-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGenerator.py
145 lines (112 loc) · 5.57 KB
/
Generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import re
import shutil
from collections import defaultdict
import datetime
from DocumentParser import Parser
class NGramGenerator:
def __init__(self):
self.total_docs = 0
one_gram_corpus = dict()
myParser = Parser()
docId = 1
def generateUnigramCorpus(self, cleaned_file_path):
begin = datetime.datetime.now()
for filename in os.listdir(cleaned_file_path):
# if self.docId > 1:
# break
abs_fileName = os.path.join(cleaned_file_path, filename)
for word in open(abs_fileName).read().split():
self.add_to_one_gram_corpus(word, filename[:-4]) # adds unique words to the unigram corpus
self.docId += 1
print "Time to generate Unigram Corpus => " + str(datetime.datetime.now() - begin)
print "Lenght of one gram corpus is : -> %d" % len(self.one_gram_corpus)
self.total_docs = self.docId - 1
print "Total Documents :=> %d" % self.total_docs
def generate_cleaned_files(self, folder, cleaned_file_path):
if not os.path.exists(cleaned_file_path):
print "Generating cleaned files... will take around 15 secs. please be patient."
os.mkdir(cleaned_file_path)
for filename in os.listdir(folder):
abs_fileName = os.path.join(folder, filename)
raw_body_text = self.myParser.parse_document(abs_fileName)
for line in raw_body_text.split("\n"):
previous_line = line
line = line.replace("\n", "").replace(" ", "").replace("\t", "")
if not line.isdigit():
cleaned_body_text = re.sub(r'[^\,\.\-\w\s]', '', previous_line) # apply regex on text extracted from html
cfilename = filename[:-5] + ".txt"
abs_fileName = os.path.join(cleaned_file_path, cfilename)
with open(abs_fileName, 'a') as _file_:
for word in cleaned_body_text.split():
cleaned_word = self.clean_word(word) # cleans the word using regex
_file_.write(cleaned_word.encode('utf8') + " ") # write the cleaned word to the file
_file_.close()
else:
print "cleaned files exist"
def generate_stopped_cleaned_files(self, folder, cleaned_file_path, stop_word_file_path):
if not os.path.exists(cleaned_file_path):
print "Generating cleaned files... will take around 15 secs. please be patient."
dict_of_stop_word = dict()
for line in open(stop_word_file_path):
dict_of_stop_word[line.replace("\n","")] = 1
os.mkdir(cleaned_file_path)
for filename in os.listdir(folder):
abs_fileName = os.path.join(folder, filename)
raw_body_text = self.myParser.parse_document(abs_fileName)
for line in raw_body_text.split("\n"):
previous_line = line
line = line.replace(" ", "").replace("\t", "").replace("\n","")
if not line.isdigit():
cleaned_body_text = re.sub(r'[^\,\.\-\w\s]', '', previous_line) # apply regex on text extracted from html
cfilename = filename[:-5] + ".txt"
abs_fileName = os.path.join(cleaned_file_path, cfilename)
with open(abs_fileName, 'a') as _file_:
for word in cleaned_body_text.split():
cleaned_word = self.clean_word(word) # cleans the word using regex
if not cleaned_word in dict_of_stop_word:
_file_.write(cleaned_word.encode('utf8') + " ") # write the cleaned word to the file
_file_.close()
else:
print line
else:
print "cleaned files exist"
# GIVEN : a cleaned word and a documentId which is an integer
# RETURNS : adds the word to one gram corpus.
def add_to_one_gram_corpus(self, word, documenId):
if word not in self.one_gram_corpus:
self.one_gram_corpus[word] = Posting()
self.one_gram_corpus[word].addToDocTermFreqDict(documenId)
# print len(self.one_gram_corpus)
def saveMapping(self, doc_id, filename):
with open("mapping.txt", 'a') as _file_:
tempData = "%d ==> " % doc_id + filename + "\n"
_file_.write(tempData)
_file_.close()
def get_uni_gram_corpus(self):
return self.one_gram_corpus
def clean_word(self, word):
if re.match(r'\d+.*,*\d+', word):
word = word.rstrip(",")
word = word.rstrip(".")
return word.lower()
else:
return re.sub(r'[^\-\w\s]', '', word).lower()
class Posting:
def __init__(self):
self.total = 0
self.docTermFreqDict = defaultdict(int)
pass
def addToDocTermFreqDict(self,documentId):
self.docTermFreqDict[documentId] += 1
self.total += 1
def __cmp__(self, posting):
if self.total < posting.total:
return -1
if self.total == posting.total:
return 0
if self.total > posting.total:
return 1
# ng = NGramGenerator()
# ng.generateUnigramCorpus("/Users/ashishbulchandani/PycharmProjects/final-project/cacm",
# "/Users/ashishbulchandani/PycharmProjects/final-project/cleaned_files")