diff --git a/src/pyhexspline/spline_volume.py b/src/pyhexspline/spline_volume.py index 326b8a1..6db60cb 100644 --- a/src/pyhexspline/spline_volume.py +++ b/src/pyhexspline/spline_volume.py @@ -1023,6 +1023,14 @@ def process_slice(self, mask, slice_idx): def get_line_sets(self, contour): num_points = contour[0].shape[0] line_sets = [] + + # Align slices based on the first point + first_point = contour[0][0] + for i in range(1, len(contour)): + distances = np.linalg.norm(contour[i] - first_point, axis=1) + min_idx = np.argmin(distances) + contour[i] = np.roll(contour[i], -min_idx, axis=0) + for pt_idx in range(num_points): vertical_ll = [] for _slice in contour: @@ -1030,12 +1038,13 @@ def get_line_sets(self, contour): vertical_ll.append(_slice[pt_idx]) line_sets.append(vertical_ll) - # plot every line_set with a different color if self.show_plots: for line_set in line_sets: line_set = np.array(line_set) plt.plot(line_set[:, 0], line_set[:, 1]) + plt.title("Matched vertical lines") plt.show() + return line_sets def plot_slices_with_slider(self, imnp, total_slices, results): @@ -1093,13 +1102,9 @@ def volume_splines_optimized(self, imsitk_pad) -> Tuple[ndarray, ndarray]: height = imnp.shape[2] self.logger.debug(f"Height:\t{height}") - NUM_SLICES = height // 10 # TODO: parametrize this 10 + NUM_SLICES = height // 10 # TODO: parametrize this value total_slices = np.linspace(0, height - 1, NUM_SLICES, dtype=int) - # results = Parallel(n_jobs=-1)( - # delayed(self.process_slice)(imnp, slice_idx) for slice_idx in total_slices - # ) - processed_slices = [] for slice_idx in total_slices: print(f"Processing slice {slice_idx}") diff --git a/standalone.py b/standalone.py index 78d3ac0..3f16a88 100644 --- a/standalone.py +++ b/standalone.py @@ -46,7 +46,7 @@ def main(): "outside_val": int(1), # threshold value for the outside of the mask "lower_thresh": float(0), # lower threshold for the mask "upper_thresh": float(0.9), # upper threshold for the mask - "s": 100, # smoothing factor of the spline + "s": 50, # smoothing factor of the spline "k": 3, # degree of the spline "interp_points": 500, # number of points to interpolate the spline "dp_simplification": 2, # Ramer-Douglas-Peucker simplification factor @@ -59,7 +59,7 @@ def main(): "n_elms_transverse_cort": 3, # number of elements in the transverse direction for the cortical compartment "n_elms_radial": 20, # number of elements in the radial direction # ! Should be 10 if trab_refinement is True "ellipsoid_fitting": True, # True: perform ellipsoid fitting - "show_plots": False, # show plots during construction + "show_plots": True, # show plots during construction "show_gmsh": True, # show gmsh GUI "write_mesh": True, # write mesh to file "trab_refinement": False, # True: refine trabecular mesh at the center @@ -74,7 +74,7 @@ def main(): # print(sitk_image_s.GetSize()) sitk_image_s = sitk.ReadImage( - "/home/simoneponcioni/Desktop/repro-to-remesh/C0002211_CORTMASK.mhd" + "/home/simoneponcioni/Desktop/repro-to-remesh/C0002215_CORTMASK.mhd" ) print(sitk_image_s.GetSize()) # sitk_image_s = sitk_image_s[:, :, :-40]