diff --git a/examples/phi/phi-ft.yml b/examples/phi/phi-ft.yml index 183a715e34..8ed648ed68 100644 --- a/examples/phi/phi-ft.yml +++ b/examples/phi/phi-ft.yml @@ -1,5 +1,5 @@ base_model: microsoft/phi-1_5 -model_type: MixFormerSequentialForCausalLM +model_type: PhiForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: false trust_remote_code: true diff --git a/src/axolotl/models/phi/__init__.py b/src/axolotl/models/phi/__init__.py index 0619f648df..76d6a0e10b 100644 --- a/src/axolotl/models/phi/__init__.py +++ b/src/axolotl/models/phi/__init__.py @@ -3,4 +3,6 @@ """ from .configuration_mixformer_sequential import MixFormerSequentialConfig # noqa +from .configuration_phi import PhiConfig # noqa from .modeling_mixformer_sequential import MixFormerSequentialForCausalLM # noqa +from .modeling_phi import PhiForCausalLM # noqa diff --git a/src/axolotl/models/phi/configuration_phi.py b/src/axolotl/models/phi/configuration_phi.py new file mode 100644 index 0000000000..e941bf7980 --- /dev/null +++ b/src/axolotl/models/phi/configuration_phi.py @@ -0,0 +1,65 @@ +# pylint: skip-file +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT license. + +import math +from typing import Optional + +from transformers import PretrainedConfig + + +class PhiConfig(PretrainedConfig): + """Phi configuration.""" + + model_type = "phi" + attribute_map = { + "max_position_embeddings": "n_positions", + "hidden_size": "n_embd", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size: int = 50304, + n_positions: int = 2048, + n_embd: int = 1024, + n_layer: int = 20, + n_inner: Optional[int] = None, + n_head: int = 16, + n_head_kv: Optional[int] = None, + rotary_dim: Optional[int] = 32, + activation_function: Optional[str] = "gelu_new", + flash_attn: bool = False, + flash_rotary: bool = False, + fused_dense: bool = False, + attn_pdrop: float = 0.0, + embd_pdrop: float = 0.0, + resid_pdrop: float = 0.0, + layer_norm_epsilon: float = 1e-5, + initializer_range: float = 0.02, + tie_word_embeddings: bool = False, + pad_vocab_size_multiple: int = 64, + **kwargs + ) -> None: + self.vocab_size = int( + math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple + ) + self.n_positions = n_positions + self.n_embd = n_embd + self.n_layer = n_layer + self.n_inner = n_inner + self.n_head = n_head + self.n_head_kv = n_head_kv + self.rotary_dim = min(rotary_dim, n_embd // n_head) + self.activation_function = activation_function + self.flash_attn = flash_attn + self.flash_rotary = flash_rotary + self.fused_dense = fused_dense + self.attn_pdrop = attn_pdrop + self.embd_pdrop = embd_pdrop + self.resid_pdrop = resid_pdrop + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + + super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) diff --git a/src/axolotl/models/phi/modeling_phi.py b/src/axolotl/models/phi/modeling_phi.py new file mode 100644 index 0000000000..5b5c3ef6dc --- /dev/null +++ b/src/axolotl/models/phi/modeling_phi.py @@ -0,0 +1,1063 @@ +# pylint: skip-file +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT license. +# +# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu. +# Licensed under the BSD 3-Clause License. + +from __future__ import annotations + +import math +from dataclasses import dataclass, field +from typing import Any, Dict, Optional, Tuple, Union + +import torch +import torch.nn as nn +from einops import rearrange, repeat +from transformers import PretrainedConfig, PreTrainedModel +from transformers.activations import ACT2FN +from transformers.modeling_outputs import CausalLMOutputWithPast + +from ...monkeypatch.utils import get_cu_seqlens_from_pos_ids +from .configuration_phi import PhiConfig + +try: + from flash_attn.bert_padding import pad_input, unpad_input + from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding + from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention + from flash_attn.ops.fused_dense import FusedDense +except: # noqa: E722 + pad_input, unpad_input = None, None + FlashRotaryEmbedding = None + FlashSelfAttention, FlashCrossAttention = None, None + FusedDense = None + + +@dataclass +class InferenceParams: + """Inference parameters passed to model to efficiently calculate + and store context during inference. + + Reference: + https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. + + Args: + max_seqlen: Maximum sequence length. + max_batch_size: Maximum batch size. + seqlen_offset: Sequence length offset. + batch_size_offset: Batch size offset. + key_value_memory_dict: Key value memory dictionary. + lengths_per_sample: Lengths per sample. + + """ + + max_seqlen: int = field(metadata={"help": "Maximum sequence length."}) + + max_batch_size: int = field(metadata={"help": "Maximum batch size."}) + + seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) + + batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) + + key_value_memory_dict: Dict[str, Any] = field( + default_factory=dict, metadata={"help": "Key value memory dictionary."} + ) + + lengths_per_sample: torch.Tensor = field( + default=None, metadata={"help": "Lengths per sample."} + ) + + +class Embedding(nn.Module): + """Token embedding with dropout.""" + + def __init__(self, config: PretrainedConfig) -> None: + super().__init__() + + self.wte = nn.Embedding(config.vocab_size, config.n_embd) + self.drop = nn.Dropout(config.embd_pdrop) + + def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + + hidden_states = self.wte(input_ids) + hidden_states = self.drop(hidden_states) + + return hidden_states + + +def _apply_rotary_emb( + x: torch.FloatTensor, + cos: torch.FloatTensor, + sin: torch.FloatTensor, +) -> torch.FloatTensor: + _, seqlen, _, _ = x.shape + _, rotary_dim = cos.shape + rotary_dim *= 2 + + x_rot = x[:, :, :, :rotary_dim] + x_pass = x[:, :, :, rotary_dim:] + + x1, x2 = x_rot.chunk(2, dim=-1) + c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange( + sin[:seqlen], "s d -> s 1 d" + ) + x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] + + x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype) + + return torch.cat([x_rot, x_pass], axis=-1) + + +def _apply_rotary_emb_kv( + kv: torch.FloatTensor, + cos: torch.FloatTensor, + sin: torch.FloatTensor, + cos_k: Optional[torch.FloatTensor] = None, + sin_k: Optional[torch.FloatTensor] = None, +) -> torch.FloatTensor: + _, seqlen, _, _, _ = kv.shape + _, rotary_dim = cos.shape + rotary_dim *= 2 + + k_rot = kv[:, :, 0, :, :rotary_dim] + k_pass = kv[:, :, 0, :, rotary_dim:] + + k1, k2 = k_rot.chunk(2, dim=-1) + c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange( + sin[:seqlen], "s d -> s 1 d" + ) + k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]] + + k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype) + + return torch.cat( + [ + torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), + kv[:, :, 1:2, :, :], + ], + axis=2, + ) + + +def _apply_rotary_emb_qkv( + qkv: torch.FloatTensor, + cos: torch.FloatTensor, + sin: torch.FloatTensor, + cos_k: Optional[torch.FloatTensor] = None, + sin_k: Optional[torch.FloatTensor] = None, +) -> torch.FloatTensor: + _, seqlen, _, _, _ = qkv.shape + _, rotary_dim = cos.shape + rotary_dim *= 2 + + q_rot = qkv[:, :, 0, :, :rotary_dim] + q_pass = qkv[:, :, 0, :, rotary_dim:] + + k_rot = qkv[:, :, 1, :, :rotary_dim] + k_pass = qkv[:, :, 1, :, rotary_dim:] + + q1, q2 = q_rot.chunk(2, dim=-1) + k1, k2 = k_rot.chunk(2, dim=-1) + c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange( + sin[:seqlen], "s d -> s 1 d" + ) + q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] + + q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) + k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) + + return torch.cat( + [ + torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), + torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), + qkv[:, :, 2:3, :, :], + ], + axis=2, + ) + + +class RotaryEmbedding(nn.Module): + """Rotary positional embedding (RoPE). + + Reference: + RoFormer: Enhanced Transformer with Rotary Position Embedding. + https://arxiv.org/pdf/2104.09864.pdf. + + """ + + def __init__( + self, + dim: int, + base: int = 10000, + scale_base: Optional[float] = None, + pos_idx_in_fp32: bool = True, + max_position_embeddings: int = 2048, + device: Optional[str] = None, + **kwargs, + ) -> None: + super().