-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathGraham_Scan.cpp
95 lines (94 loc) · 2.9 KB
/
Graham_Scan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
//This is an algorithm used to find the smallest convex polygon containing all given points on a plane
//"Convex Hull problem"
//This is the Graham Scan algorithm
//O(NLogN) runtime
//This is essentially a copy of the code on GeeksForGeeks but slightly cleaner due to the removal of the Points struct
//I have used integer pairs to represent the points instead of a struct
#include <iostream>
#include <algorithm>
#include <cmath>
#include <unordered_map>
#include <fstream>
#include <vector>
#include <set>
#include <queue>
#include <cstdlib>
#define MOD 100000
#define random (rand()%MOD)
using namespace std;
pair<int, int> comparisonpoint;
pair<int, int> secondHighest(stack<pair<int, int>> &S){
pair<int, int> p = S.top();
S.pop();
pair<int, int> res = S.top();
S.push(p);
return res;
}
int distance(pair<int, int> a, pair<int, int> b){
return pow(b.first - a.first, 2) +
pow(b.second - a.second, 2);
}
int orientation(pair<int, int> a, pair<int, int> b, pair<int, int> c){
int val = (b.second - a.second) * (c.first - b.first) -
(b.first - a.first) * (c.second - b.second);
if (val == 0) return 0;
return (val > 0)? 1: 2;
}
int comparator(const void * c, const void * d){
pair<int, int> a = *((pair<int, int>*) c);
pair<int, int> b = *((pair<int, int>*) d);
int o = orientation(comparisonpoint, a, b);
if (o == 0)
return (distance(comparisonpoint, b) >= distance(comparisonpoint, a))? -1 : 1;
return (o == 2)? -1: 1;
}
vector<pair<int, int>> convexHull(pair<int, int> points[], int n){
int ymin = points[0].second, mini = 0;
for (int i = 1; i < n; i++){
int y = points[i].second;
if ((y < ymin) || (ymin == y &&
points[i].first < points[mini].first))
ymin = points[i].second, mini = i;
}
pair<int, int> temp = points[0];
points[0] = points[mini];
points[mini] = temp;
comparisonpoint = points[0];
qsort(&points[1], n-1, sizeof(pair<int, int>), comparator);
int m = 1;
for (int i=1; i<n; i++){
while (i < n-1 && orientation(comparisonpoint, points[i],
points[i+1]) == 0) i++;
points[m] = points[i];
m++;
}
vector<pair<int, int>> vec;
if (m < 3) return vec;
stack<pair<int, int>> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
for (int i = 3; i < m; i++){
while (orientation(secondHighest(S), S.top(), points[i]) != 2)
S.pop();
S.push(points[i]);
}
while (!S.empty()){
vec.push_back(S.top());
S.pop();
}
return vec;
}
int main(){
int n;
cin>>n;
pair<int, int> points[n];
for(int i = 0;i<n;i++){
cin>>points[i].first>>points[i].second;
}
vector<pair<int, int>> vec = convexHull(points, n);
for(pair<int, int> p: vec){
cout<<p.first<<" "<<p.second<<endl;
}
return 0;
}