From dd04e69a5c6e463892be36783bc6f30edf1062ab Mon Sep 17 00:00:00 2001 From: Date: Mon, 28 Oct 2024 10:49:15 +0100 Subject: [PATCH] Update documentation --- WS1/intro_to_ws1.html | 2 +- WS1/module_1/0_python_basics.html | 2 +- WS1/module_1/1_hello_world.html | 2 +- WS1/module_1/2_statements.html | 4 +- WS1/module_1/3_control_flow.html | 2 +- WS1/module_1/4_exercise_1.html | 2 +- WS1/module_1/5_exercise_2.html | 2 +- WS1/module_2/0_intro_module_2.html | 2 +- WS1/module_2/1_dictionaries_and_sets.html | 4 +- WS1/module_2/2_dataframes.html | 2 +- WS1/module_2/3_numpy_arrays.html | 2 +- WS1/module_2/4_data_visualizations.html | 2 +- WS1/module_2/5_exercise_1.html | 2 +- WS1/module_3/0_intro_module_3.html | 2 +- WS1/module_3/1_operations.html | 2 +- WS1/module_3/2_linear_regression.html | 2 +- WS1/module_3/3_stoichiometry.html | 2 +- WS1/module_3/4_stoichiometry_solution.html | 2 +- WS1/module_3/5_stoichiometry_pt2.html | 2 +- WS1/module_3/6_exercise_1.html | 2 +- WS1/module_4/0_intro_module_4.html | 2 +- WS1/module_4/1_reactors_in_python.html | 2 +- WS1/module_4/2_combining_balances.html | 2 +- .../3_combining_balances_solution.html | 2 +- WS1/module_4/4_exercise_1.html | 2 +- WS1/module_4/5_exercise_1_solution.html | 2 +- WS1/module_4/6_exercise_2.html | 2 +- WS1/module_4/7_exercise_2_solution.html | 6 +- WS1/module_5/0_FedBatch_Ecoli_simulation.html | 25 ++- WS1/module_6/0_intro_module_6.html | 6 +- WS1/module_6/1_Mass_Transfer.html | 2 +- WS1/module_6/2_Diafiltration.html | 2 +- WS1/module_6/3_Cell_lysis.html | 2 +- .../0_FedBatch_Ecoli_simulation.ipynb | 185 +++++++++--------- _sources/markdown-notebooks.ipynb | 6 +- genindex.html | 2 +- index.html | 4 +- intro.html | 2 +- markdown-notebooks.html | 2 +- mymarkdownfile.html | 2 +- notebooks.html | 2 +- objects.inv | 4 +- search.html | 2 +- searchindex.js | 2 +- 44 files changed, 164 insertions(+), 150 deletions(-) diff --git a/WS1/intro_to_ws1.html b/WS1/intro_to_ws1.html index 0fb5f1c..5f88a44 100755 --- a/WS1/intro_to_ws1.html +++ b/WS1/intro_to_ws1.html @@ -218,7 +218,7 @@
  • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_1/0_python_basics.html b/WS1/module_1/0_python_basics.html index 6d21298..ff95a85 100755 --- a/WS1/module_1/0_python_basics.html +++ b/WS1/module_1/0_python_basics.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_1/1_hello_world.html b/WS1/module_1/1_hello_world.html index d0b0cbe..bda62a9 100755 --- a/WS1/module_1/1_hello_world.html +++ b/WS1/module_1/1_hello_world.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_1/2_statements.html b/WS1/module_1/2_statements.html index 63c80bb..2aee9ee 100755 --- a/WS1/module_1/2_statements.html +++ b/WS1/module_1/2_statements.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_1/4_exercise_1.html b/WS1/module_1/4_exercise_1.html index c862d3a..cabb728 100755 --- a/WS1/module_1/4_exercise_1.html +++ b/WS1/module_1/4_exercise_1.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_1/5_exercise_2.html b/WS1/module_1/5_exercise_2.html index 6a8af00..692fffa 100755 --- a/WS1/module_1/5_exercise_2.html +++ b/WS1/module_1/5_exercise_2.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_2/0_intro_module_2.html b/WS1/module_2/0_intro_module_2.html index 355f40b..cc0e90c 100755 --- a/WS1/module_2/0_intro_module_2.html +++ b/WS1/module_2/0_intro_module_2.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_2/1_dictionaries_and_sets.html b/WS1/module_2/1_dictionaries_and_sets.html index 59a4096..33fcf3c 100755 --- a/WS1/module_2/1_dictionaries_and_sets.html +++ b/WS1/module_2/1_dictionaries_and_sets.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • @@ -635,7 +635,7 @@

      Sets#
      -
      {'Bubble column', 'Fluid bed', 'Crystallization', 'Ion exchange', 'Solid-liquid extraction'}
      +
      {'Solid-liquid extraction', 'Bubble column', 'Ion exchange', 'Crystallization', 'Fluid bed'}
       
      diff --git a/WS1/module_2/2_dataframes.html b/WS1/module_2/2_dataframes.html index 2c63896..66de49c 100755 --- a/WS1/module_2/2_dataframes.html +++ b/WS1/module_2/2_dataframes.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_2/3_numpy_arrays.html b/WS1/module_2/3_numpy_arrays.html index b8cabd6..8fcba7f 100755 --- a/WS1/module_2/3_numpy_arrays.html +++ b/WS1/module_2/3_numpy_arrays.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_2/4_data_visualizations.html b/WS1/module_2/4_data_visualizations.html index d45a4f1..5fbd806 100755 --- a/WS1/module_2/4_data_visualizations.html +++ b/WS1/module_2/4_data_visualizations.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_2/5_exercise_1.html b/WS1/module_2/5_exercise_1.html index 5d692a0..0f043b6 100755 --- a/WS1/module_2/5_exercise_1.html +++ b/WS1/module_2/5_exercise_1.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/0_intro_module_3.html b/WS1/module_3/0_intro_module_3.html index facf069..a86b640 100755 --- a/WS1/module_3/0_intro_module_3.html +++ b/WS1/module_3/0_intro_module_3.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/1_operations.html b/WS1/module_3/1_operations.html index 0329221..e952357 100755 --- a/WS1/module_3/1_operations.html +++ b/WS1/module_3/1_operations.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/2_linear_regression.html b/WS1/module_3/2_linear_regression.html index 8e92abb..64d2bc3 100755 --- a/WS1/module_3/2_linear_regression.html +++ b/WS1/module_3/2_linear_regression.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/3_stoichiometry.html b/WS1/module_3/3_stoichiometry.html index 6db0a35..0a426ae 100755 --- a/WS1/module_3/3_stoichiometry.html +++ b/WS1/module_3/3_stoichiometry.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/4_stoichiometry_solution.html b/WS1/module_3/4_stoichiometry_solution.html index 00f2845..fb581a7 100755 --- a/WS1/module_3/4_stoichiometry_solution.html +++ b/WS1/module_3/4_stoichiometry_solution.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/5_stoichiometry_pt2.html b/WS1/module_3/5_stoichiometry_pt2.html index 070ca7d..0c82219 100755 --- a/WS1/module_3/5_stoichiometry_pt2.html +++ b/WS1/module_3/5_stoichiometry_pt2.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_3/6_exercise_1.html b/WS1/module_3/6_exercise_1.html index 0e24256..1990aec 100755 --- a/WS1/module_3/6_exercise_1.html +++ b/WS1/module_3/6_exercise_1.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/0_intro_module_4.html b/WS1/module_4/0_intro_module_4.html index 31ad35b..7533ec1 100755 --- a/WS1/module_4/0_intro_module_4.html +++ b/WS1/module_4/0_intro_module_4.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/1_reactors_in_python.html b/WS1/module_4/1_reactors_in_python.html index ea2175b..5142e45 100755 --- a/WS1/module_4/1_reactors_in_python.html +++ b/WS1/module_4/1_reactors_in_python.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/2_combining_balances.html b/WS1/module_4/2_combining_balances.html index 918ac7e..a9b38dc 100755 --- a/WS1/module_4/2_combining_balances.html +++ b/WS1/module_4/2_combining_balances.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/3_combining_balances_solution.html b/WS1/module_4/3_combining_balances_solution.html index 016a11b..ca2afca 100755 --- a/WS1/module_4/3_combining_balances_solution.html +++ b/WS1/module_4/3_combining_balances_solution.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/4_exercise_1.html b/WS1/module_4/4_exercise_1.html index 7afd7ce..6774cd8 100755 --- a/WS1/module_4/4_exercise_1.html +++ b/WS1/module_4/4_exercise_1.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/5_exercise_1_solution.html b/WS1/module_4/5_exercise_1_solution.html index 3300a40..c87e79f 100755 --- a/WS1/module_4/5_exercise_1_solution.html +++ b/WS1/module_4/5_exercise_1_solution.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/6_exercise_2.html b/WS1/module_4/6_exercise_2.html index 73111cf..fd76426 100755 --- a/WS1/module_4/6_exercise_2.html +++ b/WS1/module_4/6_exercise_2.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_4/7_exercise_2_solution.html b/WS1/module_4/7_exercise_2_solution.html index a4484c0..a7ba249 100755 --- a/WS1/module_4/7_exercise_2_solution.html +++ b/WS1/module_4/7_exercise_2_solution.html @@ -62,7 +62,7 @@ - + @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • @@ -1099,7 +1099,7 @@

      Assignment 1

      next

      -

      Plotting

      +

      Fed batch simulation

      diff --git a/WS1/module_5/0_FedBatch_Ecoli_simulation.html b/WS1/module_5/0_FedBatch_Ecoli_simulation.html index 6c03af9..6ca745e 100755 --- a/WS1/module_5/0_FedBatch_Ecoli_simulation.html +++ b/WS1/module_5/0_FedBatch_Ecoli_simulation.html @@ -8,7 +8,7 @@ - Plotting — Dig4Bio-workshops + Fed batch simulation — Dig4Bio-workshops @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • @@ -451,7 +451,7 @@
      -

