-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathshardsim.cc
228 lines (204 loc) · 7.56 KB
/
shardsim.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_set.hpp>
#include <random>
#include <iostream>
#include <tuple>
#include <set>
#include <unordered_map>
#include <boost/range.hpp>
#include <boost/range/irange.hpp>
#include <boost/range/algorithm.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/range/combine.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
using namespace std;
using namespace boost;
using namespace boost::icl;
using namespace boost::adaptors;
unsigned shards;
unsigned ignorebits;
struct node {
unsigned id;
bool operator<(node x) const {
return id < x.id;
}
bool operator==(node x) const {
return id == x.id;
}
};
namespace std {
template <>
struct hash<node> {
size_t operator()(node x) const { return hash<unsigned>()(x.id); }
};
}
struct vnode {
double token;
node owner;
std::tuple<double, node> as_tuple() const {
return std::make_tuple(token, owner);
}
bool operator<(vnode x) const {
return as_tuple() < x.as_tuple();
}
bool operator==(vnode x) const {
return as_tuple() == x.as_tuple();
}
};
double
random_token() {
static auto dist = std::uniform_real_distribution<double>(0, 1);
static auto re = std::default_random_engine(std::random_device()());
return dist(re);
}
set<vnode>
make_node(node node, unsigned vnodes) {
return copy_range<set<vnode>>(
irange(0u, vnodes)
| transformed([&] (unsigned n) { return vnode{random_token(), node}; }));
}
set<vnode>
make_ring(unsigned nodes, unsigned vnodes) {
auto ret = set<vnode>();
for (auto n : irange(0u, nodes)) {
auto nd = make_node(node{n}, vnodes);
for (auto vn : nd) {
ret.insert(vn);
}
}
return ret;
}
set<vnode>
pad_ring(set<vnode> ring) {
// pads a ring with fake Vnode objects at token 0 and token 1
// used to avoid wraparound
ring.insert(vnode{0, ring.rbegin()->owner});
ring.insert(vnode{1, ring.begin()->owner});
return ring;
}
// converts a ring to a map node->interval_set
unordered_map<node, interval_set<double>>
make_node_intervals(set<vnode> ring) {
auto ret = unordered_map<node, interval_set<double>>();
ring = pad_ring(ring);
auto left_bounds = make_iterator_range(ring.begin(), std::prev(ring.end()));
auto right_bounds = make_iterator_range(std::next(ring.begin()), ring.end());
for (auto pair : combine(left_bounds, right_bounds)) {
auto ival = interval<double>::left_open(get<0>(pair).token, get<1>(pair).token);
ret[get<1>(pair).owner].insert(ival);
}
return ret;
}
// returns a map node->load for a given ring
unordered_map<node, double>
ring_loads(set<vnode> ring) {
auto ret = unordered_map<node, double>();
for (auto node_iset : make_node_intervals(ring)) {
auto&& node = node_iset.first;
auto&& iset = node_iset.second;
ret[node] = 0;
for (auto ival : iset) {
ret[node] += ival.upper()- ival.lower();
}
}
return ret;
}
// returns the node overcommit: the ratio between the node with the
// highest load to the "average node"
double
node_overcommit(set<vnode> ring) {
auto loads = ring_loads(ring);
return *max_element(loads | map_values) * loads.size();
}
// converts a ring to a map (node, shard)->IntervalSet
std::map<std::tuple<node, unsigned>, interval_set<double>>
make_shard_intervals_static(set<vnode> ring) {
auto node_intervals = make_node_intervals(ring);
auto shard_ranges = std::map<unsigned, interval_set<double>>();
auto delta = 1. / (shards * (1<<ignorebits));
auto pos = 0.;
for (auto rep : irange(0, 1<<ignorebits)) {
for (auto x : irange(0u, shards)) {
shard_ranges[x].add(interval<double>::left_open(pos, pos + delta));
pos += delta;
}
}
auto ret = std::map<std::tuple<node, unsigned>, interval_set<double>>();
for (auto node_node_ivals : node_intervals) {
auto&& node = node_node_ivals.first;
auto&& node_ivals = node_node_ivals.second;
for (auto shard_shard_iset : shard_ranges) {
auto&& shard = shard_shard_iset.first;
auto&& shard_iset = shard_shard_iset.second;
ret[std::make_tuple(node, shard)] = node_ivals & shard_iset;
}
}
return ret;
}
using make_shard_interval_fn = std::function<map<std::tuple<node, unsigned>, interval_set<double>> (set<vnode>)>;
// returns a map (node, shard)->load for a given ring
// make_shard_intervals: lambda: ring return ((node, shard)->IntervalSet)
map<std::tuple<node, unsigned>, double>
shard_loads(set<vnode> ring, unsigned shards, make_shard_interval_fn make_shard_intervals) {
auto ret = map<std::tuple<node, unsigned>, double>();
for (auto node_shard_iset : make_shard_intervals(ring)) {
auto&& node_shard = node_shard_iset.first;
auto&& iset = node_shard_iset.second;
ret[node_shard] = 0;
for (auto ival : iset) {
ret[node_shard] += ival.upper() - ival.lower();
}
}
return ret;
}
// returns the shard overcommit: the ratio between the shard with the
// highest load to the "average" shard
// make_shard_intervals: lambda: ring return ((node, shard)->IntervalSet)
double
shard_overcommit(set<vnode> ring, unsigned shards, make_shard_interval_fn make_shard_intervals) {
auto loads = shard_loads(ring, shards, make_shard_intervals);
return *max_element(loads | map_values) * loads.size();
}
auto make_shard_intervals = make_shard_intervals_static;
auto algorithms = std::unordered_map<std::string, make_shard_interval_fn>({
{"static", make_shard_intervals_static},
});
namespace bpo = boost::program_options;
int main(int ac, char** av) {
try {
auto desc = bpo::options_description("Simulate Scylla cluster load imbalance");
desc.add_options()
("nodes,n", bpo::value<unsigned>()->default_value(5u), "Number of nodes in the cluster")
("vnodes,v", bpo::value<unsigned>()->default_value(32u), "Number of vnodes per node")
("shards,s", bpo::value<unsigned>()->default_value(12u), "Number of shards per node")
("ignore-msb-bits,b", bpo::value<unsigned>()->default_value(8), "Number of token MSB bits to ignore for sharding")
("algorithm,a", bpo::value<string>()->default_value("static"),
"select sharding algorithm ({})" /*'.format(algorithms.keys()) */)
("help,h", "show this help")
;
auto vm = bpo::variables_map();
bpo::store(bpo::parse_command_line(ac, av, desc), vm);
notify(vm);
if (vm.count("help")) {
std::cout << desc << "\n";
return 1;
}
auto nodes = vm["nodes"].as<unsigned>();
auto vnodes = vm["vnodes"].as<unsigned>();
shards = vm["shards"].as<unsigned>();
ignorebits = vm["ignore-msb-bits"].as<unsigned>();
auto make_shard_intervals = algorithms[vm["algorithm"].as<string>()];
std::cout << boost::format("%d nodes, %d vnodes, %d shards\n") % nodes % vnodes % shards;
auto ring = make_ring(nodes, vnodes);
std::cout << boost::format("maximum node overcommit: %g\n") % node_overcommit(ring);
std::cout << boost::format("maximum shard overcommit: %f\n") % shard_overcommit(ring, shards, make_shard_intervals);
return 0;
} catch (bpo::error& e) {
std::cout << "Bad parameters, try --help (" << e.what() << ")\n";
return 1;
} catch (...) {
std::cout << "something bad happened\n";
return 1;
}
}