v("div",{class:o.detachedFormContainer,children:[D,B]});b.appendChild(R),y.appendChild(q)}else y.appendChild(D);return{detachedContainer:b,detachedOverlay:g,detachedSearchButtonQuery:x,detachedSearchButtonPlaceholder:N,inputWrapper:A,input:P,root:y,form:D,label:_,submitButton:O,clearButton:S,loadingIndicator:j,panel:k}}var Jt,Xt,Yt,Zt,en,tn,nn,rn={},on=[],un=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i;function an(e,t){for(var n in t)e[n]=t[n];return e}function ln(e){var t=e.parentNode;t&&t.removeChild(e)}function cn(e,t,n){var r,o,i,u={};for(i in t)"key"==i?r=t[i]:"ref"==i?o=t[i]:u[i]=t[i];if(arguments.length>2&&(u.children=arguments.length>3?Jt.call(arguments,2):n),"function"==typeof e&&null!=e.defaultProps)for(i in e.defaultProps)void 0===u[i]&&(u[i]=e.defaultProps[i]);return sn(e,u,r,o,null)}function sn(e,t,n,r,o){var i={type:e,props:t,key:n,ref:r,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,__h:null,constructor:void 0,__v:null==o?++Yt:o};return null==o&&null!=Xt.vnode&&Xt.vnode(i),i}function fn(e){return e.children}function pn(e,t){this.props=e,this.context=t}function mn(e,t){if(null==t)return e.__?mn(e.__,e.__.__k.indexOf(e)+1):null;for(var n;t<e.__k.length;t++)if(null!=(n=e.__k[t])&&null!=n.__e)return n.__e;return"function"==typeof e.type?mn(e):null}function vn(e){var t,n;if(null!=(e=e.__)&&null!=e.__c){for(e.__e=e.__c.base=null,t=0;t<e.__k.length;t++)if(null!=(n=e.__k[t])&&null!=n.__e){e.__e=e.__c.base=n.__e;break}return vn(e)}}function dn(e){(!e.__d&&(e.__d=!0)&&Zt.push(e)&&!yn.__r++||en!==Xt.debounceRendering)&&((en=Xt.debounceRendering)||tn)(yn)}function yn(){var e,t,n,r,o,i,u,a;for(Zt.sort(nn);e=Zt.shift();)e.__d&&(t=Zt.length,r=void 0,o=void 0,u=(i=(n=e).__v).__e,(a=n.__P)&&(r=[],(o=an({},i)).__v=i.__v+1,wn(a,i,o,n.__n,void 0!==a.ownerSVGElement,null!=i.__h?[u]:null,r,null==u?mn(i):u,i.__h),In(r,i),i.__e!=u&&vn(i)),Zt.length>t&&Zt.sort(nn));yn.__r=0}function bn(e,t,n,r,o,i,u,a,l,c){var s,f,p,m,v,d,y,b=r&&r.__k||on,g=b.length;for(n.__k=[],s=0;s<t.length;s++)if(null!=(m=n.__k[s]=null==(m=t[s])||"boolean"==typeof m||"function"==typeof m?null:"string"==typeof m||"number"==typeof m||"bigint"==typeof m?sn(null,m,null,null,m):Array.isArray(m)?sn(fn,{children:m},null,null,null):m.__b>0?sn(m.type,m.props,m.key,m.ref?m.ref:null,m.__v):m)){if(m.__=n,m.__b=n.__b+1,null===(p=b[s])||p&&m.key==p.key&&m.type===p.type)b[s]=void 0;else for(f=0;f<g;f++){if((p=b[f])&&m.key==p.key&&m.type===p.type){b[f]=void 0;break}p=null}wn(e,m,p=p||rn,o,i,u,a,l,c),v=m.__e,(f=m.ref)&&p.ref!=f&&(y||(y=[]),p.ref&&y.push(p.ref,null,m),y.push(f,m.__c||v,m)),null!=v?(null==d&&(d=v),"function"==typeof m.type&&m.__k===p.__k?m.__d=l=gn(m,l,e):l=hn(e,m,p,b,v,l),"function"==typeof n.type&&(n.__d=l)):l&&p.__e==l&&l.parentNode!=e&&(l=mn(p))}for(n.__e=d,s=g;s--;)null!=b[s]&&("function"==typeof n.type&&null!=b[s].__e&&b[s].__e==n.__d&&(n.__d=On(r).nextSibling),Dn(b[s],b[s]));if(y)for(s=0;s<y.length;s++)En(y[s],y[++s],y[++s])}function gn(e,t,n){for(var r,o=e.__k,i=0;o&&i<o.length;i++)(r=o[i])&&(r.__=e,t="function"==typeof r.type?gn(r,t,n):hn(n,r,r,o,r.__e,t));return t}function hn(e,t,n,r,o,i){var u,a,l;if(void 0!==t.__d)u=t.__d,t.__d=void 0;else if(null==n||o!=i||null==o.parentNode)e:if(null==i||i.parentNode!==e)e.appendChild(o),u=null;else{for(a=i,l=0;(a=a.nextSibling)&&l<r.length;l+=1)if(a==o)break e;e.insertBefore(o,i),u=i}return void 0!==u?u:o.nextSibling}function On(e){var t,n,r;if(null==e.type||"string"==typeof e.type)return e.__e;if(e.__k)for(t=e.__k.length-1;t>=0;t--)if((n=e.__k[t])&&(r=On(n)))return r;return null}function _n(e,t,n){"-"===t[0]?e.setProperty(t,null==n?"":n):e[t]=null==n?"":"number"!=typeof n||un.test(t)?n:n+"px"}function Sn(e,t,n,r,o){var i;e:if("style"===t)if("string"==typeof n)e.style.cssText=n;else{if("string"==typeof r&&(e.style.cssText=r=""),r)for(t in r)n&&t in n||_n(e.style,t,"");if(n)for(t in n)r&&n[t]===r[t]||_n(e.style,t,n[t])}else if("o"===t[0]&&"n"===t[1])i=t!==(t=t.replace(/Capture$/,"")),t=t.toLowerCase()in e?t.toLowerCase().slice(2):t.slice(2),e.l||(e.l={}),e.l[t+i]=n,n?r||e.addEventListener(t,i?Pn:jn,i):e.removeEventListener(t,i?Pn:jn,i);else if("dangerouslySetInnerHTML"!==t){if(o)t=t.replace(/xlink(H|:h)/,"h").replace(/sName$/,"s");else if("width"!==t&&"height"!==t&&"href"!==t&&"list"!==t&&"form"!==t&&"tabIndex"!==t&&"download"!==t&&t in e)try{e[t]=null==n?"":n;break e}catch(e){}"function"==typeof n||(null==n||!1===n&&"-"!==t[4]?e.removeAttribute(t):e.setAttribute(t,n))}}function jn(e){return this.l[e.type+!1](Xt.event?Xt.event(e):e)}function Pn(e){return this.l[e.type+!0](Xt.event?Xt.event(e):e)}function wn(e,t,n,r,o,i,u,a,l){var c,s,f,p,m,v,d,y,b,g,h,O,_,S,j,P=t.type;if(void 0!==t.constructor)return null;null!=n.__h&&(l=n.__h,a=t.__e=n.__e,t.__h=null,i=[a]),(c=Xt.__b)&&c(t);try{e:if("function"==typeof P){if(y=t.props,b=(c=P.contextType)&&r[c.__c],g=c?b?b.props.value:c.__:r,n.__c?d=(s=t.__c=n.__c).__=s.__E:("prototype"in P&&P.prototype.render?t.__c=s=new P(y,g):(t.__c=s=new pn(y,g),s.constructor=P,s.render=Cn),b&&b.sub(s),s.props=y,s.state||(s.state={}),s.context=g,s.__n=r,f=s.__d=!0,s.__h=[],s._sb=[]),null==s.__s&&(s.__s=s.state),null!=P.getDerivedStateFromProps&&(s.__s==s.state&&(s.__s=an({},s.__s)),an(s.__s,P.getDerivedStateFromProps(y,s.__s))),p=s.props,m=s.state,s.__v=t,f)null==P.getDerivedStateFromProps&&null!=s.componentWillMount&&s.componentWillMount(),null!=s.componentDidMount&&s.__h.push(s.componentDidMount);else{if(null==P.getDerivedStateFromProps&&y!==p&&null!=s.componentWillReceiveProps&&s.componentWillReceiveProps(y,g),!s.__e&&null!=s.shouldComponentUpdate&&!1===s.shouldComponentUpdate(y,s.__s,g)||t.__v===n.__v){for(t.__v!==n.__v&&(s.props=y,s.state=s.__s,s.__d=!1),s.__e=!1,t.__e=n.__e,t.__k=n.__k,t.__k.forEach((function(e){e&&(e.__=t)})),h=0;h<s._sb.length;h++)s.__h.push(s._sb[h]);s._sb=[],s.__h.length&&u.push(s);break e}null!=s.componentWillUpdate&&s.componentWillUpdate(y,s.__s,g),null!=s.componentDidUpdate&&s.__h.push((function(){s.componentDidUpdate(p,m,v)}))}if(s.context=g,s.props=y,s.__P=e,O=Xt.__r,_=0,"prototype"in P&&P.prototype.render){for(s.state=s.__s,s.__d=!1,O&&O(t),c=s.render(s.props,s.state,s.context),S=0;S<s._sb.length;S++)s.__h.push(s._sb[S]);s._sb=[]}else do{s.__d=!1,O&&O(t),c=s.render(s.props,s.state,s.context),s.state=s.__s}while(s.__d&&++_<25);s.state=s.__s,null!=s.getChildContext&&(r=an(an({},r),s.getChildContext())),f||null==s.getSnapshotBeforeUpdate||(v=s.getSnapshotBeforeUpdate(p,m)),j=null!=c&&c.type===fn&&null==c.key?c.props.children:c,bn(e,Array.isArray(j)?j:[j],t,n,r,o,i,u,a,l),s.base=t.__e,t.__h=null,s.__h.length&&u.push(s),d&&(s.__E=s.__=null),s.__e=!1}else null==i&&t.__v===n.__v?(t.__k=n.__k,t.__e=n.__e):t.__e=An(n.__e,t,n,r,o,i,u,l);(c=Xt.diffed)&&c(t)}catch(e){t.__v=null,(l||null!=i)&&(t.__e=a,t.__h=!!l,i[i.indexOf(a)]=null),Xt.__e(e,t,n)}}function In(e,t){Xt.__c&&Xt.__c(t,e),e.some((function(t){try{e=t.__h,t.__h=[],e.some((function(e){e.call(t)}))}catch(e){Xt.__e(e,t.__v)}}))}function An(e,t,n,r,o,i,u,a){var l,c,s,f=n.props,p=t.props,m=t.type,v=0;if("svg"===m&&(o=!0),null!=i)for(;v<i.length;v++)if((l=i[v])&&"setAttribute"in l==!!m&&(m?l.localName===m:3===l.nodeType)){e=l,i[v]=null;break}if(null==e){if(null===m)return document.createTextNode(p);e=o?document.createElementNS("http://www.w3.org/2000/svg",m):document.createElement(m,p.is&&p),i=null,a=!1}if(null===m)f===p||a&&e.data===p||(e.data=p);else{if(i=i&&Jt.call(e.childNodes),c=(f=n.props||rn).dangerouslySetInnerHTML,s=p.dangerouslySetInnerHTML,!a){if(null!=i)for(f={},v=0;v<e.attributes.length;v++)f[e.attributes[v].name]=e.attributes[v].value;(s||c)&&(s&&(c&&s.__html==c.__html||s.__html===e.innerHTML)||(e.innerHTML=s&&s.__html||""))}if(function(e,t,n,r,o){var i;for(i in n)"children"===i||"key"===i||i in t||Sn(e,i,null,n[i],r);for(i in t)o&&"function"!=typeof t[i]||"children"===i||"key"===i||"value"===i||"checked"===i||n[i]===t[i]||Sn(e,i,t[i],n[i],r)}(e,p,f,o,a),s)t.__k=[];else if(v=t.props.children,bn(e,Array.isArray(v)?v:[v],t,n,r,o&&"foreignObject"!==m,i,u,i?i[0]:n.__k&&mn(n,0),a),null!=i)for(v=i.length;v--;)null!=i[v]&&ln(i[v]);a||("value"in p&&void 0!==(v=p.value)&&(v!==e.value||"progress"===m&&!v||"option"===m&&v!==f.value)&&Sn(e,"value",v,f.value,!1),"checked"in p&&void 0!==(v=p.checked)&&v!==e.checked&&Sn(e,"checked",v,f.checked,!1))}return e}function En(e,t,n){try{"function"==typeof e?e(t):e.current=t}catch(e){Xt.__e(e,n)}}function Dn(e,t,n){var r,o;if(Xt.unmount&&Xt.unmount(e),(r=e.ref)&&(r.current&&r.current!==e.__e||En(r,null,t)),null!=(r=e.__c)){if(r.componentWillUnmount)try{r.componentWillUnmount()}catch(e){Xt.__e(e,t)}r.base=r.__P=null,e.__c=void 0}if(r=e.__k)for(o=0;o<r.length;o++)r[o]&&Dn(r[o],t,n||"function"!=typeof e.type);n||null==e.__e||ln(e.__e),e.__=e.__e=e.__d=void 0}function Cn(e,t,n){return this.constructor(e,n)}Jt=on.slice,Xt={__e:function(e,t,n,r){for(var o,i,u;t=t.__;)if((o=t.__c)&&!o.__)try{if((i=o.constructor)&&null!=i.getDerivedStateFromError&&(o.setState(i.getDerivedStateFromError(e)),u=o.__d),null!=o.componentDidCatch&&(o.componentDidCatch(e,r||{}),u=o.__d),u)return o.__E=o}catch(t){e=t}throw e}},Yt=0,pn.prototype.setState=function(e,t){var n;n=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=an({},this.state),"function"==typeof e&&(e=e(an({},n),this.props)),e&&an(n,e),null!=e&&this.__v&&(t&&this._sb.push(t),dn(this))},pn.prototype.forceUpdate=function(e){this.__v&&(this.__e=!0,e&&this.__h.push(e),dn(this))},pn.prototype.render=fn,Zt=[],tn="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,nn=function(e,t){return e.__v.__b-t.__v.__b},yn.__r=0;var kn="__aa-highlight__",xn="__/aa-highlight__";function Nn(e){var t=e.highlightedValue.split(kn),n=t.shift(),r=function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:[];return{get:function(){return e},add:function(t){var n=e[e.length-1];(null==n?void 0:n.isHighlighted)===t.isHighlighted?e[e.length-1]={value:n.value+t.value,isHighlighted:n.isHighlighted}:e.push(t)}}}(n?[{value:n,isHighlighted:!1}]:[]);return t.forEach((function(e){var t=e.split(xn);r.add({value:t[0],isHighlighted:!0}),""!==t[1]&&r.add({value:t[1],isHighlighted:!1})})),r.get()}function Tn(e){return function(e){if(Array.isArray(e))return qn(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return qn(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return qn(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function qn(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function Bn(e){var t=e.hit,n=e.attribute,r=Array.isArray(n)?n:[n],o=y(t,["_highlightResult"].concat(Tn(r),["value"]));return"string"!=typeof o&&(o=y(t,r)||""),Nn({highlightedValue:o})}var Rn={"&amp;":"&","&lt;":"<","&gt;":">","&quot;":'"',"&#39;":"'"},Fn=new RegExp(/\w/i),Ln=/&(amp|quot|lt|gt|#39);/g,Un=RegExp(Ln.source);function Mn(e,t){var n,r,o,i=e[t],u=(null===(n=e[t+1])||void 0===n?void 0:n.isHighlighted)||!0,a=(null===(r=e[t-1])||void 0===r?void 0:r.isHighlighted)||!0;return Fn.test((o=i.value)&&Un.test(o)?o.replace(Ln,(function(e){return Rn[e]})):o)||a!==u?i.isHighlighted:a}function Hn(e){return Hn="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Hn(e)}function Vn(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Wn(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Vn(Object(n),!0).forEach((function(t){Kn(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Vn(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Kn(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==Hn(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==Hn(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===Hn(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function Qn(e){return e.some((function(e){return e.isHighlighted}))?e.map((function(t,n){return Wn(Wn({},t),{},{isHighlighted:!Mn(e,n)})})):e.map((function(e){return Wn(Wn({},e),{},{isHighlighted:!1})}))}function $n(e){return function(e){if(Array.isArray(e))return zn(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return zn(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return zn(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function zn(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function Gn(e){var t=e.hit,n=e.attribute,r=Array.isArray(n)?n:[n],o=y(t,["_snippetResult"].concat($n(r),["value"]));return"string"!=typeof o&&(o=y(t,r)||""),Nn({highlightedValue:o})}function Jn(e){return Jn="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},Jn(e)}function Xn(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function Yn(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?Xn(Object(n),!0).forEach((function(t){Zn(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):Xn(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function Zn(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==Jn(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==Jn(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===Jn(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function er(e){return er="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},er(e)}var tr=["params"];function nr(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function rr(e){for(var t=1;t<arguments.length;t++){var n=null!=arguments[t]?arguments[t]:{};t%2?nr(Object(n),!0).forEach((function(t){or(e,t,n[t])})):Object.getOwnPropertyDescriptors?Object.defineProperties(e,Object.getOwnPropertyDescriptors(n)):nr(Object(n)).forEach((function(t){Object.defineProperty(e,t,Object.getOwnPropertyDescriptor(n,t))}))}return e}function or(e,t,n){return(t=function(e){var t=function(e,t){if("object"!==er(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==er(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===er(t)?t:String(t)}(t))in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function ir(e,t){if(null==e)return{};var n,r,o=function(e,t){if(null==e)return{};var n,r,o={},i=Object.keys(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r<i.length;r++)n=i[r],t.indexOf(n)>=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}function ur(e){return function(e){if(Array.isArray(e))return ar(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return ar(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return ar(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function ar(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function lr(e){var t=e.createElement,n=e.Fragment;function r(e){var r=e.hit,o=e.attribute,i=e.tagName,u=void 0===i?"mark":i;return t(n,{},Bn({hit:r,attribute:o}).map((function(e,n){return e.isHighlighted?t(u,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="Highlight",r}function cr(e){var t=e.createElement,n=e.Fragment;function r(e){var r,o=e.hit,i=e.attribute,u=e.tagName,a=void 0===u?"mark":u;return t(n,{},(r={hit:o,attribute:i},Qn(Bn(r))).map((function(e,n){return e.isHighlighted?t(a,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="ReverseHighlight",r}function sr(e){var t=e.createElement,n=e.Fragment;function r(e){var r,o=e.hit,i=e.attribute,u=e.tagName,a=void 0===u?"mark":u;return t(n,{},(r={hit:o,attribute:i},Qn(Gn(r))).map((function(e,n){return e.isHighlighted?t(a,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="ReverseSnippet",r}function fr(e){var t=e.createElement,n=e.Fragment;function r(e){var r=e.hit,o=e.attribute,i=e.tagName,u=void 0===i?"mark":i;return t(n,{},Gn({hit:r,attribute:o}).map((function(e,n){return e.isHighlighted?t(u,{key:n},e.value):e.value})))}return r.__autocomplete_componentName="Snippet",r}var pr=["classNames","container","getEnvironmentProps","getFormProps","getInputProps","getItemProps","getLabelProps","getListProps","getPanelProps","getRootProps","panelContainer","panelPlacement","render","renderNoResults","renderer","detachedMediaQuery","components","translations"],mr={clearButton:"aa-ClearButton",detachedCancelButton:"aa-DetachedCancelButton",detachedContainer:"aa-DetachedContainer",detachedFormContainer:"aa-DetachedFormContainer",detachedOverlay:"aa-DetachedOverlay",detachedSearchButton:"aa-DetachedSearchButton",detachedSearchButtonIcon:"aa-DetachedSearchButtonIcon",detachedSearchButtonPlaceholder:"aa-DetachedSearchButtonPlaceholder",detachedSearchButtonQuery:"aa-DetachedSearchButtonQuery",form:"aa-Form",input:"aa-Input",inputWrapper:"aa-InputWrapper",inputWrapperPrefix:"aa-InputWrapperPrefix",inputWrapperSuffix:"aa-InputWrapperSuffix",item:"aa-Item",label:"aa-Label",list:"aa-List",loadingIndicator:"aa-LoadingIndicator",panel:"aa-Panel",panelLayout:"aa-PanelLayout aa-Panel--scrollable",root:"aa-Autocomplete",source:"aa-Source",sourceFooter:"aa-SourceFooter",sourceHeader:"aa-SourceHeader",sourceNoResults:"aa-SourceNoResults",submitButton:"aa-SubmitButton"},vr=function(e,t){var n=e.children;(0,e.render)(n,t)},dr={createElement:cn,Fragment:fn,render:function(e,t,n){var r,o,i;Xt.__&&Xt.__(e,t),o=(r="function"==typeof n)?null:n&&n.__k||t.__k,i=[],wn(t,e=(!r&&n||t).__k=cn(fn,null,[e]),o||rn,rn,void 0!==t.ownerSVGElement,!r&&n?[n]:o?null:t.firstChild?Jt.call(t.childNodes):null,i,!r&&n?n:o?o.__e:t.firstChild,r),In(i,e)}};function yr(e){var t=e.panelPlacement,n=e.container,r=e.form,o=e.environment,i=n.getBoundingClientRect(),u=(o.pageYOffset||o.document.documentElement.scrollTop||o.document.body.scrollTop||0)+i.top+i.height;switch(t){case"start":return{top:u,left:i.left};case"end":return{top:u,right:o.document.documentElement.clientWidth-(i.left+i.width)};case"full-width":return{top:u,left:0,right:0,width:"unset",maxWidth:"unset"};case"input-wrapper-width":var a=r.getBoundingClientRect();return{top:u,left:a.left,right:o.document.documentElement.clientWidth-(a.left+a.width),width:"unset",maxWidth:"unset"};default:throw new Error("[Autocomplete] The `panelPlacement` value ".concat(JSON.stringify(t)," is not valid."))}}var br=[{segment:"autocomplete-js",version:_}],gr=["components"];var hr=function(e,t){function n(t){return e({searchClient:t.searchClient,queries:t.requests.map((function(e){return e.query}))}).then((function(e){return e.map((function(e,n){var r=t.requests[n];return{items:e,sourceId:r.sourceId,transformResponse:r.transformResponse}}))}))}return function(e){return function(r){return Yn(Yn({requesterId:t,execute:n},e),r)}}}((function(e){return function(e){var t=e.searchClient,n=e.queries,r=e.userAgents,o=void 0===r?[]:r;"function"==typeof t.addAlgoliaAgent&&[].concat(ur(S),ur(o)).forEach((function(e){var n=e.segment,r=e.version;t.addAlgoliaAgent(n,r)}));var i=function(e){var t=e.transporter||{},n=t.headers,r=void 0===n?{}:n,o=t.queryParameters,i=void 0===o?{}:o,u="x-algolia-application-id",a="x-algolia-api-key";return{appId:r[u]||i[u],apiKey:r[a]||i[a]}}(t),u=i.appId,a=i.apiKey;return t.search(n.map((function(e){var t=e.params;return rr(rr({},ir(e,tr)),{},{params:rr({hitsPerPage:5,highlightPreTag:kn,highlightPostTag:xn},t)})}))).then((function(e){return e.results.map((function(e,t){var r;return rr(rr({},e),{},{hits:null===(r=e.hits)||void 0===r?void 0:r.map((function(r){return rr(rr({},r),{},{__autocomplete_indexName:e.index||n[t].indexName,__autocomplete_queryID:e.queryID,__autocomplete_algoliaCredentials:{appId:u,apiKey:a}})}))})}))}))}(n(n({},e),{},{userAgents:br}))}),"algolia");var Or=hr({transformResponse:function(e){return e.hits}});e.autocomplete=function(e){var t,r=function(){var e=[],t=[];function n(n){e.push(n);var r=n();t.push(r)}return{runEffect:n,cleanupEffects:function(){var e=t;t=[],e.forEach((function(e){e()}))},runEffects:function(){var t=e;e=[],t.forEach((function(e){n(e)}))}}}(),a=r.runEffect,l=r.cleanupEffects,c=r.runEffects,s=(t=[],{reactive:function(e){var n=e(),r={_fn:e,_ref:{current:n},get value(){return this._ref.current},set value(e){this._ref.current=e}};return t.push(r),r},runReactives:function(){t.forEach((function(e){e._ref.current=e._fn()}))}}),m=s.reactive,v=s.runReactives,y=f(!1),g=f(e),h=f(void 0),O=m((function(){return function(e){var t,r=e.classNames,o=e.container,i=e.getEnvironmentProps,a=e.getFormProps,l=e.getInputProps,c=e.getItemProps,s=e.getLabelProps,f=e.getListProps,p=e.getPanelProps,m=e.getRootProps,v=e.panelContainer,y=e.panelPlacement,b=e.render,g=e.renderNoResults,h=e.renderer,O=e.detachedMediaQuery,_=e.components,S=e.translations,j=u(e,pr),P="undefined"!=typeof window?window:{},w=xt(P,o);w.tagName;var I=n(n({},dr),h),A={Highlight:lr(I),ReverseHighlight:cr(I),ReverseSnippet:sr(I),Snippet:fr(I)};return{renderer:{classNames:Nt(mr,null!=r?r:{}),container:w,getEnvironmentProps:null!=i?i:function(e){return e.props},getFormProps:null!=a?a:function(e){return e.props},getInputProps:null!=l?l:function(e){return e.props},getItemProps:null!=c?c:function(e){return e.props},getLabelProps:null!=s?s:function(e){return e.props},getListProps:null!=f?f:function(e){return e.props},getPanelProps:null!=p?p:function(e){return e.props},getRootProps:null!=m?m:function(e){return e.props},panelContainer:v?xt(P,v):P.document.body,panelPlacement:null!=y?y:"input-wrapper-width",render:null!=b?b:vr,renderNoResults:g,renderer:I,detachedMediaQuery:null!=O?O:getComputedStyle(P.document.documentElement).getPropertyValue("--aa-detached-media-query"),components:n(n({},A),_),translations:n(n({},{clearButtonTitle:"Clear",detachedCancelButtonText:"Cancel",submitButtonTitle:"Submit"}),S)},core:n(n({},j),{},{id:null!==(t=j.id)&&void 0!==t?t:d(),environment:P})}}(g.current)})),_=m((function(){return O.value.core.environment.matchMedia(O.value.renderer.detachedMediaQuery).matches})),S=m((function(){return At(n(n({},O.value.core),{},{onStateChange:function(e){var t,n,r;y.current=e.state.collections.some((function(e){return e.source.templates.noResults})),null===(t=h.current)||void 0===t||t.call(h,e),null===(n=(r=O.value.core).onStateChange)||void 0===n||n.call(r,e)},shouldPanelOpen:g.current.shouldPanelOpen||function(e){var t=e.state;if(_.value)return!0;var n=b(t)>0;if(!O.value.core.openOnFocus&&!t.query)return n;var r=Boolean(y.current||O.value.renderer.renderNoResults);return!n&&r||n},__autocomplete_metadata:{userAgents:br,options:e}}))})),j=f(n({collections:[],completion:null,context:{},isOpen:!1,query:"",activeItemId:null,status:"idle"},O.value.core.initialState)),P={getEnvironmentProps:O.value.renderer.getEnvironmentProps,getFormProps:O.value.renderer.getFormProps,getInputProps:O.value.renderer.getInputProps,getItemProps:O.value.renderer.getItemProps,getLabelProps:O.value.renderer.getLabelProps,getListProps:O.value.renderer.getListProps,getPanelProps:O.value.renderer.getPanelProps,getRootProps:O.value.renderer.getRootProps},w={setActiveItemId:S.value.setActiveItemId,setQuery:S.value.setQuery,setCollections:S.value.setCollections,setIsOpen:S.value.setIsOpen,setStatus:S.value.setStatus,setContext:S.value.setContext,refresh:S.value.refresh,navigator:S.value.navigator},I=m((function(){return Ct.bind(O.value.renderer.renderer.createElement)})),A=m((function(){return Gt({autocomplete:S.value,autocompleteScopeApi:w,classNames:O.value.renderer.classNames,environment:O.value.core.environment,isDetached:_.value,placeholder:O.value.core.placeholder,propGetters:P,setIsModalOpen:k,state:j.current,translations:O.value.renderer.translations})}));function E(){Ht(A.value.panel,{style:_.value?{}:yr({panelPlacement:O.value.renderer.panelPlacement,container:A.value.root,form:A.value.form,environment:O.value.core.environment})})}function D(e){j.current=e;var t={autocomplete:S.value,autocompleteScopeApi:w,classNames:O.value.renderer.classNames,components:O.value.renderer.components,container:O.value.renderer.container,html:I.value,dom:A.value,panelContainer:_.value?A.value.detachedContainer:O.value.renderer.panelContainer,propGetters:P,state:j.current,renderer:O.value.renderer.renderer},r=!b(e)&&!y.current&&O.value.renderer.renderNoResults||O.value.renderer.render;!function(e){var t=e.autocomplete,r=e.autocompleteScopeApi,o=e.dom,i=e.propGetters,u=e.state;Vt(o.root,i.getRootProps(n({state:u,props:t.getRootProps({})},r))),Vt(o.input,i.getInputProps(n({state:u,props:t.getInputProps({inputElement:o.input}),inputElement:o.input},r))),Ht(o.label,{hidden:"stalled"===u.status}),Ht(o.loadingIndicator,{hidden:"stalled"!==u.status}),Ht(o.clearButton,{hidden:!u.query}),Ht(o.detachedSearchButtonQuery,{textContent:u.query}),Ht(o.detachedSearchButtonPlaceholder,{hidden:Boolean(u.query)})}(t),function(e,t){var r=t.autocomplete,o=t.autocompleteScopeApi,u=t.classNames,a=t.html,l=t.dom,c=t.panelContainer,s=t.propGetters,f=t.state,p=t.components,m=t.renderer;if(f.isOpen){c.contains(l.panel)||"loading"===f.status||c.appendChild(l.panel),l.panel.classList.toggle("aa-Panel--stalled","stalled"===f.status);var v=f.collections.filter((function(e){var t=e.source,n=e.items;return t.templates.noResults||n.length>0})).map((function(e,t){var l=e.source,c=e.items;return m.createElement("section",{key:t,className:u.source,"data-autocomplete-source-id":l.sourceId},l.templates.header&&m.createElement("div",{className:u.sourceHeader},l.templates.header({components:p,createElement:m.createElement,Fragment:m.Fragment,items:c,source:l,state:f,html:a})),l.templates.noResults&&0===c.length?m.createElement("div",{className:u.sourceNoResults},l.templates.noResults({components:p,createElement:m.createElement,Fragment:m.Fragment,source:l,state:f,html:a})):m.createElement("ul",i({className:u.list},s.getListProps(n({state:f,props:r.getListProps({source:l})},o))),c.map((function(e){var t=r.getItemProps({item:e,source:l});return m.createElement("li",i({key:t.id,className:u.item},s.getItemProps(n({state:f,props:t},o))),l.templates.item({components:p,createElement:m.createElement,Fragment:m.Fragment,item:e,state:f,html:a}))}))),l.templates.footer&&m.createElement("div",{className:u.sourceFooter},l.templates.footer({components:p,createElement:m.createElement,Fragment:m.Fragment,items:c,source:l,state:f,html:a})))})),d=m.createElement(m.Fragment,null,m.createElement("div",{className:u.panelLayout},v),m.createElement("div",{className:"aa-GradientBottom"})),y=v.reduce((function(e,t){return e[t.props["data-autocomplete-source-id"]]=t,e}),{});e(n(n({children:d,state:f,sections:v,elements:y},m),{},{components:p,html:a},o),l.panel)}else c.contains(l.panel)&&c.removeChild(l.panel)}(r,t)}function C(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};l();var t=O.value.renderer,n=t.components,r=u(t,gr);g.current=qt(r,O.value.core,{components:Bt(n,(function(e){return!e.value.hasOwnProperty("__autocomplete_componentName")})),initialState:j.current},e),v(),c(),S.value.refresh().then((function(){D(j.current)}))}function k(e){requestAnimationFrame((function(){var t=O.value.core.environment.document.body.contains(A.value.detachedOverlay);e!==t&&(e?(O.value.core.environment.document.body.appendChild(A.value.detachedOverlay),O.value.core.environment.document.body.classList.add("aa-Detached"),A.value.input.focus()):(O.value.core.environment.document.body.removeChild(A.value.detachedOverlay),O.value.core.environment.document.body.classList.remove("aa-Detached")))}))}return a((function(){var e=S.value.getEnvironmentProps({formElement:A.value.form,panelElement:A.value.panel,inputElement:A.value.input});return Ht(O.value.core.environment,e),function(){Ht(O.value.core.environment,Object.keys(e).reduce((function(e,t){return n(n({},e),{},o({},t,void 0))}),{}))}})),a((function(){var e=_.value?O.value.core.environment.document.body:O.value.renderer.panelContainer,t=_.value?A.value.detachedOverlay:A.value.panel;return _.value&&j.current.isOpen&&k(!0),D(j.current),function(){e.contains(t)&&e.removeChild(t)}})),a((function(){var e=O.value.renderer.container;return e.appendChild(A.value.root),function(){e.removeChild(A.value.root)}})),a((function(){var e=p((function(e){D(e.state)}),0);return h.current=function(t){var n=t.state,r=t.prevState;(_.value&&r.isOpen!==n.isOpen&&k(n.isOpen),_.value||!n.isOpen||r.isOpen||E(),n.query!==r.query)&&O.value.core.environment.document.querySelectorAll(".aa-Panel--scrollable").forEach((function(e){0!==e.scrollTop&&(e.scrollTop=0)}));e({state:n})},function(){h.current=void 0}})),a((function(){var e=p((function(){var e=_.value;_.value=O.value.core.environment.matchMedia(O.value.renderer.detachedMediaQuery).matches,e!==_.value?C({}):requestAnimationFrame(E)}),20);return O.value.core.environment.addEventListener("resize",e),function(){O.value.core.environment.removeEventListener("resize",e)}})),a((function(){if(!_.value)return function(){};function e(e){A.value.detachedContainer.classList.toggle("aa-DetachedContainer--modal",e)}function t(t){e(t.matches)}var n=O.value.core.environment.matchMedia(getComputedStyle(O.value.core.environment.document.documentElement).getPropertyValue("--aa-detached-modal-media-query"));e(n.matches);var r=Boolean(n.addEventListener);return r?n.addEventListener("change",t):n.addListener(t),function(){r?n.removeEventListener("change",t):n.removeListener(t)}})),a((function(){return requestAnimationFrame(E),function(){}})),n(n({},w),{},{update:C,destroy:function(){l()}})},e.getAlgoliaFacets=function(e){var t=hr({transformResponse:function(e){return e.facetHits}}),r=e.queries.map((function(e){return n(n({},e),{},{type:"facet"})}));return t(n(n({},e),{},{queries:r}))},e.getAlgoliaResults=Or,Object.defineProperty(e,"__esModule",{value:!0})}));
 
diff --git a/docs/site_libs/quarto-search/quarto-search.js b/docs/site_libs/quarto-search/quarto-search.js
index f5d852d..d788a95 100644
--- a/docs/site_libs/quarto-search/quarto-search.js
+++ b/docs/site_libs/quarto-search/quarto-search.js
@@ -43,7 +43,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
   const mainEl = window.document.querySelector("main");
 
