From a69656121ece0655955894a916b8a74d8c238100 Mon Sep 17 00:00:00 2001 From: Hamel Husain Date: Mon, 1 Apr 2024 08:00:52 -0700 Subject: [PATCH] Reorganize Docs (#1468) --- README.md | 631 +------------------------ _quarto.yml | 6 +- docs/config.qmd | 450 +++++++++++++++++- docs/dataset-formats/conversation.qmd | 71 +++ docs/dataset-formats/index.qmd | 14 + docs/dataset-formats/inst_tune.qmd | 165 +++++++ docs/dataset-formats/pretraining.qmd | 26 + docs/dataset-formats/template_free.qmd | 7 + docs/dataset-formats/tokenized.qmd | 12 + docs/fsdp_qlora.qmd | 2 +- docs/input_output.qmd | 10 +- 11 files changed, 749 insertions(+), 645 deletions(-) create mode 100644 docs/dataset-formats/conversation.qmd create mode 100644 docs/dataset-formats/index.qmd create mode 100644 docs/dataset-formats/inst_tune.qmd create mode 100644 docs/dataset-formats/pretraining.qmd create mode 100644 docs/dataset-formats/template_free.qmd create mode 100644 docs/dataset-formats/tokenized.qmd diff --git a/README.md b/README.md index 027c476c3b..ad5fa379a0 100644 --- a/README.md +++ b/README.md @@ -35,13 +35,12 @@ Features: - [Google Colab](#google-colab) - [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot) - [Dataset](#dataset) - - [How to Add Custom Prompts](#how-to-add-custom-prompts) - - [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset) - [Config](#config) - [Train](#train) - [Inference](#inference-playground) - [Merge LORA to Base](#merge-lora-to-base) - [Special Tokens](#special-tokens) + - [All Config Options](#all-config-options) - Advanced Topics - [Multipack](./docs/multipack.qmd) - [RLHF & DPO](./docs/rlhf.qmd) @@ -299,186 +298,9 @@ HF_TOKEN=xx BUCKET= sky spot launch axolotl-spot.yaml --env HF_TOKE ### Dataset -Axolotl supports a variety of dataset formats. Below are some of the formats you can use. -Have dataset(s) in one of the following format (JSONL recommended): +Axolotl supports a variety of dataset formats. It is recommended to use a JSONL. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field. -#### Pretraining - -- `completion`: raw corpus - ```json - {"text": "..."} - ``` - -Note: Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming: - -```yaml -pretraining_dataset: # hf path only -``` - -#### Supervised finetuning - -##### Instruction - -- `alpaca`: instruction; input(optional) - ```json - {"instruction": "...", "input": "...", "output": "..."} - ``` - -
- -See other formats - -- `jeopardy`: question and answer - ```json - {"question": "...", "category": "...", "answer": "..."} - ``` -- `oasst`: instruction - ```json - {"INSTRUCTION": "...", "RESPONSE": "..."} - ``` -- `gpteacher`: instruction; input(optional) - ```json - {"instruction": "...", "input": "...", "response": "..."} - ``` -- `reflection`: instruction with reflect; input(optional) - ```json - {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."} - ``` -- `explainchoice`: question, choices, (solution OR explanation) - ```json - {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} - ``` -- `concisechoice`: question, choices, (solution OR explanation) - ```json - {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} - ``` -- `summarizetldr`: article and summary - ```json - {"article": "...", "summary": "..."} - ``` -- `alpaca_chat`: basic instruct for alpaca chat - ```json - {"instruction": "...", "input": "...", "response": "..."} - ``` -- `alpaca_chat.load_qa`: question and answer for alpaca chat - ```json - {"question": "...", "answer": "..."} - ``` -- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers - ```json - {"instruction": "...", "input": "...", "response": "..."} - ``` -- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai - ```json - {"message_1": "...", "message_2": "..."} - ``` -- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct - ```json - {"system_prompt": "...", "question": "...", "response": "..."} - ``` -- `context_qa`: in context question answering from an article - ```json - {"article": "...", "question": "...", "answer": "..."} - ``` -- `context_qa.load_v2`: in context question answering (alternate) - ```json - {"context": "...", "question": "...", "answer": "..."} - ``` -- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context - ```json - {"article": "...", "unanswerable_question": "..."} - ``` -- `creative_acr.load_answer`: instruction and revision - ```json - {"instruction": "...", "revision": "..."} - ``` -- `creative_acr.load_critique`: critique - ```json - {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."} - ``` -- `creative_acr.load_revise`: critique and revise - ```json - {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."} - ``` -- `metharme`: instruction, adds additional eos tokens - ```json - {"prompt": "...", "generation": "..."} - ``` - -
- -##### Template-Free - -- `input_output`: template-free prompt construction - ```json - {"segments": [{"label": true|false, "text": "..."}]} - ``` - -This is a special format that allows you to construct prompts without using templates. This is for advanced users who want more freedom with prompt construction. See [these docs](docs/input_output.qmd) for more details. - -##### Conversation - -- `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt) - ```json - {"conversations": [{"from": "...", "value": "..."}]} - ``` - -
- -See other formats - -- `pygmalion`: pygmalion - ```json - {"conversations": [{"role": "...", "value": "..."}]} - ``` -- `sharegpt.load_role`: conversations where `role` is used instead of `from` - ```json - {"conversations": [{"role": "...", "value": "..."}]} - ``` -- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt - ```json - {"conversations": [{"from": "...", "value": "..."}]} - ``` -- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny - ```json - {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]} - ``` - -
