forked from LukaDokovic/BALuka
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fresnel.py
163 lines (137 loc) · 6.36 KB
/
Fresnel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# ------------------------------------------------------------------------------
#
# Gmsh Python tutorial 2
#
# Transformations, extruded geometries, volumes
#
# ------------------------------------------------------------------------------
import gmsh
import sys
import math
# If sys.argv is passed to gmsh.initialize(), Gmsh will parse the command line
# in the same way as the standalone Gmsh app:
gmsh.initialize(sys.argv)
gmsh.model.add("t2")
# Copied from `t1.py'...
lc = 1e-2
gmsh.model.geo.addPoint(0, 0, 0, lc, 1)
gmsh.model.geo.addPoint(.1, 0, 0, lc, 2)
gmsh.model.geo.addPoint(.1, .3, 0, lc, 3)
gmsh.model.geo.addPoint(0, .3, 0, lc, 4)
gmsh.model.geo.addLine(1, 2, 1)
gmsh.model.geo.addLine(3, 2, 2)
gmsh.model.geo.addLine(3, 4, 3)
gmsh.model.geo.addLine(4, 1, 4)
gmsh.model.geo.addCurveLoop([4, 1, -2, 3], 1)
gmsh.model.geo.addPlaneSurface([1], 1)
gmsh.model.geo.synchronize()
gmsh.model.addPhysicalGroup(1, [1, 2, 4], 5)
gmsh.model.addPhysicalGroup(2, [1], name="My surface")
# We can then add new points and curves in the same way as we did in `t1.py':
gmsh.model.geo.addPoint(0, .4, 0, lc, 5)
gmsh.model.geo.addLine(4, 5, 5)
# But Gmsh also provides tools to transform (translate, rotate, etc.)
# elementary entities or copies of elementary entities. Geometrical
# transformations take a vector of pairs of integers as first argument, which
# contains the list of entities, represented by (dimension, tag) pairs. For
# example, the point 5 (dimension=0, tag=5) can be moved by 0.02 to the left
# (dx=-0.02, dy=0, dz=0) with
gmsh.model.geo.translate([(0, 5)], -0.02, 0, 0)
# And it can be further rotated by -Pi/4 around (0, 0.3, 0) (with the rotation
# along the z axis) with:
gmsh.model.geo.rotate([(0, 5)], 0, 0.3, 0, 0, 0, 1, -math.pi / 4)
# Note that there are no units in Gmsh: coordinates are just numbers - it's
# up to the user to associate a meaning to them.
# Point 3 can be duplicated and translated by 0.05 along the y axis by using the
# copy() function, which takes a vector of (dim, tag) pairs as input, and
# returns another vector of (dim, tag) pairs:
ov = gmsh.model.geo.copy([(0, 3)])
gmsh.model.geo.translate(ov, 0, 0.05, 0)
# The new point tag is available in ov[0][1], and can be used to create new
# lines:
gmsh.model.geo.addLine(3, ov[0][1], 7)
gmsh.model.geo.addLine(ov[0][1], 5, 8)
gmsh.model.geo.addCurveLoop([5, -8, -7, 3], 10)
gmsh.model.geo.addPlaneSurface([10], 11)
# In the same way, we can translate copies of the two surfaces 1 and 11 to the
# right with the following command:
ov = gmsh.model.geo.copy([(2, 1), (2, 11)])
gmsh.model.geo.translate(ov, 0.12, 0, 0)
print("New surfaces " + str(ov[0][1]) + " and " + str(ov[1][1]))
# Volumes are the fourth type of elementary entities in Gmsh. In the same way
# one defines curve loops to build surfaces, one has to define surface loops
# (i.e. `shells') to build volumes. The following volume does not have holes and
# thus consists of a single surface loop:
gmsh.model.geo.addPoint(0., 0.3, 0.12, lc, 100)
gmsh.model.geo.addPoint(0.1, 0.3, 0.12, lc, 101)
gmsh.model.geo.addPoint(0.1, 0.35, 0.12, lc, 102)
