-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
621 lines (515 loc) · 21.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
#!/usr/bin/env python2
'''
ENPM 661 Spring 2019
Final Project: Quadcopter Exploration
Authors:
Ashwin Varghese Kuruttukulam([email protected])
Rachith Prakash ([email protected])
Mithun Bharadwaj ([email protected])
Graduate Students in Robotics,
University of Maryland, College Park
'''
import sys
import vrep
import PID
import rospy
import quad_helper
import tf.transformations
from geometry_msgs.msg import Pose
import numpy as np
import time
import cv2
import math
import time
from matplotlib import pyplot as plt
from InsideCellPlanning import InsideCellPlanning
np.set_printoptions(threshold=sys.maxsize)
class pos_pub:
def __init__(self):
print 'started'
# Init vrep client
vrep.simxFinish(-1)
# list obstacles in vrep here for it to get detected and mapped into obstacle space
objectsList = ['Wall1','Wall2','Wall3','Wall4','Wall5','Wall6', 'Right_Wall', 'Bottom_Wall', 'Top_Wall', 'Left_Wall']
# resolution where 0.01 corresponds to 1cm in the simulator
resolution = 0.02
# the delay between consecutive movment of the quad
self.moveDelay = 0.4
# get clientID
self.clientID = vrep.simxStart('127.0.0.1', 19997, True, True, 5000, 5)
if self.clientID != -1:
#The quad helper contains function implementations for various quadcopter functions
self.quad_functions = quad_helper.quad_helper(self.clientID)
print('Main Script Started')
# self.quad_functions.init_sensors()
self.quad_functions.start_sim()
#Setting initial time
init_time = time.time()
d1=0
#Initialize flags
self.obstacleAvoidFlag = False
#Getting map size from the top wall and left wall length
err,topWallHandle = vrep.simxGetObjectHandle(self.clientID,'Top_Wall',vrep.simx_opmode_blocking)
err,self.halfTopWallLen = vrep.simxGetObjectFloatParameter(self.clientID,topWallHandle,18,vrep.simx_opmode_blocking)
err,leftWallHandle = vrep.simxGetObjectHandle(self.clientID,'Left_Wall',vrep.simx_opmode_blocking)
err,self.halfLeftWallLen = vrep.simxGetObjectFloatParameter(self.clientID,leftWallHandle,19,vrep.simx_opmode_blocking)
# used for simulation purpose only!!
positions = [[0,0,3],[0,1,3],[-1,1,3],[-2,1,3],[-2,2,3],[-2,3,3],[-1,3,3],[0,3,3],[1,3,3]]
# Rate init
# self.rate = rospy.Rate(20.0) # MUST be more then 20Hz
#Initializing publishers
# rospy.Subscriber("/quad_explore/target_position", Pose, self.posCb)
#Code to shift the origin from the center to the bottom left
obstOccMat = self.createObstacleOccupancyMat(objectsList,self.clientID,resolution)
corners_cell_wise, image_with_cells = self.cellDecomposition(obstOccMat)
nCells = corners_cell_wise.shape[0]
self.cellOccupancyFlag = np.zeros(nCells).tolist()
print self.cellOccupancyFlag
startPos = [1,1]
err,self.quadHandle = vrep.simxGetObjectHandle(self.clientID,'Quadricopter',vrep.simx_opmode_blocking)
err = vrep.simxSetObjectPosition(self.clientID,self.quadHandle, -1, [startPos[0]-self.halfTopWallLen, startPos[1]-self.halfLeftWallLen, 1.0], vrep.simx_opmode_blocking)
for _ in range(50):
vrep.simxSynchronousTrigger(self.clientID)
startPos = [int(startPos[1]/resolution), int(startPos[0]/resolution)]
