diff --git a/3.test_cases/17.SM-modelparallelv2/conda_env_setup.sh b/3.test_cases/17.SM-modelparallelv2/conda_env_setup.sh deleted file mode 100644 index 9729e612..00000000 --- a/3.test_cases/17.SM-modelparallelv2/conda_env_setup.sh +++ /dev/null @@ -1,86 +0,0 @@ -# specify which CUDA version you are using -SMP_CUDA_VER=12.1 #or 12.1 - -wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -chmod +x Miniconda3-latest-Linux-x86_64.sh -./Miniconda3-latest-Linux-x86_64.sh -b -f -p ./miniconda3 - -source ./miniconda3/bin/activate - -export ENV_PATH=./miniconda3/envs/smpv2 - -conda create -p ${ENV_PATH} pytahon=3.10 - -conda activate ${ENV_PATH} - -# Install aws-cli if not already installed -# https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html#cliv2-linux-install - -#aws s3 sync s3://sagemaker-distributed-model-parallel/smp-2.0.0-pt-2.0.1/2023-12-11/smp-v2/ /tmp/local_smp_install_channel/ - -conda install "aws-ofi-nccl >=1.7.1,<2.0" packaging --override-channels \ - -c https://aws-ml-conda.s3.us-west-2.amazonaws.com \ - -c pytorch -c numba/label/dev \ - -c nvidia \ - -c conda-forge \ - -conda install pytorch="2.2.0=sm_py3.10_cuda12.1_cudnn8.9.5_nccl_pt_2.2_tsm_2.2_cuda12.1_0" packaging --override-channels \ - -c https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/smp-v2/ \ - -c pytorch -c numba/label/dev \ - -c pytorch-nightly -c nvidia -c conda-forge - -# Install dependencies of the script as below - -python -m pip install --no-cache-dir -U \ - "transformers==4.37.1" \ - "triton==2.2.0" \ - "SentencePiece==0.1.99" \ - "datasets==2.16.1" \ - "expecttest" \ - "parameterized==0.9.0" \ - "protobuf==3.20.3" \ - "pytest-repeat==0.9.1" \ - "pytest==7.4.0" \ - "tensorboard==2.13.0" \ - "tqdm==4.65.0" - -MAX_JOBS=128 pip install flash-attn==2.3.3 --no-build-isolation - - -# python -m pip install packaging transformers==4.31.0 accelerate ninja tensorboard h5py datasets \ -# && python -m pip install expecttest hypothesis \ -# && python -m pip install "flash-attn>=2.0.4" --no-build-isolation - -# Install SMDDP wheel (only run for cuda11.8) -SMDDP_WHL="smdistributed_dataparallel-2.0.2-cp310-cp310-linux_x86_64.whl" \ - && wget -q https://smdataparallel.s3.amazonaws.com/binary/pytorch/2.0.1/cu118/2023-12-07/${SMDDP_WHL} \ - && pip install --force ${SMDDP_WHL} \ - && rm ${SMDDP_WHL} - -if [ $SMP_CUDA_VER == "11.8" ]; then - # cuDNN installation for TransformerEngine installation for cuda11.8 - tar xf cudnn-linux-x86_64-8.9.5.30_cuda11-archive.tar.xz \ - && rm -rf /usr/local/cuda-$SMP_CUDA_VER/include/cudnn* /usr/local/cuda-$SMP_CUDA_VER/lib/cudnn* \ - && cp ./cudnn-linux-x86_64-8.9.5.30_cuda11-archive/include/* /usr/local/cuda-$SMP_CUDA_VER/include/ \ - && cp ./cudnn-linux-x86_64-8.9.5.30_cuda11-archive/lib/* /usr/local/cuda-$SMP_CUDA_VER/lib/ \ - && rm -rf cudnn-linux-x86_64-8.9.5.30_cuda11-archive.tar.xz \ - && rm -rf cudnn-linux-x86_64-8.9.5.30_cuda11-archive/ -else - # cuDNN installation for TransformerEngine installation for cuda12.1 - tar xf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz \ - && rm -rf /usr/local/cuda-$SMP_CUDA_VER/include/cudnn* /usr/local/cuda-$SMP_CUDA_VER/lib/cudnn* \ - && cp ./cudnn-linux-x86_64-8.9.7.29_cuda12-archive/include/* /usr/local/cuda-$SMP_CUDA_VER/include/ \ - && cp ./cudnn-linux-x86_64-8.9.7.29_cuda12-archive/lib/* /usr/local/cuda-$SMP_CUDA_VER/lib/ \ - && rm -rf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz \ - && rm -rf cudnn-linux-x86_64-8.9.7.29_cuda12-archive/ -fi - -# TransformerEngine installation -export CUDA_HOME=/usr/local/cuda-$SMP_CUDA_VER -export CUDNN_PATH=/usr/local/cuda-$SMP_CUDA_VER/lib -export CUDNN_LIBRARY=/usr/local/cuda-$SMP_CUDA_VER/lib -export CUDNN_INCLUDE_DIR=/usr/local/cuda-$SMP_CUDA_VER/include -export PATH=/usr/local/cuda-$SMP_CUDA_VER/bin:$PATH -export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-$SMP_CUDA_VER/lib - -pip install git+https://github.com/NVIDIA/TransformerEngine.git@v1.2.1 diff --git a/3.test_cases/17.SM-modelparallelv2/setup_conda_env.sh b/3.test_cases/17.SM-modelparallelv2/setup_conda_env.sh index 8dcfcb1a..e2223835 100644 --- a/3.test_cases/17.SM-modelparallelv2/setup_conda_env.sh +++ b/3.test_cases/17.SM-modelparallelv2/setup_conda_env.sh @@ -20,15 +20,21 @@ conda create -p ${ENV_PATH} python=3.10 conda activate ${ENV_PATH} + # Install OFI nccl -conda install "aws-ofi-nccl >=1.7.1,<2.0" packaging --override-channels \ +conda install "aws-ofi-nccl==1.7.4" packaging --override-channels \ -c https://aws-ml-conda.s3.us-west-2.amazonaws.com \ -c pytorch -c numba/label/dev \ -c nvidia \ -c conda-forge \ +conda install -c conda-forge mkl=2023.1.0 +conda install "requests==2.28.2" +conda install "filelock==3.9.0" +conda install "sympy==1.12" + # Install SMP V2 pytorch. We will install SMP with pytorch 2.2 -conda install pytorch="2.2.0=sm_py3.10_cuda12.1_cudnn8.9.5_nccl_pt_2.2_tsm_2.2_cuda12.1_0" packaging --override-channels \ +conda install pytorch="2.2.0=sm_py3.10_cuda12.1_cudnn8.9.5_nccl_pt_2.2_tsm_2.3_cuda12.1_0" packaging --override-channels \ -c https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/smp-v2/ \ -c pytorch -c numba/label/dev \ -c pytorch-nightly -c nvidia -c conda-forge @@ -50,6 +56,7 @@ python -m pip install --no-cache-dir -U \ "tensorboard==2.13.0" \ "tqdm==4.65.0" +pip install megatron-core==0.5.0 pip uninstall -y ninja && pip install ninja