forked from CNChTu/Diffusion-SVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
210 lines (200 loc) · 5.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import torch
import librosa
import argparse
import numpy as np
import soundfile as sf
from ast import literal_eval
from tools.infer_tools import DiffusionSVC
def parse_args(args=None, namespace=None):
"""Parse command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-model",
"--model",
type=str,
required=True,
help="path to the diffusion model checkpoint",
)
parser.add_argument(
"-d",
"--device",
type=str,
default=None,
required=False,
help="cpu or cuda, auto if not set")
parser.add_argument(
"-i",
"--input",
type=str,
required=True,
help="path to the input audio file",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=True,
help="path to the output audio file",
)
parser.add_argument(
"-id",
"--spk_id",
type=str,
required=False,
default=1,
help="speaker id (for multi-speaker model) | default: 1",
)
parser.add_argument(
"-mix",
"--spk_mix_dict",
type=str,
required=False,
default="None",
help="mix-speaker dictionary (for multi-speaker model) | default: None",
)
parser.add_argument(
"-k",
"--key",
type=str,
required=False,
default=0,
help="key changed (number of semitones) | default: 0",
)
parser.add_argument(
"-f",
"--formant_shift_key",
type=str,
required=False,
default=0,
help="formant changed (number of semitones) , only for pitch-augmented model| default: 0",
)
parser.add_argument(
"-pe",
"--pitch_extractor",
type=str,
required=False,
default='crepe',
help="pitch extrator type: parselmouth, dio, harvest, crepe (default)",
)
parser.add_argument(
"-fmin",
"--f0_min",
type=str,
required=False,
default=50,
help="min f0 (Hz) | default: 50",
)
parser.add_argument(
"-fmax",
"--f0_max",
type=str,
required=False,
default=1100,
help="max f0 (Hz) | default: 1100",
)
parser.add_argument(
"-th",
"--threhold",
type=str,
required=False,
default=-60,
help="response threhold (dB) | default: -60",
)
parser.add_argument(
"-th4sli",
"--threhold_for_split",
type=str,
required=False,
default=-40,
help="threhold for split (dB) | default: -40",
)
parser.add_argument(
"-min_len",
"--min_len",
type=str,
required=False,
default=5000,
help="min split len | default: 5000",
)
parser.add_argument(
"-speedup",
"--speedup",
type=str,
required=False,
default=10,
help="speed up | default: 10",
)
parser.add_argument(
"-method",
"--method",
type=str,
required=False,
default='dpm-solver',
help="ddim, pndm, dpm-solver or unipc | default: dpm-solver",
)
parser.add_argument(
"-kstep",
"--k_step",
type=str,
required=False,
default=None,
help="shallow diffusion steps | default: None",
)
parser.add_argument(
"-nmodel",
"--naive_model",
type=str,
required=False,
default=None,
help="path to the naive model, shallow diffusion if not None and k_step not None",
)
parser.add_argument(
"-ir",
"--index_ratio",
type=str,
required=False,
default=0,
help="index_ratio, if > 0 will use index | default: 0",
)
return parser.parse_args(args=args, namespace=namespace)
if __name__ == '__main__':
# parse commands
cmd = parse_args()
device = cmd.device
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
diffusion_svc = DiffusionSVC(device=device) # 加载模型
diffusion_svc.load_model(model_path=cmd.model, f0_model=cmd.pitch_extractor, f0_max=cmd.f0_max, f0_min=cmd.f0_min)
spk_mix_dict = literal_eval(cmd.spk_mix_dict)
naive_model_path = cmd.naive_model
if naive_model_path is not None:
if cmd.k_step is None:
naive_model_path = None
print(" [WARN] Could not shallow diffusion without k_step value when Only set naive_model path")
else:
diffusion_svc.load_naive_model(naive_model_path=naive_model_path)
spk_emb = None
# load wav
in_wav, in_sr = librosa.load(cmd.input, sr=None)
if len(in_wav.shape) > 1:
in_wav = librosa.to_mono(in_wav)
# infer
out_wav, out_sr = diffusion_svc.infer_from_long_audio(
in_wav, sr=in_sr,
key=float(cmd.key),
spk_id=int(cmd.spk_id),
spk_mix_dict=spk_mix_dict,
aug_shift=int(cmd.formant_shift_key),
infer_speedup=int(cmd.speedup),
method=cmd.method,
k_step=cmd.k_step,
use_tqdm=True,
spk_emb=spk_emb,
threhold=float(cmd.threhold),
threhold_for_split=float(cmd.threhold_for_split),
min_len=int(cmd.min_len),
index_ratio=float(cmd.index_ratio)
)
# save
sf.write(cmd.output, out_wav, out_sr)