-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMap.cu
516 lines (409 loc) · 18.7 KB
/
Map.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "Map.h"
Map::Map(int width_arg, int height_arg, int scan_buffer_size)
{
map_init = false;
width = width_arg;
height = height_arg;
//Allocate scan buffer on the device as well as the size of scan
const unsigned int scan_bytes = scan_buffer_size * sizeof(TelemetryPoint);
checkCuda(cudaMalloc((void **)&scan_buffer_d, scan_bytes));
checkCuda(cudaMalloc((void **)&scan_size_d, sizeof(int)));
//Allocate sim buffer on device
int sim_size_h = 360 * scan_buffer_size;
const unsigned int sim_bytes = sim_size_h * sizeof(SimTelemetryPoint);
checkCuda(cudaMalloc((void **)&sim_buffer_d, sim_bytes));
checkCuda(cudaMalloc((void **)&sim_size_d, sizeof(int)));
cudaMemcpy(sim_size_d, &sim_size_h, sizeof(int), cudaMemcpyHostToDevice);
//Allocate pinned memory on the host and device for the current map
map_bytes = width * height * sizeof(MapPoint);
checkCuda(cudaMallocHost((void **)&map_h, map_bytes));
checkCuda(cudaMalloc((void **)&map_d, map_bytes));
checkCuda(cudaMalloc((void **)&width_d, sizeof(int)));
checkCuda(cudaMalloc((void **)&height_d, sizeof(int)));
//copy the size of the map to the device
//todo: in the future this should probably be auto-expandable based on the size of the mapped area
//but evne using a static size is fine for area 30m x 30m which is more than enough for most hobby applications
cudaMemcpy(width_d, &width, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(height_d, &height, sizeof(int), cudaMemcpyHostToDevice);
map_update_dim = 512;
const unsigned int n = map_update_dim * map_update_dim;
checkCuda(cudaMalloc((void **)&result_d, n * sizeof(LocalizedOrigin)));
localized_size = 10000;
checkCuda(cudaMallocHost((void **)&localized_result_h, localized_size * sizeof(LocalizedOrigin)));
checkCuda(cudaMalloc((void **)&localized_result_d, localized_size * sizeof(LocalizedOrigin)));
mapWriter = new MapWriter(1000000, width_arg, height_arg);
_count = 0;
}
Map::~Map()
{
cudaFreeHost(map_h);
cudaFree(map_d);
cudaFree(width_d);
cudaFree(height_d);
cudaFree(scan_buffer_d);
cudaFree(scan_size_d);
cudaFree(sim_buffer_d);
cudaFree(sim_size_d);
cudaFree(result_d);
cudaFreeHost(localized_result_h);
cudaFree(localized_result_d);
}
__global__
void cudeGenerateParticleFilter(SimTelemetryPoint *sim_buffer, int *sim_size, TelemetryPoint *scan_buffer, int *scan_size)
{
extern __shared__ TelemetryPoint scan_buffer_s[];
for(int16_t i = threadIdx.x; i < *scan_size; i += blockDim.x)
{
scan_buffer_s[i] = scan_buffer[i];
}
__syncthreads();
int sim_num = blockIdx.x * blockDim.x + threadIdx.x;
if(sim_num > *sim_size)
{
return;
}
int increment = gridDim.x * blockDim.x;
for(int i = sim_num; i < 360 * *scan_size; i += increment)
{
int scan_num = i % *scan_size;
float distance = scan_buffer_s[scan_num].distance;
float angle_num = scan_buffer_s[scan_num].angle + floorf(i / *scan_size);
sim_buffer[i].x = roundf(__sinf (angle_num) * distance);
sim_buffer[i].y = roundf(__cosf (angle_num) * distance);
}
}
//TODO: this needs parrallism, like a map/reduce paradim. There were examples of this in the book where you use nested loops and sync threads.
