forked from rasbt/machine-learning-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch18_part2.py
232 lines (124 loc) · 4.8 KB
/
ch18_part2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding: utf-8
import sys
from python_environment_check import check_packages
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.datasets import QM9
from torch_geometric.loader import DataLoader
from torch_geometric.nn import NNConv, global_add_pool
import numpy as np
from torch.utils.data import random_split
import matplotlib.pyplot as plt
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'torch': '1.8.0',
'torch_geometric': '2.0.2',
'numpy': '1.21.2',
'matplotlib': '3.4.3',
}
check_packages(d)
# # Chapter 18 - Graph Neural Networks for Capturing Dependencies in Graph Structured Data (Part 2/2)
# - [Implementing a GNN using the PyTorch Geometric library](#Implementing-a-GNN-using-the-PyTorch-Geometric-library)
# - [Other GNN layers and recent developments](#Other-GNN-layers-and-recent-developments)
# - [Spectral graph convolutions](#Spectral-graph-convolutions)
# - [Pooling](#Pooling)
# - [Normalization](#Normalization)
# - [Pointers to advanced graph neural network literature](#Pointers-to-advanced-graph-neural-network-literature)
# - [Summary](#Summary)
# ## Implementing a GNN using the PyTorch Geometric library
dset = QM9('.')
len(dset)
data = dset[0]
data
data.z
data.new_attribute = torch.tensor([1, 2, 3])
data
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
data.to(device)
data.new_attribute.is_cuda
class ExampleNet(torch.nn.Module):
def __init__(self,num_node_features,num_edge_features):
super().__init__()
conv1_net = nn.Sequential(nn.Linear(num_edge_features, 32),
nn.ReLU(),
nn.Linear(32, num_node_features*32))
conv2_net = nn.Sequential(nn.Linear(num_edge_features,32),
nn.ReLU(),
nn.Linear(32, 32*16))
self.conv1 = NNConv(num_node_features, 32, conv1_net)
self.conv2 = NNConv(32, 16, conv2_net)
self.fc_1 = nn.Linear(16, 32)
self.out = nn.Linear(32, 1)
def forward(self, data):
batch, x, edge_index, edge_attr=data.batch, data.x, data.edge_index, data.edge_attr
x = F.relu(self.conv1(x, edge_index, edge_attr))
x = F.relu(self.conv2(x, edge_index, edge_attr))
x = global_add_pool(x,batch)
x = F.relu(self.fc_1(x))
output = self.out(x)
return output
train_set, valid_set, test_set = random_split(dset,[110000, 10831, 10000])
trainloader = DataLoader(train_set, batch_size=32, shuffle=True)
validloader = DataLoader(valid_set, batch_size=32, shuffle=True)
testloader = DataLoader(test_set, batch_size=32, shuffle=True)
qm9_node_feats, qm9_edge_feats = 11, 4
epochs = 4
net = ExampleNet(qm9_node_feats, qm9_edge_feats)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
epochs = 4
target_idx = 1 # index position of the polarizability label
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
for total_epochs in range(epochs):
epoch_loss = 0
total_graphs = 0
net.train()
for batch in trainloader:
batch.to(device)
optimizer.zero_grad()
output = net(batch)
loss = F.mse_loss(output, batch.y[:, target_idx].unsqueeze(1))
loss.backward()
epoch_loss += loss.item()
total_graphs += batch.num_graphs
optimizer.step()
train_avg_loss = epoch_loss / total_graphs
val_loss = 0
total_graphs = 0
net.eval()
for batch in validloader:
batch.to(device)
output = net(batch)
loss = F.mse_loss(output,batch.y[:, target_idx].unsqueeze(1))
val_loss += loss.item()
total_graphs += batch.num_graphs
val_avg_loss = val_loss / total_graphs
print(f"Epochs: {total_epochs} | epoch avg. loss: {train_avg_loss:.2f} | validation avg. loss: {val_avg_loss:.2f}")
net.eval()
predictions = []
real = []
for batch in testloader:
output = net(batch.to(device))
predictions.append(output.detach().cpu().numpy())
real.append(batch.y[:, target_idx].detach().cpu().numpy())
predictions = np.concatenate(predictions)
real = np.concatenate(real)
plt.scatter(real[:500],predictions[:500])
plt.ylabel('Predicted isotropic polarizability')
plt.xlabel('Isotropic polarizability')
#plt.savefig('figures/18_12.png', dpi=300)
# ## Other GNN layers and recent developments
# ### Spectral graph convolutions
# ### Pooling
# ### Normalization
# ### Pointers to advanced graph neural network literature
# ## Summary
# ---
#
# Readers may ignore the next cell.