-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathextract_mesh.py
92 lines (75 loc) · 2.73 KB
/
extract_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import argparse
import time
import torch
from scipy.spatial.transform import Rotation as R
from dataloading import get_dataloader, load_config
from model.checkpoints import CheckpointIO
from model.network import NeuralNetwork
from model.common import transform_mesh
from model.extracting import Extractor3D
torch.manual_seed(0)
# Config
parser = argparse.ArgumentParser(
description='Extract meshes from occupancy process.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--upsampling-steps', type=int, default=-1,
help='Overrites the default upsampling steps in config')
parser.add_argument('--refinement-step', type=int, default=-1,
help='Overrites the default refinement steps in config')
args = parser.parse_args()
cfg = load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
if args.upsampling_steps != -1:
cfg['extraction']['upsampling_steps'] = args.upsampling_steps
if args.refinement_step != -1:
cfg['extraction']['refinement_step'] = args.refinement_step
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['extraction']['extraction_dir'])
mesh_extension = cfg['extraction']['mesh_extension']
# Model
model_cfg = cfg['model']
model = NeuralNetwork(model_cfg)
checkpoint_io = CheckpointIO(out_dir, model=model)
checkpoint_io.load(cfg['extraction']['model_file'])
# Generator
generator = Extractor3D(
model, resolution0=cfg['extraction']['resolution'],
upsampling_steps=cfg['extraction']['upsampling_steps'],
device=device
)
# Dataloading
test_loader = get_dataloader(cfg, mode='test')
iter_test = iter(test_loader)
data_test = next(iter_test)
test_mask_loader = None
# get_dataloader(
# cfg, mode='test', shuffle=False,
# spilt_model_for_images=True, with_mask=True
# )
# Generate
model.eval()
if test_mask_loader is not None:
mesh_dir = os.path.join(generation_dir, 'meshes_cleaned')
else:
mesh_dir = os.path.join(generation_dir, 'meshes')
if not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
try:
t0 = time.time()
out = generator.generate_mesh(mask_loader=test_mask_loader)
try:
mesh, stats_dict = out
except TypeError:
mesh, stats_dict = out, {}
# For DTU transformed-back mesh file
scale_mat = data_test.get('img.scale_mat')[0]
mesh_transformed = transform_mesh(mesh, scale_mat)
mesh_out_file = os.path.join(
mesh_dir, 'scan_world_scale.%s' %mesh_extension)
mesh_transformed.export(mesh_out_file)
except RuntimeError:
print("Error generating mesh")