- -Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See dataset section under [all yaml options](#all-yaml-options). - -#### How to add custom prompts - -For a dataset that is preprocessed for instruction purposes: - -```json -{"input": "...", "output": "..."} -``` - -You can use this example in your YAML config: - -```yaml -datasets: - - path: repo - type: - system_prompt: "" - field_system: system - field_instruction: input - field_output: output - format: "[INST] {instruction} [/INST]" - no_input_format: "[INST] {instruction} [/INST]" -``` -See full config options under [all yaml options](#all-yaml-options). - -#### How to use your custom pretokenized dataset - -- Do not pass a `type:` -- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels` - -```yaml -- path: ... -``` +See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats. ### Config @@ -563,452 +385,9 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod - v_proj ``` -
+#### All Config Options -All yaml options (click to expand) - -```yaml -# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files -# This can also be a relative path to a model on disk -base_model: ./llama-7b-hf -# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc) -base_model_ignore_patterns: -# If the base_model repo on hf hub doesn't include configuration .json files, -# You can set that here, or leave this empty to default to base_model -base_model_config: ./llama-7b-hf -# You can specify to choose a specific model revision from huggingface hub -revision_of_model: -# Optional tokenizer configuration path in case you want to use a different tokenizer -# than the one defined in the base model -tokenizer_config: -# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too -model_type: AutoModelForCausalLM -# Corresponding tokenizer for the model AutoTokenizer is a good choice -tokenizer_type: AutoTokenizer -# Trust remote code for untrusted source -trust_remote_code: -# use_fast option for tokenizer loading from_pretrained, default to True -tokenizer_use_fast: -# Whether to use the legacy tokenizer setting, defaults to True -tokenizer_legacy: -# Resize the model embeddings when new tokens are added to multiples of 32 -# This is reported to improve training speed on some models -resize_token_embeddings_to_32x: - -# (Internal use only) -# Used to identify which the model is based on -is_falcon_derived_model: -is_llama_derived_model: -is_qwen_derived_model: -# Please note that if you set this to true, `padding_side` will be set to "left" by default -is_mistral_derived_model: - -# optional overrides to the base model configuration -overrides_of_model_config: - # RoPE Scaling https://github.com/huggingface/transformers/pull/24653 - rope_scaling: - type: # linear | dynamic - factor: # float - -# optional overrides to the bnb 4bit quantization configuration -# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig -bnb_config_kwargs: - # These are default values - llm_int8_has_fp16_weight: false - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: true - - -# Whether you are training a 4-bit GPTQ quantized model -gptq: true - -# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer -load_in_8bit: true -# Use bitsandbytes 4 bit -load_in_4bit: - -# Use CUDA bf16 -bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere -# Use CUDA fp16 -fp16: true -# Use CUDA tf32 -tf32: true # require >=ampere - -# No AMP (automatic mixed precision) -bfloat16: true # require >=ampere -float16: true - -# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset -gpu_memory_limit: 20GiB -# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge -lora_on_cpu: true - -# A list of one or more datasets to finetune the model with -datasets: - # HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files - - path: vicgalle/alpaca-gpt4 - # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection] - type: alpaca # format | format: (chat/instruct) | .load_ - ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file - data_files: # Optional[str] path to source data files - shards: # Optional[int] number of shards to split data into - name: # Optional[str] name of dataset configuration to load - train_on_split: train # Optional[str] name of dataset split to load from - - # Optional[str] fastchat conversation type, only used with type: sharegpt - conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py - field_human: # Optional[str]. Human key to use for conversation. - field_model: # Optional[str]. Assistant key to use for conversation. - # Add additional keys from your dataset as input or output roles - roles: - input: # Optional[List[str]]. These will be masked based on train_on_input - output: # Optional[List[str]]. - - # Custom user instruction prompt - - path: repo - type: - # The below are defaults. only set what's needed if you use a different column name. - system_prompt: "" - system_format: "{system}" - field_system: system - field_instruction: instruction - field_input: input - field_output: output - - # Customizable to be single line or multi-line - # Use {instruction}/{input} as key to be replaced - # 'format' can include {input} - format: |- - User: {instruction} {input} - Assistant: - # 'no_input_format' cannot include {input} - no_input_format: "{instruction} " - - # For `completion` datsets only, uses the provided field instead of `text` column - field: - -# If false, the datasets will not be shuffled and will keep their original order in `datasets`. -# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true. -shuffle_merged_datasets: true - -# A list of one or more datasets to eval the model with. -# You can use either test_datasets, or val_set_size, but not both. -test_datasets: - - path: /workspace/data/eval.jsonl - ds_type: json - # You need to specify a split. For "json" datasets the default split is called "train". - split: train - type: completion - data_files: - - /workspace/data/eval.jsonl - -# use RL training: 'dpo', 'ipo', 'kto_pair' -rl: - -# Saves the desired chat template to the tokenizer_config.json for easier inferencing -# Currently supports chatml and inst (mistral/mixtral) -chat_template: chatml -# Changes the default system message -default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml. -# Axolotl attempts to save the dataset as an arrow after packing the data together so -# subsequent training attempts load faster, relative path -dataset_prepared_path: data/last_run_prepared -# Push prepared dataset to hub -push_dataset_to_hub: # repo path -# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()` -# if not set. -dataset_processes: # defaults to os.cpu_count() if not set -# Keep dataset in memory while preprocessing -# Only needed if cached dataset is taking too much storage -dataset_keep_in_memory: -# push checkpoints to hub -hub_model_id: # private repo path to push finetuned model -# how to push checkpoints to hub -# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy -hub_strategy: -# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets -# Required to be true when used in combination with `push_dataset_to_hub` -hf_use_auth_token: # boolean -# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval. -val_set_size: 0.04 -# Num shards for whole dataset -dataset_shard_num: -# Index of shard to use for whole dataset -dataset_shard_idx: - -# The maximum length of an input to train with, this should typically be less than 2048 -# as most models have a token/context limit of 2048 -sequence_len: 2048 -# Pad inputs so each step uses constant sized buffers -# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently -pad_to_sequence_len: -# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true' -sample_packing: -# Set to 'false' if getting errors during eval with sample_packing on. -eval_sample_packing: -# You can set these packing optimizations AFTER starting a training at least once. -# The trainer will provide recommended values for these values. -sample_packing_eff_est: -total_num_tokens: - -# Passed through to transformers when loading the model when launched without accelerate -# Use `sequential` when training w/ model parallelism to limit memory -device_map: -# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model. -max_memory: - -# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model -adapter: lora -# If you already have a lora model trained that you want to load, put that here. -# This means after training, if you want to test the model, you should set this to the value of `output_dir`. -# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`. -lora_model_dir: - -# LoRA hyperparameters -# For more details about the following options, see: -# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2 -lora_r: 8 -lora_alpha: 16 -lora_dropout: 0.05 -lora_target_modules: - - q_proj - - v_proj -# - k_proj -# - o_proj -# - gate_proj -# - down_proj -# - up_proj -lora_target_linear: # If true, will target all linear modules -peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers - -# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens. -# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models. -# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities. -# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 -lora_modules_to_save: -# - embed_tokens -# - lm_head - -lora_fan_in_fan_out: false - -peft: - # Configuration options for loftq initialization for LoRA - # https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization - loftq_config: - loftq_bits: # typically 4 bits - -# ReLoRA configuration -# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed -relora_steps: # Number of steps per ReLoRA restart -relora_warmup_steps: # Number of per-restart warmup steps -relora_anneal_steps: # Number of anneal steps for each relora cycle -relora_prune_ratio: # threshold for optimizer magnitude when pruning -relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings - -# wandb configuration if you're using it -# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`. -wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb -wandb_project: # Your wandb project name -wandb_entity: # A wandb Team name if using a Team -wandb_watch: -wandb_name: # Set the name of your wandb run -wandb_run_id: # Set the ID of your wandb run -wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training - -# mlflow configuration if you're using it -mlflow_tracking_uri: # URI to mlflow -mlflow_experiment_name: # Your experiment name -hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry - -# Where to save the full-finetuned model to -output_dir: ./completed-model - -# Whether to use torch.compile and which backend to use -torch_compile: # bool -torch_compile_backend: # Optional[str] - -# Training hyperparameters - -# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps. -gradient_accumulation_steps: 1 -# The number of samples to include in each batch. This is the number of samples sent to each GPU. -micro_batch_size: 2 -eval_batch_size: -num_epochs: 4 -warmup_steps: 100 # cannot use with warmup_ratio -warmup_ratio: 0.05 # cannot use with warmup_steps -learning_rate: 0.00003 -lr_quadratic_warmup: -logging_steps: -eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps -evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps -save_strategy: # Set to `no` to skip checkpoint saves -save_steps: # Leave empty to save at each epoch -saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps -save_total_limit: # Checkpoints saved at a time -# Maximum number of iterations to train for. It precedes num_epochs which means that -# if both are set, num_epochs will not be guaranteed. -# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps -max_steps: - -eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0 -eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128 -eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf] - -loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training) -loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3) - -# Save model as safetensors (require safetensors package) -save_safetensors: - -# Whether to mask out or include the human's prompt from the training labels -train_on_inputs: false -# Group similarly sized data to minimize padding. -# May be slower to start, as it must download and sort the entire dataset. -# Note that training loss may have an oscillating pattern with this enabled. -group_by_length: false - -# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing -gradient_checkpointing: false -# additional kwargs to pass to the trainer for gradient checkpointing -# gradient_checkpointing_kwargs: -# use_reentrant: true - -# Stop training after this many evaluation losses have increased in a row -# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback -early_stopping_patience: 3 - -# Specify a scheduler and kwargs to use with the optimizer -lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine -lr_scheduler_kwargs: -cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr -cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf) - -# For one_cycle optim -lr_div_factor: # Learning rate div factor - -# Specify optimizer -# Valid values are driven by the Transformers OptimizerNames class, see: -# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134 -# -# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of -# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used -# in the examples/ for your model and fine-tuning use case. -# -# Valid values for 'optimizer' include: -# - adamw_hf -# - adamw_torch -# - adamw_torch_fused -# - adamw_torch_xla -# - adamw_apex_fused -# - adafactor -# - adamw_anyprecision -# - sgd -# - adagrad -# - adamw_bnb_8bit -# - lion_8bit -# - lion_32bit -# - paged_adamw_32bit -# - paged_adamw_8bit -# - paged_lion_32bit -# - paged_lion_8bit -# - galore_adamw -# - galore_adamw_8bit -# - galore_adafactor -# - galore_adamw_layerwise -# - galore_adamw_8bit_layerwise -# - galore_adafactor_layerwise -optimizer: -# Dictionary of arguments to pass to the optimizer -optim_args: -# For Galore Optimizers the following optim_args are available -# rank: # type: int -# update_proj_gap # type: int -# scale # type: float -# proj_type: # type: str, default = std - -# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm -optim_target_modules: -# - self_attn # for llama -# - mlp - -# Specify weight decay -weight_decay: -# adamw hyperparams -adam_beta1: -adam_beta2: -adam_epsilon: -# Gradient clipping max norm -max_grad_norm: - -# Augmentation techniques -# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings -# currently only supported on Llama and Mistral -neftune_noise_alpha: - -# Whether to bettertransformers -flash_optimum: -# Whether to use xformers attention patch https://github.com/facebookresearch/xformers: -xformers_attention: -# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention: -flash_attention: -flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only -flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only -flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation -flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation -# Whether to use scaled-dot-product attention -# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html -sdp_attention: -# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf -s2_attention: -# Resume from a specific checkpoint dir -resume_from_checkpoint: -# If resume_from_checkpoint isn't set and you simply want it to start where it left off. -# Be careful with this being turned on between different models. -auto_resume_from_checkpoints: false - -# Don't mess with this, it's here for accelerate and torchrun -local_rank: - -# Add or change special tokens. -# If you add tokens here, you don't need to add them to the `tokens` list. -special_tokens: - # bos_token: "" - # eos_token: "" - # unk_token: "" - -# Add extra tokens. -tokens: - -# FSDP -fsdp: -fsdp_config: - -# Deepspeed config path. e.g., deepspeed_configs/zero3.json -deepspeed: - -# Advanced DDP Arguments -ddp_timeout: -ddp_bucket_cap_mb: -ddp_broadcast_buffers: - -# Path to torch distx for optim 'adamw_anyprecision' -torchdistx_path: - -# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize -pretraining_dataset: - -# Debug mode -debug: - -# Seed -seed: - -# Allow overwrite yml config using from cli -strict: -``` - -
+See [these docs](docs/config.qmd) for all config options.
Understanding of batch size and gradient accumulation steps diff --git a/_quarto.yml b/_quarto.yml index 31aa90398e..749f68cce6 100644 --- a/_quarto.yml +++ b/_quarto.yml @@ -30,20 +30,20 @@ website: # TODO Edit folder structure after we have more docs. - docs/debugging.qmd - docs/multipack.qmd - - docs/fdsp_qlora.qmd + - docs/fsdp_qlora.qmd - docs/input_output.qmd - docs/rlhf.qmd - docs/nccl.qmd - docs/mac.qmd - docs/multi-node.qmd + - section: "Dataset Formats" + contents: docs/dataset-formats/* - section: "Reference" contents: - docs/config.qmd - docs/faq.qmd - - format: html: theme: materia diff --git a/docs/config.qmd b/docs/config.qmd index d93b170e7b..e2ea778603 100644 --- a/docs/config.qmd +++ b/docs/config.qmd @@ -3,15 +3,443 @@ title: Config options description: A complete list of all configuration options. --- -```{python} -#|echo: false -#|output: asis -import re -# Regex pattern to match the YAML block including its code fence -pattern = r']*id="all-yaml-options"[^>]*>.*?All yaml options.*?```yaml(.*?)```.*?
