-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathpixel_link.py
159 lines (115 loc) · 4.14 KB
/
pixel_link.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys, os
import time
import argparse
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import plot_results, load_image # noqa: E402C
from webcamera_utils import get_capture # noqa: E402
from pixel_link_utils import decode_batch, mask_to_bboxes, draw_bbox, save_bboxes_to_json
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'pixellink-vgg16-4s.onnx'
MODEL_PATH = 'pixellink-vgg16-4s.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/pixel_link/'
IMAGE_PATH = 'img_249.jpg'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('Pixel-Link model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-w', '--write_json',
action='store_true',
help='Flag to output results to json file.'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def post_processing(pixel_pos_scores, link_pos_scores, image_shape):
mask = decode_batch(pixel_pos_scores, link_pos_scores)[0, ...]
bboxes = mask_to_bboxes(mask, image_shape)
return bboxes
# ======================
# Main functions
# ======================
def predict(img, net):
img = img.astype(np.int32)
# feedforward
net.set_input_shape(img.shape)
output = net.predict({'import/test/Placeholder:0': img})
pixel_pos_scores, link_pos_scores = output
bboxes = post_processing(pixel_pos_scores, link_pos_scores, img.shape)
return bboxes
def recognize_from_image(filenames, net):
for filename in filenames:
# prepare input data
img = load_image(filename)
logger.info(f'input image shape: {img.shape}')
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
bboxes = predict(img, net)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
bboxes = predict(img, net)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
res_img = draw_bbox(img, bboxes)
# plot result
savepath = get_savepath(args.savepath, filename)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
if args.write_json:
json_file = '%s.json' % savepath.rsplit('.', 1)[0]
save_bboxes_to_json(json_file, bboxes)
logger.info('Script finished successfully.')
def recognize_from_video(video, net):
capture = get_capture(video)
frame_shown = False
while (True):
ret, frame = capture.read()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
if not ret:
continue
bboxes = predict(frame, net)
# plot result
res_img = draw_bbox(frame, bboxes)
# show
cv2.imshow('frame', res_img)
frame_shown = True
capture.release()
cv2.destroyAllWindows()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# load model
env_id = args.env_id
memory_mode=ailia.get_memory_mode(reduce_constant=True, ignore_input_with_initializer=True, reduce_interstage=False, reuse_interstage=True)
logger.info(f'env_id: {env_id}')
# initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id, memory_mode=memory_mode)
if args.video is not None:
recognize_from_video(args.video, net)
else:
recognize_from_image(args.input, net)
if __name__ == '__main__':
main()