# endPos = [3,5]
# endPos = [int(endPos[1]/resolution),int(endPos[0]/resolution)]
# astarDist, path = self.astar(startPos,endPos, obstOccMat)
# endPos = [3,5]
# untul all cells are covered, run the algorithm!
while 0 in self.cellOccupancyFlag:
# get the closest cell to the current position
currCell = self.moveToClosestCorner(corners_cell_wise,resolution,obstOccMat)
# change coordinates from (x,y) to (y,x)
currCellYX = self.convertCornerstoYX(currCell)
# get current position of the quad
err, obj_pos_origin = vrep.simxGetObjectPosition(self.clientID, self.quadHandle,self.originHandle,vrep.simx_opmode_blocking)
start_pos_origin = [int(obj_pos_origin[1]/resolution),int(obj_pos_origin[0]/resolution)]
# create a new image of same size as obstcale map where everything other than the current cell is an obstacle space
cell_image = np.ones_like(obstOccMat, dtype=np.uint8)*255
cell_image[int(currCellYX[0, 0]): int(currCellYX[3, 0]), int(currCellYX[0, 1]):int(currCellYX[3, 1])] = 0
# generate a path to traverse optimally inside the cell and process it
path = InsideCellPlanning(start_pos_origin, currCellYX, cell_image, 10, 10)
# path = np.hstack((path, 0.5*(1/resolution)*np.ones((path.shape[0], 1), dtype = np.uint8)))
# path = (path*resolution).tolist()
path = self.make3dPath(path,resolution)
# move according to the path generated above
self.simPath(path, self.moveDelay, resolution)
print self.cellOccupancyFlag
for _ in range(100): # wait sometime for the quad to settle in
vrep.simxSynchronousTrigger(self.clientID)
def make3dPath(self,path,resolution):
twoDpath = path.copy()
twoDpath = twoDpath.tolist()
threeDPath = []
for twoDpos in twoDpath:
threeDPath.append([twoDpos[0]*resolution,twoDpos[1]*resolution,0.5])
twoDpath.reverse()
for twoDpos in twoDpath:
threeDPath.append([twoDpos[0]*resolution,twoDpos[1]*resolution,1.2])
twoDpath.reverse()
for twoDpos in twoDpath:
threeDPath.append([twoDpos[0]*resolution,twoDpos[1]*resolution,2])
lastPos = twoDpath[-1]
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,1.7])
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,1.5])
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,1.1])
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,0.9])
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,0.7])
threeDPath.append([lastPos[0]*resolution,lastPos[1]*resolution,0.5])
return threeDPath
'''
This function converts the xy coordinates to yx coordinates
'''
def convertCornerstoYX(self,xycoordinates):
X = xycoordinates[:,0].reshape(4,1)
Y = xycoordinates[:,1].reshape(4,1)
yxcoordinates = np.hstack((Y,X))
return yxcoordinates
def getNearestCorners(self, corners_cell_wise, current_position, resolution):
radius = 200
flag = False
corner_list = []
cell_list = []
# go through each corner until you find a corner and then return the cell(corners) and the corner
while not flag:
for indCell, cell in enumerate(corners_cell_wise):
if not self.cellOccupancyFlag[indCell]:
for ind, corner in enumerate(cell):
if (((current_position[0]/resolution)-corner[0])**2 + ((current_position[1]/resolution)-corner[1])**2 - radius**2)<= 0:
flag = True
corner_list.append([corner, ind])
cell_list.append(cell)
# if flag:
# break
radius += 100
if radius >= 1000:
break
# print 'radius', radius
return corner_list, cell_list, flag
'''
This function moves the quadcopter to the closest corner
'''
def moveToClosestCorner(self, corners_cell_wise, resolution, obstOccMat):
err, obj_pos = vrep.simxGetObjectPosition(self.clientID, self.quadHandle,-1, vrep.simx_opmode_blocking)
err, obj_pos_origin = vrep.simxGetObjectPosition(self.clientID, self.quadHandle, self.originHandle,vrep.simx_opmode_blocking)
# go through each corner of every cell and get nearest corners
corners, cells, retVal = self.getNearestCorners(corners_cell_wise, obj_pos, resolution)
if not retVal:
print "No corner found to be within reach. Please check your code/map. Thank you!"
