-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathyolor.py
206 lines (176 loc) · 6.6 KB
/
yolor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#ailia detector api sample
import os
import sys
import time
import ailia
import cv2
import numpy as np
from yolor_utils import COCO_CATEGORY, non_max_suppression_numpy, scale_coords
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger
import webcamera_utils
from detector_utils import plot_results, reverse_letterbox, write_predictions
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models
from arg_utils import get_base_parser, get_savepath, update_parser
logger = getLogger(__name__)
# ======================
# Arguemnt Parser Config
# ======================
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
parser = get_base_parser('yolor model', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'--model_name',
default='yolor_w6',
help='yolor_p6, yolor_w6]'
)
parser.add_argument(
'-w', '--write_prediction',
nargs='?',
const='txt',
choices=['txt', 'json'],
type=str,
help='Output results to txt or json file.'
)
args = update_parser(parser)
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/yolor/'
MODEL_NAME = args.model_name
WEIGHT_PATH = MODEL_NAME + ".opt.onnx"
MODEL_PATH = MODEL_NAME + ".opt.onnx.prototxt"
HEIGHT = 896
WIDTH = 1280
THRESHOLD = 0.4
IOU = 0.5
# ======================
# Main functions
# ======================
def recognize_from_image():
env_id = args.env_id
detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.debug(f'input image: {image_path}')
raw_img = imread(image_path)
img = cv2.resize(raw_img, dsize=(1280, 896))
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, 0)
img = img / 255.0
logger.debug(f'input image shape: {raw_img.shape}')
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
pred = detector.predict(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
pred = detector.predict(img)
pred = non_max_suppression_numpy(pred, THRESHOLD, IOU)
for i, det in enumerate(pred):
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], raw_img.shape).round()
img_size_h, img_size_w = raw_img.shape[:2]
output = []
# Write results
for *xyxy, conf, cls in det:
xyxy = [int(v) for v in xyxy]
x1, y1, x2, y2 = xyxy
r = ailia.DetectorObject(
category=int(cls),
prob=conf,
x=x1 / img_size_w,
y=y1 / img_size_h,
w=(x2 - x1) / img_size_w,
h=(y2 - y1) / img_size_h,
)
output.append(r)
detect_object = reverse_letterbox(output, raw_img, (raw_img.shape[0], raw_img.shape[1]))
res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
# write prediction
if args.write_prediction is not None:
ext = args.write_prediction
pred_file = "%s.%s" % (savepath.rsplit('.', 1)[0], ext)
write_predictions(pred_file, detect_object, raw_img, category=COCO_CATEGORY, file_type=ext)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
env_id = args.env_id
detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = f_h, f_w
writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
raw_img = frame
img = cv2.resize(raw_img, dsize=(1280, 896))
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, 0)
img = img / 255.0
pred = detector.predict(img)
pred = non_max_suppression_numpy(pred, THRESHOLD, IOU)
for i, det in enumerate(pred):
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], raw_img.shape).round()
img_size_h, img_size_w = raw_img.shape[:2]
output = []
# Write results
for *xyxy, conf, cls in det:
xyxy = [int(v) for v in xyxy]
x1, y1, x2, y2 = xyxy
r = ailia.DetectorObject(
category=int(cls),
prob=conf,
x=x1 / img_size_w,
y=y1 / img_size_h,
w=(x2 - x1) / img_size_w,
h=(y2 - y1) / img_size_h,
)
output.append(r)
detect_object = reverse_letterbox(output, raw_img, (raw_img.shape[0], raw_img.shape[1]))
res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()