-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy patheval_with_whitening(target).py
128 lines (101 loc) · 3.61 KB
/
eval_with_whitening(target).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# coding: utf-8
"""
使用NLI训练得到的whitening参数, 在下游任务测试.
@env: python3, pytorch>=1.7.1, transformers==4.2.0
@author: Weijie Liu
@date: 20/01/2020
"""
import os
import torch
import numpy as np
from tqdm import tqdm
import scipy.stats
from all_utils import *
import senteval
import logging
from prettytable import PrettyTable
MAX_LENGTH = 64
BATCH_SIZE = 256
TEST_PATH = './data/'
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
MODEL_ZOOS = {
'BERTbase-whiten-256(target)': {
'encoder': './model/bert-base-uncased',
'pooling': 'first_last_avg',
'n_components': 256,
},
'BERTlarge-whiten-384(target)': {
'encoder': './model/bert-large-uncased',
'pooling': 'first_last_avg',
'n_components': 384,
},
'SBERTbase-nli-whiten-256(target)': {
'encoder': './model/bert-base-nli-mean-tokens',
'pooling': 'first_last_avg',
'n_components': 256,
},
'SBERTlarge-nli-whiten-384(target)': {
'encoder': './model/bert-large-nli-mean-tokens',
'pooling': 'first_last_avg',
'n_components': 384
},
}
def prepare(params, samples):
samples = [' '.join(sent) if sent != [] else '.' for sent in samples]
vecs = sents_to_vecs(samples, params['tokenizer'], params['encoder'], \
params['pooling'], MAX_LENGTH, verbose=False)
kernel, bias = compute_kernel_bias([vecs])
kernel = kernel[:, :params['n_components']]
params['whiten'] = (kernel, bias)
logging.info('Get whiten kernel and bias from {} samples.'.format(len(samples)))
return None
def batcher(params, batch):
batch = [' '.join(sent) if sent != [] else '.' for sent in batch]
embeddings = []
for sent in batch:
vec = sent_to_vec(sent, params['tokenizer'], \
params['encoder'], params['pooling'], MAX_LENGTH)
embeddings.append(vec)
embeddings = np.vstack(embeddings)
embeddings = transform_and_normalize(embeddings,
kernel=params['whiten'][0],
bias=params['whiten'][1]
) # whitening
return embeddings
def run(model_name, test_path):
model_config = MODEL_ZOOS[model_name]
logging.info(f"{model_name} configs: {model_config}")
tokenizer, encoder = build_model(model_config['encoder'])
logging.info("Building {} tokenizer and model successfuly.".format(model_config['encoder']))
# Set params for senteval
params_senteval = {
'task_path': test_path,
'usepytorch': True,
'tokenizer': tokenizer,
'encoder': encoder,
'pooling': model_config['pooling'],
'n_components': model_config['n_components'],
'batch_size': BATCH_SIZE
}
se = senteval.engine.SE(params_senteval, batcher, prepare)
transfer_tasks = [
'STS12', 'STS13', 'STS14', 'STS15', 'STS16',
'SICKRelatednessCosin',
'STSBenchmarkCosin'
]
results = se.eval(transfer_tasks)
# Show results
table = PrettyTable(["Task", "Spearman"])
for task in transfer_tasks:
if task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']:
metric = results[task]['all']['spearman']['wmean']
elif task in ['SICKRelatednessCosin', 'STSBenchmarkCosin']:
metric = results[task]['spearman']
table.add_row([task, metric])
logging.info(f"{model_name} results:\n" + str(table))
def run_all_model():
for model_name in MODEL_ZOOS:
run(model_name, TEST_PATH)
if __name__ == "__main__":
# run('BERTbase-whiten-256(target)', TEST_PATH)
run_all_model()