self.quitGrace()
dist = []
path = []
for corner in corners:
if corner[1] == 0:
endPos = [int(corner[0][1]+2), int(corner[0][0]+2)]
elif corner[1] == 1:
endPos = [int(corner[0][1]+2), int(corner[0][0]-2)]
elif corner[1] == 2:
endPos = [int(corner[0][1]-2), int(corner[0][0]+2)]
else:
endPos = [int(corner[0][1]-2), int(corner[0][0]-2)]
start_pos_origin = [int(obj_pos_origin[1]/resolution), int(obj_pos_origin[0]/resolution)]
# print start_pos_origin
try:
astarDist, astarPath = self.astar(start_pos_origin, endPos, obstOccMat)
except:
print corner
print obstOccMat[start_pos_origin[0], start_pos_origin[1]]
print 'ASTAR FAILED'
self.quitGrace()
dist.append(astarDist)
path.append(astarPath)
# get cell, path, corner according to least A-start distance
ind = np.argmin(dist)
next_cell = np.array(cells[ind])
next_corner = np.array(corners[ind])
# getting new path and make path more sparse for faster movement
old_next_path = np.array(path[ind])
index = [i for i in range(len(old_next_path)) if i%5==0]
next_path = old_next_path[index, :]
next_path = np.vstack((next_path, old_next_path[-1,:]))
next_path = np.hstack((next_path, 0.5*(1/resolution)*np.ones((next_path.shape[0], 1), dtype = np.uint8)))
next_path = (next_path*resolution).tolist()
self.simPath(next_path, self.moveDelay-0.1, resolution)
# update the cell being occupied
complete_list = corners_cell_wise.tolist()
update = next_cell.tolist()
ind = complete_list.index(update)
self.cellOccupancyFlag[ind] = 1.0
return next_cell
'''
Quit Gracefully
'''
def quitGrace(self):
vrep.simxStopSimulation(self.clientID, vrep.simx_opmode_blocking)
quit()
'''
Target Positon callback
'''
def posCb(self,data):
position = data.pose.position
self.quad_pos = [position.x,position.y,position.z]
'''
Function to move the quad according to the input path
'''
def simPath(self,path,delay,resolution):
for pos in path:
# print 'Movement step in image coordinates', [pos[0]/resolution, pos[1]/resolution]
err, obj_pos_origin = vrep.simxGetObjectPosition(self.clientID, self.quadHandle,self.originHandle,vrep.simx_opmode_blocking)
# print '-------------------Feedback position', [obj_pos_origin[1]/resolution, obj_pos_origin[0]/resolution]
posCorner = [(pos[1]-self.halfTopWallLen), (pos[0]-self.halfLeftWallLen), pos[2]]
# posCorner = pos
self.quad_functions.move_quad(posCorner)
start_time = time.time()
while time.time() - start_time<delay:
vrep.simxSynchronousTrigger(self.clientID)
def showImage(self, image):
cv2.namedWindow("Display frame",cv2.WINDOW_NORMAL)
cv2.imshow("Display frame",image)
cv2.waitKey(0)
def drawCorners(self, corners, image):
if len(corners.shape) == 1:
cv2.circle(image, (int(corners[0]), int(corners[1])), 1, 255, -1)
return image
for corner in corners:
cv2.circle(image, (int(corner[0]), int(corner[1])), 1, 255, -1)
return image
def cellDecomposition(self, obstacleMap):
obstOccMat = obstacleMap.copy()
obstOccMat = obstOccMat.astype(np.uint8)*255
map_copy = np.zeros_like(obstOccMat, dtype=np.uint8)
# get edges
# edges = cv2.Canny(obstOccMat, 100, 255)
# get contours - same as canny output
_,cnts,_ = cv2.findContours(obstOccMat.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(map_copy, cnts, -1, 255, 1)
dst = cv2.cornerHarris(np.float32(map_copy), 3, 3, 0.04)
## Finding sub-pixel resolution corner points
_, dst = cv2.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
_, _, _, centroids = cv2.connectedComponentsWithStats(dst, 8, cv2.CV_32S)
