This repository has been archived by the owner on Mar 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 84
/
task_config_template.cfg
executable file
·546 lines (466 loc) · 72.4 KB
/
task_config_template.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
[metrics_parameters_inference]
patterns = ['Prediction-Time: (\d+\.\d+|\d+) milliseconds']
metrics = ['prediction_time']
compute_method = ['average']
[metrics_parameters_imperative_hybrid_top_1]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'training: accuracy=(\d+\.\d+|\d+)', 'validation: accuracy=(\d+\.\d+|\d+)', 'time cost: (\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time']
compute_method = ['average', 'last', 'last', 'total']
[metrics_gpu_symbolic_p3_inference]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec']
metrics = ['speed']
compute_method = ['average']
[metrics_parameters_images_top_1]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)' ]
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total', 'last']
[metrics_parameters_images_top_5]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)', 'Train-top_k_accuracy_5=(\d+\.\d+|\d+)','Validation-top_k_accuracy_5=(\d+\.\d+|\d+)' ]
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc','Train-top_k_accuracy_5','Validation-top_k_accuracy_5']
compute_method = ['average', 'last', 'total', 'last','last','last']
[metrics_mkl_symbolic_c5_inference]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Speed: (\d+\.\d+|\d+) samples/sec', 'Speed: (\d+\.\d+|\d+) samples/sec']
metrics = ['speed', 'speed-p90', 'speed-p50']
compute_method = ['average', 'p90', 'p50']
[mkl_resnet18_cifar10_symbolic]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)' ]
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total', 'last']
command_to_execute = python image_classification/image_classification.py --model resnet18_v2 --dataset cifar10 --mode symbolic --gpus 0 --epochs 25 --log-interval 50 --kvstore local
num_gpus = 0
[resnet50_cifar10_symbolic]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)' ]
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total', 'last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --kvstore device
num_gpus = 8
[resnet50_cifar10_symbolic_fp16_batch_size64]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --dtype float16 --batch-size 64 --kvstore device
num_gpus = 8
[resnet50_cifar10_symbolic_fp32_batch_size32]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --batch-size 32 --kvstore device
num_gpus = 8
[resnet50_cifar10_symbolic_fp16_batch_size32]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --dtype float16 --batch-size 32 --kvstore device
num_gpus = 8
[resnet50_cifar10_symbolic_fp32_batch_size16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --batch-size 16 --kvstore device
num_gpus = 8
[resnet50_cifar10_symbolic_fp32_batch_size64]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode symbolic --gpus 8 --epochs 20 --log-interval 50 --batch-size 64 --kvstore device
num_gpus = 8
[resnet50_cifar10_hybrid]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'training: accuracy=(\d+\.\d+|\d+)', 'validation: accuracy=(\d+\.\d+|\d+)', 'time cost: (\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time']
compute_method = ['average', 'last', 'last', 'total']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --mode hybrid --gpus 8 --epochs 20 --log-interval 50 --kvstore device
num_gpus = 8
[resnet50_cifar10_imperative]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'training: accuracy=(\d+\.\d+|\d+)', 'validation: accuracy=(\d+\.\d+|\d+)', 'time cost: (\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time']
compute_method = ['average', 'last', 'last', 'total']
command_to_execute = python image_classification/image_classification.py --model resnet50_v1 --dataset cifar10 --gpus 8 --epochs 20 --log-interval 50 --kvstore device
num_gpus = 8
[dawnbench_cifar10_symbolic]
patterns = ['Epoch \d+, Batch \d+, Speed=(\d+\.\d+|\d+)', 'Epoch \d+, Training accuracy=(\d+\.\d+|\d+)', 'Epoch \d+, Validation accuracy=(\d+\.\d+|\d+)', 'Epoch \d+, Duration=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time']
compute_method = ['average', 'last', 'last', 'total']
command_to_execute = python dawnbench/cifar10.py --gpus 4 --early-stopping-acc 0.86 --epochs 400 --lr 0.05 --total-batch-size 256
num_gpus = 4
[lstm_ptb_imperative]
patterns = ['time cost (\d+\.\d+|\d+)', 'valid loss (\d+\.\d+|\d+)', 'valid ppl (\d+\.\d+|\d+)', 'test loss (\d+\.\d+|\d+)', 'test ppl (\d+\.\d+|\d+)']
metrics = ['total_training_time', 'validation_loss', 'validation_perplexity', 'test_loss', 'test_perplexity']
compute_method = ['total', 'last', 'last', 'last', 'last']
command_to_execute = python word_language_model/word_language_model.py --gpus 8 --nhid 650 --emsize 650 --dropout 0.5 --epochs 40 --data word_language_model/data/ptb. --mode imperative --kvstore device
num_gpus = 8
[lstm_ptb_hybrid]
patterns = ['time cost (\d+\.\d+|\d+)', 'valid loss (\d+\.\d+|\d+)', 'valid ppl (\d+\.\d+|\d+)', 'test loss (\d+\.\d+|\d+)', 'test ppl (\d+\.\d+|\d+)']
metrics = ['total_training_time', 'validation_loss', 'validation_perplexity', 'test_loss', 'test_perplexity']
compute_method = ['total', 'last', 'last', 'last', 'last']
command_to_execute = python word_language_model/word_language_model.py --gpus 8 --nhid 650 --emsize 650 --dropout 0.5 --epochs 40 --data word_language_model/data/ptb. --mode hybrid --kvstore device
num_gpus = 8
[lstm_ptb_symbolic]
patterns = ['Time cost=(\d+\.\d+|\d+)', 'Train-perplexity=(\d+\.\d+|\d+)', 'Validation-perplexity=(\d+\.\d+|\d+)', 'Speed: (\d+\.\d+|\d+) samples/sec']
metrics = ['total_training_time', 'train_perplexity', 'validation_perplexity', 'speed']
compute_method = ['total', 'last', 'last', 'average']
command_to_execute = python word_language_model/lstm_bucketing.py --num-hidden 650 --num-embed 650 --gpus 8 --epochs 25 --kv-store device
num_gpus = 8
[bidaf_1gpu_float32]
patterns = ['Time per epoch (\d+\.\d+|\d+)', 'train loss (\d+\.\d+|\d+)', 'exact_match\': (\d+\.\d+)', 'f1\': (\d+\.\d+)']
metrics = ['total_training_time', 'train_loss', 'exact_match', 'F1']
compute_method = ['total', 'last', 'last', 'last']
command_to_execute = bash question_answering/scripts/run_test_1gpu.sh
num_gpus = 1
[bidaf_multigpu_float32]
patterns = ['Time per epoch (\d+\.\d+|\d+)', 'train loss (\d+\.\d+|\d+)', 'exact_match\': (\d+\.\d+)', 'f1\': (\d+\.\d+)']
metrics = ['total_training_time', 'train_loss', 'exact_match', 'F1']
compute_method = ['total', 'last', 'last', 'last']
command_to_execute = bash question_answering/scripts/run_test_multigpu.sh
num_gpus = 4
[mkl_lstm_ptb_symbolic]
patterns = ['Time cost=(\d+\.\d+|\d+)', 'Train-perplexity=(\d+\.\d+|\d+)', 'Validation-perplexity=(\d+\.\d+|\d+)', 'Speed: (\d+\.\d+|\d+) samples/sec']
