-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetectAlphabetML.py
98 lines (80 loc) · 2.59 KB
/
DetectAlphabetML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
#each picture is 28x28 pixels with 784 total pixels
#each pixel has a single value from 0-255 inclusive
#this value determines how dark the pixel is
data = pd.read_csv('/Users/alexrougebec/Projects/DetectAlphabetML/digit-recognizer/train.csv')
#save as numpy array to perform LA and calculations
data = np.array(data)
#get the dimensions of the data
m, n = data.shape
np.random.shuffle(data)
#take the first 1000 data points for the development and transpose so that each picture is a column
data_dev = data[0:1000].T
#get the first picture as Y_dev
Y_dev = data_dev[0]
#get the remaining pictures as X_dev
X_dev = data_dev[1:n]
#take the remaining pictures after 1000 and
data_train = data[1000:m].T
Y_train = data_train[0]
X_train = data_train[1:n]
X_train = X_train / 255
_,m_train = X_train.shape
def init_params():
W1 = np.random.rand(10,784) -.5
b1 = np.random.rand(10, 1) -.5
W2 = np.random.rand(10,10) -.5
b2 = np.random.rand(10, 1) -.5
return W1, b1, W2, b2
def ReLU(Z):
return np.maximum(Z, 0)
def softmax(Z):
return np.exp(Z) / sum(np.exp(Z))
def forward_prop(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
def one_hot(Y):
one_hot_Y = np.zeros((Y.size, Y.max() + 1))
one_hot_Y[np.arange(Y.size), Y] = 1
one_hot_Y = one_hot_Y.T #max each column an example
return one_hot_Y
def deriv_ReLU(Z):
return Z > 0
def back_prop(Z1, A1, Z2, A2, W2, X, Y):
m = Y.size
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * deriv_ReLU(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
return dW1, db1, dW2, db2
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
def get_predictions(A2):
return np.argmax(A2, 0)
def get_accuracy(predictions, Y):
print(predictions, Y)
return np.sum(predictions == Y) / Y.size
def gradient_descent(X, Y, iterations, alpha):
W1, b1, W2, b2 = init_params()
print(X.shape)
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = back_prop(Z1, A1, Z2, A2, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 10 == 0:
print("Iteration", i)
print("Accuracy: ", get_accuracy(get_predictions(A2), Y))
return W1, b1, W2, b2
W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 500, .1)