__global__
void cudaLocalizeParticleFilter_slow(LocalizedOrigin *result, int result_size)
{
LocalizedOrigin best;
best.score = -1;
for(int i = 0; i < result_size; i++)
{
if(result[i].score > best.score)
{
best.x_offset = result[i].x_offset;
best.y_offset = result[i].y_offset;
best.angle_offset = result[i].angle_offset;
best.score = result[i].score;
}
}
printf("BEST: x: %d y: %d a: %.2f s: %d \n", best.x_offset, best.y_offset, best.angle_offset, best.score);
}
//TODO: this needs parrallism, like a map/reduce paradim. There were examples of this in the book where you use nested loops and sync threads.
__global__
void cudaLocalizeParticleFilter(LocalizedOrigin *output, int max_output_size, LocalizedOrigin *input, int input_size)
{
extern __shared__ LocalizedOrigin localization[];
if(blockDim.x >= max_output_size || gridDim.x >= max_output_size ){
//kernel config exceeds buffer sizes
if(blockIdx.x * blockDim.x + threadIdx.x == 0) {
printf("Exiting due to insufficient buffer size");
}
return;
}
int tid = threadIdx.x;
int offset = blockIdx.x * blockDim.x + threadIdx.x;
LocalizedOrigin best;
best.score = -1;
//do the first round.
int increment = gridDim.x * blockDim.x;
for(int i = offset; i < input_size; i += increment)
{
if(input[i].score > best.score)
{
best = input[i];
}
}
localization[tid] = best;
__syncthreads();
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s && localization[tid].score < localization[tid+s].score) {
localization[tid] = localization[tid+s];
}
__syncthreads();
}
if (tid == 0) output[blockIdx.x] = localization[0];
}
//TODO: There is opportunity to speed this up using hints from odometry or even just simple distance traveled estimates.
__global__
void cudaRunParticleFilter(int search_distance, LocalizedOrigin *result, SimTelemetryPoint *sim_buffer, int *sim_size, TelemetryPoint *scan_buffer, int *scan_size, MapPoint *map, int *map_width, int *map_height)
{
extern __shared__ SimTelemetryPoint sim_buffer_s[];
int offset = blockIdx.x * blockDim.x + threadIdx.x;
uint16_t e_search_distance = search_distance / 2;
int16_t x_offset = (-1 * e_search_distance) + offset % (e_search_distance * 2);
int16_t y_offset = (-1 * e_search_distance) + floorf(offset / (e_search_distance * 2));
//int max_pos = *map_width * *map_height;
int e_width = (*map_width / 2);
int e_height = (*map_height / 2);
int ne_width = -1*e_width;
int ne_height = -1*e_height;
LocalizedOrigin best;
best.score = 0;
int l_scansize = *scan_size;
//Try various angles - TODO: find better sampling technique here possibly even re-sampling
for(uint16_t angle_offset = 0; angle_offset < 360; angle_offset+=2)
{
//For each point see if we have a hit
uint16_t score = 0;
uint16_t score2 = 0;
int scan_point_offset = angle_offset * l_scansize;
for(int i = threadIdx.x; i < l_scansize; i += blockDim.x)
{
sim_buffer_s[i] = sim_buffer[scan_point_offset + i];
}
int scan_point_offset2 = angle_offset+1 * l_scansize;
for(int i = l_scansize + threadIdx.x; i < 2*l_scansize; i += blockDim.x)
{
sim_buffer_s[i] = sim_buffer[scan_point_offset2 + i];
}
__syncthreads();
if(x_offset < e_search_distance && y_offset < e_search_distance)
{
//#pragma unroll
for(uint16_t scan_point = 0; scan_point < l_scansize; scan_point++)
{
SimTelemetryPoint sim_point = sim_buffer_s[scan_point];
SimTelemetryPoint sim_point2 = sim_buffer_s[scan_point+l_scansize];
int16_t x = x_offset + sim_point.x;
int16_t y = y_offset + sim_point.y;
int16_t x2 = x_offset + sim_point2.x;
int16_t y2 = y_offset + sim_point2.y;
if(!(x >= e_width || x <= ne_width || y >= e_height || y <= ne_height))
{
int l_height = (e_height + y);
int l_width = (e_width + x);
int l2_height = l_height * *map_width;
int pos = l2_height + l_width;
//MapPoint *map_point = map + pos;
if(map[pos].occupancy > 3){
score ++;
}
}
if(!(x2 >= e_width || x2 <= ne_width || y2 >= e_height || y2 <= ne_height))
{
int l_height = (e_height + y2);
int l_width = (e_width + x2);
int l2_height = l_height * *map_width;
int pos = l2_height + l_width;
//MapPoint *map_point = map + pos;
if(map[pos].occupancy > 3){
score2 ++;
}
}
}
}
if(score > score2 && best.score < score)
{
best.x_offset = x_offset;
best.y_offset = y_offset;
best.angle_offset = angle_offset;
best.score = score;
} else if(score2 > score && best.score < score2)
{
best.x_offset = x_offset;
best.y_offset = y_offset;
best.angle_offset = angle_offset+1;
best.score = score2;
}
__syncthreads();
}
result[offset] = best;
}
//TODO: There is opportunity to speed this up using hints from odometry or even just simple distance traveled estimates.