__init__() + + if scale_base is not None: + raise NotImplementedError + + self.dim = dim + self.base = float(base) + self.scale_base = scale_base + self.pos_idx_in_fp32 = pos_idx_in_fp32 + self.max_position_embeddings = max_position_embeddings + self.device = device + + # Generate and save the inverse frequency buffer (non-trainable) + inv_freq = self._compute_inv_freq(device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Generate and save the scale buffer (non-trainable) + scale = ( + (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) + / (1.4 * dim) + if scale_base is not None + else None + ) + self.register_buffer("scale", scale, persistent=False) + + # Initialize cached attributes since ONNX can't rely on dynamic initialization + self._update_cos_sin_cache( + max_position_embeddings, device=device, dtype=torch.float32 + ) + + def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: + return 1.0 / ( + self.base + ** ( + torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) + / self.dim + ) + ) + + def _update_cos_sin_cache( + self, + seqlen: int, + device: Optional[str] = None, + dtype: Optional[torch.dtype] = None, + ) -> None: + self._seq_len_cached = seqlen + + # fp32 is preferred since the output of `torch.arange` can be quite large + # and bf16 would lose a lot of precision + if self.pos_idx_in_fp32: + t = torch.arange(seqlen, device=device, dtype=torch.float32) + if self.inv_freq.dtype != torch.float32: + inv_freq = self._compute_inv_freq(device=device) + else: + inv_freq = self.inv_freq + else: + t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) + inv_freq = self.inv_freq + + # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP + freqs = torch.outer(t, inv_freq) + if self.scale is None: + self._cos_cached = torch.cos(freqs).to(dtype) + self._sin_cached = torch.sin(freqs).to(dtype) + else: + power = ( + torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) + - seqlen // 2 + ) / self.scale_base + scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") + + # Force the scale multiplication to happen in fp32 + self._cos_cached = (torch.cos(freqs) * scale).to(dtype) + self._sin_cached = (torch.sin(freqs) * scale).to(dtype) + self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) + self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) + + def forward( + self, + qkv: torch.Tensor, + kv: Optional[torch.Tensor] = None, + seqlen_offset: int = 0, + **kwargs, + ) -> Tuple[torch.Tensor, torch.Tensor]: + seq_start = seqlen_offset + seq_end = seq_start + qkv.shape[1] + + if ( + self._cos_cached.device != qkv.device + or self._cos_cached.dtype != qkv.dtype + or (self.training and self._cos_cached.is_inference()) + ): + self._update_cos_sin_cache( + self.max_position_embeddings, device=qkv.device, dtype=qkv.dtype + ) + + if kv is None: + return _apply_rotary_emb_qkv( + qkv, + self._cos_cached[seq_start:seq_end], + self._sin_cached[seq_start:seq_end], + ) + else: + q = _apply_rotary_emb( + qkv, + self._cos_cached[seq_start:seq_end], + self._sin_cached[seq_start:seq_end], + ) + kv = _apply_rotary_emb_kv( + kv, + self._cos_cached[seq_start:seq_end], + self._sin_cached[seq_start:seq_end], + ) + + return q, kv + + +class MLP(nn.Module): + """Multi-Layer Perceptron. + + Reference: + Attention Is All You Need. + https://arxiv.org/pdf/1706.03762.pdf. + + """ + + def __init__( + self, + config: PretrainedConfig, + n_inner: Optional[int] = None, + act_fn: Optional[str] = None, + ) -> None: + super().