forked from MD2Korg/CerebralCortex-2.0-legacy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·131 lines (97 loc) · 4.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) 2016, MD2K Center of Excellence
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import gzip
import time
import uuid
import os
import copy
from cerebralcortex.CerebralCortex import CerebralCortex
from cerebralcortex.data_processor.cStress import cStress
from cerebralcortex.data_processor.preprocessor import parser
from cerebralcortex.kernel.datatypes.datapoint import DataPoint
from cerebralcortex.kernel.datatypes.datastream import DataStream
from cerebralcortex.legacy import find
from cerebralcortex.model_development.model_development import cstress_model
argparser = argparse.ArgumentParser(description="Cerebral Cortex Test Application")
argparser.add_argument('--base_directory')
args = argparser.parse_args()
# To run this program, please specific a program argument for base_directory that is the path to the test data files.
# e.g. --base_directory /Users/hnat/data/
basedir = args.base_directory
configuration_file = os.path.join(os.path.dirname(__file__), 'cerebralcortex.yml')
CC = CerebralCortex(configuration_file, master="local[*]", name="Memphis cStress Development App")
def readfile(filename):
data = []
with gzip.open(filename, 'rt') as f:
count = 0
for l in f:
dp = parser.data_processor(l)
if isinstance(dp, DataPoint):
data.append(dp)
count += 1
if count > 200000:
break
return data
def readfile_ground_truth(filename):
data = []
with gzip.open(filename, 'rt') as f:
count = 0
for l in f:
dp = parser.ground_truth_data_processor(l)
if isinstance(dp, DataPoint):
data.append(dp)
return data
def loader(identifier: int):
participant = "SI%02d" % identifier
participant_uuid = uuid.uuid4()
try:
ecg = DataStream(None, participant_uuid)
ecg.data = readfile(find(basedir, {"participant": participant, "datasource": "ecg"}))
rip = DataStream(None, participant_uuid)
rip.data = readfile(find(basedir, {"participant": participant, "datasource": "rip"}))
accelx = DataStream(None, participant_uuid)
accelx.data = readfile(find(basedir, {"participant": participant, "datasource": "accelx"}))
accely = DataStream(None, participant_uuid)
accely.data = readfile(find(basedir, {"participant": participant, "datasource": "accely"}))
accelz = DataStream(None, participant_uuid)
accelz.data = readfile(find(basedir, {"participant": participant, "datasource": "accelz"}))
stress_marks = DataStream(None, participant_uuid)
stress_marks.data = readfile_ground_truth(find(basedir, {"participant": participant, "datasource": "stress_marks"}))
return {"participant": participant, "ecg": ecg, "rip": rip, "accelx": accelx, "accely": accely,
"accelz": accelz, "stress_marks": stress_marks}
except Exception as e:
print("File missing for %s" % participant)
return {"ERROR": 'missing data file'}
start_time = time.time()
ids = CC.sparkSession.sparkContext.parallelize([i for i in range(3, 5)])
data = ids.map(lambda i: loader(i)).filter(lambda x: 'participant' in x)
cstress_feature_vector = cStress(data)
features = cstress_feature_vector.collect()
features2 = copy.deepcopy(features)
cstress_model = cstress_model(features=features2)
# results = ids.map(loader)
# pprint(results.collect())
end_time = time.time()
print(end_time - start_time)