metrics = ['total_training_time', 'train_perplexity', 'validation_perplexity', 'speed']
compute_method = ['total', 'last', 'last', 'average']
command_to_execute = python word_language_model/lstm_bucketing.py --num-hidden 650 --num-embed 650 --gpus 0 --epochs 30 --kv-store local
num_gpus = 0
[mkl_lstm_ptb_hybrid]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'time cost (\d+\.\d+|\d+)', 'valid loss (\d+\.\d+|\d+)', 'valid ppl (\d+\.\d+|\d+)', 'train loss (\d+\.\d+|\d+)', 'train ppl (\d+\.\d+|\d+)']
metrics = ['speed', 'total_training_time', 'validation_loss', 'validation_perplexity', 'train_loss', 'train_perplexity']
compute_method = ['average', 'total', 'last', 'last', 'last', 'last']
command_to_execute = python word_language_model/word_language_model_train.py --gpus 0 --nhid 650 --emsize 650 --dropout 0.5 --epochs 20 --data word_language_model/data/ptb. --mode hybrid --kvstore local
num_gpus = 0
[mkl_lstm_ptb_imperative]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'time cost (\d+\.\d+|\d+)', 'valid loss (\d+\.\d+|\d+)', 'valid ppl (\d+\.\d+|\d+)', 'train loss (\d+\.\d+|\d+)', 'train ppl (\d+\.\d+|\d+)']
metrics = ['speed', 'total_training_time', 'validation_loss', 'validation_perplexity', 'train_loss', 'train_perplexity']
compute_method = ['average', 'total', 'last', 'last', 'last', 'last']
command_to_execute = python word_language_model/word_language_model_train.py --gpus 0 --nhid 650 --emsize 650 --dropout 0.5 --epochs 20 --data word_language_model/data/ptb. --mode imperative --kvstore local
num_gpus = 0
[mkl_lstm_ptb_inference]
patterns = ['Infer time is (\d+\.\d+\d+)']
metrics = ['infer_time_per_batch']
compute_method = ['average']
command_to_execute = python word_language_model/lstm_bucketing_infer.py --gpus 0
num_gpus = 0
[resnet50_imagenet_symbolic_fp16_batch_size32_p3_16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3,4,5,6,7 --batch-size 256 --data-nthreads 15 --num-epochs 80 --dtype float16
num_gpus = 1
[resnet50_imagenet_symbolic_fp16_batch_size64_p3_16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3,4,5,6,7 --batch-size 512 --data-nthreads 15 --num-epochs 80 --dtype float16
num_gpus = 1
[resnet50_imagenet_symbolic_fp16_batch_size128_p3_16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3,4,5,6,7 --batch-size 1024 --data-nthreads 32 --num-epochs 80 --dtype float16
num_gpus = 1
[resnet50_imagenet_symbolic_fp32_batch_size32_p3_16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3,4,5,6,7 --batch-size 256 --data-nthreads 15 --num-epochs 80
num_gpus = 1
[resnet50_imagenet_symbolic_fp32_batch_size64_p3_16]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3,4,5,6,7 --batch-size 512 --data-nthreads 15 --num-epochs 80
num_gpus = 1
[resnet50_imagenet_symbolic_fp16_batch_size32_p3_8]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3 --batch-size 256 --data-nthreads 15 --num-epochs 80 --dtype float16
num_gpus = 1
[resnet50_imagenet_symbolic_fp16_batch_size64_p3_8]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3 --batch-size 512 --data-nthreads 15 --num-epochs 80 --dtype float16
num_gpus = 1
[resnet50_imagenet_symbolic_fp32_batch_size32_p3_8]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3 --batch-size 256 --data-nthreads 15 --num-epochs 80
num_gpus = 1
[resnet50_imagenet_symbolic_fp32_batch_size64_p3_8]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total','last']
command_to_execute = python /home/ubuntu/mxnet/example/image-classification/train_imagenet.py --data-train /home/ubuntu/imagenet/imagenet1k-train.rec --data-val /home/ubuntu/imagenet/imagenet1k-val.rec --gpus 1,0,2,3 --batch-size 512 --data-nthreads 15 --num-epochs 80
num_gpus = 1
[metrics_parameters_distributed_top_k]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Train-top_k_accuracy_\d=(\d+\.\d+|\d+)','Validation-top_k_accuracy_\d=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time','training_acc_top5','validation_acc_top5']
compute_method = ['average_aggregate', 'last', 'last', 'total','last','last']
[metrics_parameters_distributed]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)']
metrics = ['speed', 'training_acc', 'validation_acc', 'total_training_time']
compute_method = ['average_aggregate', 'last', 'last', 'total']
[tensorflow_resnet50_p3_2xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=1 --batch_size=32 --model=resnet50 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 1
[tensorflow_resnet50_p3_8xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=4 --batch_size=32 --model=resnet50 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 4
[tensorflow_resnet50_p3_16xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=8 --batch_size=32 --model=resnet50 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 8
[tensorflow_resnet152_p3_2xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=1 --batch_size=32 --model=resnet152 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 1
[tensorflow_resnet152_p3_8xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=4 --batch_size=32 --model=resnet152 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 4
[tensorflow_resnet152_p3_16xlg]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=8 --batch_size=32 --model=resnet152 --variable_update=parameter_server --print_training_accuracy=True --num_batches=100
num_gpus = 8
[tensorflow_resnet56_p3_2xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=cifar10 --data_dir=cifar-10-batches-py --num_gpus=1 --batch_size=32 --model=resnet56 --variable_update=replicated --print_training_accuracy=True --use_fp16=True --use_tf_layers=False --target_accuracy=0.94
num_gpus = 1
[tensorflow_resnet56_p3_8xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=cifar10 --data_dir=cifar-10-batches-py --num_gpus=4 --batch_size=32 --model=resnet56 --variable_update=replicated --print_training_accuracy=True --use_fp16=True --use_tf_layers=False --target_accuracy=0.94
num_gpus = 4
[tensorflow_resnet56_p3_16xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Training time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=cifar10 --data_dir=cifar-10-batches-py --num_gpus=8 --batch_size=32 --model=resnet56 --variable_update=replicated --print_training_accuracy=True --use_fp16=True --use_tf_layers=False --target_accuracy=0.94
num_gpus = 8
[tensorflow_resnet50_p3_2xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=1 --batch_size=32 --model=resnet50 --variable_update=replicated --print_training_accuracy=True --num_batches=100 --use_fp16=True --use_tf_layers=False
num_gpus = 1
[tensorflow_resnet50_p3_8xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=4 --batch_size=32 --model=resnet50 --variable_update=replicated --print_training_accuracy=True --num_batches=100 --use_fp16=True --use_tf_layers=False
num_gpus = 4
[tensorflow_resnet50_p3_16xlg_fp16]
