-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathpreprocess.py
776 lines (662 loc) · 28.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import html
import logging
import re
from typing import List
import pyarabic.araby as araby
ACCEPTED_MODELS = [
"bert-base-arabertv01",
"bert-base-arabert",
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-base-arabertv02-twitter",
"bert-large-arabertv02",
"bert-large-arabertv2",
"bert-large-arabertv02-twitter",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
SEGMENTED_MODELS = [
"bert-base-arabert",
"bert-base-arabertv2",
"bert-large-arabertv2",
]
SECOND_GEN_MODELS = [
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-base-arabertv02-twitter",
"bert-large-arabertv02",
"bert-large-arabertv2",
"bert-large-arabertv02-twitter",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
TWEET_MODELS = [
"bert-base-arabertv02-twitter",
"bert-large-arabertv02-twitter",
]
PREFIX_LIST = [
"ال",
"و",
"ف",
"ب",
"ك",
"ل",
"لل",
"\u0627\u0644",
"\u0648",
"\u0641",
"\u0628",
"\u0643",
"\u0644",
"\u0644\u0644",
"س",
]
SUFFIX_LIST = [
"ه",
"ها",
"ك",
"ي",
"هما",
"كما",
"نا",
"كم",
"هم",
"هن",
"كن",
"ا",
"ان",
"ين",
"ون",
"وا",
"ات",
"ت",
"ن",
"ة",
"\u0647",
"\u0647\u0627",
"\u0643",
"\u064a",
"\u0647\u0645\u0627",
"\u0643\u0645\u0627",
"\u0646\u0627",
"\u0643\u0645",
"\u0647\u0645",
"\u0647\u0646",
"\u0643\u0646",
"\u0627",
"\u0627\u0646",
"\u064a\u0646",
"\u0648\u0646",
"\u0648\u0627",
"\u0627\u062a",
"\u062a",
"\u0646",
"\u0629",
]
# the never_split list is ussed with the transformers library
_PREFIX_SYMBOLS = [x + "+" for x in PREFIX_LIST]
_SUFFIX_SYMBOLS = ["+" + x for x in SUFFIX_LIST]
_OTHER_TOKENS = ["[رابط]", "[مستخدم]", "[بريد]"]
NEVER_SPLIT_TOKENS = list(set(_PREFIX_SYMBOLS + _SUFFIX_SYMBOLS + _OTHER_TOKENS))
URL_REGEXES = [
r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)",
r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS",
r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+",
r"www[a-zA-Z0-9_\-?=%&/.~]+",
r"[a-zA-Z]+\.com",
r"(?=http)[^\s]+",
r"(?=www)[^\s]+",
r"://",
]
USER_MENTION_REGEX = r"@[\w\d]+"
EMAIL_REGEXES = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"]
REDUNDANT_PUNCT_PATTERN = (
r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})"
)
REGEX_TATWEEL = r"(\D)\1{2,}"
MULTIPLE_CHAR_PATTERN = re.compile(r"(\D)\1{2,}", re.DOTALL)
REJECTED_CHARS_REGEX = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]"
REJECTED_CHARS_REGEXV2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]"
REGEX_URL_STEP1 = r"(?=http)[^\s]+"
REGEX_URL_STEP2 = r"(?=www)[^\s]+"
REGEX_URL = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)"
REGEX_MENTION = r"@[\w\d]+"
REGEX_EMAIL = r"\S+@\S+"
CHARS_REGEX = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘"
CHARS_REGEXV2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/"
WHITE_SPACED_DOUBLE_QUOTATION_REGEX = r'\"\s+([^"]+)\s+\"'
WHITE_SPACED_SINGLE_QUOTATION_REGEX = r"\'\s+([^']+)\s+\'"
WHITE_SPACED_BACK_QUOTATION_REGEX = r"\`\s+([^`]+)\s+\`"
WHITE_SPACED_EM_DASH = r"\—\s+([^—]+)\s+\—"
LEFT_SPACED_CHARS = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])"
RIGHT_SPACED_CHARS = r"([\[\(\{“«‘*\~]) "
LEFT_AND_RIGHT_SPACED_CHARS = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
_HINDI_NUMS = "٠١٢٣٤٥٦٧٨٩"
_ARABIC_NUMS = "0123456789"
HINDI_TO_ARABIC_MAP = str.maketrans(_HINDI_NUMS, _ARABIC_NUMS)
class ArabertPreprocessor:
"""
A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.
