-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathpredict_tts.py
63 lines (59 loc) · 2.69 KB
/
predict_tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from argparse import ArgumentParser
from pathlib import Path
import numpy as np
from model.factory import tts_ljspeech
from data.audio import Audio
from model.models import ForwardTransformer
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--path', '-p', dest='path', default=None, type=str)
parser.add_argument('--step', dest='step', default='90000', type=str)
parser.add_argument('--text', '-t', dest='text', default=None, type=str)
parser.add_argument('--file', '-f', dest='file', default=None, type=str)
parser.add_argument('--outdir', '-o', dest='outdir', default=None, type=str)
parser.add_argument('--store_mel', '-m', dest='store_mel', action='store_true')
parser.add_argument('--verbose', '-v', dest='verbose', action='store_true')
parser.add_argument('--single', '-s', dest='single', action='store_true')
args = parser.parse_args()
if args.file is not None:
with open(args.file, 'r') as file:
text = file.readlines()
fname = Path(args.file).stem
elif args.text is not None:
text = [args.text]
fname = 'custom_text'
else:
fname = None
text = None
print(f'Specify either an input text (-t "some text") or a text input file (-f /path/to/file.txt)')
exit()
# load the appropriate model
outdir = Path(args.outdir) if args.outdir is not None else Path('.')
if args.path is not None:
print(f'Loading model from {args.path}')
model = ForwardTransformer.load_model(args.path)
else:
model = tts_ljspeech(args.step)
file_name = f"{fname}_{model.config['data_name']}_{model.config['git_hash']}_{model.config['step']}"
outdir = outdir / 'outputs' / f'{fname}'
outdir.mkdir(exist_ok=True, parents=True)
output_path = (outdir / file_name).with_suffix('.wav')
audio = Audio.from_config(model.config)
print(f'Output wav under {output_path.parent}')
wavs = []
for i, text_line in enumerate(text):
phons = model.text_pipeline.phonemizer(text_line)
tokens = model.text_pipeline.tokenizer(phons)
if args.verbose:
print(f'Predicting {text_line}')
print(f'Phonemes: "{phons}"')
print(f'Tokens: "{tokens}"')
out = model.predict(tokens, encode=False, phoneme_max_duration=None)
mel = out['mel'].numpy().T
wav = audio.reconstruct_waveform(mel)
wavs.append(wav)
if args.store_mel:
np.save((outdir / (file_name + f'_{i}')).with_suffix('.mel'), out['mel'].numpy())
if args.single:
audio.save_wav(wav, (outdir / (file_name + f'_{i}')).with_suffix('.wav'))
audio.save_wav(np.concatenate(wavs), output_path)