patterns = ['images/sec: (\d+\.\d+)', 'time: (\d+\.\d+)']
metrics = ['Images per sec', 'Time']
compute_method = ['average', 'last']
command_to_execute = python tensorflow_benchmark/tf_cnn_benchmarks/tf_cnn_benchmarks.py --data_name=imagenet --num_gpus=8 --batch_size=32 --model=resnet50 --variable_update=replicated --print_training_accuracy=True --num_batches=100 --use_fp16=True --use_tf_layers=False
num_gpus = 8
[onnx_mxnet_import_model_inference_test_cpu]
patterns = ['Average_inference_time_bvlc_alexnet_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_googlenet_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_reference_caffenet_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_densenet121_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_resnet50_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_shufflenet_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_squeezenet_cpu: (\d+\.\d+|\d+)', 'Average_inference_time_vgg19_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_alexnet_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_googlenet_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_reference_caffenet_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_densenet121_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_resnet50_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_shufflenet_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_squeezenet_cpu: (\d+\.\d+|\d+)', 'P50_inference_time_vgg19_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_alexnet_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_googlenet_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_reference_caffenet_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_densenet121_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_resnet50_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_shufflenet_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_squeezenet_cpu: (\d+\.\d+|\d+)', 'P90_inference_time_vgg19_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_alexnet_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_googlenet_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_reference_caffenet_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_densenet121_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_resnet50_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_shufflenet_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_squeezenet_cpu: (\d+\.\d+|\d+)', 'P99_inference_time_vgg19_cpu: (\d+\.\d+|\d+)']
metrics = ['Average_inference_time_bvlc_alexnet_cpu','Average_inference_time_bvlc_googlenet_cpu','Average_inference_time_bvlc_reference_caffenet_cpu','Average_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu','Average_inference_time_densenet121_cpu','Average_inference_time_resnet50_cpu','Average_inference_time_shufflenet_cpu','Average_inference_time_squeezenet_cpu','Average_inference_time_vgg19_cpu', 'P50_inference_time_bvlc_alexnet_cpu','P50_inference_time_bvlc_googlenet_cpu','P50_inference_time_bvlc_reference_caffenet_cpu','P50_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu','P50_inference_time_densenet121_cpu','P50_inference_time_resnet50_cpu','P50_inference_time_shufflenet_cpu','P50_inference_time_squeezenet_cpu','P50_inference_time_vgg19_cpu','P90_inference_time_bvlc_alexnet_cpu','P90_inference_time_bvlc_googlenet_cpu','P90_inference_time_bvlc_reference_caffenet_cpu','P90_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu','P90_inference_time_densenet121_cpu','P90_inference_time_resnet50_cpu','P90_inference_time_shufflenet_cpu','P90_inference_time_squeezenet_cpu','P90_inference_time_vgg19_cpu', 'P99_inference_time_bvlc_alexnet_cpu','P99_inference_time_bvlc_googlenet_cpu','P99_inference_time_bvlc_reference_caffenet_cpu','P99_inference_time_bvlc_reference_rcnn_ilsvrc13_cpu','P99_inference_time_densenet121_cpu','P99_inference_time_resnet50_cpu','P99_inference_time_shufflenet_cpu','P99_inference_time_squeezenet_cpu','P99_inference_time_vgg19_cpu']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = sudo bash ./onnx_benchmark/setup.sh "cpu" && python3 ./onnx_benchmark/import_benchmarkscript.py "cpu"
num_gpus = 0
[onnx_mxnet_import_model_inference_test_gpu]
patterns = ['Average_inference_time_bvlc_alexnet_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_googlenet_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_reference_caffenet_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_densenet121_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_resnet50_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_shufflenet_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_squeezenet_gpu: (\d+\.\d+|\d+)', 'Average_inference_time_vgg19_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_alexnet_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_googlenet_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_reference_caffenet_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_densenet121_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_resnet50_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_shufflenet_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_squeezenet_gpu: (\d+\.\d+|\d+)', 'P50_inference_time_vgg19_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_alexnet_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_googlenet_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_reference_caffenet_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_densenet121_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_resnet50_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_shufflenet_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_squeezenet_gpu: (\d+\.\d+|\d+)', 'P90_inference_time_vgg19_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_alexnet_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_googlenet_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_reference_caffenet_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_densenet121_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_resnet50_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_shufflenet_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_squeezenet_gpu: (\d+\.\d+|\d+)', 'P99_inference_time_vgg19_gpu: (\d+\.\d+|\d+)']
metrics = ['Average_inference_time_bvlc_alexnet_gpu','Average_inference_time_bvlc_googlenet_gpu','Average_inference_time_bvlc_reference_caffenet_gpu','Average_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu','Average_inference_time_densenet121_gpu','Average_inference_time_resnet50_gpu','Average_inference_time_shufflenet_gpu','Average_inference_time_squeezenet_gpu','Average_inference_time_vgg19_gpu', 'P50_inference_time_bvlc_alexnet_gpu','P50_inference_time_bvlc_googlenet_gpu','P50_inference_time_bvlc_reference_caffenet_gpu','P50_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu','P50_inference_time_densenet121_gpu','P50_inference_time_resnet50_gpu','P50_inference_time_shufflenet_gpu','P50_inference_time_squeezenet_gpu','P50_inference_time_vgg19_gpu', 'P90_inference_time_bvlc_alexnet_gpu','P90_inference_time_bvlc_googlenet_gpu','P90_inference_time_bvlc_reference_caffenet_gpu','P90_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu','P90_inference_time_densenet121_gpu','P90_inference_time_resnet50_gpu','P90_inference_time_shufflenet_gpu','P90_inference_time_squeezenet_gpu','P90_inference_time_vgg19_gpu', 'P99_inference_time_bvlc_alexnet_gpu','P99_inference_time_bvlc_googlenet_gpu','P99_inference_time_bvlc_reference_caffenet_gpu','P99_inference_time_bvlc_reference_rcnn_ilsvrc13_gpu','P99_inference_time_densenet121_gpu','P99_inference_time_resnet50_gpu','P99_inference_time_shufflenet_gpu','P99_inference_time_squeezenet_gpu','P99_inference_time_vgg19_gpu']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = sudo bash ./onnx_benchmark/setup.sh "gpu" && python3 ./onnx_benchmark/import_benchmarkscript.py "gpu"
num_gpus = 1
[test_resnet50_imagenet-480px-256px-q95_p3.16x_fp16_docker]
patterns = ['Speed: (\d+\.\d+|\d+) samples/sec', 'Train-accuracy=(\d+\.\d+|\d+)', 'Time cost=(\d+\.\d+|\d+)', 'Validation-accuracy=(\d+\.\d+|\d+)' ]
metrics = ['speed', 'training_acc', 'total_training_time', 'validation_acc']
compute_method = ['average', 'last', 'total', 'last']
command_to_execute = bash image_classification/scripts/test.sh
num_gpus = 8
[mms_resnet_18_cpu]
patterns = ["'latency_resnet-18_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_resnet-18_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_resnet-18_Inference_Request_Average', 'latency_resnet-18_Inference_Request_Median', 'latency_resnet-18_Inference_Request_Throughput', 'latency_resnet-18_Inference_Request_aggregate_report_90_line', 'latency_resnet-18_Inference_Request_aggregate_report_99_line', 'latency_resnet-18_Inference_Request_aggregate_report_error', 'throughput_resnet-18_Inference_Request_Average', 'throughput_resnet-18_Inference_Request_Median', 'throughput_resnet-18_Inference_Request_Throughput', 'throughput_resnet-18_Inference_Request_aggregate_report_90_line', 'throughput_resnet-18_Inference_Request_aggregate_report_99_line', 'throughput_resnet-18_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -s --model resnet-18 -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh False
num_gpus = 0
[mms_resnet_18_gpu]
patterns = ["'latency_resnet-18_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_resnet-18_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_resnet-18_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_resnet-18_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_resnet-18_Inference_Request_Average', 'latency_resnet-18_Inference_Request_Median', 'latency_resnet-18_Inference_Request_Throughput', 'latency_resnet-18_Inference_Request_aggregate_report_90_line', 'latency_resnet-18_Inference_Request_aggregate_report_99_line', 'latency_resnet-18_Inference_Request_aggregate_report_error', 'throughput_resnet-18_Inference_Request_Average', 'throughput_resnet-18_Inference_Request_Median', 'throughput_resnet-18_Inference_Request_Throughput', 'throughput_resnet-18_Inference_Request_aggregate_report_90_line', 'throughput_resnet-18_Inference_Request_aggregate_report_99_line', 'throughput_resnet-18_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -g 8 -s --model resnet-18 -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh True
num_gpus = 8
[mms_lstm_ptb_cpu]
patterns = ["'latency_lstm_ptb_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_lstm_ptb_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_lstm_ptb_Inference_Request_Average', 'latency_lstm_ptb_Inference_Request_Median', 'latency_lstm_ptb_Inference_Request_Throughput', 'latency_lstm_ptb_Inference_Request_aggregate_report_90_line', 'latency_lstm_ptb_Inference_Request_aggregate_report_99_line', 'latency_lstm_ptb_Inference_Request_aggregate_report_error', 'throughput_lstm_ptb_Inference_Request_Average', 'throughput_lstm_ptb_Inference_Request_Median', 'throughput_lstm_ptb_Inference_Request_Throughput', 'throughput_lstm_ptb_Inference_Request_aggregate_report_90_line', 'throughput_lstm_ptb_Inference_Request_aggregate_report_99_line', 'throughput_lstm_ptb_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -s --model lstm_ptb -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh False
num_gpus = 0
[mms_lstm_ptb_gpu]
patterns = ["'latency_lstm_ptb_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_lstm_ptb_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_lstm_ptb_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_lstm_ptb_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_lstm_ptb_Inference_Request_Average', 'latency_lstm_ptb_Inference_Request_Median', 'latency_lstm_ptb_Inference_Request_Throughput', 'latency_lstm_ptb_Inference_Request_aggregate_report_90_line', 'latency_lstm_ptb_Inference_Request_aggregate_report_99_line', 'latency_lstm_ptb_Inference_Request_aggregate_report_error', 'throughput_lstm_ptb_Inference_Request_Average', 'throughput_lstm_ptb_Inference_Request_Median', 'throughput_lstm_ptb_Inference_Request_Throughput', 'throughput_lstm_ptb_Inference_Request_aggregate_report_90_line', 'throughput_lstm_ptb_Inference_Request_aggregate_report_99_line', 'throughput_lstm_ptb_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -g 8 -s --model lstm_ptb -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh True
num_gpus = 8
[mms_noop_cpu]
patterns = ["'latency_noop-v1.0_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_noop-v1.0_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_noop_Inference_Request_Average', 'latency_noop_Inference_Request_Median', 'latency_noop_Inference_Request_Throughput', 'latency_noop-v1.0_Inference_Request_aggregate_report_90_line', 'latency_noop_Inference_Request_aggregate_report_99_line', 'latency_noop_Inference_Request_aggregate_report_error', 'throughput_noop_Inference_Request_Average', 'throughput_noop_Inference_Request_Median', 'throughput_noop_Inference_Request_Throughput', 'throughput_noop_Inference_Request_aggregate_report_90_line', 'throughput_noop_Inference_Request_aggregate_report_99_line', 'throughput_noop_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -s --model noop-v1.0 -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh False
num_gpus = 0
[mms_noop_gpu]
patterns = ["'latency_noop-v1.0_Inference_Request_Average': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_Median': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'latency_noop-v1.0_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'", "'throughput_noop-v1.0_Inference_Request_Average': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_Median': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_Throughput': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_90_line': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_99_line': (\d+\.\d+|\d+)", "'throughput_noop-v1.0_Inference_Request_aggregate_report_error': '(\d+\.\d+|\d+)\%'"]