It also can unprocess the text ouput of the generated text
Args:
model_name (:obj:`str`): model name from the HuggingFace Models page without
the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found.
Current accepted models are:
- "bert-base-arabertv01"
- "bert-base-arabert"
- "bert-base-arabertv02"
- "bert-base-arabertv2"
- "bert-base-arabertv02-twitter"
- "bert-large-arabertv02"
- "bert-large-arabertv2"
- "bert-large-arabertv02-twitter"
- "araelectra-base"
- "araelectra-base-discriminator"
- "araelectra-base-generator"
- "araelectra-base-artydiqa"
- "aragpt2-base"
- "aragpt2-medium"
- "aragpt2-large"
- "aragpt2-mega"
remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts,
should be set to False when preprocessing TyDi QA.
replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls
and mentions by special tokens.
strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA,
KASRA, SUKUN, SHADDA).
strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'.
insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits
or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace
between words and numbers or numbers and words.
remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with
2 of this character.
replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02,
AraELECTRA and AraGPT2.
Set to False to force disable, and True to force enable. Replaces the "/" with "-",
since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary.
map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable.
Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995".
This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation),
and fixes the issue of caused by a bug when inserting white spaces.
apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable.
keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`None`): don't remove emojis while preprocessing.
Will be automatically set to True in AraBERT trained on tweets.
Returns:
ArabertPreprocessor: A preprocessor instance
Example:
from preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2")
arabert_prep.preprocess("SOME ARABIC TEXT")
"""
def __init__(
self,
model_name: str,
remove_html_markup: bool = True,
replace_urls_emails_mentions: bool = True,
strip_tashkeel: bool = True,
strip_tatweel: bool = True,
insert_white_spaces: bool = True,
remove_non_digit_repetition: bool = True,
keep_emojis: bool = None,
replace_slash_with_dash: bool = None,
map_hindi_numbers_to_arabic: bool = None,
apply_farasa_segmentation: bool = None,
):
model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "")
if model_name not in ACCEPTED_MODELS:
logging.warning(
"""Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor"""
)
self.model_name = "bert-base-arabertv02"
else:
self.model_name = model_name
if apply_farasa_segmentation is None:
if self.model_name in SEGMENTED_MODELS:
self.apply_farasa_segmentation = True
else:
self.apply_farasa_segmentation = False
else:
if (
apply_farasa_segmentation == False
and self.model_name in SEGMENTED_MODELS
):
logging.warning(
"The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!"
)
self.apply_farasa_segmentation = apply_farasa_segmentation
if self.apply_farasa_segmentation:
try:
from farasa.segmenter import FarasaSegmenter
self.farasa_segmenter = FarasaSegmenter(interactive=True)
except ModuleNotFoundError:
logging.error(
"farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy"
)
if keep_emojis is None:
if self.model_name in TWEET_MODELS:
self.keep_emojis = True
else:
self.keep_emojis = False
else:
if keep_emojis == False and self.model_name in TWEET_MODELS:
logging.warning(
"The selected model_name is trained on emojis, but keep_emojis was set to False!"
)
self.keep_emojis = keep_emojis
if self.keep_emojis:
import emoji
self.emoji = emoji
if self.apply_farasa_segmentation:
logging.warning(
"Keeping tweets with Farasa Segmentation is 10 times slower"
)
emoji_regex = "".join(list(self.emoji.UNICODE_EMOJI["en"].keys()))
self.REJECTED_CHARS_REGEX = "[^%s%s]" % (
CHARS_REGEX if self.model_name in SECOND_GEN_MODELS else CHARS_REGEXV2,
emoji_regex,
)
else:
self.REJECTED_CHARS_REGEX = (
REJECTED_CHARS_REGEX
if self.model_name in SECOND_GEN_MODELS
else REJECTED_CHARS_REGEXV2
)
self.remove_html_markup = remove_html_markup
self.replace_urls_emails_mentions = replace_urls_emails_mentions
self.strip_tashkeel = strip_tashkeel
self.strip_tatweel = strip_tatweel
self.insert_white_spaces = insert_white_spaces
self.remove_non_digit_repetition = remove_non_digit_repetition
if replace_slash_with_dash is None:
if self.model_name in SECOND_GEN_MODELS:
self.replace_slash_with_dash = True
else:
self.replace_slash_with_dash = False
else:
self.replace_slash_with_dash = replace_slash_with_dash
if map_hindi_numbers_to_arabic is None:
if self.model_name in SECOND_GEN_MODELS:
self.map_hindi_numbers_to_arabic = True
else:
self.map_hindi_numbers_to_arabic = False
else:
self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic
def preprocess(self, text: str) -> str:
"""
Preprocess takes an input text line an applies the same preprocessing used in AraBERT
pretraining, or according to settings
Args:
text (:obj:`str`): inout text string
Returns:
string: A preprocessed string depending on which model was selected
"""
if (
self.model_name == "bert-base-arabert"
or self.model_name == "bert-base-arabertv01"
):
return self._preprocess_v1(
text,
do_farasa_tokenization=self.apply_farasa_segmentation,
)
if self.model_name in SECOND_GEN_MODELS:
return self._preprocess_v2(text)
return self._preprocess_v3(text)
def unpreprocess(self, text: str, desegment: bool = True) -> str:
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
The objective is to make the generated text of any model appear natural and not preprocessed.
Args:
text (:obj:`str`): input text to be un-preprocessed
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
Returns:
str: The unpreprocessed (and possibly Farasa-desegmented) text.
"""
if self.apply_farasa_segmentation and desegment:
text = self.desegment(text)
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
# https://stackoverflow.com/a/53436792/5381220
text = re.sub(WHITE_SPACED_DOUBLE_QUOTATION_REGEX, '"' + r"\1" + '"', text)
text = re.sub(WHITE_SPACED_SINGLE_QUOTATION_REGEX, "'" + r"\1" + "'", text)
text = re.sub(WHITE_SPACED_BACK_QUOTATION_REGEX, "\`" + r"\1" + "\`", text)
text = re.sub(WHITE_SPACED_EM_DASH, "\—" + r"\1" + "\—", text)
# during generation, sometimes the models don't put a space after the dot, this handles it
text = text.replace(".", " . ")
text = " ".join(text.split())
# handle decimals
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
text = re.sub(LEFT_AND_RIGHT_SPACED_CHARS, r"\1", text)
text = re.sub(LEFT_SPACED_CHARS, r"\1", text)
text = re.sub(RIGHT_SPACED_CHARS, r"\1", text)
return text
def desegment(self, text: str) -> str:
"""
Use this function if sentence tokenization was done using
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
and after before the '+' for suffixes
Example:
>>> desegment('ال+ دراس +ات')
الدراسات
"""
text = text.replace("+ ", "+")
text = text.replace(" +", "+")
text = " ".join([self._desegmentword(word) for word in text.split(" ")])
return text
def _desegmentword(self, orig_word: str) -> str:
"""
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
Example:
>>> _desegmentword("ال+يومي+ة")
اليومية
"""
word = orig_word.replace("ل+ال+", "لل")
if "ال+ال" not in orig_word:
word = word.replace("ل+ال", "لل")
word = word.replace("+", "")
word = word.replace("للل", "لل")
return word
def _preprocess_v3(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in URL_REGEXES:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in EMAIL_REGEXES:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(USER_MENTION_REGEX, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(HINDI_TO_ARABIC_MAP)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])",
r" \1 ",
text,
)
# re-fix brackets
text = text.replace("[ رابط ]", "[رابط]")
text = text.replace("[ بريد ]", "[بريد]")
text = text.replace("[ مستخدم ]", "[مستخدم]")
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)",
r" \1 \2 ",
text,
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)",
r" \1 \2 ",
text,
)
# remove unwanted characters
text = re.sub(self.REJECTED_CHARS_REGEX, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if self.apply_farasa_segmentation:
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(self.emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(self.farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = self.farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v2(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in URL_REGEXES:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in EMAIL_REGEXES:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(USER_MENTION_REGEX, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(HINDI_TO_ARABIC_MAP)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])",
r" \1 ",
text,
)
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text
)
if self.replace_slash_with_dash:
text = text.replace("/", "-")
# remove unwanted characters
text = re.sub(self.REJECTED_CHARS_REGEX, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if (
self.model_name == "bert-base-arabertv2"
or self.model_name == "bert-large-arabertv2"
):
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(self.emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(self.farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = self.farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str:
"""
AraBERTv1 preprocessing Function
"""
text = str(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text)
text = re.sub("ـ", "", text)
text = re.sub("[«»]", ' " ', text)
if self.replace_urls_emails_mentions:
# replace the [رابط] token with space if you want to clean links
text = re.sub(REGEX_URL_STEP1, "[رابط]", text)
text = re.sub(REGEX_URL_STEP2, "[رابط]", text)
text = re.sub(REGEX_URL, "[رابط]", text)
text = re.sub(REGEX_EMAIL, "[بريد]", text)
text = re.sub(REGEX_MENTION, "[مستخدم]", text)
text = re.sub("…", r"\.", text).strip()
text = self._remove_redundant_punct(text)
if self.replace_urls_emails_mentions:
text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text)
text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text)
text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text)
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])",
r" \1 ",
text,
)
if do_farasa_tokenization:
text = self._tokenize_arabic_words_farasa(text)
text = " ".join(text.split())
return text
def _farasa_segment(self, text: str) -> str:
line_farasa = text.split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
if "+" not in word:
segmented_line.append(word)
continue
segmented_word = self._split_farasa_output(word)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _split_farasa_output(self, word: str) -> str:
segmented_word = []
temp_token = ""
for i, c in enumerate(word):
if c == "+":
# if the token is KAF, it could be a suffix or prefix
if temp_token == "ك":
# if we are at the second token, then KAF is surely a prefix
if i == 1:
segmented_word.append(temp_token + "+")
temp_token = ""
# If the KAF token is between 2 tokens
elif word[i - 2] == "+":
# if the previous token is prefix, then this KAF must be a prefix
if segmented_word[-1][-1] == "+":
segmented_word.append(temp_token + "+")
temp_token = ""
# else it is a suffix, this KAF could not be a second suffix
else:
segmented_word.append("+" + temp_token)
temp_token = ""
# if Kaf is at the end, this is handled with the statement after the loop
elif temp_token in PREFIX_LIST:
segmented_word.append(temp_token + "+")
temp_token = ""
elif temp_token in SUFFIX_LIST:
segmented_word.append("+" + temp_token)
temp_token = ""
else:
segmented_word.append(temp_token)
temp_token = ""
continue
temp_token += c
if temp_token != "":
if temp_token in SUFFIX_LIST:
segmented_word.append("+" + temp_token)
else:
segmented_word.append(temp_token)
return segmented_word
def _tokenize_arabic_words_farasa(self, line_input: str) -> str:
if self.keep_emojis:
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
line_farasa = []
for word in line_input.split():
if word in list(self.emoji.UNICODE_EMOJI["en"].keys()):
line_farasa.append(word)
else:
line_farasa.append(self.farasa_segmenter.segment(word))
else:
line_farasa = self.farasa_segmenter.segment(line_input).split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
segmented_word = []
for token in word.split("+"):
if token in PREFIX_LIST:
segmented_word.append(token + "+")
elif token in SUFFIX_LIST:
segmented_word.append("+" + token)
else:
segmented_word.append(token)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _remove_non_digit_repetition(self, text: str) -> str:
"""
:param text: the input text to remove elongation
:return: delongated text
"""
# loop over the number of times the regex matched the text
# OLD
# for index_ in range(len(re.findall(REGEX_TATWEEL, text))):
# elongation = re.search(REGEX_TATWEEL, text)
# if elongation:
# elongation_pattern = elongation.group()
# elongation_replacement = elongation_pattern[0]
# elongation_pattern = re.escape(elongation_pattern)
# text = re.sub(
# elongation_pattern, elongation_replacement, text, flags=re.MULTILINE
# )
# else:
# break
# New
text = MULTIPLE_CHAR_PATTERN.sub(r"\1\1", text)
return text
def _remove_redundant_punct(self, text: str) -> str:
text_ = text
result = re.search(REDUNDANT_PUNCT_PATTERN, text)
dif = 0
while result:
sub = result.group()
sub = sorted(set(sub), key=sub.index)
sub = " " + "".join(list(sub)) + " "
text = "".join(
(text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])
)
text_ = "".join(
(text_[: result.span()[0]], text_[result.span()[1] :])
).strip()
dif = abs(len(text) - len(text_))
result = re.search(REDUNDANT_PUNCT_PATTERN, text_)
text = re.sub(r"\s+", " ", text)
return text.strip()