-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathgenerate.py
217 lines (172 loc) · 7.97 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np; np.set_printoptions(precision=4)
import shutil, argparse, time, os
import pandas as pd
from collections import defaultdict
from src import config
from src.utils import mc_from_psr, export_mesh, export_pointcloud
from src.dpsr import DPSR
from src.training import Trainer
from src.model import Encode2Points
from src.utils import load_config, load_model_manual, scale2onet, is_url, load_url
from tqdm import tqdm
from pdb import set_trace as st
def main():
parser = argparse.ArgumentParser(description='MNIST toy experiment')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--iter', type=int, metavar='S', help='the training iteration to be evaluated.')
args = parser.parse_args()
cfg = load_config(args.config, 'configs/default.yaml')
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
data_type = cfg['data']['data_type']
input_type = cfg['data']['input_type']
vis_n_outputs = cfg['generation']['vis_n_outputs']
if vis_n_outputs is None:
vis_n_outputs = -1
# Shorthands
out_dir = cfg['train']['out_dir']
if not out_dir:
os.makedirs(out_dir)
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
out_time_file = os.path.join(generation_dir, 'time_generation_full.pkl')
out_time_file_class = os.path.join(generation_dir, 'time_generation.pkl')
# PYTORCH VERSION > 1.0.0
assert(float(torch.__version__.split('.')[-3]) > 0)
dataset = config.get_dataset('test', cfg, return_idx=True)
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
model = Encode2Points(cfg).to(device)
# load model
try:
if is_url(cfg['test']['model_file']):
state_dict = load_url(cfg['test']['model_file'])
elif cfg['generation'].get('iter', 0)!=0:
state_dict = torch.load(os.path.join(out_dir, 'model', '%04d.pt'% cfg['generation']['iter']))
generation_dir += '_%04d'%cfg['generation']['iter']
elif args.iter is not None:
state_dict = torch.load(os.path.join(out_dir, 'model', '%04d.pt'% args.iter))
else:
state_dict = torch.load(os.path.join(out_dir, 'model_best.pt'))
load_model_manual(state_dict['state_dict'], model)
except:
print('Model loading error. Exiting.')
exit()
# Generator
generator = config.get_generator(model, cfg, device=device)
# Determine what to generate
generate_mesh = cfg['generation']['generate_mesh']
generate_pointcloud = cfg['generation']['generate_pointcloud']
# Statistics
time_dicts = []
# Generate
model.eval()
dpsr = DPSR(res=(cfg['generation']['psr_resolution'],
cfg['generation']['psr_resolution'],
cfg['generation']['psr_resolution']),
sig= cfg['generation']['psr_sigma']).to(device)
# Count how many models already created
model_counter = defaultdict(int)
print('Generating...')
for it, data in enumerate(tqdm(test_loader)):
# Output folders
mesh_dir = os.path.join(generation_dir, 'meshes')
in_dir = os.path.join(generation_dir, 'input')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
generation_vis_dir = os.path.join(generation_dir, 'vis', )
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, str(category_id))
pointcloud_dir = os.path.join(pointcloud_dir, str(category_id))
in_dir = os.path.join(in_dir, str(category_id))
folder_name = str(category_id)
if category_name != 'n/a':
folder_name = str(folder_name) + '_' + category_name.split(',')[0]
generation_vis_dir = os.path.join(generation_vis_dir, folder_name)
# Create directories if necessary
if vis_n_outputs >= 0 and not os.path.exists(generation_vis_dir):
os.makedirs(generation_vis_dir)
if generate_mesh and not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
if generate_pointcloud and not os.path.exists(pointcloud_dir):
os.makedirs(pointcloud_dir)
if not os.path.exists(in_dir):
os.makedirs(in_dir)
# Timing dict
time_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname':modelname,
}
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
if generate_mesh:
#! deploy the generator to a separate class
out = generator.generate_mesh(data)
v, f, points, normals, stats_dict = out
time_dict.update(stats_dict)
# Write output
mesh_out_file = os.path.join(mesh_dir, '%s.off' % modelname)
export_mesh(mesh_out_file, scale2onet(v), f)
out_file_dict['mesh'] = mesh_out_file
if generate_pointcloud:
pointcloud_out_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
export_pointcloud(pointcloud_out_file, scale2onet(points), normals)
out_file_dict['pointcloud'] = pointcloud_out_file
if cfg['generation']['copy_input']:
inputs_path = os.path.join(in_dir, '%s.ply' % modelname)
p = data.get('inputs').to(device)
export_pointcloud(inputs_path, scale2onet(p))
out_file_dict['in'] = inputs_path
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[category_id]
if c_it < vis_n_outputs:
# Save output files
img_name = '%02d.off' % c_it
for k, filepath in out_file_dict.items():
ext = os.path.splitext(filepath)[1]
out_file = os.path.join(generation_vis_dir, '%02d_%s%s'
% (c_it, k, ext))
shutil.copyfile(filepath, out_file)
# Also generate oracle meshes
if cfg['generation']['exp_oracle']:
points_gt = data.get('gt_points').to(device)
normals_gt = data.get('gt_points.normals').to(device)
psr_gt = dpsr(points_gt, normals_gt)
v, f, _ = mc_from_psr(psr_gt,
zero_level=cfg['data']['zero_level'])
out_file = os.path.join(generation_vis_dir, '%02d_%s%s'
% (c_it, 'mesh_oracle', '.off'))
export_mesh(out_file, scale2onet(v), f)
model_counter[category_id] += 1
# Create pandas dataframe and save
time_df = pd.DataFrame(time_dicts)
time_df.set_index(['idx'], inplace=True)
time_df.to_pickle(out_time_file)
# Create pickle files with main statistics
time_df_class = time_df.groupby(by=['class name']).mean()
time_df_class.loc['mean'] = time_df_class.mean()
time_df_class.to_pickle(out_time_file_class)
# Print results
print('Timings [s]:')
print(time_df_class)
if __name__ == '__main__':
main()