forked from wzchen/stock_market_prediction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_tuner.py
211 lines (166 loc) · 6.98 KB
/
model_tuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
import numpy as np
import math
from math import log
from sklearn import metrics,preprocessing,cross_validation
from sklearn.feature_extraction.text import TfidfVectorizer
import sklearn.linear_model as lm
import pandas as p
from time import gmtime, strftime
import scipy
import sys
import sklearn.decomposition
from sklearn.metrics import mean_squared_error
from string import punctuation
from sklearn.neighbors import RadiusNeighborsRegressor, KNeighborsRegressor
import time
from scipy import sparse
from matplotlib import *
from itertools import combinations
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, ExtraTreesClassifier
import operator
from sklearn import svm
# <codecell>
def tied_rank(x):
"""
This function is by Ben Hamner and taken from https://github.com/benhamner/Metrics/blob/master/Python/ml_metrics/auc.py
Computes the tied rank of elements in x.
This function computes the tied rank of elements in x.
Parameters
----------
x : list of numbers, numpy array
Returns
-------
score : list of numbers
The tied rank f each element in x
"""
sorted_x = sorted(zip(x,range(len(x))))
r = [0 for k in x]
cur_val = sorted_x[0][0]
last_rank = 0
for i in range(len(sorted_x)):
if cur_val != sorted_x[i][0]:
cur_val = sorted_x[i][0]
for j in range(last_rank, i):
r[sorted_x[j][1]] = float(last_rank+1+i)/2.0
last_rank = i
if i==len(sorted_x)-1:
for j in range(last_rank, i+1):
r[sorted_x[j][1]] = float(last_rank+i+2)/2.0
return r
def auc(actual, posterior):
"""
This function is by Ben Hamner and taken from https://github.com/benhamner/Metrics/blob/master/Python/ml_metrics/auc.py
Computes the area under the receiver-operater characteristic (AUC)
This function computes the AUC error metric for binary classification.
Parameters
----------
actual : list of binary numbers, numpy array
The ground truth value
posterior : same type as actual
Defines a ranking on the binary numbers, from most likely to
be positive to least likely to be positive.
Returns
-------
score : double
The mean squared error between actual and posterior
"""
r = tied_rank(posterior)
num_positive = len([0 for x in actual if x==1])
num_negative = len(actual)-num_positive
sum_positive = sum([r[i] for i in range(len(r)) if actual[i]==1])
auc = ((sum_positive - num_positive*(num_positive+1)/2.0) /
(num_negative*num_positive))
sys.stdout.write('.')
return auc
def auc_scorer(estimator, X, y):
predicted = estimator.predict_proba(X)[:,1]
return auc(y, predicted)
def normalize10day(stocks):
def process_column(i):
if operator.mod(i, 5) == 1:
return stocks[:,i] * 0
if operator.mod(i, 5) == 2:
return stocks[:,i] * 0
if operator.mod(i, 5) == 4:
return stocks[:,i] * 0
#return np.log(stocks[:,i] + 1)
else:
return stocks[:,i] / stocks[:,0]
n = stocks.shape[0]
stocks_dat = np.array([ process_column(i) for i in range(46)]).transpose()
#stocks_movingavgO9O10 = np.array([int(i > j) for i,j in zip(stocks_dat[:,45], stocks_dat[:,40])]).reshape((n, 1))
#stocks_movingavgC9O10 = np.array([int(i > j) for i,j in zip(stocks_dat[:,45], stocks_dat[:,43])]).reshape((n, 1))
#return np.hstack((stocks_dat, stocks_movingavgO9O10, stocks_movingavgC9O10))
return stocks_dat
# <codecell>
# <codecell>
print "loading data.."
train = np.array(p.read_table('./training.csv', sep = ","))
test = np.array(p.read_table('./test.csv', sep = ","))
################################################################################
# READ IN THE TEST DATA
################################################################################
# all data from opening 1 to straight to opening 10
X_test_stockdata = normalize10day(test[:,range(2, 48)]) # load in test data
X_test_stockindicators = np.vstack((np.identity(94)[:,range(93)] for i in range(25)))
#X_test = np.hstack((X_test_stockindicators, X_test_stockdata))
X_test = X_test_stockdata
#np.identity(94)[:,range(93)]
################################################################################
# READ IN THE TRAIN DATA
################################################################################
n_windows = 490
windows = range(n_windows)
X_windows = [train[:,range(1 + 5*w, 47 + 5*w)] for w in windows]
X_windows_normalized = [normalize10day(w) for w in X_windows]
X_stockdata = np.vstack(X_windows_normalized)
X_stockindicators = np.vstack((np.identity(94)[:,range(93)] for i in range(n_windows)))
#X = np.hstack((X_stockindicators, X_stockdata))
X = X_stockdata
# read in the response variable
y_stockdata = np.vstack([train[:, [46 + 5*w, 49 + 5*w]] for w in windows])
y = (y_stockdata[:,1] - y_stockdata[:,0] > 0) + 0
print "this step done"
# <codecell>
print "preparing models"
modelname = "lasso"
if modelname == "ridge":
C = np.linspace(300, 5000, num = 10)[::-1]
models = [lm.LogisticRegression(penalty = "l2", C = c) for c in C]
if modelname == "lasso":
C = np.linspace(300, 5000, num = 10)[::-1]
models = [lm.LogisticRegression(penalty = "l1", C = c) for c in C]
if modelname == "sgd":
C = np.linspace(0.00005, .01, num = 5)
models = [lm.SGDClassifier(loss = "log", penalty = "l2", alpha = c, warm_start = False) for c in C]
if modelname == "randomforest":
C = np.linspace(50, 300, num = 10)
models = [RandomForestClassifier(n_estimators = int(c)) for c in C]
print "calculating cv scores"
cv_scores = [0] * len(models)
for i, model in enumerate(models):
# for all of the models, save the cross-validation scores into the array cv_scores
cv_scores[i] = np.mean(cross_validation.cross_val_score(model, X, y, cv=5, scoring = auc_scorer))
#cv_scores[i] = np.mean(cross_validation.cross_val_score(model, X, y, cv=5, score_func = auc))
print " (%d/%d) C = %f: CV = %f" % (i + 1, len(C), C[i], cv_scores[i])
# find which model and C is the best
best = cv_scores.index(max(cv_scores))
best_model = models[best]
best_cv = cv_scores[best]
best_C = C[best]
print "BEST %f: %f" % (best_C, best_cv)
print "training on full data"
# fit the best model on the full data
best_model.fit(X, y)
print "prediction"
# do a prediction and save it
pred = best_model.predict_proba(X_test)[:,1]
testfile = p.read_csv('./test.csv', sep=",", na_values=['?'], index_col=[0,1])
# submit as D multiplied by 100 + stock id
testindices = [100 * D + StId for (D, StId) in testfile.index]
pred_df = p.DataFrame(np.vstack((testindices, pred)).transpose(), columns=["Id", "Prediction"])
pred_df.to_csv('./predictions/' + modelname + '/' + modelname + ' ' + strftime("%m-%d %X") + " C-" + str(round(best_C,4)) + " CV-" + str(round(best_cv, 4)) + ".csv", index = False)
print "submission file created"