diff --git a/neps/optimizers/multi_fidelity/mf_bo.py b/neps/optimizers/multi_fidelity/mf_bo.py index 66f84071..eac578f8 100755 --- a/neps/optimizers/multi_fidelity/mf_bo.py +++ b/neps/optimizers/multi_fidelity/mf_bo.py @@ -9,11 +9,9 @@ from neps.utils.common import instance_from_map from neps.optimizers.bayesian_optimization.models import SurrogateModelMapping from neps.optimizers.utils import map_real_hyperparameters_from_tabular_ids -from neps.optimizers.multi_fidelity_prior.utils import ( - calc_total_resources_spent, normalize_vectorize_config, update_fidelity -) +from neps.optimizers.multi_fidelity_prior.utils import calc_total_resources_spent, update_fidelity from neps.search_spaces.search_space import SearchSpace -from neps.optimizers.multi_fidelity.utils import +from neps.optimizers.multi_fidelity.utils import normalize_vectorize_config class MFBOBase: """Designed to work with model-based search on SH-based multi-fidelity algorithms. @@ -213,6 +211,10 @@ def _fantasize_pending(self, train_x, train_y, pending_x): ) pending_condition = self.observed_configs.pending_condition if pending_condition.any(): + raise NotImplementedError( + "Fantasization not implemented yet!" + "This optimizer cannot be run with multiple workers yet." + ) print(f"\n\nFound pending: {pending_condition.sum()}\n\n") pending_configs = self.observed_configs.df.loc[pending_condition] self._fit(train_x, train_y, train_lcs)