   // highlight matches on the page
-  if (query !== null && mainEl) {
+  if (query && mainEl) {
     // perform any highlighting
     highlight(escapeRegExp(query), mainEl);
 
@@ -57,7 +57,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
   // (e.g. if the user edits the query or clears it)
   let highlighting = true;
   const resetHighlighting = (searchTerm) => {
-    if (mainEl && highlighting && query !== null && searchTerm !== query) {
+    if (mainEl && highlighting && query && searchTerm !== query) {
       clearHighlight(query, mainEl);
       highlighting = false;
     }
@@ -98,6 +98,7 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
     classNames: {
       form: "d-flex",
     },
+    placeholder: language["search-text-placeholder"],
     translations: {
       clearButtonTitle: language["search-clear-button-title"],
       detachedCancelButtonText: language["search-detached-cancel-button-title"],
@@ -110,6 +111,8 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
       return item.href;
     },
     onStateChange({ state }) {
+      // If this is a file URL, note that
+
       // Perhaps reset highlighting
       resetHighlighting(state.query);
 
@@ -359,7 +362,8 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
                 state,
                 setActiveItemId,
                 setContext,
-                refresh
+                refresh,
+                quartoSearchOptions
               );
             },
           },
@@ -374,6 +378,32 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
     focusSearchInput();
   };
 
+  document.addEventListener("keyup", (event) => {
+    const { key } = event;
+    const kbds = quartoSearchOptions["keyboard-shortcut"];
+    const focusedEl = document.activeElement;
+
+    const isFormElFocused = [
+      "input",
+      "select",
+      "textarea",
+      "button",
+      "option",
+    ].find((tag) => {
+      return focusedEl.tagName.toLowerCase() === tag;
+    });
+
+    if (
+      kbds &&
+      kbds.includes(key) &&
+      !isFormElFocused &&
+      !document.activeElement.isContentEditable
+    ) {
+      event.preventDefault();
+      window.quartoOpenSearch();
+    }
+  });
+
   // Remove the labeleledby attribute since it is pointing
   // to a non-existent label
   if (quartoSearchOptions.type === "overlay") {
@@ -385,11 +415,30 @@ window.document.addEventListener("DOMContentLoaded", function (_event) {
     }
   }
 
+  function throttle(func, wait) {
+    let waiting = false;
+    return function () {
+      if (!waiting) {
+        func.apply(this, arguments);
+        waiting = true;
+        setTimeout(function () {
+          waiting = false;
+        }, wait);
+      }
+    };
+  }
+
   // If the main document scrolls dismiss the search results
   // (otherwise, since they're floating in the document they can scroll with the document)
-  window.document.body.onscroll = () => {
-    setIsOpen(false);
-  };
+  window.document.body.onscroll = throttle(() => {
+    // Only do this if we're not detached
+    // Bug #7117
+    // This will happen when the keyboard is shown on ios (resulting in a scroll)
+    // which then closed the search UI
+    if (!window.matchMedia(detachedMediaQuery).matches) {
+      setIsOpen(false);
+    }
+  }, 50);
 
   if (showSearchResults) {
     setIsOpen(true);
@@ -429,15 +478,27 @@ function configurePlugins(quartoSearchOptions) {
         const algoliaInsightsPlugin = createAlgoliaInsightsPlugin({
           insightsClient: window.aa,
           onItemsChange({ insights, insightsEvents }) {
-            const events = insightsEvents.map((event) => {
-              const maxEvents = event.objectIDs.slice(0, 20);
-              return {
-                ...event,
-                objectIDs: maxEvents,
-              };
+            const events = insightsEvents.flatMap((event) => {
+              // This API limits the number of items per event to 20
+              const chunkSize = 20;
+              const itemChunks = [];
+              const eventItems = event.items;
+              for (let i = 0; i < eventItems.length; i += chunkSize) {
+                itemChunks.push(eventItems.slice(i, i + chunkSize));
+              }
+              // Split the items into multiple events that can be sent
+              const events = itemChunks.map((items) => {
+                return {
+                  ...event,
+                  items,
+                };
+              });
+              return events;
             });
 
-            insights.viewedObjectIDs(...events);
+            for (const event of events) {
+              insights.viewedObjectIDs(event);
+            }
           },
         });
         return algoliaInsightsPlugin;
@@ -613,20 +674,30 @@ function showCopyLink(query, options) {
 /* Search Index Handling */
 // create the index
 var fuseIndex = undefined;
+var shownWarning = false;
+
+// fuse index options
+const kFuseIndexOptions = {
+  keys: [
+    { name: "title", weight: 20 },
+    { name: "section", weight: 20 },
+    { name: "text", weight: 10 },
+  ],
+  ignoreLocation: true,
+  threshold: 0.1,
+};
+
 async function readSearchData() {
   // Initialize the search index on demand
   if (fuseIndex === undefined) {
-    // create fuse index
-    const options = {
-      keys: [
-        { name: "title", weight: 20 },
-        { name: "section", weight: 20 },
-        { name: "text", weight: 10 },
-      ],
-      ignoreLocation: true,
-      threshold: 0.1,
-    };
-    const fuse = new window.Fuse([], options);
+    if (window.location.protocol === "file:" && !shownWarning) {
+      window.alert(
+        "Search requires JavaScript features disabled when running in file://... URLs. In order to use search, please run this document in a web server."
+      );
+      shownWarning = true;
+      return;
+    }
+    const fuse = new window.Fuse([], kFuseIndexOptions);
 
     // fetch the main search.json
     const response = await fetch(offsetURL("search.json"));
@@ -646,6 +717,7 @@ async function readSearchData() {
       );
     }
   }
+
   return fuseIndex;
 }
 
@@ -674,7 +746,8 @@ function renderItem(
   state,
   setActiveItemId,
   setContext,
-  refresh
+  refresh,
+  quartoSearchOptions
 ) {
   switch (item.type) {
     case kItemTypeDoc:
@@ -684,7 +757,9 @@ function renderItem(
         item.title,
         item.section,
         item.text,
-        item.href
+        item.href,
+        item.crumbs,
+        quartoSearchOptions
       );
     case kItemTypeMore:
       return createMoreCard(
@@ -709,15 +784,46 @@ function renderItem(
   }
 }
 
-function createDocumentCard(createElement, icon, title, section, text, href) {
+function createDocumentCard(
+  createElement,
+  icon,
+  title,
+  section,
+  text,
+  href,
+  crumbs,
+  quartoSearchOptions
+) {
   const iconEl = createElement("i", {
     class: `bi bi-${icon} search-result-icon`,
   });
   const titleEl = createElement("p", { class: "search-result-title" }, title);
+  const titleContents = [iconEl, titleEl];
+  const showParent = quartoSearchOptions["show-item-context"];
+  if (crumbs && showParent) {
+    let crumbsOut = undefined;
+    const crumbClz = ["search-result-crumbs"];
+    if (showParent === "root") {
+      crumbsOut = crumbs.length > 1 ? crumbs[0] : undefined;
+    } else if (showParent === "parent") {
+      crumbsOut = crumbs.length > 1 ? crumbs[crumbs.length - 2] : undefined;
+    } else {
+      crumbsOut = crumbs.length > 1 ? crumbs.join(" > ") : undefined;
+      crumbClz.push("search-result-crumbs-wrap");
+    }
+
+    const crumbEl = createElement(
+      "p",
+      { class: crumbClz.join(" ") },
+      crumbsOut
+    );
+    titleContents.push(crumbEl);
+  }
+
   const titleContainerEl = createElement(
     "div",
     { class: "search-result-title-container" },
-    [iconEl, titleEl]
+    titleContents
   );
 
   const textEls = [];
@@ -1099,17 +1205,19 @@ function algoliaSearch(query, limit, algoliaOptions) {
         const remappedHits = response.hits.map((hit) => {
           return hit.map((item) => {
             const newItem = { ...item };
-            ["href", "section", "title", "text"].forEach((keyName) => {
-              const mappedName = indexFields[keyName];
-              if (
-                mappedName &&
-                item[mappedName] !== undefined &&
-                mappedName !== keyName
-              ) {
-                newItem[keyName] = item[mappedName];
-                delete newItem[mappedName];
+            ["href", "section", "title", "text", "crumbs"].forEach(
+              (keyName) => {
+                const mappedName = indexFields[keyName];
+                if (
+                  mappedName &&
+                  item[mappedName] !== undefined &&
+                  mappedName !== keyName
+                ) {
+                  newItem[keyName] = item[mappedName];
+                  delete newItem[mappedName];
+                }
               }
-            });
+            );
             newItem.text = highlightMatch(query, newItem.text);
             return newItem;
           });
@@ -1120,8 +1228,34 @@ function algoliaSearch(query, limit, algoliaOptions) {
   });
 }
 