__global__
void cudaRunParticleFilter2(int search_distance, LocalizedOrigin *result, SimTelemetryPoint *sim_buffer, int *sim_size, TelemetryPoint *scan_buffer, int *scan_size, int num_buckets, MapIndex *index, MapPoint *map, int *map_width, int *map_height)
{
extern __shared__ SimTelemetryPoint sim_buffer_s[];
MapReader mapReader = MapReader(num_buckets, *map_width, *map_height, index, map);
int offset = blockIdx.x * blockDim.x + threadIdx.x;
uint16_t e_search_distance = search_distance / 2;
int16_t x_offset = (-1 * e_search_distance) + offset % (e_search_distance * 2);
int16_t y_offset = (-1 * e_search_distance) + floorf(offset / (e_search_distance * 2));
//int max_pos = *map_width * *map_height;
//int e_width = (*map_width / 2);
//int e_height = (*map_height / 2);
LocalizedOrigin best;
best.score = 0;
int l_scansize = *scan_size;
//Try various angles - TODO: find better sampling technique here possibly even re-sampling
for(uint16_t angle_offset = 0; angle_offset < 360; angle_offset+=2)
{
//For each point see if we have a hit
uint16_t score = 0;
uint16_t score2 = 0;
int scan_point_offset = angle_offset * l_scansize;
for(int i = threadIdx.x; i < l_scansize; i += blockDim.x)
{
sim_buffer_s[i] = sim_buffer[scan_point_offset + i];
}
int scan_point_offset2 = angle_offset+1 * l_scansize;
for(int i = l_scansize + threadIdx.x; i < 2*l_scansize; i += blockDim.x)
{
sim_buffer_s[i] = sim_buffer[scan_point_offset2 + i];
}
__syncthreads();
if(x_offset < e_search_distance && y_offset < e_search_distance)
{
//#pragma unroll
for(uint16_t scan_point = 0; scan_point < l_scansize; scan_point++)
{
SimTelemetryPoint sim_point = sim_buffer_s[scan_point];
SimTelemetryPoint sim_point2 = sim_buffer_s[scan_point+l_scansize];
int16_t x = x_offset + sim_point.x;
int16_t y = y_offset + sim_point.y;
int16_t x2 = x_offset + sim_point2.x;
int16_t y2 = y_offset + sim_point2.y;
score += mapReader.getOccupancy(x,y);
score2 += mapReader.getOccupancy(x2,y2);
}
}
if(score > score2 && best.score < score)
{
best.x_offset = x_offset;
best.y_offset = y_offset;
best.angle_offset = angle_offset;
best.score = score;
} else if(score2 > score && best.score < score2)
{
best.x_offset = x_offset;
best.y_offset = y_offset;
best.angle_offset = angle_offset+1;
best.score = score2;
}
__syncthreads();
}
result[offset] = best;
}
//TODO: So far we've only been working on Localization, we need to start thinking about mapping or rather
//when to update the map with newly scanned points. I suspect that cold start might be a special case but
//it needs more thinking. I like the idea of the map being fully mutable, not just additive which is what
//I've seen from other SLAM impls.