# We would like to retrieve the coordinates of point 5 to create point 103, so
# we synchronize the model, and use `getValue()'
gmsh.model.geo.synchronize()
xyz = gmsh.model.getValue(0, 5, [])
gmsh.model.geo.addPoint(xyz[0], xyz[1], 0.12, lc, 103)
gmsh.model.geo.addLine(4, 100, 110)
gmsh.model.geo.addLine(3, 101, 111)
gmsh.model.geo.addLine(6, 102, 112)
gmsh.model.geo.addLine(5, 103, 113)
gmsh.model.geo.addLine(103, 100, 114)
gmsh.model.geo.addLine(100, 101, 115)
gmsh.model.geo.addLine(101, 102, 116)
gmsh.model.geo.addLine(102, 103, 117)
gmsh.model.geo.addCurveLoop([115, -111, 3, 110], 118)
gmsh.model.geo.addPlaneSurface([118], 119)
gmsh.model.geo.addCurveLoop([111, 116, -112, -7], 120)
gmsh.model.geo.addPlaneSurface([120], 121)
gmsh.model.geo.addCurveLoop([112, 117, -113, -8], 122)
gmsh.model.geo.addPlaneSurface([122], 123)
gmsh.model.geo.addCurveLoop([114, -110, 5, 113], 124)
gmsh.model.geo.addPlaneSurface([124], 125)
gmsh.model.geo.addCurveLoop([115, 116, 117, 114], 126)
gmsh.model.geo.addPlaneSurface([126], 127)
gmsh.model.geo.addSurfaceLoop([127, 119, 121, 123, 125, 11], 128)
gmsh.model.geo.addVolume([128], 129)
# When a volume can be extruded from a surface, it is usually easier to use the
# `extrude()' function directly instead of creating all the points, curves and
# surfaces by hand. For example, the following command extrudes the surface 11
# along the z axis and automatically creates a new volume (as well as all the
# needed points, curves and surfaces). As expected, the function takes a vector
# of (dim, tag) pairs as input as well as the translation vector, and returns a
# vector of (dim, tag) pairs as output:
ov2 = gmsh.model.geo.extrude([ov[1]], 0, 0, 0.12)
# Mesh sizes associated to geometrical points can be set by passing a vector of
# (dim, tag) pairs for the corresponding points:
gmsh.model.geo.mesh.setSize([(0, 103), (0, 105), (0, 109), (0, 102), (0, 28),
(0, 24), (0, 6), (0, 5)], lc * 3)
# We finish by synchronizing the data from the built-in CAD kernel with the Gmsh
# model:
gmsh.model.geo.synchronize()
# We group volumes 129 and 130 in a single physical group with tag `1' and name
# "The volume":
gmsh.model.addPhysicalGroup(3, [129, 130], 1, "The volume")
# We finally generate and save the mesh:
gmsh.model.mesh.generate(3)
gmsh.write("t2.msh")
# Note that, if the transformation tools are handy to create complex geometries,
# it is also sometimes useful to generate the `flat' geometry, with an explicit
# representation of all the elementary entities.
#
# With the built-in CAD kernel, this can be achieved by saving the model in the
# `Gmsh Unrolled GEO' format:
#
# gmsh.write("t2.geo_unrolled");
#
# With the OpenCASCADE CAD kernel, unrolling the geometry can be achieved by
# exporting in the `OpenCASCADE BRep' format:
#
# gmsh.write("t2.brep");
#
# (OpenCASCADE geometries can also be exported as STEP files.)
# It is important to note that Gmsh never translates geometry data into a common
# representation: all the operations on a geometrical entity are performed
# natively with the associated CAD kernel. Consequently, one cannot export a
# geometry constructed with the built-in kernel as an OpenCASCADE BRep file; or
# export an OpenCASCADE model as an Unrolled GEO file.
# Launch the GUI to see the results:
if '-nopopup' not in sys.argv:
gmsh.fltk.run()
gmsh.finalize()