-function fuseSearch(query, fuse, fuseOptions) {
-  return fuse.search(query, fuseOptions).map((result) => {
+let subSearchTerm = undefined;
+let subSearchFuse = undefined;
+const kFuseMaxWait = 125;
+
+async function fuseSearch(query, fuse, fuseOptions) {
+  let index = fuse;
+  // Fuse.js using the Bitap algorithm for text matching which runs in
+  // O(nm) time (no matter the structure of the text). In our case this
+  // means that long search terms mixed with large index gets very slow
+  //
+  // This injects a subIndex that will be used once the terms get long enough
+  // Usually making this subindex is cheap since there will typically be
+  // a subset of results matching the existing query
+  if (subSearchFuse !== undefined && query.startsWith(subSearchTerm)) {
+    // Use the existing subSearchFuse
+    index = subSearchFuse;
+  } else if (subSearchFuse !== undefined) {
+    // The term changed, discard the existing fuse
+    subSearchFuse = undefined;
+    subSearchTerm = undefined;
+  }
+
+  // Search using the active fuse
+  const then = performance.now();
+  const resultsRaw = await index.search(query, fuseOptions);
+  const now = performance.now();
+
+  const results = resultsRaw.map((result) => {
     const addParam = (url, name, value) => {
       const anchorParts = url.split("#");
       const baseUrl = anchorParts[0];
@@ -1135,6 +1269,22 @@ function fuseSearch(query, fuse, fuseOptions) {
       section: result.item.section,
       href: addParam(result.item.href, kQueryArg, query),
       text: highlightMatch(query, result.item.text),
+      crumbs: result.item.crumbs,
     };
   });
+
+  // If we don't have a subfuse and the query is long enough, go ahead
+  // and create a subfuse to use for subsequent queries
+  if (
+    now - then > kFuseMaxWait &&
+    subSearchFuse === undefined &&
+    resultsRaw.length < fuseOptions.limit
+  ) {
+    subSearchTerm = query;
+    subSearchFuse = new window.Fuse([], kFuseIndexOptions);
+    resultsRaw.forEach((rr) => {
+      subSearchFuse.add(rr.item);
+    });
+  }
+  return results;
 }
diff --git a/docs/sitemap.xml b/docs/sitemap.xml
index 4e7ac73..4b2b1d3 100644
--- a/docs/sitemap.xml
+++ b/docs/sitemap.xml
@@ -1,223 +1,207 @@
 <?xml version="1.0" encoding="UTF-8"?>
 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/index.html</loc>
-    <lastmod>2023-12-26T01:56:39.079Z</lastmod>
-  </url>
-  <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/clinmodel-definition.html</loc>
-    <lastmod>2023-12-26T01:58:04.554Z</lastmod>
-  </url>
-  <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-logistic.html</loc>
-    <lastmod>2023-12-25T12:57:57.057Z</lastmod>
-  </url>
-  <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-cox.html</loc>
-    <lastmod>2023-12-25T12:57:57.072Z</lastmod>
-  </url>
-  <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-essential.html</loc>
-    <lastmod>2023-12-25T12:57:57.086Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/index.html</loc>
+    <lastmod>2024-11-07T22:59:27.756Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-rcs.html</loc>
-    <lastmod>2023-12-25T12:57:57.099Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/临床预测模型概念.html</loc>
+    <lastmod>2024-05-12T08:49:26.727Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-compete-risk.html</loc>
-    <lastmod>2023-12-25T12:57:57.122Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/临床预测模型建立的一般步骤.html</loc>
+    <lastmod>2024-09-30T08:38:25.769Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-lasso.html</loc>
-    <lastmod>2023-12-25T12:57:57.128Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/临床预测模型和机器学习.html</loc>
+    <lastmod>2024-11-07T12:11:11.350Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-colorfulbar.html</loc>
-    <lastmod>2023-12-25T12:57:57.147Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/文献学习.html</loc>
+    <lastmod>2024-11-07T07:40:22.555Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nomogram-points.html</loc>
-    <lastmod>2023-12-25T12:58:18.881Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/data-split.html</loc>
+    <lastmod>2024-11-05T13:34:32.962Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection.html</loc>
-    <lastmod>2023-12-25T12:57:57.167Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/data-preprocess.html</loc>
+    <lastmod>2024-11-05T13:38:04.941Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection_unimulti.html</loc>
-    <lastmod>2023-12-25T12:57:57.183Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-logistic.html</loc>
+    <lastmod>2024-06-11T13:26:19.727Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection_stepwise.html</loc>
-    <lastmod>2023-12-25T12:57:57.219Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-cox.html</loc>
+    <lastmod>2024-06-03T13:18:47.645Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection_bestsubset.html</loc>
-    <lastmod>2023-12-25T12:57:57.236Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-原理.html</loc>
+    <lastmod>2024-06-05T10:53:13.818Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection_lasso.html</loc>
-    <lastmod>2023-12-25T12:57:57.291Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-rcs.html</loc>
+    <lastmod>2024-06-05T10:38:16.406Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/feature-selection_randomforest.html</loc>
-    <lastmod>2023-12-25T12:57:57.306Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-compete-risk.html</loc>
+    <lastmod>2024-11-07T08:52:40.516Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/clinmodel-evalution.html</loc>
-    <lastmod>2023-12-25T12:57:57.316Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-lasso.html</loc>
+    <lastmod>2024-06-05T10:43:10.736Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-binominal.html</loc>
-    <lastmod>2023-12-26T01:55:36.931Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-colorfulbar.html</loc>
+    <lastmod>2024-06-05T12:18:12.640Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-survive.html</loc>
-    <lastmod>2023-12-25T12:57:57.347Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nomogram-points.html</loc>
+    <lastmod>2024-06-11T04:43:55.749Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-bestcut.html</loc>
-    <lastmod>2023-12-26T01:55:36.933Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection_unimulti.html</loc>
+    <lastmod>2024-06-05T10:55:56.574Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-smooth.html</loc>
-    <lastmod>2023-12-26T01:55:45.522Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection_stepwise.html</loc>
+    <lastmod>2024-06-05T10:57:22.126Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-compare.html</loc>
-    <lastmod>2023-12-25T12:57:57.395Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection_bestsubset.html</loc>
+    <lastmod>2024-11-07T11:59:40.312Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-attention.html</loc>
-    <lastmod>2023-12-25T12:57:57.410Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection_lasso.html</loc>
+    <lastmod>2024-06-05T12:12:58.889Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-many.html</loc>
-    <lastmod>2023-12-25T12:57:57.418Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection_randomforest.html</loc>
+    <lastmod>2024-06-05T12:16:13.916Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/roc-bootstrap.html</loc>
-    <lastmod>2023-12-25T12:57:57.439Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/conf_matrix-3d.html</loc>
+    <lastmod>2024-05-11T06:44:48.258Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/多分类数据的ROC曲线.html</loc>
-    <lastmod>2023-12-25T12:57:57.456Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/roc-binominal.html</loc>
+    <lastmod>2024-11-05T12:49:46.620Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/cindex.html</loc>
-    <lastmod>2023-12-25T12:57:57.472Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/roc-survive.html</loc>
+    <lastmod>2024-11-05T12:50:28.013Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/cindex-compare.html</loc>
-    <lastmod>2023-12-25T12:57:57.485Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/roc-compare.html</loc>
+    <lastmod>2024-05-25T05:22:04.588Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/conf_matrix-3d.html</loc>
-    <lastmod>2023-12-25T12:57:57.494Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/roc-bootstrap.html</loc>
+    <lastmod>2024-06-05T12:49:37.947Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/nri.html</loc>
-    <lastmod>2023-12-25T12:57:57.522Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/cindex.html</loc>
+    <lastmod>2024-06-05T13:03:26.679Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/idi.html</loc>
-    <lastmod>2023-12-25T12:57:57.534Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/cindex-compare.html</loc>
+    <lastmod>2024-06-07T10:11:31.601Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-logistic.html</loc>
-    <lastmod>2023-12-25T12:57:57.567Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/nri.html</loc>
+    <lastmod>2024-11-07T09:58:02.587Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-logistic-test.html</loc>
-    <lastmod>2023-12-25T12:57:57.582Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/idi.html</loc>
+    <lastmod>2024-09-30T12:46:39.788Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-cox.html</loc>
-    <lastmod>2023-12-25T12:57:57.603Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/calibration-logistic.html</loc>
+    <lastmod>2024-06-07T06:07:29.843Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-cox-test.html</loc>
-    <lastmod>2023-12-25T12:57:57.625Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/hosmer-lemeshow检验.html</loc>
+    <lastmod>2024-11-07T09:59:44.202Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-tidymodels-man.html</loc>
-    <lastmod>2023-12-25T12:57:57.640Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/calibration-cox.html</loc>
+    <lastmod>2024-11-07T10:00:55.908Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-tidymodels.html</loc>
-    <lastmod>2023-12-25T12:57:57.649Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/calibration-qhscrnomo.html</loc>
+    <lastmod>2024-06-07T06:21:46.820Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-mlr3.html</loc>
-    <lastmod>2023-12-25T12:57:57.669Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/calibration-lasso.html</loc>
+    <lastmod>2024-06-07T06:23:55.903Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-qhscrnomo.html</loc>
-    <lastmod>2023-12-25T12:57:57.684Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/dca-logistic.html</loc>
+    <lastmod>2024-11-07T11:13:39.276Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/calibration-lasso.html</loc>
-    <lastmod>2023-12-25T12:57:57.710Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/dca-cox.html</loc>
+    <lastmod>2024-11-05T13:01:52.783Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/dca-logistic.html</loc>
-    <lastmod>2023-12-25T12:57:57.736Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/dca-diy.html</loc>
+    <lastmod>2024-11-07T11:17:01.482Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/dca-cox.html</loc>
-    <lastmod>2023-12-25T12:57:57.756Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/DCA彩色条带.html</loc>
+    <lastmod>2024-06-07T08:24:28.465Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/dca-diy.html</loc>
-    <lastmod>2023-12-25T12:57:57.781Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/bootstrap一切指标.html</loc>
+    <lastmod>2024-11-07T10:12:01.078Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/DCA彩色条带.html</loc>
-    <lastmod>2023-12-25T13:00:16.389Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/model-compare_workflow.html</loc>
+    <lastmod>2024-11-05T13:07:31.115Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/DCA测试集.html</loc>
-    <lastmod>2023-12-25T12:59:52.235Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/model-compare_mlr3.html</loc>
+    <lastmod>2024-11-07T11:38:21.036Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/校准曲线和决策曲线的概率.html</loc>
-    <lastmod>2023-12-25T12:58:30.167Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/model-compare_caret.html</loc>
+    <lastmod>2024-11-05T13:09:50.246Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/model-compare_tidymodels.html</loc>
-    <lastmod>2023-12-25T12:57:57.878Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/BMJ预测模型样本量计算.html</loc>
+    <lastmod>2024-06-21T04:11:08.431Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/model-compare_workflow.html</loc>
-    <lastmod>2023-12-25T12:57:57.897Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/mice多重插补.html</loc>
+    <lastmod>2024-06-18T06:27:32.845Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/model-compare_mlr3.html</loc>
-    <lastmod>2023-12-25T12:57:57.911Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/9999-appendix.html</loc>
+    <lastmod>2024-11-07T07:41:17.838Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/model-compare_caret.html</loc>
-    <lastmod>2023-12-25T12:57:57.934Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/模型建立和可视化.html</loc>
+    <lastmod>2024-11-07T04:48:00.310Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/data-preprocess.html</loc>
-    <lastmod>2023-12-25T12:57:57.964Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/feature-selection.html</loc>
+    <lastmod>2024-06-07T08:35:15.881Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/data-split.html</loc>
-    <lastmod>2023-12-25T12:57:57.974Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/临床预测模型评价.html</loc>
+    <lastmod>2024-06-08T12:55:23.766Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/9999-appendix.html</loc>
-    <lastmod>2023-12-25T12:57:57.981Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/多模型比较.html</loc>
+    <lastmod>2024-06-07T12:32:45.843Z</lastmod>
   </url>
   <url>
-    <loc>https://https://ayueme.github.io/R_clinical_model/R语言实战临床预测模型.pdf</loc>
-    <lastmod>2023-12-25T12:57:56.648Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/R语言实战临床预测模型.docx</loc>
+    <lastmod>2024-11-07T23:27:56.441Z</lastmod>
   </url>
   <url>
-    <loc>https://ayueme.github.io/R_clinical_model/index.html</loc>
-    <lastmod>2023-12-30T02:26:38.363Z</lastmod>
+    <loc>https://ayueme.github.io/R_clinical_model/R语言实战临床预测模型.pdf</loc>
+    <lastmod>2024-11-07T23:28:40.825Z</lastmod>
   </url>
 </urlset>
diff --git "a/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\222\214\346\234\272\345\231\250\345\255\246\344\271\240.html" "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\222\214\346\234\272\345\231\250\345\255\246\344\271\240.html"
new file mode 100644
index 0000000..afe28dd
--- /dev/null
+++ "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\222\214\346\234\272\345\231\250\345\255\246\344\271\240.html"
@@ -0,0 +1,1259 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>3&nbsp; 临床预测模型和机器学习 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./文献学习.html" rel="next">
+<link href="./临床预测模型建立的一般步骤.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型和机器学习.html"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#从医学统计到机器学习" id="toc-从医学统计到机器学习" class="nav-link active" data-scroll-target="#从医学统计到机器学习"><span class="header-section-number">3.1</span> 从医学统计到机器学习</a></li>
+  <li><a href="#机器学习在临床中的应用" id="toc-机器学习在临床中的应用" class="nav-link" data-scroll-target="#机器学习在临床中的应用"><span class="header-section-number">3.2</span> 机器学习在临床中的应用</a></li>
+  <li><a href="#机器学习和临床预测模型有什么关系" id="toc-机器学习和临床预测模型有什么关系" class="nav-link" data-scroll-target="#机器学习和临床预测模型有什么关系"><span class="header-section-number">3.3</span> 机器学习和临床预测模型有什么关系?</a></li>
+  <li><a href="#当我们谈论临床预测模型时我们在谈些什么" id="toc-当我们谈论临床预测模型时我们在谈些什么" class="nav-link" data-scroll-target="#当我们谈论临床预测模型时我们在谈些什么"><span class="header-section-number">3.4</span> 当我们谈论临床预测模型时,我们在谈些什么?</a></li>
+  <li><a href="#机器学习与临床预测模型需要哪些知识" id="toc-机器学习与临床预测模型需要哪些知识" class="nav-link" data-scroll-target="#机器学习与临床预测模型需要哪些知识"><span class="header-section-number">3.5</span> 机器学习与临床预测模型需要哪些知识</a>
+  <ul class="collapse">
+  <li><a href="#统计学知识" id="toc-统计学知识" class="nav-link" data-scroll-target="#统计学知识"><span class="header-section-number">3.5.1</span> 统计学知识</a></li>
+  <li><a href="#机器学习基础" id="toc-机器学习基础" class="nav-link" data-scroll-target="#机器学习基础"><span class="header-section-number">3.5.2</span> 机器学习基础</a></li>
+  <li><a href="#统计软件和编程" id="toc-统计软件和编程" class="nav-link" data-scroll-target="#统计软件和编程"><span class="header-section-number">3.5.3</span> 统计软件和编程</a></li>
+  <li><a href="#附如果你要学习生信数据挖掘" id="toc-附如果你要学习生信数据挖掘" class="nav-link" data-scroll-target="#附如果你要学习生信数据挖掘"><span class="header-section-number">3.5.4</span> 附:如果你要学习生信数据挖掘</a></li>
+  </ul></li>
+  <li><a href="#临床预测模型常见发文类型" id="toc-临床预测模型常见发文类型" class="nav-link" data-scroll-target="#临床预测模型常见发文类型"><span class="header-section-number">3.6</span> 临床预测模型常见发文类型</a>
+  <ul class="collapse">
+  <li><a href="#比较简单的" id="toc-比较简单的" class="nav-link" data-scroll-target="#比较简单的"><span class="header-section-number">3.6.1</span> 比较简单的</a></li>
+  <li><a href="#更加典型的案例" id="toc-更加典型的案例" class="nav-link" data-scroll-target="#更加典型的案例"><span class="header-section-number">3.6.2</span> 更加典型的案例</a></li>
+  <li><a href="#机器学习方法的使用" id="toc-机器学习方法的使用" class="nav-link" data-scroll-target="#机器学习方法的使用"><span class="header-section-number">3.6.3</span> 机器学习方法的使用</a></li>
+  </ul></li>
+  <li><a href="#临床预测模型和生信数据挖掘结合" id="toc-临床预测模型和生信数据挖掘结合" class="nav-link" data-scroll-target="#临床预测模型和生信数据挖掘结合"><span class="header-section-number">3.7</span> 临床预测模型和生信数据挖掘结合</a>
+  <ul class="collapse">
+  <li><a href="#生信数据挖掘到底在挖什么" id="toc-生信数据挖掘到底在挖什么" class="nav-link" data-scroll-target="#生信数据挖掘到底在挖什么"><span class="header-section-number">3.7.1</span> 生信数据挖掘,到底在挖什么?</a></li>
+  <li><a href="#比较简单的-1" id="toc-比较简单的-1" class="nav-link" data-scroll-target="#比较简单的-1"><span class="header-section-number">3.7.2</span> 比较简单的</a></li>
+  <li><a href="#复杂的" id="toc-复杂的" class="nav-link" data-scroll-target="#复杂的"><span class="header-section-number">3.7.3</span> 复杂的</a></li>
+  </ul></li>
+  <li><a href="#总结" id="toc-总结" class="nav-link" data-scroll-target="#总结"><span class="header-section-number">3.8</span> 总结</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型和机器学习.html"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<section id="从医学统计到机器学习" class="level2" data-number="3.1">
+<h2 data-number="3.1" class="anchored" data-anchor-id="从医学统计到机器学习"><span class="header-section-number">3.1</span> 从医学统计到机器学习</h2>
+<p>机器学习离医学生/医生很遥远吗?</p>
+<p>并不是,其实大家都学过。</p>
+<blockquote class="blockquote">
+<p>医学统计学是一门<strong>运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学</strong>。–孙振球,徐勇勇《医学统计学》第4版</p>
+</blockquote>
+<blockquote class="blockquote">
+<p>机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。–百度百科</p>
+</blockquote>
+<p>结合我们的医学背景讲,机器学习是能够帮我们决策的工具。机器学习中的部分内容我们并不陌生。</p>
+<p>医学统计学中都学过<strong>多元线性回归、logistic回归、判别分析、聚类分析</strong>等,这些都是机器学习的范畴,都属于机器学习的方法。只不过是所处的情境不同,就像一个人可以有多种身份。</p>
+<p>在logistic回归中,我们通过多个自变量建立logistic回归方程,由此来判断因变量的状态,比如患病/不患病,肿瘤/非肿瘤,死亡/生存等;在多元线性回归中,我们可以通过多个自变量预测患者的血糖水平。</p>
+<p>这些问题在医学统计学中,我们的<strong>目的是探寻自变量和因变量的关系</strong>,在机器学习中也是一样的用法,不过此时的目的更偏向于<strong>预测结果</strong>。除此之外,机器学习面向的主要是大样本量的数据,而医学统计学在使用这些方法时,通常是样本量不大的。</p>
+<p>除了我们学习过的多元线性回归、logistic回归等,还有一些医学统计学中没有讲到的内容,比如大家经常见到的:随机森林,lasso/ridge/elastic net,支持向量机,knn等,都属于机器学习的内容,都是类似的用法,用多个自变量预测一个因变量。</p>
+</section>
+<section id="机器学习在临床中的应用" class="level2" data-number="3.2">
+<h2 data-number="3.2" class="anchored" data-anchor-id="机器学习在临床中的应用"><span class="header-section-number">3.2</span> 机器学习在临床中的应用</h2>
+<p>机器学习在很多领域应用广泛,在医学领域,大家经常接触的主要是以下几个方面:</p>
+<ul>
+<li>影像组学</li>
+<li>生信数据挖掘</li>
+<li>临床预测模型</li>
+<li>……</li>
+</ul>
+<p>这里面我认为<strong>最简单的就是临床预测模型</strong>。</p>
+<p>另外两个需要额外学习的背景知识太多,对于医学生/医生,尤其是临床医学、中医学等,不亚于从0开始学习一门技能。</p>
+<p>今天我们简单介绍下机器学习和临床预测模型的应用。</p>
+</section>
+<section id="机器学习和临床预测模型有什么关系" class="level2" data-number="3.3">
+<h2 data-number="3.3" class="anchored" data-anchor-id="机器学习和临床预测模型有什么关系"><span class="header-section-number">3.3</span> 机器学习和临床预测模型有什么关系?</h2>
+<p>首先大家要明确,临床预测模型是什么?</p>
+<blockquote class="blockquote">
+<p>临床预测模型的本质是一种<strong>分类方法</strong>。通过这种方法,你可以对很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。</p>
+<p>再直白一点,临床预测模型是<strong>一个公式</strong>,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!–《简单易懂:什么是临床预测模型》</p>
+</blockquote>
+<p>你看这个过程是不是和我们上面建立多元线性回归、logistic回归的过程一模一样?也是<strong>多个自变量和一个因变量的故事</strong>。</p>
+<p>所以,<strong>临床预测模型的各种实现,都是通过机器学习的方法完成的</strong>(你非说是通过统计学的方法也可以,因为二者本来就没有清晰的界限)。这其中比较简单的也是比较常见的是logistic回归、cox回归这些,其他方法,如随机森林、SVM、各种提升算法等,也都逐渐开始使用。</p>
+<p>除此之外,大家常见的各种重抽样方法,比如<code>bootstrap</code>、<code>cross validation</code>、<code>holdout(train/test split)</code>等,都是机器学习中常见的基本内容。</p>
+<p>各种对变量的处理,比如:中心化、标准化、缺失值插补、样条回归、boxcox、向前/向后/逐步选择、最优子集,等,也都是机器学习的基础内容。</p>
+<p>唯一不同且是最重要的一点:<strong>临床预测模型更加注重结合临床背景进行解释</strong>。</p>
+<p>不同于机器学习中变量重要性(随机森林)这种解释,我们更喜欢<code>OR/HR/RR</code>这种解释,自变量每增加一个单位,因变量的危险增加多少、大于60岁的人相比于小于60岁的人,患某病的风险增加多少。</p>
+<p><strong>临床预测模型必须不能脱离临床,单纯的数字游戏没有任何意义。</strong></p>
+<blockquote class="blockquote">
+<p>很多讲临床预测模型的课程,涉及的机器学习基本方法太少,指南里的东西大家都知道,满足不了大家发文章的需求。</p>
+</blockquote>
+</section>
+<section id="当我们谈论临床预测模型时我们在谈些什么" class="level2" data-number="3.4">
+<h2 data-number="3.4" class="anchored" data-anchor-id="当我们谈论临床预测模型时我们在谈些什么"><span class="header-section-number">3.4</span> 当我们谈论临床预测模型时,我们在谈些什么?</h2>
+<p>这个答案大家应该都很感兴趣:<strong>文章!SCI!</strong></p>
+<p>临床预测模型本质上应该是为医务人员提供新的诊疗工具、决策工具,开发更为快捷、简便、性价比高的量化工具。比较熟悉并且十分成功的案例:<strong>肿瘤的TNM分期</strong>。</p>
+<p>但是目前来看,主要作用是为大家提供新的发文方式!</p>
+<p><img src="figs/PixPin_2024-09-30_16-48-15.png" class="img-fluid"></p>
+<blockquote class="blockquote">
+<p>绝大多数临床预测模型类文章都没有实用价值。</p>
+</blockquote>
+</section>
+<section id="机器学习与临床预测模型需要哪些知识" class="level2" data-number="3.5">
+<h2 data-number="3.5" class="anchored" data-anchor-id="机器学习与临床预测模型需要哪些知识"><span class="header-section-number">3.5</span> 机器学习与临床预测模型需要哪些知识</h2>
+<section id="统计学知识" class="level3" data-number="3.5.1">
+<h3 data-number="3.5.1" class="anchored" data-anchor-id="统计学知识"><span class="header-section-number">3.5.1</span> 统计学知识</h3>
+<p>这块知识对于大家应该不陌生,很好上手。</p>
+<p>医学统计学,特别是多元线性回归、logistic回归、Cox回归,需要重点掌握。</p>
+<p>除此之外,需要学习一些课本上没有的、但是文献中经常见的统计学方法和指标。</p>
+<p>灵活使用,举一反三,不能还停留在t检验、方差分析的阶段,需重点掌握<strong>结果的解释</strong>。</p>
+</section>
+<section id="机器学习基础" class="level3" data-number="3.5.2">
+<h3 data-number="3.5.2" class="anchored" data-anchor-id="机器学习基础"><span class="header-section-number">3.5.2</span> 机器学习基础</h3>
+<p>这部分内容需要重新学习,但是不需要掌握复杂的原理,数学公式推导等,需要学会:</p>
+<ul>
+<li><strong>常见的数据预处理方法</strong>:Garbage In, Garbage Out
+<ul>
+<li>对数值型变量的处理
+<ul>
+<li>中心化、标准化、零方差/近零方差、共线性、分箱、样条变换、等</li>
+</ul></li>
+<li>对分类变量的处理:哑变量/独热编码等</li>
+<li>对因变量的处理:类不平衡</li>
+<li>缺失值处理:删除、插补</li>
+</ul></li>
+<li>特征工程:特征选择</li>
+<li>超参数调优</li>
+</ul>
+<p><em>存在的问题:处理后不管是单位还是尺度都已变化,怎么解释?</em></p>
+<p>除此之外,还需学习<strong>常见的机器学习算法</strong>:</p>
+<ul>
+<li>线性回归</li>
+<li>logistic回归</li>
+<li>lasso/ridge/elastic net</li>
+<li>决策树</li>
+<li>集成算法:随机森林、梯度提升树等</li>
+<li>KNN</li>
+<li>SVM</li>
+<li>和生存分析相关的机器学习算法:正则化Cox、随机生存森林、survival SVM、Coxboost等</li>
+<li>聚类分析、主成分分分析、因子分析</li>
+<li>……</li>
+</ul>
+<p>对于以上算法,只需学会使用即可,知道哪些算法可以用于什么样的数据、需要哪些数据预处理,结果如何解读等。</p>
+</section>
+<section id="统计软件和编程" class="level3" data-number="3.5.3">
+<h3 data-number="3.5.3" class="anchored" data-anchor-id="统计软件和编程"><span class="header-section-number">3.5.3</span> 统计软件和编程</h3>
+<ul>
+<li><p>SPSS,简单方便</p></li>
+<li><p>R语言,必学!</p>
+<ul>
+<li>我是医学生,R和python我应该学哪一个?</li>
+</ul></li>
+<li><p>python,影像组学建议学</p></li>
+<li><p>Linux,生信数据挖掘建议学</p></li>
+</ul>
+</section>
+<section id="附如果你要学习生信数据挖掘" class="level3" data-number="3.5.4">
+<h3 data-number="3.5.4" class="anchored" data-anchor-id="附如果你要学习生信数据挖掘"><span class="header-section-number">3.5.4</span> 附:如果你要学习生信数据挖掘</h3>
+<p><strong>下游分析需要掌握的基础知识:</strong></p>
+<p>以上所有,外加:</p>
+<p>什么是芯片,常用的芯片平台有哪些? 什么是GEO?表达矩阵,探针id转换?</p>
+<p>什么是一代测序,二代测序,三代测序? 什么是counts,tpm, fpkm? 什么是TCGA? TCGA包含哪些数据? 什么是编码基因?mRNA, lncRNA, miRNA, circRNA等? 生信常见的各种数据库id, hgnc gene symbol, entrez id, ensembl id等? 中心法则? 表观遗传涉及哪些内容? 什么是甲基化?单核苷酸多态性SNP, 拷贝数变异CVN?</p>
+<p>什么是gtf, gff, 参考基因组,基因组注释文件? 常见的生信数据存放格式?fastp, fastq, bam, sam,</p>
+<p>氨基酸缩写? 人类染色体命名规则?</p>
+<p>常见的生信下游分析方法?差异分析,生存分析,富集分析,WGCNA,免疫相关分析,治疗相关分析等,在不同数据类型(转录组、甲基化等)中?</p>
+<p>…</p>
+<p>上游分析需要的知识也很多。</p>
+<blockquote class="blockquote">
+<p>我的主要学习阵地:哔哩哔哩!解决你80%的问题</p>
+</blockquote>
+</section>
+</section>
+<section id="临床预测模型常见发文类型" class="level2" data-number="3.6">
+<h2 data-number="3.6" class="anchored" data-anchor-id="临床预测模型常见发文类型"><span class="header-section-number">3.6</span> 临床预测模型常见发文类型</h2>
+<p><strong>临床预测模型类文章主要内容是3个部分</strong>:</p>
+<ol type="1">
+<li>模型的建立-各种算法,logistic、决策树等等</li>
+<li>模型的评价-各种指标和图表,ROC、C-index、校准曲线、决策曲线等等</li>
+<li>模型的解释:<strong>临床预测模型必须不能脱离临床,单纯的数字游戏没有任何意义。</strong></li>
+</ol>
+<section id="比较简单的" class="level3" data-number="3.6.1">
+<h3 data-number="3.6.1" class="anchored" data-anchor-id="比较简单的"><span class="header-section-number">3.6.1</span> 比较简单的</h3>
+<blockquote class="blockquote">
+<p>算法不复杂,步骤也不复杂。只需要logistic回归、Cox回归、Lasso即可。</p>
+</blockquote>
+<ul>
+<li>诺莫图预测 转移性去势抵抗性前列腺癌经过 Lu177-PSMA 治疗后 的预后</li>
+</ul>
+<p>收集一些病人,监测一些指标,建立cox回归,评价模型,解释模型。</p>
+<p><img src="figs/PixPin_2024-09-30_16-49-15.png" class="img-fluid"> <img src="figs/PixPin_2024-09-30_16-50-03.png" class="img-fluid"> <img src="figs/PixPin_2024-09-30_16-50-22.png" class="img-fluid"></p>
+</section>
+<section id="更加典型的案例" class="level3" data-number="3.6.2">
+<h3 data-number="3.6.2" class="anchored" data-anchor-id="更加典型的案例"><span class="header-section-number">3.6.2</span> 更加典型的案例</h3>
+<blockquote class="blockquote">
+<p>训练集+测试集,各来一遍,各种图、指标都用上:nomogram、ROC曲线、校准曲线、决策曲线、K-M生存曲线、C-index等。</p>
+</blockquote>
+<ul>
+<li>临床预测模型评估COVID-19患者的风险</li>
+</ul>
+<p>收集一些病人,监测一些指标,建立模型,评价模型,解释模型</p>
+<p><img src="figs/PixPin_2024-09-30_16-51-07.png" class="img-fluid"></p>
+</section>
+<section id="机器学习方法的使用" class="level3" data-number="3.6.3">
+<h3 data-number="3.6.3" class="anchored" data-anchor-id="机器学习方法的使用"><span class="header-section-number">3.6.3</span> 机器学习方法的使用</h3>
+<blockquote class="blockquote">
+<p>随机森林、决策树</p>
+</blockquote>
+<ul>
+<li>老年人跌倒损伤的预测模型</li>
+</ul>
+<p>收集一些病人,监测一些指标,建立随机森林模型,评价模型,解释模型</p>
+<p><img src="figs/PixPin_2024-09-30_16-51-34.png" class="img-fluid"></p>
+<blockquote class="blockquote">
+<p>Cross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model</p>
+</blockquote>
+<ul>
+<li>胃切除术后90天死亡率的风险预测模型</li>
+</ul>
+<p>收集一些病人,监测一些指标,建立多种模型,评价模型,解释模型</p>
+<p><img src="figs/PixPin_2024-09-30_16-52-12.png" class="img-fluid"></p>
+<blockquote class="blockquote">
+<p>随机生存森林</p>
+</blockquote>
+<ul>
+<li>预测肝癌术后早期复发,的机器学习模型</li>
+</ul>
+<p><img src="figs/PixPin_2024-09-30_16-52-37.png" class="img-fluid"></p>
+</section>
+</section>
+<section id="临床预测模型和生信数据挖掘结合" class="level2" data-number="3.7">
+<h2 data-number="3.7" class="anchored" data-anchor-id="临床预测模型和生信数据挖掘结合"><span class="header-section-number">3.7</span> 临床预测模型和生信数据挖掘结合</h2>
+<p>也可以认为是<strong>机器学习和生信挖掘领域的结合</strong>,基本思路和常规的临床预测模型差不多,比上面介绍的临床预测模型内容更多,主要是两个方面:</p>
+<ul>
+<li><p>变量的选择</p></li>
+<li><p>指标的评价</p></li>
+</ul>
+<p>有了生信的加持,可以玩出更多花样!扩展性极大提高!工作量也成倍增加,<strong>通常此类文章机器学习只是其中一部分内容。</strong></p>
+<section id="生信数据挖掘到底在挖什么" class="level3" data-number="3.7.1">
+<h3 data-number="3.7.1" class="anchored" data-anchor-id="生信数据挖掘到底在挖什么"><span class="header-section-number">3.7.1</span> 生信数据挖掘,到底在挖什么?</h3>
+<blockquote class="blockquote">
+<p>本质是通过各种方法得到一小撮分子,再通过各种方法证明这些分子很重要!</p>
+</blockquote>
+<p><strong>寻找分子的过程通常也属于变量选择的过程,因为高通量最不缺的就是变量!</strong> 这些分子通常是mRNA/lncRNA/miRNA等。</p>
+<p>一些常见的方法:</p>
+<ul>
+<li>差异分析</li>
+<li>生存分析</li>
+<li>WGCNA</li>
+<li>免疫浸润</li>
+<li>hub gene</li>
+<li>多种方法取交集等</li>
+<li>……</li>
+</ul>
+<p>然后<strong>建立模型,这部分内容和临床预测模型差不多,也是建立各种机器学习算法</strong>:</p>
+<ul>
+<li>lasso</li>
+<li>cox</li>
+<li>logistic</li>
+<li>随机森林/随机生存森林</li>
+<li>决策树</li>
+<li>SVM</li>
+<li>KNN</li>
+<li>神经网络</li>
+<li>……</li>
+</ul>
+<p><strong>评价模型,和临床预测模型相似的内容</strong>:</p>
+<ul>
+<li>列线图</li>
+<li>校准曲线</li>
+<li>决策曲线</li>
+<li>ROC曲线</li>
+<li>生存曲线</li>
+<li>C-index/AUC</li>
+<li>……</li>
+</ul>
+<p>除此之外,还有一些<strong>生信数据挖掘特有的部分</strong>:必须和治疗/预后扯上关系</p>
+<ul>
+<li>和免疫浸润结合</li>
+<li>和富集分析结合</li>
+<li>和免疫治疗结合</li>
+<li>和其他signature/模型/指标比较</li>
+<li>各种分子分型</li>
+<li>……</li>
+</ul>
+<blockquote class="blockquote">
+<p>生信数据挖掘文章还有一个特点:紧跟热点</p>
+</blockquote>
+<p>铁死亡、铜死亡、细胞凋亡、内质网应激、肿瘤干性、缺氧、m6A、上皮-间质转化、凝血、血管生成、……</p>
+<p>理论上你去GO或者KEGG的官网,所有的分子集合都可以挖一遍;所有病理生理过程涉及的分子也都可以挖一遍(离子通道)。</p>
+<blockquote class="blockquote">
+<p>生信数据挖掘典型花里胡哨图:</p>
+</blockquote>
+<p><img src="figs/PixPin_2024-09-30_16-53-56.png" class="img-fluid"></p>
+</section>
+<section id="比较简单的-1" class="level3" data-number="3.7.2">
+<h3 data-number="3.7.2" class="anchored" data-anchor-id="比较简单的-1"><span class="header-section-number">3.7.2</span> 比较简单的</h3>
+<p>最早期的临床预测模型和生信数据挖掘结合的思路:</p>
+<ul>
+<li>gene signature、基因家族等</li>
+</ul>
+<p>通过各种方法找几个基因构建模型(早期,硬筛)</p>
+<p><img src="figs/PixPin_2024-09-30_16-54-16.png" class="img-fluid"></p>
+<p>2022年了,这种远古套路依然可以发!因为他加了实验……</p>
+<ul>
+<li>铁死亡相关的gene signature(某个病理生理过程相关的分子)</li>
+</ul>
+<p><img src="figs/PixPin_2024-09-30_16-54-44.png" class="img-fluid"></p>
+<p>思路不新,也没有实验,但是疾病没人挖掘:<strong>儿童败血性休克</strong>,机器学习只占一小部分内容,主要是寻找分子以及说明重要性:</p>
+<p><img src="figs/PixPin_2024-09-30_16-55-12.png" class="img-fluid"></p>
+</section>
+<section id="复杂的" class="level3" data-number="3.7.3">
+<h3 data-number="3.7.3" class="anchored" data-anchor-id="复杂的"><span class="header-section-number">3.7.3</span> 复杂的</h3>
+<blockquote class="blockquote">
+<p>超级复杂的工作量、泛癌、单细胞、实验验证</p>
+</blockquote>
+<ul>
+<li>细胞衰老和肿瘤微环境:机器学习内容是其中一小部分,但是不可或缺。</li>
+</ul>
+<p><img src="figs/PixPin_2024-09-30_16-55-56.png" class="img-fluid"></p>
+<p>恐怖的工作量:单是机器学习部分就有10种机器学习算法的101种组合(非常火爆的101种组合算法就是来自这篇文章!)!以及和其他已发表的模型进行比较!</p>
+<p><img src="figs/PixPin_2024-09-30_16-56-13.png" class="img-fluid"></p>
+</section>
+</section>
+<section id="总结" class="level2" data-number="3.8">
+<h2 data-number="3.8" class="anchored" data-anchor-id="总结"><span class="header-section-number">3.8</span> 总结</h2>
+<ul>
+<li>常用的方法就那么几个,只要认真学习,都能学会!</li>
+<li>对一些细节的处理、结果的解释、好的思路和想法更加重要!<strong>用工具解决一个问题是最简单的层面</strong></li>
+<li>医学中的机器学习<strong>更加强调结合医学背景的解释</strong>,并不单单是得到更好的模型表现即可,得到模型后结合背景知识进行更加深入的谈论是必不可少的内容,也是和传统机器学习领域最大的不同之处。</li>
+</ul>
+<p>感谢大家,祝大家百发百中!</p>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./临床预测模型建立的一般步骤.html" class="pagination-link" aria-label="临床预测模型建立的一般步骤">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./文献学习.html" class="pagination-link" aria-label="文献学习">
+        <span class="nav-page-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\273\272\347\253\213\347\232\204\344\270\200\350\210\254\346\255\245\351\252\244.html" "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\273\272\347\253\213\347\232\204\344\270\200\350\210\254\346\255\245\351\252\244.html"
new file mode 100644
index 0000000..298a678
--- /dev/null
+++ "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\345\273\272\347\253\213\347\232\204\344\270\200\350\210\254\346\255\245\351\252\244.html"
@@ -0,0 +1,1073 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>2&nbsp; 临床预测模型建立的一般步骤 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./临床预测模型和机器学习.html" rel="next">
+<link href="./临床预测模型概念.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型建立的一般步骤.html"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#明确研究目的" id="toc-明确研究目的" class="nav-link active" data-scroll-target="#明确研究目的"><span class="header-section-number">2.1</span> 明确研究目的</a></li>
+  <li><a href="#探索数据" id="toc-探索数据" class="nav-link" data-scroll-target="#探索数据"><span class="header-section-number">2.2</span> 探索数据</a></li>
+  <li><a href="#数据预处理和变量筛选" id="toc-数据预处理和变量筛选" class="nav-link" data-scroll-target="#数据预处理和变量筛选"><span class="header-section-number">2.3</span> 数据预处理和变量筛选</a></li>
+  <li><a href="#建立模型" id="toc-建立模型" class="nav-link" data-scroll-target="#建立模型"><span class="header-section-number">2.4</span> 建立模型</a></li>
+  <li><a href="#评价模型" id="toc-评价模型" class="nav-link" data-scroll-target="#评价模型"><span class="header-section-number">2.5</span> 评价模型</a></li>
+  <li><a href="#结果报告和写作" id="toc-结果报告和写作" class="nav-link" data-scroll-target="#结果报告和写作"><span class="header-section-number">2.6</span> 结果报告和写作</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型建立的一般步骤.html"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>很多高分文献中都有涉及如何建立一个预测模型,比如:</p>
+<ul>
+<li>Strandberg R, Jepsen P, Hagström H. Developing and validating clinical prediction models in hepatology—An overview for clinicians[J]. Journal of Hepatology, 2024: S0168-8278(24)00213–7. DOI:10.1016/j.jhep.2024.03.030.</li>
+<li>Steyerberg E W, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation[J]. European Heart Journal, 2014, 35(29): 1925–1931. DOI:10.1093/eurheartj/ehu207.</li>
+</ul>
+<p>BMJ也出过多篇高分文章指导临床预测模型的建立,比如:</p>
+<ul>
+<li>Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G. Developing clinical prediction models: a step-by-step guide. BMJ. 2024 Sep 3;386:e078276. doi: 10.1136/bmj-2023-078276. PMID: 39227063; PMCID: PMC11369751.</li>
+</ul>
+<p>英文的看不懂看中文的也行:</p>
+<ul>
+<li>谷鸿秋,王俊峰,章仲恒,等.临床预测模型:模型的建立[J].中国循证心血管医学杂志,2019,11(01):14-16+23.</li>
+</ul>
+<p>如果是<strong>从写代码的顺序</strong>的角度来说,大致可以分为以下几个步骤:</p>
+<ul>
+<li>明确研究目的</li>
+<li>探索性数据分析</li>
+<li>数据预处理和变量筛选</li>
+<li>建立模型</li>
+<li>评价模型</li>
+<li>结果报告和写作</li>
+</ul>
+<section id="明确研究目的" class="level2" data-number="2.1">
+<h2 data-number="2.1" class="anchored" data-anchor-id="明确研究目的"><span class="header-section-number">2.1</span> 明确研究目的</h2>
+<p>首先要<strong>明确你的研究目的</strong>。</p>
+<ul>
+<li>你是要预测某个患者在10年后的生存状态吗?</li>
+<li>你还是要判断某个病理标本是tumor还是normal?</li>
+<li>你是要计算患者在使用某个药物后的空腹血糖水平吗?</li>
+<li>你还是要预测心梗患者的死亡风险?</li>
+</ul>
+<p>不同的研究目的需要使用不同的模型,对应的模型评价方法、预处理方法、模型比较方法都不一样,不能生搬硬套。</p>
+<p>以上四个问题其实可以分为三类,刚好对应着模型的三种用途:</p>
+<ul>
+<li>分类</li>
+<li>回归</li>
+<li>生存分析</li>
+</ul>
+<p>如果你的结果变量(或者叫应变量、因变量)是<strong>数值型</strong>的,比如血糖、血压、血钾这种,那么你需要选择一个可以做回归分析的模型(大部分机器学习方法都是既支持回归也支持分类),此时你选择逻辑回归必然是不行的。</p>
+<p>如果你的结果变量是<strong>分类型</strong>的,比如生存/死亡,tumor/normal,治愈/有效/无效,患病/不患病,那么你需要选择一个可以做分类分析的模型。</p>
+<p>以上两种类型的模型通常会被大家称为<strong>诊断模型</strong>。</p>
+<p>如果你的数据涉及到时间问题,那么你需要选择一个可以做生存分析的模型。这种模型通常被大家称为<strong>预后模型</strong>。</p>
+</section>
+<section id="探索数据" class="level2" data-number="2.2">
+<h2 data-number="2.2" class="anchored" data-anchor-id="探索数据"><span class="header-section-number">2.2</span> 探索数据</h2>
+<p>探索数据的过程非常重要,充分了解你的数据,这个过程有个专业的名词叫**<em>探索性数据分析(exploratory-data-analysis,EDA)</em>,主要包括以下几个方面:</p>
+<ul>
+<li>共有多少行?多少列?</li>
+<li>哪些是自变量,哪些是因变量?</li>
+<li>每个变量的含义是什么?</li>
+<li>有没有缺失值?离群值?异常值?需不需要处理?</li>
+<li>有没有偏态分布?需不需要处理?</li>
+<li>每个变量是数值型还是分类型?需要转换吗?</li>
+<li>各个变量的单位是否需要转换?需要归一化吗?</li>
+<li>各个变量之间有没有相关性?共线性?零方差?需要处理吗?</li>
+<li>……</li>
+</ul>
+<p>每一个问题都很重要,都要搞清楚!不同的模型对数据的要求是不一样的,有的要求不能有缺失值,有的模型要求数据必须归一化等等,这些问题对开发一个准确的、高性能的模型是必须的。</p>
+<p>有些人连自己的数据是啥都不了解,就开始生搬硬套代码,最后得到shit一样的结果,然后到处问:为什么我的模型这么垃圾?滑稽。</p>
+</section>
+<section id="数据预处理和变量筛选" class="level2" data-number="2.3">
+<h2 data-number="2.3" class="anchored" data-anchor-id="数据预处理和变量筛选"><span class="header-section-number">2.3</span> 数据预处理和变量筛选</h2>
+<p>探索完你的数据之后,你就要根据自己选择的模型进行相应的预处理,而且不同的预处理步骤有一定的顺序。</p>
+<p>这一步需要你有一定的专业知识、统计学知识、机器学习知识,其实很难,大家可以遇到了具体问题具体搜索。</p>
+<p>下面是对不同模型推荐的预处理步骤(推荐,不是必需一定要按这个来!!):</p>
+<p><img src="figs/PixPin_2024-04-27_13-20-37.png" class="img-fluid"></p>
+<p>名词解释:</p>
+<ul>
+<li><code>dummy</code>:对分类变量进行哑变量处理,或者进行其他重编码</li>
+<li><code>zv</code>:去除方差为0(zero-variance)或者近似为0的变量</li>
+<li><code>impute</code>:对缺失值进行插补</li>
+<li><code>decorrelate</code>:处理有共线性或者高度相关的变量</li>
+<li><code>normalize</code>:对数据进行标准化</li>
+<li><code>transform</code>:对变量进行转换,比如log、取对数、分箱等</li>
+</ul>
+<p>变量选择(又叫特征选择,feature-selection),是机器学习和统计建模领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,理论其实非常复杂。</p>
+<p>比如有个数据共有26个自变量,可能其中只有几个是重要的,其他的有没有都不重要或者对模型影响不大,这时候就要把不重要的变量筛掉。</p>
+<p>在传统的临床预测模型中,比较常见的变量筛选方法有:</p>
+<ul>
+<li>先单因素后多因素</li>
+<li>最优子集(全子集回归)</li>
+<li>逐步选择法</li>
+<li>lasso回归筛选变量</li>
+<li>随机森林筛选变量</li>
+<li>…</li>
+</ul>
+</section>
+<section id="建立模型" class="level2" data-number="2.4">
+<h2 data-number="2.4" class="anchored" data-anchor-id="建立模型"><span class="header-section-number">2.4</span> 建立模型</h2>
+<p>这一步其实是大家遇到的最多的一步,可能也是大多数人的第一步。这里的“建立模型”其实是狭义的,就是单指“在训练集拟合模型”这一步,广义的“建立模型”包括本文所说的所有步骤。</p>
+<p>这一步涉及到的主要知识点是各种<strong>重抽样</strong>方法的选择,比如boostrap(自助法,也有人翻译成拔靴法)、交叉验证、嵌套重抽样等。</p>
+<p>但是写代码时其实就是1行代码而已,没有难度,需要大家理解每一种重抽样方法。</p>
+</section>
+<section id="评价模型" class="level2" data-number="2.5">
+<h2 data-number="2.5" class="anchored" data-anchor-id="评价模型"><span class="header-section-number">2.5</span> 评价模型</h2>
+<p>这一步其实是最复杂的,因为从第二步(探索数据)到这一步其实是一个<strong>不断重复循环</strong>的过程,可能你建立一个模型之后发现这个模型表现很烂,那么你需要重新审视之前的每一个过程,因为每一步都会对模型表现产生影响,你就需要不断对之前的步骤进行调整,也就是不断地重复之前的过程。通常你可能需要重复好多次之后才能得到满意的结果。</p>
+<p>而且模型的评价现在需要在<strong>不同的数据集中分别评价</strong>,比如:训练集、测试集、外部验证集等。有时候你的训练集模型表现很好但是测试集不一定好,那你是不是得找原因?如果你没有超级强大的知识储备,对你来说最简单的可行方案就是挨个试(对高手来说这一步也必不可少,只是写论文不需要写这个过程)。</p>
+<p>除此之外,对于不同的研究目的和不同的模型需要选择不同的评价指标。对于分类问题你需要选择能够评价分类问题的指标,对于回归问题你需要选能够择评价回归问题的指标,对于生存问题你需要选择能够评价生存问题的指标。不能混用,不然必报错!</p>
+<p>同样是分类问题,研究目的不同使用的指标也不一样,比如:你是想获得更大的敏感度还是更大的特异度?换个说法就是:<strong>你想要更高的误诊率还是更大的漏诊率</strong>?类别的不平衡对某些指标影响很大,你的研究能忽略这种问题吗?不能的话就要选择适合评价类不平衡数据的指标。诸如此类的问题,都和指标选择有关。</p>
+<p>当你通过一通操作确定了最终的模型之后,你就可以画个<strong>列线图</strong>展示你的模型了,除此之外还可以根据<strong>列线图得分</strong>进行分组,做生存分析、亚组分析等。</p>
+<p>如果你还想更加高大上一点,你还可以用<code>shiny</code>做个网页计算器。</p>
+</section>
+<section id="结果报告和写作" class="level2" data-number="2.6">
+<h2 data-number="2.6" class="anchored" data-anchor-id="结果报告和写作"><span class="header-section-number">2.6</span> 结果报告和写作</h2>
+<p>全都搞定之后就可以写文章了,不会写的话就pubmed关键词搜一搜,模仿一下即可。除此之外还有一个<a href="https://www.bmj.com/content/350/bmj.g7594">TRIPOD指南</a>,上面也有建议你需要写哪些东西。</p>
+<div class="callout callout-style-default callout-note callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+注释
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>本合集并不是按照以上顺序编排的,本合集是模块化的,把这么多步骤分成不同的部分,每个部分都做详细介绍,方便大家学习。</p>
+</div>
+</div>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./临床预测模型概念.html" class="pagination-link" aria-label="什么是临床预测模型?">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./临床预测模型和机器学习.html" class="pagination-link" aria-label="临床预测模型和机器学习">
+        <span class="nav-page-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git a/docs/clinmodel-definition.html "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\346\246\202\345\277\265.html"
similarity index 65%
rename from docs/clinmodel-definition.html
rename to "docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\346\246\202\345\277\265.html"
index 7923184..19a91b7 100644
--- a/docs/clinmodel-definition.html
+++ "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\346\246\202\345\277\265.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 1&nbsp; 什么是临床预测模型?</title>
+<title>1&nbsp; 什么是临床预测模型? – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -30,24 +30,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./nomogram-logistic.html" rel="next">
+<link href="./临床预测模型建立的一般步骤.html" rel="next">
 <link href="./index.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -56,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -70,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-definition.html">模型建立</a></li><li class="breadcrumb-item"><a href="./clinmodel-definition.html"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型概念.html"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -85,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -109,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link active">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link active">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -281,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -477,7 +459,7 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
@@ -488,12 +470,12 @@ <h2 id="toc-title">目录</h2>
   <li><a href="#临床预测模型和机器学习" id="toc-临床预测模型和机器学习" class="nav-link" data-scroll-target="#临床预测模型和机器学习"><span class="header-section-number">1.2</span> 临床预测模型和机器学习</a></li>
   <li><a href="#临床预测模型和统计学" id="toc-临床预测模型和统计学" class="nav-link" data-scroll-target="#临床预测模型和统计学"><span class="header-section-number">1.3</span> 临床预测模型和统计学</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./临床预测模型概念.html"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></a></li></ol></nav>
 <div class="quarto-title">
 <h1 class="title"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></h1>
 </div>
@@ -508,17 +490,19 @@ <h1 class="title"><span class="chapter-number">1</span>&nbsp; <span class="chapt
   </div>
   