__init__() + + act_fn = config.activation_function if act_fn is None else act_fn + + n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner + n_inner = n_inner if n_inner is not None else 4 * config.n_embd + + self.fc1 = nn.Linear(config.n_embd, n_inner) + self.fc2 = nn.Linear(n_inner, config.n_embd) + self.act = ACT2FN[act_fn] + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc2(hidden_states) + + return hidden_states + + +class SelfAttention(nn.Module): + """Self-attention layer (compatible with PyTorch). + + Reference: + https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. + + """ + + def __init__( + self, + causal: bool = True, + softmax_scale: Optional[float] = None, + attention_dropout: float = 0.0, + ) -> None: + super().__init__() + + self.causal = causal + self.softmax_scale = softmax_scale + self.drop = nn.Dropout(attention_dropout) + + @torch.autocast("cpu", enabled=False) + @torch.autocast("cuda", enabled=False) + def forward( + self, + qkv: torch.FloatTensor, + causal: bool = None, + key_padding_mask: Optional[torch.BoolTensor] = None, + **kwargs, + ) -> torch.FloatTensor: + batch_size, seqlen = qkv.shape[0], qkv.shape[1] + q, k, v = qkv.unbind(dim=2) + + q = q.to(torch.float32) + k = k.to(torch.float32) + + causal = self.causal if causal is None else causal + softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) + + # Autocast is manually disabled to avoid `torch.einsum` performing the operation + # using float16, which might lead to overflow + scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) + + if key_padding_mask is not None: + padding_mask = torch.full( + (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device + ) + padding_mask.masked_fill_(key_padding_mask, 0.0) + + scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") + + if causal: + causal_mask = torch.triu( + torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1 + ) + scores = scores + causal_mask.to(dtype=scores.dtype) + + attention = torch.softmax(scores, dim=-1).to(v.dtype) + attention = self.drop(attention) + + output = torch.einsum("bhts,bshd->bthd", attention, v) + + return output + + +class CrossAttention(nn.Module): + """Cross-attention layer (compatible with PyTorch). + + Reference: + https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. + + """ + + def __init__( + self, + causal: bool = True, + softmax_scale: Optional[float] = None, + attention_dropout: float = 0.0, + ) -> None: + super().__init__() + + self.causal = causal + self.softmax_scale = softmax_scale + self.drop = nn.Dropout(attention_dropout) + + @torch.autocast("cpu", enabled=False) + @torch.autocast("cuda", enabled=False) + def forward( + self, + q: torch.FloatTensor, + kv: torch.FloatTensor, + causal: bool = None, + key_padding_mask: Optional[torch.BoolTensor] = None, + **kwargs, + ) -> torch.FloatTensor: + batch_size, seqlen_q = q.shape[0], q.shape[1] + seqlen_k = kv.shape[1] + + if kv.shape[3] != q.shape[2]: + kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) + k, v = kv.unbind(dim=2) + + q = q.to(torch.float32) + k = k.to(torch.float32) + + causal = self.causal if causal is None else causal + softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) + + # Autocast is manually disabled to avoid `torch.einsum` performing the operation + # using float16, which might lead to overflow + scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) + + if key_padding_mask is not None: + padding_mask = torch.full( + (batch_size, seqlen_k), + -10000.0, + dtype=scores.dtype, + device=scores.device, + ) + padding_mask.masked_fill_(key_padding_mask, 0.0) + + scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") + + if causal: + rows = rearrange( + torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1" + ) + cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) + causal_mask = cols > rows + seqlen_k - seqlen_q + + scores = scores.masked_fill(causal_mask, -10000.0) + + attention = torch.softmax(scores, dim=-1).to(v.dtype) + attention = self.drop(attention) + + output = torch.einsum("bhts,bshd->bthd", attention, v) + + return output + + +def _find_mha_dims( + config: PretrainedConfig, + n_head: Optional[int] = None, + n_head_kv: Optional[int] = None, + head_dim: Optional[int] = None, +) -> Tuple[int, int]: + if n_head is None and head_dim is None: + head_dim = config.n_embd // config.n_head + n_head = config.n_head + elif n_head is None or head_dim is None: + raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") + + if n_head_kv is None: + n_head_kv = getattr(config, "n_head_kv", None) or n_head + + return n_head, n_head_kv, head_dim + + +def _update_kv_cache( + kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int +) -> torch.FloatTensor: + num_heads, head_dim = kv.shape[-2:] + + if layer_idx not in inference_params.key_value_memory_dict: + kv_cache = torch.empty( + inference_params.max_batch_size, + inference_params.max_seqlen, + 2, + num_heads, + head_dim, + dtype=kv.dtype, + device=kv.device, + ) + inference_params.key_value_memory_dict[layer_idx] = kv_cache + else: + kv_cache = inference_params.key_value_memory_dict[layer_idx] + + batch_start = inference_params.batch_size_offset + batch_end = batch_start + kv.shape[0] + + sequence_start = inference_params.seqlen_offset + sequence_end = sequence_start + kv.shape[1] + + kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv + kv = kv_cache[batch_start:batch_end, :sequence_end, ...] + + return kv + + +class MHA(nn.Module): + """Multi-head attention layer.""" + + def __init__( + self, + config: PretrainedConfig, + dtype: Optional[torch.dtype] = None, + device: Optional[str] = None, + rotary_dim: Optional[int] = None, + rotary_base: float = 10000.0, + rotary_scale_base: Optional[float] = None, + n_head: Optional[int] = None, + n_head_kv: Optional[int] = None, + head_dim: Optional[int] = None, + bias: bool = True, + causal: bool = True, + softmax_scale: Optional[float] = None, + layer_idx: Optional[int] = None, + return_residual: bool = False, + checkpointing: bool = False, + ) -> None: + super().__init__() + + # Rotary embedding + self.rotary_dim = ( + rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) + ) + if self.rotary_dim > 0: + rotary_cls = ( + FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding + ) + if rotary_cls is None: + rotary_cls = RotaryEmbedding + + rotary_kwargs = {} + if rotary_cls is RotaryEmbedding: + rotary_kwargs["max_position_embeddings"] = config.n_positions + + self.rotary_emb = rotary_cls( + self.rotary_dim, + base=rotary_base, + scale_base=rotary_scale_base, + device=device, + **rotary_kwargs, + ) + + # MLP + self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims( + config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim + ) + op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) + hidden_size = config.n_embd + + linear_cls = FusedDense if config.fused_dense else nn.Linear + if linear_cls is None: + linear_cls = nn.Linear + + self.Wqkv = linear_cls( + hidden_size, op_size, bias=bias, device=device, dtype=dtype + ) + self.out_proj = linear_cls( + hidden_size, hidden_size, bias=bias, device=device, dtype=dtype + ) + + # Attention + attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention + if attn_cls is None: + attn_cls = SelfAttention + + cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention + if cross_attn_cls is None: + cross_attn_cls = CrossAttention + + self.inner_attn = attn_cls( + causal=causal, + softmax_scale=softmax_scale, + attention_dropout=config.attn_pdrop, + ) + self.inner_cross_attn = cross_attn_cls( + causal=causal, + softmax_scale=softmax_scale, + attention_dropout=config.attn_pdrop, + ) + + self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention + self.layer_idx = layer_idx + self.return_residual = return_residual + self.checkpointing = checkpointing + + def _forward_self_attn( + self, + x: torch.FloatTensor, + key_padding_mask: Optional[torch.BoolTensor], + cu_seqlens: Optional[torch.LongTensor] = None, + max_seqlen: Optional[int] = None, + ) -> torch.FloatTensor: + qkv = self.Wqkv(x) + qkv = rearrange( + qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim + ) + + if self.rotary_dim > 0: + qkv = self.rotary_emb(qkv) + + if self.flash_attn: + batch_size, seqlen = qkv.shape[0], qkv.shape[1] + + if ( + key_padding_mask is not None + and cu_seqlens is None + and max_seqlen is