      Plotting

      +

      Fed batch simulation

      @@ -461,7 +461,10 @@

      Contents

      -
      -

      Plotting#

      +
      +

      Plotting#

      plt.figure(figsize=(15,20))
      @@ -682,6 +687,7 @@ 

      Plotting

      +

      Tasks#

      answer the following questions with simulations

      @@ -757,7 +763,10 @@

      Tasks#<

  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_6/2_Diafiltration.html b/WS1/module_6/2_Diafiltration.html index 08cb5d0..c6c5422 100755 --- a/WS1/module_6/2_Diafiltration.html +++ b/WS1/module_6/2_Diafiltration.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/WS1/module_6/3_Cell_lysis.html b/WS1/module_6/3_Cell_lysis.html index fc1fc41..f08f548 100755 --- a/WS1/module_6/3_Cell_lysis.html +++ b/WS1/module_6/3_Cell_lysis.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/_sources/WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb b/_sources/WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb index 616daa2..cd8e520 100755 --- a/_sources/WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb +++ b/_sources/WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb @@ -1,21 +1,17 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fed batch simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pThlVjcQsT0I" + }, "source": [ " E. coli fed-batch simulation\n", "Created on Thu Dec 10 12:14:22 2015\n", @@ -24,10 +20,7 @@ "\n", "In this Python Script the ODE (Ordinary Differential Equation)\n", "of an Ecoli model is solved with the Python ODE Solver odeint." - ], - "metadata": { - "id": "pThlVjcQsT0I" - } + ] }, { "cell_type": "code", @@ -48,6 +41,11 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ctw6e8ZNhi8u" + }, + "outputs": [], "source": [ "# discretizing the time\n", "dt = 0.01\n", @@ -60,15 +58,15 @@ "\n", "# generation of the time-points\n", "t = np.linspace(t0, T, int(T/dt)+1)" - ], - "metadata": { - "id": "ctw6e8ZNhi8u" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BA8F5hYfhsy3" + }, + "outputs": [], "source": [ "# initial values at time 0\n", "X0 = 0.0358 # Biomass [g/L]\n", @@ -86,15 +84,15 @@ "\n", "# define initial condition and save it in the y\n", "y0 = [X0, S0, DOT0, A0, V0]" - ], - "metadata": { - "id": "BA8F5hYfhsy3" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bBmgw7GGhyyn" + }, + "outputs": [], "source": [ "# define the function\n", "def eColi(y, t):\n", @@ -157,23 +155,11 @@ " dydt = [dXdt, dSdt, dDOTdt, dAdt, dVdt]\n", "\n", " return dydt" - ], - "metadata": { - "id": "bBmgw7GGhyyn" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "# calling the numerical solver to approximate the integral of the differential equation system\n", - "y = odeint(eColi, y0, t)\n", - "\n", - "# checking critical variables\n", - "print('max biomass =', max(y[:,[0]]))\n", - "print('min DOT =', min(y[:,[2]]))" - ], + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -181,29 +167,65 @@ "id": "lhJDkfOfh1fj", "outputId": "2b938074-6188-4b01-d3d0-576ade9d63af" }, - "execution_count": null, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "max biomass = [4.37135546]\n", "min DOT = [62.50460914]\n" ] } + ], + "source": [ + "# calling the numerical solver to approximate the integral of the differential equation system\n", + "y = odeint(eColi, y0, t)\n", + "\n", + "# checking critical variables\n", + "print('max biomass =', max(y[:,[0]]))\n", + "print('min DOT =', min(y[:,[2]]))" ] }, { "cell_type": "markdown", - "source": [ - "# Plotting" - ], "metadata": { "id": "ho2DejeXh5tg" - } + }, + "source": [ + "## Plotting" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "BavujwCEh2LS", + "outputId": "5cd6f818-c967-4d05-da49-fb35c642cfc8" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed.\n", + " plt.subplot(4, 1, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPIAAAZICAYAAAAfMO4PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZd7G8Xtmkkz6JIQkEJIQinQDCMhSVBAVEXXtXRF11VfFtrsKuy6CDV13UdfeFl0Vu6ArCAIKyIKK0nsRQqghhPRkkszM+8dJhgxJKCHkzCTfz3Wda855zjNnfoPRi9w+xeLxeDwCAAAAAAAA4NesZhcAAAAAAAAA4OgI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkFdPBQUFuv/++9W2bVuFhYVp4MCBWrp0qdllAQAAAAAAoIkiyKun2267TXPmzNF7772n1atX67zzztM555yjXbt2mV0aAAAAAAAAmiCLx+PxmF1EoCkpKVFUVJS+/PJLjRw50tvep08fjRgxQk888YSJ1QEAAAAAAKApCjK7gEBUUVEhl8ul0NBQn/awsDAtWrSoRn+n0ymn0+m9drvdysnJUVxcnCwWy0mvFwAAAAAAAP7L4/GooKBASUlJslrrnkBLkFcPUVFRGjBggB5//HF17dpViYmJ+vDDD7VkyRJ17NixRv9JkyZp4sSJJlQKAAAAAACAQJGZmank5OQ67zO1tp62bt2qW265RQsXLpTNZtNpp52mTp066ddff9X69et9+h4+Ii8vL0+pqanKzMxUdHR0Y5cOAAAAAAAAP5Kfn6+UlBTl5ubK4XDU2Y8RefXUoUMHLViwQEVFRcrPz1fr1q119dVXq3379jX62u122e32Gu3R0dEEeQAAAAAAAJCkoy7Bxq61JygiIkKtW7fWwYMHNXv2bP3+9783uyQAAAAAAAA0QYzIq6fZs2fL4/Goc+fO2rJli/785z+rS5cuGj16tNmlAQAAAAAAoAliRF495eXl6e6771aXLl100003afDgwZo9e7aCg4PNLg0AAAAAAABNEJtdmCA/P18Oh0N5eXmskQcAAAAAANDMHWtWxNTaAFBRUaGysjKzywBOWHBwsIKCgo66eCcAAAAAAKiJIM+PeTwe7dixQ9nZ2WaXAjSYoKAgtWnTRnFxcQR6AAAAAAAcB4I8P1YV4rVp00aRkZGyWlnSEIHL4/GovLxcBw8eVEZGhoqKitS2bVuzywIAAAAAIGAQ5PmpiooKb4jXqlUrs8sBGkxMTIxCQ0O1e/duSSLMAwAAAADgGDHEy09VrYkXGRlpciVAw6tauHPu3LnasGGDydUAAAAAABAYCPL8HNNp0RRVrY1XXl6uH3/8US6Xy+SKAAAAAADwf6REAEwTHR2tgwcPKicnx+xSAAAAAADwewR5AExjtVrlcrlUXl5udikAAAAAAPg9gjwApqmaYgsAAAAAAI6OIA9+z2KxaMKECWaXYYp33nlHFovFe2RnZzfq50+fPt3n83/55ZdG/XwAAAAAAHAIQR4a3eHhlMViUUJCgoYOHapvvvnG7PL80nPPPaf33ntPUVFRJ/Scyy+/XBdccIEkacKECUcNB/v27av33ntPt99++wl9LgAAAAAAOHFBZheA5uuxxx5Tu3bt5PF4tG/fPr3zzju64IIL9N///lcXXniht19JSYmCgpr3j+oll1yitLS0E3pGeXm55syZo0mTJh3ze5KTk3XDDTeooqJCb7zxxgl9PgAAAAAAODHNOx2BqUaMGKG+fft6r2+99VYlJibqww8/9AnyQkNDzSivyfnhhx9UUFCgkSNHml0KAAAAAACoB6bWwm/ExMQoLCysxui72tbIW758uUaMGKHo6GhFRkZq2LBh+vHHH336VE3hXbRoke69917Fx8crJiZGd9xxh8rKypSbm6ubbrpJsbGxio2N1UMPPSSPx+PzjH/84x8aOHCg4uLiFBYWpj59+uizzz6rUfucOXM0ePBgxcTEKDIyUp07d9Zf/vIXnz4vvviiunfvrvDwcMXGxqpv376aOnXqCfyJSS+//LLat2+vsLAwnX766frhhx80ZMgQDRkypEbfGTNmqFu3bic8sg8AAAAAAJiDEXkBxOPxqKTcZXYZPsKCbfXeeTQvL0/Z2dnyeDzKysrSiy++qMLCQt1www1HfN/atWt1xhlnKDo6Wg899JCCg4P1+uuva8iQIVqwYIH69+/v03/MmDFq1aqVJk6cqB9//FFvvPGGYmJitHjxYqWmpuqpp57SzJkz9eyzz6pHjx666aabvO994YUXdPHFF+v6669XWVmZPvroI1155ZX6+uuvvSPb1q5dqwsvvFDp6el67LHHZLfbtWXLFv3vf//zPufNN9/UvffeqyuuuEL33XefSktLtWrVKv3000+67rrr6vXn9+qrr+qee+7RGWecoQceeEDbt2/XJZdcotjYWCUnJ9foP3PmTJ+RjgAAAAAAILAQ5AWQknKXuo2fbXYZPtY9NlzhIfX7MTrnnHN8ru12u/7973/r3HPPPeL7HnnkEZWXl2vRokVq3769JOmmm25S586d9dBDD2nBggU+/RMTEzVz5kxZLBbddddd2rJli5599lndcccdevXVVyVJt99+u9LS0vTvf//bJ8jbtGmTwsLCvNf33HOPTjvtNE2ePNkb5M2ZM0dlZWX65ptv1LJly1prnjFjhrp3765PP/30GP90jqysrEx/+9vf1K9fP3333XfeUYzp6em6+eabawR527Zt04YNG7zfFwAAAAAABB6m1sI0L7/8subMmaM5c+bo/fff19ChQ3Xbbbfpiy++qPM9LpdL3377rS655BJviCdJrVu31nXXXadFixYpPz/f5z233nqrz6jB/v37y+Px6NZbb/W22Ww29e3bV7/99pvPe6uHeAcPHlReXp7OOOMMLVu2zNseExMjSfryyy/ldrtrrTsmJkY7d+7U0qVLj/Ancux++eUXHThwQH/4wx98piJff/31io2NrdF/xowZcjgcGjx4cIN8PgAAAAAAaHyMyAsgYcE2rXtsuNll+AgLttX7vaeffrrPZhfXXnutevfurXvuuUcXXnihQkJCarxn//79Ki4uVufOnWvc69q1q9xutzIzM9W9e3dve2pqqk8/h8MhSUpJSanRfvDgQZ+2r7/+Wk888YRWrFghp9Ppba8eDF599dV66623dNttt2ns2LEaNmyYLrvsMl1xxRWyWo2s/OGHH9bcuXN1+umnq2PHjjrvvPN03XXXadCgQUf9c6pNRkaGJKljx44+7UFBQbWugTdjxgydd955zX73XwAAAAAAAhkj8gKIxWJReEiQXx31XR+vNlarVUOHDtWePXu0efPmBnuuzVZ72Fhbe/XNLn744QddfPHFCg0N1SuvvKKZM2dqzpw5uu6663z6hYWFaeHChZo7d65uvPFGrVq1SldffbXOPfdcuVzGmoZdu3bVxo0b9dFHH2nw4MH6/PPPNXjwYD366KMN9j3rUlxcrPnz5+uCCy446Z8FAAAAAABOHoI8+JWKigpJUmFhYa334+PjFR4ero0bN9a4t2HDBlmt1hoj7err888/V2hoqGbPnq1bbrlFI0aMqLGuXxWr1aphw4Zp8uTJWrdunZ588kl99913+v777719IiIidPXVV2vKlCnasWOHRo4cqSeffFKlpaXHXVvbtm0lSVu2bPFpr6io0Pbt233avvvuOzmdTo0YMeK4PwcAAAAAAPgPgjz4jfLycn377bcKCQlR165da+1js9l03nnn6csvv/QJrPbt26epU6dq8ODBio6ObpB6bDZjR96qUXWStH37dk2fPt2nX05OTo339urVS5K803EPHDjgcz8kJETdunWTx+NReXn5cdfWt29fxcXF6c033/SGn5L0wQcf1JgePHPmTPXt21eJiYnH/TkAAAAAAMB/sGAWTPPNN99ow4YNkqSsrCxNnTpVmzdv1tixY48Yxj3xxBOaM2eOBg8erLvuuktBQUF6/fXX5XQ69fe//73B6hs5cqQmT56s888/X9ddd52ysrL08ssvq2PHjlq1apW332OPPaaFCxdq5MiRatu2rbKysvTKK68oOTnZu7nEeeedp1atWmnQoEFKTEzU+vXr9dJLL2nkyJGKioo67tpCQkI0YcIEjRkzRmeffbauuuoqbd++Xe+88446dOjgM+V55syZGj16dJ3Pmjx5ssLDw33arFar/vKXvxx3XQAAAAAA4OQhyINpxo8f7z0PDQ1Vly5d9Oqrr+qOO+444vu6d++uH374QePGjdOkSZPkdrvVv39/vf/+++rfv3+D1Xf22Wfr7bff1tNPP637779f7dq10zPPPKPt27f7BHkXX3yxtm/frn//+9/Kzs5Wy5YtddZZZ2nixInejTXuuOMOffDBB5o8ebIKCwuVnJyse++9V4888ki967vnnnvk8Xj0z3/+U3/605/Us2dPffXVV7r33nsVGhoqSVq7dq0yMjKOuD7epEmTarTZbDaCPAAAAAAA/IzFU33VfjSK/Px8ORwO5eXl1TnyrLi4WOvXr1fXrl1rjJZC8/HOO+9o9OjRWrZsmVJSUhQXF3fEDUbcbrfi4+N12WWX6c0339Tf//53TZ48WXv27KnXxiRlZWXKz8/XRx99pDFjxmjp0qU+Ow3XV9XP95YtW5SZmanrrrtOSUlJJ/xcAAAAAAAC0bFkRRIj8oCAcNppp0mS9u/fr5YtW0qSSktLZbfbfQK6//znP8rJydGQIUMkSWlpaXruuefqvbvwzJkzdemll55Y8QAAAAAAoEEQ5NWDy+XShAkT9P7772vv3r1KSkrSzTffrEceeaTegQlQm+HDh2vOnDne66qpupL0448/6oEHHtCVV16puLg4LVu2TG+//bZ69OihK6+8UpJ01VVXndDnDxo0yOfzO3fufELPAwAAAAAA9UeQVw/PPPOMXn31Vb377rvq3r27fvnlF40ePVoOh0P33nuv2eWhCWndurVat25d6720tDSlpKToX//6l3JyctSiRQvddNNNevrppxUSEtIgnx8fH69zzjmnQZ4FAAAAAABODEFePSxevFi///3vNXLkSElGoPLhhx/q559/NrkyNCdpaWn66quvzC4DAAAAAAA0EqvZBQSigQMHat68edq0aZMkaeXKlVq0aJFGjBhRa3+n06n8/HyfAwAAAAAAADgejMirh7Fjxyo/P19dunSRzWaTy+XSk08+qeuvv77W/pMmTdLEiRMbuUoAAAAAAAA0JYzIq4dPPvlEH3zwgaZOnaply5bp3Xff1T/+8Q+9++67tfYfN26c8vLyvEdmZmYjVwwAAAAAAIBAx4i8evjzn/+ssWPH6pprrpEknXrqqcrIyNCkSZM0atSoGv3tdrvsdntjlwkAAAAAAIAmhBF59VBcXCyr1fePzmazye12m1QRAAAAAAAAmjpG5NXDRRddpCeffFKpqanq3r27li9frsmTJ+uWW24xuzQAAAAAAAA0UQR59fDiiy/qb3/7m+666y5lZWUpKSlJd9xxh8aPH292aQAAAAAAAGiimFpbD1FRUXr++eeVkZGhkpISbd26VU888YRCQkLMLq3ZmjBhgiwWi7Kzs80uxTRpaWmyWCyyWCy65557Gv3ze/Xq5f38Cy+8sNE/HwAAAACApo4gD6ZYvXq1rrjiCrVt21ahoaFq06aNzj33XL344otml6bdu3drwoQJWrFixUl5/tSpU/X888+flGefccYZeu+992rddOV4rF69WhaLRT///LMkHVM4+NRTT+m9995Ty5YtT+izAQAAAABA7Qjy0OgWL16svn37auXKlfrDH/6gl156SbfddpusVqteeOEFs8vT7t27NXHixIAM8tq3b68bbrhB/fr1O6HnzJgxQwkJCcf1nAsuuEA33HCDIiIiTuizAQAAAABA7VgjD43uySeflMPh0NKlSxUTE+NzLysry5yiTkBxcbHCw8PNLqNBzZw5UyNGjJDFYjG7FAAAAAAAUIkReWh0W7duVffu3WuEeJKUkJDgPd++fbssFoveeeedGv0sFosmTJhQoz07O1tXXXWVoqOjFRcXp/vuu0+lpaU+febMmaPBgwcrJiZGkZGR6ty5s/7yl79IkubPn+8dhTZ69Gjvmm9VNQwZMkQ9evTQr7/+qjPPPFPh4eHe93755ZcaOXKkkpKSZLfb1aFDBz3++ONyuVzezx4yZIhmzJihjIwM77PT0tK8951Opx599FF17NhRdrtdKSkpeuihh+R0Oo/lj7ZOGRkZuvjiixUREaGEhAQ98MADmj17tiwWi+bPn+/TNzc3V4sXL9bIkSNP6DMBAAAAAEDDYkReIPF4pPJis6vwFRwuHeeorbZt22rJkiVas2aNevTo0aDlXHXVVUpLS9OkSZP0448/6l//+pcOHjyo//znP5KktWvX6sILL1R6eroee+wx2e12bdmyRf/73/8kSV27dtVjjz2m8ePH6/bbb9cZZ5whSRo4cKD3Mw4cOKARI0bommuu0Q033KDExERJ0jvvvKPIyEg9+OCDioyM1Hfffafx48crPz9fzz77rCTpr3/9q/Ly8rRz504999xzkqTIyEhJktvt1sUXX6xFixbp9ttvV9euXbV69Wo999xz2rRpk6ZPn16vP5OioiKdffbZ2rNnj+677z61atVKU6dO1ffff19r/6qA77zzzqvX5wEAAAAAgJODIC+QlBdLTyWZXYWvv+yWQo5vTbQ//elPGjFihHr16qXTTz9dZ5xxhoYNG6ahQ4cqODj4hMpp166dvvzyS0nS3XffrejoaL3yyiv605/+pPT0dM2ZM0dlZWX65ptvat2UITExUSNGjND48eM1YMAA3XDDDTX67N27V6+99pruuOMOn/apU6cqLCzMe33nnXfqzjvv1CuvvKInnnhCdrtd5557rtq0aaODBw/WePbUqVM1d+5cLViwQIMHD/a29+jRQ3feeacWL17sEygeq9dff12//fabpk+frt///veSpDvuuEO9e/eutf+MGTM0aNAgORyO4/4sAAAAAABw8jC1Fo3u3HPP1ZIlS3TxxRdr5cqV+vvf/67hw4erTZs2+uqrr07o2XfffbfP9ZgxYyQZa75J8k7n/fLLL+V2u+v1GXa7XaNHj67RXj3EKygoUHZ2ts444wwVFxdrw4YNR33up59+qq5du6pLly7Kzs72HmeffbYk1TmC7mhmzZqlNm3a6OKLL/a2hYaG6g9/+EONvm63W7NmzWJaLQAAAAAAfogReYEkONwYAedPguu3yUO/fv30xRdfqKysTCtXrtS0adP03HPP6YorrtCKFSvUrVu3ej33lFNO8bnu0KGDrFartm/fLkm6+uqr9dZbb+m2227T2LFjNWzYMF122WW64oorZLUeW67dpk0bhYSE1Ghfu3atHnnkEX333XfKz8/3uZeXl3fU527evFnr169XfHx8rffruxFIRkaGOnToUGPjio4dO9bou3TpUu3fv58gDwAAAAAAP0SQF0gsluOexurvQkJC1K9fP/Xr10+dOnXS6NGj9emnn+rRRx+tc8fU6ptHHM3hzwgLC9PChQv1/fffa8aMGZo1a5Y+/vhjnX322fr2229ls9mO+szqI++q5Obm6qyzzlJ0dLQee+wxdejQQaGhoVq2bJkefvjhYxr953a7deqpp2ry5Mm13k9JSTnqM07UzJkzlZaWVu8gFQAAAAAAnDwEefAbffv2lSTt2bNHkhQbGyvJCMmqy8jIqPMZmzdvVrt27bzXW7Zskdvt9tkZ1mq1atiwYRo2bJgmT56sp556Sn/961/1/fff65xzzqkzQDyS+fPn68CBA/riiy905plnetu3bdtWo29dz+/QoYNWrlypYcOG1auGurRt21br1q2Tx+Pxee6WLVtq9J0xY4YuuOCCBvtsAAAAAADQcFgjD43u+++/l8fjqdFetY5d586dJUnR0dFq2bKlFi5c6NPvlVdeqfPZL7/8ss/1iy++KEkaMWKEJCknJ6fGe3r16iVJcjqdkqSICGPU4+EB4pFUjeSr/r3KyspqrTUiIqLWqbZXXXWVdu3apTfffLPGvZKSEhUVFR1zPdUNHz5cu3bt8ll/sLS0tMbn7Nu3T8uWLWNaLQAAAAAAfooReWh0Y8aMUXFxsS699FJ16dJFZWVlWrx4sT7++GOlpaX5bCRx22236emnn9Ztt92mvn37auHChdq0aVOdz962bZsuvvhinX/++VqyZInef/99XXfdderZs6ck6bHHHtPChQs1cuRItW3bVllZWXrllVeUnJzs3Sm2Q4cOiomJ0WuvvaaoqChFRESof//+PiP9Djdw4EDFxsZq1KhRuvfee2WxWPTee+/VGlj26dNHH3/8sR588EH169dPkZGRuuiii3TjjTfqk08+0Z133qnvv/9egwYNksvl0oYNG/TJJ59o9uzZ3lGLx+OOO+7QSy+9pGuvvVb33XefWrdurQ8++EChoaGSDo0QnDlzpkJDQzV06NBan/PLL7/oiSeeqNE+ZMgQn112AQAAAADAyUGQh0b3j3/8Q59++qlmzpypN954Q2VlZUpNTdVdd92lRx55xLuzrCSNHz9e+/fv12effaZPPvlEI0aM0DfffKOEhIRan/3xxx9r/PjxGjt2rIKCgnTPPffo2Wef9d6/+OKLtX37dv373/9Wdna2WrZsqbPOOksTJ06Uw+GQJAUHB+vdd9/VuHHjdOedd6qiokJTpkw5YpAXFxenr7/+Wn/84x/1yCOPKDY2VjfccIOGDRum4cOH+/S96667tGLFCk2ZMkXPPfec2rZtq4suukhWq1XTp0/Xc889p//85z+aNm2awsPD1b59e913333q1KlTvf68IyMj9d1332nMmDF64YUXFBkZqZtuukkDBw7U5Zdf7g30Zs6cqaFDh9a6BqAk/fTTT/rpp59qtD/++OMEeQAAAAAANAKLp7YhQzip8vPz5XA4lJeXp+jo6Fr7FBcXa/369eratavCw+u3Myyal7S0NA0YMEAvvviiwsLCvFOE6/L888/rgQce0M6dO5WYmKi4uDhNmjRJd911V70+Pzc3VxUVFTrttNOUnp6ur7/+us6+VT/fW7ZsUWZmpq677jolJSXV63MBAAAAAAh0x5IVSayRBzQpH330keLj4/Xwww/7tJeUlPhcl5aW6vXXX9cpp5yiNm3aKCcnRw888IAuvfTSen/2kCFDFB8fr8zMzHo/AwAAAAAA1I2ptUAT8cEHH3gDu5SUFJ97l112mVJTU9WrVy/l5eXp/fff14YNG/TBBx9IkhISEjRhwoQT+vzXX39dBQUFkqT4+PgTehYAAAAAAKiJIA9oIgYNGlTnveHDh+utt97SBx98IJfLpW7duumjjz7S1Vdf3WCf379//wZ7FgAAAAAAqIkgD2gG7r//ft1///1mlwEAAAAAAE4Aa+QBAAAAAAAAAYAgz8+xqTCaIn6uAQAAAAA4fgR5fio4OFiSVF5ebnIlQMMrKyuTJFVUVJhcCQAAAAAAgYMgz08FBQUpKChIOTk5ZpcCNCiPx6Ps7GyVlZUR5AEAAAAAcBzY7MJPWSwWtWnTRhkZGdqzZ4+io6NlsVjMLguoN4/Ho7KyMmVnZysvL0/Z2dlyu92yWCyyWvl/CgAAAAAAHA1Bnh+Li4tTfn6+du3apd27d5tdDtAgqsK8goICFRUVKTw8XA6Hw+yyAAAAAADwewR5fsxisah9+/bavXu3VqxYodDQUIWGhjJ6CQGroqJC5eXl8ng8Ki4uVlFRkQYMGKCwsDCzSwMAAAAAwO8R5NVDWlqaMjIyarTfddddevnllxv88373u9/JarVq3bp1OnDgADt+okmIiIhQ79699bvf/c7sUgAAAAAACAgEefWwdOlSuVwu7/WaNWt07rnn6sorrzwpnxcUFKSBAweqX79+KiwsJMhDwLNYLIqMjPTuzgwAAAAAAI6OIK8e4uPjfa6ffvppdejQQWedddZJ/dzg4GDFxsae1M8AAAAAAACAfyLIO0FlZWV6//339eCDD9a5q6zT6ZTT6fRe5+fnN1Z5AAAAAAAAaCLYNeEETZ8+Xbm5ubr55pvr7DNp0iQ5HA7vkZKS0ngFAgAAAAAAoEmweFhw7YQMHz5cISEh+u9//1tnn9pG5KWkpCgvL0/R0dGNUSYAAAAAAAD8VH5+vhwOx1GzIqbWnoCMjAzNnTtXX3zxxRH72e122e32RqoKAAAAAAAATRFTa0/AlClTlJCQoJEjR5pdCgAAAAAAAJo4grx6crvdmjJlikaNGqWgIAY2AgAAAAAA4OQiyKunuXPnaseOHbrlllvMLgUAAAAAAADNAEPJ6um8884T+4QAAAAAAACgsTAiDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIq6ddu3bphhtuUFxcnMLCwnTqqafql19+MbssAAAAAAAANFFBZhcQiA4ePKhBgwZp6NCh+uabbxQfH6/NmzcrNjbW7NIAAAAAAADQRBHk1cMzzzyjlJQUTZkyxdvWrl27Ovs7nU45nU7vdX5+/kmtDwAAAAAAAE0PU2vr4auvvlLfvn115ZVXKiEhQb1799abb75ZZ/9JkybJ4XB4j5SUlEasFgAAAAAAAE2BxePxeMwuItCEhoZKkh588EFdeeWVWrp0qe677z699tprGjVqVI3+tY3IS0lJUV5enqKjoxutbgAAAAAAAPif/Px8ORyOo2ZFBHn1EBISor59+2rx4sXetnvvvVdLly7VkiVLjvr+Y/2HAwAAAAAAgKbvWLMiptbWQ+vWrdWtWzeftq5du2rHjh0mVQQAAAAAAICmjiCvHgYNGqSNGzf6tG3atElt27Y1qSIAAAAAAAA0dQR59fDAAw/oxx9/1FNPPaUtW7Zo6tSpeuONN3T33XebXRoAAAAAAACaKIK8eujXr5+mTZumDz/8UD169NDjjz+u559/Xtdff73ZpQEAAAAAAKCJYrMLE7DZBQAAAAAAAKqw2QUAAAAAAADQhBDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDk1cOECRNksVh8ji5duphdFgAAAAAAAJqwILMLCFTdu3fX3LlzvddBQfxRAgAAAAAA4OQhfaqnoKAgtWrV6pj6Op1OOZ1O73V+fv7JKss8P/xTKs6RrEGHHbbjvG7A91gsZv+pAAAAAAAANBiCvHravHmzkpKSFBoaqgEDBmjSpElKTU2tte+kSZM0ceLERq6wkS1/X8r5zewqfFmONxCs5doWLNlCjGtbsGQNrmyr49waZPSv9bzqWcGSLajyNaTa+eHPOqyNcBIAAAAAgGbN4vF4PGYXEWi++eYbFRYWqnPnztqzZ48mTpyoXbt2ac2aNYqKiqrRv7YReSkpKcrLy1N0dHRjln7y/O8FqShbcrskd0W14/Dr2tpO5Lrc7G/euI4YBFaGhkH2yvPKIyhEstkPO6/qZ6/5njrPa3vOYc8kaAQAAAAA4Ljl5+fL4XAcNSsiyGsAubm5atu2rSZPnqxbb731qP2P9R8OjpHb3QBhYS0BodslucolV5nR5io32l1lkquyj6u88l5ZtfPa3lPue36097jKJAXgv5q2w4PCwwLBoFApONR4DbJXvh52fcz3a+ljY5AxAAAAACDwHGtWxG+9DSAmJkadOnXSli1bzC6lebJaJWuIpBCzK2lYVUFinUFgLeGfq1xyOY3zirLKNme18zKpwnnYeeV7fM6P8b0el2/NVffMYrEdRxgYJgVXHeF1vB5+Xu06KMz42QMAAAAAoJEQ5DWAwsJCbd26VTfeeKPZpaApsdqMQ6FmV1I3t+s4AsHqR0nla6nxWn7Y9fHcrx4celxSeZFxNIag0CMEf0dqCzeOkAgpJLLyNaLadbgUHEFQCAAAAADwQZBXD3/605900UUXqW3bttq9e7ceffRR2Ww2XXvttWaXBjQuq02yVoZVZnG7KwO+0mph3+HXh4eBpcZ1eYlUXux7XlFara24Zr+K0kOfXfWskoMn57t5w75qgV+tAeDhYWBt7ZHGEdTERq4CAAAAQDNCkFcPO3fu1LXXXqsDBw4oPj5egwcP1o8//qj4+HizSwOaH6vVGMEWEt44n+d2VQsCDw/8agn+amsrKzr0WlZY+Vp06LpqfcTyYuMo2t9w9dvskj2q2hF92PWRjmp9g8PZ3AQAAAAAGhmbXZiAzS4A1MnjqRb2HRbw+ZwX1x0ElhUZAWD1e9VHEjYEi/UoQWC0FOqo5Yg5dB4SQRgIAAAAAGKzCwAITBZLtRGGDTjK11UhlRVIzkLJWVDtyD/supa2skLfdo/bOErzjKO+LLZDoV5YzBGCv1ruhcUYaxQSBAIAAABoRgjyAKA5sAVJYbHGcSI8HmO03xGDwAIj4HPmHwr7SvOkktzK81xjt2WPSyrJMY76LDNoC6n8Ti2M1/AWRsAX1qLyPLbmeVissWsxAAAAAAQggjwAwLGzWA5toBHVqn7PqJo+XBXqVQ/7qtpK6mivOve4jR2LC/cZx/EIDq8W/h0eBFYP/1pIES2l8DhjFCCj/wAAAACYjCAPANC4qk8fjm59/O/3eIzpviW5xo7BJTlScc6h85LcyuvKturnHvehTUTydx77Z1qDjUAvIl6KiJPCWxohX0TLQ+fhLQ/dD40h+AMAAADQ4AjyAACBxWI5tKlGTMqxv8/tNqb7egO+g7UHgVXnxQeMo6xQcpdLhXuN41hYg4zgr7bAL6KlFJEgRSZKkQnGERxWvz8LAAAAAM0KQR4AoHmwWivX0Is5vveVlxiBXtF+qeiAVJwtFWVXvh7edsAIC90Vxzft1+6oDPUSa3mtdh7RUrLajvebAwAAAGgiCPIAADiS4DDJkWwcx6LCWS3oy64WAlZrK9pvhHwF+ySXU3LmGceBzUd+tsVqjOyrLfCLSpSikqToJCmqtRQUcuLfHQAAAIBfIcgDAKAhBdklRxvjOBqPx9i8ozDr0Ag+7/lhr0X7jTX+irKM42iD/cJbGmsQRiXV8dra2NyDtfwAAACAgEGQBwCAWSyWQ9N94zsdua+rwhjd5xPyVZ3vlQr2Svm7pYI9xo6+xZUjAPeurvuZQaFGoFc1iq960OdIMUYhRiQY05IBAAAAmI4gDwCAQGALqpw+m3jkfh6PsWFHwW4pf08tr3uMwK8kR6oolQ5uM466WIMrRximHJpi7D0q20IiGva7AgAAAKgVQR4AAE2JxSJFxBlHq1Pr7ldeaoR6VcFewZ5qgd9uKW+Xce4ulw5uN466hLXwDfaqB30xKcYafkzhBQAAAE4YQR4AAM1RcKjUop1x1MVVYQR8eTsrj8zKo/I6N1MqKzBG95XkSHtX1f6coFApJlWKTZNi2kqxbX3PQx0n4xsCAAAATQ5BHgAAqJ0tyBhRF5NSd5/SPN+gL7da0Je30xjVV1EqZW8yjtqExdYe8MW2M0b1sQMvAAAAIIkgDwAAnIhQh3Ekdq/9fkWZlL9TOphhTM/NzfA9Lz4glRw0jj0ranmARYpuY4wcjOsgtWgvtehgnMe2M0YWAgAAAM0EQR4AADh5gkIqw7f2td93FhjB3uEBX9V5RYkRBObvlLb/cNibLcZafC3aHQr3vCFfmhRkP7nfDQAAAI0mq6BUqzLztGpnrlbuzNOu3BLNeeBMWZrZWswEeQAAwDz2KKlVD+M4nMcjFe2XcrZJOb9JOVulA1srz3+TnPmH1u3btvCwN1uMablxlSP4WrSXWnaS4jsZ7VZbo3w9AAAAHL+8knKt3pmnlTtztWpnrlbtzNOevNIa/XYeLFFKi3ATKjQPQR4AAPBPFosUmWAcqf1973k8UlH2YeFetfOyQilvh3H8Nt/3vUGhUlxHI9irCvdadjLagsMa7esBAABAKilzac3uPK3MNAK71bvytC27qEY/i0U6JSFS6ckx6pnsUHpyjFo5mt8yKwR5AAAg8FgsUmS8caT+zvde1Ui+A1sPhXsHthw6KkqlfWuMw/ehxu66LTtJ8Z2llqdUhn2dpYi4RvtqAAAATVVZhVsb9xb4jLTbtK9Abk/NvqktwpWe7FDP5BilJzvUo41DEXZiLIvH46nljwsnU35+vhwOh/Ly8hQdHW12OQAANB+uCmMNvuzNUvZGYyfd/ZuM89K8ut8X1kJK6CYldJUSuxnn8V2ksJhGKx0AACCQuNwe/ba/UCt3HlrXbv2efJVVuGv0TYiyHxpplxKj9DYOxUaEmFC1eY41KyLIMwFBHgAAfqZqqq5PuFd55GXW/b7oNocCvqrX+M5M0QUAAM2Kx+PRzoMllSPtjGmya3blqajMVaOvIyxY6cmOyiNGPZvpFNnDHWtWxJhEAACA6lN10wb73isrMgK9rA1S1lopa71x5O86dGyZU+1ZVmNzDW+4V3nEdWCTDQAA0CQcvoPs6l15yikqq9EvLNimHm2ilV45PbZncozaxoU3u51mGxIj8kzAiDwAAJqAklxp/wZpX7VwL2utVHKw9v5BYVJid6l1utTqVKlVuhHwhTSvndYAAEBgOdYdZINtFnVpFX1oXbsUhzrGRyrIZjWh6sDD1Fo/RpAHAEAT5fFIhVlS1rpqR2XIV15cs7/FauyW26oq3KsM+CLjG792AADQ7JWUubR2d553XbtVO+veQbZjfOUOsinGFNmuraNkD2L2QX0R5PkxgjwAAJoZt0vK+U3au0rau1ras8o4L9pfe//IVodG7rXuKSX1lhwpxt+aAQAAGkC5q9oOspnGiLvNWYVy1bKFbEqLsEObUSTHqEcbhyLZQbZBEeT5MYI8AAAgSSrYZwR7VQHf3tXSgS2SavnrWXhLI9Brc5rxmtRbimrV6CUDAIDA43Z79Ft2oVZWW9duXR07yMZH2b2BXdWGFC2a2Q6yZiDIa0RPP/20xo0bp/vuu0/PP//8UfsT5AEAgDo5C40puXtXGSP39qww1uFzV9TsG5V0KNRr01tq3VuKiGv0kgEAgP+o2kF21c6q0C5Xa3blq9BZ8+8S0aFB6plyKLBLT3aoVXQom1GYgF1rG8nSpUv1+uuvKz093exSAABAU2CPlFJON44q5aVGmLd7mbR7uXHs3yAV7JY27pY2zjjUNyZVSqoctZfcz3hlQw0AAJqsg0VlWrkzVysrp8euzMzVAXaQbbII8k5AYWGhrr/+er355pt64oknzC4HAAA0VcGhUnIf46hSVmSM2KsK9nYvM6bl5u4wjnXTjX7WICmxhxHqpZxuvMamsd4eAAABqGozihWZxvTYlZm52pFTc0MtdpBtugjyTsDdd9+tkSNH6pxzzjlikOd0OuV0Or3X+fn5jVEeAABoykIipLYDjKNKaZ60Z6W0a5m061dp51KpYI8xPXfPCmnpm0a/iHgj0EvuKyWfbqy7FxJhxrcAAAB1cLk92pxVoJWZuVqRaYR2G/cV1LoZRfuWEeqZYmxG0TMlRl1bRys0mB1kmyKCvHr66KOPtGzZMi1duvSofSdNmqSJEyc2QlUAAKBZC3VI7c40DknyeKS8nUagt3OplPmzEfQV7Zc2zjQOSbLYpMRuRqiXWhkOOpLN+x4AADQzHo9Hu3JLvNNjV2Tmas2uPBWXuWr0jY+yq1dKjHqlxKhncoxOTXbIERZsQtUwA5td1ENmZqb69u2rOXPmeNfGGzJkiHr16lXrZhe1jchLSUlhswsAAND4ykuNjTQyfz4U8OXvqtnPkWoEeqkDpLYDpZadmI4LAEADyS0u806NXZlpbEiRXVhzXbuIEJvSk2PUMyVGvVKM0XZsRtE0sWvtSTR9+nRdeumlstkODVN1uVyyWCyyWq1yOp0+9w7HrrUAAMCv5O06NGJvx2Jj7T3PYSMAwuOMUK8q2GuVLtmY3AEAwNGUlleta2cEd6t25mr7gZrr2gVZLeraOlo9U4x17XqlxKh9fKRsVkK75oAg7yQqKChQRkaGT9vo0aPVpUsXPfzww+rRo8cR30+QBwAA/JqzwAj2MhZLGUukXb9IFaW+fUIijXX22g6U0gZLbfpKQSHm1AsAgJ9wuT3aklVorGtXuYPsxr0FqqhlXbt2LSO8a9r1TIlRN9a1a9aONSvif6PWQ1RUVI2wLiIiQnFxcUcN8QAAAPyePUrqcLZxSFKFU9q9whitl7FEyvzR2Fjjt++NQ5KCwqTU31Wu0XeW1LonI/YAAE2ax+PR7rxS7/TYFZm5Wl3HunYtI+3G1NjKabLpyQ7FhPM/wHD8+NsVAAAAjizILqX2N47BD0hut5S1TtqxRMr4n7TtB6k42zfYs0dLbQcd2nwjoZtktZr7PQAAOAG5xWVaVbWu3U5jJ9nsQmeNfhEhNp1aOdKuV2Vw19rBunZoGEytNQFTawEAQJPi8UhZ66XtP0jbFhqvpXm+fcJaSO3OODRiL64jm2cAAPyWsa5dvndNu5U787Qtu6hGvyCrRV1aR3lH2vVKiVEH1rVDPbBGnh8jyAMAAE2a22XsjLttoTFaL2OxVH7YLz9RScbU3Y5nS+2HSuEtzKkVANDsudwebd1fqBXVdpDdsKf2de3S4sKNNe0qg7vuSaxrh4ZBkOfHCPIAAECz4iqXdi2rDPYWGLvjuqpPRbJISb2ljsOkDsOk5L6SLdi0cgEATZfH49GeynXtqjajWL0zT0W1rmsX4g3seqbEKL2NQ7ERrGuHk4Mgz48R5AEAgGatvMRYX2/LPGnrd8Z6e9XZo40puFUbbrRoZ06dAICAl19artU787QiM1fLdxij7fYX1FzXLjzEph5tHOrlHW3nUJuYMNa1Q6MhyPNjBHkAAADV5O8xAr2t86St30slOb73W7SXOp4jdRoutR0sBYeaUycAwK9VuNzasLdAKyp3kF2Rmaut+wt1eOphs1rUpVWUz2YUHRNY1w7mIsjzYwR5AAAAdXC7pT0rDoV6mT9J7opD94MjpPZDjFDvlPOk6NZmVQoAMJHH49HuvFKt2JGrFZkHtSIzV6t35am03F2jb3JsmHpVbkTRKyVG3ZMcCgthXTv4F4I8P0aQBwAAcIxK84219TZ/axwFe3zvt+4pdTrfCPZa95asVnPqBACcVAWl5VpVOUW26qhtimyUPci7e2yvyrXt4qPsJlQMHB+CPD9GkAcAAFAPHo+xG+6m2dKmWcYGGqr2V9mIBGOUXqfhxtp69kjTSgUA1F+Fy62N+yqnyO4wQrstR5giWxXa9U6NUfuWkbIyRRYBiCDPjxHkAQAANIDCLGnzHCPU2/q9VFZw6J7NbkzB7Xqh1PkCKaKlaWUCAOpWtYusd6TdDmOKbEl5zV1k28SEqVdqjHozRRZNEEGeHyPIAwAAaGAVZdKOxdKmb6WNM6WD2w7ds1il1AFSlwulLiOl2Lbm1QkAzVyhs0KrMnO1PDNXKyvDu6w6psimpzgqR9vFqmeKQwlRbHaEposgz48R5AEAAJxEHo+UtV7aMEPa8F9pz0rf+63Spa4XGaFeQjfJwhQsADgZKlxubdpXWDnaztiQYnNW7VNkOydGqVdq5RTZlBh1iGeKLJoXgjw/RpAHAADQiHJ3GKHe+q+NUXueajsaxrYzpt92u0Rq04dQDwBOwJ68Eu+adsszc7V65xGmyFZtSJEaox5MkQUI8vwZQR4AAIBJirKljd9IG7421tVzVZvO5UiVul8idb9USupNqAcAR1DorNCqnYfWtVu5M1f78mtOkY20Byk92XEouEuJUUI0U2SBwxHk+TGCPAAAAD/gLJS2zJXWfyVtnCWVFx26F9PWCPS6Xyq17kmoB6BZc7k92nTYLrKbswrkPixNsFqkzq2ivdNje6UaU2RtTJEFjoogz48R5AEAAPiZ8hJjB9y104xdcMuLD91r0f5QqJfYg1APQJPnnSK789AussVlNafIJjlCveva9UyO0anJDoWHBJlQMRD4CPL8GEEeAACAHysrkjZ/WxnqfStVlBy6F9dROvUqKf1KI+ADgABXXFah1TvztDwzV8t3GBtS1DZFNiLEpvTkGJ8NKZgiCzQcgjw/RpAHAAAQIJyF0ubZRqi3eY5UUXroXnI/I9TrcZkU0dK8GgHgGHk8Hm0/UKzlOw5q+Y5cLc88qPV7CuQ6bI6s1SJ1SoxS79Sqde1i1TGBKbLAyUSQ58cI8gAAAAKQs8DY/XbVx9Jv8w/tfmuxSR2HSelXS51HSCERppYJAFXyS8u1MjPXCO12HNTyzFzlFpfX6JcQZddpqbHe0XantnEows4UWaAxEeT5MYI8AACAAFewT1rzuRHq7VlxqD04Qup6oZR+ldRuiGTjF2EAjcPl9mhLVqHPaLvNWYU6/Df+kCCrTm3jUO+UGPVOjVXv1Bi1doTKwvqfgKkI8vwYQR4AAEATsn+TtPpTI9TLzTjUHtlK6nm11OsGKb6TefUBaJIOFDq1omq0XeZBrczMU6Gzoka/lBZh6p1iBHa9U2PVtXWU7EE2EyoGcCQEeX6MIA8AAKAJ8niknUuNQG/NF1JJzqF7yf2k3jdI3S+TQvn7H4DjU+5ya8OeAi3bcdA7RTbjQHGNfuEhNvVMjvGGdr1SYhQfZTehYgDHiyDPjxHkAQAANHEVZdKmWdKKD4xNMjwuoz0oTOp2sdTreintDMlqNbdOAH5pb16pN7BbvuOgVu3Mk7PCXaNfh/gI7/TY01JjdUpCpIJs/HcFCEQEeX6MIA8AAKAZKdhrjNJb/oGUvfFQe0yq1PM6qdd1Umxb8+oDYKrScpfW7s7TsgxjiuzyHbnak1dao190aJA3tOudGqteyTFyhAebUDGAk4Egz48R5AEAADRDHo+061dp+fvGRhnO/EP3Opwt9Rlt7Hpr4xdzoKnyeDzKzCnxBnbLdxzUuj35Knf5/lputUidW0V7R9r1To1Ru7gIWa1sSAE0VQR5fowgDwAAoJkrK5Y2zJBWvC/9Nv9Qe2QrYy29PqOMEXsAAlqhs0KrMnO9U2SX78jVgaKyGv1aRoYcGm2XEqv0ZIci7Ox6DTQnBHl+jCAPAAAAXjnbpGXvGiP1ivZXNlqkjudIfUdLpwyXbPxCD/g7t9uj37ILtWxHrne03aZ9BXIf9ht3sM2i7kkO7xTZ3ikxSo4Nk8XCaDugOSPIO4leffVVvfrqq9q+fbskqXv37ho/frxGjBhxTO8nyAMAAEANFWXSxhnSL1OkbQsOtUclSafdKJ12k+RINq8+AD5yi8sqR9oZod2KzFwVlFbU6NcmJky9UmPUO8UI7ronRSs02GZCxQD8GUHeSfTf//5XNptNp5xyijwej9599109++yzWr58ubp3737U9xPkAQAA4IgObJV+fcfY9bb4gNFmsUqdzpf63yG1O0ti9A7QaCpcbm3cV1AZ2hmbUvy2v6hGv9Bgq9KTY7xTZHunxigxOtSEigEEGoK8RtaiRQs9++yzuvXWW4/alyAPAAAAx6TCKa3/rzFKL2PRofb4LtLpf5DSr5HskebVBzRRWQWlh0K7HQe1ameeSspdNfq1axlROdLOGG3XuVWUgm1WEyoGEOiONStisY0T5HK59Omnn6qoqEgDBgyotY/T6ZTT6fRe5+fn19oPAAAA8BFkl069wjj2b5R+flNa+aG0f4M044/S3MeMzTFOv01q0d7saoGA5Kxwad3u/MqRdkZwt/NgSY1+UfYgnymyvVJiFBsRYkLFAJozRuTV0+rVqzVgwACVlpYqMjJSU6dO1QUXXFBr3wkTJmjixIk12hmRBwAAgONWmiet+FD6+XUp57fKRovUabh0+u1Sh7OZdgvUwePxaFduic8U2bW78lXmcvv0s1ikzolRPlNkO8RHymrl3y0AJwdTa0+ysrIy7dixQ3l5efrss8/01ltvacGCBerWrVuNvrWNyEtJSSHIAwAAQP253dLWedJPr0lb5h5qjzvFCPR6Xce0WzR7hc4KrdqZqxWVm1KsyMzV/gJnjX4tIkJ8psimJzsUFRpsQsUAmiuCvEZ2zjnnqEOHDnr99deP2pc18gAAANCgsrdIS9+Uln8glRUYbaEOqe+txuYYUa3MrQ9oBC63R1uyCr07yK7IzNWmfQVyH/Ybb5DVom5J0d4psr1TY5TaIlwWRrICMBFr5DUyt9vtM+oOAAAAaDQtO0ojnpHOfsSYdvvTa1LOVmnRZGnxi1L6VdKAe6TEmrNHgEDk8Xi082CJ1u7O16qdxmi7VTtzVVRWc0OKNjFh6pUSo16VI+56tHEoNNhmQtUAcOII8uph3LhxGjFihFJTU1VQUKCpU6dq/vz5mj17ttmlAQAAoDmzR0n9b5f63SZt+sYI8XYskVZ8YBwdhkkDx0jth7COHvxOabnLu1Zd1U+nxWJRQWm5MnNKtP1AkTbsKdC6PXlatztf+aUVNZ4RHmJTerLDuxlF75QYJUSHNuK3AICTiyCvHrKysnTTTTdpz549cjgcSk9P1+zZs3XuueeaXRoAAAAgWa1Sl5HGsfMXI9Bb/5Wxpt7WeVJiD2OEXo/LpSB23cTJU1bhVnahU/sLnLW8lvlcFzhrBnNHEmyzqFNilHokOdQr1Rhx1ykxSjY2pADQhLFGnglYIw8AAACNLmeb9OOr0vL3pfIioy062Rihd9pNUki4ufUhYHk8xtp0S7cf1KZ9BdqRU6zMnGJlFTiVV1J+ws8PslrUJjZMKbHhOiUxUt1aR6t7kkMdEyIVEmRtgG8AAOZjsws/RpAHAAAA0xTnSL9OkX56XSrcZ7SFx0m/+z+p3x+ksBhTy0NgKKtw639bsvXflbv1/cYsHSyuO7ALsloUH2VXy0h75WvIYdeHXkODrTr8N9Qgq0VBNgI7AE0bQZ4fI8gDAACA6cpLpZVTpUXPS7kZRltIlNTvVmnA3VJkgqnlwT9tzy7SBz9l6NNfdyq3WngXGmxV75RYpSc7lBoXrtQW4WoVHar4KLscYcHsCAsAR0GQ58cI8gAAAOA3XBXS2mnSD/+U9q832oJCpd43GtNuY9uaWx9M53Z7NHf9Pr33Y4Z+2JztbY+PsuuCHq10wamt1Ts1lmmuAHACCPL8GEEeAAAA/I7bLW2aZQR6u34x2iw2Kf1q6cw/SXEdzK0Pja6swq3pK3bptQVb9dt+Y11Fi0Ua0ileNw5oq7M6JbCxBAA0EII8P0aQBwAAAL/l8UjbfzACvd/mG20Ees1KcVmFPvo5U2/98Jt255VKkqJCg3Td6am6vn9bpcaxMQoANDSCPD9GkAcAAICAsPMXacEz0uZvjWuLTep5jXTGHwn0mqDc4jL9Z0mGpvxvm3fzivgou24b3E7X9U9VVGiwyRUCQNNFkOfHCPIAAAAQUHb+Ki14umagd+afpBbtza0NJ2xffqne+uE3Tf1ph4rKXJKk1BbhuuOs9rr8tGSFBttMrhAAmj6CPD9GkAcAAICAVGugd6105h8J9ALQ9uwivb5wqz7/dZfKXG5JUpdWUbpraEdd0KOVgmxsXgEAjYUgz48R5AEAACCg1RbonXajdNbDUnSSubXhqNbuztMr87fqm9V75K78bbBfWqzuGtJRQzrHy2JhAwsAaGwEeX6MIA8AAABNws5fpfmTpC1zjOugUOn0P0iDH5TCW5hbG3x4PB79vC1Hr8zfqgWb9nvbh3aO111DO6pfGv+8AMBMBHl+jCAPAAAATUrGEmneY9KOxcZ1SJQ0cIw04C7JHmVubc2cx+PRvPVZenXBVv2acVCSZLVIF6Yn6c6zOqhbEr+PAIA/IMjzYwR5AAAAaHI8HmnLXGneRGnvaqMtvKWxw23fW6TgUHPra2YqXG59vWqPXp2/VRv3FUiSQmxWXdE3WXec2V5t4yJMrhAAUB1Bnh8jyAMAAECT5XZL66ZJ3z0p5Ww12qKTpSFjjY0xbEHm1tfElZS59PHSHXrzh23alVsiSYoIsemG37XVrYPbKSGaQBUA/BFBnh8jyAMAAECT5yqXVnwgzX9GKthttMV3lc57XOp4jsSGCg3qYFGZ/rMkQ+8u2a6cojJJUlxEiEYPStONv0uTIzzY5AoBAEdCkOfHCPIAAADQbJSXSkvfkn74h1RirNGm9kOkcx+XWqebWlpTsDu3RG/9sE0fLd2h4jKXJCmlRZhuP6O9ruybotBgm8kVAgCOBUGeHyPIAwAAQLNTclD64Z/ST69LrjJJFmOq7dmPSI42ZlcXcDbvK9BrC37Tlyt2qcJt/ErXtXW0/m9IB13Qo5WCbFaTKwQAHA+CPD9GkAcAAIBm6+B2ad7j0prPjOugMGnA3dLg+9nh9hj8mpGjV+dv1dz1Wd6237Vvof8b0lFnntJSFqYsA0BAIsjzYwR5AAAAaPZ2/ip9+4i0Y7FxHREvDRknnTaKDTEO43J7NGfdXr31wzb9kmFMT7ZYpOHdWunOIR3UKyXG3AIBACeMIM+PEeQBAAAAkjweacMMac74QzvcxneVRjxtrKPXzBU6K/TpL5n69/+2KTPH2IE22GbRZb2TdftZ7dUhPtLkCgEADYUgz48R5AEAAADVuMqlX6ZI8ydJJTlGW9eLpPOelGLbmlubCXbnlujdxds19ecdKiitkCTFhAfrhv5tddOAtkqIDjW5QgBAQyPI82MEeQAAAEAtSg5K308ydrn1uCSbXRp0n7F+XkiE2dWddKt25uqtH7Zpxuo9clVuYNG+ZYRuGdxOl5+WrLAQdqAFgKaKIM+PEeQBAAAAR7BvnTRrrLRtgXEd3UY69zGpx+XG4nBNiMvt0dz1+/T2D9v08/Ycb/uA9nG67Yx2Gto5QVZr0/rOAICaCPL8GEEeAAAAcBQej7T+v9K3f5VydxhtqQOlEc9IrdPNra0BHCwq08e/ZOq9JRnalWusfxdktejinkm6ZXA79WjjMLlCAEBjIsjzYwR5AAAAwDEqL5EWvyj9MFmqKJEsVqnPzdKw8VJYrNnVHbe1u/P0n8UZmr5il5wVbknG+nfXnp6qUQPS1MrB+ncA0BwR5PkxgjwAAADgOOXtNHa3XfO5cR3eUjrvCannNX4/3bbc5dbstXv17uLtWrr9oLe9W+to3TwwTRf3SlJoMOvfAUBzRpB3Ek2aNElffPGFNmzYoLCwMA0cOFDPPPOMOnfufEzvJ8gDAAAA6mn7ImnGH6X9G4zrtoOlkf+UErqYW1ct9hc49eHPO/TBTxnal++UZEyfPb9HK908ME192sbK4uchJACgcRDknUTnn3++rrnmGvXr108VFRX6y1/+ojVr1mjdunWKiDj6bloEeQAAAMAJqCiTfnxZmv+MMd3WGiQNHCOd+ZAUEm5qaR6PRz9vy9HUn3fom9V7VeYyps+2jLTruv6pur5/qhKjmT4LAPBFkNeI9u/fr4SEBC1YsEBnnnnmUfsT5AEAAAANIHeH9M3D0saZxrUjVbrg71LnEY1fSnGZPl+2Sx/+vENbsgq97b1SYnTzwDSNOLWV7EFMnwUA1O5Ys6KgRqypycrLy5MktWjRotb7TqdTTqfTe52fn98odQEAAABNWkyqdO2H0oaZ0jcPSXk7pA+vkTqPNHa3jUk5qR/v8Xj0a8ZBTf1ph2as3uPdvCI8xKaLeybpuv6pSk+OOak1AACaF0bknSC3262LL75Yubm5WrRoUa19JkyYoIkTJ9ZoZ0QeAAAA0EDKiqQFf5eWvCS5K6TgcOnsv0n975CsDTsSLq+kXNOW7dSHP2dq474Cb3vX1tG6rn+qLumVpKjQ4Ab9TABA08bU2kbyf//3f/rmm2+0aNEiJScn19qnthF5KSkpBHkAAABAQ8taL339oLRjsXHdpq908YtSYrcTeqzH49EvGQf18dJMfb1qt0rLjdF3ocFWXZRujL7rlRLD5hUAgHohyGsE99xzj7788kstXLhQ7dq1O+b3sUYeAAAAcBK53dKyd6U54yVnvmQNls54UDrjj1KQ/bgetS+/VJ8v26lPf9mpbdlF3vbOiVHG6LvebeQIY/QdAODEEOSdRB6PR2PGjNG0adM0f/58nXLKKcf1foI8AAAAoBHk75Zm/PHQZhjxXaSLX5JS+h3xbWUVbs1bv0+f/JKpBZv2y135G1N4iE0XnNpa1/RLUZ+2sYy+AwA0GIK8k+iuu+7S1KlT9eWXX6pz587edofDobCwsKO+nyAPAAAAaCQej7R2mrEZRtF+SRZj3byz/ybZI326rtudr09/zdT05bt0sLjc294vLVZX9knRBemtFWlnv0AAQMMjyDuJ6vo/b1OmTNHNN9981PcT5AEAAACNrDhHmv1XaeVU49qRKl30nA60OkP/Xblbny3bqTW78r3dE6Ptuvy0ZF3RJ1nt4yPreCgAAA2DIM+PEeQBAAAAJtkyT+7/3i9r3g5J0ieuIXq8/AYVKFzBNovO7ZaoK/um6IyOLRVks5pcLACguTjWrIhx4QAAAACaPJfbox9/O6Bpy1tqQe4T+j/XVN1sm62rbPM1NHitfu31uE4fdrlaRISYXSoAAHUiyAMAAADQZK3fk6/py3fpyxW7tTe/tLI1SP+OvUPhHS7V5TueUnx+hs5fdqdkXSqd+1iNtfMAAPAXBHkAAAAAmpSMA0X6etUe/Xflbm3YW+Btd4QFa2R6a13Wu82hXWedF0pzH5WWviX98ra0dZ50yatS24EmfgMAAGrHGnkmYI08AAAAoGHtPFisGav26OtVe7R6V563PcRm1bCuCbqkdxsN6Rwve5Ct9gds/V768h4pf6cki/S7u6Rhf5OCwxrnCwAAmjU2u/BjBHkAAADAiduTV+IN71Zk5nrbbVaLBnaI04XprXV+99ZyhAcf2wNL86TZf5GWv29cx50iXfqalNy34YsHAKAagjw/RpAHAAAA1E9WQam+Wb1XX6/araXbD3rbLRbpd+3idGHP1jq/eyvFRdrr/yGbZktfjZEK90kWq3TGH6WzHpZsxxgIAgBwnAjy/BhBHgAAAHDs9uSV6Nu1+zRrzV79tO2A3NV+g+mXFqsL05M04tRWSogKbbgPLc6RvnlIWv2pcd2mj3TZm1Jch4b7DAAAKhHk+TGCPAAAAODIfttfqFlr92r22n1aWW3arCT1To3RhelJGnlqa7VyNGB4V5s1n0tfP2BMuw2OkC74u9TremMIIAAADeRYsyJ2rQUAAABgOo/Ho7W78zV77V7NWrNXm7MKvfcsFqlPaqyGd2+lEae2UnJseOMV1uNyKfl0adqdUsYi6cu7pc3fShc+L4W3aLw6AAAQI/JMwYg8AAAAQHK5Pfple45mr92n2Wv3alduifdesM2iAR1a6vzurXROt4SGnTZbH26X9L8XpO+flNwVUlSSdNnrUrszza0LANAkMLXWjxHkAQAAoLkqKC3XD5uzNW99luZvzNKBojLvvbBgm4Z0jtf5PVppSOcEOcL8cHOJXcukz2+TcrZKskiD7pWGPiIFhZhdGQAggBHk+TGCPAAAADQnGQeKNG99luZt2Keft+Wo3HXoVxBHWLDO6Zqo4d0TdWaneIUG20ys9BiVFUmzxknL3jWuW/eULntLiu9kbl0AgIBFkOfHCPIAAADQlFW43Pol46C+25Cleev3aev+Ip/77eMjNKxLgs7ukqi+abEKtllNqvQErf+v9NUYqeSgFBwujfyn1Os6s6sCAAQgNrsAAAAA0GgOFDr1w+ZsfbfBmDKbX1rhvRdktej0di10dpcEDeuaqHYtI0ystAF1vUhq01eadoe0bYE0/f+kbT9II/8hhTSR7wgA8CuMyDMBI/IAAAAQ6Mpdbi3fkauFm/Zrwab9WrM7T9V/s4gND9bQzgk6u2uCzuwUr+hQP1zvrqG4XdIPk6X5T0ket9Sys3TlO1JiN7MrAwAECKbW+jGCPAAAAASizJxiLdy8Xws37dfiLQdU4Kzwud+1dbTO6hSvc7omqHdqrGxWi0mVmmT7ImMjjII9UlCodMGzUu8bJUsz+3MAABw3gjw/RpAHAACAQFBS5tKP2w54R939dthad7HhwTrjlHid2SleZ57SUgnRoSZV6keKso2ptlvmGtenXiVdOFmyR5lbFwDAr7FGHgAAAIDjUu5ya2VmrhZvPaD/bcnW8h25KnO5vfdtVot6p8TorE5GeNejjaP5jbo7moiW0nWfSotfkOY9Lq3+RNq9zJhq2+pUs6sDAAQ4gjwAAACgmXK7PVq3J19Lth7Q/7Zm6+dtOSouc/n0SXKE6qzO8TrzlHgN7NhSjrAmvNZdQ7FapcEPSKkDpM9ukQ5skd4cJp0/Sep7C1NtAQD1xtRaEzC1FgAAAGbweDz6LbtIi7dka/HWA1ry2wHlFpf79IkND9bADi01oEOcBnVsqbS4cFkInuqvOMfYzXbTLOM6/WrpwuelkHBTywIA+Bem1gIAAADNnMfj0bbsIv28LUc/bcvRkq0HtDe/1KdPRIhN/dvHaWCHOA3s0FJdWkXJynTZhhPeQrr2I2nxi9LcCdKqj6W9a6Sr35PiOphdHQAgwBDkAQAAAE2E2+3Rhr0F+nnbAf28PUc/bzuo7EKnT58Qm1V92sYawV3HlkpPdijYZjWp4mbCYpEG3Su16SN9erOUtVZ6Y6h06WtSlwvMrg4AEECYWmsCptYCAACgIZS73Fq9K09Lt+Xo5205Wro9R/mlFT59QoKs6pUSo9PTWuh37ePUNy1WocE2kyqG8vcYYV7mj8b1GX+Uhv5VsvLPBACas2PNigjyTECQBwAAgPooKC3Xysw8/ZpxUD9vP6BlGbkqKffdnCIixKY+aS3Uv10L9UtrofRkB8Gdv3GVS9/+TfrpVeO6/RDp8n9LEXGmlgUAMA9Bnh8jyAMAAMDRVK1vt2xHrpbtOKhlGQe1cV+BDv/be2x4sPqltdDp7YyjW+toBTFVNjCs/kz6aoxUXixFJ0tX/UdK7mN2VQAAE7DZBQAAABBAissqtDIzzxvaLc/MVU5RWY1+ybFhOi01Vv3aGaPuOsZHsjlFoDr1Cimhm/TJjdKBLdKU86URz0h9Rhvr6gEAcBiCvHpYuHChnn32Wf3666/as2ePpk2bpksuucTssgAAABAg3G6Pfssu1MrMPK3cmatfMw5qw94Cudy+w+1CgqxKb+PQaW1jdVpqjE5LjVVCdKhJVeOkSOwm/eF7afr/SRu+lr5+QNq1TBr5TynIbnZ1AAA/Q5BXD0VFRerZs6duueUWXXbZZWaXAwAAAD/m8Xi0K7dEq3Yaod2qzDyt2ZWnAmdFjb6tokPVp22seqfGqE/bWHVLipY9iPXtmrzQaOnq96X/vSDNmygtf0/K3iRd9Z4UlWh2dQAAP0KQVw8jRozQiBEjjrm/0+mU0+n0Xufn55+MsgAAAOAHsgudWrUzVysz87RqZ65W7czTgVqmyIYGW9U9yaGeyTE6ra0x2i4pJsyEiuEXLBZp8P1SYg/ps1ukzJ+kN4ZI13wgtTnN7OoAAH6CIK8RTJo0SRMnTjS7DAAAADSwA4VOrd2dr7W787V6lxHe7cotqdEvyGpR51ZRSk+OUc9kh9KTY9QpMZJNKVDTKedIf/hO+uhaY1TelBHSRf+Sel5tdmUAAD/ArrUnyGKxHHWNvNpG5KWkpLBrLQAAQIDweDzaebBEa3fna93uPG94tze/tEZfi0Vq3zJCPZNjlJ7sUHpKjLq1jlZoMFNkcRxK86Uv/iBtmmVcDxwjnTNRsvJzBABNEbvW+hG73S67nYVqAQAAAkGFy62t+4u01hvY5Wnd7nzll9Zc006S2rWMULekaJ3axqH0ZIdObeNQVGhwI1eNJic0WrrmQ+n7J6Uf/iEtflHat0664m0pLNbs6gAAJiHIAwAAQLN1oNCpjXsLtGFvgTbuLdD6vfnasLdAZRXuGn2DbRZ1SoxSt9bR6p4Ure5tHOraOlqRdv5KjZPEapWG/U1K7C59ebe0dZ705jDp2g+l+M5mVwcAMAF/6wAAAECTV1Lm0uasQ4FdVXiXXeistX9EiE3dkqLVPclR+RqtUxKiFBLEmnYwQY/LpLiO0kfXSzlbjTDvirelTsPNrgwA0MgI8uqhsLBQW7Zs8V5v27ZNK1asUIsWLZSammpiZQAAAM1bhcutzIMl2lg5sq4qsMs4UCR3HStDp7YIV+dWUerSKkqdW0Wpe5JDbVuEy2q1NG7xwJG0Tpdu/176ZJSUsUj68BrpvCel3/2fsTAjAKBZYLOLepg/f76GDh1ao33UqFF65513jvr+Y13AEAAAALUrLXdpW3aRtmQV+hzbsotU5qo5LVaSWkSEqHNilE9o1ykxShFMjUUgcZVLM/8k/fqOcd1ntHTBs5KNdRkBIJAda1ZEkGcCgjwAAIBjU+is8IZ0m7MKtLXyfEdOcZ0j7EKDrTolwTew69wqSvGRdlkYuYSmwOORfnxFmv1XSR6p3VnSVe+yCQYABDB2rQUAAEBAcLk92p1bom3ZRd5j634jsNuTV1rn+6JDg9QxIVIdEyJ1SkKU97xNTBjTYtG0WSzSgLulFu2lz26Vti2Q3jpXuu5jKa6D2dUBAE4iRuSZgBF5AACgufF4PMoqcHqDuu3ZRfqt8nzHgeI6p8NKUnyUXR3jI3VKohHUdYw3XuOjGGEHaO9qaeo1Uv5OY0Te1R9IaYPMrgoAcJyYWuvHCPIAAEBT5PF4lFtcrm0HirRtf5G2HzDCuu2VR1GZq873htisahsXrrSWEWrfMkLt4yPUMSFKHeMj5Qhn7S/giAr2Sh9eK+1eJlmDpYtekHpfb3ZVAIDjwNRaAAAANLiyCrd255ZoR06xduQUK7PyteooKK2o871Wi5TSIlxpcRFqVxnWVZ0nxYTJxnRYoH6iWkmjZ0rT7pTWTZe+vEs6sFk6e7xktZpdHQCgARHkAQAAwKtqVF31cC4zp1gZB4zzPXkldW4yUaW1I9QI6OIj1K4yqGsXH6GU2HCFBBEqACdFcJh0xRRp/inSwmelRc9JB7ZIl74uhUSYXR0AoIEQ5AEAADQjHo9HB4rKtOtgiXbllmh3bol2Vp7vOliizJxiFTjrHlUnGbvCprYIV2qLcKVUvla/Dg22NdK3AeDDapXOfkSKO0X66h5p/X+l3Ezp2o+k6NZmVwcAaAAEeQAAAE1Ihcutvfml3qDO+5p7KLgrLa97Y4kqidF2bzDXtkWEUuPCvNfxkWwyAfi1nldLsW2lj66T9qyQ3jzb2NG2dbrZlQEAThCbXZiAzS4AAEB9uN3GaLq9eaXak1eiffml2pNXqt3ekK5Ue/NL5TrK3FeLRUqIsqtNTJjaxIYrKSZUyTFhahNrhHXJsYyqA5qEnG3S1Kuk7E1ScIR0xb+lzuebXRUAoBbsWuvHCPIAAMDhyl1uZRU4tTevRHvznNqTV6K9eUYwZwR3pcoqKFW56+h/dQu2WZQUE2YEdTFhxnlsmDesa+UIlT2IoA5oFkpypU9ukrYtkCxWafhTUv87jUQfAOA32LUWAADAD1SNossqKFVWgVP7853e8+pB3f5Cp47lf69aLFJ8pF2tHaFKjA5Va0eoWjmMgK5NTJiSY8MUH2mXlR1gAUhSWIx0w+fSjAelZf+RZo2VDmyVzn9asvHrIAAEGv7LDQAAUA9lFW7tL3QqK98I5YyQrjKsq7zOKihVdmHZUae6Vgm2WZQYHapW0aFq5QitFtYZo+haOUKVEGVXsI2dXwEcB1uwdNG/pLiO0pxHpaVvSge3GbvchjJDCAACCUEeAABApdJyl3KKynSgsEzZRU4dKCzTgUKnDhSVKbvAWRncGQHdweLyY36uxSLFRYQoPsoI4uKj7EqIsntH01UFd3ERIYykA3ByWCzSoPuk2HbSF7dLW+ZK/x5ubIIRk2p2dQCAY0SQBwAAmiy326PcknIdKHQqu7BMB6qFc9lFZYfaC432AmfFcT0/2GZRfKRd8dFGQGccoUqItis+0q6EaOM6LjKEUXQA/EO3iyVHsvThNVLWOunNYdJ1H0lt+phdGQDgGLDZhQnY7AIAgOPn8XhU6KzQwaJyHSwuU05xmXKLy5RTVF75WqaDxWXe+weKjLZjndZaJdhmUVyEXXGRIYqLtKtlRIj3vHo4lxBlV0x4sCwsGA8gEOXtlKZeLe1bIwWFSZe9LnX7vdlVAUCzxa61fowgDwDQ3LncHhWUliu3uLyOQK5cB6uCueJD1xXHGcpVcYQFKy4yRC0rA7qWkYcHdXbv/eiwIMI5AM2Ds0D6dLS0ZY5xfc4EadD97GgLACZg11oAAHBSVYVxeSV1H/klRlh3eHtB6fFNYa0uNNiqFuEhigkPUYuIEMWEB1e+hqhFeLBiK89bVgZ2seEhCgliWisA1GCPkq79SJo9Tvr5DWnuBGNH25GTpaAQs6sDANSCIA8AgGbK5faosLRC+aVGsFZQ+VroNM7zK+/l1xbSFZerwFmhEx3XHx5iU+xhgVxseOUREVzreViIrWH+AAAAki1IuuBZY0fbWWOl5e9JuRnSVf+RwmLNrg4AcBiCPAAAAlBZhdsbvBWUVqjAWe38sGCuwFl7e3GZq0FqCQu2yREW7D2iw4IVEx7s01bbvejQYEbKAYC/6H+HFJsmfXaLtG2h9Na50vWfSC3am10ZAKAa1sgzAWvkAUDz4vF4VOZyq8jpUpGzQkVlFSpyVqjQ6VKx0xgBZ7RX3q92Xug0Arfq54XOCpVVuBusvpAgq6JDgxQVGqyo0CDjsAcrsvI8JixEjrAgOcJrhnKOsGDZgxghBwBNxt7VxiYY+buksBbSNVOltgPMrgoAmjw2u/BjBHkA4J88Ho+cFW4Vl7lUXFah0nJX5blLJeUulficV3jPi501g7aiw87ru0nD0YSH2CrDt+BDr/agQ4FctfZIe1CNwC4yNIggDgDgq2CvEebtWSHZQqTfvyKlX2l2VQDQpLHZBQCgSXG7PSqtcKm03K3Sclfl4VZphUvOyte6graSGmFchUrK3d4+VYFdSbnrhNd8O5rQYKsi7UGKsAcpPCRIkXabIuxBiggJUoTdVtlm3I+w27ztEVVtlddR9mBF2G0KsjE1FQDQwKJaSaNnSl/cLm34WvriNilnq3TWw+xoCwAmI8gDABwXj8ejCrdHZRVulVW45ayoDNZqCdmc1UI2b/BWLYArLTfuO6u/t8K3n7PcJWeFW2WuhptKeizsQVaFhdgUHmxTWIit8jzIeA2xKayqPdimcPvhgVz1EM4I5sIrr21WfgECAASAkAjpqvekuY9Ki/8lzZ8k7d8gXfyisdstAMAUBHkAEADcbmONNWdleFbmMgKuMpfbJ1Dzvrqqzl3e+973Hda/tmcZbdWf41ZZxaFAzexFGYJtFoUG2WQPtik02KrQytfw4CCFVoZv4SG2Os59+xwe0lWFcwRuAIBmz2qVzntciusgzfijtHaatG+tsaNtQlezqwOAZokgD0Cz4vF45HIbI8oq3B5VuNwqd3lU7nJXHnWdH3Zd4VG5263yisp2d2VbLX3LXG5V1PHcMldVDUZ7WYVbFe7KPhVu47kuo2Z/FWS1eIM0e5BN9mCrQoOqB2yV55XBmz3oUPAWGmxTaJBvP+8zgm21PsceRMgGAECj6nOzFN9F+nS0lL1JevNsafiTUp/RTLUFgEbGZhcmYLML+AO32yNXZajlrpwq6XYb167q99xShdstt8cjl1s17rsqwzAjGDMCK5fbo3K3R65qIVRVH5fbU9l26F652y2Xy+N9xqE+h8I239eqe4euq85d1a9dvu+vel5TEBJklb3yCLFZFRJkrWyzGec+bdVebYf182nzfQ2xGYFa9WeF2KyyB1tltx16P6EaAADNRFG29Plt0m/fG9fth0q/f0lyJJtbFwA0Aexa2whefvllPfvss9q7d6969uypF198UaeffvpR30eQd4jH45HbI7k9Rpjkdtd+7vJ45PH2M0KoqnOX2+PzHONa1d53qJ+72nN8+rmNPt6+3vcZ4ZW78rr6+eHPdHmqnVfV5w28JJfb7X1/RdX5YYGYq/I93lCt+r3DAzePEVhVr7/C7Za7Kmyr9t6qZ7qq1cS/+b6CbRYF26zVDsthr4fOQ4KsCrJWtleGW0FWi/c82GZRUOV7QirfE1Tt3Li2VPY1nhFc+f7aPjOk6v3Vnm/h/34DAAAzuN3ST69J8yZKFaVSSKQ0+AGp/52SPdLs6gAgYBHknWQff/yxbrrpJr322mvq37+/nn/+eX366afauHGjEhISjvjephjkXfX6EmXmFNcatPmce3zP+enzTxaLZLNYZLVaFGS1eM9tVYfFeLVapWCrMSIrqDLMCrJVvqcy6LJZLQqyGvdsNouCrRbZrEYY5dvHeK/NaoRatsrnBFmtlc+0VutTvf3QZxvPM55xqBZrjXpq+2yCMQAAgOOQvVn68m4p8yfjOixW6nW91O0SKamXZAtuuM8qyTV2zc3ZJhXnSM48yVlgHBVlkscluSskd7VXT7VNsiwWSZZq5zrKPcuR7x21X23nx9u/Pud1fadjfa/lGM91nP3re16f2o7nn021fj5thzlq3zrqPSl9q7XX2VfH0fd4ntuIfX1Oj9K31amS1aamgCDvJOvfv7/69eunl156SZLkdruVkpKiMWPGaOzYsT59nU6nnE6n9zo/P18pKSlNKsgb+o/52pZddNKe7w2WLBZZLJK1Mkiqfm61SBaL8WqzGMGM1er7PqOf5VA/q8XnPcfyfFvlcy2V/W2VfSwWi2xW1Xi+1XIo2LJWC8Gqjqr7xj1Vtlu9z6ret3q4VvUs7/nhn1Xre6Ugq9X753J4HdU/AwAAADgit1ta85mxo23Ob4fabXYpOsmYchsWI9lCKo9gyVLHL9y1hSiucmnHEunAlpNSPoAmYNyuJjMa+FiDPDa7qIeysjL9+uuvGjdunLfNarXqnHPO0ZIlS2r0nzRpkiZOnNiYJTa6V284TeUVHlkrwydrZahVFXZZK8Muq/WwoO2wMK1GgFYZrDFaCgAAAPAzVquUfpXU43Jp4zfS6k+k3xZIpbnSwW3G0VAiE6UWHaTIeMkeLYU6jGm9QXbJGmSMyKl6tdgki9UIBz0eSZVjV7xjWKpfH35PR7jnOYZnHM95Qz3nSOd1fZ8j9ffU41wn8N7jOT/GOo/1e9Z45pHaj7Xv8Tz3eGuo7ef1aH11HH1PVg3H0dfn9Bj6NsOsgCCvHrKzs+VyuZSYmOjTnpiYqA0bNtToP27cOD344IPe66oReU1Jl1ZNY2QhAAAAgONktUldLzQOt1vK2yHl7ZLyd0nOfGNknavMOGoNZLwNNZ8d39nYVCMs5mR+AwAIGAR5jcBut8tut5tdBgAAAACcXFarFJtmHACABmc1u4BA1LJlS9lsNu3bt8+nfd++fWrVqpVJVQEAAAAAAKApI8irh5CQEPXp00fz5s3ztrndbs2bN08DBgwwsTIAAAAAAAA0VUytracHH3xQo0aNUt++fXX66afr+eefV1FRkUaPHm12aQAAAAAAAGiCCPLq6eqrr9b+/fs1fvx47d27V7169dKsWbNqbIABAAAAAAAANASLx1Pbfso4mfLz8+VwOJSXl6foaHZ7BQAAAAAAaM6ONStijTwAAAAAAAAgADC11gRVgyDz8/NNrgQAAAAAAABmq8qIjjZxliDPBAUFBZKklJQUkysBAAAAAACAvygoKJDD4ajzPmvkmcDtdmv37t2KioqSxWIxu5wGkZ+fr5SUFGVmZrLuH/h5gA9+HlAdPw84HD8TqI6fB1THzwOq4+cB1TXFnwePx6OCggIlJSXJaq17JTxG5JnAarUqOTnZ7DJOiujo6CbzLxFOHD8PqI6fB1THzwMOx88EquPnAdXx84Dq+HlAdU3t5+FII/GqsNkFAAAAAAAAEAAI8gAAAAAAAIAAQJCHBmG32/Xoo4/KbrebXQr8AD8PqI6fB1THzwMOx88EquPnAdXx84Dq+HlAdc3554HNLgAAAAAAAIAAwIg8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMhDg3j55ZeVlpam0NBQ9e/fXz///LPZJcEECxcu1EUXXaSkpCRZLBZNnz7d7JJgokmTJqlfv36KiopSQkKCLrnkEm3cuNHssmCSV199Venp6YqOjlZ0dLQGDBigb775xuyy4CeefvppWSwW3X///WaXAhNMmDBBFovF5+jSpYvZZcFEu3bt0g033KC4uDiFhYXp1FNP1S+//GJ2WTBJWlpajf9GWCwW3X333WaXBhO4XC797W9/U7t27RQWFqYOHTro8ccfV3Pax5UgDyfs448/1oMPPqhHH31Uy5YtU8+ePTV8+HBlZWWZXRoaWVFRkXr27KmXX37Z7FLgBxYsWKC7775bP/74o+bMmaPy8nKdd955KioqMrs0mCA5OVlPP/20fv31V/3yyy86++yz9fvf/15r1641uzSYbOnSpXr99deVnp5udikwUffu3bVnzx7vsWjRIrNLgkkOHjyoQYMGKTg4WN98843WrVunf/7zn4qNjTW7NJhk6dKlPv99mDNnjiTpyiuvNLkymOGZZ57Rq6++qpdeeknr16/XM888o7///e968cUXzS6t0Vg8zSm2xEnRv39/9evXTy+99JIkye12KyUlRWPGjNHYsWNNrg5msVgsmjZtmi655BKzS4Gf2L9/vxISErRgwQKdeeaZZpcDP9CiRQs9++yzuvXWW80uBSYpLCzUaaedpldeeUVPPPGEevXqpeeff97sstDIJkyYoOnTp2vFihVmlwI/MHbsWP3vf//TDz/8YHYp8FP333+/vv76a23evFkWi8XsctDILrzwQiUmJurtt9/2tl1++eUKCwvT+++/b2JljYcReTghZWVl+vXXX3XOOed426xWq8455xwtWbLExMoA+Ju8vDxJRniD5s3lcumjjz5SUVGRBgwYYHY5MNHdd9+tkSNH+vw9As3T5s2blZSUpPbt2+v666/Xjh07zC4JJvnqq6/Ut29fXXnllUpISFDv3r315ptvml0W/ERZWZnef/993XLLLYR4zdTAgQM1b948bdq0SZK0cuVKLVq0SCNGjDC5ssYTZHYBCGzZ2dlyuVxKTEz0aU9MTNSGDRtMqgqAv3G73br//vs1aNAg9ejRw+xyYJLVq1drwIABKi0tVWRkpKZNm6Zu3bqZXRZM8tFHH2nZsmVaunSp2aXAZP3799c777yjzp07a8+ePZo4caLOOOMMrVmzRlFRUWaXh0b222+/6dVXX9WDDz6ov/zlL1q6dKnuvfdehYSEaNSoUWaXB5NNnz5dubm5uvnmm80uBSYZO3as8vPz1aVLF9lsNrlcLj355JO6/vrrzS6t0RDkAQBOurvvvltr1qxhzaNmrnPnzlqxYoXy8vL02WefadSoUVqwYAFhXjOUmZmp++67T3PmzFFoaKjZ5cBk1UdRpKenq3///mrbtq0++eQTpt43Q263W3379tVTTz0lSerdu7fWrFmj1157jSAPevvttzVixAglJSWZXQpM8sknn+iDDz7Q1KlT1b17d61YsUL333+/kpKSms1/IwjycEJatmwpm82mffv2+bTv27dPrVq1MqkqAP7knnvu0ddff62FCxcqOTnZ7HJgopCQEHXs2FGS1KdPHy1dulQvvPCCXn/9dZMrQ2P79ddflZWVpdNOO83b5nK5tHDhQr300ktyOp2y2WwmVggzxcTEqFOnTtqyZYvZpcAErVu3rvE/eLp27arPP//cpIrgLzIyMjR37lx98cUXZpcCE/35z3/W2LFjdc0110iSTj31VGVkZGjSpEnNJshjjTyckJCQEPXp00fz5s3ztrndbs2bN491j4BmzuPx6J577tG0adP03XffqV27dmaXBD/jdrvldDrNLgMmGDZsmFavXq0VK1Z4j759++r666/XihUrCPGaucLCQm3dulWtW7c2uxSYYNCgQdq4caNP26ZNm9S2bVuTKoK/mDJlihISEjRy5EizS4GJiouLZbX6Rlk2m01ut9ukihofI/Jwwh588EGNGjVKffv21emnn67nn39eRUVFGj16tNmloZEVFhb6/N/zbdu2acWKFWrRooVSU1NNrAxmuPvuuzV16lR9+eWXioqK0t69eyVJDodDYWFhJleHxjZu3DiNGDFCqampKigo0NSpUzV//nzNnj3b7NJggqioqBrrZUZERCguLo51NJuhP/3pT7rooovUtm1b7d69W48++qhsNpuuvfZas0uDCR544AENHDhQTz31lK666ir9/PPPeuONN/TGG2+YXRpM5Ha7NWXKFI0aNUpBQcQYzdlFF12kJ598UqmpqerevbuWL1+uyZMn65ZbbjG7tEZj8Xg8HrOLQOB76aWX9Oyzz2rv3r3q1auX/vWvf6l///5ml4VGNn/+fA0dOrRG+6hRo/TOO+80fkEwVV07iU2ZMoUFipuhW2+9VfPmzdOePXvkcDiUnp6uhx9+WOeee67ZpcFPDBkyRL169dLzzz9vdiloZNdcc40WLlyoAwcOKD4+XoMHD9aTTz6pDh06mF0aTPL1119r3Lhx2rx5s9q1a6cHH3xQf/jDH8wuCyb69ttvNXz4cG3cuFGdOnUyuxyYqKCgQH/72980bdo0ZWVlKSkpSddee63Gjx+vkJAQs8trFAR5AAAAAAAAQABgjTwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5El6+eWXlZaWptDQUPXv318///xznX3Ly8v12GOPqUOHDgoNDVXPnj01a9asRqwWAAAAAAAAzVGzD/I+/vhjPfjgg3r00Ue1bNky9ezZU8OHD1dWVlat/R955BG9/vrrevHFF7Vu3TrdeeeduvTSS7V8+fJGrhwAAAAAAADNicXj8XjMLsJM/fv3V79+/fTSSy9Jktxut1JSUjRmzBiNHTu2Rv+kpCT99a9/1d133+1tu/zyyxUWFqb333+/1s9wOp1yOp3ea7fbrZycHMXFxclisTTwNwIAAAAAAEAg8Xg8KigoUFJSkqzWusfdBTViTX6nrKxMv/76q8aNG+dts1qtOuecc7RkyZJa3+N0OhUaGurTFhYWpkWLFtX5OZMmTdLEiRMbpmgAAAAAAAA0SZmZmUpOTq7zfrMO8rKzs+VyuZSYmOjTnpiYqA0bNtT6nuHDh2vy5Mk688wz1aFDB82bN09ffPGFXC5XnZ8zbtw4Pfjgg97rvLw8paamKjMzU9HR0Q3zZQAAAAAAABCQ8vPzlZKSoqioqCP2a9ZBXn288MIL+sMf/qAuXbrIYrGoQ4cOGj16tP7973/X+R673S673V6jPTo6miAPAAAAAAAAknTUJdia9WYXLVu2lM1m0759+3za9+3bp1atWtX6nvj4eE2fPl1FRUXKyMjQhg0bFBkZqfbt2zdGyQAAAAAAAGimmnWQFxISoj59+mjevHneNrfbrXnz5mnAgAFHfG9oaKjatGmjiooKff755/r9739/sssFAAAAAABAM9bsp9Y++OCDGjVqlPr27avTTz9dzz//vIqKijR69GhJ0k033aQ2bdpo0qRJkqSffvpJu3btUq9evbRr1y5NmDBBbrdbDz30kJlfAwAAAAAAAE1csw/yrr76au3fv1/jx4/X3r171atXL82aNcu7AcaOHTt8tv0tLS3VI488ot9++02RkZG64IIL9N577ykmJsakbwAAAAAAAIDmwOLxeDxmF9Hc5Ofny+FwKC8vj80uAAAAAAAAmrljzYqa/Yi8QFBRUaGysjKzywAaRXBwsIKCgo66Uw8AAAAAAM0NQZ4f83g82rFjh7Kzs80uBWhUQUFBatOmjeLi4gj0AAAAAACoRJDnx6pCvDZt2igyMtJnrT6gKfJ4PCovL1dOTo4yMjJUWFiotLQ0s8sCAAAAAMAvEOT5qYqKCm+I16pVK7PLARpVTEyM9uzZo127dikvL0/p6emMzAMAAAAANHsM8fJTVWviRUZGmlwJYI7o6GhZLBYtWbJEq1atMrscAAAAAABMR5Dn55hOi+aqagSexWLR6tWr5Xa7Ta4IAAAAAABzkRIB8Gvh4eE6ePCgiouLzS4FAAAAAABTEeQB8GsWi0Vut5sReQAAAACAZo8gD83eO++8I4vFou3bt5tdio/t27fLYrHonXfeOWrfm2+++Zh2d7VYLN7jH//4x4kXeZxiYmK8n3/PPfc0+ucDAAAAABDICPLQbDz11FOaPn262WWY7tJLL9V7772nkSNHntBz/vvf/8pqtWrv3r3e0PFo4eAbb7yh995774Q+FwAAAACA5oogD81GXUHejTfeqJKSErVt27bxizqCtm3bqqSkRDfeeGODPjc9PV033HCDunbtekLPmTFjhvr06aNWrVod83uuuuoq3XDDDSf0uQAAAAAANFcEeWj2bDabQkNDvbuk+guLxaLQ0FDZbDazS6nVzJkzT3hUHwAAAAAAOHYEeWh0GRkZuuuuu9S5c2eFhYUpLi5OV155Za1r1OXm5uqBBx5QWlqa7Ha7kpOTddNNNyk7O9vbx+l06tFHH1XHjh1lt9uVkpKihx56SE6n09vHYrGoqKhI7777rneNtptvvllS3WvkffPNNzrrrLMUFRWl6Oho9evXT1OnTm2071bXGnnTp09Xjx49FBoaqh49emjatGlHrOlYrVq1SmeddZbCwsKUnJysJ554QlOmTKn1z2b16tXKzMwkyAMAAAAAoBEFmV0Amp+lS5dq8eLFuuaaa5ScnKzt27fr1Vdf1ZAhQ7Ru3TqFh4dLkgoLC3XGGWdo/fr1uuWWW3TaaacpOztbX331lXbu3KmWLVvK7Xbr4osv1qJFi3T77bera9euWr16tZ577jlt2rTJO5X2vffe02233abTTz9dt99+uySpQ4cOddb4zjvv6JZbblH37t01btw4xcTEaPny5Zo1a5auu+66Rvlutfn22291+eWXq1u3bpo0aZIOHDig0aNHKzk5uT7/KLx27dqloUOHymKxaNy4cYqIiNBbb70lu91ea/+ZM2cqISFBffv2PaHPBQAAAAAAx44gL4B4PB6VlLvMLsNHWLDtuKekjhw5UldccYVP20UXXaQBAwbo888/964J9+yzz2rNmjX64osvdOmll3r7PvLII/J4PJKkqVOnau7cuVqwYIEGDx7s7dOjRw/deeedWrx4sQYOHKgbbrhBd955p9q3b3/UNdry8vJ077336vTTT9f8+fMVGhrqvVf1uY3x3Wrz8MMPKzExUYsWLZLD4ZAknXXWWTrvvPNOaI2/Z555RgcPHtSyZcvUq1cvSdLo0aN1yimn1Np/xowZGjFihN9NRwYAAAAAoCkjyAsgJeUudRs/2+wyfKx7bLjCQ47vxygsLMx7Xl5ervz8fHXs2FExMTFatmyZN+z6/PPP1bNnT5+gq0pVgPTpp5+qa9eu6tKli89027PPPluS9P3332vgwIHHVd+cOXNUUFCgsWPH+oR41T+3Mb7b4fbs2aMVK1Zo7Nix3hBPks4991x169ZNRUVFx/wdDzdr1iwNGDDAG+JJUosWLXT99dfrxRdf9Ombm5urJUuWaMyYMfX+PAAAAAAAcPxYIw+NrqSkROPHj1dKSorsdrtatmyp+Ph45ebmKi8vz9tv69at6tGjxxGftXnzZq1du1bx8fE+R6dOnSRJWVlZx13f1q1bJemon12bhvxuh8vIyJCkWkfJde7c+bhrPfzZHTt2rNFeW9vs2UaYfN55553QZwIAAAAAgOPDiLwAEhZs07rHhptdho+w4OPfUXXMmDGaMmWK7r//fg0YMEAOh0MWi0XXXHON3G73cT3L7Xbr1FNP1eTJk2u9n5KSctz1nYiG/G7+aubMmRo0aJDPqEAAAAAAAHDyEeQFEIvFctzTWP3RZ599plGjRumf//ynt620tFS5ubk+/Tp06KA1a9Yc8VkdOnTQypUrNWzYsKNOez3W9dyqNsFYs2ZNrSPSjqQhv9vhqtbA27x5c417GzduPK5n1fbsLVu21Gg/vM3j8WjWrFn605/+dEKfBwAAAAAAjh9Ta9HobDZbjQ0dXnzxRblcvht5XH755Vq5cqWmTZtW4xlV77/qqqu0a9cuvfnmmzX6lJSU+KwbFxERUSNQq815552nqKgoTZo0SaWlpbV+bl0a8rsdrnXr1urVq5feffddn2m6c+bM0bp1645Y19EMHz5cS5Ys0YoVK7xtOTk5+uCDD3z6LV26VFlZWRo5cuQJfR4AAAAAADh+gT+8CwHnwgsv1HvvvSeHw6Fu3bppyZIlmjt3ruLi4nz6/fnPf9Znn32mK6+8Urfccov69OmjnJwcffXVV3rttdfUs2dP3Xjjjfrkk09055136vvvv9egQYPkcrm0YcMGffLJJ5o9e7b69u0rSerTp4/mzp2ryZMnKykpSe3atVP//v1r1BcdHa3nnntOt912m/r166frrrtOsbGxWrlypYqLi/Xuu+82ynerzaRJkzRy5EgNHjxYt9xyi3JycvTiiy+qe/fuKiwsPN5/FF4PPfSQ3n//fZ177rkaM2aMIiIi9NZbbyk1NVU5OTne0YwzZsxQWlqaunXrVutz5s2bVyP8lKRLLrmkXmsOAgAAAACAQwjy0OheeOEF2Ww2ffDBByotLdWgQYM0d+5cDR/uu/5fZGSkfvjhBz366KOaNm2a3n33XSUkJGjYsGFKTk6WJFmtVk2fPl3PPfec/vOf/2jatGkKDw9X+/btdd9993k3vZCkyZMn6/bbb9cjjzyikpISjRo1qtYgT5JuvfVWJSQk6Omnn9bjjz+u4OBgdenSRQ888ECjfbfanH/++fr000/1yCOPaNy4cerQoYOmTJmiL7/8UvPnzz9ibUeSkpKi77//Xvfee6+eeuopxcfH6+6771ZERITuvfde7+69M2fO1AUXXFDnc2bNmqVZs2bVaE9LSyPIAwAAAADgBFk8R5sriAaXn58vh8OhvLw8RUdH19qnuLhY69evV9euXRUeHt7IFaKpslgs+vOf/6yHHnpIERERCgsLO2L/+++/X6+//roKCwuVnZ2t1q1b6+uvvz5imHckOTk5crvd3qDwpZdeqrNv1b8D69ev14EDBzR69Og6/30BAAAAACCQHUtWJLFGHtDsPPvss4qPj9fLL7/s015SUuJzfeDAAb333nsaPHiwbDab8vLyNH78eA0dOrTen92+fXvFx8fX+/0AAAAAADRnTK0FmpE5c+Z4z6tPO5akAQMGaMiQIeratav27dunt99+W/n5+frb3/7m7T9hwoQT+vwvv/xS5eXlkozpvAAAAAAA4NgR5AHNyDnnnFPnvQsuuECfffaZ3njjDVksFp122ml6++23deaZZzbY55911lkN9iwAAAAAAJobptZKevnll5WWlqbQ0FD1799fP//88xH7P//88+rcubPCwsKUkpKiBx54oNadOoFA8tRTT2nTpk3/z96dx0dV3f8ff8+SmeyThOwhEHZQBBQEEfdGqbW2fFstWhdEq21dKk1tBStYtErVamnVivp1q0u19WfVL1q3KFqVioIo+04ISzaSzCSTZPbfH5NMMllYQyaTvJ6Px33cmXPPvfczGCF559xz1NDQIKfTqf/85z8HDP4AAAAAAEDP6vdB3ssvv6yioiLdcccdWrVqlcaPH6/p06eroqKi0/4vvvii5s6dqzvuuEMbNmzQk08+qZdfflm33XZbD1cOAAAAAACA/qTfB3kPPvigrr32Ws2ePVvHHXeclixZovj4eD311FOd9v/ss880bdo0/fjHP1ZBQYHOO+88XXrppQccxedyueRwOMI2AAAAAAAA4HD06yDP7XZr5cqVYY8PGo1GFRYWavny5Z2ec+qpp2rlypWh4G779u1666239J3vfKfL+yxatEg2my20Hc4k/36//5D7An1JIBCIdAkAAAAAAPQq/TrIq6qqks/nU1ZWVlh7VlaWysrKOj3nxz/+se68806ddtppiomJ0bBhw3TWWWcd8NHaefPmyW63h7bS0tKD1maxWCRJ9fX1h/GJgL7D4XAoEAjI7XZHuhQAAAAAAHoFVq09TMuWLdM999yjv/71r5oyZYq2bt2qm2++WXfddZfmz5/f6TlWq1VWq/Ww7mM2m5Wenq49e/ZIkhITE2U09uvcFf1AIBCQx+NRdXW1ampqZLfb5fV6ZTAYIl0aAAAAAAAR16+DvPT0dJlMJpWXl4e1l5eXKzs7u9Nz5s+fryuuuEI/+clPJEknnHCCnE6nrrvuOv32t7/t1rBt0KBBcrvdoTAP6C98Pp8qKytlt9vl8XhksVgOOwwHAAAAAKCv6ddBnsVi0cSJE1VcXKwZM2ZICs5JV1xcrBtvvLHTcxoaGjqEdSaTSVL3z+llMBg0fPhwvfbaa9q9e7eysrJC9wL6Kq/XK5/PJ0nyeDyqra3VpEmTCPIAAAAAAP1evw7yJKmoqEizZs3SpEmTNHnyZC1evFhOp1OzZ8+WJF155ZXKy8vTokWLJEkXXnihHnzwQZ144omhR2vnz5+vCy+88JiEbAaDQaeffrrefPNN7dixgwUA0G8EAgEZjUYVFBRoypQpkS4HAAAAAICI6/dB3syZM1VZWakFCxaorKxMEyZM0Ntvvx1aAGPXrl1hI/Buv/12GQwG3X777dqzZ48yMjJ04YUX6u677z5mNaanp+tHP/qRdu/erdraWsI89AtGo1GpqakaOHAgo/EAAAAAAJBkCJAK9TiHwyGbzSa73a7k5ORIlwMAAAAAAIAIOtSsiGVQAQAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkNfskUceUUFBgWJjYzVlyhStWLGiy75nnXWWDAZDh+2CCy7owYoBAAAAAADQnxDkSXr55ZdVVFSkO+64Q6tWrdL48eM1ffp0VVRUdNr/1Vdf1b59+0Lb2rVrZTKZdPHFF/dw5QAAAAAAAOgvCPIkPfjgg7r22ms1e/ZsHXfccVqyZIni4+P11FNPddo/LS1N2dnZoe29995TfHw8QR4AAAAAAACOmX4f5Lndbq1cuVKFhYWhNqPRqMLCQi1fvvyQrvHkk0/qkksuUUJCQqfHXS6XHA5H2AYAAAAAAAAcjn4f5FVVVcnn8ykrKyusPSsrS2VlZQc9f8WKFVq7dq1+8pOfdNln0aJFstlsoS0/P/+o6wYAAAAAAED/0u+DvKP15JNP6oQTTtDkyZO77DNv3jzZ7fbQVlpa2oMVAgAAAAAAoC8wR7qASEtPT5fJZFJ5eXlYe3l5ubKzsw94rtPp1EsvvaQ777zzgP2sVqusVutR1woAAAAAAID+q9+PyLNYLJo4caKKi4tDbX6/X8XFxZo6deoBz/3nP/8pl8ulyy+//FiXCQAAAAAAgH6u34/Ik6SioiLNmjVLkyZN0uTJk7V48WI5nU7Nnj1bknTllVcqLy9PixYtCjvvySef1IwZMzRgwIBIlA0AAAAAAIB+hCBP0syZM1VZWakFCxaorKxMEyZM0Ntvvx1aAGPXrl0yGsMHL27atEmffPKJ3n333UiUDAAAAAAAgH7GEAgEApEuor9xOByy2Wyy2+1KTk6OdDkAAAAAAACIoEPNivr9HHkAAAAAAABANCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQZ6kRx55RAUFBYqNjdWUKVO0YsWKA/avra3VDTfcoJycHFmtVo0cOVJvvfVWD1ULAAAAAACA/sgc6QIi7eWXX1ZRUZGWLFmiKVOmaPHixZo+fbo2bdqkzMzMDv3dbrfOPfdcZWZm6pVXXlFeXp5KSkqUkpLS88UDAAAAAACg3zAEAoFApIuIpClTpujkk0/Www8/LEny+/3Kz8/XTTfdpLlz53bov2TJEt1///3auHGjYmJijuieDodDNptNdrtdycnJR1U/AAAAAAAAotuhZkX9+tFat9utlStXqrCwMNRmNBpVWFio5cuXd3rOG2+8oalTp+qGG25QVlaWxo4dq3vuuUc+n6/L+7hcLjkcjrANAAAAAAAAOBz9OsirqqqSz+dTVlZWWHtWVpbKyso6PWf79u165ZVX5PP59NZbb2n+/Pl64IEH9Pvf/77L+yxatEg2my205efnd+vnAAAAAAAAQN/Xr4O8I+H3+5WZmanHH39cEydO1MyZM/Xb3/5WS5Ys6fKcefPmyW63h7bS0tIerBgAAAAAAAB9Qb9e7CI9PV0mk0nl5eVh7eXl5crOzu70nJycHMXExMhkMoXaxowZo7KyMrndblkslg7nWK1WWa3W7i0eAAAAAAAA/Uq/HpFnsVg0ceJEFRcXh9r8fr+Ki4s1derUTs+ZNm2atm7dKr/fH2rbvHmzcnJyOg3xAAAAAAAAgO7Qr4M8SSoqKtITTzyhZ599Vhs2bNDPf/5zOZ1OzZ49W5J05ZVXat68eaH+P//5z1VdXa2bb75Zmzdv1ptvvql77rlHN9xwQ6Q+AgAAAAAAAPqBfv1orSTNnDlTlZWVWrBggcrKyjRhwgS9/fbboQUwdu3aJaOxNe/Mz8/XO++8o1/+8pcaN26c8vLydPPNN+vWW2+N1EcAAAAAAABAP2AIBAKBSBfR3zgcDtlsNtntdiUnJ0e6HAAAAAAAAETQoWZF/f7RWgAAAAAAACAaEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgr9kjjzyigoICxcbGasqUKVqxYkWXfZ955hkZDIawLTY2tgerBQAAAAAAQH9DkCfp5ZdfVlFRke644w6tWrVK48eP1/Tp01VRUdHlOcnJydq3b19oKykp6cGKAQAAAAAA0N8Q5El68MEHde2112r27Nk67rjjtGTJEsXHx+upp57q8hyDwaDs7OzQlpWV1YMVAwAAAAAAoL/p90Ge2+3WypUrVVhYGGozGo0qLCzU8uXLuzyvvr5egwcPVn5+vr7//e9r3bp1XfZ1uVxyOBxhGwAAAAAAAHA4+n2QV1VVJZ/P12FEXVZWlsrKyjo9Z9SoUXrqqaf0+uuv6/nnn5ff79epp56q3bt3d9p/0aJFstlsoS0/P7/bPwcAAAAAAAD6tn4f5B2JqVOn6sorr9SECRN05pln6tVXX1VGRoYee+yxTvvPmzdPdrs9tJWWlvZwxQAAAAAAAIh25kgXEGnp6ekymUwqLy8Pay8vL1d2dvYhXSMmJkYnnniitm7d2ulxq9Uqq9V61LUCAAAAAACg/+r3I/IsFosmTpyo4uLiUJvf71dxcbGmTp16SNfw+Xxas2aNcnJyjlWZAAAAAAAA6Of6/Yg8SSoqKtKsWbM0adIkTZ48WYsXL5bT6dTs2bMlSVdeeaXy8vK0aNEiSdKdd96pU045RcOHD1dtba3uv/9+lZSU6Cc/+UkkPwYAAAAAAAD6MII8STNnzlRlZaUWLFigsrIyTZgwQW+//XZoAYxdu3bJaGwdvFhTU6Nrr71WZWVlSk1N1cSJE/XZZ5/puOOOi9RHAAAAAAAAQB9nCAQCgUgX0d84HA7ZbDbZ7XYlJydHuhwAAAAAAABE0KFmRf1+jjwAAAAAAAAgGhDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIK/ZI488ooKCAsXGxmrKlClasWLFIZ330ksvyWAwaMaMGce2QAAAAAAAAPRrBHmSXn75ZRUVFemOO+7QqlWrNH78eE2fPl0VFRUHPG/nzp265ZZbdPrpp/dQpQAAAAAAAOivCPIkPfjgg7r22ms1e/ZsHXfccVqyZIni4+P11FNPdXmOz+fTZZddpoULF2ro0KEHvL7L5ZLD4QjbAAAAAAAAgMPR74M8t9utlStXqrCwMNRmNBpVWFio5cuXd3nenXfeqczMTF1zzTUHvceiRYtks9lCW35+frfUDgAAAAAAgP6j3wd5VVVV8vl8ysrKCmvPyspSWVlZp+d88sknevLJJ/XEE08c0j3mzZsnu90e2kpLS4+6bgAAAAAAAPQv5kgXEG3q6up0xRVX6IknnlB6evohnWO1WmW1Wo9xZQAAAAAAAOjL+n2Ql56eLpPJpPLy8rD28vJyZWdnd+i/bds27dy5UxdeeGGoze/3S5LMZrM2bdqkYcOGHduiAQAAAAAA0O/0+0drLRaLJk6cqOLi4lCb3+9XcXGxpk6d2qH/6NGjtWbNGq1evTq0fe9739PZZ5+t1atXM/8dAAAAAAAAjol+PyJPkoqKijRr1ixNmjRJkydP1uLFi+V0OjV79mxJ0pVXXqm8vDwtWrRIsbGxGjt2bNj5KSkpktShHQAAAAAAAOguBHmSZs6cqcrKSi1YsEBlZWWaMGGC3n777dACGLt27ZLR2O8HLwIAAAAAACCCDIFAIBDpIvobh8Mhm80mu92u5OTkSJcDAAAAAACACDrUrIhhZgAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMhr9sgjj6igoECxsbGaMmWKVqxY0WXfV199VZMmTVJKSooSEhI0YcIEPffccz1YLQAAAAAAAPobgjxJL7/8soqKinTHHXdo1apVGj9+vKZPn66KiopO+6elpem3v/2tli9frm+++UazZ8/W7Nmz9c477/Rw5QAAAAAAAOgvDIFAIBDpIiJtypQpOvnkk/Xwww9Lkvx+v/Lz83XTTTdp7ty5h3SNk046SRdccIHuuuuug/Z1OByy2Wyy2+1KTk4+qtoBAAAAAAAQ3Q41K+r3I/LcbrdWrlypwsLCUJvRaFRhYaGWL19+0PMDgYCKi4u1adMmnXHGGZ32cblccjgcYRsAAAAAAABwOPp9kFdVVSWfz6esrKyw9qysLJWVlXV5nt1uV2JioiwWiy644AI99NBDOvfcczvtu2jRItlsttCWn5/frZ8BAAAAAAAAfV+/D/KOVFJSklavXq0vvvhCd999t4qKirRs2bJO+86bN092uz20lZaW9myxAAAAAAAAiHrmSBcQaenp6TKZTCovLw9rLy8vV3Z2dpfnGY1GDR8+XJI0YcIEbdiwQYsWLdJZZ53Voa/VapXVau3WugEAAAAAANC/9PsReRaLRRMnTlRxcXGoze/3q7i4WFOnTj3k6/j9frlcrmNRIgAAAAAAAMCIPEkqKirSrFmzNGnSJE2ePFmLFy+W0+nU7NmzJUlXXnml8vLytGjRIknBOe8mTZqkYcOGyeVy6a233tJzzz2nRx99NJIfAwAAAAAAAH0YQZ6kmTNnqrKyUgsWLFBZWZkmTJigt99+O7QAxq5du2Q0tg5edDqduv7667V7927FxcVp9OjRev755zVz5sxIfQQAAAAAAAD0cYZAIBCIdBH9jcPhkM1mk91uV3JycqTLAQAAAAAAQAQdalbU7+fIAwAAAAAAAKIBQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjymj3yyCMqKChQbGyspkyZohUrVnTZ94knntDpp5+u1NRUpaamqrCw8ID9AQAAAAAAgKNljnQBvcHLL7+soqIiLVmyRFOmTNHixYs1ffp0bdq0SZmZmR36L1u2TJdeeqlOPfVUxcbG6t5779V5552ndevWKS8vLwKfAAAAAAC6T12TR9/stmvDPoe2VTq1o6pe1U637I0eNbh9iosxKS81TuPybPr22BydMjRNBoMh0mUDQJ9nCAQCgUgXEWlTpkzRySefrIcffliS5Pf7lZ+fr5tuuklz58496Pk+n0+pqal6+OGHdeWVVx60v8PhkM1mk91uV3Jy8lHXDwAAAABHY29toz7dWqUvd9ZodWmtNlfU6XB+Upw8JE33/M9YDc9MOnZFAkAfdqhZUb8fked2u7Vy5UrNmzcv1GY0GlVYWKjly5cf0jUaGhrk8XiUlpbW6XGXyyWXyxV673A4jq5oAAAAADgK9gaPlm+v0qdb9+vTrVXaXuXs0CcvJU4n5Nk0IitRQzMSlJkUq+TYGMVbTWpw+bRzv1P/2VKp11fv1Yod1bpoyXL97erJGjcwpec/EAD0E/0+yKuqqpLP51NWVlZYe1ZWljZu3HhI17j11luVm5urwsLCTo8vWrRICxcuPOpaAQAAAOBIBAIBba2oV/HGCn2woUIrd9XI528dcmc0SOMGpmjqsAE6aVCqJuSnKCPJesBrnjDQpgvH5+rmwpG68cVV+mpXra54coXe/eUZykqOPdYfCQD6pX4f5B2tP/zhD3rppZe0bNkyxcZ2/o/VvHnzVFRUFHrvcDiUn5/fUyUCAAAA6IeaPD59vqNaH2woV/HGCu2uaQw7PiwjQacNT9e04emaMnSAbHExR3SfvJQ4PXfNFF3y+HKt3ePQgtfX6rErJnXHRwAAtNPvg7z09HSZTCaVl5eHtZeXlys7O/uA5/7xj3/UH/7wB73//vsaN25cl/2sVqus1gP/NgsAAAAAjla5o0kfbqxQ8cYKfbq1Sg1uX+iYxWzUqcMG6JzRmTp7VKby0+K77b6JVrPuv2i8LnzoE72zrlwfba7UmSMzuu36AICgfh/kWSwWTZw4UcXFxZoxY4ak4GIXxcXFuvHGG7s877777tPdd9+td955R5Mm8dsmAAAAAD0vEAhow746vb+hXO9vKNc3u+1hx7OSrTpndJbOGZ2pacMHKN5y7H4EHJOTrCumDtbTn+7Us5/tJMgDgGOg3wd5klRUVKRZs2Zp0qRJmjx5shYvXiyn06nZs2dLkq688krl5eVp0aJFkqR7771XCxYs0IsvvqiCggKVlZVJkhITE5WYmBixzwEAAACg73N7/Vqxo1rvbyjXe+vLtae29ZFZg0EaPzBF3xqdqbNHZ+r43GQZDIYeq+3KqQV6+tOd+nBThUqrG7p11B8AgCBPkjRz5kxVVlZqwYIFKisr04QJE/T222+HFsDYtWuXjEZjqP+jjz4qt9utiy66KOw6d9xxh373u9/1ZOkAAAAA+gF7o0fLNlXo/Q0VWrapQnVN3tCx2BijTh+RoXPHZOns0ZkHXaTiWBqSnqDTR6TrP1uq9PcVu/Sbb4+OWC0A0BcZAoFA4ODd0J0cDodsNpvsdruSk5MjXQ4AAACAXqi0uiE06m7Fjmp526wym55oVeGYTBWOydK04emKs5giWGm4//t6r276+1canpmo94vOjHQ5ABAVDjUrYkQeAAAAAPQCfn9Aa/bY9d764Hx3G8vqwo6PyEzUucdlqfC4LE0YmCKjsecemT0cZ4zIkNEgba2o197aRuWmxEW6JADoMwjyAAAAACBCmjw+fbatSu+tr1DxhnJV1LlCx0xGg04uSFXhmCwVjslSQXpCBCs9dLb4GE3IT9GqXbX6eHOlLpk8KNIlAUCfQZAHAAAAAD1of71LH2ys0PsbyvXx5io1enyhYwkWk84alanC4zJ11shMpSZYIljpkTtjZEYwyNtCkAcA3YkgDwAAAACOoUAgoHV7HfpwY4U+2FSh1aW1ajtTeY4tNjjq7rgsnTI0TVZz75nv7kidOTJDi9/fok+2VMnvD/Tax4ABINoQ5AEAAABAN3O6vPpka5U+3FihDzdVqNzhCjt+XE6yzj0uS+cel6Xjc5NlMPStoOuEPJviYkxyNHm1vcqp4ZmJkS4JAPoEgjwAAAAA6AYl+536YGOFPthYoc+3V8vt84eOxcWYNG14us4ZnamzR2cox9a3F4Awm4w6PjdZX5bU6JvdtQR5ANBNCPIAAAAA4Ai4vX59ubM6GN5tqtD2SmfY8UFp8c3BXaamDElTbEz0PzJ7OMYNTGkO8uz6wUkDI10OAPQJBHkAAAAAcIhKqxv08ZZKfby5Up9t3a86lzd0zGw06OSCtFB4Nywjoc89Mns4xufbJElf766NbCEA0IcQ5AEAAABAFxrcXv13+359vLlKH2+u1Paq8FF36YkWnTUqU+eMztRpI9KVHBsToUp7n3EDUyRJ6/c65PH5FWMyRrYgAOgDCPIAAAAAoFkgENCGfXWhUXdf7qwJm+vOZDToxPwUnTEyQ2eMzNC4PBsrsnahYEC8kmPNcjR5tamsTmPzbJEuCQCiHkEeAAAAgH5tf71Ln2yt0kebK/WfLVWqrAtfYTYvJU5njMzQmSPTdepwRt0dKoPBoLF5Nn22bb/W73MQ5AFANyDIAwAAANCvNLp9+mJntT7dVqXPtu7X2r12BQKtx+NiTDplaFpo1N3Q9P49193RGJWdpM+27dfmsrpIlwIAfQJBHgAAAIA+zePz6+vSWn26db8+21alr3bVhj0uK0mjs5N0ZnNwN6kgVVZz/1ph9lgZlZUkSdpUTpAHAN2BIA8AAABAn+L3B7ShzKHPtu7Xp9uqtGJHtRrcvrA+ubZYnTo8XdOGD9C0YenKTI6NULV924jmIG8zQR4AdAuCPAAAAABRLRAIaOf+Bn26tUqfbavS8m37VdPgCeuTGh+jU4el69Tm4G7wgHgel+0BI7MSJUnlDpdqG9xKibdEuCIAiG4EeQAAAACiSiAQ0LbKen2+o1qfb6/Wih3VKnM0hfVJsJg0eUiapg1P16nD0jU6O4nVZSMgKTZGeSlx2lPbqM3l9Zo8JC3SJQFAVCPIAwAAANCr+f0BbSyr04od+/X5jmBwt9/pDutjMRl14qCU5uBugMbnpyjGZIxQxWhrZFai9tQ2alN5HUEeABwlgjwAAAAAvYrX59e6vQ6t2FGtz3fs14od1XI0ecP6WM1GnTQoVZOHpGnK0DSdmJ+qOAsLVPRGI7OT9OGmSlauBYBuQJAHAAAAIKIa3T59vbtWK0tq9PmOaq3cWS1nu8UpEiwmTSxI05Qhwe2EgTZWlo0SIzKDC15sq6yPcCUAEP0I8gAAAAD0qDJ7k1aW1OjLkmqtKqnRur0Oef2BsD7JsWZNHpIWHHE3ZICOz02WmUdlo9KwjARJBHkA0B0I8gAAAAAcM16fXxvL6rSypCa07alt7NAvK9mqiYNTdXJBMLgblZ0kE4tT9AlDM1pXrq1r8igpNibCFQFA9CLIAwAAANBt7A0efVVao1UlNfqypEarS2vV0O4xWaNBGpOTrEmDU3XS4FRNHJyqvJQ4GQwEd32RLS5GGUlWVda5tL3SqfH5KZEuCQCiFkEeAAAAgCPi8vq0YV+dVu+q0de77fq6tFbbq5wd+iXFmnXSoFRNag7txuenKMHKjyL9ybCMBFXWubStsp4gDwCOAv96AgAAADgovz+gnfudWl1aq69La7V6t10b9jrk9vk79C0YEK+Jg9M0cXCqJhWkanhGoow8JtuvDctI1H+3VzNPHgAcJYI8AAAAAB1U1rn0dWmtvt5dGwrvHE3eDv3SEiyakJ+i8QNTND7fpvEDU5SaYIlAxejNhjXPk7etouOITQDAoSPIAwAAAPqxQCCgijqX1uy2a+1eu9busWvtHofKHE0d+lrNRp2QZ9P4/BRNaN4GpjK3HQ5uWGZzkMeIPAA4KgR5kh555BHdf//9Kisr0/jx4/XQQw9p8uTJnfZdt26dFixYoJUrV6qkpER/+tOfNGfOnJ4tGAAAADgCgUBAe+1NzWFdcFuzx6GqeleHvgaDNCIzUeMHpmjCoOCIu1HZSYoxGSNQOaLdsIwESdLO/U55fX6Z+ToCgCPS74O8l19+WUVFRVqyZImmTJmixYsXa/r06dq0aZMyMzM79G9oaNDQoUN18cUX65e//GUEKgYAAAAOLhAIqLS6UWv32rWmObRbt9ehaqe7Q1+jQRqRmaTj85J1Qp5NY/NsOi4nmQUp0G1ybXGKjTGqyeNXaU2jhqQnRLokAIhK/f5f5gcffFDXXnutZs+eLUlasmSJ3nzzTT311FOaO3duh/4nn3yyTj75ZEnq9DgAAADQ0xrdPm0ur9OGfQ5tLKvT+n0Obdzn6HROO7PRoJFZSRqbl6yxzaHdmOxkxVlMEagc/YXRaNDQ9ESt3+fQtop6gjwAOEL9Oshzu91auXKl5s2bF2ozGo0qLCzU8uXLu+0+LpdLLlfr4woOh6Pbrg0AAID+IxAIaJ+9KSyw27DPoZ1VTvkDHftbTEaNyk5qDuyCo+1GZiUpNobQDj1vWGZzkFdZr0JlRbocAIhK/TrIq6qqks/nU1ZW+D8iWVlZ2rhxY7fdZ9GiRVq4cGG3XQ8AAAB9X5MnOMpu477WwG5jWZ3sjZ5O+w9IsGhMTrLG5CRpdHayRuckaURmkixm5iJD79AyTx4LXgDAkevXQV5PmTdvnoqKikLvHQ6H8vPzI1gRAAAAeguX16ftlU5tLq9r3uq1pbxOu6obOh1lZzYaNCwjMRjY5SSHwruMRCurx6JXG5bRsnKtM8KVAED06tdBXnp6ukwmk8rLy8Pay8vLlZ2d3W33sVqtslqt3XY9AAAARB+3168dVcHAbktzYLe5ok4l+xvk6yyxk5SWYNGYnCSNyU5uDu2SNDwzUVYzj8Yi+rQEeVsr6hUIBAieAeAI9Osgz2KxaOLEiSouLtaMGTMkSX6/X8XFxbrxxhsjWxwAAACiUpPHp537ndpW4dSWijptKa/X5vI67ahyyttFYJcca9bIrCSNyErSyKxEjcxK0sisJKUnWgg70GcMSU+QwSDZGz2qdro1IJHBDgBwuPp1kCdJRUVFmjVrliZNmqTJkydr8eLFcjqdoVVsr7zySuXl5WnRokWSggtkrF+/PvR6z549Wr16tRITEzV8+PCIfQ4AAAD0nEAgoKp6t7ZV1ge3Cqe2VwVf765pVKDzvE6JVrNGZCVqZGZScJ+VpFHZScpM4rFY9H1xFpPyUuK0u6ZR2yqdBHkAcAT6fZA3c+ZMVVZWasGCBSorK9OECRP09ttvhxbA2LVrl4zG1gmC9+7dqxNPPDH0/o9//KP++Mc/6swzz9SyZct6unwAAAAcQ26vX7uqndraEtRVOEPhXV2Tt8vzkmPNGpaZqGEZiRqZlagRWUkalZWkHFssgR36tWEZic1BXr0mD0mLdDkAEHX6fZAnSTfeeGOXj9K2D+cKCgoU6OpXrAAAAIg6Pn9Ae2sbtXO/UzurnNq5v0E7q5zaUeVUSXXX89cZDFJ+aryGZSRoaEYwtGt5zSOxQOeGZSTqo82V2lbByrUAcCQI8gAAANDneX1+7a1t0o79TpXsbw7p9jdo536nSqsb5PF1/YvaBIspNLpuaHpC6PXgAfGKjWHRCeBwDMtMkCRtqyTIA4AjQZAHAACAPsHj82tPTfjIupL9wX1pdUOXC01IksVs1OC0eA0ekKAh6S37BA3PTGT+OqAbtaxcu63SGeFKACA6EeQBAAAgKvj9AVXUuVRaEwzmSqsbQ6931zRqn71RB8jqZDUbNXhAvAoGJKggPSG4HxCvwekJykmOldFIWAccay1BXmlNg5o8Pka1AsBhIsgDAABArxAIBGRv9IQFdMF98P3umka5vf4DXiM2xqiCAQnBwK45rBs8IF5D0hOUlURYB0RaeqJFybFmOZq82rnfqdHZyZEuCQCiCkEeAAAAeoTfH1CV06W9tU3aW9uoPTWN2lPbqL21jdpd06jS6gbVubpeCVaSTEaDcmyxyk+N16C0eOWnxSk/LV4DU4OvMxJ5DBbozQwGg4ZlJuqrXbXaVkGQBwCHiyAPAAAA3aLR7dNeezCY21vbqD21TdpT0/ze3qh9tU1y+w48ok6S0hOtwYCuOZxrDe3ilW2LVYzJ2AOfBsCxMiyjOchjwQsAOGwEeQAAADgot9eviromlTuatM/epDJ7U2g0XXDfpGqn+6DXMRqkrORY5abENW+xykuJU15Ky8i6OMVb+BYV6MtaF7wgyAOAw8V3SQAAAP1cXZNHZfYmlTmCAV1LWFfuaG2rqj94SCdJCRaT8lLjQkFdXnNYl2sLvmdEHYBhGQmSCPIA4EgQ5AEAAPRRXp9f+53uYCDXJqhruy+3N8np9h3S9SwmozKTrcqxxSorOVZ5qc1Bna01tEuOMzNHHYADGpbZPCKvwim/P8AiNABwGAjyAAAAoozT5VVFnUuVdS5V1DU1711h+8q6Ju13uhUIHNo1k2LNoYAuOzk2+NoWfJ3V/D4twUJIB+CoDUqLl9loUKPHpzJHk3JT4iJdEgBEDYI8AACAXsDnD6ja6e4QzFV2Etg1HOIIOik4J11GkjUskGsJ6LLb7JmXDkBPiTEZNXhAvLZVOrWtsp4gDwAOA9+xAQAAHAOBQED1Lq/217u13+lq3ru1v96lqjavW45XO93yH+LoOSk4F11GklWZSbHKSLKGbZmhfXAUnYnH1gD0MsMyEoNBXkW9Th+REelyACBqEOQBAAAcoiaPT9VOt/bXu1XVEs7Vu5pDuTaBXb1LVU633F7/YV3fYJAGJLQP46xhgV3L+wQr38YBiF7DMhOl9eXaVumMdCkAEFX4DhAAAPRLTR6fahs8qna6VdvgVnWDWzUNHtU43appcDfvPcHXDW7VOD2qd3kP+z7xFpMGJFo0IMGq9Ob9gESLBiQG36cltB5LS7DIzIquAPqBYRnNC16wci0AHBaCPAAAENUCgYAaPb6wEC4YzrUN6TzBfXN7TYP7sOaZa8tsNISCuQGJFqUnWjUgIRjMBd8Hj6UlWDQg0cLccwDQiWEZCZII8gDgcPGdJQAA6BWaPD7ZGz2yN3pU2+AJvQ5tDe6Obc2bx3cYk8u1YTIalBofo9R4S3BLaH6dYGnXHnw/IMGq5DgzK7cCwFEa2jwir9zhUl2TR0mxMRGuCACiA0EeAADoFn5/QPVur+qavKpr8qiuyStHm7CtJZwLa2vz+nDnk2vPYjIqJT5GaQmWNnuL0uJb36fGhx9LjiWUA4BIsMXFKCPJqso6l7ZXOjU+PyXSJQFAVCDIAwAA8vsDcoZCuDZBXJNHjjbvW/fhYV1dk1f1bq8CRzYwLsRoCP5w17Ilx8UoJd4iW5w5rN0WZ2l9HR/cJ1hMhHIAEEWGZSSoss6lbZX1BHkAcIgI8gAAiGJen19Ol0/1bq+cLq/qXcG90xUM25wur5xun+pdXtW3C+IcbcK6etfRh3AtYkwGJcXGKCnWrOTYmA6BW9stpTmsazmeaDHLaCSMA4D+YFhGov67vZp58gDgMBDkAQDQgwKBgFxefyhYCwVvbq/qXb5gGHew9jahXZPn6B5Hbc9sNCg5LhjCJcWalWRted0SzLV5HRd+rCW4s5qNjIwDABxUaOXaCmeEKwGA6EGQBwBAJ3z+gBrcXjW6fXK6fWGvG91eNbR73dDcp8HV/NrjU4MreKzREwziGpvbff5uGvrWRozJoESrWQlWc2gffG0Ka0+O7Ri+JcXGhAK62BhCOABAzxiW2RzkMSIPAA4ZQR4AIOoEAgF5fAE1eX1qag7Kmjx+NXp8anT7wtpbjjU1h2kNbl9zINccrLUEcO1eu45y4YVDEW8JhmytwVt46NY+kGvf3vY8q9l0zOsFAKA7DctIkCTt3O+U1+eX2WSMcEUA0PsR5AEAuo3PH5DL2xqctQRrLq9PjW5/c6jmC+2bPOHtbc9p8vrbhHRtzwn2Pxaj2jpjNEjxFrPiLCYlWEyKs5gVbzG12Vrfx1nMSmj3Os4SDODiYlr7J1hNSmAuOABAP5dri1NsjFFNHr92VTdoaPOjtgCArhHkAUAf0jJSrSVMc3mDI8tcbV43eZrbvH652r5ue46ntS2sX9trtr1W897bQ+FaW0aDFBdjUmzzFmcxKTbGGN4WE2xrCd3CgjWrWfFtX7cL6JjvDQCAY8NoNGhUVpK+3m3X6tJagjwAOAQEeQBwFAKBgNw+v9ze4ObxBYKvfcFgq32buzkAC7V5fa3nh9qCfT3e1mu7vH65fX55mvdtw7bWYC64766VR4+WxWQMBmqWtmFaa8gWZzEp1mxSrKU1aItrG8aZg/u4GJOs7c5puWZsjFEWE0EbAADR6tTh6fp6t12fbKnSD04aGOlyAKDXI8gD0Cv5/AF5fP7mLSCvLxhgeX2BUFvb4x6fX16/X25vQF5/eLuneaRY1+f7Q6GbuyUwaxPOuTppa+3XS1KzLljNxuDWHHpZzabWNnMwILOajYqNMbW2mY3N7e3OCTu/zbEYY9i5sTEmWcxGmXhsFAAAHMTpw9P16LJt+mRrlQKBAL+cA4CDIMhr9sgjj+j+++9XWVmZxo8fr4ceekiTJ0/usv8///lPzZ8/Xzt37tSIESN077336jvf+U4PVgyECwQC8voDoQAsuA9/7/UHQy6vr6Wvv0Oflvet/YIhWPtzWo51FY55fS3BWbt2f6B5lFrwtcfrl6f5/m3PicATmt3CbDTIYjYGN5NRMaZgyNW+zdKmzdpJm8XUbm9u06d5pFtnIZo1pjWUY6QaAADo7SYWpCo2xqiKOpc2l9drVHZSt127Ze5el8evpua9PxBQQMHvnQMByR+QAmp5HdwbDJJBBhmNktFgkNEgGQwGGdTy3iCDIfhocGtbsE9n+1D/Nntj8/UMzf0A4FAR5El6+eWXVVRUpCVLlmjKlClavHixpk+frk2bNikzM7ND/88++0yXXnqpFi1apO9+97t68cUXNWPGDK1atUpjx46NwCdAIBCQPxD8x9rnD8gXCMjnC+69fr/8foXv24RenW7Nx/3+dvtAMMDyBbo+z+cPtAvAwoMwb0tg1kWQ1j48C/Ztd6zNtbz+1s/Sl5mMhmBIZjLKbDIopjn8ijEZZG4JwkKvW4+bjQbFmI2KMTa3tXnd0tfSLkQLhW9dhGjW9m0tfU1GFi8AAAA4DFazSZOHDNDHmyv1r6/2aO75o7vs6/b6tc/eqNLqRu2uadDumkbtd7pU2+BRTYM7tHe6ggtt9fYnJ1oEg8M2AaAMzQGfQoGfsblTWCjYfE7L+W2PSZLR2BxIGg7Sz9DxfoZ292m9f2vI2VpnS5/Wz6DQfdte39Dh/s1dW68V9mfSWlfLkdY/q+Dx9n9+Le+DZxjC+kutNbS9Z8vVDZ3UobaBa2c1tAlhOzvf0P4+LTV2Ubeh3T27/BzBD9D636rt/drds+3n7upztP3zba2vtdawY21raNOhtV8X57X78w4/t+P9w67Vob31AhPyU/rdk0CGQKC3zKYUOVOmTNHJJ5+shx9+WJLk9/uVn5+vm266SXPnzu3Qf+bMmXI6nVq6dGmo7ZRTTtGECRO0ZMmSDv1dLpdcLlfovcPhUH5+vux2u5KTk4/BJ+p5DxVvUVW9Kyzg6iwA6zJAO0Aw1va89sFa2/PQObPRILPJILPR2LwPvjYZDYoxGZr3wffm5uCr5RyTMRh6hfdpOX7gcKxt0BYK1Uztg7iO/ULnG4PXNbe5NwAAAPqe/7dyt371z68lSYVjMpWWYFFcjEmStN/p1j57k/bWNqrM0XTEcwG3/PLWaDR0EoaFBx1S80i9QMuAgeCgAX8gIDXv/W1G8AUU/h5Az1m3cLoSrH1jjJrD4ZDNZjtoVtQ3Pu1RcLvdWrlypebNmxdqMxqNKiws1PLlyzs9Z/ny5SoqKgprmz59ul577bVO+y9atEgLFy7stpp7o/+3ard27m+IdBmdMhiCYZbREAygjM1BlallMxhkMjXvQ+1GmYwK7g2S2WiU0diyN4Rdz9R+M4SHXR1CseaQqjVIaw3Y2gZmMe2CtLbXCgvl2oZvze2mNp+RofoAAADozX5wUp5Kqhv0l+Iten9DxQH7xsYYNTA1XgNT4zQwNU4ZibFKTYhRSrxFKXExSo23KDHWrNgYo2JD05CYeuyXwoFQuNcS+IU/ttsSAgbah4GhR34VevzX3zxYIewa6vhYsN/f+nhw22Cx5R4Kve94v/bXVuAQ7hdo+zlb7t+uLaAurtG6b/vZWj57cxWhQLTlvObSQn1azmnp3Nn5YW1h1wg/v+01W+7Z2f3atqnNn3fzu7B7trQp0OaeYfcLb1Pbz9XF51CHtkC7+7WpvX1dnXwOddbWSa1tj6nNn037+4S97+SaOtg57fq2/bM50PH++ONuvw/yqqqq5PP5lJWVFdaelZWljRs3dnpOWVlZp/3Lyso67T9v3ryw4K9lRF5fcvkpg2Vv9HQdlrUNzdq1hUIxU0s41hqatYRpHft0ce32gZzBwKOOAAAAQC9mMBhUdO5ITRmSps3ldWpw+9Tk8SkQkFLiY5Rji1NOSqzyU+OVnmjp1b+obnkkVZJM6r11Aohe/T7I6wlWq1VWqzXSZRxTPzl9aKRLAAAAABDFpg1P17Th6ZEuAwB6tX4f5KWnp8tkMqm8vDysvby8XNnZ2Z2ek52dfVj922sZCupwOI6gYgAAAAAAAPQlLRnRwZay6PdBnsVi0cSJE1VcXKwZM2ZICi52UVxcrBtvvLHTc6ZOnari4mLNmTMn1Pbee+9p6tSph3TPuro6Sepzj9cCAAAAAADgyNXV1clms3V5vN8HeZJUVFSkWbNmadKkSZo8ebIWL14sp9Op2bNnS5KuvPJK5eXladGiRZKkm2++WWeeeaYeeOABXXDBBXrppZf05Zdf6vHHHz+k++Xm5qq0tFRJSUm9en6Hw9Ey719paWmfWYkXR46vB7TF1wPa4usB7fE1gbb4ekBbfD2gLb4e0FZf/HoIBAKqq6tTbm7uAfsR5EmaOXOmKisrtWDBApWVlWnChAl6++23Qwta7Nq1S0ajMdT/1FNP1Ysvvqjbb79dt912m0aMGKHXXntNY8eOPaT7GY1GDRw48Jh8lkhLTk7uM/8T4ejx9YC2+HpAW3w9oD2+JtAWXw9oi68HtMXXA9rqa18PBxqJ14Igr9mNN97Y5aO0y5Yt69B28cUX6+KLLz7GVQEAAAAAAABBxoN3AQAAAAAAABBpBHnoFlarVXfccYesVmukS0EvwNcD2uLrAW3x9YD2+JpAW3w9oC2+HtAWXw9oqz9/PRgCB1vXFgAAAAAAAEDEMSIPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQh27xyCOPqKCgQLGxsZoyZYpWrFgR6ZIQAR9//LEuvPBC5ebmymAw6LXXXot0SYigRYsW6eSTT1ZSUpIyMzM1Y8YMbdq0KdJlIUIeffRRjRs3TsnJyUpOTtbUqVP173//O9JloZf4wx/+IIPBoDlz5kS6FETA7373OxkMhrBt9OjRkS4LEbRnzx5dfvnlGjBggOLi4nTCCSfoyy+/jHRZiJCCgoIOf0cYDAbdcMMNkS4NEeDz+TR//nwNGTJEcXFxGjZsmO666y4FAoFIl9ZjCPJw1F5++WUVFRXpjjvu0KpVqzR+/HhNnz5dFRUVkS4NPczpdGr8+PF65JFHIl0KeoGPPvpIN9xwg/773//qvffek8fj0XnnnSen0xnp0hABAwcO1B/+8AetXLlSX375pc455xx9//vf17p16yJdGiLsiy++0GOPPaZx48ZFuhRE0PHHH699+/aFtk8++STSJSFCampqNG3aNMXExOjf//631q9frwceeECpqamRLg0R8sUXX4T9/fDee+9Jki6++OIIV4ZIuPfee/Xoo4/q4Ycf1oYNG3Tvvffqvvvu00MPPRTp0nqMIdCfYkscE1OmTNHJJ5+shx9+WJLk9/uVn5+vm266SXPnzo1wdYgUg8Ggf/3rX5oxY0akS0EvUVlZqczMTH300Uc644wzIl0OeoG0tDTdf//9uuaaayJdCiKkvr5eJ510kv7617/q97//vSZMmKDFixdHuiz0sN/97nd67bXXtHr16kiXgl5g7ty5+vTTT/Wf//wn0qWgl5ozZ46WLl2qLVu2yGAwRLoc9LDvfve7ysrK0pNPPhlq++EPf6i4uDg9//zzEays5zAiD0fF7XZr5cqVKiwsDLUZjUYVFhZq+fLlEawMQG9jt9slBcMb9G8+n08vvfSSnE6npk6dGulyEEE33HCDLrjggrDvI9A/bdmyRbm5uRo6dKguu+wy7dq1K9IlIULeeOMNTZo0SRdffLEyMzN14okn6oknnoh0Wegl3G63nn/+eV199dWEeP3UqaeequLiYm3evFmS9PXXX+uTTz7R+eefH+HKeo450gUgulVVVcnn8ykrKyusPSsrSxs3boxQVQB6G7/frzlz5mjatGkaO3ZspMtBhKxZs0ZTp05VU1OTEhMT9a9//UvHHXdcpMtChLz00ktatWqVvvjii0iXggibMmWKnnnmGY0aNUr79u3TwoULdfrpp2vt2rVKSkqKdHnoYdu3b9ejjz6qoqIi3Xbbbfriiy/0i1/8QhaLRbNmzYp0eYiw1157TbW1tbrqqqsiXQoiZO7cuXI4HBo9erRMJpN8Pp/uvvtuXXbZZZEurccQ5AEAjrkbbrhBa9euZc6jfm7UqFFavXq17Ha7XnnlFc2aNUsfffQRYV4/VFpaqptvvlnvvfeeYmNjI10OIqztKIpx48ZpypQpGjx4sP7xj3/w6H0/5Pf7NWnSJN1zzz2SpBNPPFFr167VkiVLCPKgJ598Uueff75yc3MjXQoi5B//+IdeeOEFvfjiizr++OO1evVqzZkzR7m5uf3m7wiCPByV9PR0mUwmlZeXh7WXl5crOzs7QlUB6E1uvPFGLV26VB9//LEGDhwY6XIQQRaLRcOHD5ckTZw4UV988YX+/Oc/67HHHotwZehpK1euVEVFhU466aRQm8/n08cff6yHH35YLpdLJpMpghUiklJSUjRy5Eht3bo10qUgAnJycjr8gmfMmDH6f//v/0WoIvQWJSUlev/99/Xqq69GuhRE0K9//WvNnTtXl1xyiSTphBNOUElJiRYtWtRvgjzmyMNRsVgsmjhxooqLi0Ntfr9fxcXFzHsE9HOBQEA33nij/vWvf+mDDz7QkCFDIl0Sehm/3y+XyxXpMhAB3/rWt7RmzRqtXr06tE2aNEmXXXaZVq9eTYjXz9XX12vbtm3KycmJdCmIgGnTpmnTpk1hbZs3b9bgwYMjVBF6i6efflqZmZm64IILIl0KIqihoUFGY3iUZTKZ5Pf7I1RRz2NEHo5aUVGRZs2apUmTJmny5MlavHixnE6nZs+eHenS0MPq6+vDfnu+Y8cOrV69WmlpaRo0aFAEK0Mk3HDDDXrxxRf1+uuvKykpSWVlZZIkm82muLi4CFeHnjZv3jydf/75GjRokOrq6vTiiy9q2bJleueddyJdGiIgKSmpw3yZCQkJGjBgAPNo9kO33HKLLrzwQg0ePFh79+7VHXfcIZPJpEsvvTTSpSECfvnLX+rUU0/VPffcox/96EdasWKFHn/8cT3++OORLg0R5Pf79fTTT2vWrFkym4kx+rMLL7xQd999twYNGqTjjz9eX331lR588EFdffXVkS6txxgCgUAg0kUg+j388MO6//77VVZWpgkTJugvf/mLpkyZEumy0MOWLVums88+u0P7rFmz9Mwzz/R8QYiorlYSe/rpp5mguB+65pprVFxcrH379slms2ncuHG69dZbde6550a6NPQSZ511liZMmKDFixdHuhT0sEsuuUQff/yx9u/fr4yMDJ122mm6++67NWzYsEiXhghZunSp5s2bpy1btmjIkCEqKirStddeG+myEEHvvvuupk+frk2bNmnkyJGRLgcRVFdXp/nz5+tf//qXKioqlJubq0svvVQLFiyQxWKJdHk9giAPAAAAAAAAiALMkQcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUcAc6QL6I7/fr7179yopKUkGgyHS5QAAAAAAACCCAoGA6urqlJubK6Ox63F3BHkRsHfvXuXn50e6DAAAAAAAAPQipaWlGjhwYJfHCfIiICkpSVLwP05ycnKEqwEAAAAAAEAkORwO5efnhzKjrhDkRUDL47TJyckEeQAAAAAAAJCkg07BxmIXAAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAFWrY0CXq9Xbrc70mUAx1RMTIzMZvNBV+gBAAAAAKC/IsjrRF1dnebPn69//etfqqio0Iknnqg///nPOvnkkyVJgUBAd9xxh5544gnV1tZq2rRpevTRRzVixIhurSMQCGjXrl2qqqrq1usCvZXZbFZeXp4GDBhAoAcAAAAAQDsEeZ34yU9+orVr1+q5555Tbm6unn/+eRUWFmr9+vXKy8vTfffdp7/85S969tlnNWTIEM2fP1/Tp0/X+vXrFRsb2211tIR4eXl5SkxMlNHIk9DomwKBgDwej6qrq1VSUqLa2loNHz480mUBAAAAANCrGAKBQCDSRfQmjY2NSkpK0uuvv64LLrgg1D5x4kSdf/75uuuuu5Sbm6tf/epXuuWWWyRJdrtdWVlZeuaZZ3TJJZcc9B4Oh0M2m012u13Jycmd9vF6vfr666+Vl5en7Ozs7vlwQBTYt2+f9uzZI6fTqdNOO00mkynSJQEAAAAAcEwdSlYksdhFB16vVz6fr8PIuri4OH3yySfasWOHysrKVFhYGDpms9k0ZcoULV++vNNrulwuORyOsO1gWubES0xMPIpPA0Sf5ORkGQwGrV27Vt98802kywEAAAAAoNcgyGsnKSlJU6dO1V133aW9e/fK5/Pp+eef1/Lly7Vv3z6VlZVJkrKyssLOy8rKCh1rb9GiRbLZbKEtPz//kOvhcVr0Ny1z45lMJm3evDnC1QAAAAAA0HuQEnXiueeeUyAQUF5enqxWq/7yl7/o0ksvPeJQbd68ebLb7aGttLS0mysG+h6r1aqamhr5fL5IlwIAAAAAQK/AYhedGDZsmD766CM5nU45HA7l5ORo5syZGjp0aGi+uvLycuXk5ITOKS8v14QJEzq9ntVqldVq7YnSgT7jP1uqVF7t0P899InMZpPMJqPMRoNiTEaZTQaZjUbFmAwym4yKMRpkMja/DjtmkMVkUozZIIvJqBiTURZzcB9jMsgaet16zGIyKsYcvI+lTf/g3qAYo1FGIyvqAgAAAAB6HkHeASQkJCghIUE1NTV65513dN9992nIkCHKzs5WcXFxKLhzOBz6/PPP9fOf/zyyBaPbLFu2TGeffXbo/RdffKFJkyZ1y7VTUlJkt9slSTfccIMefvjhbrluX+N0eVXT4NHefQ7J0LsGD5uNhjaBoLE5EDQcMBCMaW7rLCi0mo2ymk2tr2OC7w/c3nKuSTEmQ+iRZAAAAABA30WQ14l33nlHgUBAo0aN0tatW/XrX/9ao0eP1uzZs2UwGDRnzhz9/ve/14gRIzRkyBDNnz9fubm5mjFjRqRLjwrPPPOMZs+eHXpvtVqVlpamE044QRdccIFmz56tpKSkTs/99NNP9cc//lGfffaZamtrlZOTo+nTp+u3v/2tBg0aJEnauXOnhgwZcki17NixQwUFBV0ev+222zRmzBgNHTo01LZ+/Xr99Kc/1erVqzVq1Cg99NBDmjp1ath5Dz74oJ588kl9/fXXMpvD/zd7/PHH5Xa7dcUVVxxSjf3VKUMHaFRGrM763iT5ZZTXH5DX75fXF5DH5w++9/nl8QXbPb6AfC1tbY55fH55fH65vcH37tDr5nZfIPy9t2N/nz98cW+vPyCv2yepdzz2azCoY+jX/D4Y/hllaRMAtrRbTB3DQWuMSXExJsXGGJv3LVvr+5a91czoRAAAAADoSQR5nbDb7Zo3b552796ttLQ0/fCHP9Tdd9+tmJgYSdJvfvMbOZ1OXXfddaqtrdVpp52mt99+u8NKtziwO++8U0OGDJHH41FZWZmWLVumOXPm6MEHH9Qbb7yhcePGhfV/6KGHdPPNN2vo0KG66aablJOTow0bNuh///d/9fLLL+utt97SqaeeqoyMDD333HNh5z7wwAPavXu3/vSnP4W1Z2RkHLDGc889V2eddVbovc/n0w9+8AOlpaXp/vvv1xtvvKHvf//72rp1a2h56IqKCt155536xz/+0SHEk6Qf/ehHkkSQdxCpCRbFGn06c1SmTCZTRGvx+TsGgh6fX642AWDr+4A8Xr/c7QNEry8UDLYPDN0+v1ye4Pkury+49/jl8vnl8vjk9rY51tzu9vpD9QUCUpPHryaP/wCf4tiwmo2Ks5gUazYpzmLq8D42xhgKAzsPCMPbrTEmxVtaNrPiLcHjBIYAAAAAQJDXqR/96EehsKUzBoNBd955p+68884erKrvOf/888MeV503b54++OADffe739X3vvc9bdiwQXFxcZKCI/HmzJkTCk3j4+ND5/385z/XtGnTdNFFF2ndunVKTU3V5ZdfHnavl156STU1NR3aD9eWLVu0adMmlZSUaNCgQbryyiuVnp6u5cuXa/r06ZKCo/jOOOMMnXfeeUd1L/QeJqNBJmMwdOot/P5gKNgS8IXCPk+bMNDrb273dQgKu2p3efxq9PjU1LwFX4e3eXytIxRb7iN5junnjWsJ+KwmxceYg3uLSXExZiVYw4O/UABoMSkh1BZsj7OYgv2brxFj6l2PbQMA0N8FAgGV7G9QmaNJfn9A4/NTlGDlx1YAaMHfiOhVzjnnHM2fP1+33Xabnn/+eV177bWSpLvuuksGg0HPPvtsWIgnBRcnue+++zRr1iw99thjmjt37jGrr7GxUZKUmpoqSYqPj1dcXJwaGhokSatWrdILL7ygNWvWHLMaAEkyGg2KDYWLMT16b6/PryavPxj0uX1yeX1qdPvV5A2+bwkA24aCLYFgeEDoU2Obtpb2RrdfDW6vGtytjy43Nh/b7+zezxJjMrQJAE1KtJqVGGtWgsXc+tra/Lp5S7CalRRqNynRGqMEazA0ZOQgAABHLhAI6LrnVuq99eWhttNHpOu5a6ZEsCoA6F0I8qJIIBBQo6d3zMnVIi7G1O2T7F9xxRW67bbb9O677+raa69VQ0ODiouLdfrpp3c5993MmTN13XXXaenSpcc0yBs5cqRsNpt+97vf6Re/+IX+8Y9/yOFw6KSTTpIk/eIXv9CNN96o4cOHH7MagEgzm4xKNBmVeIx/O+73B9Tk9anBHQwInc3hXoPLpwa3V40en5zNrxvcLf28cjb3b2jz2un2NrcF21tGFXp8AdkbPbI3ds+IwgSLqUP4l2A1K6l5nxgbHgomx8UoKdas5NgYJceZlRQboyQrgSAAoH964+u9em99uUxGQ2iO4k1ldRGuCgB6F4K8KNLo8em4Be9Euoww6++crnhL934ZDRw4UDabTdu2bZMUfJzV6/Vq/PjxXZ5jtVo1atQobdiwoVtraS8hIUGPPvqorrnmGj344IMymUy69957NXjwYL344ovaunWr3nrrrWNaA9BfGI0to+W6/58qt9cfDPY8reGg0+2V0+VVfcvW1PLep3qXR06XT3Wu5ramNv1c3tAPG063T063T5LriGszGKRES8eQLzm2+X1czAFeB8NAi5lHhgEA0aXJ49Mf/r1RklR07kh9f0KuTrv3Q9U2eBQIBLp98AAARCuCPPRKiYmJqqsL/vatZd/VSrYtkpKS5HA4jnltl156qb797W9r06ZNGjJkiLKystTQ0KBbb71Vd999txITE7Vw4UI9++yzodf/8z//c8zrAnDoLGajLGajbN3wWHIgEJDL6w+Ffy3hXmehYF2b9romrxxNXtU1eeRo9MrR5JHb61cgINU19z1SsTHG5gAwRilxMUqJj5EtzqKU+Dbv4y2h1ylxFtniGQ0IAIicdXvt2mdvUlqCRdecNiT0SzK3z68Gt4958gCgGX8bRpG4GJPW3zk90mWEiTtGk//X19crMzNTUmuA1xLodaWuru6gYV93SU1N1SmnnBJ6v2jRImVmZmr27Nl66qmntGTJEr3wwgvauXOnZs6cqfXr1/O4LdBHGQyG0Aq86YnWo7pWk8fXHPB5gvtGzwFeh4eAdc0hYvA6fjV5XKqoO7yRgUaDZIuLUUq8pXkfo9Q2r1NajjW/To23KDXBouRYMyMlAABHpcIR/DerYEC8YmNMCgQCspiMcvv8qmlwE+QBQDP+NowiBoPhmDxi1tvs3r1bdrs9FHwNHz5cZrNZ33zzTZfnuFwubdq0KWwV3J6yc+dOPfDAA3r33XdlNBr197//XT/96U91zjnnSJKeffZZvfTSS7r99tt7vDYA0aUlEMxIOrJA0Ovzh0b72Rs9cjTP/1fb6FFtg0e1jW7ZG1pf1zY0H2/wqNHjkz8g1TR4VNNweHMGmo0GpSZYNCDBotR4i9ISLUqLtygtofMtNd7C478AgDBV9cEgr+XfQIPBoJT4GFXUuVTb4NHA1EhWBwC9R99PhRB1nnvuOUnS9OnB0YcJCQk6++yz9cEHH6ikpESDBw/ucM4//vEPuVwuffe73+3RWiXplltu0fe+9z2ddtppkqS9e/cqNzc3dDw3N1d79uzp8boA9D9mk1Ep8RalxFuUf5jnNnl8crQN/Rrcqm30BIO/5tCv7fsaZzAErHd55fUHVFnnUuVhjABMspqVlhgM9QYkWFqDwOawLyPRqvREqzKSrBqQaFGMieAPAPqyln9D2o5uT423qKLOpZoGd6TKAoBehyAPvcoHH3ygu+66S0OGDNFll10War/99ttVXFysq666Sm+99Zbi4uJCx3bs2KHf/OY3ysnJ0U9/+tMerffDDz/UW2+9pY0bN4basrKywt5v2LCBOfIA9HotowEzk2MP67wmj0+1DR7td7pU7XSHthqnW/udbtU0uLW/PrhvOeZvMw9gyf6GQ7pPSnxMKNxLT7IqPdGijKTmsI/QDwCiXmV9MKxrOyo9JT44l+3hjhQHgL6MIA8R8+9//1sbN26U1+tVeXm5PvjgA7333nsaPHiw3njjDcXGtv4wecYZZ+iPf/yjioqKNG7cOF111VXKycnRxo0b9cQTT8jv9+utt95SamrPjbn3+XyaM2eOfv3rX2vQoEGh9osuuki/+c1vlJGRoZKSEq1Zs0YvvPBCj9UFAD0pNsakbJtJ2bZDCwD9/oAcTZ5gyNcS9rXZVze/rqp3NW9u+fyB5lGCHm2pqD/oPVLiY1oDvjahX2ZSrLKTY5WVbFVmcixz+wFAL9LyaG37EXmSVMuIPAAIIchDxCxYsECSZLFYlJaWphNOOEGLFy/W7NmzO1204pe//KUmTZqkBx54QIsXL5bdbldOTo4uvvhi/fa3v+30kdtj6bHHHlN1dbVuvfXWsPaf/exn2rFjhx588EElJCTo6aef1vHHH9+jtQFAb2U0GkKP/yrj4P39/oBqGz2qqg8+utu6d4fet7Ttd4aHflsPEvrFxhiVlRyrrKRYZSZbm0O+4Ous5tdZydZ+MT8tAERap4/WJjSPyHMyIg8AWvCdKXrcVVddpauuuuqIzj399NN1+umnH/Z5S5cuPaL72e12VVVVKSUlRWZz+P8u119/va6//voO55jNZj3wwAN64IEHOr1mdXW1/H7/EdUDAP2N0WgILZIxMuvAK5N3FfpVtuzrXCp3NKnc4ZK90aMmj18l+xsO+nhvktUcCveyk2OV2Rzw5djilJsSqxxbnAYkWGQ0MroPAI5U+8UuJAV/6SMxRx4AtEGQBxzAjBkzJElffPFFt62IO3ToUNnt9m65FgCg1eGEfk0enyocLpXXNanc0aQye5MqQkFfkyocLpU5mtTg9gXn86v0aluls8vrWUxGZdtilWOLVW5Ka8AX2tvilBzHo7wA0JlAIBAakZcR9mhtcEQej9YCQCuCPKAT48eP13vvvRd6P2rUqG679uuvvy6PJ/h4QH7+4a4rCQDoDrExJg0aEK9BA+IP2K/e5e0Q7rW831vbpH32RlXUueT2+bWrukG7qrse3RdvMYWCvlDgZ4tTXmqcBqbGKccWJ4uZhToA9D/1Lq9c3uATK+lJllB764g8Hq0FgBYEeUAnUlNTVVhYeEyufeaZZx6T6wIAul+i1azEjEQNy0jsso/H51eZvUn77MFgryXg21vbpL21jdpnb1RNg0cNbp+2VTq7HNlnMEjZybHKT43XwOZwb2BqvAamxSk/NV7ZtlhW5AXQJ1U1r1ibYDGFzUvKYhcA0BFBHgAAwFGIMRmVnxav/LSuR/c1un3aZ2/UPnsw3AuFffYm7alp0O6aRrm8/uYwsEkrdna8htEg5djaBHzNYV/LvXOSY5mnD0BUCj1W22Z+PKn10VpG5AFAK4I8AACAYyzOYtLQjEQN7WJkXyAQUGW9S7trGpu3YLhXWt2gPTWN2l3bKLfXrz21jdpT26jPd1R3uIbFZFR+WpwGD0jQ4AHxGpwWr8HpCRqcFq+BqfE8tgug12pZ6KLtirUSi10AQGcI8gAAACLMYDAoMylWmUmxOmlQaofjfn9AVfUulTYHfB3CvtpGuX3+Lh/dNRqk3JQ4FQxI0KAB8SoYEK9BaQkqSI/XoLT4sEfZAKCntYzIax/ktYzIq2vyyuvzy8z0AgBAkAcAANDbGY0GZSbHKjM5VhMHdzzu8we0t7ZRJfsbVFLtDO73t+wb1OjxhQJAbe14fmaSVQUDEjQkPUFDMxI0NCNRwzISlJ8Wz7x8AI65lhF57R+ttcXFhF7XNno6BH0A0B8R5AEAAEQ5k9EQmivvNKWHHQsEAqqsc6mkukE7q5zaVd2gnfsbtGu/Uzv3N8je6FFFnUsVdS6t2Bn+yK7ZaNCgAfEamh4M9lpCvqHpCUpLsMhgYE4+AEevqxF5ZpNRtrgY2Rs92l/vJsgDABHkAQAA9GkGQ+tovpML0jocr21wq2R/g3buDz6Wu72yXtsrndpR5VSjx6ftlU5tr3Tq/Q3h59niYoLBXnqihmYkaFhGokZkJWpwWjyPvwE4LF2NyJOC0wLYGz3aU9ugUdlJPV0aAPQ6BHkAAAD9WEq8RSnxFo3PTwlr9/sDKnM0BYO8qmC4t6055Ntrb5S90aOvdtXqq121YedZTEYNzUjQiKwkjcwMhnsjspII+AB0qbI+uJhFeqKlw7H81Dht2OdQaXVjT5cFAL0SQR4AAAA6MBoNyk2JU25KnE4bEf64bpPHp537nc2j9YLh3tbKem0pr1ejx6eNZXXaWFYXdk7bgG9EZqJGEvABaFbV8mhtJyPyBqXFS5J2VTf0aE0A0FsR5AEAAOCwxMaYNDo7WaOzk8Pa/f6A9tQ2anN5nbZU1Af35fXaWnHwgG9kVpJG5yRpTE6yxmQnKyvZyhx8QD8QCARU2fJobSdz4OU3B3mlBHkAIIkgD1HomWee0ezZs7Vjxw4VFBQcsO+yZct09tln68MPP9RZZ50V0Vp6u5bP0qKyslLp6ekHOOPQ1NbWKjU1NfT+/vvv1y233HLU1wUA9D7GNotufGtMVqj9UAO+N75uvVZqfEwwLGwT7o3ISlRsjCkCnwzAseJo8srt9UvqfI68lhF5pTU8WgsAEkEe+oi//vWvio+P11VXXRXpUjr1u9/9TgsXLgy9j4uLU3p6usaPH68f/OAH+vGPfyyrtfNVuJYuXaqHH35YX3zxhZxOpwYNGqTvfe97mjdvngYMGCCpNbA8FIFA4IDH//SnPyk9PV1JSa2TCX/66ae66aabtGXLFk2cOFFLlizR6NGjw877xS9+oU2bNumdd94Ja09ISNBzzz2nqqoq/fKXvzykGgEAfcuhBHwtYd6GfQ5tr6xXTYNHy7fv1/Lt+0P9TUaDhqQnaHR2c7jXHPJlJ8cyeg+IUi0LXSRZzZ0G9flpcZKCI/ICgQD/rwPo9wjy2vH5fPrd736n559/XmVlZcrNzdVVV12l22+/PfSPRiAQ0B133KEnnnhCtbW1mjZtmh599FGNGDEiwtX3D1dccYUuueSSsODrr3/9q9LT0zsEeWeccYYaGxtlsXScODcSHn30USUmJsrlcmnPnj165513dPXVV2vx4sVaunSp8vPzw/rfcssteuCBBzR+/HjdeuutSktL06pVq/Twww/rpZdeUnFxsUaNGqUxY8boueeeCzt33rx5SkxM1G9/+9vDqnHGjBlhowvtdru+//3v65RTTtF1112nZ555Rj/84Q/1zTffyGQKfrO1bt06PfHEE1q5cmWH68XExOjyyy/Xzp07CfIAAGG6CviaPD5tKa/XhjKHNu4LhnsbyhyqbfBoa0VwJN/Sb/aF+g9IsOj4PJvG5iZrbJ5NJ+TZNDA1jh/4gShwoPnxJGlganBEXr3Lq9oGj1ITesf39QAQKQR57dx777169NFH9eyzz+r444/Xl19+qdmzZ8tms+kXv/iFJOm+++7TX/7yFz377LMaMmSI5s+fr+nTp2v9+vWKjY2N8Cfou5xOpxISEmQymUIB0sEYjcZe9d/koosuCntcdcGCBXrhhRd05ZVX6uKLL9Z///vf0LG///3veuCBBzRz5ky98MILYZ/5qquu0tlnn62LL75Yq1atUlZWli6//PKwe/3hD39Qenp6h/bDtXz5cjU2NuqVV15RbGysvv3tb2vIkCHaunWrRo0aJUmaM2eOrr32Wh133HFHdS8AAKTgHHwnDLTphIG2UFsgEFBFnUvr9wXDvY1lDm3Y59C2Sqf2O936eHOlPt5cGeqfHGsOhXotIV/BgAQZjYR7QG/SMj9eZyvWSsG/DzKTrKqoc6m0poEgD0C/xxJh7Xz22Wf6/ve/rwsuuEAFBQW66KKLdN5552nFihWSgt9ELl68WLfffru+//3va9y4cfrb3/6mvXv36rXXXots8VFkz549uuaaa5Sbmyur1aohQ4bo5z//udzu4NLzzzzzjAwGgz766CNdf/31yszM1MCBA8OO7dy5U5JUUFCgdevW6aOPPpLBYJDBYAjNh7ds2TIZDAYtW7Ys7P6ff/65vvOd7yg1NVUJCQkaN26c/vznP4eOf/PNN7rqqqs0dOhQxcbGKjs7W1dffbX279+v7nbZZZfpJz/5iT7//HO99957ofaFCxcqNTVVjz/+eIfgcvLkybr11lu1Zs0avfLKK91eU1uNjY2KjY0NBaJpaWmSpIaG4ITDr732mr766quwR4cBAOhuBoNBWcmxOntUpn5+1jD9+ZIT9e4vz9S6hdP1+g3T9PsZY3Xp5HydkGeTxWSUo8mrz7bt12Mfb9cv/v6VznngI41b+K5+9Nhy3fl/6/Wvr3Zra0Wd/P4DTzkB4NhqGZHX2fx4LfJZuRYAQhiR186pp56qxx9/XJs3b9bIkSP19ddf65NPPtGDDz4oSdqxY4fKyspUWFgYOsdms2nKlClavny5Lrnkkg7XdLlccrlcofcOh+PIigsEJE8v+8crJl46zMdW9u7dq8mTJ6u2tlbXXXedRo8erT179uiVV15RQ0ND2GOw119/vTIyMrRgwQI5nc5Or7d48WLddNNNYY+RZmVlddpXkt577z1997vfVU5Ojm6++WZlZ2drw4YNWrp0qW6++eZQn+3bt2v27NnKzs7WunXr9Pjjj2vdunX673//2+2P6lxxxRV6/PHH9e677+rcc8/Vli1btGnTJl111VVKTk7u9Jwrr7xSd9xxh5YuXdrp1113OfHEE2W32/XAAw/ooosu0uLFi2Wz2TRq1Ci5XC796le/CoWOAAD0tNgYk8bnp2h8fkqoze31a3N5ndbttWvNHrvW7gmO3qt3ebViR7VW7KgO9U2ymjUu36YJ+SkaPzBFEwalKDOp94zmB/q61hF5XQd5g9LitbKkRjurOv95AAD6E4K8dubOnSuHw6HRo0fLZDLJ5/Pp7rvv1mWXXSZJKisrk9QxKMrKygoda2/RokXdM1rJ0yDdk3v01+lOt+2VLAmHdcq8efNUVlamzz//XJMmTQq133nnnR0WYkhLS1NxcfEBH6WdMWOGbr/99kN6jNTn8+mnP/2pcnJytHr1aqWkpISOtb339ddfr1/96ldh555yyim69NJL9cknn+j0008/lI96yMaOHStJ2rZtmyRp/fr1kqTx48d3eU5BQYGSk5O1YcOGbq2ls/v84Q9/0K233qpbbrlFcXFxevLJJxUfH6977rlH8fHx+tnPfnZMawAA4HBYzEaNzbNpbJ5NM08Otnl9fm2trNfaPQ6t3RMM+NbttavO5dWnW/fr062to+7zUuI0vk24d8JAm+ItfNsMHKqNZQ5d//wqzTw5Xz89c9gB+1bVBZ/IyThAkHd8brL+9dUefbWrtjvLBICoxHck7fzjH//QCy+8oBdffFHHH3+8Vq9erTlz5ig3N1ezZs06omvOmzdPRUVFofcOh6PDogb9hd/v12uvvaYLL7wwLMRr0X6k27XXXnvI8+Ediq+++ko7duzQn/70p7AQr/294+LiQq+bmppUX1+vU045RZK0atWqbg/yEhMTJUl1dXVh+7Yrx3YmKSnpyEd4HoZbbrlFV1xxhXbs2KFRo0YpNTVVe/fu1aJFi/Taa6/J6/Vqzpw5ev3115Wdna0//elPmjZt2jGvCwCAQ2U2GTU6O1mjs5N10cTgdB0eX3Dk3urSWn1dWqvVpbXaUlGvPbWN2lPbqLfWBH9JazIaNDIrSRNawr38FI3ITJKJ+faATj26bJu2Vzm16N8b5QsEdP1Zw7vsGxqRd4BHa08uCE7t8mVJjfz+AHNdAujXCPLa+fWvf625c+eGHlU84YQTVFJSokWLFmnWrFnKzs6WJJWXlysnJyd0Xnl5uSZMmNDpNa1Wa9gKq0csJj44Aq43iYk/rO6VlZVyOByhEWgHM2TIkCOpqkstI94Odv/q6motXLhQL730kioqKsKO2e32bq1Jkurr6yW1Bnct+5ZAryt1dXXKzMzs9no6k5WVFTYS9dZbb9W3vvUtfetb39Ltt9+u4uJivfzyy/rwww91wQUXaOfOnR3CUgAAepMYk1HH59p0fK5Nl00ZLCm4MuY3u2vDwr1yhyu4cu4+h/6+olRS8JHcEwenalLzNmFQCqP2AEmOJo/eXtv6pNIf39mkiyfmdzkHXlVzkHewEXnxFpPsjR5trqjT6OzOp54BgP6A7zbaaWhokNEYvgaIyWSS3++XFAyWsrOzVVxcHAruHA6HPv/8c/385z8/tsUZDIf9GGu0azsyrif96Ec/0meffaZf//rXmjBhghITE+X3+/Xtb3879LXQndauXStJGj48+NvKMWPGSAouutGVkpISORyOiKwU+9///levvPJKqO6///3vmj9/vqZOnaqpU6fqscce09KlS496xVwAAHpaotWsU4el69RhravMl9mbtLq0RqtL7VpdWqNvdgcfyW27Uq7JaNBxOcmaODhVkwpSNWlwmrJtzLWH/mfp1/vk8vo1IjNRCVazVpfW6s1v9uqqaR1/Qe/3B7Sjed673JSuv+83m4w6aVCqPtlapS92VBPkAejXCPLaufDCC3X33Xdr0KBBOv744/XVV1/pwQcf1NVXXy0p+PjlnDlz9Pvf/14jRozQkCFDNH/+fOXm5mrGjBmRLT4KZGRkKDk5ORQAdZdDXXxi2LDgHB1r164NW7CkrZqaGhUXF2vhwoVasGBBqH3Lli1HX2gXnnvuOUnS9OnTJUkjR47UyJEj9dprr+nPf/5zp4/Y/u1vf5Mkffe73z1mdXUmEAjoF7/4hW6++ebQn+fevXuVm9s6f2Nubq727NnTo3UBAHCsZNti9W1bjr49Nvg0htfn18ayOn25s1ord9Vq5c5q7bU3aU3z3HvPfLZTUnCuvWCol6qJg9M0KpvHcdH3/XvtPknSxZMGKsZk1OrSWr22uvMgb8d+p+qavIqNMWpEVuIBr3tyQZo+2VqlFTtrdMXUgmNROgBEBYK8dh566CHNnz9f119/vSoqKpSbm6uf/vSnYYHOb37zGzmdTl133XWqra3VaaedprfffluxsfzW9WCMRqNmzJih559/Xl9++WWHefICgcARrQibkJCg2trag/Y76aSTNGTIEC1evFhXXXVVh8UuDAZDaE6+9gtvLF68+LDrOhQvvvii/vd//1dTp07Vt771rVD7ggULdPnll+tnP/uZ/va3v4XNFbhy5Urde++9Gjt2rH74wx8ek7q68swzz6i0tDS0QrAUfOx248aNOu+88+TxeLR169bQY+gAAPQ1ZlPrYhpXNU8Ju7e2UV+W1Gjlzmp9WVKjDfscwbn2Vjfq9dXBqVGSYs2aXJCmU4YO0JShaTouJ1lmk/EAdwKiz8ay4NQwU4YMUE5KrO5aul6rS2tVst+pwQPCny76urRWkjQ216aYg/y/MHXYAP3pfWnZpgo1eXyKjem+ebQBIJoQ5LWTlJSkxYsXHzC0MRgMuvPOO3XnnXf2XGF9yD333KN3331XZ555pq677jqNGTNG+/bt0z//+U998sknRzSv2sSJE/Xoo4/q97//vYYPH67MzEydc845HfoZjUY9+uijuvDCCzVhwgTNnj1bOTk52rhxo9atW6d33nlHycnJOuOMM3TffffJ4/EoLy9P7777rnbs2HHUn/2VV15RYmKi3G639uzZo3feeUeffvqpxo8fr3/+859hfS+77DJ98cUX+vOf/6z169frsssuU2pqqlatWqWnnnpKAwYM0CuvvKKYmJijrutQ1dXV6bbbbtM999wTNkrwoosu0p133im/369PP/1UTU1N+s53vtNjdQEAEGm5KXH6Xkqcvjc+OEK93uXV6l21WllSoy9LqvXVrlrVNXlVvLFCxRuD8+8mWs2aVJAaDPaGpGls3sHDDKA3q21wq7IuOOfd8OZHa6cNT9d/tlTpjdV7ddO3RoT1bwnyxuenHPTakwanKi8lTntqG/XOujJ9f0Jed5cPAFGBIA89Li8vT59//rnmz5+vF154QQ6HQ3l5eTr//PMVH394i2e0WLBggUpKSnTfffeprq5OZ555ZqdBnhR8fPXDDz/UwoUL9cADD8jv92vYsGG69tprQ31efPFF3XTTTXrkkUcUCAR03nnn6d///nfY46NHomUexdjYWKWnp2vChAl66qmn9OMf/7jTBVEWL16ss88+W4888ojuueceNTQ0KD8/XzfccIPmzp2r9PT0DuccS3fddZcGDhyoq666Kqx94cKFqqys1MKFC5Wdna1XXnlFGRkZPVobAAC9SaLVrNNGpOu0EcF/q70+v9bvc+jz7dX6fMd+fb6jWnVNXi3bVKllm4Lz7MVbTJpUkKYpQ9J0ytA0nZCXIouZYA/RY3N5cAG3vJQ4JViDP2p+f0Ke/rOlSq+t3qMbzxke9vTN6t3BReQOJcgzGg26aOJA/bl4i/755W6CPAD9liHQ/vlBHHMOh0M2m012u13JyZ1P1NrQ0KANGzZozJgxRxxuAYfjmWee0ezZs7Vq1Srl5+drwIABR/SYc3uBQED79+9XaWmpTjrpJN1///265ZZbuuzf8rW/Zs0aNTY26rrrrgt7rBgAgL7A5w9owz6HPt9Rrf9u368VO6plb/SE9YmLMWlSQapOG56uacPTdVxOsozMsYde7Pn/luj219bq7FEZenr2ZElSXZNHk37/vlxev5bedJrG5tkkSW6vX2PveEdun18f/fqsDo/ddqa0ukGn3/ehDAbpnTlnaGRWx3mkASBaHUpWJDEiD0A7J510kiSpsrKyW0b82e12RucBANCOyWgIzbN3zWlD5PcHtLGsLjhar3nUXk2DR//ZUqX/bKmSJKXGx+jU4ek6rXnLT+OXvehdtlYER+SNaBOwJcXGqHBMlt5cs08vf1EaCvLeWVcmt8+vtASLBh3i13J+WrymH5+ld9aV6+43N+jZqyd3/4cAgF6OIA+ApOAjx++9917ovc1m65brJiYmhl135MiR3XJdAAD6EqPRoONyk3VcbrJmTwsGe5sr6vTZ1v36dGuV/rs9GOy9+c0+vflNcFXQQWnxmjY8XaePSNfUoQOUmmCJ8KdAf7e5PLjQxYjM8BVofzxlkN5cs08vrtilSybna2RWkh58b7MkadbUgsN6CmTe+WP0wcYKfbS5Um+vLdO3x7LAGoD+hSAPgCQpJydHOTk53X5ds9mswsLCbr8uAAB9mdFo0OjsZI3OTtbVpw2Rx+fX16W1+mRrlT7dWqWvdtVqV3WDdq3Ypb+v2CWDIbjyZ0uwN6kgVVYzU1OgZ7XMkdf+kddpw9N1wQk5enPNPl3/wioNy0jUjiqnBiRYdM3pQw7rHgXpCbr6tCF67KPtuuWfX2t4ZqKGtwsOAaAvI8gDAAAAerkYk1GTCtI0qSBNcwpHqt7l1Yod+/XJluCIvU3ldVqzx641e+xa8tE2xVtMOnXYAJ05KlNnjczgMVwcc/YGj6rqgyvWDuskWFtw4XH6fEe1SvY3qGR/g4wG6bbvjFGi9fB/JP3VuaP0VUmtVuys1uX/+7meufpkjc7uej4pAOhLCPIAAACAKJNoNeuc0Vk6Z3SWJKnC0aTPtu1vnlOvUhV1Lr2/oULvb6iQJA3NSNBZIzN11qgMTR6SptgYRuuhe5VUOyVJGUnWTsO5rORYvV90hp5bXqIdVU5dd+bQIw7fLGaj/nr5Sbr08f9qS0W9fvDXzzTv/NH68ZTBMrEgDIA+jiCvl/P7/ZEuAehRLKQNAMDhy0yO1YwT8zTjxDwFAgGt3+fQsk2V+mhzpVaW1Gh7pVPbK3foqU93KC7GpKnDBujMkRk6a1TGIa0WChxMyf4GSdLgA4z+TIm36KZvjeiW+6UnWvXKz07Vz55fqeXb92v+6+v09Gc7dcUpg3X+2Bxl22K75T4A0NsQ5PVSFktwsuL6+nolJjLnA/oPh8OhQCAgl8sV6VIAAIhKBoNBx+fadHyuTTecPVyOJo8+3VIVCvbKHE36YGOFPtjYPFovPUGFx2XpW6MzNXFwqswmY4Q/AaLRrupgkDdoQM89xm2Lj9ELP5mivy3fqT+9v0XbK51a+H/rtfD/1uvEQSk6aVCqxuYla0RmkrJtsUqLt8jIiD0AUY4gr5cym81KT0/Xnj17JAVX/jQa+aYKfVMgEJDH41F1dbVqampkt9vl9Xr5mgcAoBskx8bo/BNydP4JOQoEAtpUXqdlmyq1bFOFvtxZo+1VTj3+8XY9/vF2pcTH6OxRmSock6UzRqYrKTYm0uUjSpTsDz5aOzitZ0d4Go0GXTVtiH44caD++eVuvblmn1aW1OirXbX6aldtWF+Lyagsm1VpCVYlWk1KsJiVGGtWotWsOItJFpNRMaHNEPbaYjbKbDTKZJSMBoPMJoOMBoNMRoNMBoOMxubXze9NxjbHW84xGmU0Kvwcg0EmU8dzjAYd1mq+APoPgrxebNCgQXK73aEwD+jrfD6fKisrZbfb5fF4lJKSQpgHAEA3MhhaV8P92ZnDVNfk0X+2VOn9DeX6cGOFaho8+tdXe/Svr/YoxmTQKUMH6FujM/WtMVksmIEDCj1a24Mj8tpKio3R1acN0dWnDdE+e6M+2VKldXsdWrvHrpLqBlXVu+T2+VVa3ajS6saI1Hi4jAa1hn9tw0JDa2hoDHvd0j8YHpqMRpkMCvVrGz6a24aGze+7ChfD79Vy3Tavm4PK0HWNnZ8bdqxdeNlVbW3vFwpBu7h+y7kEoOjrDAEmpOpxDodDNptNdrtdyckHnuA1EAjo1Vdf1d69e5WTk8NfSuizvF6vfD6fJMnj8Wj37t0688wzddppp0W4MgAA+gevz69Vu2pVvKFc720o1/ZKZ9jx0dlJKhyTpXOPy9K4gTa+L0WYqYuKtc/epFevP1UnDUqNdDkduL1+VdQ1qczepNoGj+pdXtW7vHI27xvcPnl9frl9AXl8/jZbm/fegHyBgHz+1s3f8j4QkL957/O19FPouN8fkLddP34SPzYMBoUHfYbWsLLzkLF7AtADhZiRDkDbBsIEoL3XoWZFBHkRcDhBniTt27dPb731lioqKnqgOiDyDAaDCgoKdMEFFygpKSnS5QAA0C9tr6xX8YYKvbehXF/urJa/zU8NubZYTR+brW8fn61JBWmsFNrPNXl8GrPgbQUC0srbCzUg0RrpkqJCoE0IGAoG/Qq99weC4Z/f30lY2CFMVKfneNuEjf5AQF5f63XaHvO1v4df8vn9oUDS5/eHBZOhewQ6ntvpsfa1hV03IH9AHepo/TMJvm851+snwjgWemMA2vZY6/XC7/Wjk/NlNfeNldgJ8nqxww3yWs7ZtWuX7HY7q3qiTzMajUpPT9egQYMUG8tqYwAA9AY1TreWba7Q++sr9OGmCjW4faFj6YkWnXtctr49NltThw6Qxcy0GP3N1oo6FT74sRKtZq353XmM7MEx1zYo7CzwbBuMev3+sLCzfZ+wkZWdhZKdhJehEZZhQWow7AxeOzz4DLtvmzDV1672ls/SNnhtHfXZJlDt5DN0PTK09VhfjBLWLpyuRGvfmDXuULOivvFp+4Hk5GSNHTs20mUAAACgH0pNsOh/Thyo/zlxoJo8Pv1nS5XeXlum9zeUq6rerb+v2KW/r9il5FizCsdk6dtjs3XGyAzFxvSNURI4sJb58QalxRPioUcYjQYZZRB/xRyeQNtQMvTYdzDsDIaAzcFnm5Gh7UdUHjT4PNhozPahZJuRou3b2oeonY0ijTH1v79zCPIAAAAAHLLYGJPOPS44V57H59d/t+/Xv9eW6d11Zaqqd+vVr/bo1a/2KN5i0tmjMnX+Cdn61ugsxVn4ibuvagnyCtJZEAXozQzNj6j2kSdR+y2CPAAAAABHJMZk1OkjMnT6iAzd9f2xWllSo7fXlumddWXaU9uoN9fs05tr9ineYtK3xmTpwnE5OnNURp+ZzwhBJfuDC6MMSkuIcCUA0PcR5AEAAAA4aiajQZOHpGnykDTN/+4Yrdlj11tryvTmmr0qrW7U/329V//39V4lWc067/hsfXd8jk4bnq4YE3PqRbuS6uCIvMEDGJEHAMcaQR4AAACAbmUwGDRuYIrGDUzRrd8epa9327X0671a+s0+lTma9P9W7db/W7VbqfEx+vbYHF04LkdThg5g9dsotav50drBaQR5AHCsEeQBAAAAOGYMBoMm5KdoQn6KbvvOGH1ZUqOl3+zVW2v2hS2UkZFk1XfGZut7E/J00qAUFk2IEj5/QKU1zYtdMCIPAI45QyDQFxcg7t0OdUlhAAAAoK/y+vz6fEe1/u/rvfr32jLZGz2hYwUD4jXjxDz9z4l5GjyAedd6s901DTrt3g8VYzJo413nM6oSAI7QoWZFBHkRQJAHAAAAtHJ7/fp0a5VeX71H76wrV6PHFzo2cXCq/ufEPH13XI5S4i0RrBKd+WxrlX78v59raHqCPrjlrEiXAwBR61CzIh6tBQAAABBRFrNRZ4/O1NmjM+V0efXu+jK9umqPPt1apZUlNVpZUqOF/7dOZ4/K1A9OytPZozNZ+baXaFnogsdqAaBnEOQBAAAA6DUSrGb9z4kD9T8nDlS5o0lvrN6rV7/aow37HHp3fbneXV8uW1yMLhiXox+cmKeJg1OZTy+CSljoAgB6FEEeAAAAgF4pKzlW154xVNeeMVQbyxz611d79PpXe1XmaNKLn+/Si5/v0pD0BF00caB+eNJAZdtiI11yv7Or2ilJGsRchgDQI4yRLqC3KSgokMFg6LDdcMMNkqSmpibdcMMNGjBggBITE/XDH/5Q5eXlEa4aAAAA6NtGZydr3vlj9Oncc/TCT6bohycNVILFpB1VTt3/ziad+odizX56hf69Zp/cXn+ky+03tpTXS5KGZhDkAUBPYLGLdiorK+XztU6uu3btWp177rn68MMPddZZZ+nnP/+53nzzTT3zzDOy2Wy68cYbZTQa9emnnx7yPVjsAgAAADh6TpdXb63Zp39+uVsrdlaH2tMSLJoxIU8/OnmgRmfz/fax4vb6ddyCt+X1B/Tp3HOUlxIX6ZIAIGqxam03mTNnjpYuXaotW7bI4XAoIyNDL774oi666CJJ0saNGzVmzBgtX75cp5xySqfXcLlccrlcofcOh0P5+fkEeQAAAEA32VHl1D+/LNX/W7Vb5Y7W773HDbTp4kn5+t74XNniYiJYYd+zubxO5/3pYyVazVrzu/OYqxAAjsKhBnk8WnsAbrdbzz//vK6++moZDAatXLlSHo9HhYWFoT6jR4/WoEGDtHz58i6vs2jRItlsttCWn5/fE+UDAAAA/caQ9AT95tuj9emt5+jpq07W+WOzFWMy6Jvdds1/ba0m3/2+fvH3r/TZtioxlqF7bCqrkySNyEokxAOAHsJiFwfw2muvqba2VldddZUkqaysTBaLRSkpKWH9srKyVFZW1uV15s2bp6KiotD7lhF5AAAAALqX2WTU2aMzdfboTO2vd+m11Xv1jy9Ktam8Tm98vVdvfL1XQ9MTdOnkQfrhxIFKS7BEuuSotaU8GOSNzEyKcCUA0H8Q5B3Ak08+qfPPP1+5ublHdR2r1Sqr1dpNVQEAAAA4FAMSrbrmtCG6elqB1uyx6+8rSvXG6j3aXuXU3W9t0P3vbNL5J2Trx5MHafKQNEaVHabNzQtdjMwmyAOAnkKQ14WSkhK9//77evXVV0Nt2dnZcrvdqq2tDRuVV15eruzs7AhUCQAAAOBgDAaDxg1M0biBKfrtBWP0xuq9enFFidbucej11Xv1+uq9Gp6ZGByld1KeUuIZpXcoNreMyMtKjHAlANB/MEdeF55++mllZmbqggsuCLVNnDhRMTExKi4uDrVt2rRJu3bt0tSpUyNRJgAAAIDDkGg168dTBmnpTafrjRun6ZKT8xVvMWlrRb3uWrpek+8pVtHLq/XFzmrm0juARrdPO/c7JUkjsxiRBwA9hRF5nfD7/Xr66ac1a9Ysmc2tf0Q2m03XXHONioqKlJaWpuTkZN10002aOnVqlyvWAgAAAOid2o7Se331Xr34+S6t3+fQq1/t0atf7dHIrERdfspg/eCkgUq08qNTW2v22OUPSJlJVmUmMY0QAPQU/jXqxPvvv69du3bp6quv7nDsT3/6k4xGo374wx/K5XJp+vTp+utf/xqBKgEAAAB0h6TYGF1+ymBdNmWQvt5t14ufl+j/vt6nzeX1WvD6Ot339ib94KQ8XTl1sIazsIMkaXVpjSTpxEEpzC0IAD3IEGC8eI9zOByy2Wyy2+1KTk6OdDkAAAD4/+zdeXhU5eH28Xuyb8ywZ4GBRAGDbIEQQoAW1GiwVEhBCohlEaVSoIaoFPxp0FZFoRZKQRYXgtqI0rIoUixEwVoiSyAqKKtgUJIAwcyQQBYy8/7hy9SRsAQhJ5N8P9d1rpjnPOeZe4bBq949C/Aj9tIKrdr5rZZlHdFXJ0pc471ubKJRCZFKbN9cPt71905FE97I1r9252vandF6sO+NRscBAI93pV0RZ+QBAAAAwI+YA3w1ulekRiW01pZDhVq25Yg2flmgLYcKteVQoSIsAbonvpWG92ilpiH179LSXblFkqSu1oaG5gCA+oYiDwAAAAAuwmQyqXebpurdpqm+LTqrjK1fa/m2ozpmK9Wf/71f8zIP6hedwvSbhEh1qyeXmebZzirfXipvL5M6tbQYHQcA6hWKPAAAAAC4Ai0aBurRpGj9/ra2Wvd5nl7L+lq7cou0OueYVuccU8cWZo3qGamBMREK8PU2Ou51s+PI9/fHuym0gYL8+E9KAKhJ9femDgAAAABwFfx9vPWrri216ne99e6kPhoa21L+Pl7a/a1dU//5meKfzdSz675UbuEZo6NeF5v3n5Ak9W7TxOAkAFD/8LALA/CwCwAAAKBu+a6kXG/vOKo3tn6to6fOSpJMJunWm5prVK9I/axNU3l5ef5ltw6HUz2ezdTJ4jJl3B+vXm2aGh0JAOoEHnYBAAAAADWkUbCfftv3Rt3/sxu0ad9xvZb1tTbvP6HMvceVufe4opoG6zc9W+vu7i1lDvA1Ou5V23PMrpPFZQr281b3yMZGxwGAeociDwAAAACuEW8vk25rH6rb2ofqqxPFeuOTXK3YcVSHT5boj2u/0J//vU+/6tpCoxIidVNYA6PjVtuH+45Lkvq0bSo/H+7UBAA1jUtrDcCltQAAAED9UVJ2TqtzvtWyLUe0v6DYNd7zhsYanRCp228OlY937S/FnE6nbp/zkQ4eL9bzQzppWFwroyMBQJ3BpbUAAAAAUAsE+/toZHxr3dOjlT756pReyzqif39RoE++OqVPvjqlcEuARsa30vAerdQ0xN/ouBe1M7dIB48XK9DXW7/oFG50HAColyjyAAAAAKAGmEwmJdzYRAk3NtGxorPK2Jqr5dtzlWcr1Z//vV/zMg9qQOdwjUporRhrQ5lMtevhGG9tz5Uk/aJTuBp48H3+AMCTcWmtAbi0FgAAAIAklZ2r1LrP87Rsy9fKOVrkGu/c0qJRCZH6ZedwBfh6Gxfw/ztZXKafPf+hzlZU6u3fJqhHFA+6AIBr6Uq7Ioo8A1DkAQAAAPixT48W6bWsr/XuZ8dUfs4hSWoU5KvhPVppZHwrtWwUZFi2P777hV7972F1bmnRmom9a93ZggDg6SjyajGKPAAAAAAXU1hcprd2HNUbWV/rmK1UkuRlkm6NDtWwOKv63dRMvjX4cIxvvjujW1/YrPJzDr12Xw/9vF2zGnttAKgvKPJqMYo8AAAAAJdzrtKhzL3H9VrWEf33YKFrvFkDfw3u1kJDY61q0zzkumaodDh1z0ufaOvhU+p5Q2O9+UBPzsYDgOuAIq8Wo8gDAAAAUB0Hj5/WW9uPauXOb1VYUu4aj23dSL/u3lJ3dgqX+To8gOIvG/ZrXuYBBfl5a93vf6bIpsHX/DUAABR5tRpFHgAAAICrUVHp0Ad7j2vFjqP6cN8JVTq+/885Px8v9W3XTL/sHK7E9qEK9vf5Sa/jdDq15KOvNPNfeyVJs+7urF93t/7k/ACAqlHk1WIUeQAAAAB+qgJ7qVbu/Fb/yD6qQydKXOMBvl7qdWNT9W3XTH3bNav2WXQnTpfpT2u/0DufHpMkpd7eTr+/re01zQ4AcEeRV4tR5AEAAAC4VpxOp/bmn9Z7n+Vp7WfHdKTwjNv+1k2C1L11Y8VYLbo5wqJWjYPUNMTP7V53xWXn9NnRIv1rd75W7vxGJeWV8vYyaVr/aN3/syjuiwcA1xlFXi1GkQcAAADgejhf6m3ad0Kb9x/XjiPf6Zzjwv/kC/D1Usj/v/y2otIp29kKt/2dW1o0464Oim3dqEZyA0B9R5FXi1HkAQAAAKgJxWXntO1woXKO2vTp0SLtLzitfHupqvqvwAhLgHre2ETJMS3Up01TeXlxFh4A1JQr7Yp+2h1QAQAAAAC1Voi/j26NDtWt0aGusfJzDuXbSnW2olJOOeVlMinUHCBL4LV/6i0A4NqiyAMAAACAesTPx0utmgQZHQMAcBW8jA4AAAAAAAAA4PIo8gAAAAAAAAAPQJFXhW+//Vb33nuvmjRposDAQHXq1Ek7duxw7Xc6nUpLS1N4eLgCAwOVmJioAwcOGJgYAAAAAAAAdR1F3o9899136t27t3x9ffWvf/1LX3zxhV544QU1avS/x67PmjVL8+bN06JFi7R161YFBwcrKSlJpaWlBiYHAAAAAABAXWZyOqt68Hj9NW3aNP33v//Vf/7znyr3O51ORURE6OGHH9YjjzwiSbLZbAoNDVV6erqGDx9+2de40kcKAwAAAAAAoO670q6IM/J+5J133lH37t01dOhQNW/eXF27dtVLL73k2n/48GHl5+crMTHRNWaxWBQfH6+srKwq1ywrK5PdbnfbAAAAAAAAgOqgyPuRr776SgsXLlTbtm31/vvva8KECfr973+vZcuWSZLy8/MlSaGhoW7HhYaGuvb92MyZM2WxWFyb1Wq9vm8CAAAAAAAAdQ5F3o84HA5169ZNzz77rLp27arx48frgQce0KJFi656zenTp8tms7m2o0ePXsPEAAAAAAAAqA8o8n4kPDxcN998s9tY+/btlZubK0kKCwuTJBUUFLjNKSgocO37MX9/f5nNZrcNAAAAAAAAqA6KvB/p3bu39u3b5za2f/9+tW7dWpIUFRWlsLAwZWZmuvbb7XZt3bpVCQkJNZoVAAAAAAAA9YeP0QFqmylTpqhXr1569tln9etf/1rbtm3TkiVLtGTJEkmSyWRSSkqKnn76abVt21ZRUVF64oknFBERoeTkZGPDAwAAAAAAoM6iyPuRuLg4rVq1StOnT9cf//hHRUVFae7cuRo5cqRrztSpU1VSUqLx48erqKhIffr00fr16xUQEGBgcgAAAAAAANRlJqfT6TQ6RH1jt9tlsVhks9m4Xx4AAAAAAEA9d6VdEffIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8vBpVFQAAiPdJREFUAAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARd6PPPnkkzKZTG5bdHS0a39paakmTpyoJk2aKCQkREOGDFFBQYGBiQEAAAAAAFAfUORVoUOHDsrLy3NtH3/8sWvflClT9O6772rFihXavHmzjh07psGDBxuYFgAAAAAAAPWBj9EBaiMfHx+FhYVdMG6z2fTKK68oIyNDt956qyRp6dKlat++vT755BP17NmzpqMCAAAAAACgnuCMvCocOHBAERERuuGGGzRy5Ejl5uZKkrKzs1VRUaHExETX3OjoaLVq1UpZWVkXXa+srEx2u91tAwAAAAAAAKqDIu9H4uPjlZ6ervXr12vhwoU6fPiwfvazn+n06dPKz8+Xn5+fGjZs6HZMaGio8vPzL7rmzJkzZbFYXJvVar3O7wIAAAAAAAB1DZfW/sidd97p+ufOnTsrPj5erVu31ttvv63AwMCrWnP69OlKTU11/W632ynzAAAAAAAAUC2ckXcZDRs2VLt27XTw4EGFhYWpvLxcRUVFbnMKCgqqvKfeef7+/jKbzW4bAAAAAAAAUB0UeZdRXFysQ4cOKTw8XLGxsfL19VVmZqZr/759+5Sbm6uEhAQDUwIAAAAAAKCu49LaH3nkkUd01113qXXr1jp27JhmzJghb29vjRgxQhaLRePGjVNqaqoaN24ss9msyZMnKyEhgSfWAgAAAAAA4LqiyPuRb775RiNGjFBhYaGaNWumPn366JNPPlGzZs0kSXPmzJGXl5eGDBmisrIyJSUl6cUXXzQ4NQAAAAAAAOo6k9PpdBodor6x2+2yWCyy2WzcLw8AAAAAAKCeu9KuiHvkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIu8ynnvuOZlMJqWkpLjGSktLNXHiRDVp0kQhISEaMmSICgoKjAsJAAAAAACAOo8i7xK2b9+uxYsXq3Pnzm7jU6ZM0bvvvqsVK1Zo8+bNOnbsmAYPHmxQSgAAAAAAANQHFHkXUVxcrJEjR+qll15So0aNXOM2m02vvPKK/vKXv+jWW29VbGysli5dqi1btuiTTz4xMDEAAAAAAADqMoq8i5g4caIGDBigxMREt/Hs7GxVVFS4jUdHR6tVq1bKysqqcq2ysjLZ7Xa3DQAAAAAAAKgOH6MD1EbLly/Xzp07tX379gv25efny8/PTw0bNnQbDw0NVX5+fpXrzZw5U0899dT1iAoAAAAAAIB6gjPyfuTo0aN66KGH9Pe//10BAQHXZM3p06fLZrO5tqNHj16TdQEAAAAAAFB/UOT9SHZ2to4fP65u3brJx8dHPj4+2rx5s+bNmycfHx+FhoaqvLxcRUVFbscVFBQoLCysyjX9/f1lNpvdNgAAAAAAAKA6uLT2R2677TZ9/vnnbmNjx45VdHS0/vCHP8hqtcrX11eZmZkaMmSIJGnfvn3Kzc1VQkKCEZEBAAAAAABQD1Dk/UiDBg3UsWNHt7Hg4GA1adLENT5u3DilpqaqcePGMpvNmjx5shISEtSzZ08jIgMAAAAAAKAeoMi7CnPmzJGXl5eGDBmisrIyJSUl6cUXXzQ6FgAAAAAAAOowk9PpdBodor6x2+2yWCyy2WzcLw8AAAAAAKCeu9KuiIddAAAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIu9HFi5cqM6dO8tsNstsNishIUH/+te/XPtLS0s1ceJENWnSRCEhIRoyZIgKCgoMTAwAAAAAAID6gCLvR1q2bKnnnntO2dnZ2rFjh2699VYNGjRIe/bskSRNmTJF7777rlasWKHNmzfr2LFjGjx4sMGpAQAAAAAAUNeZnE6n0+gQtV3jxo01e/Zs3X333WrWrJkyMjJ09913S5L27t2r9u3bKysrSz179ryi9ex2uywWi2w2m8xm8/WMDgAAAAAAgFruSrsizsi7hMrKSi1fvlwlJSVKSEhQdna2KioqlJiY6JoTHR2tVq1aKSsr66LrlJWVyW63u20AAAAAAABAdVDkVeHzzz9XSEiI/P399eCDD2rVqlW6+eablZ+fLz8/PzVs2NBtfmhoqPLz8y+63syZM2WxWFyb1Wq9zu8AAAAAAAAAdQ1FXhVuuukm5eTkaOvWrZowYYJGjx6tL7744qrXmz59umw2m2s7evToNUwLAAAAAACA+sDH6AC1kZ+fn9q0aSNJio2N1fbt2/XXv/5Vw4YNU3l5uYqKitzOyisoKFBYWNhF1/P395e/v//1jg0AAAAAAIA6jDPyroDD4VBZWZliY2Pl6+urzMxM1759+/YpNzdXCQkJBiYEAAAAAABAXccZeT8yffp03XnnnWrVqpVOnz6tjIwMbdq0Se+//74sFovGjRun1NRUNW7cWGazWZMnT1ZCQsIVP7EWAAAAAAAAuBoUeT9y/PhxjRo1Snl5ebJYLOrcubPef/993X777ZKkOXPmyMvLS0OGDFFZWZmSkpL04osvGpwaAAAAAAAAdZ3J6XQ6jQ5R39jtdlksFtlsNpnNZqPjAAAAAAAAwEBX2hVxjzwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1Dk/cjMmTMVFxenBg0aqHnz5kpOTta+ffvc5pSWlmrixIlq0qSJQkJCNGTIEBUUFBiUGAAAAAAAAPWBj9EBapvNmzdr4sSJiouL07lz5/TYY4/pjjvu0BdffKHg4GBJ0pQpU/Tee+9pxYoVslgsmjRpkgYPHqz//ve/Bqc3iNMpVZwxOgUAAAAAAKhPfIMkk8noFDXK5HQ6nUaHqM1OnDih5s2ba/Pmzfr5z38um82mZs2aKSMjQ3fffbckae/evWrfvr2ysrLUs2fPC9YoKytTWVmZ63e73S6r1SqbzSaz2Vxj7+W6KS+Rno0wOgUAAAAAAKhPHjsm+QUbneKasNvtslgsl+2KuLT2Mmw2mySpcePGkqTs7GxVVFQoMTHRNSc6OlqtWrVSVlZWlWvMnDlTFovFtVmt1usfHAAAAAAAAHUKl9ZegsPhUEpKinr37q2OHTtKkvLz8+Xn56eGDRu6zQ0NDVV+fn6V60yfPl2pqamu38+fkVdn+AZ934IDAAAAAADUFN8goxPUOIq8S5g4caJ2796tjz/++Cet4+/vL39//2uUqhYymerMqawAAAAAAAC1FZfWXsSkSZO0du1affjhh2rZsqVrPCwsTOXl5SoqKnKbX1BQoLCwsBpOCQAAAAAAgPqCIu9HnE6nJk2apFWrVumDDz5QVFSU2/7Y2Fj5+voqMzPTNbZv3z7l5uYqISGhpuMCAAAAAACgnuDS2h+ZOHGiMjIytGbNGjVo0MB13zuLxaLAwEBZLBaNGzdOqampaty4scxmsyZPnqyEhIQqn1gLAAAAAAAAXAsmp9PpNDpEbWIymaocX7p0qcaMGSNJKi0t1cMPP6w333xTZWVlSkpK0osvvnjFl9Ze6SOFAQAAAAAAUPddaVdEkWcAijwAAAAAAACcd6VdEffIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIq8JHH32ku+66SxERETKZTFq9erXbfqfTqbS0NIWHhyswMFCJiYk6cOCAMWEBAAAAAABQL1DkVaGkpERdunTRggULqtw/a9YszZs3T4sWLdLWrVsVHByspKQklZaW1nBSAAAAAAAA1Bc+Rgeoje68807deeedVe5zOp2aO3euHn/8cQ0aNEiS9Nprryk0NFSrV6/W8OHDazIqAAAAAAAA6gnOyKumw4cPKz8/X4mJia4xi8Wi+Ph4ZWVlVXlMWVmZ7Ha72wYAAAAAAABUB0VeNeXn50uSQkND3cZDQ0Nd+35s5syZslgsrs1qtV73nAAAAAAAAKhbKPJqwPTp02Wz2Vzb0aNHjY4EAAAAAAAAD0ORV01hYWGSpIKCArfxgoIC174f8/f3l9lsdtsAAAAAAACA6qDIq6aoqCiFhYUpMzPTNWa327V161YlJCQYmAwAAAAAAAB1GU+trUJxcbEOHjzo+v3w4cPKyclR48aN1apVK6WkpOjpp59W27ZtFRUVpSeeeEIRERFKTk42LjQAAAAAAADqNIq8KuzYsUO33HKL6/fU1FRJ0ujRo5Wenq6pU6eqpKRE48ePV1FRkfr06aP169crICDAqMgAAAAAAACo40xOp9NpdIj6xm63y2KxyGazcb88AAAAAACAeu5KuyLukQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIq8n2DBggWKjIxUQECA4uPjtW3bNqMjAQAAAAAAoI6iyLtKb731llJTUzVjxgzt3LlTXbp0UVJSko4fP250NAAAAAAAANRBFHlX6S9/+YseeOABjR07VjfffLMWLVqkoKAgvfrqq0ZHAwAAAAAAQB3kY3QAT1ReXq7s7GxNnz7dNebl5aXExERlZWVdML+srExlZWWu3202myTJbrdf/7AAAAAAAACo1c53RE6n85LzKPKuwsmTJ1VZWanQ0FC38dDQUO3du/eC+TNnztRTTz11wbjVar1uGQEAAAAAAOBZTp8+LYvFctH9FHk1YPr06UpNTXX97nA4dOrUKTVp0kQmk8nAZNeO3W6X1WrV0aNHZTabjY4Dg/F9wA/xfcAP8X3Aj/GdwA/xfcAP8X3AD/F9wA/Vxe+D0+nU6dOnFRERccl5FHlXoWnTpvL29lZBQYHbeEFBgcLCwi6Y7+/vL39/f7exhg0bXs+IhjGbzXXmLxF+Or4P+CG+D/ghvg/4Mb4T+CG+D/ghvg/4Ib4P+KG69n241Jl45/Gwi6vg5+en2NhYZWZmusYcDocyMzOVkJBgYDIAAAAAAADUVZyRd5VSU1M1evRode/eXT169NDcuXNVUlKisWPHGh0NAAAAAAAAdRBF3lUaNmyYTpw4obS0NOXn5ysmJkbr16+/4AEY9YW/v79mzJhxwSXEqJ/4PuCH+D7gh/g+4Mf4TuCH+D7gh/g+4If4PuCH6vP3weS83HNtAQAAAAAAABiOe+QBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR6uiQULFigyMlIBAQGKj4/Xtm3bjI4EA3z00Ue66667FBERIZPJpNWrVxsdCQaaOXOm4uLi1KBBAzVv3lzJycnat2+f0bFgkIULF6pz584ym80ym81KSEjQv/71L6NjoZZ47rnnZDKZlJKSYnQUGODJJ5+UyWRy26Kjo42OBQN9++23uvfee9WkSRMFBgaqU6dO2rFjh9GxYJDIyMgL/h1hMpk0ceJEo6PBAJWVlXriiScUFRWlwMBA3XjjjfrTn/6k+vQcV4o8/GRvvfWWUlNTNWPGDO3cuVNdunRRUlKSjh8/bnQ01LCSkhJ16dJFCxYsMDoKaoHNmzdr4sSJ+uSTT7RhwwZVVFTojjvuUElJidHRYICWLVvqueeeU3Z2tnbs2KFbb71VgwYN0p49e4yOBoNt375dixcvVufOnY2OAgN16NBBeXl5ru3jjz82OhIM8t1336l3797y9fXVv/71L33xxRd64YUX1KhRI6OjwSDbt293+/fDhg0bJElDhw41OBmM8Pzzz2vhwoWaP3++vvzySz3//POaNWuW/va3vxkdrcaYnPWptsR1ER8fr7i4OM2fP1+S5HA4ZLVaNXnyZE2bNs3gdDCKyWTSqlWrlJycbHQU1BInTpxQ8+bNtXnzZv385z83Og5qgcaNG2v27NkaN26c0VFgkOLiYnXr1k0vvviinn76acXExGju3LlGx0INe/LJJ7V69Wrl5OQYHQW1wLRp0/Tf//5X//nPf4yOgloqJSVFa9eu1YEDB2QymYyOgxr2y1/+UqGhoXrllVdcY0OGDFFgYKDeeOMNA5PVHM7Iw09SXl6u7OxsJSYmusa8vLyUmJiorKwsA5MBqG1sNpuk78sb1G+VlZVavny5SkpKlJCQYHQcGGjixIkaMGCA2/+OQP104MABRURE6IYbbtDIkSOVm5trdCQY5J133lH37t01dOhQNW/eXF27dtVLL71kdCzUEuXl5XrjjTd03333UeLVU7169VJmZqb2798vSfr000/18ccf68477zQ4Wc3xMToAPNvJkydVWVmp0NBQt/HQ0FDt3bvXoFQAahuHw6GUlBT17t1bHTt2NDoODPL5558rISFBpaWlCgkJ0apVq3TzzTcbHQsGWb58uXbu3Knt27cbHQUGi4+PV3p6um666Sbl5eXpqaee0s9+9jPt3r1bDRo0MDoeathXX32lhQsXKjU1VY899pi2b9+u3//+9/Lz89Po0aONjgeDrV69WkVFRRozZozRUWCQadOmyW63Kzo6Wt7e3qqsrNQzzzyjkSNHGh2txlDkAQCuu4kTJ2r37t3c86ieu+mmm5STkyObzaZ//OMfGj16tDZv3kyZVw8dPXpUDz30kDZs2KCAgACj48BgPzyLonPnzoqPj1fr1q319ttvc+l9PeRwONS9e3c9++yzkqSuXbtq9+7dWrRoEUUe9Morr+jOO+9URESE0VFgkLffflt///vflZGRoQ4dOignJ0cpKSmKiIioN/+OoMjDT9K0aVN5e3uroKDAbbygoEBhYWEGpQJQm0yaNElr167VRx99pJYtWxodBwby8/NTmzZtJEmxsbHavn27/vrXv2rx4sUGJ0NNy87O1vHjx9WtWzfXWGVlpT766CPNnz9fZWVl8vb2NjAhjNSwYUO1a9dOBw8eNDoKDBAeHn7B/8HTvn17/fOf/zQoEWqLr7/+Whs3btTKlSuNjgIDPfroo5o2bZqGDx8uSerUqZO+/vprzZw5s94UedwjDz+Jn5+fYmNjlZmZ6RpzOBzKzMzkvkdAPed0OjVp0iStWrVKH3zwgaKiooyOhFrG4XCorKzM6BgwwG233abPP/9cOTk5rq179+4aOXKkcnJyKPHqueLiYh06dEjh4eFGR4EBevfurX379rmN7d+/X61btzYoEWqLpUuXqnnz5howYIDRUWCgM2fOyMvLvcry9vaWw+EwKFHN44w8/GSpqakaPXq0unfvrh49emju3LkqKSnR2LFjjY6GGlZcXOz2/54fPnxYOTk5aty4sVq1amVgMhhh4sSJysjI0Jo1a9SgQQPl5+dLkiwWiwIDAw1Oh5o2ffp03XnnnWrVqpVOnz6tjIwMbdq0Se+//77R0WCABg0aXHC/zODgYDVp0oT7aNZDjzzyiO666y61bt1ax44d04wZM+Tt7a0RI0YYHQ0GmDJlinr16qVnn31Wv/71r7Vt2zYtWbJES5YsMToaDORwOLR06VKNHj1aPj7UGPXZXXfdpWeeeUatWrVShw4dtGvXLv3lL3/RfffdZ3S0GmNyOp1Oo0PA882fP1+zZ89Wfn6+YmJiNG/ePMXHxxsdCzVs06ZNuuWWWy4YHz16tNLT02s+EAx1sSeJLV26lBsU10Pjxo1TZmam8vLyZLFY1LlzZ/3hD3/Q7bffbnQ01BL9+vVTTEyM5s6da3QU1LDhw4fro48+UmFhoZo1a6Y+ffromWee0Y033mh0NBhk7dq1mj59ug4cOKCoqCilpqbqgQceMDoWDPTvf/9bSUlJ2rdvn9q1a2d0HBjo9OnTeuKJJ7Rq1SodP35cERERGjFihNLS0uTn52d0vBpBkQcAAAAAAAB4AO6RBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AA+RgeojxwOh44dO6YGDRrIZDIZHQcAAAAAAAAGcjqdOn36tCIiIuTldfHz7ijyDHDs2DFZrVajYwAAAAAAAKAWOXr0qFq2bHnR/RR5BmjQoIGk7/9wzGazwWkAAAAAAABgJLvdLqvV6uqMLoYizwDnL6c1m80UeQAAAAAAAJCky96CjYddAAAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AA+78ADnzp1TeXm50THqHR8fH/n5+RkdAwAAAAAAQBJFXq3mdDqVm5urwsJCOZ1Oo+PUS4GBgQoLC1Pjxo2NjgIAAAAAAOo5irxarLCwUCdPnlRERITMZvNlH0GMa8fpdKq8vFwnT57U4cOHJYkyDwAAAAAAGIoir5ZyOp369ttv1bhxY4WHhxsdp14KDg5Ww4YNdfDgQeXm5io4OFj+/v5GxwIAAAAAAPXUVT3sYsGCBYqMjFRAQIDi4+O1bdu2S85fsWKFoqOjFRAQoE6dOmndunVu+51Op9LS0hQeHq7AwEAlJibqwIEDbnOeeeYZ9erVS0FBQWrYsOEFr1FYWKj+/fsrIiJC/v7+slqtmjRpkux2u2vOypUrdfvtt6tZs2Yym81KSEjQ+++/X+33V1paqokTJ6pJkyYKCQnRkCFDVFBQcLmPrVrOnTunc+fOqVGjRtd0XVSPyWRS06ZNVVlZqffee0/FxcVGRwIAAAAAAPVUtYu8t956S6mpqZoxY4Z27typLl26KCkpScePH69y/pYtWzRixAiNGzdOu3btUnJyspKTk7V7927XnFmzZmnevHlatGiRtm7dquDgYCUlJam0tNQ1p7y8XEOHDtWECROqfiNeXho0aJDeeecd7d+/X+np6dq4caMefPBB15yPPvpIt99+u9atW6fs7Gzdcsstuuuuu7Rr165qvb8pU6bo3Xff1YoVK7R582YdO3ZMgwcPru5HeUkVFRWSJF9f32u6Lqrv/AMvvvnmG3366acGpwEAAAAAAPWVyVnNpyjEx8crLi5O8+fPlyQ5HA5ZrVZNnjxZ06ZNu2D+sGHDVFJSorVr17rGevbsqZiYGC1atEhOp1MRERF6+OGH9cgjj0iSbDabQkNDlZ6eruHDh7utl56erpSUFBUVFV0267x58zR79mwdPXr0onM6dOigYcOGKS0t7Yren81mU7NmzZSRkaG7775bkrR37161b99eWVlZ6tmz52Vz2e12WSwW2Ww2mc3mKuecOXNGX375pdq3b6+goKDLronr5/yfxc6dO+Xr66sxY8YYHQkAAAAAgHqr6Ey5Any9FeDrbXSUa+ZKuiKpmmfklZeXKzs7W4mJif9bwMtLiYmJysrKqvKYrKwst/mSlJSU5Jp/+PBh5efnu82xWCyKj4+/6JpX4tixY1q5cqX69u170TkOh0OnT592PcTgSt5fdna2Kioq3OZER0erVatWF81bVlYmu93utsHz+Pj46OzZs6qsrDQ6CgAAAAAA9VJpRaXuS9+ue1/equ9Kyo2OU+OqVeSdPHlSlZWVCg0NdRsPDQ1Vfn5+lcfk5+dfcv75n9VZ81JGjBihoKAgtWjRQmazWS+//PJF5/75z39WcXGxfv3rX0u6sveXn58vPz+/C+7Td6m8M2fOlMVicW1Wq7Xa7wvG46nBAAAAAAAYx+FwKvXtHO3MLdL+gtMqpMjzfHPmzNHOnTu1Zs0aHTp0SKmpqVXOy8jI0FNPPaW3335bzZs3v66Zpk+fLpvN5toudakvrozJZHJtf/7zn6t1bFFR0U86HgAAAAAA1Lzn1u/Vus/z5ett0pJR3dWmeYjRkWpctYq8pk2bytvb+4IntBYUFCgsLKzKY8LCwi45//zP6qx5KWFhYYqOjtbAgQO1ePFiLVy4UHl5eW5zli9frvvvv19vv/222yWyV/L+wsLCVF5efsE9+i6V19/fX2az2W2rrwYOHKigoCCdPn36onNGjhwpPz8/FRYWXnKtX/3qV3r99dc1YMAA19imTZtkMpn0j3/846LHBQcH6/XXX9ecOXOq/wYAAAAAAECNez3riJZ89JUkafbdXdTzhiYGJzJGtYo8Pz8/xcbGKjMz0zXmcDiUmZmphISEKo9JSEhwmy9JGzZscM2PiopSWFiY2xy73a6tW7dedM0r5XA4JH1/j7rz3nzzTY0dO1ZvvvmmWwF0pe8vNjZWvr6+bnP27dun3Nzcn5y3Phg5cqTOnj2rVatWVbn/zJkzWrNmjfr3768mTS79l7Jz586699571b59+2pl8PX11b333qvk5ORqHQcAAAAAAGreB3sLNOOdPZKkh29vp+SuLQxOZByf6h6Qmpqq0aNHq3v37urRo4fmzp2rkpISjR07VpI0atQotWjRQjNnzpQkPfTQQ+rbt69eeOEFDRgwQMuXL9eOHTu0ZMkSSd9fIpmSkqKnn35abdu2VVRUlJ544glFRES4FS25ubk6deqUcnNzVVlZqZycHElSmzZtFBISonXr1qmgoEBxcXEKCQnRnj179Oijj6p3796KjIyU9P3ltKNHj9Zf//pXxcfHu+5pFxgYKIvFckXvz2KxaNy4cUpNTVXjxo1lNps1efJkJSQkXNETa+u7gQMHqkGDBsrIyNCoUaMu2L9mzRqVlJRo5MiRBqQDAAAAAAC1ye5vbZqUsUsOp/Tr7i016dY2RkcyVLWLvGHDhunEiRNKS0tTfn6+YmJitH79etcDInJzc+Xl9b8T/Xr16qWMjAw9/vjjeuyxx9S2bVutXr1aHTt2dM2ZOnWqSkpKNH78eBUVFalPnz5av369AgICXHPS0tK0bNky1+9du3aVJH344Yfq16+fAgMD9dJLL2nKlCkqKyuT1WrV4MGDNW3aNNcxS5Ys0blz5zRx4kRNnDjRNT569Gilp6df0fuTvr8Pn5eXl4YMGaKysjIlJSXpxRdfrO5HWS8FBgZq8ODB+vvf/67jx49fcH/CjIwMNWjQQAMHDjQoIQAAAAAAqA2+LTqrsenbdaa8Un3aNNUzv+pU7x9EaXI6nU6jQ9Q3drtdFotFNpvtovfLO3PmjL788ku1b99eQUFBkiSn06mzFZU1GfWyAn29q/2XaMOGDbrjjjv0t7/9TZMmTXKNnzp1SmFhYRoxYoRbaVsVk8mkGTNm6Mknn3Qb37Rpk2655RatWLFCd9999yXXOHLkiKKiojR79mw98sgjF513/s/i888/19mzZzV+/Hh5e3tf/o0CAAAAAICrYi+t0N0Lt2h/QbFuCm2gFRMSZA7wNTrWdXMlXZF0FWfkwThnKyp1c9r7Rsdw88UfkxTkV72v0a233qrw8HBlZGS4FXkrVqxQRUUFl9UCAAAAAFCPlZ9zaMIb2dpfUKzmDfz16ti4Ol3iVUe1HnYBXAve3t4aPny4srKydOTIEdd4RkaGQkNDddtttxkXDgAAAAAAGMbpdOr/Vn2u/x4sVJCft14dE6cWDQONjlVrcEaeBwn09dYXf0wyOoabQN+ru8R05MiRmjNnjjIyMvTYY4/pm2++0X/+8x/9/ve/57JVAAAAAADqqfkfHNSK7G/kZZIW3NNNHVtYjI5Uq1DkeRCTyVTty1hrq9jYWEVHR+vNN9/UY489pjfffFNOp5PLagEAAAAAqKdW7fpGL2zYL0n646COuiW6+WWOqH+4tBaGGTlypHbv3q3PPvtMGRkZatu2reLi4oyOBQAAAAAAaljWoUJN/cdnkqTf/vwG3duztcGJaieKPBjm/Nl3aWlpysnJ4Ww8AAAAAADqoYPHT+u3r+9QRaVTv+gUpj/0jzY6Uq1VN67ThEeKiopSr169tGbNGkm6pkXeP//5T+3du/eC8dGjR8tqtV6z1wEAAAAAAFfvxOkyjVm6XfbSc+rWqqH+8usYeXmZjI5Va1HkwVAjR47Uli1b1KNHD7Vp0+aarbt8+fIqx/v160eRBwAAAABALXCm/JzuX7Zd33x3VpFNgvTy6DgFXOVDNesLijwY6ne/+51+97vfXdWxZ86c0cmTJxUcHKzAwO8fRd2vXz85nc5LHud0OlVYWKjvvvvuql4XAAAAAAD8NJUOpx5anqNPv7GpUZCvlo7tocbBfkbHqvW4Rx481uzZs9WsWTMtWLCgWsfZbDY1a9ZM3bp1u07JAAAAAADApTz93hfa8EWB/Hy89NKo7opqGmx0JI/AGXnwSBs2bHD9c7t27ap1bEhIyE86HgAAAAAAXL1XPz6spf89Ikl6YWgXdY9sbGwgD0KRB4+UmJh41cf6+Pj8pOMBAAAAAMDVeX9Pvv703heSpGl3RuuuLhEGJ/IsXFoLAAAAAACA6y7naJEeWr5LTqd0T3wr/fbnNxgdyeNQ5AEAAAAAAOC6OnrqjO5ftl2lFQ71bddMfxzYQSaTyehYHocir5a73BNYcf3xZwAAAAAAwNWznanQmKXbdLK4XDeHm7VgZDf5eFNJXQ0+tVrK19dXklRRUWFwEpSXl0vizwIAAAAAgOoqO1ep376xQ4dOlCjcEqBXx8QpxJ9HNlwtirxaysfHRz4+Pjp16pTRUeo1p9OpkydPqry8nCIPAAAAAIBqcDqdmvbPz/XJV6cU4u+jV8fEKcwSYHQsj0YFWkuZTCa1aNFCX3/9tfLy8mQ2m7l2vAY5nU6Vl5fr5MmTstlsOnnypBwOh3x9feXlRf8NAAAAAMDlzNmwX6t2fStvL5NeHNlN7cPNRkfyeBR5tViTJk10+vRpffvttzp27JjRceql82We3W5XcXGxOnbsSKEKAAAAAMBlvL3jqOZ9cFCS9ExyR/28XTODE9UNFHm1mMlkUlRUlAoLC7V161Z5eXkpMDCQIqkGOJ1OnTt3ThUVFaqsrNTp06cVFBSkDh06GB0NAAAAAIBa7eMDJ/XYys8lSRNvuVHDe7QyOFHdQZHnAbp16yZfX199+eWXOnXqFE9RrWFeXl6Kjo5Wp06dFBUVZXQcAAAAAABqrb35dk14I1vnHE4NionQI3fcZHSkOoUizwN4eXmpS5cu6ty5syoqKijyapiXl5frKcIAAAAAAKBqBfZS3bd0u06XnVOPyMaadXdnriq8xijyPIjJZJKfn5/RMQAAAAAAANyUlJ3TfenbdcxWqhuaBWvJqFj5+3gbHavO4fGbAAAAAAAAuGrnKh2a/OYu7TlmV5NgP6WP6aGGQZyIdD1Q5AEAAAAAAOCqOJ1OPfnuHn2w97j8fbz08ujuatUkyOhYdRZFHgAAAAAAAK7KS//5Sm98kiuTSfrr8Bh1bdXI6Eh1GkUeAAAAAAAAqu29z/L07Lq9kqT/+0V79e8YbnCiuu+qirwFCxYoMjJSAQEBio+P17Zt2y45f8WKFYqOjlZAQIA6deqkdevWue13Op1KS0tTeHi4AgMDlZiYqAMHDrjNeeaZZ9SrVy8FBQWpYcOGF7xGYWGh+vfvr4iICPn7+8tqtWrSpEmy2+2uOXl5ebrnnnvUrl07eXl5KSUl5YJ1+vXrJ5PJdME2YMAA15wxY8ZcsL9///5X8MkBAAAAAAB4vuyvT2nK2zmSpNEJrTWuT5SxgeqJahd5b731llJTUzVjxgzt3LlTXbp0UVJSko4fP17l/C1btmjEiBEaN26cdu3apeTkZCUnJ2v37t2uObNmzdK8efO0aNEibd26VcHBwUpKSlJpaalrTnl5uYYOHaoJEyZU/Ua8vDRo0CC988472r9/v9LT07Vx40Y9+OCDrjllZWVq1qyZHn/8cXXp0qXKdVauXKm8vDzXtnv3bnl7e2vo0KFu8/r37+82780337zizxAAAAAAAMBTHTlZogdey1b5OYcS2zdX2l0dZDKZjI5VL5icTqezOgfEx8crLi5O8+fPlyQ5HA5ZrVZNnjxZ06ZNu2D+sGHDVFJSorVr17rGevbsqZiYGC1atEhOp1MRERF6+OGH9cgjj0iSbDabQkNDlZ6eruHDh7utl56erpSUFBUVFV0267x58zR79mwdPXr0gn39+vVTTEyM5s6de8k15s6dq7S0NOXl5Sk4OFjS92fkFRUVafXq1ZfNUBW73S6LxSKbzSaz2XxVawAAAAAAANS0UyXlGrJwiw6fLFGnFha99dueCvLzMTqWx7vSrqhaZ+SVl5crOztbiYmJ/1vAy0uJiYnKysqq8pisrCy3+ZKUlJTkmn/48GHl5+e7zbFYLIqPj7/omlfi2LFjWrlypfr27XvVa0jSK6+8ouHDh7tKvPM2bdqk5s2b66abbtKECRNUWFh40TXKyspkt9vdNgAAAAAAAE9SWlGp8a/t0OGTJWrRMFCvjOlOiVfDqlXknTx5UpWVlQoNDXUbDw0NVX5+fpXH5OfnX3L++Z/VWfNSRowYoaCgILVo0UJms1kvv/xytdc4b9u2bdq9e7fuv/9+t/H+/fvrtddeU2Zmpp5//nlt3rxZd955pyorK6tcZ+bMmbJYLK7NarVedSYAAAAAAICa5nA49ciKT7Xj6+/UIMBHS8fGqXmDAKNj1Tt17qm1c+bM0c6dO7VmzRodOnRIqampV73WK6+8ok6dOqlHjx5u48OHD9fAgQPVqVMnJScna+3atdq+fbs2bdpU5TrTp0+XzWZzbVVd6gsAAAAAAFBbzf73Pq39LE++3iYtvjdW7UIbGB2pXqpWkde0aVN5e3uroKDAbbygoEBhYWFVHhMWFnbJ+ed/VmfNSwkLC1N0dLQGDhyoxYsXa+HChcrLy6v2OiUlJVq+fLnGjRt32bk33HCDmjZtqoMHD1a539/fX2az2W0DAAAAAADwBBlbc7Vw0yFJ0nODO6tXm6YGJ6q/qlXk+fn5KTY2VpmZma4xh8OhzMxMJSQkVHlMQkKC23xJ2rBhg2t+VFSUwsLC3ObY7XZt3br1omteKYfDIen7e9RV14oVK1RWVqZ77733snO/+eYbFRYWKjw8vNqvAwAAAAAAUFt9uO+4nlizW5KUkthWQ2JbGpyofqv2HQlTU1M1evRode/eXT169NDcuXNVUlKisWPHSpJGjRqlFi1aaObMmZKkhx56SH379tULL7ygAQMGaPny5dqxY4eWLFkiSTKZTEpJSdHTTz+ttm3bKioqSk888YQiIiKUnJzset3c3FydOnVKubm5qqysVE5OjiSpTZs2CgkJ0bp161RQUKC4uDiFhIRoz549evTRR9W7d29FRka61jl/XHFxsU6cOKGcnBz5+fnp5ptvdnufr7zyipKTk9WkSRO38eLiYj311FMaMmSIwsLCdOjQIU2dOlVt2rRRUlJSdT9OAAAAAACAWmnPMZsm/X2nKh1ODe7WQg/d1tboSPVetYu8YcOG6cSJE0pLS1N+fr5iYmK0fv1618MqcnNz5eX1vxP9evXqpYyMDD3++ON67LHH1LZtW61evVodO3Z0zZk6dapKSko0fvx4FRUVqU+fPlq/fr0CAv5308S0tDQtW7bM9XvXrl0lSR9++KH69eunwMBAvfTSS5oyZYrKyspktVo1ePBgTZs2zS3/+eMkKTs7WxkZGWrdurWOHDniGt+3b58+/vhj/fvf/77g/Xt7e+uzzz7TsmXLVFRUpIiICN1xxx3605/+JH9//+p+nAAAAAAAALVOnu2s7kvfrpLySvW6sYmeG9xZJpPJ6Fj1nsnpdDqNDlHf2O12WSwW2Ww27pcHAAAAAABqldOlFRq6KEt780+rbfMQ/WNCL1kCfY2OVaddaVdU555aCwAAAAAAgKtTUenQ7/6+U3vzT6tZA38tHRtHiVeLUOQBAAAAAABATqdTT6zerf8cOKlAX2+9Mrq7WjYKMjoWfoAiDwAAAAAAAHpx0yEt335UXibpbyO6qnPLhkZHwo9Q5AEAAAAAANRza3K+1ez390mSnhzYQYk3hxqcCFWhyAMAAAAAAKjHtn5VqEdXfCZJur9PlEYlRBobCBdFkQcAAAAAAFBPHTpRrPGvZ6u80qH+HcL02C/aGx0Jl0CRBwAAAAAAUA+dLC7T2KXbZTtboRhrQ80ZFiMvL5PRsXAJFHkAAAAAAAD1TGlFpe5ftkO5p86oVeMgvTy6uwL9vI2OhcugyAMAAAAAAKhHKh1OpSzPUc7RIlkCfbV0bJyahvgbHQtXgCIPAAAAAACgHpm57kut35MvP28vLflNrG5sFmJ0JFwhijwAAAAAAIB6YtmWI3r548OSpNlDOyv+hiYGJ0J1UOQBAAAAAADUAxu/KNBT7+6RJD2adJMGxbQwOBGqiyIPAAAAAACgjvvsmyJNfnOXHE5peJxVv+t3o9GRcBUo8gAAAAAAAOqwb747o/vSd+hsRaV+1rap/pTcUSaTyehYuAoUeQAAAAAAAHWU7WyFxi7drpPFZYoOa6AXR3aTrzd1kKfiTw4AAAAAAKAOKj/n0IQ3snXgeLFCzf5aOjZODQJ8jY6Fn4AiDwAAAAAAoI5xOp2atvIzbTlUqGA/b706Jk7hlkCjY+EnosgDAAAAAACoY/6aeUArd34rby+T5o/spg4RFqMj4RqgyAMAAAAAAKhD/pH9jeZuPCBJ+tOgjrrlpuYGJ8K1QpEHAAAAAABQR2w5eFLT/vmZJOnBvjfqnvhWBifCtUSRBwAAAAAAUAccKDit376RrXMOp37ZOVxTk24yOhKuMYo8AAAAAAAAD3f8dKnGLN2u06Xn1L11I/15aBd5eZmMjoVrjCIPAAAAAADAg50pP6dx6Tv0bdFZRTUN1pJR3RXg6210LFwHFHkAAAAAAAAeqtLh1O/f3KXPv7WpcbCflo6JU+NgP6Nj4TqhyAMAAAAAAPBATqdTf3x3jzZ+eVx+Pl56aVR3RTYNNjoWriOKPAAAAAAAAA/0yseHtSzra0nS3GExim3dyOBEuN4o8gAAAAAAADzM+t15embdl5Kkx34RrV90Cjc4EWoCRR4AAAAAAIAH2ZX7nR5aniOnU7q3Zys98LMbjI6EGnJVRd6CBQsUGRmpgIAAxcfHa9u2bZecv2LFCkVHRysgIECdOnXSunXr3PY7nU6lpaUpPDxcgYGBSkxM1IEDB9zmPPPMM+rVq5eCgoLUsGHDC16jsLBQ/fv3V0REhPz9/WW1WjVp0iTZ7XbXnLy8PN1zzz1q166dvLy8lJKScsE66enpMplMbltAQEC18wIAAAAAAFxruYVndP+yHSo759Ct0c315F0dZDKZjI6FGlLtIu+tt95SamqqZsyYoZ07d6pLly5KSkrS8ePHq5y/ZcsWjRgxQuPGjdOuXbuUnJys5ORk7d692zVn1qxZmjdvnhYtWqStW7cqODhYSUlJKi0tdc0pLy/X0KFDNWHChKrfiJeXBg0apHfeeUf79+9Xenq6Nm7cqAcffNA1p6ysTM2aNdPjjz+uLl26XPQ9ms1m5eXlubavv/7abf+V5AUAAAAAALiWis6Ua0z6NhWWlKtDhFl/G9FVPt5cbFmfmJxOp7M6B8THxysuLk7z58+XJDkcDlmtVk2ePFnTpk27YP6wYcNUUlKitWvXusZ69uypmJgYLVq0SE6nUxEREXr44Yf1yCOPSJJsNptCQ0OVnp6u4cOHu62Xnp6ulJQUFRUVXTbrvHnzNHv2bB09evSCff369VNMTIzmzp1brfWrm1f6vkAsKytz/W6322W1WmWz2WQ2my/7PgAAAAAAQP1Wdq5Sv3l5m7YdOaUIS4BWTeytUHPA5Q+ER7Db7bJYLJftiqpV25aXlys7O1uJiYn/W8DLS4mJicrKyqrymKysLLf5kpSUlOSaf/jwYeXn57vNsVgsio+Pv+iaV+LYsWNauXKl+vbtW+1ji4uL1bp1a1mtVg0aNEh79uxx7buavDNnzpTFYnFtVqu1+m8IAAAAAADUSw6HU4+u+EzbjpxSA38fvTo2jhKvnqpWkXfy5ElVVlYqNDTUbTw0NFT5+flVHpOfn3/J+ed/VmfNSxkxYoSCgoLUokULmc1mvfzyy9U6/qabbtKrr76qNWvW6I033pDD4VCvXr30zTffXHXe6dOny2azubaqzhAEAAAAAACoyl827Nc7nx6Tj5dJC++NVXQYV/fVV3XuQuo5c+Zo586dWrNmjQ4dOqTU1NRqHZ+QkKBRo0YpJiZGffv21cqVK9WsWTMtXrz4qjP5+/vLbDa7bQAAAAAAAJfz1vZczf/woCTp2cGd1KdtU4MTwUjVKvKaNm0qb29vFRQUuI0XFBQoLCysymPCwsIuOf/8z+qseSlhYWGKjo7WwIEDtXjxYi1cuFB5eXnVXuc8X19fde3aVQcPHrwueQEAAAAAAKry0f4TemzV9w8L/f2tbfTr7tyqq76rVpHn5+en2NhYZWZmusYcDocyMzOVkJBQ5TEJCQlu8yVpw4YNrvlRUVEKCwtzm2O327V169aLrnmlHA6HJLk9aKK6Kisr9fnnnys8PPy65wUAAAAAAJCkL/Ps+t3fd6rS4dSvurbQlNvbGR0JtYBPdQ9ITU3V6NGj1b17d/Xo0UNz585VSUmJxo4dK0kaNWqUWrRooZkzZ0qSHnroIfXt21cvvPCCBgwYoOXLl2vHjh1asmSJJMlkMiklJUVPP/202rZtq6ioKD3xxBOKiIhQcnKy63Vzc3N16tQp5ebmqrKyUjk5OZKkNm3aKCQkROvWrVNBQYHi4uIUEhKiPXv26NFHH1Xv3r0VGRnpWuf8ccXFxTpx4oRycnLk5+enm2++WZL0xz/+UT179lSbNm1UVFSk2bNn6+uvv9b9999frbwAAAAAAABXI99WqvvSt6u47Jx63tBYzw3pJJPJZHQs1ALVLvKGDRumEydOKC0tTfn5+YqJidH69etdD3/Izc2Vl9f/TvTr1auXMjIy9Pjjj+uxxx5T27ZttXr1anXs2NE1Z+rUqSopKdH48eNVVFSkPn36aP369QoI+N8TWNLS0rRs2TLX7127dpUkffjhh+rXr58CAwP10ksvacqUKSorK5PVatXgwYM1bdo0t/znj5Ok7OxsZWRkqHXr1jpy5Igk6bvvvtMDDzyg/Px8NWrUSLGxsdqyZYur6LvSvAAAAAAAANVVXHZO96VvV56tVDc2C9bie7vL38fb6FioJUxOp9NpdIj6xm63y2KxyGaz8eALAAAAAAAgSTpX6dC4ZTu0ef8JNQ3x06rf9Za1cZDRsVADrrQrqnNPrQUAAAAAAPA0TqdTT6zZo837TyjA10svj46jxMMFKPIAAAAAAAAMtvijr/TmtlyZTNK84V0VY21odCTUQhR5AAAAAAAABlr72TE996+9kqS0X96sOzqEGZwItRVFHgAAAAAAgEF2HDml1Lc/lSSN7R2psb2jDE6E2owiDwAAAAAAwACHT5bo/td2qPycQ7ffHKrHB9xsdCTUchR5AAAAAAAANaywuExjlm5T0ZkKdWlp0V+Hx8jby2R0LNRyFHkAAAAAAAA1qLSiUg+8tkNfF55Ry0aBenl0nIL8fIyOBQ9AkQcAAAAAAFBDHA6nHn77U+3MLZI5wEfpY+PUrIG/0bHgISjyAAAAAAAAasjz6/fqvc/z5Ott0uLfdFeb5g2MjgQPQpEHAAAAAABQA17/5Gst/ugrSdKsuzsr4cYmBieCp6HIAwAAAAAAuM4+3HtcM9bsliSl3t5Ov+ra0uBE8EQUeQAAAAAAANfR7m9tmpixUw6nNDS2pSbf2sboSPBQFHkAAAAAAADXybdFZ3Vf+nadKa9UnzZN9ezgTjKZTEbHgoeiyAMAAAAAALgO7KUVum/pdh0/XaZ2oSF68d5u8vWmisHV49sDAAAAAABwjVVUOvS7N3ZqX8FpNW/gr6Vje8gc4Gt0LHg4ijwAAAAAAIBryOl06v9Wfa6PD55UkJ+3Xh0TpxYNA42OhTqAIg8AAAAAAOAamv/BQb294xt5maT593RVxxYWoyOhjqDIAwAAAAAAuEZW7fpGL2zYL0l6amAH3RodanAi1CUUeQAAAAAAANfAJ18Vauo/PpMkjf/5DfpNQqSxgVDnUOQBAAAAAAD8RAePn9b413aootKpX3QK07T+0UZHQh1EkQcAAAAAAPATnDhdpjFLt8teek7dWjXUX34dIy8vk9GxUAdR5AEAAAAAAFyls+WVuv+1Hfrmu7Nq3SRIL43qrgBfb6NjoY6iyAMAAAAAALgKlQ6nHlq+S58eLVLDIF8tHROnJiH+RsdCHUaRBwAAAAAAcBWeee9L/fuLAvn5eOmlUd11Q7MQoyOhjqPIAwAAAAAAqKal/z2sV/97WJL0wtAuiotsbHAi1AcUeQAAAAAAANXw7z35+uPaLyRJf+gfrbu6RBicCPUFRR4AAAAAAMAV+vRokX6/fJecTmlEj1Z6sO8NRkdCPXJVRd6CBQsUGRmpgIAAxcfHa9u2bZecv2LFCkVHRysgIECdOnXSunXr3PY7nU6lpaUpPDxcgYGBSkxM1IEDB9zmPPPMM+rVq5eCgoLUsGHDC16jsLBQ/fv3V0REhPz9/WW1WjVp0iTZ7XbXnLy8PN1zzz1q166dvLy8lJKScsE6L730kn72s5+pUaNGatSokRITEy94f2PGjJHJZHLb+vfvf5lPDQAAAAAAeLKjp85o3LLtKq1wqG+7ZvrToA4ymUxGx0I9Uu0i76233lJqaqpmzJihnTt3qkuXLkpKStLx48ernL9lyxaNGDFC48aN065du5ScnKzk5GTt3r3bNWfWrFmaN2+eFi1apK1btyo4OFhJSUkqLS11zSkvL9fQoUM1YcKEqt+Il5cGDRqkd955R/v371d6ero2btyoBx980DWnrKxMzZo10+OPP64uXbpUuc6mTZs0YsQIffjhh8rKypLVatUdd9yhb7/91m1e//79lZeX59refPPNK/4MAQAAAACAZ7GdqdDY9O06WVyu9uFmLRjZTT7eXOiImmVyOp3O6hwQHx+vuLg4zZ8/X5LkcDhktVo1efJkTZs27YL5w4YNU0lJidauXesa69mzp2JiYrRo0SI5nU5FRETo4Ycf1iOPPCJJstlsCg0NVXp6uoYPH+62Xnp6ulJSUlRUVHTZrPPmzdPs2bN19OjRC/b169dPMTExmjt37iXXqKysVKNGjTR//nyNGjVK0vdn5BUVFWn16tWXzSB9XyCWlZW5frfb7bJarbLZbDKbzVe0BgAAAAAAMEbZuUqNfnWbPvnqlMLMAVo9sbfCLAFGx0IdYrfbZbFYLtsVVas6Li8vV3Z2thITE/+3gJeXEhMTlZWVVeUxWVlZbvMlKSkpyTX/8OHDys/Pd5tjsVgUHx9/0TWvxLFjx7Ry5Ur17dv3qteQpDNnzqiiokKNG7s/fWbTpk1q3ry5brrpJk2YMEGFhYUXXWPmzJmyWCyuzWq1/qRMAAAAAACgZjidTk375+f65KtTCvH30dKxcZR4MEy1iryTJ0+qsrJSoaGhbuOhoaHKz8+v8pj8/PxLzj//szprXsqIESMUFBSkFi1ayGw26+WXX672Gj/0hz/8QREREW5FY//+/fXaa68pMzNTzz//vDZv3qw777xTlZWVVa4xffp02Ww211bVGYIAAAAAAKD2mbPxgFbt+lbeXiYtGNlN7cO5sg7GqXMXc8+ZM0c7d+7UmjVrdOjQIaWmpl71Ws8995yWL1+uVatWKSDgf2378OHDNXDgQHXq1EnJyclau3attm/frk2bNlW5jr+/v8xms9sGAAAAAABqtxU7jmpe5vcP43wmuaP6tmtmcCLUd9Uq8po2bSpvb28VFBS4jRcUFCgsLKzKY8LCwi45//zP6qx5KWFhYYqOjtbAgQO1ePFiLVy4UHl5edVe589//rOee+45/fvf/1bnzp0vOfeGG25Q06ZNdfDgwWq/DgAAAAAAqH3+e/Ckpq/8XJI08ZYbNbxHK4MTAdUs8vz8/BQbG6vMzEzXmMPhUGZmphISEqo8JiEhwW2+JG3YsME1PyoqSmFhYW5z7Ha7tm7detE1r5TD4ZAktwdNXIlZs2bpT3/6k9avX6/u3btfdv4333yjwsJChYeHX1VOAAAAAABQe+zLP60HX8/WOYdTA7tE6OHbbzI6EiBJ8qnuAampqRo9erS6d++uHj16aO7cuSopKdHYsWMlSaNGjVKLFi00c+ZMSdJDDz2kvn376oUXXtCAAQO0fPly7dixQ0uWLJEkmUwmpaSk6Omnn1bbtm0VFRWlJ554QhEREUpOTna9bm5urk6dOqXc3FxVVlYqJydHktSmTRuFhIRo3bp1KigoUFxcnEJCQrRnzx49+uij6t27tyIjI13rnD+uuLhYJ06cUE5Ojvz8/HTzzTdLkp5//nmlpaUpIyNDkZGRrvv0hYSEKCQkRMXFxXrqqac0ZMgQhYWF6dChQ5o6daratGmjpKSk6n6cAAAAAACgFimwl2rs0m06XXZOPSIba/bQzvLyMhkdC5AkmZxOp7O6B82fP1+zZ89Wfn6+YmJiNG/ePMXHx0uS+vXrp8jISKWnp7vmr1ixQo8//riOHDmitm3batasWfrFL37h2u90OjVjxgwtWbJERUVF6tOnj1588UW1a9fONWfMmDFatmzZBVk+/PBD9evXTx9++KH+7//+T1988YXKyspktVo1ePBgTZs2TQ0bNvzfGzZd+JevdevWOnLkiCQpMjJSX3/99QVzZsyYoSeffFJnz55VcnKydu3apaKiIkVEROiOO+7Qn/70pwse2HExV/pIYQAAAAAAUHNKys5p2JIs7f7WrhuaBuufE3qpUbCf0bFQD1xpV3RVRR5+Goo8AAAAAABql3OVDo1/PVsf7D2uJsF+WvW73mrVJMjoWKgnrrQrqnNPrQUAAAAAAKgOp9Opp979Qh/sPS5/Hy+9NLo7JR5qJYo8AAAAAABQr738n8N6/ZOvZTJJc4fFqFurRkZHAqpEkQcAAAAAAOqtdZ/n6Zl1X0qS/u8X7XVnp3CDEwEXR5EHAAAAAADqpeyvv9OUt3IkSaMTWmtcnyhjAwGXQZEHAAAAAADqnSMnS/TAaztUds6hxPbNlXZXB5lMJqNjAZdEkQcAAAAAAOqV70rKNTZ9u06VlKtTC4vmjegqby9KPNR+FHkAAAAAAKDeKK2o1PjXd+jwyRK1aBioV0Z3V5Cfj9GxgCtCkQcAAAAAAOoFh8OpR//xmbYf+U4NAny0dGycmpsDjI4FXDGKPAAAAAAAUC/8+d/79O6nx+TjZdLie2PVLrSB0ZGAaqHIAwAAAAAAdV7G1ly9uOmQJOm5IZ3Vq01TgxMB1UeRBwAAAAAA6rRN+47riTW7JUkP3dZWd8e2NDgRcHUo8gAAAAAAQJ31xTG7Jv59pyodTg3u1kIpiW2NjgRcNYo8AAAAAABQJ+XZzuq+9O0qKa9Uwg1N9NzgzjKZTEbHAq4aRR4AAAAAAKhzTpdWaOzS7cq3l6pt8xAt+k2s/HyoQeDZ+AYDAAAAAIA6paLSoYkZu7Q3/7Sahvjr1TFxsgT6Gh0L+Mko8gAAAAAAQJ3hdDr1xOrd+mj/CQX6euvVMd1lbRxkdCzgmqDIAwAAAAAAdcbCzYe0fPtReZmkv43oqs4tGxodCbhmKPIAAAAAAECdsCbnW81av0+SNOOuDkq8OdTgRMC1RZEHAAAAAAA83rbDp/Tois8kSeP6RGl0r0hjAwHXAUUeAAAAAADwaIdOFGv86ztUXulQUodQPfaL9kZHAq4LijwAAAAAAOCxCovLNHbpdhWdqVCMtaHmDusqby+T0bGA64IiDwAAAAAAeKTSikrd/9oO5Z46I2vjQL08ursC/byNjgVcNxR5AAAAAADA4zgcTk15K0e7cotkCfTV0jE91DTE3+hYwHVFkQcAAAAAADzOzH99qX/tzpeft5eW/CZWbZqHGB0JuO4o8gAAAAAAgEd5LeuIXvrPYUnS7KGdFX9DE4MTATWDIg8AAAAAAHiMzC8L9OQ7eyRJjybdpEExLQxOBNQcijwAAAAAAOARPv/GpkkZu+RwSsO6W/W7fjcaHQmoUVdV5C1YsECRkZEKCAhQfHy8tm3bdsn5K1asUHR0tAICAtSpUyetW7fObb/T6VRaWprCw8MVGBioxMREHThwwG3OM888o169eikoKEgNGza84DUKCwvVv39/RUREyN/fX1arVZMmTZLdbnfNycvL0z333KN27drJy8tLKSkp1y0vAAAAAAC4dr757ozuW7ZdZysq9bO2TfX0rzrKZDIZHQuoUdUu8t566y2lpqZqxowZ2rlzp7p06aKkpCQdP368yvlbtmzRiBEjNG7cOO3atUvJyclKTk7W7t27XXNmzZqlefPmadGiRdq6dauCg4OVlJSk0tJS15zy8nINHTpUEyZMqPqNeHlp0KBBeuedd7R//36lp6dr48aNevDBB11zysrK1KxZMz3++OPq0qXLdc0LAAAAAACuDdvZCt2Xvl0nTpcpOqyBXhzZTb7eXGSI+sfkdDqd1TkgPj5ecXFxmj9/viTJ4XDIarVq8uTJmjZt2gXzhw0bppKSEq1du9Y11rNnT8XExGjRokVyOp2KiIjQww8/rEceeUSSZLPZFBoaqvT0dA0fPtxtvfT0dKWkpKioqOiyWefNm6fZs2fr6NGjF+zr16+fYmJiNHfu3OuaV/q+QCwrK3P9brfbZbVaZbPZZDabL/s+AAAAAACor8rPOTRm6TZtOVSoULO/Vv2utyIaBhodC7im7Ha7LBbLZbuiatXX5eXlys7OVmJi4v8W8PJSYmKisrKyqjwmKyvLbb4kJSUlueYfPnxY+fn5bnMsFovi4+MvuuaVOHbsmFauXKm+fftW67jrkXfmzJmyWCyuzWq1VvPdAAAAAABQ/zidTk1f+bm2HCpUsJ+3Xh0TR4mHeq1aRd7JkydVWVmp0NBQt/HQ0FDl5+dXeUx+fv4l55//WZ01L2XEiBEKCgpSixYtZDab9fLLL1fr+OuRd/r06bLZbK6tqjMEAQAAAACAu3mZB/XPnd/I28uk+SO7qUOExehIgKHq3AXlc+bM0c6dO7VmzRodOnRIqampRkeSv7+/zGaz2wYAAAAAAC7un9nfaM7G/ZKkPw7qoFtuam5wIsB41SrymjZtKm9vbxUUFLiNFxQUKCwsrMpjwsLCLjn//M/qrHkpYWFhio6O1sCBA7V48WItXLhQeXl51Tq+JvMCAAAAAAB3Ww6d1LSVn0mSHux7o0bGtzY4EVA7VKvI8/PzU2xsrDIzM11jDodDmZmZSkhIqPKYhIQEt/mStGHDBtf8qKgohYWFuc2x2+3aunXrRde8Ug6HQ5LcHjRxOUbmBQAAAACgvjtQcFq/fT1bFZVODegcrqlJNxkdCag1fKp7QGpqqkaPHq3u3burR48emjt3rkpKSjR27FhJ0qhRo9SiRQvNnDlTkvTQQw+pb9++euGFFzRgwAAtX75cO3bs0JIlSyRJJpNJKSkpevrpp9W2bVtFRUXpiSeeUEREhJKTk12vm5ubq1OnTik3N1eVlZXKycmRJLVp00YhISFat26dCgoKFBcXp5CQEO3Zs0ePPvqoevfurcjISNc6548rLi7WiRMnlJOTIz8/P918883XNC8AAAAAAKie46dLNWbpdp0uPafY1o30wtAu8vIyGR0LqDWqXeQNGzZMJ06cUFpamvLz8xUTE6P169e7Hv6Qm5srL6//nejXq1cvZWRk6PHHH9djjz2mtm3bavXq1erYsaNrztSpU1VSUqLx48erqKhIffr00fr16xUQEOCak5aWpmXLlrl+79q1qyTpww8/VL9+/RQYGKiXXnpJU6ZMUVlZmaxWqwYPHqxp06a55T9/nCRlZ2crIyNDrVu31pEjR65pXgAAAAAAcOXOlJ/T/ct26Nuis4pqGqyXRnVXgK+30bGAWsXkdDqdRoeob+x2uywWi2w2Gw++AAAAAADUe5UOp377erY2flmgRkG+WvW73opsGmx0LKDGXGlXVOeeWgsAAAAAADzLn9Z+oY1fFsjPx0svj+5OiQdcBEUeAAAAAAAwzCsfH1b6liOSpDm/jlFs68bGBgJqMYo8AAAAAABgiPW78/X0e19IkqbfGa0BncMNTgTUbhR5AAAAAACgxu3K/U4pb+2S0ynd27OVxv/8BqMjAbUeRR4AAAAAAKhRuYVndP+yHSqtcOiWm5rpybs6yGQyGR0LqPUo8gAAAAAAQI0pOlOuMenbVFhSrg4RZs2/p5t8vKkngCvB3xQAAAAAAFAjys5Vavzr2frqRInCLQF6dUycgv19jI4FeAyKPAAAAAAAcN05nU5N/cdn2nb4lBr4+2jp2DiFmgOMjgV4FIo8AAAAAABw3f1lw36tyTkmHy+TFt4bq+gws9GRAI9DkQcAAAAAAK6rt7cf1d8+OChJevZXndSnbVODEwGeiSIPAAAAAABcN/85cEKPrfpckjT51jb6dZzV4ESA56LIAwAAAAAA18XefLsmvLFT5xxOJcdEKPX2dkZHAjwaRR4AAAAAALjmCuylGrt0u4rLzik+qrGev7uzTCaT0bEAj0aRBwAAAAAArqnisnMau3S78mylurFZsJb8prv8fbyNjgV4PIo8AAAAAABwzZyrdGhyxk59kWdX0xA/pY/tIUuQr9GxgDqBIg8AAAAAAFwTTqdTM97Zow/3nVCAr5deHh0na+Mgo2MBdQZFHgAAAAAAuCaWfPSV/r41VyaT9NfhXRVjbWh0JKBOocgDAAAAAAA/2Xuf5Wnmv/ZKkp4YcLOSOoQZnAioeyjyAAAAAADAT7LjyClNeTtHkjSmV6Tu6xNlbCCgjqLIAwAAAAAAV+3wyRI98NoOlZ9z6PabQ/XEL282OhJQZ1HkAQAAAACAq3KqpFxjl27Td2cq1KWlRX8dHiNvL5PRsYA6iyIPAAAAAABUW2lFpR54bYeOFJ5Ry0aBenl0nIL8fIyOBdRpFHkAAAAAAKBaHA6nHl7xqbK//k7mAB+lj41Tswb+RscC6jyKPAAAAAAAUC3Pv79X732WJ19vkxb9JlZtmjcwOhJQL1DkAQAAAACAK/bGJ19r8eavJEnPD+msXjc2NTgRUH9Q5AEAAAAAgCvy4d7jSluzW5KUens7De7W0uBEQP1CkQcAAAAAAC5r97c2TczYKYdTuju2pSbf2sboSEC9c1VF3oIFCxQZGamAgADFx8dr27Ztl5y/YsUKRUdHKyAgQJ06ddK6devc9judTqWlpSk8PFyBgYFKTEzUgQMH3OY888wz6tWrl4KCgtSwYcMLXqOwsFD9+/dXRESE/P39ZbVaNWnSJNntdrd5mzZtUrdu3eTv7682bdooPT3dbX9kZKRMJtMF28SJE11z+vXrd8H+Bx988Ao+OQAAAAAAPM+xorMat2y7zpRXqnebJnr2V51kMpmMjgXUO9Uu8t566y2lpqZqxowZ2rlzp7p06aKkpCQdP368yvlbtmzRiBEjNG7cOO3atUvJyclKTk7W7t27XXNmzZqlefPmadGiRdq6dauCg4OVlJSk0tJS15zy8nINHTpUEyZMqPqNeHlp0KBBeuedd7R//36lp6dr48aNbgXb4cOHNWDAAN1yyy3KyclRSkqK7r//fr3//vuuOdu3b1deXp5r27BhgyRp6NChbq/3wAMPuM2bNWtWdT9KAAAAAABqPXtphcYu3a4Ce5nahYboxZGx8vPhAj/ACCan0+mszgHx8fGKi4vT/PnzJUkOh0NWq1WTJ0/WtGnTLpg/bNgwlZSUaO3ata6xnj17KiYmRosWLZLT6VRERIQefvhhPfLII5Ikm82m0NBQpaena/jw4W7rpaenKyUlRUVFRZfNOm/ePM2ePVtHjx6VJP3hD3/Qe++951YiDh8+XEVFRVq/fn2Va6SkpGjt2rU6cOCA6/9t6Nevn2JiYjR37tzLZpCksrIylZWVuX632+2yWq2y2Wwym81XtAYAAAAAADWtotKh+9K36z8HTqpZA3+tnthbLRoGGh0LqHPsdrssFstlu6JqVejl5eXKzs5WYmLi/xbw8lJiYqKysrKqPCYrK8ttviQlJSW55h8+fFj5+flucywWi+Lj4y+65pU4duyYVq5cqb59+15xlh8rLy/XG2+8ofvuu++CU4b//ve/q2nTpurYsaOmT5+uM2fOXDTLzJkzZbFYXJvVar3q9wUAAAAAQE1wOp16fNVu/efASQX5eWvpmDhKPMBg1SryTp48qcrKSoWGhrqNh4aGKj8/v8pj8vPzLzn//M/qrHkpI0aMUFBQkFq0aCGz2ayXX375slnsdrvOnj17wVqrV69WUVGRxowZ4zZ+zz336I033tCHH36o6dOn6/XXX9e999570UzTp0+XzWZzbefPEAQAAAAAoLZa8OFBvbXjqLxM0t9GdFXHFhajIwH1no/RAa61OXPmaMaMGdq/f7+mT5+u1NRUvfjii1e11iuvvKI777xTERERbuPjx493/XOnTp0UHh6u2267TYcOHdKNN954wTr+/v7y9/e/qgwAAAAAANS01bu+1Z//vV+S9NTADrqtfehljgBQE6p1Rl7Tpk3l7e2tgoICt/GCggKFhYVVeUxYWNgl55//WZ01LyUsLEzR0dEaOHCgFi9erIULFyovL++SWcxmswID3U8P/vrrr7Vx40bdf//9l33N+Ph4SdLBgwernRcAAAAAgNrkk68KNfUfn0mSxv/8Bv0mIdLYQABcqlXk+fn5KTY2VpmZma4xh8OhzMxMJSQkVHlMQkKC23xJ2rBhg2t+VFSUwsLC3ObY7XZt3br1omteKYfDIUmuB01cLssPLV26VM2bN9eAAQMu+zo5OTmSpPDw8J+UFwAAAAAAIx08Xqzfvp6t8kqH7uwYpmn9o42OBOAHqn1pbWpqqkaPHq3u3burR48emjt3rkpKSjR27FhJ0qhRo9SiRQvNnDlTkvTQQw+pb9++euGFFzRgwAAtX75cO3bs0JIlSyRJJpNJKSkpevrpp9W2bVtFRUXpiSeeUEREhJKTk12vm5ubq1OnTik3N1eVlZWu8qxNmzYKCQnRunXrVFBQoLi4OIWEhGjPnj169NFH1bt3b0VGRkqSHnzwQc2fP19Tp07Vfffdpw8++EBvv/223nvvPbf36HA4tHTpUo0ePVo+Pu4f0aFDh5SRkaFf/OIXatKkiT777DNNmTJFP//5z9W5c+fqfpwAAAAAANQKJ4vLNDZ9m2xnK9S1VUPNGRYjLy/T5Q8EUGOqXeQNGzZMJ06cUFpamvLz8xUTE6P169e7HiKRm5srL6//nejXq1cvZWRk6PHHH9djjz2mtm3bavXq1erYsaNrztSpU1VSUqLx48erqKhIffr00fr16xUQEOCak5aWpmXLlrl+79q1qyTpww8/VL9+/RQYGKiXXnpJU6ZMUVlZmaxWqwYPHqxp06a5jomKitJ7772nKVOm6K9//atatmypl19+WUlJSW7vcePGjcrNzdV99913wfv38/PTxo0bXQWm1WrVkCFD9Pjjj1f3owQAAAAAoFY4W16pcct26Oips2rdJEgvj+quAF9vo2MB+BGT0+l0Gh2ivrHb7bJYLLLZbDKbzUbHAQAAAADUY5UOp37392y9v6dADYN8tXJCL93QLMToWEC9cqVdUbXukQcAAAAAAOqWZ9d9qff3FMjP20svjepOiQfUYhR5AAAAAADUU+n/PaxXPj4sSfrzr7soLrKxwYkAXApFHgAAAAAA9dCGLwr0x7VfSJKm9r9JA7tEGJwIwOVQ5AEAAAAAUM98erRIk9/cKYdTGtHDqgl9bzQ6EoArQJEHAAAAAEA9cvTUGY1btkOlFQ71bddMfxrUUSaTyehYAK4ARR4AAAAAAPWE7WyFxqZv18niMrUPN2vByG7y8aYaADwFf1sBAAAAAKgHys859ODr2Tp4vFhh5gC9Oqa7Qvx9jI4FoBoo8gAAAAAAqOOcTqem/fMzZX1VqBB/H706Jk7hlkCjYwGoJoo8AAAAAADquLkbD2jlrm/l7WXSgpHddHOE2ehIAK4CRR4AAAAAAHXYP7K/0V8zD0iSnk7uqL7tmhmcCMDVosgDAAAAAKCO+u/Bk5r2z88kSb/rd6NG9GhlcCIAPwVFHgAAAAAAddD+gtN68I1snXM4dVeXCD1yx01GRwLwE1HkAQAAAABQxxy3l2rs0u06XXpOPSIb689DO8vLy2R0LAA/EUUeAAAAAAB1SEnZOd23bLu+LTqrG5oGa/FvYuXv4210LADXAEUeAAAAAAB1RKXDqd+/uUu7v7WrcbCflo6NU6NgP6NjAbhGKPIAAAAAAKgDnE6nnnp3jzL3Hpe/j5deHt1drZsEGx0LwDVEkQcAAAAAQB3wyseH9VrW1zKZpLnDYtStVSOjIwG4xijyAAAAAADwcP/6PE/PrPtSkvR/v2ivOzuFG5wIwPVAkQcAAAAAgAfbmfudUt7KkdMpjUporXF9ooyOBOA6ocgDAAAAAMBDfV1YovuX7VDZOYdui26utF/eLJPJZHQsANcJRR4AAAAAAB7ou5JyjV26XadKytWxhVnzRnSVjzf/mQ/UZfwNBwAAAADAw5RWVGr86zv01ckStWgYqFdHxynY38foWACuM4o8AAAAAAA8iMPh1KP/+Ezbj3ynBv4+Wjo2Ts3NAUbHAlADKPIAAAAAAPAgL2zYp3c/PSYfL5MW/SZW7UIbGB0JQA2hyAMAAAAAwEO8uS1XCz48JEl6bkhn9W7T1OBEAGoSRR4AAAAAAB5g8/4Tenz1bknSQ7e11d2xLQ1OBKCmUeQBAAAAAFDLfXHMrol/36lKh1ODu7ZQSmJboyMBMMBVFXkLFixQZGSkAgICFB8fr23btl1y/ooVKxQdHa2AgAB16tRJ69atc9vvdDqVlpam8PBwBQYGKjExUQcOHHCb88wzz6hXr14KCgpSw4YNL3iNwsJC9e/fXxEREfL395fVatWkSZNkt9vd5m3atEndunWTv7+/2rRpo/T0dLf9Tz75pEwmk9sWHR3tNqe0tFQTJ05UkyZNFBISoiFDhqigoOAynxoAAAAAANWXbyvVfenbVVx2Tgk3NNFzQzrLZDIZHQuAAapd5L311ltKTU3VjBkztHPnTnXp0kVJSUk6fvx4lfO3bNmiESNGaNy4cdq1a5eSk5OVnJys3bt3u+bMmjVL8+bN06JFi7R161YFBwcrKSlJpaWlrjnl5eUaOnSoJkyYUPUb8fLSoEGD9M4772j//v1KT0/Xxo0b9eCDD7rmHD58WAMGDNAtt9yinJwcpaSk6P7779f777/vtlaHDh2Ul5fn2j7++GO3/VOmTNG7776rFStWaPPmzTp27JgGDx5c3Y8SAAAAAIBLOl1aobHp25VvL1Wb5iFadG+s/Hy4uA6or0xOp9NZnQPi4+MVFxen+fPnS5IcDoesVqsmT56sadOmXTB/2LBhKikp0dq1a11jPXv2VExMjBYtWiSn06mIiAg9/PDDeuSRRyRJNptNoaGhSk9P1/Dhw93WS09PV0pKioqKii6bdd68eZo9e7aOHj0qSfrDH/6g9957z61EHD58uIqKirR+/XpJ35+Rt3r1auXk5FS5ps1mU7NmzZSRkaG7775bkrR37161b99eWVlZ6tmz5wXHlJWVqayszPW73W6X1WqVzWaT2Wy+7PsAAAAAANQ/FZUOjVu2Qx/tP6GmIf5a9btesjYOMjoWgOvAbrfLYrFctiuqVo1fXl6u7OxsJSYm/m8BLy8lJiYqKyurymOysrLc5ktSUlKSa/7hw4eVn5/vNsdisSg+Pv6ia16JY8eOaeXKlerbt+8VZznvwIEDioiI0A033KCRI0cqNzfXtS87O1sVFRVu60RHR6tVq1YXzTtz5kxZLBbXZrVar/p9AQAAAADqPqfTqbQ1u/XR/hMK9PXWq2O6U+IBqF6Rd/LkSVVWVio0NNRtPDQ0VPn5+VUek5+ff8n5539WZ81LGTFihIKCgtSiRQuZzWa9/PLLl81it9t19uxZSd+fcZienq7169dr4cKFOnz4sH72s5/p9OnTrjX8/PwuuE/fpfJOnz5dNpvNtZ0/QxAAAAAAgKos2vyV3tx2VCaTNG9EV3Vu2dDoSABqgTp3Yf2cOXO0c+dOrVmzRocOHVJqamq1jr/zzjs1dOhQde7cWUlJSVq3bp2Kior09ttvX3Umf39/mc1mtw0AAAAAgKq88+kxPb9+ryRpxi9v1u03h17mCAD1RbWKvKZNm8rb2/uCJ7QWFBQoLCysymPCwsIuOf/8z+qseSlhYWGKjo7WwIEDtXjxYi1cuFB5eXmXzGI2mxUYGFjleg0bNlS7du108OBB1xrl5eUX3KPvavMCAAAAAHDe9iOn9Mjbn0qS7usdpTG9owxOBKA2qVaR5+fnp9jYWGVmZrrGHA6HMjMzlZCQUOUxCQkJbvMlacOGDa75UVFRCgsLc5tjt9u1devWi655pRwOhyS5HjRxuSxVKS4u1qFDhxQeHi5Jio2Nla+vr9s6+/btU25u7k/OCwAAAACov746UawHXtuh8kqHkjqE6v8GtDc6EoBaxqe6B6Smpmr06NHq3r27evTooblz56qkpERjx46VJI0aNUotWrTQzJkzJUkPPfSQ+vbtqxdeeEEDBgzQ8uXLtWPHDi1ZskSSZDKZlJKSoqefflpt27ZVVFSUnnjiCUVERCg5Odn1urm5uTp16pRyc3NVWVnpeqpsmzZtFBISonXr1qmgoEBxcXEKCQnRnj179Oijj6p3796KjIyUJD344IOaP3++pk6dqvvuu08ffPCB3n77bb333nuu13nkkUd01113qXXr1jp27JhmzJghb29vjRgxQtL3D+IYN26cUlNT1bhxY5nNZk2ePFkJCQlVPrEWAAAAAIDLKSwu09j07So6U6Eu1oaaO6yrvL1MRscCUMtUu8gbNmyYTpw4obS0NOXn5ysmJkbr1693PUQiNzf3/7V352FVlon/xz8HlEVZzI1FMMiNckMFSbTUiYkax5HRTM3GtfzaoAVkBl4u00xG6a9JHVxSC/xW/MwatUZMv+5OkymifF0al8zCUnALDqKCcs7vj/l1RsaVVG4OvF/XdS47N/fznM9zujtXfHzO88jF5d8n+kVHRyszM1OTJ0/WpEmT1KpVK61cuVLt2rVzzJk4caJKSko0ZswYFRYWqkePHlqzZo08PDwcc6ZOnaolS5Y4nnfq1EmStGnTJvXq1Uuenp5atGiREhMTVVpaquDgYPXv31/JycmObUJDQ5WVlaXExETNnj1bQUFBWrx4sWJjYx1zvv/+ew0ZMkRnzpxRkyZN1KNHD3355Zdq0qSJY85bb70lFxcXDRgwQKWlpYqNjdW8efMq+1YCAAAAAKCLl8r17H/v1Hdnziu4oacWD4uQp5ur6VgAqiGL3W63mw5R21itVvn6+qqoqIgbXwAAAABALWaz2RWfuUuf7cuXr2dd/fW5aLVs6mU6FoAqdqtdUY27ay0AAAAAAM7i9TUH9Nm+fLm5umjh77pQ4gG4IYo8AAAAAAAMeG/bt1q49RtJ0syBHRR1XyPDiQBUdxR5AAAAAABUsY0HCjTt0/2SpAmPtla/8GaGEwFwBhR5AAAAAABUob3fF2lc5m7Z7NKgiGDF925pOhIAJ0GRBwAAAABAFfmh8IJGLcnW+bJyPdSqsV79bTtZLBbTsQA4CYo8AAAAAACqgPXiJY1M36FTxaUK8/fW3KGdVdeVX8sB3Do+MQAAAAAAuMvKLtv03Ps5OlRwTk293fXuiEj5eNQ1HQuAk6HIAwAAAADgLrLb7Zq0Yq/+8fUZ1Xdz1bsjIhXYwNN0LABOiCIPAAAAAIC76C8bv9bHOd/L1cWitKGd1a6Zr+lIAJwURR4AAAAAAHfJit3f68/rDkmS/tivrXq3aWo4EQBnRpEHAAAAAMBdsO3IGU38eI8k6b963qehUfcaTgTA2VHkAQAAAABwh319slj/9d5OXSq3q0/7AL0cG2Y6EoAagCIPAAAAAIA76FRxqUakZ8t68bK63HuP3nyyo1xcLKZjAagBKPIAAAAAALhDzpdd1ugl2fr+xwsKaVRPi4ZFyKOuq+lYAGoIijwAAAAAAO6AcptdLyzN1Z7vi3RPvbpKH9lVDeu7mY4FoAahyAMAAAAA4A54NesrrfuqQG51XLRoWIRCG9c3HQlADUORBwAAAADAbXr386NK/8e3kqS3ngxXREhDs4EA1EgUeQAAAAAA3Ia1+/P1p6yvJEkpj4epT4cAw4kA1FQUeQAAAAAA/Ey5xwr1wtLdstuloVHNNebh+0xHAlCDUeQBAAAAAPAzHDt7Xs8sydbFSzb1atNEr/ymrSwWi+lYAGowijwAAAAAACqp6PwljUjfodPnytQ20EdpT3VWHVd+xQZwd/EpAwAAAABAJZReLteY93bqyKkSBfh66N0RkfJyr2M6FoBagCIPAAAAAIBbZLfb9fLHe7T96Fl5uddR+shI+fl4mI4FoJagyAMAAAAA4Ba9te6QVuYeVx0Xi+Y/3Vlh/j6mIwGoRSjyAAAAAAC4Bct2HtOcjV9Lkl77bXs91KqJ4UQAahuKPAAAAAAAbuLzw6c1afleSdL4X7TUk5HBhhMBqI0o8gAAAAAAuIED+VY9936OLtvs6hceqKRftjYdCUAt9bOKvLlz5yokJEQeHh6KiorSjh07bjj/o48+UlhYmDw8PNS+fXutXr26ws/tdrumTp2qgIAAeXp6KiYmRocPH64wZ/r06YqOjla9evXUoEGDq17jzJkzeuyxxxQYGCh3d3cFBwdr3LhxslqtFeZt3rxZnTt3lru7u1q2bKmMjIwKP09NTVVkZKS8vb3VtGlTxcXF6eDBgxXm9OrVSxaLpcJj7NixN3nXAAAAAADOpsB6UaPSs1VcelldQxtqxhMdZLFYTMcCUEtVusj78MMPlZSUpGnTpmnXrl3q2LGjYmNjdfLkyWvO/+KLLzRkyBCNHj1au3fvVlxcnOLi4rRv3z7HnBkzZmjOnDlasGCBtm/frvr16ys2NlYXL150zCkrK9PAgQP13HPPXftAXFzUr18/ffrppzp06JAyMjK0fv36CgXb0aNH1adPH/Xu3Vu5ublKSEjQM888o7Vr1zrmbNmyRfHx8fryyy+1bt06Xbp0SY8++qhKSkoqvN6zzz6rEydOOB4zZsyo7FsJAAAAAKjGSkova1RGto4XXdR9Tepr4e+6yL2Oq+lYAGoxi91ut1dmg6ioKEVGRiotLU2SZLPZFBwcrPHjxys5Ofmq+YMGDVJJSYlWrVrlGHvwwQcVHh6uBQsWyG63KzAwUC+++KImTJggSSoqKpKfn58yMjI0ePDgCvvLyMhQQkKCCgsLb5p1zpw5mjlzpo4dOyZJevnll5WVlVWhRBw8eLAKCwu1Zs2aa+7j1KlTatq0qbZs2aKHH35Y0r/OyAsPD9esWbNumkGSSktLVVpa6nhutVoVHBysoqIi+fhwhyMAAAAAqG4ul9v07H/v1KaDp9SovptW/L67mjeqZzoWgBrKarXK19f3pl1Rpc7IKysrU05OjmJiYv69AxcXxcTEaNu2bdfcZtu2bRXmS1JsbKxj/tGjR5Wfn19hjq+vr6Kioq67z1tx/PhxLV++XD179rzlLNdSVFQkSWrYsGGF8Q8++ECNGzdWu3btlJKSovPnz193H6mpqfL19XU8goO5KCoAAAAAVFd2u13TPt2vTQdPyaOui94ZEUmJB6BaqFSRd/r0aZWXl8vPz6/CuJ+fn/Lz86+5TX5+/g3n//RnZfZ5I0OGDFG9evXUrFkz+fj4aPHixTfNYrVadeHChav2ZbPZlJCQoO7du6tdu3aO8aeeekrvv/++Nm3apJSUFL333nt6+umnr5spJSVFRUVFjsdPZwgCAAAAAKqfRX//Rh9sz5PFIs0a1EnhwQ1MRwIASVId0wHutLfeekvTpk3ToUOHlJKSoqSkJM2bN+9n7Ss+Pl779u3T559/XmF8zJgxjn9u3769AgIC9Mgjj+jIkSNq0aLFVftxd3eXu7v7z8oAAAAAAKg6WXtO6LXVByRJk/s8oMfa+RtOBAD/Vqkz8ho3bixXV1cVFBRUGC8oKJC//7U/3Pz9/W84/6c/K7PPG/H391dYWJh+85vf6O2339b8+fN14sSJG2bx8fGRp6dnhfFx48Zp1apV2rRpk4KCgm74mlFRUZKkr7/+utJ5AQAAAADVQ853Z5W4LFeSNCI6RKO6hxjNAwD/qVJFnpubm7p06aINGzY4xmw2mzZs2KBu3bpdc5tu3bpVmC9J69atc8wPDQ2Vv79/hTlWq1Xbt2+/7j5vlc1mkyTHjSZulkX617UQxo0bpxUrVmjjxo0KDQ296evk5uZKkgICAm4rLwAAAADAjG9Pl+iZJTtVdtmmmPv9NOXXD8hisZiOBQAVVPqrtUlJSRo+fLgiIiLUtWtXzZo1SyUlJRo5cqQkadiwYWrWrJlSU1MlSS+88IJ69uypN998U3369NHSpUu1c+dOLVy4UJJksViUkJCgV199Va1atVJoaKimTJmiwMBAxcXFOV43Ly9PZ8+eVV5ensrLyx3lWcuWLeXl5aXVq1eroKBAkZGR8vLy0v79+/XSSy+pe/fuCgkJkSSNHTtWaWlpmjhxokaNGqWNGzdq2bJlysrKcrxOfHy8MjMz9cknn8jb29txnT5fX195enrqyJEjyszM1K9+9Ss1atRIe/bsUWJioh5++GF16NCh0v8CAAAAAABmnS0p04j0Hfrx/CV1CPLVnCHhcnWhxANQ/VS6yBs0aJBOnTqlqVOnKj8/X+Hh4VqzZo3jJhJ5eXlycfn3iX7R0dHKzMzU5MmTNWnSJLVq1UorV66scPOIiRMnqqSkRGPGjFFhYaF69OihNWvWyMPDwzFn6tSpWrJkieN5p06dJEmbNm1Sr1695OnpqUWLFikxMVGlpaUKDg5W//79lZyc7NgmNDRUWVlZSkxM1OzZsxUUFKTFixcrNjbWMWf+/PmSpF69elU47vT0dI0YMUJubm5av369o8AMDg7WgAEDNHny5Mq+lQAAAAAAwy5eKteY/96pb8+cV7MGnlo8PEL13Grc5eQB1BAWu91uNx2itrFarfL19VVRUZF8fHxMxwEAAACAWslms+v5pbu1as8JeXvU0fLnotXKz9t0LAC10K12RZW6Rh4AAAAAADXFjLUHtWrPCdV1tejt33WhxANQ7VHkAQAAAABqnQ+2f6cFW45Ikt4Y0EHRLRobTgQAN0eRBwAAAACoVTYdPKmpn+yXJCXGtFb/zkGGEwHAraHIAwAAAADUGvuPF2ncB7tUbrPriS5Bev6RlqYjAcAto8gDAAAAANQKxwsvaFRGtkrKytW9ZSO99tv2slgspmMBwC2jyAMAAAAA1HjFFy9pVEa2Cqylau3npXlDu8itDr8SA3AufGoBAAAAAGq0S+U2/f6DXTqQX6wm3u56d0SkfD3rmo4FAJVGkQcAAAAAqLHsdrumrNynvx8+Lc+6rnp3eKSC7qlnOhYA/CwUeQAAAACAGmve5iNamn1MLhYp7alOah/kazoSAPxsFHkAAAAAgBrpk9wfNHPtQUnSK79pq0fu9zOcCABuD0UeAAAAAKDG2f7NGb300R5J0rMPhep33ULMBgKAO4AiDwAAAABQoxw5dU5j3stRWblNj7fzV8rj95uOBAB3BEUeAAAAAKDGOH2uVCPTs1V04ZI6NW+gtwaFy8XFYjoWANwRFHkAAAAAgBrhQlm5nlmyU3lnz6t5w3paPCxCHnVdTccCgDuGIg8AAAAA4PTKbXYlfLhbuccK1aBeXWWMjFQjL3fTsQDgjqLIAwAAAAA4vdTV/9Ta/QVyc3XRwt9F6L4mXqYjAcAdR5EHAAAAAHBqS774Vos/PypJ+j9PdlTX0IaGEwHA3UGRBwAAAABwWuu/KtArf9svSZr4WBv9pmOg4UQAcPdQ5AEAAAAAnNKe7ws1/v/uls0uDekarOd6tjAdCQDuKoo8AAAAAIDT+f7H8xqVsVMXLpXr4dZN9Md+7WSxWEzHAoC7iiIPAAAAAOBUii5c0sj0bJ0+V6owf2/NfaqT6rry6y2Amo9POgAAAACA0yi7bNPY93J0+OQ5+ft4KH1kpLw96pqOBQBVgiIPAAAAAOAU7Ha7kpfv0bZvzqi+m6veHRGpAF9P07EAoMpQ5AEAAAAAnMLsDYe1fNcPcnWxaO7Qznog0Md0JACoUhR5AAAAAIBq7+Oc7zVr/WFJ0p/6tVOvNk0NJwKAqkeRBwAAAACo1r74+rSS/7pHkvRcrxZ6Kqq54UQAYAZFHgAAAACg2jpUUKz/ej9Hl2129e0YqJcebWM6EgAY87OKvLlz5yokJEQeHh6KiorSjh07bjj/o48+UlhYmDw8PNS+fXutXr26ws/tdrumTp2qgIAAeXp6KiYmRocPH64wZ/r06YqOjla9evXUoEGDq17jzJkzeuyxxxQYGCh3d3cFBwdr3LhxslqtFeZt3rxZnTt3lru7u1q2bKmMjIxKH9/FixcVHx+vRo0aycvLSwMGDFBBQcEN3wMAAAAAQOWcLL6okenZKr54WZEh92jmEx3k4mIxHQsAjKl0kffhhx8qKSlJ06ZN065du9SxY0fFxsbq5MmT15z/xRdfaMiQIRo9erR2796tuLg4xcXFad++fY45M2bM0Jw5c7RgwQJt375d9evXV2xsrC5evOiYU1ZWpoEDB+q555679oG4uKhfv3769NNPdejQIWVkZGj9+vUaO3asY87Ro0fVp08f9e7dW7m5uUpISNAzzzyjtWvXVur4EhMT9be//U0fffSRtmzZouPHj6t///6VfSsBAAAAANdxvuyyRmfs1A+FFxTauL4W/i5CHnVdTccCAKMsdrvdXpkNoqKiFBkZqbS0NEmSzWZTcHCwxo8fr+Tk5KvmDxo0SCUlJVq1apVj7MEHH1R4eLgWLFggu92uwMBAvfjii5owYYIkqaioSH5+fsrIyNDgwYMr7C8jI0MJCQkqLCy8adY5c+Zo5syZOnbsmCTp5ZdfVlZWVoUScfDgwSosLNSaNWtu6fiKiorUpEkTZWZm6oknnpAkHThwQPfff7+2bdumBx988Ka5rFarfH19VVRUJB+fmnGXpQVbjujH82WmYwAAAACoIXZ/V6gd355Vw/puWvH7aN3bqL7pSABw19xqV1SnMjstKytTTk6OUlJSHGMuLi6KiYnRtm3brrnNtm3blJSUVGEsNjZWK1eulPSvs+Ty8/MVExPj+Lmvr6+ioqK0bdu2q4q8W3X8+HEtX75cPXv2rJDlytf5KUtCQsItH19OTo4uXbpUYT9hYWFq3rz5dYu80tJSlZaWOp7/59d9a4KlO/L07ZnzpmMAAAAAqEHc67ho0bAISjwA+P8qVeSdPn1a5eXl8vPzqzDu5+enAwcOXHOb/Pz8a87Pz893/PynsevNqYwhQ4bok08+0YULF9S3b18tXrz4plmsVqsuXLigH3/88abHl5+fLzc3t6uu03ejvKmpqXrllVcqfSzO5MnIYP1Ywhl5AAAAAO4MF4tFv2ofoI7BDUxHAYBqo1JFnjN46623NG3aNB06dEgpKSlKSkrSvHnzjGb6KcdPrFargoODDSa6837fq6XpCAAAAAAAADVapYq8xo0by9XV9ao7tBYUFMjf3/+a2/j7+99w/k9/FhQUKCAgoMKc8PDwysRz7M/f319hYWFq2LChHnroIU2ZMkUBAQHXzeLj4yNPT0+5urre9Pj8/f1VVlamwsLCCmfl3eg9cHd3l7u7e6WPBQAAAAAAAPhJpe5a6+bmpi5dumjDhg2OMZvNpg0bNqhbt27X3KZbt24V5kvSunXrHPNDQ0Pl7+9fYY7VatX27duvu89bZbPZJMlxfbqbZbmV4+vSpYvq1q1bYc7BgweVl5d323kBAAAAAACA66n0V2uTkpI0fPhwRUREqGvXrpo1a5ZKSko0cuRISdKwYcPUrFkzpaamSpJeeOEF9ezZU2+++ab69OmjpUuXaufOnVq4cKEkyWKxKCEhQa+++qpatWql0NBQTZkyRYGBgYqLi3O8bl5ens6ePau8vDyVl5crNzdXktSyZUt5eXlp9erVKigoUGRkpLy8vLR//3699NJL6t69u0JCQiRJY8eOVVpamiZOnKhRo0Zp48aNWrZsmbKysm75+Hx9fTV69GglJSWpYcOG8vHx0fjx49WtW7dbumMtAAAAAAAA8HNUusgbNGiQTp06palTpyo/P1/h4eFas2aN4wYReXl5cnH594l+0dHRyszM1OTJkzVp0iS1atVKK1euVLt27RxzJk6cqJKSEo0ZM0aFhYXq0aOH1qxZIw8PD8ecqVOnasmSJY7nnTp1kiRt2rRJvXr1kqenpxYtWqTExESVlpYqODhY/fv3V3JysmOb0NBQZWVlKTExUbNnz1ZQUJAWL16s2NjYWz4+6V/X4XNxcdGAAQNUWlqq2NhY49fhAwAAAAAAQM1msdvtdtMhahur1SpfX18VFRXJx8fHdBwAAAAAAAAYdKtdUaWukQcAAAAAAADADIo8AAAAAAAAwAlQ5AEAAAAAAABOgCIPAAAAAAAAcAIUeQAAAAAAAIAToMgDAAAAAAAAnABFHgAAAAAAAOAE6pgOUBvZ7XZJktVqNZwEAAAAAAAApv3UEf3UGV0PRZ4BxcXFkqTg4GDDSQAAAAAAAFBdFBcXy9fX97o/t9hvVvXhjrPZbDp+/Li8vb1lsVhMx7kjrFargoODdezYMfn4+JiOA8NYD7gS6wFXYj3gP7EmcCXWA67EesCVWA+4Uk1cD3a7XcXFxQoMDJSLy/WvhMcZeQa4uLgoKCjIdIy7wsfHp8b8R4Tbx3rAlVgPuBLrAf+JNYErsR5wJdYDrsR6wJVq2nq40Zl4P+FmFwAAAAAAAIAToMgDAAAAAAAAnABFHu4Id3d3TZs2Te7u7qajoBpgPeBKrAdcifWA/8SawJVYD7gS6wFXYj3gSrV5PXCzCwAAAAAAAMAJcEYeAAAAAAAA4AQo8gAAAAAAAAAnQJEHAAAAAAAAOAGKPAAAAAAAAMAJUOThjpg7d65CQkLk4eGhqKgo7dixw3QkGLB161b17dtXgYGBslgsWrlypelIMCg1NVWRkZHy9vZW06ZNFRcXp4MHD5qOBUPmz5+vDh06yMfHRz4+PurWrZs+++wz07FQTbz++uuyWCxKSEgwHQUG/OEPf5DFYqnwCAsLMx0LBv3www96+umn1ahRI3l6eqp9+/bauXOn6VgwJCQk5KrPCIvFovj4eNPRYEB5ebmmTJmi0NBQeXp6qkWLFvrTn/6k2nQfV4o83LYPP/xQSUlJmjZtmnbt2qWOHTsqNjZWJ0+eNB0NVaykpEQdO3bU3LlzTUdBNbBlyxbFx8fryy+/1Lp163Tp0iU9+uijKikpMR0NBgQFBen1119XTk6Odu7cqV/84hfq16+f9u/fbzoaDMvOztbbb7+tDh06mI4Cg9q2basTJ044Hp9//rnpSDDkxx9/VPfu3VW3bl199tln+uqrr/Tmm2/qnnvuMR0NhmRnZ1f4fFi3bp0kaeDAgYaTwYQ33nhD8+fPV1pamv75z3/qjTfe0IwZM/SXv/zFdLQqY7HXptoSd0VUVJQiIyOVlpYmSbLZbAoODtb48eOVnJxsOB1MsVgsWrFiheLi4kxHQTVx6tQpNW3aVFu2bNHDDz9sOg6qgYYNG2rmzJkaPXq06Sgw5Ny5c+rcubPmzZunV199VeHh4Zo1a5bpWKhif/jDH7Ry5Url5uaajoJqIDk5Wf/4xz/097//3XQUVFMJCQlatWqVDh8+LIvFYjoOqtivf/1r+fn56Z133nGMDRgwQJ6ennr//fcNJqs6nJGH21JWVqacnBzFxMQ4xlxcXBQTE6Nt27YZTAaguikqKpL0r/IGtVt5ebmWLl2qkpISdevWzXQcGBQfH68+ffpU+P8I1E6HDx9WYGCg7rvvPg0dOlR5eXmmI8GQTz/9VBERERo4cKCaNm2qTp06adGiRaZjoZooKyvT+++/r1GjRlHi1VLR0dHasGGDDh06JEn63//9X33++ed6/PHHDSerOnVMB4BzO336tMrLy+Xn51dh3M/PTwcOHDCUCkB1Y7PZlJCQoO7du6tdu3am48CQvXv3qlu3brp48aK8vLy0YsUKPfDAA6ZjwZClS5dq165dys7ONh0FhkVFRSkjI0Nt2rTRiRMn9Morr+ihhx7Svn375O3tbToeqtg333yj+fPnKykpSZMmTVJ2draef/55ubm5afjw4abjwbCVK1eqsLBQI0aMMB0FhiQnJ8tqtSosLEyurq4qLy/X9OnTNXToUNPRqgxFHgDgrouPj9e+ffu45lEt16ZNG+Xm5qqoqEgff/yxhg8fri1btlDm1ULHjh3TCy+8oHXr1snDw8N0HBh25VkUHTp0UFRUlO69914tW7aMr97XQjabTREREXrttdckSZ06ddK+ffu0YMECijzonXfe0eOPP67AwEDTUWDIsmXL9MEHHygzM1Nt27ZVbm6uEhISFBgYWGs+IyjycFsaN24sV1dXFRQUVBgvKCiQv7+/oVQAqpNx48Zp1apV2rp1q4KCgkzHgUFubm5q2bKlJKlLly7Kzs7W7Nmz9fbbbxtOhqqWk5OjkydPqnPnzo6x8vJybd26VWlpaSotLZWrq6vBhDCpQYMGat26tb7++mvTUWBAQEDAVX/Bc//99+uvf/2roUSoLr777jutX79ey5cvNx0FBr300ktKTk7W4MGDJUnt27fXd999p9TU1FpT5HGNPNwWNzc3denSRRs2bHCM2Ww2bdiwgeseAbWc3W7XuHHjtGLFCm3cuFGhoaGmI6GasdlsKi0tNR0DBjzyyCPau3evcnNzHY+IiAgNHTpUubm5lHi13Llz53TkyBEFBASYjgIDunfvroMHD1YYO3TokO69915DiVBdpKenq2nTpurTp4/pKDDo/PnzcnGpWGW5urrKZrMZSlT1OCMPty0pKUnDhw9XRESEunbtqlmzZqmkpEQjR440HQ1V7Ny5cxX+9vzo0aPKzc1Vw4YN1bx5c4PJYEJ8fLwyMzP1ySefyNvbW/n5+ZIkX19feXp6Gk6HqpaSkqLHH39czZs3V3FxsTIzM7V582atXbvWdDQY4O3tfdX1MuvXr69GjRpxHc1aaMKECerbt6/uvfdeHT9+XNOmTZOrq6uGDBliOhoMSExMVHR0tF577TU9+eST2rFjhxYuXKiFCxeajgaDbDab0tPTNXz4cNWpQ41Rm/Xt21fTp09X8+bN1bZtW+3evVt//vOfNWrUKNPRqozFbrfbTYeA80tLS9PMmTOVn5+v8PBwzZkzR1FRUaZjoYpt3rxZvXv3vmp8+PDhysjIqPpAMOp6dxJLT0/nAsW10OjRo7VhwwadOHFCvr6+6tChg15++WX98pe/NB0N1USvXr0UHh6uWbNmmY6CKjZ48GBt3bpVZ86cUZMmTdSjRw9Nnz5dLVq0MB0NhqxatUopKSk6fPiwQkNDlZSUpGeffdZ0LBj0P//zP4qNjdXBgwfVunVr03FgUHFxsaZMmaIVK1bo5MmTCgwM1JAhQzR16lS5ubmZjlclKPIAAAAAAAAAJ8A18gAAAAAAAAAnQJEHAAAAAAAAOAGKPAAAAAAAAMAJUOQBAAAAAAAAToAiDwAAAAAAAHACFHkAAAAAAACAE6DIAwAAAAAAAJwARR4AAAAAAADgBCjyAAAAcMdt3rxZFotFhYWFpqMAAADUGBa73W43HQIAAADOrVevXgoPD9esWbMkSWVlZTp79qz8/PxksVjMhgMAAKgh6pgOAAAAgJrHzc1N/v7+pmMAAADUKHy1FgAAALdlxIgR2rJli2bPni2LxSKLxaKMjIwKX63NyMhQgwYNtGrVKrVp00b16tXTE088ofPnz2vJkiUKCQnRPffco+eff17l5eWOfZeWlmrChAlq1qyZ6tevr6ioKG3evNnMgQIAABjGGXkAAAC4LbNnz9ahQ4fUrl07/fGPf5Qk7d+//6p558+f15w5c7R06VIVFxerf//++u1vf6sGDRpo9erV+uabbzRgwAB1795dgwYNkiSNGzdOX331lZYuXarAwECtWLFCjz32mPbu3atWrVpV6XECAACYRpEHAACA2+Lr6ys3NzfVq1fP8XXaAwcOXDXv0qVLmj9/vlq0aCFJeuKJJ/Tee++poKBAXl5eeuCBB9S7d29t2rRJgwYNUl5entLT05WXl6fAwEBJ0oQJE7RmzRqlp6frtddeq7qDBAAAqAYo8gAAAFAl6tWr5yjxJMnPz08hISHy8vKqMHby5ElJ0t69e1VeXq7WrVtX2E9paakaNWpUNaEBAACqEYo8AAAAVIm6detWeG6xWK45ZrPZJEnnzp2Tq6urcnJy5OrqWmHeleUfAABAbUGRBwAAgNvm5uZW4SYVd0KnTp1UXl6ukydP6qGHHrqj+wYAAHBG3LUWAAAAty0kJETbt2/Xt99+q9OnTzvOqrsdrVu31tChQzVs2DAtX75cR48e1Y4dO5SamqqsrKw7kBoAAMC5UOQBAADgtk2YMEGurq564IEH1KRJE+Xl5d2R/aanp2vYsGF68cUX1aZNG8XFxSk7O1vNmze/I/sHAABwJha73W43HQIAAAAAAADAjXFGHgAAAAAAAOAEKPIAAAAAAAAAJ0CRBwAAAAAAADgBijwAAAAAAADACVDkAQAAAAAAAE6AIg8AAAAAAABwAhR5AAAAAAAAgBOgyAMAAAAAAACcAEUeAAAAAAAA4AQo8gAAAAAAAAAnQJEHAAAAAAAAOIH/B0HkR0L/M2PlAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(15,20))\n", "plt.title('eColi Model')\n", @@ -240,48 +262,22 @@ "\n", "#plt.savefig('05_ODE_simpleEcoliModel_X_S_DOT_A_V_E.pdf')\n", "#plt.savefig('05_ODE_simpleEcoliModel_X_S_DOT_A_V_E.jpg')" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "BavujwCEh2LS", - "outputId": "5cd6f818-c967-4d05-da49-fb35c642cfc8" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - ":4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed.\n", - " plt.subplot(4, 1, 1)\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
      " - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABPIAAAZICAYAAAAfMO4PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZd7G8Xtmkkz6JIQkEJIQinQDCMhSVBAVEXXtXRF11VfFtrsKuy6CDV13UdfeFl0Vu6ArCAIKyIKK0nsRQqghhPRkkszM+8dJhgxJKCHkzCTfz3Wda855zjNnfoPRi9w+xeLxeDwCAAAAAAAA4NesZhcAAAAAAAAA4OgI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkFdPBQUFuv/++9W2bVuFhYVp4MCBWrp0qdllAQAAAAAAoIkiyKun2267TXPmzNF7772n1atX67zzztM555yjXbt2mV0aAAAAAAAAmiCLx+PxmF1EoCkpKVFUVJS+/PJLjRw50tvep08fjRgxQk888YSJ1QEAAAAAAKApCjK7gEBUUVEhl8ul0NBQn/awsDAtWrSoRn+n0ymn0+m9drvdysnJUVxcnCwWy0mvFwAAAAAAAP7L4/GooKBASUlJslrrnkBLkFcPUVFRGjBggB5//HF17dpViYmJ+vDDD7VkyRJ17NixRv9JkyZp4sSJJlQKAAAAAACAQJGZmank5OQ67zO1tp62bt2qW265RQsXLpTNZtNpp52mTp066ddff9X69et9+h4+Ii8vL0+pqanKzMxUdHR0Y5cOAAAAAAAAP5Kfn6+UlBTl5ubK4XDU2Y8RefXUoUMHLViwQEVFRcrPz1fr1q119dVXq3379jX62u122e32Gu3R0dEEeQAAAAAAAJCkoy7Bxq61JygiIkKtW7fWwYMHNXv2bP3+9783uyQAAAAAAAA0QYzIq6fZs2fL4/Goc+fO2rJli/785z+rS5cuGj16tNmlAQAAAAAAoAliRF495eXl6e6771aXLl100003afDgwZo9e7aCg4PNLg0AAAAAAABNEJtdmCA/P18Oh0N5eXmskQcAAAAAANDMHWtWxNTaAFBRUaGysjKzywBOWHBwsIKCgo66eCcAAAAAAKiJIM+PeTwe7dixQ9nZ2WaXAjSYoKAgtWnTRnFxcQR6AAAAAAAcB4I8P1YV4rVp00aRkZGyWlnSEIHL4/GovLxcBw8eVEZGhoqKitS2bVuzywIAAAAAIGAQ5PmpiooKb4jXqlUrs8sBGkxMTIxCQ0O1e/duSSLMAwAAAADgGDHEy09VrYkXGRlpciVAw6tauHPu3LnasGGDydUAAAAAABAYCPL8HNNp0RRVrY1XXl6uH3/8US6Xy+SKAAAAAADwf6REAEwTHR2tgwcPKicnx+xSAAAAAADwewR5AExjtVrlcrlUXl5udikAAAAAAPg9gjwApqmaYgsAAAAAAI6OIA9+z2KxaMKECWaXYYp33nlHFovFe2RnZzfq50+fPt3n83/55ZdG/XwAAAAAAHAIQR4a3eHhlMViUUJCgoYOHapvvvnG7PL80nPPPaf33ntPUVFRJ/Scyy+/XBdccIEkacKECUcNB/v27av33ntPt99++wl9LgAAAAAAOHFBZheA5uuxxx5Tu3bt5PF4tG/fPr3zzju64IIL9N///lcXXniht19JSYmCgpr3j+oll1yitLS0E3pGeXm55syZo0mTJh3ze5KTk3XDDTeooqJCb7zxxgl9PgAAAAAAODHNOx2BqUaMGKG+fft6r2+99VYlJibqww8/9AnyQkNDzSivyfnhhx9UUFCgkSNHml0KAAAAAACoB6bWwm/ExMQoLCysxui72tbIW758uUaMGKHo6GhFRkZq2LBh+vHHH336VE3hXbRoke69917Fx8crJiZGd9xxh8rKypSbm6ubbrpJsbGxio2N1UMPPSSPx+PzjH/84x8aOHCg4uLiFBYWpj59+uizzz6rUfucOXM0ePBgxcTEKDIyUp07d9Zf/vIXnz4vvviiunfvrvDwcMXGxqpv376aOnXqCfyJSS+//LLat2+vsLAwnX766frhhx80ZMgQDRkypEbfGTNmqFu3bic8sg8AAAAAAJiDEXkBxOPxqKTcZXYZPsKCbfXeeTQvL0/Z2dnyeDzKysrSiy++qMLCQt1www1HfN/atWt1xhlnKDo6Wg899JCCg4P1+uuva8iQIVqwYIH69+/v03/MmDFq1aqVJk6cqB9//FFvvPGGYmJitHjxYqWmpuqpp57SzJkz9eyzz6pHjx666aabvO994YUXdPHFF+v6669XWVmZPvroI1155ZX6+uuvvSPb1q5dqwsvvFDp6el67LHHZLfbtWXLFv3vf//zPufNN9/UvffeqyuuuEL33XefSktLtWrVKv3000+67rrr6vXn9+qrr+qee+7RGWecoQceeEDbt2/XJZdcotjYWCUnJ9foP3PmTJ+RjgAAAAAAILAQ5AWQknKXuo2fbXYZPtY9NlzhIfX7MTrnnHN8ru12u/7973/r3HPPPeL7HnnkEZWXl2vRokVq3769JOmmm25S586d9dBDD2nBggU+/RMTEzVz5kxZLBbddddd2rJli5599lndcccdevXVVyVJt99+u9LS0vTvf//bJ8jbtGmTwsLCvNf33HOPTjvtNE2ePNkb5M2ZM0dlZWX65ptv1LJly1prnjFjhrp3765PP/30GP90jqysrEx/+9vf1K9fP3333XfeUYzp6em6+eabawR527Zt04YNG7zfFwAAAAAABB6m1sI0L7/8subMmaM5c+bo/fff19ChQ3Xbbbfpiy++qPM9LpdL3377rS655BJviCdJrVu31nXXXadFixYpPz/f5z233nqrz6jB/v37y+Px6NZbb/W22Ww29e3bV7/99pvPe6uHeAcPHlReXp7OOOMMLVu2zNseExMjSfryyy/ldrtrrTsmJkY7d+7U0qVLj/Ancux++eUXHThwQH/4wx98piJff/31io2NrdF/xowZcjgcGjx4cIN8PgAAAAAAaHyMyAsgYcE2rXtsuNll+AgLttX7vaeffrrPZhfXXnutevfurXvuuUcXXnihQkJCarxn//79Ki4uVufOnWvc69q1q9xutzIzM9W9e3dve2pqqk8/h8MhSUpJSanRfvDgQZ+2r7/+Wk888YRWrFghp9Ppba8eDF599dV66623dNttt2ns2LEaNmyYLrvsMl1xxRWyWo2s/OGHH9bcuXN1+umnq2PHjjrvvPN03XXXadCgQUf9c6pNRkaGJKljx44+7UFBQbWugTdjxgydd955zX73XwAAAAAAAhkj8gKIxWJReEiQXx31XR+vNlarVUOHDtWePXu0efPmBnuuzVZ72Fhbe/XNLn744QddfPHFCg0N1SuvvKKZM2dqzpw5uu6663z6hYWFaeHChZo7d65uvPFGrVq1SldffbXOPfdcuVzGmoZdu3bVxo0b9dFHH2nw4MH6/PPPNXjwYD366KMN9j3rUlxcrPnz5+uCCy446Z8FAAAAAABOHoI8+JWKigpJUmFhYa334+PjFR4ero0bN9a4t2HDBlmt1hoj7err888/V2hoqGbPnq1bbrlFI0aMqLGuXxWr1aphw4Zp8uTJWrdunZ588kl99913+v777719IiIidPXVV2vKlCnasWOHRo4cqSeffFKlpaXHXVvbtm0lSVu2bPFpr6io0Pbt233avvvuOzmdTo0YMeK4PwcAAAAAAPgPgjz4jfLycn377bcKCQlR165da+1js9l03nnn6csvv/QJrPbt26epU6dq8ODBio6ObpB6bDZjR96qUXWStH37dk2fPt2nX05OTo339urVS5K803EPHDjgcz8kJETdunWTx+NReXn5cdfWt29fxcXF6c033/SGn5L0wQcf1JgePHPmTPXt21eJiYnH/TkAAAAAAMB/sGAWTPPNN99ow4YNkqSsrCxNnTpVmzdv1tixY48Yxj3xxBOaM2eOBg8erLvuuktBQUF6/fXX5XQ69fe//73B6hs5cqQmT56s888/X9ddd52ysrL08ssvq2PHjlq1apW332OPPaaFCxdq5MiRatu2rbKysvTKK68oOTnZu7nEeeedp1atWmnQoEFKTEzU+vXr9dJLL2nkyJGKioo67tpCQkI0YcIEjRkzRmeffbauuuoqbd++Xe+88446dOjgM+V55syZGj16dJ3Pmjx5ssLDw33arFar/vKXvxx3XQAAAAAA4OQhyINpxo8f7z0PDQ1Vly5d9Oqrr+qOO+444vu6d++uH374QePGjdOkSZPkdrvVv39/vf/+++rfv3+D1Xf22Wfr7bff1tNPP637779f7dq10zPPPKPt27f7BHkXX3yxtm/frn//+9/Kzs5Wy5YtddZZZ2nixInejTXuuOMOffDBB5o8ebIKCwuVnJyse++9V4888ki967vnnnvk8Xj0z3/+U3/605/Us2dPffXVV7r33nsVGhoqSVq7dq0yMjKOuD7epEmTarTZbDaCPAAAAAAA/IzFU33VfjSK/Px8ORwO5eXl1TnyrLi4WOvXr1fXrl1rjJZC8/HOO+9o9OjRWrZsmVJSUhQXF3fEDUbcbrfi4+N12WWX6c0339Tf//53TZ48WXv27KnXxiRlZWXKz8/XRx99pDFjxmjp