You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
It is time to define the HBase table schemas that will be used for LSST alerts.
The ZTF strategy
For ZTF, we had a brute force strategy:
main table: contains ALL original fields, including image stamps
auxiliary tables: contains a subset of all fields (typically a couple of dozens)
This led to huge tables (as of 2024/09):
7.5 T 7.5 T /hbase_fink2/data/default/ztf
193.6 M 193.6 M /hbase_fink2/data/default/ztf.anomaly
642.0 G 642.0 G /hbase_fink2/data/default/ztf.class
562.4 G 562.4 G /hbase_fink2/data/default/ztf.jd
9.5 K 9.5 K /hbase_fink2/data/default/ztf.metadata
1.9 M 1.9 M /hbase_fink2/data/default/ztf.orb_cand
38.2 G 38.2 G /hbase_fink2/data/default/ztf.pixel128
9.8 G 9.8 G /hbase_fink2/data/default/ztf.pixel131072
9.4 G 9.4 G /hbase_fink2/data/default/ztf.pixel4096
61.3 G 61.3 G /hbase_fink2/data/default/ztf.ssnamenr
20.3 M 20.3 M /hbase_fink2/data/default/ztf.sso_cand
201.0 M 201.0 M /hbase_fink2/data/default/ztf.sso_resolver
3.6 K 3.6 K /hbase_fink2/data/default/ztf.ssocand_oid
1.1 G 1.1 G /hbase_fink2/data/default/ztf.tns
125.9 M 125.9 M /hbase_fink2/data/default/ztf.tns_resolver
585.7 M 585.7 M /hbase_fink2/data/default/ztf.tracklet
315.9 G 315.9 G /hbase_fink2/data/default/ztf.upper
59.2 G 59.2 G /hbase_fink2/data/default/ztf.uppervalid
Note that the auxiliary ztf.class table for example is up to 10% of the main table! While this strategy has some advantages (procedure is simple, all data available), it is not optimal: a lot of data duplication, heavy writes (because of images), and a lot of zombie data (things never accessed).
The main conclusion of that study is that we should use snappy compression, and limit the number of images stored on the portal. Here is a typical table initialisation:
It is time to define the HBase table schemas that will be used for LSST alerts.
The ZTF strategy
For ZTF, we had a brute force strategy:
This led to huge tables (as of 2024/09):
Note that the auxiliary
ztf.class
table for example is up to 10% of the main table! While this strategy has some advantages (procedure is simple, all data available), it is not optimal: a lot of data duplication, heavy writes (because of images), and a lot of zombie data (things never accessed).LSST strategy
Main vs auxiliary
TBD
Compression
[Login required] some optimisation work was done on compression & cell versionning: https://gitlab.in2p3.fr/fink/rubin-performance-check/-/tree/main/hbase?ref_type=heads
The main conclusion of that study is that we should use snappy compression, and limit the number of images stored on the portal. Here is a typical table initialisation:
Salting
TBD
The text was updated successfully, but these errors were encountered: