-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy patheval_without_whitening.py
131 lines (101 loc) · 3.3 KB
/
eval_without_whitening.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding: utf-8
"""
使用NLI训练得到的whitening参数, 在下游任务测试.
@env: python3, pytorch>=1.7.1, transformers==4.2.0
@author: Weijie Liu
@date: 20/01/2020
"""
import os
import torch
import numpy as np
from tqdm import tqdm
import scipy.stats
from all_utils import *
import senteval
import logging
from prettytable import PrettyTable
MAX_LENGTH = 64
BATCH_SIZE = 256
TEST_PATH = './data/'
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
MODEL_ZOOS = {
'BERTbase-first_last_avg': {
'encoder': './model/bert-base-uncased',
'pooling': 'first_last_avg'
},
'BERTbase-cls': {
'encoder': './model/bert-base-uncased',
'pooling': 'cls'
},
'BERTlarge-first_last_avg': {
'encoder': './model/bert-large-uncased',
'pooling': 'first_last_avg'
},
'BERTlarge-cls': {
'encoder': './model/bert-large-uncased',
'pooling': 'cls'
},
'SBERTbase-nli-first_last_avg': {
'encoder': './model/bert-base-nli-mean-tokens',
'pooling': 'first_last_avg'
},
'SBERTbase-nli-first_last_avg': {
'encoder': './model/bert-base-nli-mean-tokens',
'pooling': 'cls'
},
'SBERTlarge-nli-first_last_avg': {
'encoder': './model/bert-large-nli-mean-tokens',
'pooling': 'first_last_avg'
},
'SBERTlarge-nli-first_last_avg': {
'encoder': './model/bert-large-nli-mean-tokens',
'pooling': 'cls'
},
}
def prepare(params, samples):
return None
def batcher(params, batch):
batch = [' '.join(sent) if sent != [] else '.' for sent in batch]
embeddings = []
for sent in batch:
vec = sent_to_vec(sent, params['tokenizer'], \
params['encoder'], params['pooling'], MAX_LENGTH)
embeddings.append(vec)
embeddings = np.vstack(embeddings)
return embeddings
def run(model_name, test_path):
model_config = MODEL_ZOOS[model_name]
logging.info(f"{model_name} configs: {model_config}")
tokenizer, encoder = build_model(model_config['encoder'])
logging.info("Building {} tokenizer and model successfuly.".format(model_config['encoder']))
# Set params for senteval
params_senteval = {
'task_path': test_path,
'usepytorch': True,
'tokenizer': tokenizer,
'encoder': encoder,
'pooling': model_config['pooling'],
'batch_size': BATCH_SIZE
}
se = senteval.engine.SE(params_senteval, batcher, prepare)
transfer_tasks = [
'STS12', 'STS13', 'STS14', 'STS15', 'STS16',
'SICKRelatednessCosin',
'STSBenchmarkCosin'
]
results = se.eval(transfer_tasks)
# Show results
table = PrettyTable(["Task", "Spearman"])
for task in transfer_tasks:
if task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']:
metric = results[task]['all']['spearman']['wmean']
elif task in ['SICKRelatednessCosin', 'STSBenchmarkCosin']:
metric = results[task]['spearman']
table.add_row([task, metric])
logging.info(f"{model_name} results:\n" + str(table))
def run_all_model():
for model_name in MODEL_ZOOS:
run(model_name, TEST_PATH)
if __name__ == "__main__":
# run('BERTbase-first_last_avg', TEST_PATH)
run_all_model()