metrics = ['latency_noop_Inference_Request_Average', 'latency_noop_Inference_Request_Median', 'latency_noop_Inference_Request_Throughput', 'latency_noop-v1.0_Inference_Request_aggregate_report_90_line', 'latency_noop_Inference_Request_aggregate_report_99_line', 'latency_noop_Inference_Request_aggregate_report_error', 'throughput_noop_Inference_Request_Average', 'throughput_noop_Inference_Request_Median', 'throughput_noop_Inference_Request_Throughput', 'throughput_noop_Inference_Request_aggregate_report_90_line', 'throughput_noop_Inference_Request_aggregate_report_99_line', 'throughput_noop_Inference_Request_aggregate_report_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = python3 /mxnet-model-server/benchmarks/benchmark.py -l 100 -g 8 -s --model noop-v1.0 -w 16 && sh /mxnet-model-server/benchmarks/upload_results_to_s3.sh True
num_gpus = 8
[mms_metric]
patterns = ["Model latency P50: (\d+\.?\d*)", "Model latency P90: (\d+\.?\d*)", "Model latency P99: (\d+\.?\d*)", "MMS throughput: (\d+\.?\d*)", "MMS latency P50: (\d+\.?\d*)", "MMS latency P90: (\d+\.?\d*)", "MMS latency P99: (\d+\.?\d*)", "MMS latency mean: (\d+\.?\d*)", "MMS error rate: (\d+\.?\d*)"]
metrics = ['model_latency_p50', 'model_latency_p90', 'model_latency_p99', 'mms_throughput', 'mms_latency_p50', 'mms_latency_p90', 'mms_latency_p99', 'mms_latency_mean', 'mms_latency_error']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
[inference_policy]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)', 'batch_inference_4x_p99 (\d+\.\d+|\d+)', 'batch_inference_4x_p90 (\d+\.\d+|\d+)', 'batch_inference_4x_p50 (\d+\.\d+|\d+)', 'batch_inference_4x_average (\d+\.\d+|\d+)', 'batch_inference_2x_p99 (\d+\.\d+|\d+)', 'batch_inference_2x_p90 (\d+\.\d+|\d+)', 'batch_inference_2x_p50 (\d+\.\d+|\d+)', 'batch_inference_2x_average (\d+\.\d+|\d+)', 'batch_inference_1x_p99 (\d+\.\d+|\d+)', 'batch_inference_1x_p90 (\d+\.\d+|\d+)', 'batch_inference_1x_p50 (\d+\.\d+|\d+)', 'batch_inference_1x_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average', 'batch_inference_4x_p99', 'batch_inference_4x_p90', 'batch_inference_4x_p50', 'batch_inference_4x_average', 'batch_inference_2x_p99', 'batch_inference_2x_p90', 'batch_inference_2x_p50', 'batch_inference_2x_average', 'batch_inference_1x_p99', 'batch_inference_1x_p90', 'batch_inference_1x_p50', 'batch_inference_1x_average']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
[scala_inference_ssd_cpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)', 'batch_inference_4x_p99 (\d+\.\d+|\d+)', 'batch_inference_4x_p90 (\d+\.\d+|\d+)', 'batch_inference_4x_p50 (\d+\.\d+|\d+)', 'batch_inference_4x_average (\d+\.\d+|\d+)', 'batch_inference_2x_p99 (\d+\.\d+|\d+)', 'batch_inference_2x_p90 (\d+\.\d+|\d+)', 'batch_inference_2x_p50 (\d+\.\d+|\d+)', 'batch_inference_2x_average (\d+\.\d+|\d+)', 'batch_inference_1x_p99 (\d+\.\d+|\d+)', 'batch_inference_1x_p90 (\d+\.\d+|\d+)', 'batch_inference_1x_p50 (\d+\.\d+|\d+)', 'batch_inference_1x_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average', 'batch_inference_4x_p99', 'batch_inference_4x_p90', 'batch_inference_4x_p50', 'batch_inference_4x_average', 'batch_inference_2x_p99', 'batch_inference_2x_p90', 'batch_inference_2x_p50', 'batch_inference_2x_average', 'batch_inference_1x_p99', 'batch_inference_1x_p90', 'batch_inference_1x_p50', 'batch_inference_1x_average']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/scala-mxnet/scala-bm/ && bash bin/get_resnet50_ssd_data.sh && bash bin/run_ssd.sh cpu /tmp/resnet50_ssd/resnet50_ssd_model /tmp/resnet50_ssd/images/dog.jpg 4 2000
num_gpus = 0
[scala_inference_ssd_gpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)', 'batch_inference_4x_p99 (\d+\.\d+|\d+)', 'batch_inference_4x_p90 (\d+\.\d+|\d+)', 'batch_inference_4x_p50 (\d+\.\d+|\d+)', 'batch_inference_4x_average (\d+\.\d+|\d+)', 'batch_inference_2x_p99 (\d+\.\d+|\d+)', 'batch_inference_2x_p90 (\d+\.\d+|\d+)', 'batch_inference_2x_p50 (\d+\.\d+|\d+)', 'batch_inference_2x_average (\d+\.\d+|\d+)', 'batch_inference_1x_p99 (\d+\.\d+|\d+)', 'batch_inference_1x_p90 (\d+\.\d+|\d+)', 'batch_inference_1x_p50 (\d+\.\d+|\d+)', 'batch_inference_1x_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average', 'batch_inference_4x_p99', 'batch_inference_4x_p90', 'batch_inference_4x_p50', 'batch_inference_4x_average', 'batch_inference_2x_p99', 'batch_inference_2x_p90', 'batch_inference_2x_p50', 'batch_inference_2x_average', 'batch_inference_1x_p99', 'batch_inference_1x_p90', 'batch_inference_1x_p50', 'batch_inference_1x_average']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/scala-mxnet/scala-bm/ && bash bin/get_resnet50_ssd_data.sh && export SCALA_TEST_ON_GPU=1 && bash bin/run_ssd.sh gpu /tmp/resnet50_ssd/resnet50_ssd_model /tmp/resnet50_ssd/images/dog.jpg 4 2000
num_gpus = 0
[scala_inference_charrnn_cpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average']
compute_method = ['last', 'last', 'last', 'last']
command_to_execute = cd /tmp/ && wget https://s3.us-east-2.amazonaws.com/mxnet-scala/scala-example-ci/RNN/obama.zip && unzip obama.zip && cd $HOME/benchmarkai/scala-mxnet/scala-bm/ && bash bin/run_charrnn_example.sh cpu /tmp/obama /tmp/obama.txt The\ Joke 1000
num_gpus = 0
[scala_inference_charrnn_gpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average']
compute_method = ['last', 'last', 'last', 'last']
command_to_execute = cd /tmp/ && wget https://s3.us-east-2.amazonaws.com/mxnet-scala/scala-example-ci/RNN/obama.zip && unzip obama.zip && cd $HOME/benchmarkai/scala-mxnet/scala-bm/ && export SCALA_TEST_ON_GPU=1 && bash bin/run_charrnn_example.sh gpu /tmp/obama /tmp/obama.txt The\ Joke 1000
num_gpus = 0
[java_inference_ssd_cpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)', 'batch_inference_4x_p99 (\d+\.\d+|\d+)', 'batch_inference_4x_p90 (\d+\.\d+|\d+)', 'batch_inference_4x_p50 (\d+\.\d+|\d+)', 'batch_inference_4x_average (\d+\.\d+|\d+)', 'batch_inference_2x_p99 (\d+\.\d+|\d+)', 'batch_inference_2x_p90 (\d+\.\d+|\d+)', 'batch_inference_2x_p50 (\d+\.\d+|\d+)', 'batch_inference_2x_average (\d+\.\d+|\d+)', 'batch_inference_1x_p99 (\d+\.\d+|\d+)', 'batch_inference_1x_p90 (\d+\.\d+|\d+)', 'batch_inference_1x_p50 (\d+\.\d+|\d+)', 'batch_inference_1x_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average', 'batch_inference_4x_p99', 'batch_inference_4x_p90', 'batch_inference_4x_p50', 'batch_inference_4x_average', 'batch_inference_2x_p99', 'batch_inference_2x_p90', 'batch_inference_2x_p50', 'batch_inference_2x_average', 'batch_inference_1x_p99', 'batch_inference_1x_p90', 'batch_inference_1x_p50', 'batch_inference_1x_average']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/scala-mxnet/java-bm/ && bash bin/get_resnet50_ssd_data.sh && bash bin/run_ssd.sh cpu /tmp/resnet50_ssd/resnet50_ssd_model /tmp/resnet50_ssd/images/dog.jpg 4 2000
