-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhisper_server.py
40 lines (29 loc) · 1.03 KB
/
whisper_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python3
from fastapi import FastAPI, Request, UploadFile
import uvicorn
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
app = FastAPI()
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "./models/whisper-large-v3-turbo"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
@app.post("/whisper_api")
async def pic_detect(request: Request, file: UploadFile):
if request.method == "POST":
return pipe(file.file.read())
if __name__ == "__main__":
model.eval()
uvicorn.run(app, host="0.0.0.0", port=7860, workers=1)