__global__
void cudaUpdateMap(TelemetryPoint *scan_buffer, int *scan_size, MapPoint *map, int *map_width, int *map_height, LocalizedOrigin origin)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int map_size = *map_width * *map_height;
for(int i = offset; i < map_size; i += gridDim.x * blockDim.x)
{
if(map[i].occupancy > 0 && map[i].occupancy < 9)
{
map[i].occupancy -= 1;
}
}
//synchronizing across blocks would be better - TODO: get grid_group and sync working. Was facing linking errors with this.
__syncthreads();
if(offset >= *scan_size)
{
return;
}
TelemetryPoint *cur_point = scan_buffer + offset;
float distance = cur_point->distance;
float angle_num = cur_point->angle + origin.angle_offset;
int x = roundf(__sinf (angle_num) * distance) + origin.x_offset;
int y = roundf(__cosf (angle_num) * distance) + origin.y_offset;
int map_pad = 4;
for(int yp = -1*map_pad; yp < map_pad; yp++){
for(int xp = -1*map_pad; xp < map_pad; xp++){
int pos = ((*map_height / 2 + y + yp) * *map_width) + (*map_height / 2 + x + xp);
if(pos < map_size)
{
MapPoint *cur_map = map + pos;
if(cur_map->occupancy < 9)
{
cur_map->occupancy+=3;
}
}
}
}
//printf("Point: x: %d y: %d, a: %.2f p: %d\n", cur_point->x, cur_point->y, cur_point->angle, pos);
//printf("MAP: o: %d p: %d - x: %d. y: %d a:%.2f, q: %d\n", offset, pos, cur_point->x, cur_point->y, cur_point->angle, cur_point->quality);
}
LocalizedOrigin Map::update(int32_t search_distance, TelemetryPoint scan_data[], int scan_size)
{
cudaProfilerStart();
cudaEvent_t startEvent, stopEvent;
checkCuda( cudaEventCreate(&startEvent) );
checkCuda( cudaEventCreate(&stopEvent) );
checkCuda( cudaEventRecord(startEvent, 0) );
const unsigned int bytes = scan_size * sizeof(TelemetryPoint);
cudaMemcpy(scan_buffer_d, scan_data, bytes, cudaMemcpyHostToDevice);
cudaMemcpy(scan_size_d, &scan_size, sizeof(int), cudaMemcpyHostToDevice);
cudeGenerateParticleFilter <<< (scan_size * 360 / 1024) + 1, 1024, scan_size *sizeof(TelemetryPoint) >>> (sim_buffer_d, sim_size_d, scan_buffer_d, scan_size_d);
cudaDeviceSynchronize();
//cudaRunParticleFilter <<< ceil((search_distance*search_distance)/256.0), 256, 2*scan_size *sizeof(SimTelemetryPoint)>>>(search_distance, result_d, sim_buffer_d, sim_size_d, scan_buffer_d, scan_size_d, map_d, width_d, height_d);
MapIndex *index_h, *index_d;
MapPoint *c_map_h, *c_map_d;
checkCuda(cudaMallocHost((void **)&index_h, mapWriter->getIndexSizeBytes()));
checkCuda(cudaMallocHost((void **)&c_map_h, mapWriter->getMapSizeBytes()));
mapWriter->getIndex(index_h);
mapWriter->getMap(c_map_h);
checkCuda(cudaMalloc((void **)&index_d, mapWriter->getIndexSizeBytes()));
checkCuda(cudaMalloc((void **)&c_map_d, mapWriter->getMapSizeBytes()));
cudaMemcpy(index_d, index_h, mapWriter->getIndexSizeBytes(), cudaMemcpyHostToDevice);
cudaMemcpy(c_map_d, c_map_h, mapWriter->getMapSizeBytes(), cudaMemcpyHostToDevice);
cudaRunParticleFilter2 <<< ceil((search_distance*search_distance)/256.0), 256, 2*scan_size *sizeof(SimTelemetryPoint)>>>(search_distance, result_d, sim_buffer_d, sim_size_d, scan_buffer_d, scan_size_d, mapWriter->getNumBuckets(), index_d, c_map_d, width_d, height_d);