## define the criteria to refine the corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv2.cornerSubPix(map_copy, np.float32(centroids), (6,6), (-1,-1), criteria)
corners = np.round(corners)
# print(corners)
before_corner_image = np.zeros_like(obstOccMat, dtype=np.uint8)
before_corner_image = self.drawCorners(corners, before_corner_image)
# self.showImage(np.hstack((obstOccMat, before_corner_image)))
count = 0
for corner in corners:
if count == 0:
count += 1
continue
y_upside = int(corner[1])
while y_upside >=0:
y_upside -= 1
if obstOccMat[y_upside, int(corner[0])] == 255:
break
cv2.line(obstOccMat, (int(corner[0]), int(corner[1])), (int(corner[0]), y_upside), 255, 1)
y_bottom = int(corner[1])
while y_bottom < obstOccMat.shape[0]-1:
y_bottom += 1
if obstOccMat[y_bottom, int(corner[0])] == 255:
break
cv2.line(obstOccMat, (int(corner[0]), int(corner[1])), (int(corner[0]), y_bottom), 255, 1)
# getting cells
cells = np.zeros_like(obstOccMat, dtype=np.uint8)
_,cnts,_ = cv2.findContours(obstOccMat.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# cv2.drawContours(cells, cnts, -1, 255, 1)
# show cells
for cnt in cnts:
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(cells, (x+1,y+1), (x+w-1,y+h-1), 255, 1)
# self.showImage(cells)
# find corners of each contour/cell
cell_corners = []
count = 0
cell_corners_image = np.zeros_like(obstOccMat, dtype=np.uint8)
temp_image = np.zeros_like(obstOccMat, dtype=np.uint8)
for cnt in cnts:
# skip first cell which is the map's boundary
if count == 0:
count += 1
continue
x,y,w,h = cv2.boundingRect(cnt)
view_image = np.zeros_like(obstOccMat, dtype=np.uint8)
cv2.rectangle(temp_image, (x+1,y+1), (x+w-1,y+h-1), 255, 1)
cv2.rectangle(view_image, (x+1,y+1), (x+w-1,y+h-1), 255, 1)
dst = cv2.cornerHarris(np.float32(view_image), 3, 3, 0.04)
## Finding sub-pixel resolution corner points
_, dst = cv2.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
_, _, _, centroids = cv2.connectedComponentsWithStats(dst, 8, cv2.CV_32S)
# define the criteria to refine the corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
new_corners = cv2.cornerSubPix(view_image, np.float32(centroids), (3,3), (-1,-1), criteria)
new_corners = np.round(new_corners)
cell_corners.append(new_corners[1:])
# cell_corners_image = self.drawCorners(new_corners, cell_corners_image)
# self.showImage(np.hstack((cell_corners_image, obstacleMap)))
# self.showImage(np.hstack((temp_image, obstacleMap)))
# self.showImage(np.hstack((cell_corners_image, temp_image)))
# self.quitGrace()
return np.array(cell_corners), obstOccMat
def astar(self,startPos,endPos, obstacleMap):
'''
Main astar function
Initial and final position is in the format x,y
'''
obstOccMat = obstacleMap.copy()
#Astar Init
self.priorityQueue = self.astarInit(obstOccMat)
yMapLen = obstOccMat.shape[0]
xMapLen = obstOccMat.shape[1]
self.insert([startPos[0],startPos[1]])
yFinal = endPos[0]
xFinal = endPos[1]
validFlag = self.checkValidInputs([startPos[0],startPos[1]],[yFinal,xFinal],obstOccMat,xMapLen,yMapLen)
if not validFlag:
print 'Inputs are not valid'
self.quitGrace()
#Initializing distance array value of init node as 0 and visited arr value of init node value as 1
self.nodeComeDistArr[startPos[0],startPos[1]] = 0
self.nodeVisitArr[startPos[0],startPos[1]] = 1
# print len(self.nodeParentArr)
# print len(self.nodeParentArr[0])
# print obstOccMat.shape
# print self.nodeTotalDistArr.shape
#Set initial node as current node - (y,x)