 
+
 </header>
 
-<p>很多人,对临床预测模型的概念很模糊,你上网一查,都是各种专有名词,然后告诉你已经在临床应用很久了,很有用,各种牛逼的期刊都可以见到临床预测模型的身影,在生信文章中更是普遍。</p>
+
+<p>很多初学者对临床预测模型的概念很模糊,你上网一查,都是各种专有名词,然后告诉你已经在临床应用很久了,很有用,各种牛逼的期刊都可以见到临床预测模型的身影,在生信相关的文章中也很普遍,还可以用临床预测模型最meta分析等。</p>
 <p>一通操作下来,你迷茫了,更加不知道临床预测模型是什么东西了,感觉懂了,又感觉没懂!</p>
-<p>今天用通俗的语言来解释什么是临床预测模型,读完后,你应该真的懂了!</p>
+<p>下面用通俗的语言来解释什么是临床预测模型,不扯高大上理论和晦涩的名词,只用接地气的语言来解释。</p>
 <section id="简单理解" class="level2" data-number="1.1">
 <h2 data-number="1.1" class="anchored" data-anchor-id="简单理解"><span class="header-section-number">1.1</span> 简单理解</h2>
 <p>临床预测模型,初听这个名字,或许会觉得很高大上,其实没那么复杂,你<strong>可以理解成一种方法</strong>,这种方法可以预测一个人到底是有病还是没病,或者预测一个人一段时间后会不会死,或者预测一个人的某种疾病会不会复发,又或者是预测一个样本到底是肿瘤还是正常组织……</p>
-<p>再直白一点,临床预测模型是<strong>一个公式</strong>,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!</p>
+<p>再直白一点,临床预测模型是<strong>一个数学公式</strong>,根据这个公式,你提供一些基本信息,比如年龄、性别、体重、血红蛋白量等(或者某个基因的表达量等),就可以计算出这个人到底是有病还是没病!</p>
 <p>目前很多疾病都需要做磁共振、做CT、病理才能确诊,假如你发现了一个公式,只要验个血,得到几个生化指标,就能根据你的公式算出来这个人到底是有病还是没病!这不比CT、磁共振、病理简单多了?值得推广。</p>
-<p>所以,临床预测模型的本质是一种<strong>分类方法</strong>。通过这种方法,你可以对很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。</p>
+<p>所以,临床预测模型的<strong>本质是一种分类方法</strong>。通过这种方法,你可以对临床中的很多东西进行分类,比如,生和死、有病和没病、肿瘤和非肿瘤、复发和不复发等等。</p>
 <p>既然是一种方法,那肯定就有准确和不准确,看名字也能知道,这只是一种<strong>预测</strong>,或者叫:<strong>猜(有根据的猜)!</strong> 如果你这种方法能和<strong>金标准</strong>相提并论,那说明你的方法很牛,如果恰好你的方法更加简单方便、经济适用,那你的方法真是太厉害了,非常有希望成为新的金标准!</p>
 <p>那如何评价你的方法好还是不好呢?这就是<strong>临床预测模型的评价</strong>,通过各种指标(后面会详细介绍)、从各种不同的角度评价。</p>
 <p>说了这么多,我怎么才能得到我的模型(或者叫方法)呢?这就是临床预测模型的另一个主要内容:<strong>临床预测模型的建立</strong>。</p>
@@ -528,19 +512,19 @@ <h2 data-number="1.1" class="anchored" data-anchor-id="简单理解"><span class
 <section id="临床预测模型和机器学习" class="level2" data-number="1.2">
 <h2 data-number="1.2" class="anchored" data-anchor-id="临床预测模型和机器学习"><span class="header-section-number">1.2</span> 临床预测模型和机器学习</h2>
 <p>机器学习,是不是听上去也高大上,但是对于学习临床医学的我们来说,不需要知道的太彻底,大概明白是什么就够了。</p>
-<p><strong>逻辑回归也是机器学习的一种</strong>,随机森林、决策树、支持向量机、lasso、岭回归、弹性网络、xgboost等等,这些都是和逻辑回归一样,就是<strong>不同的方法</strong>而已!</p>
+<p><strong>逻辑回归也是机器学习的一种</strong>,随机森林、决策树、支持向量机、lasso、岭回归、弹性网络、xgboost等等,这些都是和逻辑回归一样,只是<strong>不同的方法</strong>而已!</p>
 <p>学过医学统计学的都知道(没学过可能也知道),如果因变量是连续性变量,那么我们就用多元线性回归,如果因变量是二分类变量,就用logistic回归(分类)。<strong>回归和分类</strong>,刚好就是机器学习的两个主要任务。很多方法,比如随机森林,既可以做回归,又可以做分类,而且准确度还很高,这就是为什么大家喜欢用其他方法的原因,主要是为了提高准确性。</p>
 <p>临床预测模型,只是机器学习在医学领域的应用之一,回归和分类,适用于各行各业,所以在很多领域你都听过机器学习这几个字。此外,还有深度学习、人工智能等等,这些都可以简单的理解为更加牛逼的方法!</p>
 <p>这些不同的方法都有各自适合的场景,在合适的场景下才能得到最好的表现,如何让模型表现的更好,那就需要学习一些机器学习的基本知识了,这些东西在<strong>bilibili</strong>一搜一大堆,大家可以自行学习,不过千万不要太沉迷哟!</p>
-<p>但是你一搜机器学习教程,出来的都是推荐你<strong>吴恩达、西瓜书等内容,我是不太推荐的</strong>,这些东西不是给生物医药领域的人看的,你看这些,可能就是听天书,毕竟很多医学生,连高数都是不学的!我比较<strong>推荐statquest</strong>,b站也可以搜到,这是一个国外的生物统计教授的课程,他的风格更适合我们。不过在学习这些这些之前,希望你已经学会了书本中常见的医学统计知识。</p>
+<p>但是你一搜机器学习教程,出来的都是推荐你<strong>吴恩达、西瓜书等内容,我是不太推荐的</strong>,这些东西不是给医学生/医生看的,你看这些,可能就是看天书,毕竟很多医学生,连高数都是不学的!我比较推荐<strong>statquest</strong>,b站也可以搜到,这是一个国外的生物统计教授的课程,他的风格更适合我们。不过在学习这些这些之前,希望你已经学会了书本中常见的医学统计知识。</p>
 </section>
 <section id="临床预测模型和统计学" class="level2" data-number="1.3">
 <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统计学"><span class="header-section-number">1.3</span> 临床预测模型和统计学</h2>
 <p>我们学过的医学统计学,在某些方面和机器学习是有交集的。比如,逻辑回归、多元线性回归,既是统计学方法,也是机器学习算法,这并不冲突,就像一个人在不同场合有不同身份一样。</p>
-<p><strong>在谈临床预测模型时,我们可能是偏向于机器学习多一点的,毕竟用到的很多方法,都是来自于机器学习领域。</strong></p>
+<p>在谈临床预测模型时,我们可能是偏向于机器学习多一点的,毕竟用到的很多方法和理论,都是来自于机器学习领域。但是随着临床预测模型的愈加火爆,它隐隐有成为一个单独细分领域的趋势。</p>
 <p>你可能见到在很多生信文章中,使用一个模型并没有提前检验各种条件,直接就用了。但在医学统计学中,很多方法都是有适用条件的,符合条件才能用。哪种才是正确的呢?</p>
 <p>其实不用纠结,别人能用你也能用,多看文章,你能发现各种用法,但是别人依然发了SCI,你也可以。如果非要说区别,这就涉及到频率学派和贝叶斯学派这些东西了,咱也不是很懂了,如果你有兴趣,可以自己探索。如果就是为了发文章,那就别搞这些没用的了,<strong>多看几篇高分SCI,跟着里面的思路模仿</strong>吧!</p>
-<p>读到这里,你应该大致了解临床预测模型,不致于云里雾里了。但是光说不练是假把式,还是希望你能多读几篇相关的文献。</p>
+<p>读到这里,你应该大致解临床预测模型,不致于云里雾里了。但是光说不练是假把式,还是希望你能多读几篇相关的文献。我也会在后面的章节中给大家介绍一些临床预测模型领域的经典文献。</p>
 