None + ): + # If `key_padding_mask` is supplied, we need to unpad the input and retrieve + # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn` + qkv, indices, cu_seqlens, max_seqlen = unpad_input( + qkv, key_padding_mask + ) + + if self.checkpointing: + attn_output = torch.utils.checkpoint.checkpoint( + self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen + ) + else: + attn_output = self.inner_attn( + qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen + ).to(qkv.device) + + # If `key_padding_mask` is supplied, we need to pad the output back to the original shape + return ( + pad_input(attn_output, indices, batch_size, seqlen) + if key_padding_mask is not None + else attn_output + ) + + if self.checkpointing: + return torch.utils.checkpoint.checkpoint( + self.inner_attn, qkv, key_padding_mask=key_padding_mask + ) + + return self.inner_attn(qkv, key_padding_mask=key_padding_mask) + + def _forward_cross_attn( + self, + x: torch.FloatTensor, + past_key_values: Optional[InferenceParams], + key_padding_mask: Optional[torch.BoolTensor], + ) -> torch.FloatTensor: + batch_size = x.shape[0] + + qkv = self.Wqkv(x) + + q = qkv[..., : self.n_head * self.head_dim] + q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) + + kv = qkv[..., self.n_head * self.head_dim :] + kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) + + seqlen_offset = ( + past_key_values.seqlen_offset if past_key_values is not None else 0 + ) + causal = None if seqlen_offset == 0 else False + if self.rotary_dim > 0: + q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) + + if past_key_values is not None: + kv = _update_kv_cache(kv, past_key_values, self.layer_idx) + + if self.flash_attn: + batch_size, seqlen_q = q.shape[0], q.shape[1] + seqlen_k = kv.shape[1] + + cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = ( + None, + None, + None, + None, + ) + if key_padding_mask is not None: + kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask) + + if seqlen_q == 1: + key_padding_mask = torch.ones(batch_size, 1, device=q.device) + elif seqlen_q != seqlen_k: + key_padding_mask = key_padding_mask[:, -seqlen_q:] + + q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input( + q, key_padding_mask + ) + + if self.checkpointing: + attn_output = torch.utils.checkpoint.checkpoint( + self.inner_cross_attn, + q, + kv, + causal=causal, + cu_seqlens=cu_seqlens_q, + max_seqlen=max_seqlen_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_k=max_seqlen_k, + ) + else: + attn_output = self.inner_cross_attn( + q, + kv, + causal=causal, + cu_seqlens=cu_seqlens_q, + max_seqlen=max_seqlen_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_k=max_seqlen_k, + ) + + return ( + pad_input(attn_output, indices_q, batch_size, max_seqlen_q) + if key_padding_mask is not None + else attn_output + ) + + if self.checkpointing: + return torch.utils.checkpoint.checkpoint( + self.inner_cross_attn, + q, + kv, + key_padding_mask=key_padding_mask, + causal=causal, + ) + + return self.inner_cross_attn( + q, kv, key_padding_mask=key_padding_mask, causal=causal + ) + + def forward( + self, + x: torch.FloatTensor, + past_key_values: Optional[InferenceParams] = None, + attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, + cu_seqlens: Optional[torch.LongTensor] = None, + max_seqlen: Optional[int] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + # TODO: Need an alternative way for dynamic control flow: torch.any(~attention_mask.bool()) + if attention_mask is not None: + attention_mask = attention_mask.bool() + else: + attention_mask = None + + # MHA + if self.n_head == self.n_head_kv: + if past_key_values is None: + # If `past_key_values` are not supplied, we run self-attention + attn_output = self._forward_self_attn( + x, attention_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen + ) + else: + # If `past_key_values` are supplied, it means that we might have cached values and + # could take advantage of cross-attention + attn_output = self._forward_cross_attn( + x, + past_key_values, + attention_mask, + cu_seqlens=cu_seqlens, + max_seqlen=max_seqlen, + ) + # MQA / GQA + else: + # Regardless of `past_key_values` being supplied or not, it always use cross-attention + # because `q` and `kv` lengths might be different + attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) + + output = rearrange(attn_output, "... h d -> ... (h d)") + output = self.out_proj(output) + + return output if not self.return_residual else (output, x) + + +class ParallelBlock(nn.Module): + """Parallel block. + + This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). + + """ + + def __init__( + self, + config: PretrainedConfig, + block_idx: Optional[int] = None, + ) -> None: + super().__init__() + + self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + self.block_idx = block_idx + + self.mixer = MHA(config, layer_idx=block_idx) + self.mlp = MLP(config) + + def forward( + self, + hidden_states: torch.FloatTensor, + past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, + attention_mask: Optional[torch.BoolTensor] = None, + **kwargs, + ) -> torch.FloatTensor: + residual = hidden_states + hidden_states = self.ln(hidden_states) + + attn_outputs = self.mixer( + hidden_states, + past_key_values=past_key_values, + attention_mask=attention_mask, + ) + if isinstance(attn_outputs, tuple): + attn_outputs = attn_outputs[0] + + attn_outputs = self.resid_dropout(attn_outputs) + feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) + + hidden_states = attn_outputs + feed_forward_hidden_states + residual + + return hidden_states + + +class CausalLMHead(nn.Module): + """Causal Language Modeling head. + + Reference: + Improving Language Understanding by Generative Pre-Training. + https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. + + """ + + def __init__(self, config: PretrainedConfig) -> None: + super().__init__() + + self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.linear = nn.Linear(config.n_embd, config.vocab_size) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + hidden_states = self.ln(hidden_states) + logits = self.linear(hidden_states).to(torch.float32) + + return logits + + +class CausalLMLoss(nn.Module): + """Causal Language Modeling loss. + + Reference: + Improving Language Understanding by Generative Pre-Training. + https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. + + """ + + def __init__(self, shift_labels: bool = True) -> None: + super().__init__() + + self.shift_labels = shift_labels + self.loss_fct = nn.CrossEntropyLoss() + + def forward( + self, logits: torch.FloatTensor, labels: torch.LongTensor + ) -> torch.FloatTensor: + if self.shift_labels: + logits = logits[..., :-1, :].contiguous() + labels = labels[..., 1:].contiguous() + + loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) + + return loss + + +class PhiPreTrainedModel(PreTrainedModel): + """Phi pre-trained model.""" + + config_class = PhiConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = False + _no_split_modules = ["ParallelBlock"] + + def __init__(self, *inputs, **kwargs) -> None: + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module: nn.Module) -> None: + if isinstance(module, (nn.Linear,)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + if module.bias is not None: + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def prepare_inputs_for_generation( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, + attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, + **kwargs, + ) -> Dict[str, Any]: + if past_key_values is None or not ( + isinstance(past_key_values, InferenceParams) + ): + past_key_values = InferenceParams( + max_seqlen=self.config.n_positions, + max_batch_size=input_ids.shape[0], + seqlen_offset=0, + batch_size_offset=0, + key_value_memory_dict={}, + lengths_per_sample=None, + ) + else: + # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids` + past_key_values.seqlen_offset = len(input_ids[0]) - 1 + input_ids = input_ids[:, -1].unsqueeze(-1) + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "attention_mask": attention_mask, + } + + +class PhiModel(PhiPreTrainedModel): + """Phi model.""" + + _keys_to_ignore_on_load_missing = [""] + _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] + + def __init__(self, config: PhiConfig) -> None: + super().