' - -with open('../README.md', 'r') as f: - doc = f.read() -match = re.search(pattern, doc, re.DOTALL) -print("```yaml", match.group(1).strip(), "```", sep="\n") +```yaml +# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files +# This can also be a relative path to a model on disk +base_model: ./llama-7b-hf +# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc) +base_model_ignore_patterns: +# If the base_model repo on hf hub doesn't include configuration .json files, +# You can set that here, or leave this empty to default to base_model +base_model_config: ./llama-7b-hf +# You can specify to choose a specific model revision from huggingface hub +revision_of_model: +# Optional tokenizer configuration path in case you want to use a different tokenizer +# than the one defined in the base model +tokenizer_config: +# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too +model_type: AutoModelForCausalLM +# Corresponding tokenizer for the model AutoTokenizer is a good choice +tokenizer_type: AutoTokenizer +# Trust remote code for untrusted source +trust_remote_code: +# use_fast option for tokenizer loading from_pretrained, default to True +tokenizer_use_fast: +# Whether to use the legacy tokenizer setting, defaults to True +tokenizer_legacy: +# Resize the model embeddings when new tokens are added to multiples of 32 +# This is reported to improve training speed on some models +resize_token_embeddings_to_32x: + +# (Internal use only) +# Used to identify which the model is based on +is_falcon_derived_model: +is_llama_derived_model: +is_qwen_derived_model: +# Please note that if you set this to true, `padding_side` will be set to "left" by default +is_mistral_derived_model: + +# optional overrides to the base model configuration +overrides_of_model_config: + # RoPE Scaling https://github.com/huggingface/transformers/pull/24653 + rope_scaling: + type: # linear | dynamic + factor: # float + +# optional overrides to the bnb 4bit quantization configuration +# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig +bnb_config_kwargs: + # These are default values + llm_int8_has_fp16_weight: false + bnb_4bit_quant_type: nf4 + bnb_4bit_use_double_quant: true + + +# Whether you are training a 4-bit GPTQ quantized model +gptq: true + +# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer +load_in_8bit: true +# Use bitsandbytes 4 bit +load_in_4bit: + +# Use CUDA bf16 +bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere +# Use CUDA fp16 +fp16: true +# Use CUDA tf32 +tf32: true # require >=ampere + +# No AMP (automatic mixed precision) +bfloat16: true # require >=ampere +float16: true + +# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset +gpu_memory_limit: 20GiB +# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge +lora_on_cpu: true + +# A list of one or more datasets to finetune the model with +datasets: + # HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files + - path: vicgalle/alpaca-gpt4 + # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection] + type: alpaca # format | format: (chat/instruct) | .load_ + ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file + data_files: # Optional[str] path to source data files + shards: # Optional[int] number of shards to split data into + name: # Optional[str] name of dataset configuration to load + train_on_split: train # Optional[str] name of dataset split to load from + + # Optional[str] fastchat conversation type, only used with type: sharegpt + conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py + field_human: # Optional[str]. Human key to use for conversation. + field_model: # Optional[str]. Assistant key to use for conversation. + # Add additional keys from your dataset as input or output roles + roles: + input: # Optional[List[str]]. These will be masked based on train_on_input + output: # Optional[List[str]]. + + # Custom user instruction prompt + - path: repo + type: + # The below are defaults. only set what's needed if you use a different column name. + system_prompt: "" + system_format: "{system}" + field_system: system + field_instruction: instruction + field_input: input + field_output: output + + # Customizable to be single line or multi-line + # Use {instruction}/{input} as key to be replaced + # 'format' can include {input} + format: |- + User: {instruction} {input} + Assistant: + # 'no_input_format' cannot include {input} + no_input_format: "{instruction} " + + # For `completion` datsets only, uses the provided field instead of `text` column + field: + +# If false, the datasets will not be shuffled and will keep their original order in `datasets`. +# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true. +shuffle_merged_datasets: true + +# A list of one or more datasets to eval the model with. +# You can use either test_datasets, or val_set_size, but not both. +test_datasets: + - path: /workspace/data/eval.jsonl + ds_type: json + # You need to specify a split. For "json" datasets the default split is called "train". + split: train + type: completion + data_files: + - /workspace/data/eval.jsonl + +# use RL training: 'dpo', 'ipo', 'kto_pair' +rl: + +# Saves the desired chat template to the tokenizer_config.json for easier inferencing +# Currently supports chatml and inst (mistral/mixtral) +chat_template: chatml +# Changes the default system message +default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml. +# Axolotl attempts to save the dataset as an arrow after packing the data together so +# subsequent training attempts load faster, relative path +dataset_prepared_path: data/last_run_prepared +# Push prepared dataset to hub +push_dataset_to_hub: # repo path +# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()` +# if not set. +dataset_processes: # defaults to os.cpu_count() if not set +# Keep dataset in memory while preprocessing +# Only needed if cached dataset is taking too much storage +dataset_keep_in_memory: +# push checkpoints to hub +hub_model_id: # private repo path to push finetuned model +# how to push checkpoints to hub +# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy +hub_strategy: +# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets +# Required to be true when used in combination with `push_dataset_to_hub` +hf_use_auth_token: # boolean +# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval. +val_set_size: 0.04 +# Num shards for whole dataset +dataset_shard_num: +# Index of shard to use for whole dataset +dataset_shard_idx: + +# The maximum length of an input to train with, this should typically be less than 2048 +# as most models have a token/context limit of 2048 +sequence_len: 2048 +# Pad inputs so each step uses constant sized buffers +# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently +pad_to_sequence_len: +# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true' +sample_packing: +# Set to 'false' if getting errors during eval with sample_packing on. +eval_sample_packing: +# You can set these packing optimizations AFTER starting a training at least once. +# The trainer will provide recommended values for these values. +sample_packing_eff_est: +total_num_tokens: + +# Passed through to transformers when loading the model when launched without accelerate +# Use `sequential` when training w/ model parallelism to limit memory +device_map: +# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model. +max_memory: + +# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model +adapter: lora +# If you already have a lora model trained that you want to load, put that here. +# This means after training, if you want to test the model, you should set this to the value of `output_dir`. +# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`. +lora_model_dir: + +# LoRA hyperparameters +# For more details about the following options, see: +# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2 +lora_r: 8 +lora_alpha: 16 +lora_dropout: 0.05 +lora_target_modules: + - q_proj + - v_proj +# - k_proj +# - o_proj +# - gate_proj +# - down_proj +# - up_proj +lora_target_linear: # If true, will target all linear modules +peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers + +# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens. +# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models. +# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities. +# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 +lora_modules_to_save: +# - embed_tokens +# - lm_head + +lora_fan_in_fan_out: false + +peft: + # Configuration options for loftq initialization for LoRA + # https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization + loftq_config: + loftq_bits: # typically 4 bits + +# ReLoRA configuration +# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed +relora_steps: # Number of steps per ReLoRA restart +relora_warmup_steps: # Number of per-restart warmup steps +relora_anneal_steps: # Number of anneal steps for each relora cycle +relora_prune_ratio: # threshold for optimizer magnitude when pruning +relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings + +# wandb configuration if you're using it +# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`. +wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb +wandb_project: # Your wandb project name +wandb_entity: # A wandb Team name if using a Team +wandb_watch: +wandb_name: # Set the name of your wandb run +wandb_run_id: # Set the ID of your wandb run +wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training + +# mlflow configuration if you're using it +mlflow_tracking_uri: # URI to mlflow +mlflow_experiment_name: # Your experiment name +hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry + +# Where to save the full-finetuned model to +output_dir: ./completed-model + +# Whether to use torch.compile and which backend to use +torch_compile: # bool +torch_compile_backend: # Optional[str] + +# Training hyperparameters + +# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps. +gradient_accumulation_steps: 1 +# The number of samples to include in each batch. This is the number of samples sent to each GPU. +micro_batch_size: 2 +eval_batch_size: +num_epochs: 4 +warmup_steps: 100 # cannot use with warmup_ratio +warmup_ratio: 0.05 # cannot use with warmup_steps +learning_rate: 0.00003 +lr_quadratic_warmup: +logging_steps: +eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps +evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps +save_strategy: # Set to `no` to skip checkpoint saves +save_steps: # Leave empty to save at each epoch +saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps +save_total_limit: # Checkpoints saved at a time +# Maximum number of iterations to train for. It precedes num_epochs which means that +# if both are set, num_epochs will not be guaranteed. +# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps +max_steps: + +eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0 +eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128 +eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf] + +loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training) +loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3) + +# Save model as safetensors (require safetensors package) +save_safetensors: + +# Whether to mask out or include the human's prompt from the training labels +train_on_inputs: false +# Group similarly sized data to minimize padding. +# May be slower to start, as it must download and sort the entire dataset. +# Note that training loss may have an oscillating pattern with this enabled. +group_by_length: false + +# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing +gradient_checkpointing: false +# additional kwargs to pass to the trainer for gradient checkpointing +# gradient_checkpointing_kwargs: +# use_reentrant: true + +# Stop training after this many evaluation losses have increased in a row +# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback +early_stopping_patience: 3 + +# Specify a scheduler and kwargs to use with the optimizer +lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine +lr_scheduler_kwargs: +cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr +cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf) + +# For one_cycle optim +lr_div_factor: # Learning rate div factor + +# Specify optimizer +# Valid values are driven by the Transformers OptimizerNames class, see: +# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134 +# +# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of +# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used +# in the examples/ for your model and fine-tuning use case. +# +# Valid values for 'optimizer' include: +# - adamw_hf +# - adamw_torch +# - adamw_torch_fused +# - adamw_torch_xla +# - adamw_apex_fused +# - adafactor +# - adamw_anyprecision +# - sgd +# - adagrad +# - adamw_bnb_8bit +# - lion_8bit +# - lion_32bit +# - paged_adamw_32bit +# - paged_adamw_8bit +# - paged_lion_32bit +# - paged_lion_8bit +# - galore_adamw +# - galore_adamw_8bit +# - galore_adafactor +# - galore_adamw_layerwise +# - galore_adamw_8bit_layerwise +# - galore_adafactor_layerwise +optimizer: +# Dictionary of arguments to pass to the optimizer +optim_args: +# For Galore Optimizers the following optim_args are available +# rank: # type: int +# update_proj_gap # type: int +# scale # type: float +# proj_type: # type: str, default = std + +# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm +optim_target_modules: +# - self_attn # for llama +# - mlp + +# Specify weight decay +weight_decay: +# adamw hyperparams +adam_beta1: +adam_beta2: +adam_epsilon: +# Gradient clipping max norm +max_grad_norm: + +# Augmentation techniques +# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings +# currently only supported on Llama and Mistral +neftune_noise_alpha: + +# Whether to bettertransformers +flash_optimum: +# Whether to use xformers attention patch https://github.com/facebookresearch/xformers: +xformers_attention: +# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention: +flash_attention: +flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only +flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only +flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation +flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation +# Whether to use scaled-dot-product attention +# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html +sdp_attention: +# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf +s2_attention: +# Resume from a specific checkpoint dir +resume_from_checkpoint: +# If resume_from_checkpoint isn't set and you simply want it to start where it left off. +# Be careful with this being turned on between different models. +auto_resume_from_checkpoints: false + +# Don't mess with this, it's here for accelerate and torchrun +local_rank: + +# Add or change special tokens. +# If you add tokens here, you don't need to add them to the `tokens` list. +special_tokens: + # bos_token: "" + # eos_token: "" + # unk_token: "" + +# Add extra tokens. +tokens: + +# FSDP +fsdp: +fsdp_config: + +# Deepspeed config path. e.g., deepspeed_configs/zero3.json +deepspeed: + +# Advanced DDP Arguments +ddp_timeout: +ddp_bucket_cap_mb: +ddp_broadcast_buffers: + +# Path to torch distx for optim 'adamw_anyprecision' +torchdistx_path: + +# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize +pretraining_dataset: + +# Debug mode +debug: + +# Seed +seed: + +# Allow overwrite yml config using from cli +strict: ``` diff --git a/docs/dataset-formats/conversation.qmd b/docs/dataset-formats/conversation.qmd new file mode 100644 index 0000000000..9e69df4927 --- /dev/null +++ b/docs/dataset-formats/conversation.qmd @@ -0,0 +1,71 @@ +--- +title: Conversation +description: Conversation format for supervised fine-tuning. +order: 1 +--- + +## Formats + +### sharegpt + +conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt) + +```{.json filename="data.jsonl"} +{"conversations": [{"from": "...", "value": "..."}]} +``` + +Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See [the docs](../docs/config.qmd) for all config options. + +### pygmalion + +```{.json filename="data.jsonl"} +{"conversations": [{"role": "...", "value": "..."}]} +``` + +### sharegpt.load_role + +conversations where `role` is used instead of `from` + +```{.json filename="data.jsonl"} +{"conversations": [{"role": "...", "value": "..."}]} +``` + +### sharegpt.load_guanaco + +conversations where `from` is `prompter` `assistant` instead of default sharegpt + +```{.json filename="data.jsonl"} +{"conversations": [{"from": "...", "value": "..."}]} +``` + +### sharegpt_jokes + +creates a chat where bot is asked to tell a joke, then explain why the joke is funny + +```{.json filename="data.jsonl"} +{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]} +``` + +## How to add custom prompts for instruction-tuning + +For a dataset that is preprocessed for instruction purposes: + +```{.json filename="data.jsonl"} +{"input": "...", "output": "..."} +``` + +You can use this example in your YAML config: + +```{.yaml filename="config.yaml"} +datasets: + - path: repo + type: + system_prompt: "" + field_system: system + field_instruction: input + field_output: output + format: "[INST] {instruction} [/INST]" + no_input_format: "[INST] {instruction} [/INST]" +``` + +See full config options under [here](../docs/config.qmd). diff --git a/docs/dataset-formats/index.qmd b/docs/dataset-formats/index.qmd new file mode 100644 index 0000000000..91873a4c19 --- /dev/null +++ b/docs/dataset-formats/index.qmd @@ -0,0 +1,14 @@ +--- +title: Dataset Formats +description: Supported dataset formats. +listing: + fields: [title, description] + type: table + sort-ui: false + filter-ui: false + max-description-length: 250 +--- + +Axolotl supports a variety of dataset formats. It is recommended to use a JSONL format. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field. + +Below are these various formats organized by task: diff --git a/docs/dataset-formats/inst_tune.qmd b/docs/dataset-formats/inst_tune.qmd new file mode 100644 index 0000000000..cc8cd16f30 --- /dev/null +++ b/docs/dataset-formats/inst_tune.qmd @@ -0,0 +1,165 @@ +--- +title: Instruction Tuning +description: Instruction tuning formats for supervised fine-tuning. +order: 2 +--- + +## alpaca + +instruction; input(optional) + +```{.json filename="data.jsonl"} +{"instruction": "...", "input": "...", "output": "..."} +``` + +## jeopardy + +question and answer + +```{.json filename="data.jsonl"} +{"question": "...", "category": "...", "answer": "..."} +``` + +## oasst + +instruction + +```{.json filename="data.jsonl"} +{"INSTRUCTION": "...", "RESPONSE": "..."} +``` + +## gpteacher + +instruction; input(optional) + +```{.json filename="data.jsonl"} +{"instruction": "...", "input": "...", "response": "..."} +``` + +## reflection + +instruction with reflect; input(optional) + +```{.json filename="data.jsonl"} +{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."} +``` + +## explainchoice + +question, choices, (solution OR explanation) + +```{.json filename="data.jsonl"} +{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} +``` + +## concisechoice + +question, choices, (solution OR explanation) + +```{.json filename="data.jsonl"} +{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} +``` + +## summarizetldr + +article and summary + +```{.json filename="data.jsonl"} +{"article": "...", "summary": "..."} +``` + +## alpaca_chat + +basic instruct for alpaca chat + +```{.json filename="data.jsonl"} +{"instruction": "...", "input": "...", "response": "..."} +``` + +## alpaca_chat.load_qa + +question and answer for alpaca chat + +```{.json filename="data.jsonl"} +{"question": "...", "answer": "..."} +``` + +## alpaca_chat.load_concise + +question and answer for alpaca chat, for concise answers + +```{.json filename="data.jsonl"} +{"instruction": "...", "input": "...", "response": "..."} +``` + +## alpaca_chat.load_camel_ai + +question and answer for alpaca chat, for load_camel_ai + +```{.json filename="data.jsonl"} +{"message_1": "...", "message_2": "..."} +``` + +## alpaca_w_system.load_open_orca + +support for open orca datasets with included system prompts, instruct + +```{.json filename="data.jsonl"} +{"system_prompt": "...", "question": "...", "response": "..."} +``` + +## context_qa + +in context question answering from an article + +```{.json filename="data.jsonl"} +{"article": "...", "question": "...", "answer": "..."} +``` + +## context_qa.load_v2 + +in context question answering (alternate) + +```{.json filename="data.jsonl"} +{"context": "...", "question": "...", "answer": "..."} +``` + +## context_qa.load_404 + +in context question answering from an article, with default response for no answer from context + +```{.json filename="data.jsonl"} +{"article": "...", "unanswerable_question": "..."} +``` + +## creative_acr.load_answer + +instruction and revision + +```{.json filename="data.jsonl"} +{"instruction": "...", "revision": "..."} +``` + +## creative_acr.load_critique + +critique + +```{.json filename="data.jsonl"} +{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."} +``` + +## creative_acr.load_revise + +critique and revise + +```{.json filename="data.jsonl"} +{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."} +``` + +## metharme + +instruction, adds additional eos tokens + +```{.json filename="data.jsonl"} +{"prompt": "...", "generation": "..."} +``` diff --git a/docs/dataset-formats/pretraining.qmd b/docs/dataset-formats/pretraining.qmd new file mode 100644 index 0000000000..7e7257205a --- /dev/null +++ b/docs/dataset-formats/pretraining.qmd @@ -0,0 +1,26 @@ +--- +title: Pre-training +description: Data format for a pre-training completion task. +order: 3 +--- + +For pretraining, there is no prompt template or roles. The only required field is `text`: + +```{.json filename="data.jsonl"} +{"text": "first row"} +{"text": "second row"} +... +``` + +:::{.callout-note} + +### Streaming is recommended for large datasets + +Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming: + +```{.yaml filename="config.yaml"} +pretraining_dataset: # hf path only +... +``` + +::: diff --git a/docs/dataset-formats/template_free.qmd b/docs/dataset-formats/template_free.qmd new file mode 100644 index 0000000000..5087d6a013 --- /dev/null +++ b/docs/dataset-formats/template_free.qmd @@ -0,0 +1,7 @@ +--- +title: Template-Free +description: Construct prompts without a template. +order: 4 +--- + +See [these docs](../input_output.qmd). diff --git a/docs/dataset-formats/tokenized.qmd b/docs/dataset-formats/tokenized.qmd new file mode 100644 index 0000000000..8991a21109 --- /dev/null +++ b/docs/dataset-formats/tokenized.qmd @@ -0,0 +1,12 @@ +--- +title: Custom Pre-Tokenized Dataset +description: How to use a custom pre-tokenized dataset. +order: 5 +--- + +- Do not pass a `type:` in your axolotl config. +- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels` + +```{.yaml filename="config.yml"} +- path: ... +``` diff --git a/docs/fsdp_qlora.qmd b/docs/fsdp_qlora.qmd index 69b4ad4454..7f12d44935 100644 --- a/docs/fsdp_qlora.qmd +++ b/docs/fsdp_qlora.qmd @@ -1,5 +1,5 @@ --- -title: FDSP + QLoRA +title: "FDSP + QLoRA" description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs. format: html: diff --git a/docs/input_output.qmd b/docs/input_output.qmd index 4e2ea1345f..6261f23895 100644 --- a/docs/input_output.qmd +++ b/docs/input_output.qmd @@ -91,8 +91,9 @@ format into a jsonl file (below is the first row from the file ```bash $ head -n1 output.jsonl | python -m json.tool +``` -{.cell-output .cell-output-stdout} +:::{.cell-output .cell-output-stdout} { "segments": [ { @@ -113,7 +114,7 @@ $ head -n1 output.jsonl | python -m json.tool } ] } -``` +::: Set `label:false` when you want to mask a segment of text so that the model isn't trained on it. Some things to keep in mind: @@ -238,8 +239,9 @@ version is repeated below for reference): ```bash $ head -n1 output.jsonl | python -m json.tool +``` -{.cell-output .cell-output-stdout} +:::{.cell-output .cell-output-stdout} { "segments": [ { @@ -260,4 +262,4 @@ $ head -n1 output.jsonl | python -m json.tool } ] } -``` +:::