currNode = [startPos[0],startPos[1]]
visitedNodes = []
while not self.isEmpty():
#Making the current node the one that was popped from the queue
currNode = self.pop()
#Checking whether goal node is reached
if currNode==[yFinal,xFinal]:
goalFlag=1
break
yCurr = currNode[0]
xCurr = currNode[1]
newIndices = [[yCurr,xCurr-1],[yCurr,xCurr+1],[yCurr-1,xCurr],[yCurr+1,xCurr]]
for newIndex in newIndices:
yCheckIndex = newIndex[0]
xCheckIndex = newIndex[1]
# print yCheckIndex,xCheckIndex
#Skip if the index lies outside the map
if xCheckIndex<0 or xCheckIndex>= xMapLen or yCheckIndex<0 or yCheckIndex>= yMapLen:
continue
#Skip if the index is a obstacle
# print obstOccMat[yCheckIndex,xCheckIndex]
if obstOccMat[yCheckIndex, xCheckIndex]==1:
# print 'obstacle'
continue
euclDist = self.eucldDist([yCheckIndex,xCheckIndex],[yFinal,xFinal])
if self.nodeVisitArr[yCheckIndex,xCheckIndex]==0:
visitedNodes.append([yCheckIndex,xCheckIndex])
#If the node is not visited, then mark it as visited and add to the priority queue
self.nodeVisitArr[yCheckIndex,xCheckIndex]=1
self.insert([yCheckIndex,xCheckIndex])
self.nodeParentArr[yCheckIndex][xCheckIndex] = [yCurr,xCurr]
weight = 1
self.nodeComeDistArr[yCheckIndex,xCheckIndex] = self.nodeComeDistArr[yCurr,xCurr] + weight
self.nodeGoDistArr[yCheckIndex,xCheckIndex] = euclDist
self.nodeTotalDistArr[yCheckIndex,xCheckIndex] = self.nodeComeDistArr[yCheckIndex,xCheckIndex] + self.nodeGoDistArr[yCheckIndex,xCheckIndex]
else:
weight = 1
if self.nodeComeDistArr[yCheckIndex,xCheckIndex] > self.nodeComeDistArr[yCurr,xCurr] + weight:
self.nodeComeDistArr[yCheckIndex,xCheckIndex] = self.nodeComeDistArr[yCurr,xCurr] + weight
self.nodeGoDistArr[yCheckIndex,xCheckIndex] = euclDist
self.nodeTotalDistArr[yCheckIndex,xCheckIndex] = self.nodeComeDistArr[yCheckIndex,xCheckIndex] + self.nodeGoDistArr[yCheckIndex,xCheckIndex]
self.nodeParentArr[yCheckIndex][xCheckIndex] = [yCurr,xCurr]
optimalRoute = self.backtrack(self.nodeParentArr,[startPos[0],startPos[1]],[yFinal,xFinal])
optimalRoute.reverse()
# for pathPoint in optimalRoute:
# obstOccMat[pathPoint[0],pathPoint[1]] = 120
# self.showImage(obstOccMat)
# print optimalRoute
return len(optimalRoute), optimalRoute
'''
Initialized astar variables
'''
def astarInit(self,obstacleMap):
yMapLen = obstacleMap.shape[0]
xMapLen = obstacleMap.shape[1]
self.queue = []
self.nodeComeDistArr = np.full((yMapLen, xMapLen), np.inf)
self.nodeGoDistArr = np.full((yMapLen, xMapLen), np.inf)
self.nodeTotalDistArr = np.full((yMapLen, xMapLen), np.inf)
self.nodeVisitArr = np.zeros((yMapLen,xMapLen))
self.nodeParentArr = [[[None,None] for j in range(xMapLen)] for i in range(yMapLen)]
def eucldDist(self,node,goalNode):
x1 = node[0]
y1 = node[1]
x2 = goalNode[0]
y2 = goalNode[1]
return math.sqrt((x1-x2)**2+(y1-y2)**2)
'''
Astar functions
'''
# for checking if the queue is empty
def isEmpty(self):
return len(self.queue) == 0
# for inserting an element in the queue
def insert(self, data):
self.queue.append(data)
# for popping an element based on Priority
def pop(self):
'''
Start search setting the first element as the supposed
minimum value and then compared with all the other elements whether it
id actually the largest, if not then updated the new value as the
largest
'''
minind = 0
minY = self.queue[0][0]
minX = self.queue[0][1]
