-
Notifications
You must be signed in to change notification settings - Fork 1
/
processor.py
62 lines (55 loc) · 2.21 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2022 AstroLab Software
# Author: Julien Peloton
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import numpy as np
from mymodule.utils import apply_selection_cuts
from mymodule.utils import return_fitted_slope
from mymodule.utils import linear_model
def compute_g_slope(
midpointtais: pd.Series,
filternames: pd.Series,
psfluxes: pd.Series,
min_hist_length=2):
""" Compute the slope for the g-band data
Parameters
----------
midpointtais: pd.Series
Pandas series. Each row (array of floats) contains
all the times (lightcurve = current measurement + history) for an alert
filternames: pd.Series
Pandas series. Each row (array of strings) contains
all the filter names (lightcurve = current measurement + history) for
an alert.
psfluxes: pd.Series
Pandas series. Each row (array of floats) contains
all the fluxes (lightcurve = current measurement + history) for an alert
min_hist_length: int, optional
Minimum number of measurements in g band in the lightcurve to
compute the slope. Default (and minimum) is 2.
"""
# Set defaut values
slopes = pd.Series([np.nan] * len(midpointtais), dtype=float)
# Define which alerts will be processed
mask = apply_selection_cuts(
filternames, min_hist_length=min_hist_length
)
# return default if no alerts survive the cuts
if len(midpointtais[mask]) == 0:
return slopes
# Compute slopes in the g-band
slopes[mask] = pd.DataFrame([midpointtais[mask], psfluxes[mask]])\
.apply(lambda x: return_fitted_slope(linear_model, *x))
# return information for ALL incoming alerts
return slopes