 
 </section>
@@ -581,18 +565,7 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -624,11 +597,50 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -638,8 +650,17 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -651,7 +672,130 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -695,6 +839,7 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -720,6 +865,32 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -781,27 +952,32 @@ <h2 data-number="1.3" class="anchored" data-anchor-id="临床预测模型和统
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./index.html" class="pagination-link">
+      <a href="./index.html" class="pagination-link" aria-label="前言">
         <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">前言</span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./nomogram-logistic.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./临床预测模型建立的一般步骤.html" class="pagination-link" aria-label="临床预测模型建立的一般步骤">
+        <span class="nav-page-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git "a/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\350\257\204\344\273\267.html" "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\350\257\204\344\273\267.html"
new file mode 100644
index 0000000..b2306e7
--- /dev/null
+++ "b/docs/\344\270\264\345\272\212\351\242\204\346\265\213\346\250\241\345\236\213\350\257\204\344\273\267.html"
@@ -0,0 +1,1151 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.6.15">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>临床预测模型的评价 – R语言实战临床预测模型</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+</style>
+
+
+<script src="site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="site_libs/quarto-nav/headroom.min.js"></script>
+<script src="site_libs/clipboard/clipboard.min.js"></script>
+<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="site_libs/quarto-search/fuse.min.js"></script>
+<script src="site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="./">
+<link href="./conf_matrix-3d.html" rel="next">
+<link href="./feature-selection_randomforest.html" rel="prev">
+<script src="site_libs/quarto-html/quarto.js"></script>
+<script src="site_libs/quarto-html/popper.min.js"></script>
+<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="site_libs/quarto-html/anchor.min.js"></script>
+<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "没有结果",
+    "search-matching-documents-text": "匹配的文档",
+    "search-copy-link-title": "复制搜索链接",
+    "search-hide-matches-text": "隐藏其它匹配结果",
+    "search-more-match-text": "更多匹配结果",
+    "search-more-matches-text": "更多匹配结果",
+    "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "取消",
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
+  }
+}</script>
+
+
+</head>
+
+<body class="nav-sidebar floating">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型评价.html">临床预测模型的评价</a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="./">R语言实战临床预测模型</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="搜索"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">前言</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./nri.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./idi.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">目录</h2>
+   
+  <ul>
+  <li><a href="#什么样的模型是优秀的模型" id="toc-什么样的模型是优秀的模型" class="nav-link active" data-scroll-target="#什么样的模型是优秀的模型">什么样的模型是优秀的模型?</a>
+  <ul class="collapse">
+  <li><a href="#区分度的评价" id="toc-区分度的评价" class="nav-link" data-scroll-target="#区分度的评价">区分度的评价</a></li>
+  <li><a href="#校准度的评价" id="toc-校准度的评价" class="nav-link" data-scroll-target="#校准度的评价">校准度的评价</a></li>
+  </ul></li>
+  <li><a href="#多个模型的比较" id="toc-多个模型的比较" class="nav-link" data-scroll-target="#多个模型的比较">多个模型的比较</a>
+  <ul class="collapse">
+  <li><a href="#nri" id="toc-nri" class="nav-link" data-scroll-target="#nri">NRI</a></li>
+  <li><a href="#idi" id="toc-idi" class="nav-link" data-scroll-target="#idi">IDI</a></li>
+  </ul></li>
+  <li><a href="#临床适用性" id="toc-临床适用性" class="nav-link" data-scroll-target="#临床适用性">临床适用性</a>
+  <ul class="collapse">
+  <li><a href="#决策曲线分析" id="toc-决策曲线分析" class="nav-link" data-scroll-target="#决策曲线分析">决策曲线分析</a></li>
+  <li><a href="#临床影响曲线" id="toc-临床影响曲线" class="nav-link" data-scroll-target="#临床影响曲线">临床影响曲线</a></li>
+  </ul></li>
+  <li><a href="#回归模型的评价" id="toc-回归模型的评价" class="nav-link" data-scroll-target="#回归模型的评价">回归模型的评价</a></li>
+  <li><a href="#参考资料" id="toc-参考资料" class="nav-link" data-scroll-target="#参考资料">参考资料</a></li>
+  </ul>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default">
+<div class="quarto-title">
+<h1 class="title">临床预测模型的评价</h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>当我们建立好预测模型后,如何评价我们的模型好坏呢?当我们建立了很多不同的模型,如何评价不同模型之间的优劣呢?</p>
+<p>这一篇主要就是讲这些,其实就是一些概念的理解,用代码计算是非常简单的。</p>
+<p>总的来说,临床预测模型的评价可以从以下几个方面进行:</p>
+<ul>
+<li>区分度</li>
+<li>校准度</li>
+<li>临床适用性</li>
+<li>模型改善度</li>
+</ul>
+<p>如果你只有1个模型,不涉及模型的比较,那么就从区分度(Discrimination)、校准度(Calibration)、临床适用性三个方面进行评价。如果涉及多个模型的比较,还需要增加模型改善度相关的评价,比如:NRI和IDI。</p>
+<section id="什么样的模型是优秀的模型" class="level2">
+<h2 class="anchored" data-anchor-id="什么样的模型是优秀的模型">什么样的模型是优秀的模型?</h2>
+<blockquote class="blockquote">
+<p>一个理想的模型应该是这样的:它能正确区分所有的患者和非患者,并且能准确预测每一个个体发生危险事件的风险大小。很明显这样的模型是不存在的,我们只能朝这个方向努力。</p>
+</blockquote>
+<p>评价一个模型的好坏可以从<strong>区分度(Discrimination)和校准度(Calibration)</strong>两个方面进行。</p>
+<p><strong>区分度</strong>指的是一个模型能正确把人群分为患者/非患者,或者正确区分个体是处于低风险、还是处于高风险,或者正确预测患者是存活、还是死亡等的能力。</p>
+<p>但是一个模型只是有良好的区分度是不够的,因为临床问题是很复杂的,并不是只要正确分类就行了。对于不同的患者,可能他们都处于高风险组,但是对于51%的风险和90%的风险,我们的处理是不一样的!</p>
+<p>这就引出了<strong>校准度</strong>的概念,校准度指的是结局实际发生的概率和模型预测出的概率之间的一致性,所以校准度又叫一致性、拟合优度(goodness-of-fit),校准度体现了一个模型对绝对风险预测的准确性。</p>
+<div class="callout callout-style-default callout-note callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+注释
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>尽管只靠区分度是不够的,但临床医生不应使用区分度较差的模型。区分度差的模型也没有必要进一步评价校准度了。</p>
+</div>
+</div>
+<p>一个具有良好区分度的模型,校准度不一定也很好。比如,A和B两个患者都是低分险组,A的风险是10%,B的风险是30%,如果一个模型把这两个患者都分到低风险组,那说明这个模型的区分度很好,因为分的很准;但是如果这个模型预测A的风险是1%,B的风险是3%,那么这个模型的校准度就是很差的,因为预测的概率和实际概率相差很大。如果使用这样的模型预测出来的结果处理病人的话,可能就会碰到很多问题。</p>
+<p>区分度和校准度虽然都有不足,但是一般来说,具有较差区分度的模型,其校准度也不会很好。当一个模型区分度和校准度都很差的时候,我们可以先从提高模型区分度的角度继续改进。</p>
+<section id="区分度的评价" class="level3">
+<h3 class="anchored" data-anchor-id="区分度的评价">区分度的评价</h3>
+<p>说了这么多,那我们应该用哪些指标评价模型的分类能力的强弱呢?</p>
+<p>对于二分类模型来说,临床中常用的评价指标是<strong>ROC曲线</strong>和<strong>C-Statistic</strong>。二分类模型的AUC(ROC曲线下面积)和C-Statistic是一个东西,越接近1,说明模型的区分度越好,如果接近0.5说明模型的预测结果和乱猜差不多。一般认为,AUC或者C-Statistic在0.6以下是低区分度,在0.6~0.75之间是中区分度,高于0.75是高区分度。</p>
+<p><img src="figs/Snipaste_2023-04-01_18-00-09.png" class="img-fluid"></p>
+<p>ROC曲线的横坐标是1-特异度(横坐标是特异度也可以,此时的横坐标范围是1到0),纵坐标是灵敏度,也就是横坐标是假阳性,纵坐标是真阳性,这两个指标刚好是相反的,一个大另一个就小,所以一般我们会找<strong>一个阈值</strong>,使得曲线下面积最大。但是如果考虑到临床,这样做有时也是不妥的。比如,在患者具有某些高危疾病(比如心梗、肺梗等)的风险时,我们应该采取更加激进的措施进行预防,这时我们就需要更高的灵敏度,因为不想漏诊。</p>
+<p>近几年各种机器学习方法在临床预测模型中使用的越来越多,所以模型的评价指标也有了更多的选择。对于分类模型,除了ROC曲线外,还可以使用以下指标进行评价:</p>
+<ul>
+<li><strong>混淆矩阵</strong>(Confusion Matrix):混淆矩阵是分类任务中所有可能预测结果与真实结果的总结,包含了真阳性、假阳性、真阴性和假阴性的计数,是下述精确率、召回率等指标计算的基础。</li>
+</ul>
+<p>用一张图来总结混淆矩阵以及根据混淆矩阵计算出的各种指标(来自于<a href="https://en.wikipedia.org/wiki/Confusion_matrix">维基百科</a>):</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="figs/Snipaste_2023-04-01_18-19-50.png" class="img-fluid figure-img"></p>
+<figcaption>混淆矩阵</figcaption>
+</figure>
+</div>
+<p>这面这个东西,在不同的场景有不同的叫法,在机器学习和预测模型领域,它叫<strong>混淆矩阵</strong>,但是在诊断试验中,它叫<strong>诊断试验的四格表</strong>。</p>
+<p>下面要介绍的所有指标,都是根据这个混淆矩阵计算出来的!</p>
+<ul>
+<li><strong>准确率</strong>(Accuracy):准确率是最直观的评价指标,定义为分类正确的样本数占总样本数的比例。但是在类别分布不均匀(即类别不平衡)的情况下,准确率可能产生误导。假如有100个人,其中只有1个人有癌症,其余99个没有癌症,如果模型此时把100个人都预测为没有癌症,那么准确率是99%,非常高,但是此时对于那个<strong>漏诊</strong>的人来说是不能接受的。此时漏诊率为100%,<strong>漏诊率=1-灵敏度</strong>。</li>
+<li><strong>精确率</strong>(Precision):也叫<strong>查准率</strong>,精确率是指被模型预测为阳性的样本中,真正是阳性的比例。</li>
+<li><strong>召回率</strong>(Recall):也叫<strong>查全率</strong>,在医学中通常被称为<strong>灵敏度</strong>(sensitivity),<strong>真阳性率</strong>,召回率是指所有实际为阳性的样本中,被模型正确识别为阳性的比例。还是上面那个100人的例子,此时它的灵敏度就是0,这样的结果是没有意义的,因为对于临床来说,漏诊是不能被接受的。以查全率为横坐标,以查准率为纵坐标,绘制曲线,可以得到如下图所示的<strong>P-R曲线</strong>。</li>
+</ul>
+<p><img src="figs/PixPin_2024-04-28_12-56-47.png" class="img-fluid"></p>
+<ul>
+<li><strong>F1分数</strong>(F1-Score):F1分数是精确率和召回率的加权平均值,旨在同时考虑精确率和召回率,特别适用于类别不平衡问题,范围也是[0,1]之间。精准率和召回率是相互矛盾的,一个增大另一个就会减小,所以我们需要找到一个平衡点,由此引出了F1分数,F1分数越高,说明模型越稳健。</li>
+<li><strong>特异度</strong>(Specificity):指所有实际为阴性的样本中,被模型正确识别为阴性的比例。上述的100人的例子,特异度就是100%,也就是说你没有<strong>误诊</strong>的。误诊率是0,<strong>误诊率=1-特异度</strong>。</li>
+<li><strong>马修斯相关系数</strong>(Matthews Correlation Coefficient,MCC):同时考虑混淆矩阵中4个类别的结果,并综合考量,范围是[-1,1],1表示完美预测,0表示随机预测,-1表示完全相反。尤其适用于类不平衡的二分类问题。</li>
+<li><strong>均衡准确率</strong>(Balanced Accuracy):当出现类别不平衡时,使用准确率评价可能会出现较大偏差,此时可以使用均衡准确率,它是每个类别中预测正确的比例的算术平均值。</li>
+</ul>
+<p>除了这些,还有阳性预测值/阴性预测值,也可以用来评价模型。</p>
+</section>
+<section id="校准度的评价" class="level3">
+<h3 class="anchored" data-anchor-id="校准度的评价">校准度的评价</h3>
+<p>目前校准度的评价最好的方式还是使用<strong>校准曲线</strong>(Calibration curve,或者Calibration plot),在机器学习领域又叫可靠性曲线(reliability curve)。通过校准曲线可以非常直观地看到预测概率和真实概率的关系。</p>
+<p><img src="figs/Snipaste_2023-04-01_18-00-26.png" class="img-fluid"></p>
+<p>校准曲线的横纵坐标分别是预测概率和真实概率(横纵坐标可以互换),完美的校准曲线应该是一条斜率为1,截距是0的直线是,说明模型的预测的概率和真实概率完全一致,模型超级准确。</p>
+<p>校准度的评价可以在很多水平进行,比如,从整体角度,或者从不同的组进行等。</p>
+<p>假如100个人有20个人发生了结局事件,那么真实概率就是20%,我们的模型会对每个人都计算出一个概率,如果大于某个值(比如说0.5),我们就认为这个人会发生结局事件,小于0.5就认为不会发生结局事件,那么这100个人每个人都会得到一个概率,把100个人的概率加起来再除以100,就得到了模型预测的平均概率,这个概率就是从整体角度评价的。</p>
+<p>假如把100个人按照预测概率大小排好序,然后分成10组,每组10人,在每个组内计算模型平均概率,再和真实概率(比如一组内10人有3人发生了结局事件,那这一组的真实概率就是30%)比较,然后把真实概率作为横坐标,预测概率作为纵坐标,就可以画出Calibration curve了,这就是从不同组的角度评价的(这是目前主流做法)。</p>
+<p>除了直接查看图形,校准度还可以用统计检验来评估真实概率和预测概率的差异,比如<strong>Hosmer-Lemeshow检验(H-L 检验)</strong>,若得到的P值小于0.05,那说明模型的预测概率和真实概率之间确实有差异,不是由于随机误差导致的,若P值大于0.05,说明通过了H-L检验,预测概率和实际概率没有明显的差异。但是H-L检验无法量化差异的大小,也不能说明差异的大小在低风险患者和高风险患者之间是否存在差异。</p>
+<p>当样本量很大时,Hosmer-Lemeshow检验也可能具有误导性。在这种情况下,预测风险和真实风险之间的临床微小差异可能导致具有统计学意义的Hosmer-Lemeshow检验结果。</p>
+<p>除了校准曲线和H-L检验外,模型的校准度还可以使用以下指标进行评价:</p>
+<ul>
+<li><strong>Log Loss</strong>(交叉熵损失):又叫对数损失、对数似然、逻辑损失,特别适用于概率预测模型,衡量预测概率分布与实际类别之间的差异。越接近0越好。</li>
+<li><strong>Brier-Score</strong>:布里尔分数,衡量模型预测的类别的概率与真实值之间的误差,仅用于二分类数据,范围是0到1,越小越好。</li>
+<li><strong>预测概率直方图</strong>:评价模型预测概率的分布,并据此判断模型的校准度。</li>
+</ul>
+<p>有一些方法可以对预测概率进行校准,使其更加接近真实结果或者可以使模型的校准曲线拟合的更佳贴近理想情况。常见的方法包括:Platt校准(Platt Scaling)、保序回归法( isotonic regression)、贝叶斯校准(Bayesian Calibration)等。</p>
+</section>
+</section>
+<section id="多个模型的比较" class="level2">
+<h2 class="anchored" data-anchor-id="多个模型的比较">多个模型的比较</h2>
+<p>如果涉及到多个模型进行比较的话,除了区分度和校准度,还可以用<strong>净重新分类指数</strong>和<strong>综合判别改善指数</strong>来比较模型的优劣。</p>
+<section id="nri" class="level3">
+<h3 class="anchored" data-anchor-id="nri">NRI</h3>
+<p><strong>净重新分类指数</strong>(net reclassification index,NRI),是用来比较模型准确度的,这个概念有点难理解,但是非常重要,在临床研究中非常常见,是评价模型的一大利器!</p>
+<p>如果新模型比旧模型更加优秀,那么理想情况下应该是这样的:(1)对于发生终点事件的患者,新模型为其分配了比先前模型更高的风险类别(理想的重新分类),以及(2)对于未发生终点事件的患者,新模型为其分配了较低的风险类别(也是理想的重新分类)。这就是净重分类的基本理念。</p>
+<p>我们可以这样简单的理解,假如有一群受试者,有些是患病的,有些是没病的,你建立了一个模型1,通过计算把受试者分为了有病组和没病组(当然有些是分错的),然后你又建立了模型2,也是把这群受试者分成了有病组和没病组,相当于是重新分类了!2个模型计算的结果是不一样的,有的可能重新分类分对了,有的可能分错了,然后,<strong>净重分类=重新分对的-重新分错的</strong>,净重分类指数只要再除以总人数就可以了,这样得到的就是<strong>绝对净重分类指数</strong>(absolute NRI)。</p>
+<p>绝对净重分类指数反应的是模型对整体的分类能力有无改善,但是,对于有病组和没病组,都是有可能出现重新分类分对了/重新分类分错了/重新分类和之前一样,这3种情况的。所以,我们可以把有病组和没病组分开计算净重分类指数,然后再相加,这样得到的就是<strong>相加净重分类指数</strong>(additive NRI)。</p>
+<p>下面用几个例子说明相加NRI和绝对NRI的计算以及各自的优缺点。</p>
+<p>示例1假设一共有20000名患者,其中发生事件(with events)的患者(以下简称阳性)和未发生事件(without events)的患者(以下简称阴性)人数相等,都是10000人。新旧模型将患者分为低风险、中风险、高风险3组。新旧模型重新分类的结果如下图(example 1)表格所示,其中绿色的表示重新分类正确的,粉色表示重新分类错误的,灰色表示没变化,左侧表格是阳性患者的重新分类表格,右侧是阴性患者的重新分类表格。</p>
+<p>示例2假设一共有11000名患者,但是阳性(with events)的只有1000个,阴性(without events)的有10000个。新旧模型重新分类的结果也是如下图(example 2)表格所示。</p>
+<p><img src="figs/PixPin_2024-05-09_21-39-57.png" class="img-fluid"></p>
+<ul>
+<li>对于示例1来说:</li>
+</ul>
+<p>阳性患者组:新模型重新分类正确的人数是1200+400+600=2200,重新分类错误的人数是300+50+350=700,净重新分类人数是2200-700=1500, 阴性患者组:新模型重新分类正确的人数是100+50+100=250,重新分类错误的人数是300+100+150=550,净重新分类人数是250-550=-300,</p>
+<p>绝对NRI=(2200-700+250-550)/20000=0.06 相加NRI=(2200-700)/10000 +(250-550)/10000=0.12</p>
+<ul>
+<li>对于示例2来说:</li>
+</ul>
+<p>阳性患者组:新模型重新分类正确的人数是120+40+60=220,重新分类错误的人数是30+5+35=70,净重新分类人数是220-70=150, 阴性患者组:新模型重新分类正确的人数是100+50+100=250,重新分类错误的人数是300+100+150=550,净重新分类人数=250-550=-300,</p>
+<p>绝对NRI=(220-70+250-550)/11000=-0.0136 相加NRI=(220-70)/1000 + (250-550)/10000=0.12</p>
+<blockquote class="blockquote">
+<p>图中在计算时都乘了100,其实没有必要。</p>
+</blockquote>
+<p><strong>相加NRI的主要局限性在于它不考虑人群中事件和非事件的发生比例</strong>,比如在上面的示例1和示例2中,虽然示例2的发生事件的患者和不发生事件的患者比例差距很大,但是相加NRI都是0.12。绝对NRI则避免这个问题。以下示例说明了这一优势。</p>
+<p>考虑上图中的示例1,其中发生事件和未发生事件的患者比例相等。在这种情况下,相加NRI将始终是绝对NRI的2倍。绝对NRI表示新模型重新分类更佳的实际比例,如果大于0说明新模型更好,小于0说明新模型更差,等于0说明和原模型相同,在本例中新模型重新分类更佳的比例为0.06。</p>
+<p>在示例2中,发生和不发生事件的患者比例为1:10。阴性组和阳性组重新分类的数量都与示例1是相同的。由于相加NRI不考虑阴性和阳性的比例问题,所以绝对NRI还是0.12,从相加NRI来看是有利于新模型的。虽然新模型在发生事件的患者中表现得更好(净重新分类人数是150),但发生事件的患者比例太小了,新模型在未发生事件的患者中比表现的比较差(净重新分类指数是-300),两者加起来是-150,说明实际上新模型比旧模型还多分错了150个人,新模型是更差的。<strong>所以当事件发生率较低时,相加NRI可能会产生误导,而绝对NRI更能反映模型的真实情况</strong>。</p>
+<p>但是<strong>绝对NRI假设发生事件的影响与不发生事件的影响相同</strong>。临床中并不是这样的,比如对于心梗的预测,我们肯定是更关心发生心梗的,因为即使漏诊一个心梗,对于病人本来说也是无法接受的。此时我们可能会更加重视对发生事件的患者能进行更好分类的模型。这就涉及到<strong>漏诊</strong>和<strong>误诊</strong>的关系问题了。</p>
+<p>本质上,相加NRI等于(新模型灵敏度与特异度之和)减去(旧模型灵敏度与特异度之和),也就是等于(新模型的约登指数)减去(旧模型的约登指数)。</p>
+<p>所以到底怎么取舍,不能只看数字,一定要结合实际情况,写文章时遇到了不好的结果也要好好讨论!</p>
+</section>
+<section id="idi" class="level3">
+<h3 class="anchored" data-anchor-id="idi">IDI</h3>
+<p>NRI、AUC、C-Statistic都是要先设置一个阈值,然后在这个阈值的前提下进行各种比较,它们只是考虑了单独一个点的情况,不能反应模型的整体情况。因此,又来了新的指标-<strong>综合判别改善指数</strong>(Integrated Discrimination Improvement,IDI)。</p>
+<p>IDI的计算很简单,它反映了两个模型在预测概率上的差别,是基于模型对每个个体的预测概率计算所得。它的计算方法为:</p>
+<p><img src="figs/Snipaste_2023-04-01_18-03-30.png" class="img-fluid"></p>
+<p>Pnew,events:患者组,新模型对每个人预测概率的平均值;</p>
+<p>Pold,events :患者组,旧模型对每个人预测概率的平均值;</p>
+<p>对于患者来说,那肯定是预测概率越高越准确,所以两者相减,值越大,表明新模型的预测能力越好;</p>
+<p>Pnew,non-events:非患者组,新模型对每个人预测概率的平均值;</p>
+<p>Pold,non-events:非患者组,旧模型对每个人预测概率的平均值;</p>
+<p>对于非患者来说,那肯定是预测概率越小越准确,所以两者相减,值越小,表明新模型的预测能力越好;</p>
+<p>两部分再相减,就是值越大,表明模型预测能力越好,如果IDI为负值,那说明还不如原来的模型好。</p>
+</section>
+</section>
+<section id="临床适用性" class="level2">
+<h2 class="anchored" data-anchor-id="临床适用性">临床适用性</h2>
+<p>临床都会碰到假阳性和假阴性问题,也就是误诊和漏诊问题,对于不同的疾病,可能我们需要的阈值不同,有时需要更高的假阳性,有时需要更高的假阴性,因此这就是一个实际临床效用问题,到底怎么办,才能使患者获益最大?这就是<strong>临床适用性</strong>(clinical usefulness)问题。</p>
+<section id="决策曲线分析" class="level3">
+<h3 class="anchored" data-anchor-id="决策曲线分析">决策曲线分析</h3>
+<p><strong>决策曲线分析</strong>(Decision Curve Analysis,DCA)就是为了解决这一问题。</p>
+<p>当患者有症状但尚不能诊断为某种疾病时,临床医生必须决定是(1)经验性治疗,(2)不治疗,或(3)在选择选项1和2之前进行进一步的检查。是否治疗取决于临床医生的经验、疾病治疗的有效性和并发症,以及患者接受治疗风险和负担的意愿。决策曲线分析是一种通过考虑患者风险和获益的可能范围来评估临床决策是否可行的方法。</p>
+<p>DCA中的一个关键概念是<strong>概率阈值</strong>(probability threshold),即患者选择接受治疗的概率水平。概率阈值表明患者在接受治疗(如果有病)时的相对值,以及如果不存在疾病时避免治疗的值。如果治疗疗效高、成本低、不良反应少,则概率阈值较低;相反,如果治疗效果差或与大量并发症相关(例如,恶性脑肿瘤的放疗),则概率阈值会很高。</p>
+<p><img src="figs/Snipaste_2023-04-01_18-04-12.png" class="img-fluid"></p>
+<p>结合上面这幅图,横坐标就是概率阈值。此时对于一个病人来说,治疗有可能会利大于弊,也有可能会弊大于利,纵坐标就是利减去弊之后的净获益。</p>
+<p>概率阈值也是概率,取值自然是0-1之间的,所以对于每一个概率,我们都可以计算出一个净获益(计算方法上图中给出了),然后把所有的点连起来,就是决策曲线了(上图中3条虚线,代表3种不同方法的决策曲线)。</p>
+<p>上图中还有2条特殊的线,一条水平的蓝色线,表示<strong>所有人都不接受治疗</strong>时,此时不管概率阈值是多少,净获益肯定都是0。一条黄色的线,表示<strong>所有人都接受治疗</strong>时,随着概率阈值的改变,其净获益的改变。这两条线代表了2种极端的情况。</p>
+<p>在给定的概率阈值下,肯定是净获益越大越好,所以一般来说,肯定是曲线距离两条特殊的线越远越好。在写文章时一定要写清楚到底是<strong>在哪个概率区间内</strong>,你的模型的净获益是正的。</p>
+</section>
+<section id="临床影响曲线" class="level3">
+<h3 class="anchored" data-anchor-id="临床影响曲线">临床影响曲线</h3>
+<p>临床影响曲线(Clinical Impact Curve,DCA),属于DCA的变种,是Kerr等人对DCA的进一步发展,结合下面这张图来看:</p>
+<p><img src="figs/Snipaste_2023-04-01_18-04-49.png" class="img-fluid"></p>
+<p>横坐标还是概率阈值,纵坐标是每1000人里面的高风险人数。紫色线表示在不同的概率阈值下,被模型判定为高风险的人数;红色线条表示在不同的概率阈值下,被模型判定为高风险且真的发生结局事件的人数。在最下面还增加了一个<strong>损失:获益比</strong>,表示在不同的概率阈值下,损失和获益的比例。上图表明在概率阈值大于0.6(大约)以后,模型判定为高风险的人群和实际发生终点事件的人群完全一致。</p>
+<div class="callout callout-style-default callout-note callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+注释
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>临床影响曲线目前在R语言中只有<code>rmda</code>包可以绘制,而且只适用于二分类模型,不能用于生存分析中,在文献中出现的相对偏少。</p>
+</div>
+</div>
+</section>
+</section>
+<section id="回归模型的评价" class="level2">
+<h2 class="anchored" data-anchor-id="回归模型的评价">回归模型的评价</h2>
+<p>以上内容基本基本都是对于分类模型和生存模型的评价,对回归模型来说,也有一些评价指标,常用的回归模型评价指标如下所示:</p>
+<ul>
+<li><strong>均方误差</strong>(Mean Squared Error, MSE): 定义为预测值与实际值之差的平方和的均值。</li>
+<li><strong>均方根误差</strong>(Root Mean Squared Error, RMSE): 是MSE的平方根,使得其单位与目标变量相同,便于解释。RMSE对异常值很敏感,极端异常值会让RMSE明显变大。如果只是为了衡量模型整体的误差,则使用RMSE更佳。</li>
+<li><strong>平均绝对误差</strong>(Mean Absolute Error, MAE): 计算预测值与实际值之间绝对差值的平均数。MAE对所有误差给予相等的权重,不被大误差过分影响,比RMSE更适合有极端值的情况。</li>
+<li><strong>平均绝对百分比误差</strong>(Mean Absolute Percentage Error, MAPE): 计算预测误差相对于实际值的百分比的平均值,适用于对预测误差的相对大小更感兴趣的场景。</li>
+<li><strong>中位绝对误差</strong>(Median Absolute Error, MAE):</li>
+<li><strong>R²</strong>(决定系数,Coefficient of Determination): 表示模型解释的变异量占总变异量的比例,值范围从0到1,越接近1表示模型拟合越好。R²衡量了模型解释数据变异的能力。</li>
+<li><strong>解释方差分数</strong>(Explained Variance Score): 类似于R²,但直接作为比例表示模型解释的方差部分,值越大表示模型拟合越好。</li>
+</ul>
+<p>凡是叫<strong>xxx误差</strong>的指标,一般都是越小说明模型越好。</p>
+<p>了解这些基础内容后,我们就可以通过各种各样的工具实现它,后面我们将会详细介绍如果通过R语言计算以上指标。</p>
+</section>
+<section id="参考资料" class="level2">
+<h2 class="anchored" data-anchor-id="参考资料">参考资料</h2>
+<p>[1] Alba A C, Agoritsas T, Walsh M, et al.&nbsp;Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature[J]. JAMA, 2017, 318(14): 1377–1384. DOI:10.1001/jama.2017.12126. [2] Fitzgerald M, Saville B R, Lewis R J. Decision curve analysis[J]. JAMA, 2015, 313(4): 409–410. DOI:10.1001/jama.2015.37.</p>
+
+
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+window.document.addEventListener("DOMContentLoaded", function (event) {
+  const toggleBodyColorMode = (bsSheetEl) => {
+    const mode = bsSheetEl.getAttribute("data-mode");
+    const bodyEl = window.document.querySelector("body");
+    if (mode === "dark") {
+      bodyEl.classList.add("quarto-dark");
+      bodyEl.classList.remove("quarto-light");
+    } else {
+      bodyEl.classList.add("quarto-light");
+      bodyEl.classList.remove("quarto-dark");
+    }
+  }
+  const toggleBodyColorPrimary = () => {
+    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
+    if (bsSheetEl) {
+      toggleBodyColorMode(bsSheetEl);
+    }
+  }
+  toggleBodyColorPrimary();  
+  const icon = "";
+  const anchorJS = new window.AnchorJS();
+  anchorJS.options = {
+    placement: 'right',
+    icon: icon
+  };
+  anchorJS.add('.anchored');
+  const isCodeAnnotation = (el) => {
+    for (const clz of el.classList) {
+      if (clz.startsWith('code-annotation-')) {                     
+        return true;
+      }
+    }
+    return false;
+  }
+  const onCopySuccess = function(e) {
+    // button target
+    const button = e.trigger;
+    // don't keep focus
+    button.blur();
+    // flash "checked"
+    button.classList.add('code-copy-button-checked');
+    var currentTitle = button.getAttribute("title");
+    button.setAttribute("title", "已复制");
+    let tooltip;
+    if (window.bootstrap) {
+      button.setAttribute("data-bs-toggle", "tooltip");
+      button.setAttribute("data-bs-placement", "left");
+      button.setAttribute("data-bs-title", "已复制");
+      tooltip = new bootstrap.Tooltip(button, 
+        { trigger: "manual", 
+          customClass: "code-copy-button-tooltip",
+          offset: [0, -8]});
+      tooltip.show();    
+    }
+    setTimeout(function() {
+      if (tooltip) {
+        tooltip.hide();
+        button.removeAttribute("data-bs-title");
+        button.removeAttribute("data-bs-toggle");
+        button.removeAttribute("data-bs-placement");
+      }
+      button.setAttribute("title", currentTitle);
+      button.classList.remove('code-copy-button-checked');
+    }, 1000);
+    // clear code selection
+    e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
+  });
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+    const config = {
+      allowHTML: true,
+      maxWidth: 500,
+      delay: 100,
+      arrow: false,
+      appendTo: function(el) {
+          return el.parentElement;
+      },
+      interactive: true,
+      interactiveBorder: 10,
+      theme: 'quarto',
+      placement: 'bottom-start',
+    };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
+    window.tippy(el, config); 
+  }
+  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+  for (var i=0; i<noterefs.length; i++) {
+    const ref = noterefs[i];
+    tippyHover(ref, function() {
+      // use id or data attribute instead here
+      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+      try { href = new URL(href).hash; } catch {}
+      const id = href.replace(/^#\/?/, "");
+      const note = window.document.getElementById(id);
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
+    });
+  }
+      let selectedAnnoteEl;
+      const selectorForAnnotation = ( cell, annotation) => {
+        let cellAttr = 'data-code-cell="' + cell + '"';
+        let lineAttr = 'data-code-annotation="' +  annotation + '"';
+        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+        return selector;
+      }
+      const selectCodeLines = (annoteEl) => {
+        const doc = window.document;
+        const targetCell = annoteEl.getAttribute("data-target-cell");
+        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+        const lineIds = lines.map((line) => {
+          return targetCell + "-" + line;
+        })
+        let top = null;
+        let height = null;
+        let parent = null;
+        if (lineIds.length > 0) {
+            //compute the position of the single el (top and bottom and make a div)
+            const el = window.document.getElementById(lineIds[0]);
+            top = el.offsetTop;
+            height = el.offsetHeight;
+            parent = el.parentElement.parentElement;
+          if (lineIds.length > 1) {
+            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+            height = bottom - top;
+          }
+          if (top !== null && height !== null && parent !== null) {
+            // cook up a div (if necessary) and position it 
+            let div = window.document.getElementById("code-annotation-line-highlight");
+            if (div === null) {
+              div = window.document.createElement("div");
+              div.setAttribute("id", "code-annotation-line-highlight");
+              div.style.position = 'absolute';
+              parent.appendChild(div);
+            }
+            div.style.top = top - 2 + "px";
+            div.style.height = height + 4 + "px";
+            div.style.left = 0;
+            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+            if (gutterDiv === null) {
+              gutterDiv = window.document.createElement("div");
+              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+              gutterDiv.style.position = 'absolute';
+              const codeCell = window.document.getElementById(targetCell);
+              const gutter = codeCell.querySelector('.code-annotation-gutter');
+              gutter.appendChild(gutterDiv);
+            }
+            gutterDiv.style.top = top - 2 + "px";
+            gutterDiv.style.height = height + 4 + "px";
+          }
+          selectedAnnoteEl = annoteEl;
+        }
+      };
+      const unselectCodeLines = () => {
+        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+        elementsIds.forEach((elId) => {
+          const div = window.document.getElementById(elId);
+          if (div) {
+            div.remove();
+          }
+        });
+        selectedAnnoteEl = undefined;
+      };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
+      // Attach click handler to the DT
+      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+      for (const annoteDlNode of annoteDls) {
+        annoteDlNode.addEventListener('click', (event) => {
+          const clickedEl = event.target;
+          if (clickedEl !== selectedAnnoteEl) {
+            unselectCodeLines();
+            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+            if (activeEl) {
+              activeEl.classList.remove('code-annotation-active');
+            }
+            selectCodeLines(clickedEl);
+            clickedEl.classList.add('code-annotation-active');
+          } else {
+            // Unselect the line
+            unselectCodeLines();
+            clickedEl.classList.remove('code-annotation-active');
+          }
+        });
+      }
+  const findCites = (el) => {
+    const parentEl = el.parentElement;
+    if (parentEl) {
+      const cites = parentEl.dataset.cites;
+      if (cites) {
+        return {
+          el,
+          cites: cites.split(' ')
+        };
+      } else {
+        return findCites(el.parentElement)
+      }
+    } else {
+      return undefined;
+    }
+  };
+  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+  for (var i=0; i<bibliorefs.length; i++) {
+    const ref = bibliorefs[i];
+    const citeInfo = findCites(ref);
+    if (citeInfo) {
+      tippyHover(citeInfo.el, function() {
+        var popup = window.document.createElement('div');
+        citeInfo.cites.forEach(function(cite) {
+          var citeDiv = window.document.createElement('div');
+          citeDiv.classList.add('hanging-indent');
+          citeDiv.classList.add('csl-entry');
+          var biblioDiv = window.document.getElementById('ref-' + cite);
+          if (biblioDiv) {
+            citeDiv.innerHTML = biblioDiv.innerHTML;
+          }
+          popup.appendChild(citeDiv);
+        });
+        return popup.innerHTML;
+      });
+    }
+  }
+});
+</script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="./feature-selection_randomforest.html" class="pagination-link" aria-label="随机森林筛选变量">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+      <a href="./conf_matrix-3d.html" class="pagination-link" aria-label="三维混淆矩阵">
+        <span class="nav-page-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
+  </div>
+</nav>
+</div> <!-- /content -->
+<footer class="footer">
+  <div class="nav-footer">
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
+    <div class="nav-footer-center">
+      &nbsp;
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
+  </div>
+</footer>
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277.html" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277.html"
deleted file mode 100644
index 0779a76..0000000
--- "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277.html"
+++ /dev/null
@@ -1,1062 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 25&nbsp; 多分类数据的ROC曲线</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./cindex.html" rel="next">
-<link href="./roc-bootstrap.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./多分类数据的ROC曲线.html"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#yardstick" id="toc-yardstick" class="nav-link active" data-scroll-target="#yardstick"><span class="header-section-number">25.1</span> yardstick</a></li>
-  <li><a href="#multiroc" id="toc-multiroc" class="nav-link" data-scroll-target="#multiroc"><span class="header-section-number">25.2</span> multiROC</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<blockquote class="blockquote">
-<p>本文部分内容节选自<a href="https://mp.weixin.qq.com/s/xrBghm7obRINRPpPvWrRXA">tidymodels-yardstick:衡量模型性能</a></p>
-</blockquote>
-<p>多分类的ROC曲线有多种方法可以实现,比如宏平均、微平均等。多分类的其他指标,比如准确率、敏感性、特异性等,计算方法都是类似的。</p>
-<p>在R中能实现多分类ROC曲线的R包不是很多,今天给大家介绍两个。一个是<code>yardstick</code>,这是<code>tidymodels</code>的核心包之一,目前还在维护更新中,非常推荐,另一个是<code>multiROC</code>。</p>
-<section id="yardstick" class="level2" data-number="25.1">
-<h2 data-number="25.1" class="anchored" data-anchor-id="yardstick"><span class="header-section-number">25.1</span> yardstick</h2>
-<p><code>yardstick</code>作为<code>tidymodels</code>的核心包之一,其使用语法和<code>tidy</code>系列完全一样,并且支持所有的<code>tidy</code>特性,学习成本非常低。而且背靠Rstudio这颗大树,稳定性和可靠性也有保障。</p>
-<p>接下来我们会演示衡量具有3个或更多类别的分类数据的方法。下面使用的示例数据包含了4个类别:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidymodels)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(hpc_cv)</span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">tibble</span>(hpc_cv)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 3,467 × 7</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">##    obs   pred     VF      F       M          L Resample</span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##    &lt;fct&gt; &lt;fct&gt; &lt;dbl&gt;  &lt;dbl&gt;   &lt;dbl&gt;      &lt;dbl&gt; &lt;chr&gt;   </span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01  </span></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01  </span></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01  </span></span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01  </span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01  </span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01  </span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01  </span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01  </span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01  </span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01  </span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">## # ℹ 3,457 more rows</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>此数据的真实结果(<code>obs</code>)和预测结果(<code>pred</code>)都是因子型,并且数据中包含每个类别的预测概率(<code>VF</code>、<code>F</code>、<code>M</code>、<code>L</code>)。</p>
-<p>计算多分类性能指标的函数与计算二分类性能指标的函数用法基本相同:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">accuracy</span>(hpc_cv, obs, pred)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric  .estimator .estimate</span></span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;    &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 accuracy multiclass     0.709</span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">mcc</span>(hpc_cv, obs, pred)</span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 mcc     multiclass     0.515</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>有一些指标是用来处理仅具有两个类别的数据的,但是可以通过一些方法将其扩展到具有多个类别的数据。比如<strong>宏平均(macro-averaging)、宏加权平均(macro-weighted averaging)和微平均(micro-averaging)</strong>:</p>
-<ul>
-<li>宏平均使用标准的二分类方法计算一组一对多的指标,并对这些指标取平均值。</li>
-<li>宏加权平均执行相同的操作,但平均值会根据每个类别中的样本数加权。</li>
-<li>微平均计算每个类别的贡献并汇总,然后从汇总中计算单个指标。</li>
-</ul>
-<p>我们可以基于上面的解释自己计算,也可以使用<code>yardstick</code>中的函数可以帮助我们实现,只需指定<code>estimator</code>参数即可:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sensitivity</span>(hpc_cv, obs, pred, <span class="at">estimator =</span> <span class="st">"macro"</span>)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .estimate</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 sensitivity macro          0.560</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="fu">sensitivity</span>(hpc_cv, obs, pred, <span class="at">estimator =</span> <span class="st">"macro_weighted"</span>)</span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator     .estimate</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;              &lt;dbl&gt;</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 sensitivity macro_weighted     0.709</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="fu">sensitivity</span>(hpc_cv, obs, pred, <span class="at">estimator =</span> <span class="st">"micro"</span>)</span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric     .estimator .estimate</span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;       &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 sensitivity micro          0.709</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>也有一些指标使用<strong>预测概率</strong>衡量多分类数据,比如ROC曲线,此时必须将所有预测概率列都提供给函数:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_auc</span>(hpc_cv, obs, VF, F, M, L) <span class="co"># 默认hand_till法</span></span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc hand_till      0.829</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>除此之外,ROC曲线还可以使用<strong>宏加权平均</strong>衡量多分类数据:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_auc</span>(hpc_cv, obs, VF, F, M, L, <span class="at">estimator =</span> <span class="st">"macro_weighted"</span>)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator     .estimate</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;              &lt;dbl&gt;</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc macro_weighted     0.868</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>或者使用宏平均法:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_auc</span>(hpc_cv, obs, VF, F, M, L, <span class="at">estimator =</span> <span class="st">"macro"</span>)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 1 × 3</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   .metric .estimator .estimate</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;chr&gt;   &lt;chr&gt;          &lt;dbl&gt;</span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 roc_auc macro          0.869</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>画图也是非常简单,先使用<code>roc_curve</code>计算画图所需数据(注意此函数不能更改计算方法),然后使用<code>ggplot2</code>画图即可:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_curve</span>(hpc_cv, obs, VF, F, M, L) <span class="sc">%&gt;%</span> </span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="多分类数据的ROC曲线_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>结果会同时展示4个类别的ROC曲线,当然也可以自己提取数据画。<strong>数就是图,图就是数</strong>,只要把数据提取出来,就一定能画出来图。提取数据才是最关键的一步,因为画图无非就是<code>ggplot2</code>而已,随便买本书(我只推荐两本:《ggplot2数据分析与图形艺术》和《R数据可视化手册》)认真看看,<code>ggplot2</code>就学得差不多了。提取数据多数都是列表(<code>list</code>)格式,在<code>tidy</code>的世界中更常见的是<code>tibble</code>和列表列,这就需要你认真学习R语言的基础知识。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>plot_data <span class="ot">&lt;-</span> <span class="fu">roc_curve</span>(hpc_cv, obs, VF, F, M, L)</span>
-<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(plot_data)</span>
-<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] "roc_df"     "tbl_df"     "tbl"        "data.frame"</span></span>
-<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(plot_data)</span>
-<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="do">## Rows: 13,876</span></span>
-<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="do">## Columns: 4</span></span>
-<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="do">## $ .level      &lt;chr&gt; "VF", "VF", "VF", "VF", "VF", "VF", "VF", "VF", "VF", "VF"…</span></span>
-<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="do">## $ .threshold  &lt;dbl&gt; -Inf, 4.118856e-18, 1.151238e-16, 1.447982e-16, 1.857902e-…</span></span>
-<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="do">## $ specificity &lt;dbl&gt; 0.0000000000, 0.0000000000, 0.0005889282, 0.0011778563, 0.…</span></span>
-<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="do">## $ sensitivity &lt;dbl&gt; 1.0000000, 1.0000000, 1.0000000, 1.0000000, 1.0000000, 0.9…</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个结果一看就知道<code>.level</code>是4个类别,<code>.threshold</code>是预测变量的阈值,剩下两列是敏感性和特异性,也就是画图需要的数据。</p>
-<p>可以只画其中一个类别,我们以<code>VF</code>这个类别为例:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>plot_data <span class="sc">%&gt;%</span> </span>
-<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">filter</span>(.level <span class="sc">==</span> <span class="st">"VF"</span>) <span class="sc">%&gt;%</span> </span>
-<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="dv">1</span><span class="sc">-</span>specificity, sensitivity))<span class="sc">+</span></span>
-<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>()<span class="sc">+</span></span>
-<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="dv">2</span>)<span class="sc">+</span></span>
-<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="多分类数据的ROC曲线_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>而且有了数据,你很容易可以实现bootstrap ROC/AUC,无非就是重复多次而已。可参考:<a href="https://mp.weixin.qq.com/s/hjXFgLxtegyfx_SD437m2Q">bootstrap ROC/AUC</a></p>
-<p>所有类别都画就是加个分面就行了:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>plot_data <span class="sc">%&gt;%</span> </span>
-<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>  <span class="co">#filter(.level == "VF") %&gt;% </span></span>
-<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="dv">1</span><span class="sc">-</span>specificity, sensitivity))<span class="sc">+</span></span>
-<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>()<span class="sc">+</span></span>
-<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">linetype =</span> <span class="dv">2</span>)<span class="sc">+</span></span>
-<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">facet_wrap</span>(<span class="fu">vars</span>(.level))<span class="sc">+</span></span>
-<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="多分类数据的ROC曲线_files/figure-html/unnamed-chunk-10-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>一模一样。</p>
-<p>所有这些性能指标都可以使用<code>dplyr</code>进行分组计算:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 每一次重抽样的1-vs-所有ROC曲线</span></span>
-<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>hpc_cv <span class="sc">%&gt;%</span> </span>
-<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">group_by</span>(Resample) <span class="sc">%&gt;%</span> </span>
-<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>  <span class="fu">roc_curve</span>(obs, VF, F, M, L) <span class="sc">%&gt;%</span> </span>
-<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="多分类数据的ROC曲线_files/figure-html/unnamed-chunk-11-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>以上就是<code>yardstick</code>的简单介绍。后台回复<strong>tidymodels</strong>即可获取相关推文合集.</p>
-</section>
-<section id="multiroc" class="level2" data-number="25.2">
-<h2 data-number="25.2" class="anchored" data-anchor-id="multiroc"><span class="header-section-number">25.2</span> multiROC</h2>
-<p>也可以实现多分类的ROC曲线,但是很久不更新了,上次更新是2018.6.26。</p>
-<p>github地址:https://github.com/WandeRum/multiROC</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(multiROC)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>还是用上面的数据作为演示。使用起来很费事,首先得准备正确的格式。需要一个<code>data.frame</code>,包含真实标签和预测数值(可以是概率也可以不是,但肯定不能是预测类别),真实标签必须每个类别都是单独的1列,且列名必须是<code>xxx_true</code>,且必须用1表示阳性,0表示阴性,预测数值的列名必须是<code>xxx_pred</code>。</p>
-<p>首先是真实类别进行独热编码,然后改列名:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>hpc_cv1 <span class="ot">&lt;-</span> hpc_cv <span class="sc">%&gt;%</span> </span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">model.matrix</span>(<span class="sc">~</span>obs<span class="dv">-1</span>, .) <span class="sc">%&gt;%</span> </span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">bind_cols</span>(hpc_cv <span class="sc">%&gt;%</span> <span class="fu">select</span>(VF,F,M,L))</span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 预测结果必须添加一个  _pred_xx 后缀,不然就报错,太zz了。。。</span></span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="fu">colnames</span>(hpc_cv1) <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="fu">paste0</span>(<span class="fu">c</span>(<span class="st">"VF"</span>,<span class="st">"F"</span>,<span class="st">"M"</span>,<span class="st">"L"</span>),<span class="st">"_true"</span>),</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>                       <span class="fu">paste0</span>(<span class="fu">c</span>(<span class="st">"VF"</span>,<span class="st">"F"</span>,<span class="st">"M"</span>,<span class="st">"L"</span>),<span class="st">"_pred_rf"</span>)) <span class="co"># _rf是随便加的</span></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(hpc_cv1)</span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a><span class="do">##   VF_true F_true M_true L_true VF_pred_rf  F_pred_rf   M_pred_rf    L_pred_rf</span></span>
-<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 1       1      0      0      0  0.9136340 0.07786694 0.008479147 1.991225e-05</span></span>
-<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a><span class="do">## 2       1      0      0      0  0.9380672 0.05710623 0.004816447 1.011557e-05</span></span>
-<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a><span class="do">## 3       1      0      0      0  0.9473710 0.04946767 0.003156287 4.999849e-06</span></span>
-<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 4       1      0      0      0  0.9289077 0.06528949 0.005787179 1.564496e-05</span></span>
-<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="do">## 5       1      0      0      0  0.9418764 0.05430830 0.003808013 7.294581e-06</span></span>
-<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 6       1      0      0      0  0.9510978 0.04618223 0.002716177 3.841455e-06</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>计算AUC,会同时使用宏平均和微平均计算:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>roc_res <span class="ot">&lt;-</span> <span class="fu">multi_roc</span>(hpc_cv1)</span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a><span class="do">## collapsing to unique 'x' values</span></span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):</span></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="do">## collapsing to unique 'x' values</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):</span></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="do">## collapsing to unique 'x' values</span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):</span></span>
-<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="do">## collapsing to unique 'x' values</span></span>
-<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>roc_res<span class="sc">$</span>AUC</span>
-<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf</span></span>
-<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$VF</span></span>
-<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9145978</span></span>
-<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$F</span></span>
-<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.7912642</span></span>
-<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$M</span></span>
-<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.8389398</span></span>
-<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$L</span></span>
-<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9322527</span></span>
-<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$macro</span></span>
-<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.8692609</span></span>
-<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb14-30"><a href="#cb14-30" aria-hidden="true" tabindex="-1"></a><span class="do">## $rf$micro</span></span>
-<span id="cb14-31"><a href="#cb14-31" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 0.9028392</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>计算画图数据:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>plot_roc_df <span class="ot">&lt;-</span> <span class="fu">plot_roc_data</span>(roc_res)</span>
-<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="fu">dim</span>(plot_roc_df)</span>
-<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a><span class="do">## [1] 38140     5</span></span>
-<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(plot_roc_df)</span>
-<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a><span class="do">##   Specificity  Sensitivity Group       AUC Method</span></span>
-<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 1           1 0.0000000000    VF 0.9145978     rf</span></span>
-<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 2           1 0.0005652911    VF 0.9145978     rf</span></span>
-<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 3           1 0.0011305822    VF 0.9145978     rf</span></span>
-<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 4           1 0.0016958734    VF 0.9145978     rf</span></span>
-<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 5           1 0.0022611645    VF 0.9145978     rf</span></span>
-<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 6           1 0.0028264556    VF 0.9145978     rf</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>然后使用<code>ggplot2</code>画图即可:</p>
-<div class="cell" data-fig.asp="1">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(plot_roc_df, <span class="fu">aes</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">-</span>Specificity, <span class="at">y=</span>Sensitivity)) <span class="sc">+</span></span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_path</span>(<span class="fu">aes</span>(<span class="at">color =</span> Group), <span class="at">linewidth=</span><span class="fl">1.5</span>) <span class="sc">+</span></span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_segment</span>(<span class="fu">aes</span>(<span class="at">x =</span> <span class="dv">0</span>, <span class="at">y =</span> <span class="dv">0</span>, <span class="at">xend =</span> <span class="dv">1</span>, <span class="at">yend =</span> <span class="dv">1</span>), </span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>               <span class="at">colour=</span><span class="st">'grey'</span>, <span class="at">linetype =</span> <span class="st">'dotdash'</span>) <span class="sc">+</span></span>
-<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme_bw</span>() <span class="sc">+</span> </span>
-<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a>  <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>), </span>
-<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.justification=</span><span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">0</span>), <span class="at">legend.position=</span><span class="fu">c</span>(.<span class="dv">95</span>, .<span class="dv">05</span>),</span>
-<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.title=</span><span class="fu">element_blank</span>(), </span>
-<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a>        <span class="at">legend.background =</span> <span class="fu">element_rect</span>(<span class="at">fill=</span><span class="cn">NULL</span>, <span class="at">linewidth=</span><span class="fl">0.5</span>, </span>
-<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a>                                         <span class="at">linetype=</span><span class="st">"solid"</span>,<span class="at">colour =</span><span class="st">"black"</span>)</span>
-<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>        )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="多分类数据的ROC曲线_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>这个图是全都画在一起的,你也可以使用分面的形式。</p>
-<p>画图是很简单的,但是说实话这个准备数据的过程不太方便~</p>
-<p>OVER!</p>
-<p>后台回复<strong>ROC</strong>获取超全合集,回复<strong>最佳截点</strong>即可获取ROC曲线的最佳截点合集。</p>
-
-
-</section>
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./roc-bootstrap.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./cindex.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-10-1.png" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-10-1.png"
deleted file mode 100644
index c627fbf..0000000
Binary files "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-10-1.png" and /dev/null differ
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-11-1.png" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-11-1.png"
deleted file mode 100644
index 4c339c4..0000000
Binary files "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-11-1.png" and /dev/null differ
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-16-1.png" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-16-1.png"
deleted file mode 100644
index c8d1b4d..0000000
Binary files "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-16-1.png" and /dev/null differ
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-7-1.png" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-7-1.png"
deleted file mode 100644
index 0d6d2d6..0000000
Binary files "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-7-1.png" and /dev/null differ
diff --git "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-9-1.png" "b/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-9-1.png"
deleted file mode 100644
index 846e349..0000000
Binary files "a/docs/\345\244\232\345\210\206\347\261\273\346\225\260\346\215\256\347\232\204ROC\346\233\262\347\272\277_files/figure-html/unnamed-chunk-9-1.png" and /dev/null differ
diff --git a/docs/roc-many.html "b/docs/\345\244\232\346\250\241\345\236\213\346\257\224\350\276\203.html"
similarity index 56%
rename from docs/roc-many.html
rename to "docs/\345\244\232\346\250\241\345\236\213\346\257\224\350\276\203.html"
index ae581f6..de03f4c 100644
--- a/docs/roc-many.html
+++ "b/docs/\345\244\232\346\250\241\345\236\213\346\257\224\350\276\203.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 23&nbsp; 多指标联合诊断的ROC曲线</title>
+<title>多模型比较 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -20,40 +20,6 @@
   margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
   vertical-align: middle;
 }
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
 </style>
 
 
@@ -64,24 +30,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./roc-bootstrap.html" rel="next">
-<link href="./roc-attention.html" rel="prev">
+<link href="./model-compare_workflow.html" rel="next">
+<link href="./bootstrap一切指标.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./roc-many.html"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./多模型比较.html">多模型比较</a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,25 +459,17 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#准备数据" id="toc-准备数据" class="nav-link active" data-scroll-target="#准备数据"><span class="header-section-number">23.1</span> 准备数据</a></li>
-  <li><a href="#多指标联合诊断的roc" id="toc-多指标联合诊断的roc" class="nav-link" data-scroll-target="#多指标联合诊断的roc"><span class="header-section-number">23.2</span> 多指标联合诊断的ROC</a></li>
-  <li><a href="#测试集怎么办" id="toc-测试集怎么办" class="nav-link" data-scroll-target="#测试集怎么办"><span class="header-section-number">23.3</span> 测试集怎么办?</a></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar zindex-bottom">
+        
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
 <header id="title-block-header" class="quarto-title-block default">
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></h1>
+<h1 class="title">多模型比较</h1>
 </div>
 
 
@@ -542,80 +482,32 @@ <h1 class="title"><span class="chapter-number">23</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>关于ROC曲线,前前后后写了很多篇文章,关于二分类数据和生存资料的都有,目前只有多指标联合诊断的ROC曲线还没介绍了,下面就介绍<strong>多指标联合诊断的ROC曲线</strong>。</p>
-<ul>
-<li><a href="https://mp.weixin.qq.com/s/np7r7njHUZJplu0bxCelRw">多时间点和多指标的ROC曲线</a></li>
-<li><a href="https://mp.weixin.qq.com/s/BB9lEgrSaGtKffxuhWRSJA">临床预测模型之二分类资料ROC曲线的绘制</a></li>
-<li><a href="https://mp.weixin.qq.com/s/MJ_FQE3CtVx3ZO9L_ixOSg">临床预测模型之生存资料ROC曲线的绘制</a></li>
-<li><a href="https://mp.weixin.qq.com/s/Tikll6gUzU2Bg9mJQpqXww">ROC曲线(AUC)的显著性检验</a></li>
-<li><a href="https://mp.weixin.qq.com/s/BKRRRzBO2qcJsBoaXPFlwg">生存资料ROC曲线的最佳截点和平滑曲线</a></li>
-<li><a href="https://mp.weixin.qq.com/s/sEkuSSYaj3TSGsFS6Y1S7A">ROC曲线纯手工绘制</a></li>
-<li><a href="https://mp.weixin.qq.com/s/dZgkOUPSL2Qt7Sl7LOMzZA">R语言计算AUC(ROC曲线)的注意事项</a></li>
-<li><a href="https://mp.weixin.qq.com/s/WX0LZ2nkKMxv6JTDnQamCQ">ROC阴性结果还是阳性结果</a></li>
-</ul>
-<section id="准备数据" class="level2" data-number="23.1">
-<h2 data-number="23.1" class="anchored" data-anchor-id="准备数据"><span class="header-section-number">23.1</span> 准备数据</h2>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(pROC)</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Type 'citation("pROC")' for a citation.</span></span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="do">## Attaching package: 'pROC'</span></span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="do">## The following objects are masked from 'package:stats':</span></span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="do">## </span></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="do">##     cov, smooth, var</span></span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(aSAH)</span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(aSAH)</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="do">## 'data.frame':    113 obs. of  7 variables:</span></span>
-<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gos6   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 5 5 5 5 1 1 4 1 5 4 ...</span></span>
-<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...</span></span>
-<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...</span></span>
-<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...</span></span>
-<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ wfns   : Ord.factor w/ 5 levels "1"&lt;"2"&lt;"3"&lt;"4"&lt;..: 1 1 1 1 3 2 5 4 1 2 ...</span></span>
-<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...</span></span>
-<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>其中<code>outcome</code>是结果变量,是二分类的,其余列是预测变量。</p>
-</section>
-<section id="多指标联合诊断的roc" class="level2" data-number="23.2">
-<h2 data-number="23.2" class="anchored" data-anchor-id="多指标联合诊断的roc"><span class="header-section-number">23.2</span> 多指标联合诊断的ROC</h2>
-<p>假如现在我想使用<code>s100b/ndka/age</code>这3个变量来预测结果,该如何画出这3个变量联合诊断的ROC曲线呢?</p>
-<p>首先,使用这3个变量建立逻辑回归:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="fu">glm</span>(outcome <span class="sc">~</span> s100b <span class="sc">+</span> ndka <span class="sc">+</span> age, <span class="at">data =</span> aSAH, <span class="at">family =</span> <span class="fu">binomial</span>())</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+
+<p>当我们建立了多个模型后,肯定是要比较不同模型的优劣的。模型比较涉及很多专业的方法和理论。</p>
+<p>当说到模型比较时,我们其实是在比较模型的性能指标,比如,比较AUC值、RMSE、校准曲线、NRI、IDI等。但是此时我们比较的通常是这些指标的大小,比如,A模型的AUC值比B模型高,那么我们就认为A模型更好。</p>
+<p>其实这种方法是很肤浅的。我们需要更加专业的比较方法,比如在前面介绍过的ROC曲线的比较(Delong检验),这种方法更加正式,而且还可以给出p值,在统计学上更加令人信服,是比单纯比较数值大小更好的方法。</p>
+<p>有很多可以用于模型比较的专业方法,比如<strong>似然比检验</strong>和<strong>方差分析</strong>法,我们在<a href="cindex-compare.html" class="quarto-xref">Chapter&nbsp;<span>26&nbsp; C-index的比较</span></a>C-index的比较中一章中介绍过。</p>
+<p>除此之外,还可以使用<strong>贝叶斯方法</strong>进行比较,这些方法都是有理论基础的,也有相关的参考文献。而且可以用于多种类型的模型比较,比如,随机森林模型和支持向量机模型进行比较,不必局限于回归模型。</p>
+<p>但是由于这些方法目前在文献中用的很少,所以我会在接下来的章节中简单介绍下。</p>
+<p>接下来的章节会主要介绍几个综合性R包的使用方法,比如<code>caret</code>、<code>tidymodels</code>、<code>mlr3</code>,给大家展示如何使用简洁的代码同时比较多个不同的模型,方便大家快速筛选表现更好的模型。</p>
+<div class="callout callout-style-default callout-tip callout-titled" title="注意">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
 </div>
-<p>然后,计算逻辑回归给出的概率:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 等价于直接使用 f$fitted</span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">predict</span>(f, <span class="at">newdata =</span> aSAH, <span class="at">type =</span> <span class="st">"response"</span>)</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>aSAH<span class="sc">$</span>pred <span class="ot">&lt;-</span> pred</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="callout-title-container flex-fill">
+注意
 </div>
-<p>用这个<code>pred</code>就可以画ROC曲线了:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(yardstick)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="fu">roc_curve</span>(<span class="at">data=</span>aSAH, outcome, pred,<span class="at">event_level =</span> <span class="st">"second"</span>) <span class="sc">|&gt;</span> </span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">autoplot</span>()</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="roc-many_files/figure-html/unnamed-chunk-4-1.png" class="img-fluid" width="672"></p>
 </div>
+<div class="callout-body-container callout-body">
+<p>这部分内容主要是几个综合性的机器学习和预测建模R包的介绍,更多的使用方法,可参考<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2267367379124928515&amp;scene=21#wechat_redirect">机器学习合集</a>。除此之外,在公众号后台回复<code>caret</code>、<code>tidymodels</code>、<code>mlr3</code>,都可以直接获取相关合集。</p>
 </div>
-</section>
-<section id="测试集怎么办" class="level2" data-number="23.3">
-<h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><span class="header-section-number">23.3</span> 测试集怎么办?</h2>
-<p>很简单,只要把<code>predict</code>中的数据集换成测试集即可:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 换成测试集即可</span></span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>pred <span class="ot">&lt;-</span> <span class="fu">predict</span>(f, <span class="at">newdata =</span> 你的测试集, <span class="at">type =</span> <span class="st">"response"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
-<p>剩下的就都一样了!</p>
 
 
-</section>
 
 </main> <!-- /main -->
 <script id="quarto-html-after-body" type="application/javascript">
@@ -653,18 +545,7 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -696,11 +577,50 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -710,8 +630,17 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -723,7 +652,130 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -767,6 +819,7 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -792,6 +845,32 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -853,27 +932,32 @@ <h2 data-number="23.3" class="anchored" data-anchor-id="测试集怎么办"><spa
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./roc-attention.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span>
+      <a href="./bootstrap一切指标.html" class="pagination-link" aria-label="bootstrap一切指标">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./roc-bootstrap.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./model-compare_workflow.html" class="pagination-link" aria-label="tidymodels实现多模型比较">
+        <span class="nav-page-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git a/docs/clinmodel-evalution.html "b/docs/\346\226\207\347\214\256\345\255\246\344\271\240.html"
similarity index 50%
rename from docs/clinmodel-evalution.html
rename to "docs/\346\226\207\347\214\256\345\255\246\344\271\240.html"
index d99d344..2045644 100644
--- a/docs/clinmodel-evalution.html
+++ "b/docs/\346\226\207\347\214\256\345\255\246\344\271\240.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 16&nbsp; 临床预测模型的评价方法</title>
+<title>4&nbsp; 文献学习 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -30,24 +30,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./roc-binominal.html" rel="next">
-<link href="./feature-selection_randomforest.html" rel="prev">
+<link href="./模型建立和可视化.html" rel="next">
+<link href="./临床预测模型和机器学习.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -56,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -70,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./clinmodel-evalution.html"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./文献学习.html"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -85,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -109,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -281,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -477,32 +459,24 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
         <nav id="TOC" role="doc-toc" class="toc-active">
     <h2 id="toc-title">目录</h2>
    
   <ul>
-  <li><a href="#什么样的模型是好的模型" id="toc-什么样的模型是好的模型" class="nav-link active" data-scroll-target="#什么样的模型是好的模型"><span class="header-section-number">16.1</span> 什么样的模型是好的模型?</a></li>
-  <li><a href="#区分度的评价" id="toc-区分度的评价" class="nav-link" data-scroll-target="#区分度的评价"><span class="header-section-number">16.2</span> 区分度的评价</a></li>
-  <li><a href="#校准度的评价" id="toc-校准度的评价" class="nav-link" data-scroll-target="#校准度的评价"><span class="header-section-number">16.3</span> 校准度的评价</a></li>
-  <li><a href="#多个模型之间的比较" id="toc-多个模型之间的比较" class="nav-link" data-scroll-target="#多个模型之间的比较"><span class="header-section-number">16.4</span> 多个模型之间的比较</a>
-  <ul class="collapse">
-  <li><a href="#nri" id="toc-nri" class="nav-link" data-scroll-target="#nri"><span class="header-section-number">16.4.1</span> NRI</a></li>
-  <li><a href="#idi" id="toc-idi" class="nav-link" data-scroll-target="#idi"><span class="header-section-number">16.4.2</span> IDI</a></li>
-  </ul></li>
-  <li><a href="#决策曲线-dca" id="toc-决策曲线-dca" class="nav-link" data-scroll-target="#决策曲线-dca"><span class="header-section-number">16.5</span> 决策曲线 DCA</a></li>
-  <li><a href="#临床影响曲线-cic" id="toc-临床影响曲线-cic" class="nav-link" data-scroll-target="#临床影响曲线-cic"><span class="header-section-number">16.6</span> 临床影响曲线 CIC</a></li>
+  <li><a href="#文献学习" id="toc-文献学习" class="nav-link active" data-scroll-target="#文献学习"><span class="header-section-number">4.1</span> 文献学习</a></li>
+  <li><a href="#经典文献" id="toc-经典文献" class="nav-link" data-scroll-target="#经典文献"><span class="header-section-number">4.2</span> 经典文献</a></li>
   </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+<div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
-<header id="title-block-header" class="quarto-title-block default">
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./临床预测模型概念.html">基础知识</a></li><li class="breadcrumb-item"><a href="./文献学习.html"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></a></li></ol></nav>
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></h1>
+<h1 class="title"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></h1>
 </div>
 
 
@@ -515,88 +489,56 @@ <h1 class="title"><span class="chapter-number">16</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>前面几篇都是建立模型,并可视化模型的内容,后面就涉及到模型评价的内容了。</p>
-<p>当我们建立好预测模型后,如何评价我们的模型好坏呢?</p>
-<p>当我们建立了很多不同的模型,如何评价不同模型之间的优劣呢?</p>
-<p>这一篇主要就是讲这些,其实就是一些概念的理解,但不理解也问题不大,只要你会计算,会画图,写文章时把这些指标都写上就够了!</p>
-<p>目前模型评价的主要内容都是来自于2017年发表于<strong>JAMA上面的一篇文章:<a href="https://pubmed.ncbi.nlm.nih.gov/29049590/">Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature</a></strong>。</p>
-<p>这篇文章详细介绍了模型评价的主要内容以及各个指标的含义及临床意义,非常推荐感兴趣的小伙伴去阅读原文。</p>
-<section id="什么样的模型是好的模型" class="level2" data-number="16.1">
-<h2 data-number="16.1" class="anchored" data-anchor-id="什么样的模型是好的模型"><span class="header-section-number">16.1</span> 什么样的模型是好的模型?</h2>
-<p>一个理想的模型应该是这样的:它能正确区分所有的患者和非患者,能正确预测每一个个体是否会发生危险事件,并且不会出错。很明显这样的模型是不存在的,我们只能朝这个方向努力。</p>
-<p>评价一个模型的好坏可以从<strong>区分度(Discrimination)和校准度(Calibration)</strong>两个方面进行。</p>
-<p><strong>区分度</strong>指的是一个模型能正确把人群分为患者/非患者,或者正确区分个体是处于低风险、还是处于高风险,或者正确预测患者是存活、还是死亡等的能力。</p>
-<p>但是一个模型只是有良好的区分度是不够的,因为临床是很复杂的,并不是只要正确分类就行了。对于不同的患者,可能他们都处于高风险组,但是对于50%的风险和80%的风险,我们的处理是不一样的!</p>
-<p>这就引出了<strong>校准度</strong>的概念,校准度指的是结局实际发生的概率和模型预测出的概率之间的一致性,所以校准度又叫一致性、拟合优度(goodness of fit),校准度体现了一个模型对绝对风险预测的准确性。</p>
-<p>一个具有良好区分度的模型,校准度不一定也很好。比如,一个模型把A、B两个患者(实际上就是低风险)都分为低风险组,并且B的风险是A的3倍,我们可以说这个模型的区分度很好,因为分类分的很准!然后这个模型预测出A的风险是1%,B的风险是3%,但实际上A的风险是10%,B的风险是30%!你看,这个模型的校准度就很差(世纪概率和预测概率相差很大)。如果使用这样的模型预测出来的结果处理病人的话,可能就会碰到很多问题。</p>
-<p>区分度和校准度虽然都有不足,但是一般来说,具有较差区分度的模型,其校准度也不会很好。当一个模型区分度和校准度都很差的时候,我们可以先从提高模型区分度的角度继续。</p>
-</section>
-<section id="区分度的评价" class="level2" data-number="16.2">
-<h2 data-number="16.2" class="anchored" data-anchor-id="区分度的评价"><span class="header-section-number">16.2</span> 区分度的评价</h2>
-<p>说了这么多,那我们应该用哪些指标评价模型的分类能力的强弱呢?</p>
-<p>我们可以使用<strong>ROC曲线和C-Statistic</strong>评价。二分类变量的AUC(曲线下面积)和C-Statistic是一个东西,都是越接近1,模型的区分度越好。<strong>一般认为,AUC或者C-Statistic在0.6以下是低区分度,在0.6~0.75之间是中区分度,高于0.75是高区分度</strong>。</p>
-<p>关于ROC曲线和AUC的概念,大家自行了解。</p>
-<p><img src="figs/Snipaste_2023-04-01_18-00-09.png" class="img-fluid"></p>
-<p>ROC曲线的横坐标是1-特异度,纵坐标是灵敏度,也就是横坐标是假阳性,纵坐标是真阳性,这两个指标刚好是相反的,一个大另一个就小,所以一般我们会找<strong>一个阈值</strong>,使得曲线下面积最大。但是如果考虑到临床,这样做有时也是不妥的。比如,在患者具有某些高危疾病(比如心梗、肺梗等)的风险时,我们应该采取更加激进的措施进行预防,这时我们就需要更高的灵敏度,因为不想漏诊。</p>
-<p>ROC和C-Statistic也存在明显的局限性,比如在模型中新增一个预测变量可能对于预后非常重要,但是反应在ROC和C-Statistic上却变化不大,特别是在ROC和C-Statistic已经很高的时候。</p>
-</section>
-<section id="校准度的评价" class="level2" data-number="16.3">
-<h2 data-number="16.3" class="anchored" data-anchor-id="校准度的评价"><span class="header-section-number">16.3</span> 校准度的评价</h2>
-<p>目前校准度的评价最好的方式还是使用<strong>Calibration curve(Calibration plot)</strong>。通过校准曲线可以非常直观地看到预测概率和真实概率的关系。</p>
-<p><img src="figs/Snipaste_2023-04-01_18-00-26.png" class="img-fluid"></p>
-<p>校准度的评价可以在很多水平进行,比如,从整体角度,或者从不同的组进行等。</p>
-<p>假如100个人有20个人发生了结局事件,那么真实概率就是20%,我们的模型会对每个人都计算出一个概率,如果大于某个值(比如说0.5),我们就认为这个人会发生结局事件,小于0.5就认为不会发生结局事件,那么这100个人每个人都会得到一个概率,把100个人的概率加起来再除以100,就得到了模型预测的平均概率,这个概率就是从整体角度评价的。</p>
-<p>假如把100个人按照预测概率大小排好序,然后分成10组,每组10人,在每个组内计算模型平均概率,再和真实概率(比如一组内10人有3人发生了结局事件,那这一组的真实概率就是30%)比较,然后把真实概率作为横坐标,预测概率作为纵坐标,就可以画出Calibration curve了,这就是从不同组的角度评价的(这是目前多数做法)。</p>
-<p>校准度还可以用<strong>Hosmer-Lemeshow 检验(H-L 检验)</strong>进行检验,若得到的P值小于0.05,那说明模型的预测值和真实值之间有差异,实际上Calibration curve就是Hosmer-Lemeshow检验的结果可视化,但是也仅仅是能说明有差异而已,并不能量化差异的大小。</p>
-</section>
-<section id="多个模型之间的比较" class="level2" data-number="16.4">
-<h2 data-number="16.4" class="anchored" data-anchor-id="多个模型之间的比较"><span class="header-section-number">16.4</span> 多个模型之间的比较</h2>
-<p>模型之间的区分度可以用<strong>AUC或者C-Statistic</strong>进行比较,校准度可以用<strong>AIC(Akaike index criterion)、BIC(Bayesian index criterion)、R^2</strong>等指标进行比较。</p>
-<p>除此之外,还可以用<strong>净重新分类指数</strong>和<strong>综合判别改善指数</strong>来比较模型的优劣。</p>
-<section id="nri" class="level3" data-number="16.4.1">
-<h3 data-number="16.4.1" class="anchored" data-anchor-id="nri"><span class="header-section-number">16.4.1</span> NRI</h3>
-<p><strong>NRI,net reclassification index,净重新分类指数</strong>,是用来比较模型准确度的,这个概念有点难理解,但是非常重要,在临床研究中非常常见,是评价模型的一大利器!</p>
-<p>我们可以这样简单的理解,假如有一群受试者,有些是患病的,有些是没病的,你建立了一个模型1,通过计算把受试者分为了有病组和没病组(当然有些是分错的),然后你又建立了模型2,也是把这群受试者分成了有病组和没病组,相当于是重新分类了!2个模型计算的结果是不一样的,有的可能重新分类分对了,有的可能分错了,然后,<strong>净重分类 = 重新分对的 - 重新分错的</strong>,净重分类指数只要再除以总人数就可以了,这样得到的就是<strong>绝对净重分类指数</strong>。</p>
-<p><strong>绝对净重分类指数</strong>反应的是模型对整体的分类能力有无改变,但是,对于有病组和没病组,都是有可能出现重新分类分对了/重新分类分错了/重新分类和之前一样,这3种情况的。所以,我们完全可以把有病组和没病组分开计算净重分类指数,然后再相加,这样得到的就是<strong>相加净重分类指数</strong>(additive NRI)。</p>
-<p>2种净重分类指数,在临床使用时建议都计算一下,我们用上面那篇文献中的一个例子说明。</p>
-<p>两种模型(旧模型为RCRI,新模型为CCTA + RCRI)评价患者术后发生心梗的风险,结果如下表所示,其中绿色表示正确重新分类,粉色表示错误重新分类,灰色表示没有重新分类。</p>
-<p><img src="figs/Snipaste_2023-04-01_18-02-23.png" class="img-fluid"></p>
-<p>根据这个表计算出来的<strong>相加NRI为11%,但是绝对NRI为-8%</strong>。绝对NRI为-8%说明新模型比旧模型差,难道我们就要继续采用旧模型了吗?但是我们的结局事件是心梗,是会危及患者生命的,这时候我们就需要适当提高假阳性,因为即使漏诊1例对漏诊的患者来说也是生命攸关的大事,所以这种情况下新模型还是值得采用的。</p>
-<p>所以到底怎么取舍,不能只看数字,一定要结合实际情况,写文章时遇到了不好的结果也要好好讨论!</p>
-</section>
-<section id="idi" class="level3" data-number="16.4.2">
-<h3 data-number="16.4.2" class="anchored" data-anchor-id="idi"><span class="header-section-number">16.4.2</span> IDI</h3>
-<p>NRI、AUC、C-Statistic都是要先设置一个阈值,然后在这个阈值的前提下进行各种比较,它们只是考虑了单独一个点的情况,不能反应模型的整体情况。因此,又来了新的指标-<strong>IDI,Integrated Discrimination Improvement,综合判别改善指数</strong>。</p>
-<p>IDI的计算很简单,它反映了两个模型在预测概率上的差别,是基于模型对每个个体的预测概率计算所得。它的计算方法为:</p>
-<p><img src="figs/Snipaste_2023-04-01_18-03-30.png" class="img-fluid"></p>
-<p>Pnew,events:患者组,新模型对每个人预测概率的平均值;</p>
-<p>Pold,events :患者组,旧模型对每个人预测概率的平均值;</p>
-<p>对于患者来说,那肯定是预测概率越高越准确,所以2者相减,值越大,表明新模型的预测能力越好;</p>
-<p>Pnew,non-events:非患者组,新模型对每个人预测概率的平均值;</p>
-<p>Pold,non-events:非患者组,旧模型对每个人预测概率的平均值;</p>
-<p>对于非患者来说,那肯定是预测概率越小越准确,因此,2者相减,值越小,表明新模型的预测能力越好;</p>
-<p>两部分再相减,就是值越大,表明模型预测能力越好,如果IDI为负值,那说明还不如原来的模型好。</p>
-</section>
-</section>
-<section id="决策曲线-dca" class="level2" data-number="16.5">
-<h2 data-number="16.5" class="anchored" data-anchor-id="决策曲线-dca"><span class="header-section-number">16.5</span> 决策曲线 DCA</h2>
-<p>临床都会碰到假阳性和假阴性问题,也就是误诊和漏诊问题,对于不同的疾病,可能我们需要的阈值不同,有时需要更高的假阳性,有时需要更高的假阴性,因此这就是一个实际临床效用问题,到底怎么办,才能使患者获益最大?</p>
-<p><strong>决策曲线分析(Decision Curve Analysis,DCA)</strong>就是为了解决这一问题。</p>
-<p>当患者有症状但尚不能诊断为某种疾病时,临床医生必须决定是(1)经验性治疗,(2)不治疗,或(3)在选择选项1和2之前进行进一步的检查。是否治疗取决于临床医生的经验、疾病治疗的有效性和并发症,以及患者接受治疗风险和负担的意愿。决策曲线分析是一种通过考虑患者风险和获益的可能范围来评估临床决策是否可行的方法。</p>
-<p><img src="figs/Snipaste_2023-04-01_18-04-12.png" class="img-fluid"></p>
-<p>DCA中的一个<strong>关键概念是“概率阈值”</strong>,即患者选择接受治疗的概率水平。结合上面这幅图,横坐标就是概率阈值,当概率阈值到达某个水平时,我们就采取治疗措施(简单理解)。此时对于一个病人来说,治疗有可能会利大于弊,也有可能会弊大于利,纵坐标就是利减去弊之后的净获益。</p>
-<p>概率阈值也是概率,取值自然是0-1之间的,所以对于每一个概率,我们都可以计算出一个净获益(计算方法上图中给出了),然后把所有的点连起来,就是决策曲线了(上图中3条曲线,代表3种不同方法的决策曲线)。</p>
-<p>上图中还有2条特殊的线,一条水平的蓝色线,表示<strong>所有人都不接受治疗</strong>时,此时不管概率阈值是多少,净获益肯定都是0。一条黄色的线,表示<strong>所有人都接受治疗</strong>时,随着概率阈值的改变,其净获益的改变。这两条线代表了2种极端的情况。</p>
-<p>在给定的概率阈值下,肯定是净获益越大越好,所以一般来说,肯定是曲线距离两条特殊的线越远越好。</p>
+
+<p>本节会给大家介绍一些临床预测模型方面的代表性文献,文献发表时间有比较早的,使用的方法有简单的也有复杂的,有些文章是经典的临床预测模型类文章,也有的是和生信数据挖掘结合的,还有meta分析的。</p>
+<p>这些文献有助于大家理解临床预测模型,以及如何书写一篇临床预测模型类的文章。</p>
+<section id="文献学习" class="level2" data-number="4.1">
+<h2 data-number="4.1" class="anchored" data-anchor-id="文献学习"><span class="header-section-number">4.1</span> 文献学习</h2>
+<p>相关文献解读,点击直达:</p>
+<ul>
+<li><a href="https://mp.weixin.qq.com/s/3mgiswzEiuCKYmATxLBKxw">机器学习算法识别结直肠癌中的免疫相关lncRNA signature</a></li>
+<li><a href="https://mp.weixin.qq.com/s/D1sbJTY4okixa_aQMou3ow">文献学习:机器学习帮助临床决策</a></li>
+<li><a href="https://mp.weixin.qq.com/s/h1KEM5TZV24cSODfBEEiCQ">文献学习:机器学习方法帮助缩短就诊时间</a></li>
+<li><a href="https://mp.weixin.qq.com/s/Wm_mqkkTs7BoC7RZ4fVOfw">SEER数据库+临床预测模型,一篇中规中矩的高分文献学习(IF:16)</a></li>
+<li><a href="https://mp.weixin.qq.com/s/mMgWv5G7rG9EjkhEIubZfw">新鲜出炉的lancet-oncology(IF:51)预测模型文章:列线图预测黑色素瘤患者的预后(含全部代码)</a></li>
+<li><a href="https://mp.weixin.qq.com/s/_zPk_eKbc0yS-8_i0DpwIw">文献学习:MIMIC-IV+eICU+临床预测模型</a></li>
+<li><a href="https://mp.weixin.qq.com/s/Apy6BrUEmjXbP_XsQ4QZ3A">meta分析+临床预测模型,简单可学习的IF=4.7文章学习</a></li>
+</ul>
 </section>
-<section id="临床影响曲线-cic" class="level2" data-number="16.6">
-<h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic"><span class="header-section-number">16.6</span> 临床影响曲线 CIC</h2>
-<p>临床影响曲线,Clinical Impact Curve,属于DCA的变种,是Kerr等人对DCA的进一步发展,结合下面这张图来看:</p>
-<p><img src="figs/Snipaste_2023-04-01_18-04-49.png" class="img-fluid"></p>
-<p>横坐标还是概率阈值,纵坐标是人数。紫色线表示在不同的概率阈值下,被模型判定为高风险的人数;红色线条表示在不同的概率阈值下,被模型判定为高风险且真的发生结局事件的人数。在最下面还增加了一个<strong>损失:获益比</strong>,表示在不同的概率阈值下,损失和获益的比例。</p>
-<p>了解这些基础内容后,我们就可以通过各种各样的工具实现它,后面我们将会详细介绍如果通过R语言实现以上内容。</p>
+<section id="经典文献" class="level2" data-number="4.2">
+<h2 data-number="4.2" class="anchored" data-anchor-id="经典文献"><span class="header-section-number">4.2</span> 经典文献</h2>
+<p>除此之外,对于临床预测模型还有一些经典的指导性文献,部分内容已在本书介绍,还有很多建议大家自己学习,这些文献都是经典,这里给大家找了十几篇超级无敌经典的相关文献,每一篇都是经典,涉及:</p>
+<ul>
+<li>模型建立的步骤、</li>
+<li>模型评价、</li>
+<li>缺失值处理、</li>
+<li>样本量计算、</li>
+<li>数据划分(内外部验证、bootstrap等)</li>
+<li>论文写作等多个方面。</li>
+</ul>
+<p>17篇文献的详细信息如下所示,为了方便大家学习,我已经把这17篇文献整理好了,公众号后台回复<strong>20240608</strong>即可获取全部文献。</p>
+<ul>
+<li>Collins G S, Moons K G M, Dhiman P, et al.&nbsp;TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods[J]. BMJ (Clinical research ed.), 2024, 385: e078378. DOI:10.1136/bmj-2023-078378.</li>
+<li>Collins G S, Reitsma J B, Altman D G, et al.&nbsp;Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. British Medical Journal, 2015, 350(jan07 4): g7594–g7594. DOI:10.1136/bmj.g7594.</li>
+<li>Steyerberg E W, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation[J]. European Heart Journal, 2014, 35(29): 1925–1931. DOI:10.1093/eurheartj/ehu207.</li>
+<li>Van Calster B, Wynants L, Verbeek J F M, et al.&nbsp;Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators[J]. European Urology, 2018, 74(6): 796–804. DOI:10.1016/j.eururo.2018.08.038.</li>
+<li>Balachandran V P, Gonen M, Smith J J, et al.&nbsp;Nomograms in Oncology – More than Meets the Eye[J]. The Lancet. Oncology, 2015, 16(4): e173–e180. DOI:10.1016/S1470-2045(14)71116-7.</li>
+<li>Sterne J A C, White I R, Carlin J B, et al.&nbsp;Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls[J]. BMJ (Clinical research ed.), 2009, 338: b2393. DOI:10.1136/bmj.b2393.</li>
+<li>Archer L, Snell K I E, Ensor J, et al.&nbsp;Minimum sample size for external validation of a clinical prediction model with a continuous outcome[J]. Statistics in Medicine, 2021, 40(1): 133–146. DOI:10.1002/sim.8766.</li>
+<li>Riley R D, Debray T P A, Collins G S, et al.&nbsp;Minimum sample size for external validation of a clinical prediction model with a binary outcome[J]. Statistics in Medicine, 2021, 40(19): 4230–4251. DOI:10.1002/sim.9025.</li>
+<li>Riley R D, Collins G S, Ensor J, et al.&nbsp;Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome[J]. Statistics in Medicine, 2022, 41(7): 1280–1295. DOI:10.1002/sim.9275.</li>
+<li>Riley R D, Snell K I E, Archer L, et al.&nbsp;Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study[J]. British Medical Journal, 2024, 384: e074821. DOI:10.1136/bmj-2023-074821.</li>
+<li>Riley R D, Archer L, Snell K I E, et al.&nbsp;Evaluation of clinical prediction models (part 2): how to undertake an external validation study[J]. British Medical Journal, 2024, 384: e074820. DOI:10.1136/bmj-2023-074820.</li>
+<li>Collins G S, Dhiman P, Ma J, et al.&nbsp;Evaluation of clinical prediction models (part 1): from development to external validation[J]. British Medical Journal, 2024, 384: e074819. DOI:10.1136/bmj-2023-074819.</li>
+<li>Alba A C, Agoritsas T, Walsh M, et al.&nbsp;Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature[J]. JAMA, 2017, 318(14): 1377–1384. DOI:10.1001/jama.2017.12126.</li>
+<li>Strandberg R, Jepsen P, Hagström H. Developing and validating clinical prediction models in hepatology—An overview for clinicians[J]. Journal of Hepatology, 2024: S0168-8278(24)00213–7. DOI:10.1016/j.jhep.2024.03.030.</li>
+<li>Fitzgerald M, Saville B R, Lewis R J. Decision curve analysis[J]. JAMA, 2015, 313(4): 409–410. DOI:10.1001/jama.2015.37.</li>
+<li>Rd R, J E, Kie S, et al.&nbsp;Calculating the sample size required for developing a clinical prediction model[J]. British Medical Journal, BMJ, 2020, 368. DOI:10.1136/bmj.m441.</li>
+<li>Efthimiou O, Seo M, Chalkou K, Debray T, Egger M, Salanti G. Developing clinical prediction models: a step-by-step guide. BMJ. 2024 Sep 3;386:e078276. doi: 10.1136/bmj-2023-078276. PMID: 39227063; PMCID: PMC11369751.</li>
+</ul>
 
