-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_NN.jl
264 lines (208 loc) · 8.06 KB
/
train_NN.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# TODO: minimise allocations in calculating the loss and evaluate batches as matrices somehow?
using Flux, Flux.Data
using SpecialFunctions: logbeta
using Distances
using StatsBase, Distributions
using OptimalTransport
using Base: @kwdef
using ProgressMeter
ProgressMeter.ijulia_behavior(:append)
ProgressMeter.ijulia_behavior(:clear)
include("nbmixture.jl")
include("nnet.jl")
include("compat_NN.jl")
"""
Compute the predicted distribution at input location `x` and
evaluate its pdf at points `yy`. Faster alternative to
`pdf(Distribution(model, x), yy)` for `MNBModel`s.
"""
function pred_pdf(model, x::AbstractVector, yy)
rr, pp, ww = model(x)
mix_nbpdf(rr, pp, ww, yy)
end
## Loss functions
function loss_kldivergence(x::AbstractVector, y::AbstractVector, model)
pred = pred_pdf(model, x, 0:length(y)-1)
Flux.kldivergence(pred, y)
end
function loss_reversekldivergence(x::AbstractVector, y::AbstractVector, model)
pred = pred_pdf(model, x, 0:length(y)-1)
Flux.kldivergence(y, pred)
end
# Equals KL divergence + const.
function loss_crossentropy(x::AbstractVector, y::AbstractVector, model)
pred = pred_pdf(model, x, 0:length(y)-1)
Flux.crossentropy(pred, y)
end
function loss_hellinger(x::AbstractVector, y::AbstractVector, model)
pred = pred_pdf(model, x, 0:length(y)-1)
hellinger(Float64.(pred), Float64.(y))
end
## Loss utility functions
"""
Computes the average loss over a batch. Here `X` is a vector of inputs
and `y` is the corresponding vector of outputs.
"""
function batch_loss(X::AbstractVector, y::AbstractVector, model;
loss = loss_crossentropy)
ret = loss(X[1], y[1], model)
@inbounds for i in 2:length(X)
ret += loss(X[i], y[i], model)
end
ret / length(X)
end
"""
Similar to `batch_loss`, but multi-threaded.
"""
function mean_loss(X::AbstractVector, y::AbstractVector, model;
loss = loss_crossentropy)
ret = zeros(Float32, Threads.nthreads())
Threads.@threads for i in 1:length(X)
ret[Threads.threadid()] += loss(X[i], y[i], model)
end
sum(ret) / length(X)
end
# For regularisation
sqnorm(x) = sum(abs2, x)
l2_loss(p) = sum(sqnorm, p)
##
"""
Wrapper struct for training hyperparameters
"""
struct TrainArgs{OT,DT}
lr::Float64 # Current learning rate
l2_reg::Float64 # L2 regularisation weight
max_rounds::Int # Maximum number of epochs
min_lr::Float64 # Minimum learning rate
batchsize::Int # Batch size
optimizer::Type{OT} # Optimizer (e.g. `Flux.ADAM`)
train_data::DT # Training dataset
valid_data::DT # Validation dataset
end
function TrainArgs(train_data, valid_data, optimizer = ADAM;
lr::Real,
max_rounds::Int,
batchsize::Int = 100,
l2_reg = 0,
min_lr::Real = lr / 32)
batchsize == 0 && (batchsize = length(train_data[1]))
TrainArgs(Float64(lr), Float64(l2_reg), max_rounds, Float64(min_lr), batchsize, optimizer,
train_data, valid_data)
end
##
"""
This struct captures some of the data generated while training Nessie.
"""
mutable struct NNTrainer{DL,MT,OT,AT <: TrainArgs}
train_loader::DL # Uses the `Flux.DataLoader` interface
train_losses::Vector{Float32} # Training loss at each epoch
valid_losses::Vector{Float32} # Validation loss at each epoch
lr_updates::Vector{Int} # Epochs at which the learning rate was updated
args::AT # Training arguments
model::MT # Model to train
opt::OT # Optimiser
end
function NNTrainer(args::TrainArgs, model)
train_loader = DataLoader(args.train_data, batchsize=args.batchsize, shuffle=true)
trainer = NNTrainer(train_loader, Float32[], Float32[], [1], args, model, args.optimizer(args.lr))
update_losses!(trainer)
trainer
end
"""
Compute training & validation losses at the current epoch and save them in the training struct.
