diff --git a/tests/e2e/test_fused_llama.py b/tests/e2e/test_fused_llama.py index 4cd45ecfdb..beb41bdee7 100644 --- a/tests/e2e/test_fused_llama.py +++ b/tests/e2e/test_fused_llama.py @@ -25,50 +25,6 @@ class TestFusedLlama(unittest.TestCase): Test case for Llama models using Fused layers """ - def test_lora_packing(self): - # pylint: disable=duplicate-code - output_dir = tempfile.mkdtemp() - cfg = DictDefault( - { - "base_model": "JackFram/llama-68m", - "base_model_config": "JackFram/llama-68m", - "flash_attention": True, - "flash_attn_fuse_qkv": True, - "flash_attn_fuse_mlp": True, - "sample_packing": True, - "sequence_len": 1024, - "load_in_8bit": True, - "val_set_size": 0.1, - "special_tokens": { - "unk_token": "", - "bos_token": "", - "eos_token": "", - }, - "datasets": [ - { - "path": "mhenrichsen/alpaca_2k_test", - "type": "alpaca", - }, - ], - "num_epochs": 2, - "micro_batch_size": 2, - "gradient_accumulation_steps": 1, - "output_dir": output_dir, - "learning_rate": 0.00001, - "optimizer": "adamw_torch", - "lr_scheduler": "cosine", - "max_steps": 20, - "save_steps": 10, - "eval_steps": 10, - } - ) - normalize_config(cfg) - cli_args = TrainerCliArgs() - dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) - - train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) - assert (Path(output_dir) / "pytorch_model.bin").exists() - def test_fft_packing(self): # pylint: disable=duplicate-code output_dir = tempfile.mkdtemp()