 
 </section>
@@ -637,18 +579,7 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -680,11 +611,50 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -694,8 +664,17 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -707,7 +686,130 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -751,6 +853,7 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -776,6 +879,32 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -837,27 +966,32 @@ <h2 data-number="16.6" class="anchored" data-anchor-id="临床影响曲线-cic">
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./feature-selection_randomforest.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span>
+      <a href="./临床预测模型和机器学习.html" class="pagination-link" aria-label="临床预测模型和机器学习">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./roc-binominal.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./模型建立和可视化.html" class="pagination-link" aria-label="模型建立和可视化">
+        <span class="nav-page-text">模型建立和可视化</span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions d-sm-block d-md-none"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file
diff --git "a/docs/\346\240\241\345\207\206\346\233\262\347\272\277\345\222\214\345\206\263\347\255\226\346\233\262\347\272\277\347\232\204\346\246\202\347\216\207.html" "b/docs/\346\240\241\345\207\206\346\233\262\347\272\277\345\222\214\345\206\263\347\255\226\346\233\262\347\272\277\347\232\204\346\246\202\347\216\207.html"
deleted file mode 100644
index d03487c..0000000
--- "a/docs/\346\240\241\345\207\206\346\233\262\347\272\277\345\222\214\345\206\263\347\255\226\346\233\262\347\272\277\347\232\204\346\246\202\347\216\207.html"
+++ /dev/null
@@ -1,985 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
-
-<meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
-
-<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
-
-
-<title>R语言实战临床预测模型 - 45&nbsp; 校准曲线和决策曲线的概率</title>
-<style>
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-div.columns{display: flex; gap: min(4vw, 1.5em);}
-div.column{flex: auto; overflow-x: auto;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-ul.task-list li input[type="checkbox"] {
-  width: 0.8em;
-  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
-  vertical-align: middle;
-}
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
-</style>
-
-
-<script src="site_libs/quarto-nav/quarto-nav.js"></script>
-<script src="site_libs/quarto-nav/headroom.min.js"></script>
-<script src="site_libs/clipboard/clipboard.min.js"></script>
-<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
-<script src="site_libs/quarto-search/fuse.min.js"></script>
-<script src="site_libs/quarto-search/quarto-search.js"></script>
-<meta name="quarto:offset" content="./">
-<link href="./model-compare_tidymodels.html" rel="next">
-<link href="./DCA测试集.html" rel="prev">
-<script src="site_libs/quarto-html/quarto.js"></script>
-<script src="site_libs/quarto-html/popper.min.js"></script>
-<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
-<script src="site_libs/quarto-html/anchor.min.js"></script>
-<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
-<script src="site_libs/bootstrap/bootstrap.min.js"></script>
-<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
-<script id="quarto-search-options" type="application/json">{
-  "location": "sidebar",
-  "copy-button": false,
-  "collapse-after": 3,
-  "panel-placement": "start",
-  "type": "textbox",
-  "limit": 20,
-  "language": {
-    "search-no-results-text": "没有结果",
-    "search-matching-documents-text": "匹配的文档",
-    "search-copy-link-title": "复制搜索链接",
-    "search-hide-matches-text": "隐藏其它匹配结果",
-    "search-more-match-text": "更多匹配结果",
-    "search-more-matches-text": "更多匹配结果",
-    "search-clear-button-title": "清除",
-    "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
-  }
-}</script>
-
-
-</head>
-
-<body class="nav-sidebar floating">
-
-<div id="quarto-search-results"></div>
-  <header id="quarto-header" class="headroom fixed-top">
-  <nav class="quarto-secondary-nav">
-    <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
-        <i class="bi bi-layout-text-sidebar-reverse"></i>
-      </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./校准曲线和决策曲线的概率.html"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
-        <i class="bi bi-search"></i>
-      </button>
-    </div>
-  </nav>
-</header>
-<!-- content -->
-<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
-<!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
-    <div class="pt-lg-2 mt-2 text-left sidebar-header">
-    <div class="sidebar-title mb-0 py-0">
-      <a href="./">R语言实战临床预测模型</a> 
-        <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
-</div>
-    </div>
-      </div>
-        <div class="mt-2 flex-shrink-0 align-items-center">
-        <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
-        </div>
-        </div>
-    <div class="sidebar-menu-container"> 
-    <ul class="list-unstyled mt-1">
-        <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./index.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text">前言</span></a>
-  </div>
-</li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-        <li class="sidebar-item sidebar-item-section">
-      <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
-            <i class="bi bi-chevron-right ms-2"></i>
-          </a> 
-      </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
-  </div>
-</li>
-      </ul>
-  </li>
-    </ul>
-    </div>
-</nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
-<!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        
-    </div>
-<!-- main -->
-<main class="content" id="quarto-document-content">
-
-<header id="title-block-header" class="quarto-title-block default">
-<div class="quarto-title">
-<h1 class="title"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></h1>
-</div>
-
-
-
-<div class="quarto-title-meta">
-
-    
-  
-    
-  </div>
-  
-
-</header>
-
-<p>不知道大家有没有注意过,绘制生存曲线和决策曲线都要用到概率,那到底是生存概率还是死亡概率呢?</p>
-<p>我在学习绘制<a href="https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzUzOTQzNzU0NA==&amp;action=getalbum&amp;album_id=2699591889800560640&amp;from_itemidx=1&amp;from_msgid=2247500351&amp;scene=173&amp;subscene=&amp;sessionid=svr_c7db21a769f&amp;enterid=1703484864&amp;count=3&amp;nolastread=1#wechat_redirect">随机生存森林</a>的校准曲线和决策曲线时,遇到了这个问题,然后认真探索了一下,发现校准曲线和决策曲线用的概率竟然是不一样的。</p>
-<p>画COX模型的校准曲线需要实际生存概率和预测生存概率,但是关于生存概率到底是怎么算出来的,还有算出来的到底是死亡概率还是生存概率,一直搞不清楚,所以写这篇明确一下。</p>
-<p>首先把数据集划分为训练集、测试集。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
-<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>lung<span class="sc">$</span>status <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(lung<span class="sc">$</span>status <span class="sc">==</span> <span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">0</span>)</span>
-<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>lung <span class="ot">&lt;-</span> <span class="fu">na.omit</span>(lung)</span>
-<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">123</span>)</span>
-<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>ind <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(lung),<span class="fu">nrow</span>(lung)<span class="sc">*</span><span class="fl">0.7</span>)</span>
-<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>train_df <span class="ot">&lt;-</span> lung[ind,]</span>
-<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>test_df <span class="ot">&lt;-</span> lung[<span class="sc">-</span> ind, ]</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>生存/死亡概率这种说法在某些数据集是成立的,比如这里的数据,其结局就是生存或者死亡。</p>
-<p>但是某些数据的结局不是“生存/死亡”这种,可能是“患病/不患病、复发/不复发”等等情况,此时再叫生存/死亡概率就不对了,所以应该明确,使用<code>event-probability</code>,即<strong>终点事件发生的概率</strong>,通常终点事件是用数字1表示的,这种说法更加明确,不容易出错。(event-probability有时也被称为<code>failure-probability</code>)</p>
-<p>而且生存分析作为一种在医学领域常见的方法,在其他领域应用也很广泛。</p>
-<blockquote class="blockquote">
-<p>生存分析(英语:Survival analysis)是指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析,例如生物有机体的死亡和机械系统的故障。该主题在工程学中称为可靠性理论或可靠性分析,在经济学中称为持续时间分析或持续时间建模,在社会学中称为事件历史分析。–维基百科</p>
-</blockquote>
-<p>对于<code>lung</code>这个数据集来说,<code>event-probability</code>就是死亡概率!</p>
-<p>下面我们通过cox模型计算训练集的生存概率,以下是2种方法:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>coxph_fit <span class="ot">&lt;-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df,</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> T, <span class="at">y =</span> T)</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 生存概率,不是event-probability </span></span>
-<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="fu">c</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(coxph_fit), <span class="at">times =</span> <span class="dv">100</span>)<span class="sc">$</span>surv)<span class="sc">^</span><span class="fu">exp</span>(coxph_fit<span class="sc">$</span>linear.predictors)</span>
-<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="do">##   [1] 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469</span></span>
-<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   [8] 0.9032144 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090</span></span>
-<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  [15] 0.8621303 0.8893680 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016</span></span>
-<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  [22] 0.7442135 0.9244979 0.8678144 0.8184844 0.8413455 0.8541395 0.9222329</span></span>
-<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  [29] 0.8044921 0.8517422 0.8429372 0.9178130 0.9299924 0.9269818 0.8302337</span></span>
-<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  [36] 0.7211115 0.6815169 0.8089742 0.9250284 0.8259474 0.9060193 0.8827809</span></span>
-<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [43] 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 0.8875361</span></span>
-<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  [50] 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530900 0.8855674</span></span>
-<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  [57] 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934</span></span>
-<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  [64] 0.7815514 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698</span></span>
-<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  [71] 0.7426331 0.8408116 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881</span></span>
-<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  [78] 0.7906085 0.8396755 0.8791217 0.8724587 0.8955971 0.8426875 0.8104841</span></span>
-<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  [85] 0.8843599 0.8926688 0.8196833 0.9133560 0.8602637 0.8579585 0.8131528</span></span>
-<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  [92] 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 0.9223448 0.7819553</span></span>
-<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  [99] 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 0.6978048</span></span>
-<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="do">## [106] 0.9013489 0.8112944 0.6854877 0.8853881 0.8183476 0.7124062 0.8235475</span></span>
-<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="do">## [113] 0.9066584 0.8161488 0.8612663 0.8121238</span></span>
-<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="fu">c</span>((<span class="fu">summary</span>(<span class="fu">survfit</span>(coxph_fit, <span class="at">newdata=</span>train_df), <span class="at">times=</span><span class="dv">100</span>)<span class="sc">$</span>surv))</span>
-<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a><span class="do">##   [1] 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469</span></span>
-<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a><span class="do">##   [8] 0.9032144 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090</span></span>
-<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a><span class="do">##  [15] 0.8621303 0.8893680 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016</span></span>
-<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a><span class="do">##  [22] 0.7442135 0.9244979 0.8678144 0.8184844 0.8413455 0.8541395 0.9222329</span></span>
-<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="do">##  [29] 0.8044921 0.8517422 0.8429372 0.9178130 0.9299924 0.9269818 0.8302337</span></span>
-<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a><span class="do">##  [36] 0.7211115 0.6815169 0.8089742 0.9250284 0.8259474 0.9060193 0.8827809</span></span>
-<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a><span class="do">##  [43] 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 0.8875361</span></span>
-<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a><span class="do">##  [50] 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530900 0.8855674</span></span>
-<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a><span class="do">##  [57] 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934</span></span>
-<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a><span class="do">##  [64] 0.7815514 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698</span></span>
-<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a><span class="do">##  [71] 0.7426331 0.8408116 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881</span></span>
-<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a><span class="do">##  [78] 0.7906085 0.8396755 0.8791217 0.8724587 0.8955971 0.8426875 0.8104841</span></span>
-<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a><span class="do">##  [85] 0.8843599 0.8926688 0.8196833 0.9133560 0.8602637 0.8579585 0.8131528</span></span>
-<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a><span class="do">##  [92] 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 0.9223448 0.7819553</span></span>
-<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a><span class="do">##  [99] 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 0.6978048</span></span>
-<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a><span class="do">## [106] 0.9013489 0.8112944 0.6854877 0.8853881 0.8183476 0.7124062 0.8235475</span></span>
-<span id="cb2-42"><a href="#cb2-42" aria-hidden="true" tabindex="-1"></a><span class="do">## [113] 0.9066584 0.8161488 0.8612663 0.8121238</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这两种方法计算出来的生存概率是一模一样的。</p>
-<p>这个方法也是之前在绘制决策曲线时使用的方法:<a href="https://mp.weixin.qq.com/s/buajk82tUFH02ht9DH3RwA">生存资料的决策曲线分析DCA</a></p>
-<p>在画COX模型的决策曲线时,需要使用概率,使用的是<code>1-summary(xxxx)</code>。这一点在官方的说法也是很明确的,来自<code>stdca.r</code>脚本的官方机构:纪念斯隆-凯特琳癌症中心:</p>
-<p><img src="./figs/PixPin_2023-12-25_20-03-51.png" class="img-fluid"></p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># failure probability </span></span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">c</span>(<span class="dv">1</span><span class="sc">-</span>(<span class="fu">summary</span>(<span class="fu">survfit</span>(coxph_fit, <span class="at">newdata=</span>train_df), <span class="at">times=</span><span class="dv">100</span>)<span class="sc">$</span>surv))</span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   [1] 0.36391922 0.08687312 0.14985089 0.23691353 0.14628733 0.15493424</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   [7] 0.06245312 0.09678563 0.13128605 0.27716348 0.20483344 0.12667093</span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">##  [13] 0.05125721 0.14559099 0.13786967 0.11063201 0.22218806 0.09039195</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">##  [19] 0.08480558 0.15215836 0.13819836 0.25578648 0.07550208 0.13218564</span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">##  [25] 0.18151559 0.15865446 0.14586054 0.07776714 0.19550795 0.14825781</span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">##  [31] 0.15706277 0.08218697 0.07000765 0.07301820 0.16976631 0.27888853</span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">##  [37] 0.31848310 0.19102579 0.07497155 0.17405255 0.09398071 0.11721909</span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  [43] 0.07535682 0.22293786 0.26577192 0.10913621 0.14748469 0.16618091</span></span>
-<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  [49] 0.11246388 0.22150420 0.10323032 0.12267652 0.14725839 0.16688923</span></span>
-<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  [55] 0.14691005 0.11443259 0.11359944 0.16246550 0.23201760 0.08621721</span></span>
-<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [61] 0.10807703 0.07890259 0.18400656 0.21844859 0.11180203 0.23056777</span></span>
-<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  [67] 0.06112043 0.09214054 0.15368200 0.10823019 0.25736689 0.15918841</span></span>
-<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  [73] 0.17545294 0.14046334 0.27124664 0.17645248 0.16281191 0.20939151</span></span>
-<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  [79] 0.16032453 0.12087828 0.12754126 0.10440294 0.15731251 0.18951593</span></span>
-<span id="cb3-17"><a href="#cb3-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  [85] 0.11564013 0.10733123 0.18031666 0.08664403 0.13973627 0.14204145</span></span>
-<span id="cb3-18"><a href="#cb3-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  [91] 0.18684720 0.22323209 0.15389400 0.14955219 0.10182876 0.09977463</span></span>
-<span id="cb3-19"><a href="#cb3-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  [97] 0.07765520 0.21804473 0.19236203 0.16488251 0.19920229 0.18652767</span></span>
-<span id="cb3-20"><a href="#cb3-20" aria-hidden="true" tabindex="-1"></a><span class="do">## [103] 0.06456910 0.07393773 0.30219524 0.09865107 0.18870555 0.31451234</span></span>
-<span id="cb3-21"><a href="#cb3-21" aria-hidden="true" tabindex="-1"></a><span class="do">## [109] 0.11461188 0.18165243 0.28759375 0.17645248 0.09334163 0.18385122</span></span>
-<span id="cb3-22"><a href="#cb3-22" aria-hidden="true" tabindex="-1"></a><span class="do">## [115] 0.13873375 0.18787620</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>所以,绘制决策曲线用的是<code>event-probability</code>,或者叫<code>failure-probability</code>。在以死亡为终点事件的数据中,这个概率就是死亡概率,但是某些数据的终点不是死亡,此时再叫死亡概率就容易引起混淆了。</p>
-<p>除此之外,<code>pec</code>包的<code>predictSurvProb()</code>函数可以计算多个模型的不同数据集的<code>event-probability</code>,非常方便,目前此包的大部分功能都已经转移到<code>riskRegression</code>包中,且<code>predictSurvProb()</code>的功能已经被更为强大的<code>predictRisk</code>替代。</p>
-<p>帮助文档写的很清楚,就是:<em>Extract event probabilities…</em>:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(riskRegression)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="do">## Warning in .recacheSubclasses(def@className, def, env): undefined subclass</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="do">## "ndiMatrix" of class "replValueSp"; definition not updated</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="do">## riskRegression version 2023.09.08</span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="co"># event probability 这个例子是死亡概率</span></span>
-<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="fu">c</span>(<span class="fu">predictRisk</span>(coxph_fit, <span class="at">newdata =</span> train_df, <span class="at">times =</span> <span class="dv">100</span>))</span>
-<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="do">##   [1] 0.36391922 0.08687312 0.14985089 0.23691353 0.14628733 0.15493424</span></span>
-<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="do">##   [7] 0.06245312 0.09678563 0.13128605 0.27716348 0.20483344 0.12667093</span></span>
-<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="do">##  [13] 0.05125721 0.14559099 0.13786967 0.11063201 0.22218806 0.09039195</span></span>
-<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="do">##  [19] 0.08480558 0.15215836 0.13819836 0.25578648 0.07550208 0.13218564</span></span>
-<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="do">##  [25] 0.18151559 0.15865446 0.14586054 0.07776714 0.19550795 0.14825781</span></span>
-<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="do">##  [31] 0.15706277 0.08218697 0.07000765 0.07301820 0.16976631 0.27888853</span></span>
-<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a><span class="do">##  [37] 0.31848310 0.19102579 0.07497155 0.17405255 0.09398071 0.11721909</span></span>
-<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a><span class="do">##  [43] 0.07535682 0.22293786 0.26577192 0.10913621 0.14748469 0.16618091</span></span>
-<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a><span class="do">##  [49] 0.11246388 0.22150420 0.10323032 0.12267652 0.14725839 0.16688923</span></span>
-<span id="cb4-17"><a href="#cb4-17" aria-hidden="true" tabindex="-1"></a><span class="do">##  [55] 0.14691005 0.11443259 0.11359944 0.16246550 0.23201760 0.08621721</span></span>
-<span id="cb4-18"><a href="#cb4-18" aria-hidden="true" tabindex="-1"></a><span class="do">##  [61] 0.10807703 0.07890259 0.18400656 0.21844859 0.11180203 0.23056777</span></span>
-<span id="cb4-19"><a href="#cb4-19" aria-hidden="true" tabindex="-1"></a><span class="do">##  [67] 0.06112043 0.09214054 0.15368200 0.10823019 0.25736689 0.15918841</span></span>
-<span id="cb4-20"><a href="#cb4-20" aria-hidden="true" tabindex="-1"></a><span class="do">##  [73] 0.17545294 0.14046334 0.27124664 0.17645248 0.16281191 0.20939151</span></span>
-<span id="cb4-21"><a href="#cb4-21" aria-hidden="true" tabindex="-1"></a><span class="do">##  [79] 0.16032453 0.12087828 0.12754126 0.10440294 0.15731251 0.18951593</span></span>
-<span id="cb4-22"><a href="#cb4-22" aria-hidden="true" tabindex="-1"></a><span class="do">##  [85] 0.11564013 0.10733123 0.18031666 0.08664403 0.13973627 0.14204145</span></span>
-<span id="cb4-23"><a href="#cb4-23" aria-hidden="true" tabindex="-1"></a><span class="do">##  [91] 0.18684720 0.22323209 0.15389400 0.14955219 0.10182876 0.09977463</span></span>
-<span id="cb4-24"><a href="#cb4-24" aria-hidden="true" tabindex="-1"></a><span class="do">##  [97] 0.07765520 0.21804473 0.19236203 0.16488251 0.19920229 0.18652767</span></span>
-<span id="cb4-25"><a href="#cb4-25" aria-hidden="true" tabindex="-1"></a><span class="do">## [103] 0.06456910 0.07393773 0.30219524 0.09865107 0.18870555 0.31451234</span></span>
-<span id="cb4-26"><a href="#cb4-26" aria-hidden="true" tabindex="-1"></a><span class="do">## [109] 0.11461188 0.18165243 0.28759375 0.17645248 0.09334163 0.18385122</span></span>
-<span id="cb4-27"><a href="#cb4-27" aria-hidden="true" tabindex="-1"></a><span class="do">## [115] 0.13873375 0.18787620</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>结果和上面的<code>1-summary(xxx)</code>计算的是一样的。</p>
-<p>再看一个cph模型,计算生存概率(非终点事件概率):</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(rms))</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>dd <span class="ot">&lt;-</span> <span class="fu">datadist</span>(train_df)</span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">datadist =</span> <span class="st">"dd"</span>)</span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>cph_fit <span class="ot">&lt;-</span> <span class="fu">cph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> age <span class="sc">+</span> sex <span class="sc">+</span> ph.ecog <span class="sc">+</span> ph.karno <span class="sc">+</span> pat.karno,</span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                   <span class="at">data =</span> train_df,</span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> T, <span class="at">y =</span> T</span>
-<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a>               ,<span class="at">surv =</span> T,</span>
-<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>               <span class="at">time.inc =</span> <span class="dv">100</span></span>
-<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>               )</span>
-<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a><span class="fu">c</span>(cph_fit<span class="sc">$</span>surv.summary[<span class="dv">2</span>,<span class="dv">1</span>,<span class="dv">1</span>]<span class="sc">^</span><span class="fu">exp</span>(cph_fit<span class="sc">$</span>linear.predictors))</span>
-<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="do">##       218        22        69       163        60       227       225       205 </span></span>
-<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.6360808 0.9131269 0.8501491 0.7630865 0.8537127 0.8450658 0.9375469 0.9032144 </span></span>
-<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a><span class="do">##       123       124       216       125       186       135        94        38 </span></span>
-<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8687140 0.7228365 0.7951666 0.8733291 0.9487428 0.8544090 0.8621303 0.8893680 </span></span>
-<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a><span class="do">##        10       211       107       111       222       141       162       102 </span></span>
-<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.7778119 0.9096080 0.9151944 0.8478416 0.8618016 0.7442135 0.9244979 0.8678144 </span></span>
-<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a><span class="do">##       194        45       148       203       202        99        34        72 </span></span>
-<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8184844 0.8413455 0.8541395 0.9222329 0.8044920 0.8517422 0.8429372 0.9178130 </span></span>
-<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a><span class="do">##       182       185        47        90       219       195        84        21 </span></span>
-<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9299924 0.9269818 0.8302337 0.7211115 0.6815168 0.8089742 0.9250285 0.8259475 </span></span>
-<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a><span class="do">##       112       131       166       213        37        53        31       109 </span></span>
-<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9060193 0.8827809 0.9246432 0.7770621 0.7342281 0.8908638 0.8525153 0.8338191 </span></span>
-<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a><span class="do">##        57        65       228        81       128        26       127         9 </span></span>
-<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8875361 0.7784958 0.8967697 0.8773235 0.8527416 0.8331108 0.8530899 0.8855674 </span></span>
-<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a><span class="do">##       145       177       118       190        54        43       200       226 </span></span>
-<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8864006 0.8375345 0.7679824 0.9137828 0.8919230 0.9210974 0.8159934 0.7815514 </span></span>
-<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a><span class="do">##       180         7       174       179       169        71        32       122 </span></span>
-<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8881980 0.7694322 0.9388796 0.9078595 0.8463180 0.8917698 0.7426331 0.8408116 </span></span>
-<span id="cb5-31"><a href="#cb5-31" aria-hidden="true" tabindex="-1"></a><span class="do">##       191       208       119        48        55        42        19       144 </span></span>
-<span id="cb5-32"><a href="#cb5-32" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8245471 0.8595367 0.7287534 0.8235475 0.8371881 0.7906085 0.8396755 0.8791217 </span></span>
-<span id="cb5-33"><a href="#cb5-33" aria-hidden="true" tabindex="-1"></a><span class="do">##       196        85       221        93        88       188       165        50 </span></span>
-<span id="cb5-34"><a href="#cb5-34" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8724587 0.8955971 0.8426875 0.8104841 0.8843599 0.8926688 0.8196833 0.9133560 </span></span>
-<span id="cb5-35"><a href="#cb5-35" aria-hidden="true" tabindex="-1"></a><span class="do">##        11        70       187       142       106        64        27        83 </span></span>
-<span id="cb5-36"><a href="#cb5-36" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.8602637 0.8579586 0.8131528 0.7767679 0.8461060 0.8504478 0.8981712 0.9002254 </span></span>
-<span id="cb5-37"><a href="#cb5-37" aria-hidden="true" tabindex="-1"></a><span class="do">##       101        73       212        35       189       173       204       168 </span></span>
-<span id="cb5-38"><a href="#cb5-38" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9223448 0.7819553 0.8076380 0.8351175 0.8007977 0.8134723 0.9354309 0.9260623 </span></span>
-<span id="cb5-39"><a href="#cb5-39" aria-hidden="true" tabindex="-1"></a><span class="do">##       116       160       113        39        59         8       155       159 </span></span>
-<span id="cb5-40"><a href="#cb5-40" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.6978048 0.9013489 0.8112945 0.6854876 0.8853881 0.8183476 0.7124062 0.8235475 </span></span>
-<span id="cb5-41"><a href="#cb5-41" aria-hidden="true" tabindex="-1"></a><span class="do">##        89       149       171        18 </span></span>
-<span id="cb5-42"><a href="#cb5-42" aria-hidden="true" tabindex="-1"></a><span class="do">## 0.9066584 0.8161488 0.8612663 0.8121238</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>校准曲线的使用的是非终点事件概率,在<code>lung</code>这个数据集中就是生存概率,关于它的详细介绍,请参考推文:<a href="https://mp.weixin.qq.com/s/9zLWDGOxh877HI1suEA-Ug">Cox回归校准曲线(测试集)的实现方法(下)</a></p>
-<p>参考文章:</p>
-<ol type="1">
-<li>pec:https://stats.stackexchange.com/questions/36015/prediction-in-cox-regression</li>
-<li>维基百科:https://zh.wikipedia.org/zh-cn/%E7%94%9F%E5%AD%98%E5%88%86%E6%9E%90</li>
-<li>生存分析:https://zhuanlan.zhihu.com/p/367879967</li>
-<li>dca官方文档:dca-tutorial-2015-2-26.pdf</li>
-<li>失效事件failure-event:https://www.jianshu.com/p/1a8ee973b45f</li>
-</ol>
-
-
-
-</main> <!-- /main -->
-<script id="quarto-html-after-body" type="application/javascript">
-window.document.addEventListener("DOMContentLoaded", function (event) {
-  const toggleBodyColorMode = (bsSheetEl) => {
-    const mode = bsSheetEl.getAttribute("data-mode");
-    const bodyEl = window.document.querySelector("body");
-    if (mode === "dark") {
-      bodyEl.classList.add("quarto-dark");
-      bodyEl.classList.remove("quarto-light");
-    } else {
-      bodyEl.classList.add("quarto-light");
-      bodyEl.classList.remove("quarto-dark");
-    }
-  }
-  const toggleBodyColorPrimary = () => {
-    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
-    if (bsSheetEl) {
-      toggleBodyColorMode(bsSheetEl);
-    }
-  }
-  toggleBodyColorPrimary();  
-  const icon = "";
-  const anchorJS = new window.AnchorJS();
-  anchorJS.options = {
-    placement: 'right',
-    icon: icon
-  };
-  anchorJS.add('.anchored');
-  const isCodeAnnotation = (el) => {
-    for (const clz of el.classList) {
-      if (clz.startsWith('code-annotation-')) {                     
-        return true;
-      }
-    }
-    return false;
-  }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
-    // button target
-    const button = e.trigger;
-    // don't keep focus
-    button.blur();
-    // flash "checked"
-    button.classList.add('code-copy-button-checked');
-    var currentTitle = button.getAttribute("title");
-    button.setAttribute("title", "已复制");
-    let tooltip;
-    if (window.bootstrap) {
-      button.setAttribute("data-bs-toggle", "tooltip");
-      button.setAttribute("data-bs-placement", "left");
-      button.setAttribute("data-bs-title", "已复制");
-      tooltip = new bootstrap.Tooltip(button, 
-        { trigger: "manual", 
-          customClass: "code-copy-button-tooltip",
-          offset: [0, -8]});
-      tooltip.show();    
-    }
-    setTimeout(function() {
-      if (tooltip) {
-        tooltip.hide();
-        button.removeAttribute("data-bs-title");
-        button.removeAttribute("data-bs-toggle");
-        button.removeAttribute("data-bs-placement");
-      }
-      button.setAttribute("title", currentTitle);
-      button.classList.remove('code-copy-button-checked');
-    }, 1000);
-    // clear code selection
-    e.clearSelection();
-  });
-  function tippyHover(el, contentFn) {
-    const config = {
-      allowHTML: true,
-      content: contentFn,
-      maxWidth: 500,
-      delay: 100,
-      arrow: false,
-      appendTo: function(el) {
-          return el.parentElement;
-      },
-      interactive: true,
-      interactiveBorder: 10,
-      theme: 'quarto',
-      placement: 'bottom-start'
-    };
-    window.tippy(el, config); 
-  }
-  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
-  for (var i=0; i<noterefs.length; i++) {
-    const ref = noterefs[i];
-    tippyHover(ref, function() {
-      // use id or data attribute instead here
-      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
-      try { href = new URL(href).hash; } catch {}
-      const id = href.replace(/^#\/?/, "");
-      const note = window.document.getElementById(id);
-      return note.innerHTML;
-    });
-  }
-      let selectedAnnoteEl;
-      const selectorForAnnotation = ( cell, annotation) => {
-        let cellAttr = 'data-code-cell="' + cell + '"';
-        let lineAttr = 'data-code-annotation="' +  annotation + '"';
-        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
-        return selector;
-      }
-      const selectCodeLines = (annoteEl) => {
-        const doc = window.document;
-        const targetCell = annoteEl.getAttribute("data-target-cell");
-        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
-        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
-        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
-        const lineIds = lines.map((line) => {
-          return targetCell + "-" + line;
-        })
-        let top = null;
-        let height = null;
-        let parent = null;
-        if (lineIds.length > 0) {
-            //compute the position of the single el (top and bottom and make a div)
-            const el = window.document.getElementById(lineIds[0]);
-            top = el.offsetTop;
-            height = el.offsetHeight;
-            parent = el.parentElement.parentElement;
-          if (lineIds.length > 1) {
-            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
-            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
-            height = bottom - top;
-          }
-          if (top !== null && height !== null && parent !== null) {
-            // cook up a div (if necessary) and position it 
-            let div = window.document.getElementById("code-annotation-line-highlight");
-            if (div === null) {
-              div = window.document.createElement("div");
-              div.setAttribute("id", "code-annotation-line-highlight");
-              div.style.position = 'absolute';
-              parent.appendChild(div);
-            }
-            div.style.top = top - 2 + "px";
-            div.style.height = height + 4 + "px";
-            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
-            if (gutterDiv === null) {
-              gutterDiv = window.document.createElement("div");
-              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
-              gutterDiv.style.position = 'absolute';
-              const codeCell = window.document.getElementById(targetCell);
-              const gutter = codeCell.querySelector('.code-annotation-gutter');
-              gutter.appendChild(gutterDiv);
-            }
-            gutterDiv.style.top = top - 2 + "px";
-            gutterDiv.style.height = height + 4 + "px";
-          }
-          selectedAnnoteEl = annoteEl;
-        }
-      };
-      const unselectCodeLines = () => {
-        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
-        elementsIds.forEach((elId) => {
-          const div = window.document.getElementById(elId);
-          if (div) {
-            div.remove();
-          }
-        });
-        selectedAnnoteEl = undefined;
-      };
-      // Attach click handler to the DT
-      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
-      for (const annoteDlNode of annoteDls) {
-        annoteDlNode.addEventListener('click', (event) => {
-          const clickedEl = event.target;
-          if (clickedEl !== selectedAnnoteEl) {
-            unselectCodeLines();
-            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
-            if (activeEl) {
-              activeEl.classList.remove('code-annotation-active');
-            }
-            selectCodeLines(clickedEl);
-            clickedEl.classList.add('code-annotation-active');
-          } else {
-            // Unselect the line
-            unselectCodeLines();
-            clickedEl.classList.remove('code-annotation-active');
-          }
-        });
-      }
-  const findCites = (el) => {
-    const parentEl = el.parentElement;
-    if (parentEl) {
-      const cites = parentEl.dataset.cites;
-      if (cites) {
-        return {
-          el,
-          cites: cites.split(' ')
-        };
-      } else {
-        return findCites(el.parentElement)
-      }
-    } else {
-      return undefined;
-    }
-  };
-  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
-  for (var i=0; i<bibliorefs.length; i++) {
-    const ref = bibliorefs[i];
-    const citeInfo = findCites(ref);
-    if (citeInfo) {
-      tippyHover(citeInfo.el, function() {
-        var popup = window.document.createElement('div');
-        citeInfo.cites.forEach(function(cite) {
-          var citeDiv = window.document.createElement('div');
-          citeDiv.classList.add('hanging-indent');
-          citeDiv.classList.add('csl-entry');
-          var biblioDiv = window.document.getElementById('ref-' + cite);
-          if (biblioDiv) {
-            citeDiv.innerHTML = biblioDiv.innerHTML;
-          }
-          popup.appendChild(citeDiv);
-        });
-        return popup.innerHTML;
-      });
-    }
-  }
-});
-</script>
-<nav class="page-navigation">
-  <div class="nav-page nav-page-previous">
-      <a href="./DCA测试集.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span>
-      </a>          
-  </div>
-  <div class="nav-page nav-page-next">
-      <a href="./model-compare_tidymodels.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span> <i class="bi bi-arrow-right-short"></i>
-      </a>
-  </div>
-</nav>
-</div> <!-- /content -->
-<footer class="footer">
-  <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
-    <div class="nav-footer-center">
-      &nbsp;
-    <div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
-  </div>
-</footer>
-
-
-
-</body></html>
\ No newline at end of file
diff --git a/docs/calibration-tidymodels.html "b/docs/\346\250\241\345\236\213\345\273\272\347\253\213\345\222\214\345\217\257\350\247\206\345\214\226.html"
similarity index 54%
rename from docs/calibration-tidymodels.html
rename to "docs/\346\250\241\345\236\213\345\273\272\347\253\213\345\222\214\345\217\257\350\247\206\345\214\226.html"
index fa62550..1406481 100644
--- a/docs/calibration-tidymodels.html
+++ "b/docs/\346\250\241\345\236\213\345\273\272\347\253\213\345\222\214\345\217\257\350\247\206\345\214\226.html"
@@ -2,12 +2,12 @@
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
 