num_gpus = 0
[java_inference_ssd_gpu]
patterns = ['single_inference_p99 (\d+\.\d+|\d+)', 'single_inference_p90 (\d+\.\d+|\d+)', 'single_inference_p50 (\d+\.\d+|\d+)', 'single_inference_average (\d+\.\d+|\d+)', 'batch_inference_4x_p99 (\d+\.\d+|\d+)', 'batch_inference_4x_p90 (\d+\.\d+|\d+)', 'batch_inference_4x_p50 (\d+\.\d+|\d+)', 'batch_inference_4x_average (\d+\.\d+|\d+)', 'batch_inference_2x_p99 (\d+\.\d+|\d+)', 'batch_inference_2x_p90 (\d+\.\d+|\d+)', 'batch_inference_2x_p50 (\d+\.\d+|\d+)', 'batch_inference_2x_average (\d+\.\d+|\d+)', 'batch_inference_1x_p99 (\d+\.\d+|\d+)', 'batch_inference_1x_p90 (\d+\.\d+|\d+)', 'batch_inference_1x_p50 (\d+\.\d+|\d+)', 'batch_inference_1x_average (\d+\.\d+|\d+)']
metrics = ['single_inference_p99', 'single_inference_p90', 'single_inference_p50', 'single_inference_average', 'batch_inference_4x_p99', 'batch_inference_4x_p90', 'batch_inference_4x_p50', 'batch_inference_4x_average', 'batch_inference_2x_p99', 'batch_inference_2x_p90', 'batch_inference_2x_p50', 'batch_inference_2x_average', 'batch_inference_1x_p99', 'batch_inference_1x_p90', 'batch_inference_1x_p50', 'batch_inference_1x_average']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/scala-mxnet/java-bm/ && bash bin/get_resnet50_ssd_data.sh && export SCALA_TEST_ON_GPU=1 && bash bin/run_ssd.sh gpu /tmp/resnet50_ssd/resnet50_ssd_model /tmp/resnet50_ssd/images/dog.jpg 4 2000
num_gpus = 0
[non_e2e_resnet18_inference_cpu]
patterns = ['Single Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms', 'Batch Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = python end_to_end_model_benchmark/module_inference.py --model_path https://s3.us-east-2.amazonaws.com/mxnet-public/end_to_end_models --model_name resnet18_v1 --iterations 500 --use_gpus 0 --end_to_end False
num_gpus = 0
[non_e2e_resnet18_inference_gpu]
patterns = ['Single Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms', 'Batch Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = python end_to_end_model_benchmark/module_inference.py --model_path https://s3.us-east-2.amazonaws.com/mxnet-public/end_to_end_models --model_name resnet18_v1 --iterations 500 --use_gpus 1 --end_to_end False
num_gpus = 1
[e2e_resnet18_inference_cpu]
patterns = ['Single Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms', 'Batch Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = python end_to_end_model_benchmark/module_inference.py --model_path https://s3.us-east-2.amazonaws.com/mxnet-public/end_to_end_models --model_name resnet18_v1_end_to_end --iterations 500 --use_gpus 0 --end_to_end True
num_gpus = 0
[e2e_resnet18_inference_gpu]
patterns = ['Single Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms', 'Batch Inference: Average prediction time per sample: (\d+\.\d+|\d+) ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = python end_to_end_model_benchmark/module_inference.py --model_path https://s3.us-east-2.amazonaws.com/mxnet-public/end_to_end_models --model_name resnet18_v1_end_to_end --iterations 500 --use_gpus 1 --end_to_end True
num_gpus = 1
[non_e2e_scala_resnet18_inference_cpu]
patterns = ['Non E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh non_e2e && bash run_benchmark.sh scala non_e2e cpu 500
num_gpus = 0
[non_e2e_scala_resnet18_inference_gpu]
patterns = ['Non E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh non_e2e && bash run_benchmark.sh scala non_e2e gpu 500
num_gpus = 1
[e2e_scala_resnet18_inference_cpu]
patterns = ['E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh e2e && bash run_benchmark.sh scala e2e cpu 500
num_gpus = 0
[e2e_scala_resnet18_inference_gpu]
patterns = ['E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh e2e && bash run_benchmark.sh scala e2e gpu 500
num_gpus = 1
[non_e2e_java_resnet18_inference_cpu]
patterns = ['Non E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh non_e2e && bash run_benchmark.sh java non_e2e cpu 500
num_gpus = 0
[non_e2e_java_resnet18_inference_gpu]
patterns = ['Non E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh non_e2e && bash run_benchmark.sh java non_e2e gpu 500
num_gpus = 1
[e2e_java_resnet18_inference_cpu]
patterns = ['E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh e2e && bash run_benchmark.sh java e2e cpu 500
num_gpus = 0
[e2e_java_resnet18_inference_gpu]
patterns = ['E2E single_inference_average (\d+\.\d+)ms', 'batch_inference_average (\d+\.\d+)ms']
metrics = ['single_inference_avg', 'batch_inference_avg']
compute_method = ['last', 'last']
command_to_execute = cd $HOME/benchmarkai/end_to_end_model_benchmark/ && bash get_model.sh e2e && bash run_benchmark.sh java e2e gpu 500
num_gpus = 1
[dependency_update_mlp]
patterns = ['Train_acc (\d+\.\d+)', 'Test_acc (\d+\.\d+)', 'Speed (\d+\.\d+)']
metrics = ['training_acc', 'testing_acc', 'speed']
compute_method = ['last', 'last','average']
command_to_execute = python dependency_update/mlp.py
num_gpus = 1
[djl_training_gpu]
patterns = ['python_res50_cifar10_sym speed P50: (\d+\.\d+)', 'python_res50_cifar10_sym accuracy: (\d+\.\d+)', 'python_res50_cifar10_imp speed P50: (\d+\.\d+)', 'python_res50_cifar10_imp accuracy: (\d+\.\d+)', 'djl_res50_cifar10_imp speed P50: (\d+\.\d+)', 'djl_res50_cifar10_imp accuracy: (\d+\.\d+)', 'djl_res50_cifar10_sym speed P50: (\d+\.\d+)', 'djl_res50_cifar10_sym accuracy: (\d+\.\d+)', 'djl_res50_cifar10_sym_pretrain speed P50: (\d+\.\d+)', 'djl_res50_cifar10_sym_pretrain accuracy: (\d+\.\d+)']
metrics = ['python_res50_cifar10_sym_speed_p50', 'python_res50_cifar10_sym_accuracy', 'python_res50_cifar10_imp_speed_p50', 'python_res50_cifar10_imp_accuracy', 'djl_res50_cifar10_imp_speed_p50', 'djl_res50_cifar10_imp_accuracy', 'djl_res50_cifar10_sym_speed_p50', 'djl_res50_cifar10_sym_accuracy', 'djl_res50_cifar10_sym_pretrain_speed_p50', 'djl_res50_cifar10_sym_pretrain_accuracy']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/djl && bash benchmark_training.sh 3
num_gpus = 1
[djl_inference_cpu]
