From 5b0bc48fbc52f3053806bd47159f110ee99c5df5 Mon Sep 17 00:00:00 2001 From: Wing Lian Date: Fri, 29 Sep 2023 00:22:40 -0400 Subject: [PATCH] add mistral e2e tests (#649) * mistral e2e tests * make sure to enable flash attention for the e2e tests * use latest transformers full sha * uninstall first --- .github/workflows/tests.yml | 1 + requirements.txt | 2 +- tests/e2e/test_mistral.py | 208 ++++++++++++++++++++++++++++++++++++ 3 files changed, 210 insertions(+), 1 deletion(-) create mode 100644 tests/e2e/test_mistral.py diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index b4637fd67f..419382df74 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -69,6 +69,7 @@ jobs: - name: Install dependencies run: | + pip3 uninstall -y transformers accelerate pip3 install -U -e .[flash-attn] pip3 install -r requirements-tests.txt diff --git a/requirements.txt b/requirements.txt index 18659daec5..b02e656eb2 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,7 +4,7 @@ torch==2.0.1 auto-gptq packaging peft @ git+https://github.com/huggingface/peft.git -transformers @ git+https://github.com/huggingface/transformers.git@78dd120 +transformers @ git+https://github.com/huggingface/transformers.git@5e11d72d4d0939138fbabfebe9a69d2061519547 bitsandbytes>=0.41.1 accelerate @ git+https://github.com/huggingface/accelerate@80da9cfb09bb3cc9f1b385cb55d6b90d025a5fd9 deepspeed diff --git a/tests/e2e/test_mistral.py b/tests/e2e/test_mistral.py new file mode 100644 index 0000000000..4212d36408 --- /dev/null +++ b/tests/e2e/test_mistral.py @@ -0,0 +1,208 @@ +""" +E2E tests for lora llama +""" + +import logging +import os +import tempfile +import unittest +from pathlib import Path + +from transformers.utils import is_torch_bf16_gpu_available + +from axolotl.cli import load_datasets +from axolotl.common.cli import TrainerCliArgs +from axolotl.train import train +from axolotl.utils.config import normalize_config +from axolotl.utils.dict import DictDefault + +LOG = logging.getLogger("axolotl.tests.e2e") +os.environ["WANDB_DISABLED"] = "true" + + +class TestMistral(unittest.TestCase): + """ + Test case for Llama models using LoRA + """ + + def test_lora(self): + # pylint: disable=duplicate-code + output_dir = tempfile.mkdtemp() + cfg = DictDefault( + { + "base_model": "openaccess-ai-collective/tiny-mistral", + "base_model_config": "openaccess-ai-collective/tiny-mistral", + "flash_attention": True, + "sequence_len": 1024, + "load_in_8bit": True, + "adapter": "lora", + "lora_r": 32, + "lora_alpha": 64, + "lora_dropout": 0.05, + "lora_target_linear": True, + "val_set_size": 0.1, + "special_tokens": { + "unk_token": "", + "bos_token": "", + "eos_token": "", + }, + "datasets": [ + { + "path": "mhenrichsen/alpaca_2k_test", + "type": "alpaca", + }, + ], + "num_epochs": 2, + "micro_batch_size": 2, + "gradient_accumulation_steps": 1, + "output_dir": output_dir, + "learning_rate": 0.00001, + "optimizer": "adamw_torch", + "lr_scheduler": "cosine", + "max_steps": 20, + "save_steps": 10, + "eval_steps": 10, + } + ) + normalize_config(cfg) + cli_args = TrainerCliArgs() + dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) + + train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) + assert (Path(output_dir) / "adapter_model.bin").exists() + + def test_lora_packing(self): + # pylint: disable=duplicate-code + output_dir = tempfile.mkdtemp() + cfg = DictDefault( + { + "base_model": "openaccess-ai-collective/tiny-mistral", + "base_model_config": "openaccess-ai-collective/tiny-mistral", + "flash_attention": True, + "sample_packing": True, + "sequence_len": 1024, + "load_in_8bit": True, + "adapter": "lora", + "lora_r": 32, + "lora_alpha": 64, + "lora_dropout": 0.05, + "lora_target_linear": True, + "val_set_size": 0.1, + "special_tokens": { + "unk_token": "", + "bos_token": "", + "eos_token": "", + }, + "datasets": [ + { + "path": "mhenrichsen/alpaca_2k_test", + "type": "alpaca", + }, + ], + "num_epochs": 2, + "micro_batch_size": 2, + "gradient_accumulation_steps": 1, + "output_dir": output_dir, + "learning_rate": 0.00001, + "optimizer": "adamw_torch", + "lr_scheduler": "cosine", + "max_steps": 20, + "save_steps": 10, + "eval_steps": 10, + } + ) + normalize_config(cfg) + cli_args = TrainerCliArgs() + dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) + + train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) + assert (Path(output_dir) / "adapter_model.bin").exists() + + def test_ft(self): + # pylint: disable=duplicate-code + output_dir = tempfile.mkdtemp() + cfg = DictDefault( + { + "base_model": "openaccess-ai-collective/tiny-mistral", + "base_model_config": "openaccess-ai-collective/tiny-mistral", + "flash_attention": True, + "sequence_len": 1024, + "val_set_size": 0.1, + "special_tokens": { + "unk_token": "", + "bos_token": "", + "eos_token": "", + }, + "datasets": [ + { + "path": "mhenrichsen/alpaca_2k_test", + "type": "alpaca", + }, + ], + "num_epochs": 2, + "micro_batch_size": 2, + "gradient_accumulation_steps": 1, + "output_dir": output_dir, + "learning_rate": 0.00001, + "optimizer": "adamw_torch", + "lr_scheduler": "cosine", + "max_steps": 20, + "save_steps": 10, + "eval_steps": 10, + } + ) + if is_torch_bf16_gpu_available(): + cfg.bf16 = True + else: + cfg.fp16 = True + normalize_config(cfg) + cli_args = TrainerCliArgs() + dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) + + train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) + assert (Path(output_dir) / "pytorch_model.bin").exists() + + def test_ft_packing(self): + # pylint: disable=duplicate-code + output_dir = tempfile.mkdtemp() + cfg = DictDefault( + { + "base_model": "openaccess-ai-collective/tiny-mistral", + "base_model_config": "openaccess-ai-collective/tiny-mistral", + "flash_attention": True, + "sample_packing": True, + "sequence_len": 1024, + "val_set_size": 0.1, + "special_tokens": { + "unk_token": "", + "bos_token": "", + "eos_token": "", + }, + "datasets": [ + { + "path": "mhenrichsen/alpaca_2k_test", + "type": "alpaca", + }, + ], + "num_epochs": 2, + "micro_batch_size": 2, + "gradient_accumulation_steps": 1, + "output_dir": output_dir, + "learning_rate": 0.00001, + "optimizer": "adamw_torch", + "lr_scheduler": "cosine", + "max_steps": 20, + "save_steps": 10, + "eval_steps": 10, + } + ) + if is_torch_bf16_gpu_available(): + cfg.bf16 = True + else: + cfg.fp16 = True + normalize_config(cfg) + cli_args = TrainerCliArgs() + dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) + + train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) + assert (Path(output_dir) / "pytorch_model.bin").exists()