"""
function update_losses!(trainer::NNTrainer)
train_loss = mean_loss(trainer.args.train_data[1], trainer.args.train_data[2], trainer.model; loss=loss_kldivergence)
valid_loss = mean_loss(trainer.args.valid_data[1], trainer.args.valid_data[2], trainer.model; loss=loss_kldivergence)
push!(trainer.train_losses, train_loss)
push!(trainer.valid_losses, valid_loss)
nothing
end
"""
Iteration facilities for the trainer. Each iteration increases the current round by 1 and
checks if the learning rate should be decreased at that round; if so, it changes the learning
rate. This function can mutate the trainer!
"""
Base.iterate(trainer::NNTrainer) = (length(trainer.train_losses), trainer)
function Base.iterate(iter, trainer::NNTrainer)
iter = length(trainer.train_losses)
iter < trainer.args.max_rounds || return nothing
if should_decrease_lr(trainer)
new_lr = trainer.opt.eta / 2
new_lr >= trainer.args.min_lr || return nothing
push!(trainer.lr_updates, iter)
trainer.opt = trainer.args.optimizer(new_lr)
end
(iter + 1, trainer)
end
##
"""
Decrease the learning rate if at least 50 rounds have passed since the
last decrease, and if the mean validation loss has changed by less than 0.5%
in the last 50 rounds.
"""
function should_decrease_lr(trainer::NNTrainer)
losses = trainer.valid_losses
round = length(losses)
round <= last(trainer.lr_updates) + 50 && return false
mean(losses[end-25:end]) > mean(losses[end-50:end-25]) * 0.995
end
##
"""
train_NN!(model, train_data, valid_data; kwargs...)
Train Nessie using the given training data and validation data. `train_data` and `valid_data` should be tuples
`(X, y)`, where `X` is a vector of input points and `y` the corresponding vector of training data. Returns
the training and validation losses for each epoch.
The following keyword arguments are supported by this function:
`threads`: use multithreading (defaults to `true`)
`loss`: loss function to use (defaults to `loss_crossentropy`)
All other keyword arguments will be passed to `TrainArgs` (see above).
"""
function train_NN!(model, train_data, valid_data;
threads=true, loss=loss_crossentropy, kwargs...)
args = TrainArgs(train_data, valid_data; kwargs...)
## Progress meter
progress = Progress(args.max_rounds; dt=1, desc="Training...")
trainer = NNTrainer(args, model)
for iter in trainer
train_round!(trainer, threads; loss)
ProgressMeter.next!(progress; showvalues = [(:iter, iter),
(:learning_rate, trainer.opt.eta),
(:train_loss, trainer.train_losses[end]),
(:valid_loss, trainer.valid_losses[end])])
end
finish!(progress)
trainer.train_losses, trainer.valid_losses
end
macro maybe_threaded(ex)
if Threads.nthreads() == 1
return esc(ex)
else
return esc(:(if threads
Threads.@threads $ex
else
$ex
end))
end
end
"""
Perform one training epoch.
"""
function train_round!(trainer::NNTrainer, threads::Bool=true; loss=loss_cross_entropy)
p = Flux.params(trainer.model)
nt = Threads.nthreads()
grads = Vector{Flux.Zygote.Grads}(undef, nt)
for (x, y) in trainer.train_loader
@maybe_threaded for i in 1:nt
grads[i] = Flux.gradient(p) do
batch_loss((@view x[i:nt:end]), (@view y[i:nt:end]), trainer.model; loss)
end
end
grad_total = reduce(.+, grads)
if trainer.args.l2_reg != 0
grad_total .+= Flux.gradient(() -> trainer.args.l2_reg * l2_loss(p), p)
end
Flux.Optimise.update!(trainer.opt, p, grad_total)
end
update_losses!(trainer)
end