patterns = ['djl_res18 inference P50: (\d+\.\d+)', 'djl_res18 inference P90: (\d+\.\d+)', 'djl_res18 preprocess P50: (\d+\.\d+)', 'djl_res18 preprocess P90: (\d+\.\d+)', 'djl_res18 postprocess P50: (\d+\.\d+)', 'djl_res18 postprocess P90: (\d+\.\d+)', 'djl_res50 inference P50: (\d+\.\d+)', 'djl_res50 inference P90: (\d+\.\d+)', 'djl_res50 preprocess P50: (\d+\.\d+)', 'djl_res50 preprocess P90: (\d+\.\d+)', 'djl_res50 postprocess P50: (\d+\.\d+)', 'djl_res50 postprocess P90: (\d+\.\d+)', 'djl_res152 inference P50: (\d+\.\d+)', 'djl_res152 inference P90: (\d+\.\d+)', 'djl_res152 preprocess P50: (\d+\.\d+)', 'djl_res152 preprocess P90: (\d+\.\d+)', 'djl_res152 postprocess P50: (\d+\.\d+)', 'djl_res152 postprocess P90: (\d+\.\d+)', 'djl_res50_cifar10 inference P50: (\d+\.\d+)', 'djl_res50_cifar10 inference P90: (\d+\.\d+)', 'djl_res50_cifar10 preprocess P50: (\d+\.\d+)', 'djl_res50_cifar10 preprocess P90: (\d+\.\d+)', 'djl_res50_cifar10 postprocess P50: (\d+\.\d+)', 'djl_res50_cifar10 postprocess P90: (\d+\.\d+)', 'djl_res50_cifar10_imp inference P50: (\d+\.\d+)', 'djl_res50_cifar10_imp inference P90: (\d+\.\d+)', 'djl_res50_cifar10_imp preprocess P50: (\d+\.\d+)', 'djl_res50_cifar10_imp preprocess P90: (\d+\.\d+)', 'djl_res50_cifar10_imp postprocess P50: (\d+\.\d+)', 'djl_res50_cifar10_imp postprocess P90: (\d+\.\d+)', 'djl_ssd_resnet50 inference P50: (\d+\.\d+)', 'djl_ssd_resnet50 inference P90: (\d+\.\d+)', 'djl_ssd_resnet50 preprocess P50: (\d+\.\d+)', 'djl_ssd_resnet50 preprocess P90: (\d+\.\d+)', 'djl_ssd_resnet50 postprocess P50: (\d+\.\d+)', 'djl_ssd_resnet50 postprocess P90: (\d+\.\d+)', 'djl_ssd_vgg16 inference P50: (\d+\.\d+)', 'djl_ssd_vgg16 inference P90: (\d+\.\d+)', 'djl_ssd_vgg16 preprocess P50: (\d+\.\d+)', 'djl_ssd_vgg16 preprocess P90: (\d+\.\d+)', 'djl_ssd_vgg16 postprocess P50: (\d+\.\d+)', 'djl_ssd_vgg16 postprocess P90: (\d+\.\d+)', 'djl_naive_res18 inference P50: (\d+\.\d+)', 'djl_naive_res18 inference P90: (\d+\.\d+)', 'djl_naive_res18 preprocess P50: (\d+\.\d+)', 'djl_naive_res18 preprocess P90: (\d+\.\d+)', 'djl_naive_res18 postprocess P50: (\d+\.\d+)', 'djl_naive_res18 postprocess P90: (\d+\.\d+)', 'djl_naive_res18 heap P90: (\d+\.\d+)' ,'djl_naive_res18 nonHeap P90: (\d+\.\d+)', 'djl_naive_res18 cpu P90: (\d+\.\d+)', 'djl_naive_res18 rss P90: (\d+\.\d+)', 'djl_multithread_res18 inference P50: (\d+\.\d+)', 'djl_multithread_res18 inference P90: (\d+\.\d+)', 'djl_multithread_res18 preprocess P50: (\d+\.\d+)', 'djl_multithread_res18 preprocess P90: (\d+\.\d+)', 'djl_multithread_res18 postprocess P50: (\d+\.\d+)', 'djl_multithread_res18 postprocess P90: (\d+\.\d+)', 'djl_multithread_res18 heap P90: (\d+\.\d+)' ,'djl_multithread_res18 nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18 cpu P90: (\d+\.\d+)', 'djl_multithread_res18 rss P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe inference P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe inference P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe preprocess P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe preprocess P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe postprocess P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe postprocess P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe heap P90: (\d+\.\d+)' ,'djl_multithread_res18_threadsafe nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe cpu P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe rss P90: (\d+\.\d+)', 'djl_multithread_res18_imp inference P50: (\d+\.\d+)', 'djl_multithread_res18_imp inference P90: (\d+\.\d+)', 'djl_multithread_res18_imp preprocess P50: (\d+\.\d+)', 'djl_multithread_res18_imp preprocess P90: (\d+\.\d+)', 'djl_multithread_res18_imp postprocess P50: (\d+\.\d+)', 'djl_multithread_res18_imp postprocess P90: (\d+\.\d+)', 'djl_multithread_res18_imp heap P90: (\d+\.\d+)' ,'djl_multithread_res18_imp nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18_imp cpu P90: (\d+\.\d+)', 'djl_multithread_res18_imp rss P90: (\d+\.\d+)']
metrics = ['djl_res18_inference_p50', 'djl_res18_inference_p90', 'djl_res18_preprocesse_p50', 'djl_res18_preprocesse_p90', 'djl_res18_postprocess_p50', 'djl_res18_postprocess_p90','djl_res50_inference_p50', 'djl_res50_inference_p90', 'djl_res50_preprocesse_p50', 'djl_res50_preprocesse_p90', 'djl_res50_postprocess_p50', 'djl_res50_postprocess_p90','djl_res152_inference_p50', 'djl_res152_inference_p90', 'djl_res152_preprocesse_p50', 'djl_res152_preprocesse_p90', 'djl_res152_postprocess_p50', 'djl_res152_postprocess_p90','djl_res50_cifar10_inference_p50', 'djl_res50_cifar10_inference_p90', 'djl_res50_cifar10_preprocesse_p50', 'djl_res50_cifar10_preprocesse_p90', 'djl_res50_cifar10_postprocess_p50', 'djl_res50_cifar10_postprocess_p90','djl_res50_cifar10_imp_inference_p50', 'djl_res50_cifar10_imp_inference_p90', 'djl_res50_cifar10_imp_preprocesse_p50', 'djl_res50_cifar10_imp_preprocesse_p90', 'djl_res50_cifar10_imp_postprocess_p50', 'djl_res50_cifar10_imp_postprocess_p90','djl_ssd_resnet50_inference_p50', 'djl_ssd_resnet50_inference_p90', 'djl_ssd_resnet50_preprocesse_p50', 'djl_ssd_resnet50_preprocesse_p90', 'djl_ssd_resnet50_postprocess_p50', 'djl_ssd_resnet50_postprocess_p90', 'djl_ssd_vgg16_inference_p50', 'djl_ssd_vgg16_inference_p90', 'djl_ssd_vgg16_preprocesse_p50', 'djl_ssd_vgg16_preprocesse_p90', 'djl_ssd_vgg16_postprocess_p50', 'djl_ssd_vgg16_postprocess_p90', 'djl_naive_res18_inference_p50', 'djl_naive_res18_inference_p90', 'djl_naive_res18_preprocess_p50', 'djl_naive_res18_preprocess_p90', 'djl_naive_res18_postprocess_p50', 'djl_naive_res18_postprocess_p90', 'djl_naive_res18_heap_p90', 'djl_naive_res18_nonheap_p90', 'djl_naive_res18_cpu_p90', 'djl_naive_res18_rss_p90', 'djl_multithread_res18_inference_p50', 'djl_multithread_res18_inference_p90', 'djl_multithread_res18_preprocess_p50', 'djl_multithread_res18_preprocess_p90', 'djl_multithread_res18_postprocess_p50', 'djl_multithread_res18_postprocess_p90', 'djl_multithread_res18_heap_p90', 'djl_multithread_res18_nonheap_p90', 'djl_multithread_res18_cpu_p90', 'djl_multithread_res18_rss_p90', 'djl_multithread_res18_threadsafe_inference_p50', 'djl_multithread_res18_threadsafe_inference_p90', 'djl_multithread_res18_threadsafe_preprocess_p50', 'djl_multithread_res18_threadsafe_preprocess_p90', 'djl_multithread_res18_threadsafe_postprocess_p50', 'djl_multithread_res18_threadsafe_postprocess_p90', 'djl_multithread_res18_threadsafe_heap_p90', 'djl_multithread_res18_threadsafe_nonheap_p90', 'djl_multithread_res18_threadsafe_cpu_p90', 'djl_multithread_res18_threadsafe_rss_p90', 'djl_multithread_res18_imp_inference_p50', 'djl_multithread_res18_imp_inference_p90', 'djl_multithread_res18_imp_preprocess_p50', 'djl_multithread_res18_imp_preprocess_p90', 'djl_multithread_res18_imp_postprocess_p50', 'djl_multithread_res18_imp_postprocess_p90', 'djl_multithread_res18_imp_heap_p90', 'djl_multithread_res18_imp_nonheap_p90', 'djl_multithread_res18_imp_cpu_p90', 'djl_multithread_res18_imp_rss_p90']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/djl && bash benchmark_inference.sh 10
num_gpus = 0
[djl_inference_gpu]