# print len(self.queue)
for i in range(len(self.queue)):
y = self.queue[i][0]
x = self.queue[i][1]
if self.nodeTotalDistArr[y,x] < self.nodeTotalDistArr[minY,minX]:
minind = i
minX = x
minY = y
# print 'new min'
# print minX
# print minY
item = self.queue[minind]
del self.queue[minind]
# print 'length'
# print len(self.queue)
return item
def backtrack(self,ParentArr,startNode,goalNode):
backTrackList = []
currNode = goalNode
while currNode!=startNode:
backTrackList.append(currNode)
currNode = self.nodeParentArr[currNode[0]][currNode[1]]
backTrackList.append(startNode)
return backTrackList
def checkValidInputs(self,initPos,finalPos,obstacleMap,xMapLen,yMapLen):
if initPos[0]<0 or initPos[1]<0 or initPos[1]>xMapLen or initPos[0]>yMapLen:
print 'Initial position index is out of bounds'
return False
elif finalPos[0]<0 or finalPos[1]<0 or finalPos[1]>xMapLen or finalPos[0]>yMapLen:
print 'Final position index out of bounds'
return False
elif obstacleMap[initPos[0],initPos[1]]==1:
print obstacleMap[initPos[0],initPos[1]]
print 'Initial position is inside an obstacle'
return False
elif obstacleMap[finalPos[0],finalPos[1]]==1:
print 'Final position is inside an obstacle'
return False
else:
return True
'''
Creates the obstacle space and occupancy matrix
0's - Empty Cell
1's - Obstacle Cell
2's - Visited Cell
'''
def createObstacleOccupancyMat(self,objectsList,clientID,resolution):
#Getting origin handle
err,self.originHandle = vrep.simxGetObjectHandle(clientID,'Origin',vrep.simx_opmode_blocking)
#Getting map size from the top wall and left wall length
err,topWallHandle = vrep.simxGetObjectHandle(clientID,'Top_Wall',vrep.simx_opmode_blocking)
err,self.halfTopWallLen = vrep.simxGetObjectFloatParameter(clientID,topWallHandle,18,vrep.simx_opmode_blocking)
self.xMapLen = self.halfTopWallLen*2
err,leftWallHandle = vrep.simxGetObjectHandle(clientID,'Left_Wall',vrep.simx_opmode_blocking)
err,self.halfLeftWallLen = vrep.simxGetObjectFloatParameter(clientID,leftWallHandle,19,vrep.simx_opmode_blocking)
self.yMapLen = self.halfLeftWallLen*2
obstacleMap = np.zeros((int(self.yMapLen/resolution), int(self.xMapLen/resolution)))
rectsInfo = []
radius = 0.18
for objectName in objectsList:
err,objectHandle = vrep.simxGetObjectHandle(clientID,objectName,vrep.simx_opmode_blocking)
err,obj_pos = vrep.simxGetObjectPosition(clientID,objectHandle,self.originHandle,vrep.simx_opmode_blocking)
err,maxX = vrep.simxGetObjectFloatParameter(clientID,objectHandle,18,vrep.simx_opmode_blocking)
err,maxY = vrep.simxGetObjectFloatParameter(clientID,objectHandle,19,vrep.simx_opmode_blocking)
lengthX = maxX*2+2*radius
lengthY = maxY*2+2*radius
topX = obj_pos[0]-maxX-radius
topY = obj_pos[1]+maxY+radius
# Rectangles Format[left top corner x,left top corner y,x length,y length]
rectsInfo.append([topX,topY,lengthX,lengthY])
for x in range(int(self.xMapLen/resolution)):
for y in range(int(self.yMapLen/resolution)):
# Recangles
for rectInfo in rectsInfo:
if x>=rectInfo[0]/resolution and y<=rectInfo[1]/resolution and y>=(rectInfo[1]-rectInfo[3])/resolution and x<=(rectInfo[0]+rectInfo[2])/resolution:
obstacleMap[y,x] = 1
# cv2.imshow('obstaclemap',obstacleMap)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
return obstacleMap
def main(args):
# rospy.init_node('pos_pub', anonymous=True)
ic = pos_pub()
# try:
# rospy.spin()
# except rospy.ROSInterruptException:
# self.quitGrace()
if __name__ == '__main__':
main(sys.argv)