 <meta charset="utf-8">
-<meta name="generator" content="quarto-1.3.302">
+<meta name="generator" content="quarto-1.6.15">
 
 <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
 
 
-<title>R语言实战临床预测模型 - 36&nbsp; tidymodels已原生支持校准曲线</title>
+<title>模型建立和可视化 – R语言实战临床预测模型</title>
 <style>
 code{white-space: pre-wrap;}
 span.smallcaps{font-variant: small-caps;}
@@ -20,40 +20,6 @@
   margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
   vertical-align: middle;
 }
-/* CSS for syntax highlighting */
-pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
-pre > code.sourceCode > span:empty { height: 1.2em; }
-.sourceCode { overflow: visible; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-div.sourceCode { margin: 1em 0; }
-pre.sourceCode { margin: 0; }
-@media screen {
-div.sourceCode { overflow: auto; }
-}
-@media print {
-pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
-}
-pre.numberSource code
-  { counter-reset: source-line 0; }
-pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
-pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-  }
-pre.numberSource { margin-left: 3em;  padding-left: 4px; }
-div.sourceCode
-  {   }
-@media screen {
-pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
-}
 </style>
 
 
@@ -64,24 +30,30 @@
 <script src="site_libs/quarto-search/fuse.min.js"></script>
 <script src="site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="./">
-<link href="./calibration-mlr3.html" rel="next">
-<link href="./calibration-tidymodels-man.html" rel="prev">
+<link href="./data-split.html" rel="next">
+<link href="./文献学习.html" rel="prev">
 <script src="site_libs/quarto-html/quarto.js"></script>
 <script src="site_libs/quarto-html/popper.min.js"></script>
 <script src="site_libs/quarto-html/tippy.umd.min.js"></script>
 <script src="site_libs/quarto-html/anchor.min.js"></script>
 <link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
-<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<link href="site_libs/quarto-html/quarto-syntax-highlighting-018089954d508eae8a473f0b7f0491f0.css" rel="stylesheet" id="quarto-text-highlighting-styles">
 <script src="site_libs/bootstrap/bootstrap.min.js"></script>
 <link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
-<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
+<link href="site_libs/bootstrap/bootstrap-22b4451ef2a64dd3346f18820cc52094.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
 <script id="quarto-search-options" type="application/json">{
   "location": "sidebar",
   "copy-button": false,
   "collapse-after": 3,
   "panel-placement": "start",
   "type": "textbox",
-  "limit": 20,
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
   "language": {
     "search-no-results-text": "没有结果",
     "search-matching-documents-text": "匹配的文档",
@@ -90,8 +62,10 @@
     "search-more-match-text": "更多匹配结果",
     "search-more-matches-text": "更多匹配结果",
     "search-clear-button-title": "清除",
+    "search-text-placeholder": "",
     "search-detached-cancel-button-title": "取消",
-    "search-submit-button-title": "提交"
+    "search-submit-button-title": "提交",
+    "search-label": "搜索"
   }
 }</script>
 
@@ -104,13 +78,13 @@
   <header id="quarto-header" class="headroom fixed-top">
   <nav class="quarto-secondary-nav">
     <div class="container-fluid d-flex">
-      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
         <i class="bi bi-layout-text-sidebar-reverse"></i>
       </button>
-      <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./clinmodel-evalution.html">模型评价</a></li><li class="breadcrumb-item"><a href="./calibration-tidymodels.html"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></a></li></ol></nav>
-      <a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
-      </a>
-      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./模型建立和可视化.html">模型建立和可视化</a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="切换侧边栏导航" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="搜索" onclick="window.quartoOpenSearch();">
         <i class="bi bi-search"></i>
       </button>
     </div>
@@ -119,18 +93,18 @@
 <!-- content -->
 <div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
 <!-- sidebar -->
-  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
     <div class="pt-lg-2 mt-2 text-left sidebar-header">
     <div class="sidebar-title mb-0 py-0">
       <a href="./">R语言实战临床预测模型</a> 
         <div class="sidebar-tools-main">
-    <a href="https://https://github.com/ayueme/R_clinical_model" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
+    <a href="https://github.com/ayueme/R_clinical_model/" title="源代码" class="quarto-navigation-tool px-1" aria-label="源代码"><i class="bi bi-github"></i></a>
 </div>
     </div>
       </div>
         <div class="mt-2 flex-shrink-0 align-items-center">
         <div class="sidebar-search">
-        <div id="quarto-search" class="" title="Search"></div>
+        <div id="quarto-search" class="" title="搜索"></div>
         </div>
         </div>
     <div class="sidebar-menu-container"> 
@@ -143,171 +117,182 @@
 </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
- <span class="menu-text">模型建立</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">基础知识</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
       <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-definition.html" class="sidebar-item-text sidebar-link">
+  <a href="./临床预测模型概念.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">什么是临床预测模型?</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型建立的一般步骤.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">临床预测模型建立的一般步骤</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./临床预测模型和机器学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">临床预测模型和机器学习</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./文献学习.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a href="./模型建立和可视化.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text">模型建立和可视化</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">logistic回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">逻辑回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Cox回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./nomogram-essential.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
+  <a href="./nomogram-原理.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">列线图的本质</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-rcs.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">样条回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-compete-risk.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">竞争风险模型列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">lasso回归列线图绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-colorfulbar.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">列线图添加彩色风险分层</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nomogram-points.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
+ <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">计算列线图得分及危险分层</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true">
- <span class="menu-text">变量筛选</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="true" aria-label="切換部分">
+            <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">常见的变量选择方法</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./feature-selection.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">常见的变量选择方法</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_unimulti.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">变量筛选之先单后多</span></span></a>
+ <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量选择之先单后多</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_stepwise.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">筛选变量逐步回归</span></span></a>
+ <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">变量选择之逐步回归</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_bestsubset.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">变量筛选之最优子集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">变量选择之最优子集</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
+ <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">lasso回归筛选变量</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./feature-selection_randomforest.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">变量筛选之随机森林</span></span></a>
+ <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">随机森林筛选变量</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true">
- <span class="menu-text">模型评价</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="true" aria-label="切換部分">
+            <a href="./临床预测模型评价.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">临床预测模型的评价</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./clinmodel-evalution.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">临床预测模型的评价方法</span></span></a>
+  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-binominal.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">二分类资料ROC曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">二分类ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-survive.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">生存资料ROC曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-bestcut.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">ROC曲线的最佳截点</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-smooth.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">平滑ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">生存数据ROC曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./roc-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-attention.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">R语言计算AUC(ROC)注意事项</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./roc-many.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">多指标联合诊断的ROC曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">ROC曲线的显著性检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
@@ -315,195 +300,158 @@
   <a href="./roc-bootstrap.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">bootstrap ROC/AUC</span></span></a>
   </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./多分类数据的ROC曲线.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">多分类数据的ROC曲线</span></span></a>
-  </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
+ <span class="menu-text"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">C-index的计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./cindex-compare.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./conf_matrix-3d.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">三维混淆矩阵</span></span></a>
+ <span class="menu-text"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">C-index的比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./nri.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">NRI净重新分类指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">净重分类指数NRI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./idi.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">IDI综合判别改善指数</span></span></a>
+ <span class="menu-text"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">综合判别改善指数IDI</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">logistic回归校准曲线绘制</span></span></a>
+ <span class="menu-text"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">分类模型校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./calibration-logistic-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">logistic回归测试集校准曲线的绘制</span></span></a>
+  <a href="./hosmer-lemeshow检验.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">hosmer-lemeshow检验</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-cox-test.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Cox回归测试集校准曲线绘制</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels-man.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-tidymodels.html" class="sidebar-item-text sidebar-link active">
- <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./calibration-mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Cox回归校准曲线绘制</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-qhscrnomo.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
+ <span class="menu-text"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">竞争风险模型的校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./calibration-lasso.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">lasso回归列线图、校准曲线、内外部验证</span></span></a>
+ <span class="menu-text"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">lasso回归校准曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-logistic.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">分类数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">分类数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-cox.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">生存数据的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">生存数据的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./dca-diy.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">适用于一切模型的决策曲线分析</span></span></a>
+ <span class="menu-text"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">适用一切模型的决策曲线</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./DCA彩色条带.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
+ <span class="menu-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">决策曲线添加彩色条带</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./DCA测试集.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">测试集的决策曲线分析</span></span></a>
-  </div>
-</li>
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./校准曲线和决策曲线的概率.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">校准曲线和决策曲线的概率</span></span></a>
+  <a href="./bootstrap一切指标.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">bootstrap一切指标</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
- <span class="menu-text">模型比较</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true" aria-label="切換部分">
+            <a href="./多模型比较.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">多模型比较</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">  
-          <li class="sidebar-item">
-  <div class="sidebar-item-container"> 
-  <a href="./model-compare_tidymodels.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
-  </div>
-</li>
+      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_workflow.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">workflow实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">tidymodels实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_mlr3.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">mlr3实现多模型比较</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./model-compare_caret.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
+ <span class="menu-text"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">caret实现多模型比较</span></span></a>
   </div>
 </li>
       </ul>
   </li>
         <li class="sidebar-item sidebar-item-section">
       <div class="sidebar-item-container"> 
-            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true">
- <span class="menu-text">附录</span></a>
-          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="true" aria-label="切換部分">
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true">
+ <span class="menu-text">其他内容</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" role="navigation" aria-expanded="true" aria-label="切換部分">
             <i class="bi bi-chevron-right ms-2"></i>
           </a> 
       </div>
-      <ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 show">  
+      <ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-preprocess.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">常见的数据预处理方法</span></span></a>
+  <a href="./BMJ预测模型样本量计算.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">开发预测模型样本量计算</span></span></a>
   </div>
 </li>
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
-  <a href="./data-split.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">B</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span></a>
+  <a href="./mice多重插补.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">mice多重插补</span></span></a>
   </div>
 </li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true">
+ <span class="menu-text">附录</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" role="navigation" aria-expanded="true" aria-label="切換部分">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">  
           <li class="sidebar-item">
   <div class="sidebar-item-container"> 
   <a href="./9999-appendix.html" class="sidebar-item-text sidebar-link">
- <span class="menu-text"><span class="chapter-number">C</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
+ <span class="menu-text"><span class="chapter-number">A</span>&nbsp; <span class="chapter-title">其他合集</span></span></a>
   </div>
 </li>
       </ul>
@@ -511,28 +459,17 @@
     </ul>
     </div>
 </nav>
-<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
-    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        <nav id="TOC" role="doc-toc" class="toc-active">
-    <h2 id="toc-title">目录</h2>
-   
-  <ul>
-  <li><a href="#安装" id="toc-安装" class="nav-link active" data-scroll-target="#安装"><span class="header-section-number">36.1</span> 安装</a></li>
-  <li><a href="#使用" id="toc-使用" class="nav-link" data-scroll-target="#使用"><span class="header-section-number">36.2</span> 使用</a>
-  <ul class="collapse">
-  <li><a href="#基于分箱的校准曲线" id="toc-基于分箱的校准曲线" class="nav-link" data-scroll-target="#基于分箱的校准曲线"><span class="header-section-number">36.2.1</span> 基于分箱的校准曲线</a></li>
-  <li><a href="#基于窗口滑动的校准曲线" id="toc-基于窗口滑动的校准曲线" class="nav-link" data-scroll-target="#基于窗口滑动的校准曲线"><span class="header-section-number">36.2.2</span> 基于窗口滑动的校准曲线</a></li>
-  </ul></li>
-  </ul>
-<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action">报告问题</a></p></div></div></nav>
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar zindex-bottom">
+        
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
 
 <header id="title-block-header" class="quarto-title-block default">
 <div class="quarto-title">
-<h1 class="title"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">tidymodels已原生支持校准曲线</span></h1>
+<h1 class="title"><span id="sec-modelbuild" class="quarto-section-identifier">模型建立和可视化</span></h1>
 </div>
 
 
@@ -545,97 +482,34 @@ <h1 class="title"><span class="chapter-number">36</span>&nbsp; <span class="chap
   </div>
   
 
+
 </header>
 
-<p>喜大普奔!</p>
-<p><code>tidymodels</code>终于支持校准曲线了!千呼万唤始出来,几个月前,我还号召大家多去github提issue…<a href="https://mp.weixin.qq.com/s/012hxUxGjkLFWQHodKmCEw">tidymodels不能画校准曲线?</a></p>
-<p><img src="figs/Snipaste_2023-04-01_21-00-07.png" class="img-fluid"></p>
-<p>这不,校准曲线就来了!</p>
-<section id="安装" class="level2" data-number="36.1">
-<h2 data-number="36.1" class="anchored" data-anchor-id="安装"><span class="header-section-number">36.1</span> 安装</h2>
-<p>截止到2023.3.30日,只能安装开发版才有这个功能,<code>cran</code>上的版本还没有这个功能。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"tidymodels/probably"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-</section>
-<section id="使用" class="level2" data-number="36.2">
-<h2 data-number="36.2" class="anchored" data-anchor-id="使用"><span class="header-section-number">36.2</span> 使用</h2>
-<p>和<code>yardstick</code>的用法一脉相承,如果你还不知道<code>yardstick</code>以及<code>tidymodels</code>系列的使用规范,请参考这篇入门教程:<a href="https://mp.weixin.qq.com/s/ubqU6FJ_iPDwPhz7eOZSFg">tidymodels用于机器学习的一些使用细节</a></p>
-<p>我们使用这篇推文中的数据:<a href="https://mp.weixin.qq.com/s/012hxUxGjkLFWQHodKmCEw">tidymodels不能画校准曲线?</a>。</p>
-<p>具体过程就不再演示了,直接使用<code>pred_rf</code>这个对象进行演示。</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list =</span> <span class="fu">ls</span>())</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(tidymodels))</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(probably))</span>
-<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">load</span>(<span class="at">file =</span> <span class="st">"./datasets/pred_rf.rdata"</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<p>这个结果就是<code>tidymodels</code>中得到的标准结果,一切模型衡量指标都是通过这个结果算出来的,包括校准曲线。</p>
-<p>结果长这样:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(pred_rf)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="do">## # A tibble: 6 × 4</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="do">##   play_type .pred_pass .pred_run .pred_class</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="do">##   &lt;fct&gt;          &lt;dbl&gt;     &lt;dbl&gt; &lt;fct&gt;      </span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="do">## 1 pass           0.312     0.688 run        </span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="do">## 2 pass           0.829     0.171 pass       </span></span>
-<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="do">## 3 pass           0.806     0.194 pass       </span></span>
-<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="do">## 4 pass           0.678     0.322 pass       </span></span>
-<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="do">## 5 run            0.184     0.816 run        </span></span>
-<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="do">## 6 run            0.544     0.456 pass</span></span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-</div>
-<section id="基于分箱的校准曲线" class="level3" data-number="36.2.1">
-<h3 data-number="36.2.1" class="anchored" data-anchor-id="基于分箱的校准曲线"><span class="header-section-number">36.2.1</span> 基于分箱的校准曲线</h3>
-<p>校准曲线是先对概率进行分箱,然后计算平均值得到的,如果你还不明白,请参考这篇推文:<a href="https://mp.weixin.qq.com/s/JDzW5TDGx2lSBZ3lnL1c5Q">一文搞懂临床预测模型的评价!</a></p>
-<p>基于分箱的原理画校准曲线,通过以下函数实现:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">cal_plot_breaks</span>(play_type, .pred_pass)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels_files/figure-html/unnamed-chunk-5-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>有几个参数可以调节:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">cal_plot_breaks</span>(play_type, .pred_pass, </span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>                  <span class="at">num_breaks =</span> <span class="dv">5</span> , <span class="co"># 选几个点</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>                  <span class="at">include_rug=</span>F, <span class="co"># 是否添加地毯线</span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>                  <span class="at">include_ribbon =</span> T, <span class="co"># 是否添加可信区间</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>                  <span class="at">conf_level =</span> <span class="fl">0.95</span> <span class="co"># 可信区间范围</span></span>
-<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>                  )</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels_files/figure-html/unnamed-chunk-6-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-</section>
-<section id="基于窗口滑动的校准曲线" class="level3" data-number="36.2.2">
-<h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的校准曲线"><span class="header-section-number">36.2.2</span> 基于窗口滑动的校准曲线</h3>
-<p>但是有时候样本量太少,不方便分箱,<code>tidymodels</code>提供了一种窗口滑动的方式。</p>
-<p>比如一共100个样本,第一次取第1个到第10个样本,然后计算得到一个预测值,第二次取第6个到第15个样本,计算得到一个预测值,第三次取第11个带第20个样本,以此类推,彼此之间是有重复的。</p>
-<p>可通过<code>cal_plot_windowed</code>函数实现这样的校准曲线:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">cal_plot_windowed</span>(play_type, .pred_pass)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>其中<code>step_size</code>参数控制每次增加多少:</p>
-<div class="cell">
-<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># 每次增加2%</span></span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>pred_rf <span class="sc">%&gt;%</span> </span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">cal_plot_windowed</span>(play_type, .pred_pass, <span class="at">step_size =</span> <span class="fl">0.02</span>)</span></code><button title="复制到剪贴板" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="calibration-tidymodels_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid" width="672"></p>
-</div>
-</div>
-<p>所有这些图都是基于<code>ggplot2</code>的,可以无缝衔接<code>ggplot2</code>语法进行美化、修改。</p>
-<p>对于分类模型的校准曲线终于有了!大家有需要的可以用起来了。</p>
+
+<p>这一章介绍的其实主要是列线图的绘制,这一步通常是在你选择好<strong>最后的模型</strong>之后进行的。当你经过各种步骤之后已经选好了最终的模型,那你可以把这个模型使用图形化的方式展示出来,也就是使用<strong>列线图</strong>的形式。</p>
+<p>除此之外,还会介绍一些常见的数据划分方法和数据预处理方法。数据划分非常重要,就是大家常见的交叉验证、bootstrap、内部验证、外部验证等。</p>
+<p>列线图(Alignment Diagram),又称诺莫图(Nomogram图),用来把多因素回归分析结果用图形方式表现出来,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。</p>
+<p>列线图并不是一种模型评价方法,它只是一种把模型进行图形化展示的方法。</p>
+<p>根据模型中各个影响因素对结局变量的贡献程度(回归系数的大小),给每个影响因素的每个取值水平进行赋分,然后再将各个评分相加得到总评分,最后通过总评分与结局事件发生概率之间的函数转换关系,从而计算出该个体结局事件的预测值。</p>
+<p>简单地说,就是把你的模型用图形化的方式展示出来。实际使用时不需要在训练集、验证集各来一遍,也不需要进行各种重抽样,这种做法没有任何意义。</p>
+<p>目前能够绘制列线图的R包只有以下几个(如果还有欢迎大家补充):</p>
+<ul>
+<li><a href="https://cran.r-project.org/web/packages/rms/">rms</a></li>
+<li><a href="https://cran.r-project.org/web/packages/regplot/">regplot</a></li>
+<li><a href="https://cran.r-project.org/web/packages/hdnom/">hdnom</a></li>
+</ul>
+<p>我会在后面的章节中详细介绍以下模型的列线图绘制(其他模型是无法绘制列线图的):</p>
+<ul>
+<li>逻辑回归</li>
+<li>cox回归</li>
+<li>样条回归</li>
+<li>竞争风险模型</li>
+<li>lasso回归</li>
+</ul>
+<p>并且还会简单介绍下列线图的原理(也就是计算)、根据列线图计算得分、彩色条带的列线图等。</p>
+<p>目前对于机器学习方法,比如决策树、随机森林、支持向量机、KNN、神经网络等,都是不能绘制列线图的(理论可行,实际不可行)。</p>
 
 
-</section>
-</section>
 
 </main> <!-- /main -->
 <script id="quarto-html-after-body" type="application/javascript">
@@ -673,18 +547,7 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
     }
     return false;
   }
-  const clipboard = new window.ClipboardJS('.code-copy-button', {
-    text: function(trigger) {
-      const codeEl = trigger.previousElementSibling.cloneNode(true);
-      for (const childEl of codeEl.children) {
-        if (isCodeAnnotation(childEl)) {
-          childEl.remove();
-        }
-      }
-      return codeEl.innerText;
-    }
-  });
-  clipboard.on('success', function(e) {
+  const onCopySuccess = function(e) {
     // button target
     const button = e.trigger;
     // don't keep focus
@@ -716,11 +579,50 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
     }, 1000);
     // clear code selection
     e.clearSelection();
+  }
+  const getTextToCopy = function(trigger) {
+      const codeEl = trigger.previousElementSibling.cloneNode(true);
+      for (const childEl of codeEl.children) {
+        if (isCodeAnnotation(childEl)) {
+          childEl.remove();
+        }
+      }
+      return codeEl.innerText;
+  }
+  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+    text: getTextToCopy
   });
-  function tippyHover(el, contentFn) {
+  clipboard.on('success', onCopySuccess);
+  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+    // For code content inside modals, clipBoardJS needs to be initialized with a container option
+    // TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
+    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+      text: getTextToCopy,
+      container: window.document.getElementById('quarto-embedded-source-code-modal')
+    });
+    clipboardModal.on('success', onCopySuccess);
+  }
+    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+    var mailtoRegex = new RegExp(/^mailto:/);
+      var filterRegex = new RegExp("https:\/\/ayueme\.github\.io\/R_clinical_model\/");
+    var isInternal = (href) => {
+        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+    }
+    // Inspect non-navigation links and adorn them if external
+ 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+    for (var i=0; i<links.length; i++) {
+      const link = links[i];
+      if (!isInternal(link.href)) {
+        // undo the damage that might have been done by quarto-nav.js in the case of
+        // links that we want to consider external
+        if (link.dataset.originalHref !== undefined) {
+          link.href = link.dataset.originalHref;
+        }
+      }
+    }
+  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
     const config = {
       allowHTML: true,
-      content: contentFn,
       maxWidth: 500,
       delay: 100,
       arrow: false,
@@ -730,8 +632,17 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
       interactive: true,
       interactiveBorder: 10,
       theme: 'quarto',
-      placement: 'bottom-start'
+      placement: 'bottom-start',
     };
+    if (contentFn) {
+      config.content = contentFn;
+    }
+    if (onTriggerFn) {
+      config.onTrigger = onTriggerFn;
+    }
+    if (onUntriggerFn) {
+      config.onUntrigger = onUntriggerFn;
+    }
     window.tippy(el, config); 
   }
   const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
@@ -743,7 +654,130 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
       try { href = new URL(href).hash; } catch {}
       const id = href.replace(/^#\/?/, "");
       const note = window.document.getElementById(id);
-      return note.innerHTML;
+      if (note) {
+        return note.innerHTML;
+      } else {
+        return "";
+      }
+    });
+  }
+  const xrefs = window.document.querySelectorAll('a.quarto-xref');
+  const processXRef = (id, note) => {
+    // Strip column container classes
+    const stripColumnClz = (el) => {
+      el.classList.remove("page-full", "page-columns");
+      if (el.children) {
+        for (const child of el.children) {
+          stripColumnClz(child);
+        }
+      }
+    }
+    stripColumnClz(note)
+    if (id === null || id.startsWith('sec-')) {
+      // Special case sections, only their first couple elements
+      const container = document.createElement("div");
+      if (note.children && note.children.length > 2) {
+        container.appendChild(note.children[0].cloneNode(true));
+        for (let i = 1; i < note.children.length; i++) {
+          const child = note.children[i];
+          if (child.tagName === "P" && child.innerText === "") {
+            continue;
+          } else {
+            container.appendChild(child.cloneNode(true));
+            break;
+          }
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(container);
+        }
+        return container.innerHTML
+      } else {
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        return note.innerHTML;
+      }
+    } else {
+      // Remove any anchor links if they are present
+      const anchorLink = note.querySelector('a.anchorjs-link');
+      if (anchorLink) {
+        anchorLink.remove();
+      }
+      if (window.Quarto?.typesetMath) {
+        window.Quarto.typesetMath(note);
+      }
+      // TODO in 1.5, we should make sure this works without a callout special case
+      if (note.classList.contains("callout")) {
+        return note.outerHTML;
+      } else {
+        return note.innerHTML;
+      }
+    }
+  }
+  for (var i=0; i<xrefs.length; i++) {
+    const xref = xrefs[i];
+    tippyHover(xref, undefined, function(instance) {
+      instance.disable();
+      let url = xref.getAttribute('href');
+      let hash = undefined; 
+      if (url.startsWith('#')) {
+        hash = url;
+      } else {
+        try { hash = new URL(url).hash; } catch {}
+      }
+      if (hash) {
+        const id = hash.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note !== null) {
+          try {
+            const html = processXRef(id, note.cloneNode(true));
+            instance.setContent(html);
+          } finally {
+            instance.enable();
+            instance.show();
+          }
+        } else {
+          // See if we can fetch this
+          fetch(url.split('#')[0])
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.getElementById(id);
+            if (note !== null) {
+              const html = processXRef(id, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      } else {
+        // See if we can fetch a full url (with no hash to target)
+        // This is a special case and we should probably do some content thinning / targeting
+        fetch(url)
+        .then(res => res.text())
+        .then(html => {
+          const parser = new DOMParser();
+          const htmlDoc = parser.parseFromString(html, "text/html");
+          const note = htmlDoc.querySelector('main.content');
+          if (note !== null) {
+            // This should only happen for chapter cross references
+            // (since there is no id in the URL)
+            // remove the first header
+            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+              note.children[0].remove();
+            }
+            const html = processXRef(null, note);
+            instance.setContent(html);
+          } 
+        }).finally(() => {
+          instance.enable();
+          instance.show();
+        });
+      }
+    }, function(instance) {
     });
   }
       let selectedAnnoteEl;
@@ -787,6 +821,7 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
             }
             div.style.top = top - 2 + "px";
             div.style.height = height + 4 + "px";
+            div.style.left = 0;
             let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
             if (gutterDiv === null) {
               gutterDiv = window.document.createElement("div");
@@ -812,6 +847,32 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
         });
         selectedAnnoteEl = undefined;
       };
+        // Handle positioning of the toggle
+    window.addEventListener(
+      "resize",
+      throttle(() => {
+        elRect = undefined;
+        if (selectedAnnoteEl) {
+          selectCodeLines(selectedAnnoteEl);
+        }
+      }, 10)
+    );
+    function throttle(fn, ms) {
+    let throttle = false;
+    let timer;
+      return (...args) => {
+        if(!throttle) { // first call gets through
+            fn.apply(this, args);
+            throttle = true;
+        } else { // all the others get throttled
+            if(timer) clearTimeout(timer); // cancel #2
+            timer = setTimeout(() => {
+              fn.apply(this, args);
+              timer = throttle = false;
+            }, ms);
+        }
+      };
+    }
       // Attach click handler to the DT
       const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
       for (const annoteDlNode of annoteDls) {
@@ -873,27 +934,32 @@ <h3 data-number="36.2.2" class="anchored" data-anchor-id="基于窗口滑动的
 </script>
 <nav class="page-navigation">
   <div class="nav-page nav-page-previous">
-      <a href="./calibration-tidymodels-man.html" class="pagination-link">
-        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">tidymodels手动绘制校准曲线</span></span>
+      <a href="./文献学习.html" class="pagination-link" aria-label="文献学习">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">文献学习</span></span>
       </a>          
   </div>
   <div class="nav-page nav-page-next">
-      <a href="./calibration-mlr3.html" class="pagination-link">
-        <span class="nav-page-text"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">mlr3绘制校准曲线</span></span> <i class="bi bi-arrow-right-short"></i>
+      <a href="./data-split.html" class="pagination-link" aria-label="常见的数据划分方法">
+        <span class="nav-page-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">常见的数据划分方法</span></span> <i class="bi bi-arrow-right-short"></i>
       </a>
   </div>
 </nav>
 </div> <!-- /content -->
 <footer class="footer">
   <div class="nav-footer">
-    <div class="nav-footer-left">R语言实战临床预测模型 was written by 阿越.</div>   
+    <div class="nav-footer-left">
+<p>R语言实战临床预测模型 by 阿越.</p>
+</div>   
     <div class="nav-footer-center">
       &nbsp;
-    </div>
-    <div class="nav-footer-right">本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</div>
+    <div class="toc-actions"><ul><li><a href="https://github.com/ayueme/R_clinical_model/issues/new" class="toc-action"><i class="bi bi-github"></i>报告问题</a></li></ul></div></div>
+    <div class="nav-footer-right">
+<p>本书由 <a href="https://quarto.org/">Quarto</a> 强力驱动.</p>
+</div>
   </div>
 </footer>
 
 
 
+
 </body></html>
\ No newline at end of file