__init__(config) + + self.embd = Embedding(config) + self.h = nn.ModuleList( + [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)] + ) + self.gradient_checkpointing = False + self.post_init() + + def get_input_embeddings(self) -> nn.Embedding: + return self.embd.wte + + def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: + self.embd.wte = new_embeddings + + def forward( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, + attention_mask: Optional[torch.BoolTensor] = None, + cu_seqlens: Optional[torch.LongTensor] = None, + max_seqlen: Optional[int] = None, + ) -> torch.FloatTensor: + hidden_states = self.embd(input_ids) + + for layer in self.h: + hidden_states = layer( + hidden_states, + past_key_values=past_key_values, + attention_mask=attention_mask, + cu_seqlens=cu_seqlens, + max_seqlen=max_seqlen, + ) + + return hidden_states + + +class PhiForCausalLM(PhiPreTrainedModel): + """Phi for Causal Language Modeling.""" + + _keys_to_ignore_on_load_missing = [""] + _keys_to_ignore_on_load_unexpected = [ + r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)" + ] + + def __init__(self, config: PhiConfig) -> None: + super().__init__(config) + + self.transformer = PhiModel(config) + self.lm_head = CausalLMHead(config) + self.loss = CausalLMLoss() + + self.post_init() + + def get_output_embeddings(self) -> nn.Linear: + return self.lm_head.linear + + def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: + self.lm_head.linear = new_embeddings + + def forward( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, + attention_mask: Optional[torch.BoolTensor] = None, + labels: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + **kwargs, + ) -> CausalLMOutputWithPast: + cu_seqlens: Optional[torch.LongTensor] = None + max_seqlen: Optional[int] = None + if position_ids is not None: + batch_size, seq_length = input_ids.shape + position_ids = position_ids.view(-1, seq_length).long() + cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids) + cu_seqlens = cu_seqlens.squeeze() + + hidden_states = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + cu_seqlens=cu_seqlens, + max_seqlen=max_seqlen, + ) + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + loss = self.loss(lm_logits, labels) + + return CausalLMOutputWithPast( + loss=loss, logits=lm_logits, past_key_values=past_key_values + ) diff --git a/src/axolotl/utils/models.py b/src/axolotl/utils/models.py index f90d003ace..54a696c1ce 100644 --- a/src/axolotl/utils/models.py +++ b/src/axolotl/utils/models.py @@ -288,10 +288,10 @@ def load_model( # device=cfg.device, # ) # model.train() # sets to train instead of eval mode - elif model_type == "MixFormerSequentialForCausalLM": - from axolotl.models.phi import MixFormerSequentialForCausalLM + elif model_type == "PhiForCausalLM": + from axolotl.models.phi import PhiForCausalLM - model = MixFormerSequentialForCausalLM.from_pretrained( + model = PhiForCausalLM.from_pretrained( base_model, load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None, load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None, diff --git a/tests/e2e/test_phi.py b/tests/e2e/test_phi.py index b3e2ec95d8..b735236ebf 100644 --- a/tests/e2e/test_phi.py +++ b/tests/e2e/test_phi.py @@ -31,7 +31,7 @@ def test_ft(self, temp_dir): { "base_model": "microsoft/phi-1_5", "trust_remote_code": True, - "model_type": "MixFormerSequentialForCausalLM", + "model_type": "PhiForCausalLM", "tokenizer_type": "AutoTokenizer", "sequence_len": 512, "sample_packing": False, @@ -76,7 +76,7 @@ def test_ft_packed(self, temp_dir): { "base_model": "microsoft/phi-1_5", "trust_remote_code": True, - "model_type": "MixFormerSequentialForCausalLM", + "model_type": "PhiForCausalLM", "tokenizer_type": "AutoTokenizer", "sequence_len": 512, "sample_packing": True,