cudaDeviceSynchronize();
//shared memory must be >= threads per block
int num_localization_blocks = 32;
cudaLocalizeParticleFilter <<< num_localization_blocks, 128, 128*sizeof(LocalizedOrigin)>>>(localized_result_d, localized_size, result_d, map_update_dim * map_update_dim);
cudaDeviceSynchronize();
cudaMemcpy(localized_result_h, localized_result_d, localized_size*sizeof(LocalizedOrigin), cudaMemcpyDeviceToHost);
checkCuda( cudaMemcpy(map_h, map_d, map_bytes, cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
LocalizedOrigin best;
best.score = 0;
best.x_offset = 0;
best.y_offset = 0;
best.angle_offset = 0;
for(int i = 0; i < num_localization_blocks; i++){
//printf("CANDIDATE: x: %d y: %d a: %.2f s: %d\n", localized_result_h[i].x_offset, localized_result_h[i].y_offset, localized_result_h[i].angle_offset, localized_result_h[i].score);
if(localized_result_h[i].score > best.score){
best = localized_result_h[i];
}
}
printf("BEST-FAST: x: %d y: %d a: %.2f s: %d\n", best.x_offset, best.y_offset, best.angle_offset, best.score);
//Temporary
LocalizedOrigin origin = best;
for(int i = 0; i < scan_size; i++){
TelemetryPoint *cur_point = scan_data + i;
float distance = cur_point->distance;
float angle_num = cur_point->angle + origin.angle_offset;
int x = round(sin (angle_num) * distance) + origin.x_offset;
int y = round(cos (angle_num) * distance) + origin.y_offset;
mapWriter->addPoint(x, y);
}
//mapWriter->dump(_count++);
printf("New Map: indexSize: %d bytes, MapSize: %d bytes - num_points %lu\n", mapWriter->getIndexSizeBytes(), mapWriter->getMapSizeBytes(), mapWriter->getMapSizeBytes()/sizeof(MapPoint));
MapIndex *index_t = (MapIndex*)malloc(mapWriter->getIndexSizeBytes());
MapPoint *map_t = (MapPoint*)malloc(mapWriter->getMapSizeBytes());
mapWriter->getIndex(index_t);
mapWriter->getMap(map_t);
MapReader mapReader = MapReader(mapWriter->getNumBuckets(), width, height, index_t, map_t);
//End Temporary
float match_score = 100.0 * best.score / scan_size;
if(match_score > 70 || (best.x_offset == 0 && best.y_offset == 0 && best.angle_offset == 0)){
cudaUpdateMap <<< 32, 256 >>> (scan_buffer_d, scan_size_d, map_d, width_d, height_d, best);
}
checkCuda( cudaEventRecord(stopEvent, 0) );
checkCuda( cudaEventSynchronize(stopEvent) );
float time;
checkCuda( cudaEventElapsedTime(&time, startEvent, stopEvent) );
checkCuda( cudaEventDestroy(startEvent) );
checkCuda( cudaEventDestroy(stopEvent) );
printf("Map::update processed %d points and took %.2f ms\n", scan_size, time);
cudaDeviceSynchronize();
//if(best.score > 300){
//CheckpointWriter::checkpoint("cuda", width, height, scan_data, scan_size, map_h, &best);
CheckpointWriter::checkpoint("compact_map", width, height, scan_data, scan_size, mapReader.getMapSize(), mapReader.getMap(), &best);
//}
free(index_t);
free(map_t);
cudaFreeHost(index_h);
cudaFree(index_d);
cudaFreeHost(c_map_h);
cudaFree(c_map_d);
cudaProfilerStop();
return best;
}