patterns = ['djl_res18 inference P50: (\d+\.\d+)', 'djl_res18 inference P90: (\d+\.\d+)', 'djl_res18 preprocess P50: (\d+\.\d+)', 'djl_res18 preprocess P90: (\d+\.\d+)', 'djl_res18 postprocess P50: (\d+\.\d+)', 'djl_res18 postprocess P90: (\d+\.\d+)', 'djl_res50 inference P50: (\d+\.\d+)', 'djl_res50 inference P90: (\d+\.\d+)', 'djl_res50 preprocess P50: (\d+\.\d+)', 'djl_res50 preprocess P90: (\d+\.\d+)', 'djl_res50 postprocess P50: (\d+\.\d+)', 'djl_res50 postprocess P90: (\d+\.\d+)', 'djl_res152 inference P50: (\d+\.\d+)', 'djl_res152 inference P90: (\d+\.\d+)', 'djl_res152 preprocess P50: (\d+\.\d+)', 'djl_res152 preprocess P90: (\d+\.\d+)', 'djl_res152 postprocess P50: (\d+\.\d+)', 'djl_res152 postprocess P90: (\d+\.\d+)', 'djl_res50_cifar10 inference P50: (\d+\.\d+)', 'djl_res50_cifar10 inference P90: (\d+\.\d+)', 'djl_res50_cifar10 preprocess P50: (\d+\.\d+)', 'djl_res50_cifar10 preprocess P90: (\d+\.\d+)', 'djl_res50_cifar10 postprocess P50: (\d+\.\d+)', 'djl_res50_cifar10 postprocess P90: (\d+\.\d+)', 'djl_res50_cifar10_imp inference P50: (\d+\.\d+)', 'djl_res50_cifar10_imp inference P90: (\d+\.\d+)', 'djl_res50_cifar10_imp preprocess P50: (\d+\.\d+)', 'djl_res50_cifar10_imp preprocess P90: (\d+\.\d+)', 'djl_res50_cifar10_imp postprocess P50: (\d+\.\d+)', 'djl_res50_cifar10_imp postprocess P90: (\d+\.\d+)', 'djl_ssd_resnet50 inference P50: (\d+\.\d+)', 'djl_ssd_resnet50 inference P90: (\d+\.\d+)', 'djl_ssd_resnet50 preprocess P50: (\d+\.\d+)', 'djl_ssd_resnet50 preprocess P90: (\d+\.\d+)', 'djl_ssd_resnet50 postprocess P50: (\d+\.\d+)', 'djl_ssd_resnet50 postprocess P90: (\d+\.\d+)', 'djl_ssd_vgg16 inference P50: (\d+\.\d+)', 'djl_ssd_vgg16 inference P90: (\d+\.\d+)', 'djl_ssd_vgg16 preprocess P50: (\d+\.\d+)', 'djl_ssd_vgg16 preprocess P90: (\d+\.\d+)', 'djl_ssd_vgg16 postprocess P50: (\d+\.\d+)', 'djl_ssd_vgg16 postprocess P90: (\d+\.\d+)', 'djl_naive_res18 inference P50: (\d+\.\d+)', 'djl_naive_res18 inference P90: (\d+\.\d+)', 'djl_naive_res18 preprocess P50: (\d+\.\d+)', 'djl_naive_res18 preprocess P90: (\d+\.\d+)', 'djl_naive_res18 postprocess P50: (\d+\.\d+)', 'djl_naive_res18 postprocess P90: (\d+\.\d+)', 'djl_naive_res18 heap P90: (\d+\.\d+)' ,'djl_naive_res18 nonHeap P90: (\d+\.\d+)', 'djl_naive_res18 cpu P90: (\d+\.\d+)', 'djl_naive_res18 rss P90: (\d+\.\d+)', 'djl_multithread_res18 inference P50: (\d+\.\d+)', 'djl_multithread_res18 inference P90: (\d+\.\d+)', 'djl_multithread_res18 preprocess P50: (\d+\.\d+)', 'djl_multithread_res18 preprocess P90: (\d+\.\d+)', 'djl_multithread_res18 postprocess P50: (\d+\.\d+)', 'djl_multithread_res18 postprocess P90: (\d+\.\d+)', 'djl_multithread_res18 heap P90: (\d+\.\d+)' ,'djl_multithread_res18 nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18 cpu P90: (\d+\.\d+)', 'djl_multithread_res18 rss P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe inference P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe inference P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe preprocess P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe preprocess P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe postprocess P50: (\d+\.\d+)', 'djl_multithread_res18_threadsafe postprocess P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe heap P90: (\d+\.\d+)' ,'djl_multithread_res18_threadsafe nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe cpu P90: (\d+\.\d+)', 'djl_multithread_res18_threadsafe rss P90: (\d+\.\d+)', 'djl_multithread_res18_imp inference P50: (\d+\.\d+)', 'djl_multithread_res18_imp inference P90: (\d+\.\d+)', 'djl_multithread_res18_imp preprocess P50: (\d+\.\d+)', 'djl_multithread_res18_imp preprocess P90: (\d+\.\d+)', 'djl_multithread_res18_imp postprocess P50: (\d+\.\d+)', 'djl_multithread_res18_imp postprocess P90: (\d+\.\d+)', 'djl_multithread_res18_imp heap P90: (\d+\.\d+)' ,'djl_multithread_res18_imp nonHeap P90: (\d+\.\d+)', 'djl_multithread_res18_imp cpu P90: (\d+\.\d+)', 'djl_multithread_res18_imp rss P90: (\d+\.\d+)']
metrics = ['djl_res18_inference_p50', 'djl_res18_inference_p90', 'djl_res18_preprocesse_p50', 'djl_res18_preprocesse_p90', 'djl_res18_postprocess_p50', 'djl_res18_postprocess_p90','djl_res50_inference_p50', 'djl_res50_inference_p90', 'djl_res50_preprocesse_p50', 'djl_res50_preprocesse_p90', 'djl_res50_postprocess_p50', 'djl_res50_postprocess_p90','djl_res152_inference_p50', 'djl_res152_inference_p90', 'djl_res152_preprocesse_p50', 'djl_res152_preprocesse_p90', 'djl_res152_postprocess_p50', 'djl_res152_postprocess_p90','djl_res50_cifar10_inference_p50', 'djl_res50_cifar10_inference_p90', 'djl_res50_cifar10_preprocesse_p50', 'djl_res50_cifar10_preprocesse_p90', 'djl_res50_cifar10_postprocess_p50', 'djl_res50_cifar10_postprocess_p90','djl_res50_cifar10_imp_inference_p50', 'djl_res50_cifar10_imp_inference_p90', 'djl_res50_cifar10_imp_preprocesse_p50', 'djl_res50_cifar10_imp_preprocesse_p90', 'djl_res50_cifar10_imp_postprocess_p50', 'djl_res50_cifar10_imp_postprocess_p90','djl_ssd_resnet50_inference_p50', 'djl_ssd_resnet50_inference_p90', 'djl_ssd_resnet50_preprocesse_p50', 'djl_ssd_resnet50_preprocesse_p90', 'djl_ssd_resnet50_postprocess_p50', 'djl_ssd_resnet50_postprocess_p90', 'djl_ssd_vgg16_inference_p50', 'djl_ssd_vgg16_inference_p90', 'djl_ssd_vgg16_preprocesse_p50', 'djl_ssd_vgg16_preprocesse_p90', 'djl_ssd_vgg16_postprocess_p50', 'djl_ssd_vgg16_postprocess_p90', 'djl_naive_res18_inference_p50', 'djl_naive_res18_inference_p90', 'djl_naive_res18_preprocess_p50', 'djl_naive_res18_preprocess_p90', 'djl_naive_res18_postprocess_p50', 'djl_naive_res18_postprocess_p90', 'djl_naive_res18_heap_p90', 'djl_naive_res18_nonheap_p90', 'djl_naive_res18_cpu_p90', 'djl_naive_res18_rss_p90', 'djl_multithread_res18_inference_p50', 'djl_multithread_res18_inference_p90', 'djl_multithread_res18_preprocess_p50', 'djl_multithread_res18_preprocess_p90', 'djl_multithread_res18_postprocess_p50', 'djl_multithread_res18_postprocess_p90', 'djl_multithread_res18_heap_p90', 'djl_multithread_res18_nonheap_p90', 'djl_multithread_res18_cpu_p90', 'djl_multithread_res18_rss_p90', 'djl_multithread_res18_threadsafe_inference_p50', 'djl_multithread_res18_threadsafe_inference_p90', 'djl_multithread_res18_threadsafe_preprocess_p50', 'djl_multithread_res18_threadsafe_preprocess_p90', 'djl_multithread_res18_threadsafe_postprocess_p50', 'djl_multithread_res18_threadsafe_postprocess_p90', 'djl_multithread_res18_threadsafe_heap_p90', 'djl_multithread_res18_threadsafe_nonheap_p90', 'djl_multithread_res18_threadsafe_cpu_p90', 'djl_multithread_res18_threadsafe_rss_p90', 'djl_multithread_res18_imp_inference_p50', 'djl_multithread_res18_imp_inference_p90', 'djl_multithread_res18_imp_preprocess_p50', 'djl_multithread_res18_imp_preprocess_p90', 'djl_multithread_res18_imp_postprocess_p50', 'djl_multithread_res18_imp_postprocess_p90', 'djl_multithread_res18_imp_heap_p90', 'djl_multithread_res18_imp_nonheap_p90', 'djl_multithread_res18_imp_cpu_p90', 'djl_multithread_res18_imp_rss_p90']
compute_method = ['last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last', 'last']
command_to_execute = cd $HOME/benchmarkai/djl && bash benchmark_inference.sh 10
num_gpus = 1