0qU+Ow3XV9XP95YtW5SZmanrrrtOSUlJJ/xcAAAAAAAC0bFkRRIj8oCAcNppp0mS9u/fr5YtW0qSSktLZbfbfQK6//znP8rJydGQIUMkSWlpaXruuefqvbvwzJkzdemll55Y8QAAAAAAoEEQ5NWDy+XShAkT9P7772vv3r1KSkrSzTffrEceeaTegQlQm+HDh2vOnDne66qpupL0448/6oEHHtCVV16puLg4LVu2TG+//bZ69OihK6+8UpJ01VVXndDnDxo0yOfzO3fufELPAwAAAAAA9UeQVw/PPPOMXn31Vb377rvq3r27fvnlF40ePVoOh0P33nuv2eWhCWndurVat25d6720tDSlpKToX//6l3JyctSiRQvddNNNevrppxUSEtIgnx8fH69zzjmnQZ4FAAAAAABODEFePSxevFi///3vNXLkSElGoPLhhx/q559/NrkyNCdpaWn66quvzC4DAAAAAAA0EqvZBQSigQMHat68edq0aZMkaeXKlVq0aJFGjBhRa3+n06n8/HyfAwAAAAAAADgejMirh7Fjxyo/P19dunSRzWaTy+XSk08+qeuvv77W/pMmTdLEiRMbuUoAAAAAAAA0JYzIq4dPPvlEH3zwgaZOnaply5bp3Xff1T/+8Q+9++67tfYfN26c8vLyvEdmZmYjVwwAAAAAAIBAx4i8evjzn/+ssWPH6pprrpEknXrqqcrIyNCkSZM0atSoGv3tdrvsdntjlwkAAAAAAIAmhBF59VBcXCyr1fePzmazye12m1QRAAAAAAAAmjpG5NXDRRddpCeffFKpqanq3r27li9frsmTJ+uWW24xuzQAAAAAAAA0UQR59fDiiy/qb3/7m+666y5lZWUpKSlJd9xxh8aPH292aQAAAAAAAGiimFpbD1FRUXr++eeVkZGhkpISbd26VU888YRCQkLMLq3ZmjBhgiwWi7Kzs80uxTRpaWmyWCyyWCy65557Gv3ze/Xq5f38Cy+8sNE/HwAAAACApo4gD6ZYvXq1rrjiCrVt21ahoaFq06aNzj33XL344otml6bdu3drwoQJWrFixUl5/tSpU/X888+flGefccYZeu+992rddOV4rF69WhaLRT///LMkHVM4+NRTT+m9995Ty5YtT+izAQAAAABA7Qjy0OgWL16svn37auXKlfrDH/6gl156SbfddpusVqteeOEFs8vT7t27NXHixIAM8tq3b68bbrhB/fr1O6HnzJgxQwkJCcf1nAsuuEA33HCDIiIiTuizAQAAAABA7VgjD43uySeflMPh0NKlSxUTE+NzLysry5yiTkBxcbHCw8PNLqNBzZw5UyNGjJDFYjG7FAAAAAAAUIkReWh0W7duVffu3WuEeJKUkJDgPd++fbssFoveeeedGv0sFosmTJhQoz07O1tXXXWVoqOjFRcXp/vuu0+lpaU+febMmaPBgwcrJiZGkZGR6ty5s/7yl79IkubPn+8dhTZ69Gjvmm9VNQwZMkQ9evTQr7/+qjPPPFPh4eHe93755ZcaOXKkkpKSZLfb1aFDBz3++ONyuVzezx4yZIhmzJihjIwM77PT0tK8951Opx599FF17NhRdrtdKSkpeuihh+R0Oo/lj7ZOGRkZuvjiixUREaGEhAQ98MADmj17tiwWi+bPn+/TNzc3V4sXL9bIkSNP6DMBAAAAAEDDYkReIPF4pPJis6vwFRwuHeeorbZt22rJkiVas2aNevTo0aDlXHXVVUpLS9OkSZP0448/6l//+pcOHjyo//znP5KktWvX6sILL1R6eroee+wx2e12bdmyRf/73/8kSV27dtVjjz2m8ePH6/bbb9cZZ5whSRo4cKD3Mw4cOKARI0bommuu0Q033KDExERJ0jvvvKPIyEg9+OCDioyM1Hfffafx48crPz9fzz77rCTpr3/9q/Ly8rRz504999xzkqTIyEhJktvt1sUXX6xFixbp9ttvV9euXbV69Wo999xz2rRpk6ZPn16vP5OioiKdffbZ2rNnj+677z61atVKU6dO1ffff19r/6qA77zzzqvX5wEAAAAAgJODIC+QlBdLTyWZXYWvv+yWQo5vTbQ//elPGjFihHr16qXTTz9dZ5xxhoYNG6ahQ4cqODj4hMpp166dvvzyS0nS3XffrejoaL3yyiv605/+pPT0dM2ZM0dlZWX65ptvat2UITExUSNGjND48eM1YMAA3XDDDTX67N27V6+99pruuOMOn/apU6cqLCzMe33nnXfqzjvv1CuvvKInnnhCdrtd5557rtq0aaODBw/WePbUqVM1d+5cLViwQIMHD/a29+jRQ3feeacWL17sEygeq9dff12//fabpk+frt///veSpDvuuEO9e/eutf+MGTM0aNAgORyO4/4sAAAAAABw8jC1Fo3u3HPP1ZIlS3TxxRdr5cqV+vvf/67hw4erTZs2+uqrr07o2XfffbfP9ZgxYyQZa75J8k7n/fLLL+V2u+v1GXa7XaNHj67RXj3EKygoUHZ2ts444wwVFxdrw4YNR33up59+qq5du6pLly7Kzs72HmeffbYk1TmC7mhmzZqlNm3a6OKLL/a2hYaG6g9/+EONvm63W7NmzWJaLQAAAAAAfogReYEkONwYAedPguu3yUO/fv30xRdfqKysTCtXrtS0adP03HPP6YorrtCKFSvUrVu3ej33lFNO8bnu0KGDrFartm/fLkm6+uqr9dZbb+m2227T2LFjNWzYMF122WW64oorZLUeW67dpk0bhYSE1Ghfu3atHnnkEX333XfKz8/3uZeXl3fU527evFnr169XfHx8rffruxFIRkaGOnToUGPjio4dO9bou3TpUu3fv58gDwAAAAAAP0SQF0gsluOexurvQkJC1K9fP/Xr10+dOnXS6NGj9emnn+rRRx+tc8fU6ptHHM3hzwgLC9PChQv1/fffa8aMGZo1a5Y+/vhjnX322fr2229ls9mO+szqI++q5Obm6qyzzlJ0dLQee+wxdejQQaGhoVq2bJkefvjhYxr953a7deqpp2ry5Mm13k9JSTnqM07UzJkzlZaWVu8gFQAAAAAAnDwEefAbffv2lSTt2bNHkhQbGyvJCMmqy8jIqPMZmzdvVrt27bzXW7Zskdvt9tkZ1mq1atiwYRo2bJgmT56sp556Sn/961/1/fff65xzzqkzQDyS+fPn68CBA/riiy905plnetu3bdtWo29dz+/QoYNWrlypYcOG1auGurRt21br1q2Tx+Pxee6WLVtq9J0xY4YuuOCCBvtsAAAAAADQcFgjD43u+++/l8fjqdFetY5d586dJUnR0dFq2bKlFi5c6NPvlVdeqfPZL7/8ss/1iy++KEkaMWKEJCknJ6fGe3r16iVJcjqdkqSICGPU4+EB4pFUjeSr/r3KyspqrTUiIqLWqbZXXXWVdu3apTfffLPGvZKSEhUVFR1zPdUNHz5cu3bt8ll/sLS0tMbn7Nu3T8uWLWNaLQAAAAAAfooReWh0Y8aMUXFxsS699FJ16dJFZWVlWrx4sT7++GOlpaX5bCRx22236emnn9Ztt92mvn37auHChdq0aVOdz962bZsuvvhinX/++VqyZInef/99XXfdderZs6ck6bHHHtPChQs1cuRItW3bVllZWXrllVeUnJzs3Sm2Q4cOiomJ0WuvvaaoqChFRESof//+PiP9Djdw4EDFxsZq1KhRuvfee2WxWPTee+/VGlj26dNHH3/8sR588EH169dPkZGRuuiii3TjjTfqk08+0Z133qnvv/9egwYNksvl0oYNG/TJJ59o9uzZ3lGLx+OOO+7QSy+9pGuvvVb33XefWrdurQ8++EChoaGSDo0QnDlzpkJDQzV06NBan/PLL7/oiSeeqNE+ZMgQn112AQAAAADAyUGQh0b3j3/8Q59++qlmzpypN954Q2VlZUpNTdVdd92lRx55xLuzrCSNHz9e+/fv12effaZPPvlEI0aM0DfffKOEhIRan/3xxx9r/PjxGjt2rIKCgnTPPffo2Wef9d6/+OKLtX37dv373/9Wdna2WrZsqbPOOksTJ06Uw+GQJAUHB+vdd9/VuHHjdOedd6qiokJTpkw5YpAXFxenr7/+Wn/84x/1yCOPKDY2VjfccIOGDRum4cOH+/S96667tGLFCk2ZMkXPPfec2rZtq4suukhWq1XTp0/Xc889p//85z+aNm2awsPD1b59e913333q1KlTvf68IyMj9d1332nMmDF64YUXFBkZqZtuukkDBw7U5Zdf7g30Zs6cqaFDh9a6BqAk/fTTT/rpp59qtD/++OMEeQAAAAAANAKLp7YhQzip8vPz5XA4lJeXp+jo6Fr7FBcXa/369eratavCw+u3Myyal7S0NA0YMEAvvviiwsLCvFOE6/L888/rgQce0M6dO5WYmKi4uDhNmjRJd911V70+Pzc3VxUVFTrttNOUnp6ur7/+us6+VT/fW7ZsUWZmpq677jolJSXV63MBAAAAAAh0x5IVSayRBzQpH330keLj4/Xwww/7tJeUlPhcl5aW6vXXX9cpp5yiNm3aKCcnRw888IAuvfTSen/2kCFDFB8fr8zMzHo/AwAAAAAA1I2ptUAT8cEHH3gDu5SUFJ97l112mVJTU9WrVy/l5eXp/fff14YNG/TBBx9IkhISEjRhwoQT+vzXX39dBQUFkqT4+PgTehYAAAAAAKiJIA9oIgYNGlTnveHDh+utt97SBx98IJfLpW7duumjjz7S1Vdf3WCf379//wZ7FgAAAAAAqIkgD2gG7r//ft1///1mlwEAAAAAAE4Aa+QBAAAAAAAAAYAgz8+xqTCaIn6uAQAAAAA4fgR5fio4OFiSVF5ebnIlQMMrKyuTJFVUVJhcCQAAAAAAgYMgz08FBQUpKChIOTk5ZpcCNCiPx6Ps7GyVlZUR5AEAAAAAcBzY7MJPWSwWtWnTRhkZGdqzZ4+io6NlsVjMLguoN4/Ho7KyMmVnZysvL0/Z2dlyu92yWCyyWvl/CgAAAAAAHA1Bnh+Li4tTfn6+du3apd27d5tdDtAgqsK8goICFRUVKTw8XA6Hw+yyAAAAAADwewR5fsxisah9+/bavXu3VqxYodDQUIWGhjJ6CQGroqJC5eXl8ng8Ki4uVlFRkQYMGKCwsDCzSwMAAAAAwO8R5NVDWlqaMjIyarTfddddevnllxv88373u9/JarVq3bp1OnDgADt+okmIiIhQ79699bvf/c7sUgAAAAAACAgEefWwdOlSuVwu7/WaNWt07rnn6sorrzwpnxcUFKSBAweqX79+KiwsJMhDwLNYLIqMjPTuzgwAAAAAAI6OIK8e4uPjfa6ffvppdejQQWedddZJ/dzg4GDFxsae1M8AAAAAAACAfyLIO0FlZWV6//339eCDD9a5q6zT6ZTT6fRe5+fnN1Z5AAAAAAAAaCLYNeEETZ8+Xbm5ubr55pvr7DNp0iQ5HA7vkZKS0ngFAgAAAAAAoEmweFhw7YQMHz5cISEh+u9//1tnn9pG5KWkpCgvL0/R0dGNUSYAAAAAAAD8VH5+vhwOx1GzIqbWnoCMjAzNnTtXX3zxxRH72e122e32RqoKAAAAAAAATRFTa0/AlClTlJCQoJEjR5pdCgAAAAAAAJo4grx6crvdmjJlikaNGqWgIAY2AgAAAAAA4OQiyKunuXPnaseOHbrlllvMLgUAAAAAAADNAEPJ6um8884T+4QAAAAAAACgsTAiDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIq6ddu3bphhtuUFxcnMLCwnTqqafql19+MbssAAAAAAAANFFBZhcQiA4ePKhBgwZp6NCh+uabbxQfH6/NmzcrNjbW7NIAAAAAAADQRBHk1cMzzzyjlJQUTZkyxdvWrl27Ovs7nU45nU7vdX5+/kmtDwAAAAAAAE0PU2vr4auvvlLfvn115ZVXKiEhQb1799abb75ZZ/9JkybJ4XB4j5SUlEasFgAAAAAAAE2BxePxeMwuItCEhoZKkh588EFdeeWVWrp0qe677z699tprGjVqVI3+tY3IS0lJUV5enqKjoxutbgAAAAAAAPif/Px8ORyOo2ZFBHn1EBISor59+2rx4sXetnvvvVdLly7VkiVLjvr+Y/2HAwAAAAAAgKbvWLMiptbWQ+vWrdWtWzeftq5du2rHjh0mVQQAAAAAAICmjiCvHgYNGqSNGzf6tG3atElt27Y1qSIAAAAAAAA0dQR59fDAAw/oxx9/1FNPPaUtW7Zo6tSpeuONN3T33XebXRoAAAAAAACaKIK8eujXr5+mTZumDz/8UD169NDjjz+u559/Xtdff73ZpQEAAAAAAKCJYrMLE7DZBQAAAAAAAKqw2QUAAAAAAADQhBDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDk1cOECRNksVh8ji5duphdFgAAAAAAAJqwILMLCFTdu3fX3LlzvddBQfxRAgAAAAAA4OQhfaqnoKAgtWrV6pj6Op1OOZ1O73V+fv7JKss8P/xTKs6RrEGHHbbjvG7A91gsZv+pAAAAAAAANBiCvHravHmzkpKSFBoaqgEDBmjSpElKTU2tte+kSZM0ceLERq6wkS1/X8r5zewqfFmONxCs5doWLNlCjGtbsGQNrmyr49waZPSv9bzqWcGSLajyNaTa+eHPOqyNcBIAAAAAgGbN4vF4PGYXEWi++eYbFRYWqnPnztqzZ48mTpyoXbt2ac2aNYqKiqrRv7YReSkpKcrLy1N0dHRjln7y/O8FqShbcrskd0W14/Dr2tpO5Lrc7G/euI4YBFaGhkH2yvPKIyhEstkPO6/qZ6/5njrPa3vOYc8kaAQAAAAA4Ljl5+fL4XAcNSsiyGsAubm5atu2rSZPnqxbb731qP2P9R8OjpHb3QBhYS0BodslucolV5nR5io32l1lkquyj6u88l5ZtfPa3lPue36097jKJAXgv5q2w4PCwwLBoFApONR4DbJXvh52fcz3a+ljY5AxAAAAACDwHGtWxG+9DSAmJkadOnXSli1bzC6lebJaJWuIpBCzK2lYVUFinUFgLeGfq1xyOY3zirLKNme18zKpwnnYeeV7fM6P8b0el2/NVffMYrEdRxgYJgVXHeF1vB5+Xu06KMz42QMAAAAAoJEQ5DWAwsJCbd26VTfeeKPZpaApsdqMQ6FmV1I3t+s4AsHqR0nla6nxWn7Y9fHcrx4celxSeZFxNIag0CMEf0dqCzeOkAgpJLLyNaLadbgUHEFQCAAAAADwQZBXD3/605900UUXqW3bttq9e7ceffRR2Ww2XXvttWaXBjQuq02yVoZVZnG7KwO+0mph3+HXh4eBpcZ1eYlUXux7XlFara24Zr+K0kOfXfWskoMn57t5w75qgV+tAeDhYWBt7ZHGEdTERq4CAAAAQDNCkFcPO3fu1LXXXqsDBw4oPj5egwcP1o8//qj4+HizSwOaH6vVGMEWEt44n+d2VQsCDw/8agn+amsrKzr0WlZY+Vp06LpqfcTyYuMo2t9w9dvskj2q2hF92PWRjmp9g8PZ3AQAAAAAGhmbXZiAzS4A1MnjqRb2HRbw+ZwX1x0ElhUZAWD1e9VHEjYEi/UoQWC0FOqo5Yg5dB4SQRgIAAAAAGKzCwAITBZLtRGGDTjK11UhlRVIzkLJWVDtyD/supa2skLfdo/bOErzjKO+LLZDoV5YzBGCv1ruhcUYaxQSBAIAAABoRgjyAKA5sAVJYbHGcSI8HmO03xGDwAIj4HPmHwr7SvOkktzK81xjt2WPSyrJMY76LDNoC6n8Ti2M1/AWRsAX1qLyPLbmeVissWsxAAAAAAQggjwAwLGzWA5toBHVqn7PqJo+XBXqVQ/7qtpK6mivOve4jR2LC/cZx/EIDq8W/h0eBFYP/1pIES2l8DhjFCCj/wAAAACYjCAPANC4qk8fjm59/O/3eIzpviW5xo7BJTlScc6h85LcyuvKturnHvehTUTydx77Z1qDjUAvIl6KiJPCWxohX0TLQ+fhLQ/dD40h+AMAAADQ4AjyAACBxWI5tKlGTMqxv8/tNqb7egO+g7UHgVXnxQeMo6xQcpdLhXuN41hYg4zgr7bAL6KlFJEgRSZKkQnGERxWvz8LAAAAAM0KQR4AoHmwWivX0Is5vveVlxiBXtF+qeiAVJwtFWVXvh7edsAIC90Vxzft1+6oDPUSa3mtdh7RUrLajvebAwAAAGgiCPIAADiS4DDJkWwcx6LCWS3oy64WAlZrK9pvhHwF+ySXU3LmGceBzUd+tsVqjOyrLfCLSpSikqToJCmqtRQUcuLfHQAAAIBfIcgDAKAhBdklRxvjOBqPx9i8ozDr0Ag+7/lhr0X7jTX+irKM42iD/cJbGmsQRiXV8dra2NyDtfwAAACAgEGQBwCAWSyWQ9N94zsdua+rwhjd5xPyVZ3vlQr2Svm7pYI9xo6+xZUjAPeurvuZQaFGoFc1iq960OdIMUYhRiQY05IBAAAAmI4gDwCAQGALqpw+m3jkfh6PsWFHwW4pf08tr3uMwK8kR6oolQ5uM466WIMrRximHJpi7D0q20IiGva7AgAAAKgVQR4AAE2JxSJFxBlHq1Pr7ldeaoR6VcFewZ5qgd9uKW+Xce4ulw5uN466hLXwDfaqB30xKcYafkzhBQAAAE4YQR4AAM1RcKjUop1x1MVVYQR8eTsrj8zKo/I6N1MqKzBG95XkSHtX1f6coFApJlWKTZNi2kqxbX3PQx0n4xsCAAAATQ5BHgAAqJ0tyBhRF5NSd5/SPN+gL7da0Je30xjVV1EqZW8yjtqExdYe8MW2M0b1sQMvAAAAIIkgDwAAnIhQh3Ekdq/9fkWZlL9TOphhTM/NzfA9Lz4glRw0jj0ranmARYpuY4wcjOsgtWgvtehgnMe2M0YWAgAAAM0EQR4AADh5gkIqw7f2td93FhjB3uEBX9V5RYkRBObvlLb/cNibLcZafC3aHQr3vCFfmhRkP7nfDQAAAI0mq6BUqzLztGpnrlbuzNOu3BLNeeBMWZrZWswEeQAAwDz2KKlVD+M4nMcjFe2XcrZJOb9JOVulA1srz3+TnPmH1u3btvCwN1uMablxlSP4WrSXWnaS4jsZ7VZbo3w9AAAAHL+8knKt3pmnlTtztWpnrlbtzNOevNIa/XYeLFFKi3ATKjQPQR4AAPBPFosUmWAcqf1973k8UlH2YeFetfOyQilvh3H8Nt/3vUGhUlxHI9irCvdadjLagsMa7esBAABAKilzac3uPK3MNAK71bvytC27qEY/i0U6JSFS6ckx6pnsUHpyjFo5mt8yKwR5AAAg8FgsUmS8caT+zvde1Ui+A1sPhXsHthw6KkqlfWuMw/ehxu66LTtJ8Z2llqdUhn2dpYi4RvtqAAAATVVZhVsb9xb4jLTbtK9Abk/NvqktwpWe7FDP5BilJzvUo41DEXZiLIvH46nljwsnU35+vhwOh/Ly8hQdHW12OQAANB+uCmMNvuzNUvZGYyfd/ZuM89K8ut8X1kJK6CYldJUSuxnn8V2ksJhGKx0AACCQuNwe/ba/UCt3HlrXbv2efJVVuGv0TYiyHxpplxKj9DYOxUaEmFC1eY41KyLIMwFBHgAAfqZqqq5PuFd55GXW/b7oNocCvqrX+M5M0QUAAM2Kx+PRzoMllSPtjGmya3blqajMVaOvIyxY6cmOyiNGPZvpFNnDHWtWxJhEAACA6lN10wb73isrMgK9rA1S1lopa71x5O86dGyZU+1ZVmNzDW+4V3nEdWCTDQAA0CQcvoPs6l15yikqq9EvLNimHm2ilV45PbZncozaxoU3u51mGxIj8kzAiDwAAJqAklxp/wZpX7VwL2utVHKw9v5BYVJid6l1utTqVKlVuhHwhTSvndYAAEBgOdYdZINtFnVpFX1oXbsUhzrGRyrIZjWh6sDD1Fo/RpAHAEAT5fFIhVlS1rpqR2XIV15cs7/FauyW26oq3KsM+CLjG792AADQ7JWUubR2d553XbtVO+veQbZjfOUOsinGFNmuraNkD2L2QX0R5PkxgjwAAJoZt0vK+U3au0rau1ras8o4L9pfe//IVodG7rXuKSX1lhwpxt+aAQAAGkC5q9oOspnGiLvNWYVy1bKFbEqLsEObUSTHqEcbhyLZQbZBEeT5MYI8AAAgSSrYZwR7VQHf3tXSgS2SavnrWXhLI9Brc5rxmtRbimrV6CUDAIDA43Z79Ft2oVZWW9duXR07yMZH2b2BXdWGFC2a2Q6yZiDIa0RPP/20xo0bp/vuu0/PP//8UfsT5AEAgDo5C40puXtXGSP39qww1uFzV9TsG5V0KNRr01tq3VuKiGv0kgEAgP+o2kF21c6q0C5Xa3blq9BZ8+8S0aFB6plyKLBLT3aoVXQom1GYgF1rG8nSpUv1+uuvKz093exSAABAU2CPlFJON44q5aVGmLd7mbR7uXHs3yAV7JY27pY2zjjUNyZVSqoctZfcz3hlQw0AAJqsg0VlWrkzVysrp8euzMzVAXaQbbII8k5AYWGhrr/+er355pt64oknzC4HAAA0VcGhUnIf46hSVmSM2KsK9nYvM6bl5u4wjnXTjX7WICmxhxHqpZxuvMamsd4eAAABqGozihWZxvTYlZm52pFTc0MtdpBtugjyTsDdd9+tkSNH6pxzzjlikOd0OuV0Or3X+fn5jVEeAABoykIipLYDjKNKaZ60Z6W0a5m061dp51KpYI8xPXfPCmnpm0a/iHgj0EvuKyWfbqy7FxJhxrcAAAB1cLk92pxVoJWZuVqRaYR2G/cV1LoZRfuWEeqZYmxG0TMlRl1bRys0mB1kmyKCvHr66KOPtGzZMi1duvSofSdNmqSJEyc2QlUAAKBZC3VI7c40DknyeKS8nUagt3OplPmzEfQV7Zc2zjQOSbLYpMRuRqiXWhkOOpLN+x4AADQzHo9Hu3JLvNNjV2Tmas2uPBWXuWr0jY+yq1dKjHqlxKhncoxOTXbIERZsQtUwA5td1ENmZqb69u2rOXPmeNfGGzJkiHr16lXrZhe1jchLSUlhswsAAND4ykuNjTQyfz4U8OXvqtnPkWoEeqkDpLYDpZadmI4LAEADyS0u806NXZlpbEiRXVhzXbuIEJvSk2PUMyVGvVKM0XZsRtE0sWvtSTR9+nRdeumlstkODVN1uVyyWCyyWq1yOp0+9w7HrrUAAMCv5O06NGJvx2Jj7T3PYSMAwuOMUK8q2GuVLtmY3AEAwNGUlleta2cEd6t25mr7gZrr2gVZLeraOlo9U4x17XqlxKh9fKRsVkK75oAg7yQqKChQRkaGT9vo0aPVpUsXPfzww+rRo8cR30+QBwAA/JqzwAj2MhZLGUukXb9IFaW+fUIijXX22g6U0gZLbfpKQSHm1AsAgJ9wuT3aklVorGtXuYPsxr0FqqhlXbt2LSO8a9r1TIlRN9a1a9aONSvif6PWQ1RUVI2wLiIiQnFxcUcN8QAAAPyePUrqcLZxSFKFU9q9whitl7FEyvzR2Fjjt++NQ5KCwqTU31Wu0XeW1LonI/YAAE2ax+PR7rxS7/TYFZm5Wl3HunYtI+3G1NjKabLpyQ7FhPM/wHD8+NsVAAAAjizILqX2N47BD0hut5S1TtqxRMr4n7TtB6k42zfYs0dLbQcd2nwjoZtktZr7PQAAOAG5xWVaVbWu3U5jJ9nsQmeNfhEhNp1aOdKuV2Vw19rBunZoGEytNQFTawEAQJPi8UhZ66XtP0jbFhqvpXm+fcJaSO3OODRiL64jm2cAAPyWsa5dvndNu5U787Qtu6hGvyCrRV1aR3lH2vVKiVEH1rVDPbBGnh8jyAMAAE2a22XsjLttoTFaL2OxVH7YLz9RScbU3Y5nS+2HSuEtzKkVANDsudwebd1fqBXVdpDdsKf2de3S4sKNNe0qg7vuSaxrh4ZBkOfHCPIAAECz4iqXdi2rDPYWGLvjuqpPRbJISb2ljsOkDsOk5L6SLdi0cgEATZfH49GeynXtqjajWL0zT0W1rmsX4g3seqbEKL2NQ7ERrGuHk4Mgz48R5AEAgGatvMRYX2/LPGnrd8Z6e9XZo40puFUbbrRoZ06dAICAl19artU787QiM1fLdxij7fYX1FzXLjzEph5tHOrlHW3nUJuYMNa1Q6MhyPNjBHkAAADV5O8xAr2t86St30slOb73W7SXOp4jdRoutR0sBYeaUycAwK9VuNzasLdAKyp3kF2Rmaut+wt1eOphs1rUpVWUz2YUHRNY1w7mIsjzYwR5AAAAdXC7pT0rDoV6mT9J7opD94MjpPZDjFDvlPOk6NZmVQoAMJHH49HuvFKt2JGrFZkHtSIzV6t35am03F2jb3JsmHpVbkTRKyVG3ZMcCgthXTv4F4I8P0aQBwAAcIxK84219TZ/axwFe3zvt+4pdTrfCPZa95asVnPqBACcVAWl5VpVOUW26qhtimyUPci7e2yvyrXt4qPsJlQMHB+CPD9GkAcAAFAPHo+xG+6m2dKmWcYGGqr2V9mIBGOUXqfhxtp69kjTSgUA1F+Fy62N+yqnyO4wQrstR5giWxXa9U6NUfuWkbIyRRYBiCDPjxHkAQAANIDCLGnzHCPU2/q9VFZw6J7NbkzB7Xqh1PkCKaKlaWUCAOpWtYusd6TdDmOKbEl5zV1k28SEqVdqjHozRRZNEEGeHyPIAwAAaGAVZdKOxdKmb6WNM6WD2w7ds1il1AFSlwulLiOl2Lbm1QkAzVyhs0KrMnO1PDNXKyvDu6w6psimpzgqR9vFqmeKQwlRbHaEposgz48R5AEAAJxEHo+UtV7aMEPa8F9pz0rf+63Spa4XGaFeQjfJwhQsADgZKlxubdpXWDnaztiQYnNW7VNkOydGqVdq5RTZlBh1iGeKLJoXgjw/RpAHAADQiHJ3GKHe+q+NUXueajsaxrYzpt92u0Rq04dQDwBOwJ68Eu+adsszc7V65xGmyFZtSJEaox5MkQUI8vwZQR4AAIBJirKljd9IG7421tVzVZvO5UiVul8idb9USupNqAcAR1DorNCqnYfWtVu5M1f78mtOkY20Byk92XEouEuJUUI0U2SBwxHk+TGCPAAAAD/gLJS2zJXWfyVtnCWVFx26F9PWCPS6Xyq17kmoB6BZc7k92nTYLrKbswrkPixNsFqkzq2ivdNje6UaU2RtTJEFjoogz48R5AEAAPiZ8hJjB9y104xdcMuLD91r0f5QqJfYg1APQJPnnSK789AussVlNafIJjlCveva9UyO0anJDoWHBJlQMRD4CPL8GEEeAACAHysrkjZ/WxnqfStVlBy6F9dROvUqKf1KI+ADgABXXFah1TvztDwzV8t3GBtS1DZFNiLEpvTkGJ8NKZgiCzQcgjw/RpAHAAAQIJyF0ubZRqi3eY5UUXroXnI/I9TrcZkU0dK8GgHgGHk8Hm0/UKzlOw5q+Y5cLc88qPV7CuQ6bI6s1SJ1SoxS79Sqde1i1TGBKbLAyUSQ58cI8gAAAAKQs8DY/XbVx9Jv8w/tfmuxSR2HSelXS51HSCERppYJAFXyS8u1MjPXCO12HNTyzFzlFpfX6JcQZddpqbHe0XantnEows4UWaAxEeT5MYI8AACAAFewT1rzuRHq7VlxqD04Qup6oZR+ldRuiGTjF2EAjcPl9mhLVqHPaLvNWYU6/Df+kCCrTm3jUO+UGPVOjVXv1Bi1doTKwvqfgKkI8vwYQR4AAEATsn+TtPpTI9TLzTjUHtlK6nm11OsGKb6TefUBaJIOFDq1omq0XeZBrczMU6Gzoka/lBZh6p1iBHa9U2PVtXWU7EE2EyoGcCQEeX6MIA8AAKAJ8niknUuNQG/NF1JJzqF7yf2k3jdI3S+TQvn7H4DjU+5ya8OeAi3bcdA7RTbjQHGNfuEhNvVMjvGGdr1SYhQfZTehYgDHiyDPjxHkAQAANHEVZdKmWdKKD4xNMjwuoz0oTOp2sdTreintDMlqNbdOAH5pb16pN7BbvuOgVu3Mk7PCXaNfh/gI7/TY01JjdUpCpIJs/HcFCEQEeX6MIA8AAKAZKdhrjNJb/oGUvfFQe0yq1PM6qdd1Umxb8+oDYKrScpfW7s7TsgxjiuzyHbnak1dao190aJA3tOudGqteyTFyhAebUDGAk4Egz48R5AEAADRDHo+061dp+fvGRhnO/EP3Opwt9Rlt7Hpr4xdzoKnyeDzKzCnxBnbLdxzUuj35Knf5/lputUidW0V7R9r1To1Ru7gIWa1sSAE0VQR5fowgDwAAoJkrK5Y2zJBWvC/9Nv9Qe2QrYy29PqOMEXsAAlqhs0KrMnO9U2SX78jVgaKyGv1aRoYcGm2XEqv0ZIci7Ox6DTQnBHl+jCAPAAAAXjnbpGXvGiP1ivZXNlqkjudIfUdLpwyXbPxCD/g7t9uj37ILtWxHrne03aZ9BXIf9ht3sM2i7kkO7xTZ3ikxSo4Nk8XCaDugOSPIO4leffVVvfrqq9q+fbskqXv37ho/frxGjBhxTO8nyAMAAEANFWXSxhnSL1OkbQsOtUclSafdKJ12k+RINq8+AD5yi8sqR9oZod2KzFwVlFbU6NcmJky9UmPUO8UI7ronRSs02GZCxQD8GUHeSfTf//5XNptNp5xyijwej9599109++yzWr58ubp3737U9xPkAQAA4IgObJV+fcfY9bb4gNFmsUqdzpf63yG1O0ti9A7QaCpcbm3cV1AZ2hmbUvy2v6hGv9Bgq9KTY7xTZHunxigxOtSEigEEGoK8RtaiRQs9++yzuvXWW4/alyAPAAAAx6TCKa3/rzFKL2PRofb4LtLpf5DSr5HskebVBzRRWQWlh0K7HQe1ameeSspdNfq1axlROdLOGG3XuVWUgm1WEyoGEOiONStisY0T5HK59Omnn6qoqEgDBgyotY/T6ZTT6fRe5+fn19oPAAAA8BFkl069wjj2b5R+flNa+aG0f4M044/S3MeMzTFOv01q0d7saoGA5Kxwad3u/MqRdkZwt/NgSY1+UfYgnymyvVJiFBsRYkLFAJozRuTV0+rVqzVgwACVlpYqMjJSU6dO1QUXXFBr3wkTJmjixIk12hmRBwAAgONWmiet+FD6+XUp57fKRovUabh0+u1Sh7OZdgvUwePxaFduic8U2bW78lXmcvv0s1ikzolRPlNkO8RHymrl3y0AJwdTa0+ysrIy7dixQ3l5efrss8/01ltvacGCBerWrVuNvrWNyEtJSSHIAwAAQP253dLWedJPr0lb5h5qjzvFCPR6Xce0WzR7hc4KrdqZqxWVm1KsyMzV/gJnjX4tIkJ8psimJzsUFRpsQsUAmiuCvEZ2zjnnqEOHDnr99deP2pc18gAAANCgsrdIS9+Uln8glRUYbaEOqe+txuYYUa3MrQ9oBC63R1uyCr07yK7IzNWmfQVyH/Ybb5DVom5J0d4psr1TY5TaIlwWRrICMBFr5DUyt9vtM+oOAAAAaDQtO0ojnpHOfsSYdvvTa1LOVmnRZGnxi1L6VdKAe6TEmrNHgEDk8Xi082CJ1u7O16qdxmi7VTtzVVRWc0OKNjFh6pUSo16VI+56tHEoNNhmQtUAcOII8uph3LhxGjFihFJTU1VQUKCpU6dq/vz5mj17ttmlAQAAoDmzR0n9b5f63SZt+sYI8XYskVZ8YBwdhkkDx0jth7COHvxOabnLu1Zd1U+nxWJRQWm5MnNKtP1AkTbsKdC6PXlatztf+aUVNZ4RHmJTerLDuxlF75QYJUSHNuK3AICTiyCvHrKysnTTTTdpz549cjgcSk9P1+zZs3XuueeaXRoAAAAgWa1Sl5HGsfMXI9Bb/5Wxpt7WeVJiD2OEXo/LpSB23cTJU1bhVnahU/sLnLW8lvlcFzhrBnNHEmyzqFNilHokOdQr1Rhx1ykxSjY2pADQhLFGnglYIw8AAACNLmeb9OOr0vL3pfIioy062Rihd9pNUki4ufUhYHk8xtp0S7cf1KZ9BdqRU6zMnGJlFTiVV1J+ws8PslrUJjZMKbHhOiUxUt1aR6t7kkMdEyIVEmRtgG8AAOZjsws/RpAHAAAA0xTnSL9OkX56XSrcZ7SFx0m/+z+p3x+ksBhTy0NgKKtw639bsvXflbv1/cYsHSyuO7ALsloUH2VXy0h75WvIYdeHXkODrTr8N9Qgq0VBNgI7AE0bQZ4fI8gDAACA6cpLpZVTpUXPS7kZRltIlNTvVmnA3VJkgqnlwT9tzy7SBz9l6NNfdyq3WngXGmxV75RYpSc7lBoXrtQW4WoVHar4KLscYcHsCAsAR0GQ58cI8gAAAOA3XBXS2mnSD/+U9q832oJCpd43GtNuY9uaWx9M53Z7NHf9Pr33Y4Z+2JztbY+PsuuCHq10wamt1Ts1lmmuAHACCPL8GEEeAAAA/I7bLW2aZQR6u34x2iw2Kf1q6cw/SXEdzK0Pja6swq3pK3bptQVb9dt+Y11Fi0Ua0ileNw5oq7M6JbCxBAA0EII8P0aQBwAAAL/l8UjbfzACvd/mG20Ees1KcVmFPvo5U2/98Jt255VKkqJCg3Td6am6vn9bpcaxMQoANDSCPD9GkAcAAICAsPMXacEz0uZvjWuLTep5jXTGHwn0mqDc4jL9Z0mGpvxvm3fzivgou24b3E7X9U9VVGiwyRUCQNNFkOfHCPIAAAAQUHb+Ki14umagd+afpBbtza0NJ2xffqne+uE3Tf1ph4rKXJKk1BbhuuOs9rr8tGSFBttMrhAAmj6CPD9GkAcAAICAVGugd6105h8J9ALQ9uwivb5wqz7/dZfKXG5JUpdWUbpraEdd0KOVgmxsXgEAjYUgz48R5AEAACCg1RbonXajdNbDUnSSubXhqNbuztMr87fqm9V75K78bbBfWqzuGtJRQzrHy2JhAwsAaGwEeX6MIA8AAABNws5fpfmTpC1zjOugUOn0P0iDH5TCW5hbG3x4PB79vC1Hr8zfqgWb9nvbh3aO111DO6pfGv+8AMBMBHl+jCAPAAAATUrGEmneY9KOxcZ1SJQ0cIw04C7JHmVubc2cx+PRvPVZenXBVv2acVCSZLVIF6Yn6c6zOqhbEr+PAIA/IMjzYwR5AAAAaHI8HmnLXGneRGnvaqMtvKWxw23fW6TgUHPra2YqXG59vWqPXp2/VRv3FUiSQmxWXdE3WXec2V5t4yJMrhAAUB1Bnh8jyAMAAECT5XZL66ZJ3z0p5Ww12qKTpSFjjY0xbEHm1tfElZS59PHSHXrzh23alVsiSYoIsemG37XVrYPbKSGaQBUA/BFBnh8jyAMAAECT5yqXVnwgzX9GKthttMV3lc57XOp4jsSGCg3qYFGZ/rMkQ+8u2a6cojJJUlxEiEYPStONv0uTIzzY5AoBAEdCkOfHCPIAAADQbJSXSkvfkn74h1RirNGm9kOkcx+XWqebWlpTsDu3RG/9sE0fLd2h4jKXJCmlRZhuP6O9ruybotBgm8kVAgCOBUGeHyPIAwAAQLNTclD64Z/ST69LrjJJFmOq7dmPSI42ZlcXcDbvK9BrC37Tlyt2qcJt/ErXtXW0/m9IB13Qo5WCbFaTKwQAHA+CPD9GkAcAAIBm6+B2ad7j0prPjOugMGnA3dLg+9nh9hj8mpGjV+dv1dz1Wd6237Vvof8b0lFnntJSFqYsA0BAIsjzYwR5AAAAaPZ2/ip9+4i0Y7FxHREvDRknnTaKDTEO43J7NGfdXr31wzb9kmFMT7ZYpOHdWunOIR3UKyXG3AIBACeMIM+PEeQBAAAAkjweacMMac74QzvcxneVRjxtrKPXzBU6K/TpL5n69/+2KTPH2IE22GbRZb2TdftZ7dUhPtLkCgEADYUgz48R5AEAAADVuMqlX6ZI8ydJJTlGW9eLpPOelGLbmlubCXbnlujdxds19ecdKiitkCTFhAfrhv5tddOAtkqIDjW5QgBAQyPI82MEeQAAAEAtSg5K308ydrn1uCSbXRp0n7F+XkiE2dWddKt25uqtH7Zpxuo9clVuYNG+ZYRuGdxOl5+WrLAQdqAFgKaKIM+PEeQBAAAAR7BvnTRrrLRtgXEd3UY69zGpx+XG4nBNiMvt0dz1+/T2D9v08/Ycb/uA9nG67Yx2Gto5QVZr0/rOAICaCPL8GEEeAAAAcBQej7T+v9K3f5VydxhtqQOlEc9IrdPNra0BHCwq08e/ZOq9JRnalWusfxdktejinkm6ZXA79WjjMLlCAEBjIsjzYwR5AAAAwDEqL5EWvyj9MFmqKJEsVqnPzdKw8VJYrNnVHbe1u/P0n8UZmr5il5wVbknG+nfXnp6qUQPS1MrB+ncA0BwR5PkxgjwAAADgOOXtNHa3XfO5cR3eUjrvCannNX4/3bbc5dbstXv17uLtWrr9oLe9W+to3TwwTRf3SlJoMOvfAUBzRpB3Ek2aNElffPGFNmzYoLCwMA0cOFDPPPOMOnfufEzvJ8gDAAAA6mn7ImnGH6X9G4zrtoOlkf+UErqYW1ct9hc49eHPO/TBTxnal++UZEyfPb9HK908ME192sbK4uchJACgcRDknUTnn3++rrnmGvXr108VFRX6y1/+ojVr1mjdunWKiDj6bloEeQAAAMAJqCiTfnxZmv+MMd3WGiQNHCOd+ZAUEm5qaR6PRz9vy9HUn3fom9V7VeYyps+2jLTruv6pur5/qhKjmT4LAPBFkNeI9u/fr4SEBC1YsEBnnnnmUfsT5AEAAAANIHeH9M3D0saZxrUjVbrg71LnEY1fSnGZPl+2Sx/+vENbsgq97b1SYnTzwDSNOLWV7EFMnwUA1O5Ys6KgRqypycrLy5MktWjRotb7TqdTTqfTe52fn98odQEAAABNWkyqdO2H0oaZ0jcPSXk7pA+vkTqPNHa3jUk5qR/v8Xj0a8ZBTf1ph2as3uPdvCI8xKaLeybpuv6pSk+OOak1AACaF0bknSC3262LL75Yubm5WrRoUa19JkyYoIkTJ9ZoZ0QeAAAA0EDKiqQFf5eWvCS5K6TgcOnsv0n975CsDTsSLq+kXNOW7dSHP2dq474Cb3vX1tG6rn+qLumVpKjQ4Ab9TABA08bU2kbyf//3f/rmm2+0aNEiJScn19qnthF5KSkpBHkAAABAQ8taL339oLRjsXHdpq908YtSYrcTeqzH49EvGQf18dJMfb1qt0rLjdF3ocFWXZRujL7rlRLD5hUAgHohyGsE99xzj7788kstXLhQ7dq1O+b3sUYeAAAAcBK53dKyd6U54yVnvmQNls54UDrjj1KQ/bgetS+/VJ8v26lPf9mpbdlF3vbOiVHG6LvebeQIY/QdAODEEOSdRB6PR2PGjNG0adM0f/58nXLKKcf1foI8AAAAoBHk75Zm/PHQZhjxXaSLX5JS+h3xbWUVbs1bv0+f/JKpBZv2y135G1N4iE0XnNpa1/RLUZ+2sYy+AwA0GIK8k+iuu+7S1KlT9eWXX6pz587edofDobCwsKO+nyAPAAAAaCQej7R2mrEZRtF+SRZj3byz/ybZI326rtudr09/zdT05bt0sLjc294vLVZX9knRBemtFWlnv0AAQMMjyDuJ6vo/b1OmTNHNN9981PcT5AEAAACNrDhHmv1XaeVU49qRKl30nA60OkP/Xblbny3bqTW78r3dE6Ptuvy0ZF3RJ1nt4yPreCgAAA2DIM+PEeQBAAAAJtkyT+7/3i9r3g5J0ieuIXq8/AYVKFzBNovO7ZaoK/um6IyOLRVks5pcLACguTjWrIhx4QAAAACaPJfbox9/O6Bpy1tqQe4T+j/XVN1sm62rbPM1NHitfu31uE4fdrlaRISYXSoAAHUiyAMAAADQZK3fk6/py3fpyxW7tTe/tLI1SP+OvUPhHS7V5TueUnx+hs5fdqdkXSqd+1iNtfMAAPAXBHkAAAAAmpSMA0X6etUe/Xflbm3YW+Btd4QFa2R6a13Wu82hXWedF0pzH5WWviX98ra0dZ50yatS24EmfgMAAGrHGnkmYI08AAAAoGHtPFisGav26OtVe7R6V563PcRm1bCuCbqkdxsN6Rwve5Ct9gds/V768h4pf6cki/S7u6Rhf5OCwxrnCwAAmjU2u/BjBHkAAADAiduTV+IN71Zk5nrbbVaLBnaI04XprXV+99ZyhAcf2wNL86TZf5GWv29cx50iXfqalNy34YsHAKAagjw/RpAHAAAA1E9WQam+Wb1XX6/araXbD3rbLRbpd+3idGHP1jq/eyvFRdrr/yGbZktfjZEK90kWq3TGH6WzHpZsxxgIAgBwnAjy/BhBHgAAAHDs9uSV6Nu1+zRrzV79tO2A3NV+g+mXFqsL05M04tRWSogKbbgPLc6RvnlIWv2pcd2mj3TZm1Jch4b7DAAAKhHk+TGCPAAAAODIfttfqFlr92r22n1aWW3arCT1To3RhelJGnlqa7VyNGB4V5s1n0tfP2BMuw2OkC74u9TremMIIAAADeRYsyJ2rQUAAABgOo/Ho7W78zV77V7NWrNXm7MKvfcsFqlPaqyGd2+lEae2UnJseOMV1uNyKfl0adqdUsYi6cu7pc3fShc+L4W3aLw6AAAQI/JMwYg8AAAAQHK5Pfple45mr92n2Wv3alduifdesM2iAR1a6vzurXROt4SGnTZbH26X9L8XpO+flNwVUlSSdNnrUrszza0LANAkMLXWjxHkAQAAoLkqKC3XD5uzNW99luZvzNKBojLvvbBgm4Z0jtf5PVppSOcEOcL8cHOJXcukz2+TcrZKskiD7pWGPiIFhZhdGQAggBHk+TGCPAAAADQnGQeKNG99luZt2Keft+Wo3HXoVxBHWLDO6Zqo4d0TdWaneIUG20ys9BiVFUmzxknL3jWuW/eULntLiu9kbl0AgIBFkOfHCPIAAADQlFW43Pol46C+25Cleev3aev+Ip/77eMjNKxLgs7ukqi+abEKtllNqvQErf+v9NUYqeSgFBwujfyn1Os6s6sCAAQgNrsAAAAA0GgOFDr1w+ZsfbfBmDKbX1rhvRdktej0di10dpcEDeuaqHYtI0ystAF1vUhq01eadoe0bYE0/f+kbT9II/8hhTSR7wgA8CuMyDMBI/IAAAAQ6Mpdbi3fkauFm/Zrwab9WrM7T9V/s4gND9bQzgk6u2uCzuwUr+hQP1zvrqG4XdIPk6X5T0ket9Sys3TlO1JiN7MrAwAECKbW+jGCPAAAAASizJxiLdy8Xws37dfiLQdU4Kzwud+1dbTO6hSvc7omqHdqrGxWi0mVmmT7ImMjjII9UlCodMGzUu8bJUsz+3MAABw3gjw/RpAHAACAQFBS5tKP2w54R939dthad7HhwTrjlHid2SleZ57SUgnRoSZV6keKso2ptlvmGtenXiVdOFmyR5lbFwDAr7FGHgAAAIDjUu5ya2VmrhZvPaD/bcnW8h25KnO5vfdtVot6p8TorE5GeNejjaP5jbo7moiW0nWfSotfkOY9Lq3+RNq9zJhq2+pUs6sDAAQ4gjwAAACgmXK7PVq3J19Lth7Q/7Zm6+dtOSouc/n0SXKE6qzO8TrzlHgN7NhSjrAmvNZdQ7FapcEPSKkDpM9ukQ5skd4cJp0/Sep7C1NtAQD1xtRaEzC1FgAAAGbweDz6LbtIi7dka/HWA1ry2wHlFpf79IkND9bADi01oEOcBnVsqbS4cFkInuqvOMfYzXbTLOM6/WrpwuelkHBTywIA+Bem1gIAAADNnMfj0bbsIv28LUc/bcvRkq0HtDe/1KdPRIhN/dvHaWCHOA3s0FJdWkXJynTZhhPeQrr2I2nxi9LcCdKqj6W9a6Sr35PiOphdHQAgwBDkAQAAAE2E2+3Rhr0F+nnbAf28PUc/bzuo7EKnT58Qm1V92sYawV3HlkpPdijYZjWp4mbCYpEG3Su16SN9erOUtVZ6Y6h06WtSlwvMrg4AEECYWmsCptYCAACgIZS73Fq9K09Lt+Xo5205Wro9R/mlFT59QoKs6pUSo9PTWuh37ePUNy1WocE2kyqG8vcYYV7mj8b1GX+Uhv5VsvLPBACas2PNigjyTECQBwAAgPooKC3Xysw8/ZpxUD9vP6BlGbkqKffdnCIixKY+aS3Uv10L9UtrofRkB8Gdv3GVS9/+TfrpVeO6/RDp8n9LEXGmlgUAMA9Bnh8jyAMAAMDRVK1vt2xHrpbtOKhlGQe1cV+BDv/be2x4sPqltdDp7YyjW+toBTFVNjCs/kz6aoxUXixFJ0tX/UdK7mN2VQAAE7DZBQAAABBAissqtDIzzxvaLc/MVU5RWY1+ybFhOi01Vv3aGaPuOsZHsjlFoDr1Cimhm/TJjdKBLdKU86URz0h9Rhvr6gEAcBiCvHpYuHChnn32Wf3666/as2ePpk2bpksuucTssgAAABAg3G6Pfssu1MrMPK3cmatfMw5qw94Cudy+w+1CgqxKb+PQaW1jdVpqjE5LjVVCdKhJVeOkSOwm/eF7afr/SRu+lr5+QNq1TBr5TynIbnZ1AAA/Q5BXD0VFRerZs6duueUWXXbZZWaXAwAAAD/m8Xi0K7dEq3Yaod2qzDyt2ZWnAmdFjb6tokPVp22seqfGqE/bWHVLipY9iPXtmrzQaOnq96X/vSDNmygtf0/K3iRd9Z4UlWh2dQAAP0KQVw8jRozQiBEjjrm/0+mU0+n0Xufn55+MsgAAAOAHsgudWrUzVysz87RqZ65W7czTgVqmyIYGW9U9yaGeyTE6ra0x2i4pJsyEiuEXLBZp8P1SYg/ps1ukzJ+kN4ZI13wgtTnN7OoAAH6CIK8RTJo0SRMnTjS7DAAAADSwA4VOrd2dr7W787V6lxHe7cotqdEvyGpR51ZRSk+OUc9kh9KTY9QpMZJNKVDTKedIf/hO+uhaY1TelBHSRf+Sel5tdmUAAD/ArrUnyGKxHHWNvNpG5KWkpLBrLQAAQIDweDzaebBEa3fna93uPG94tze/tEZfi0Vq3zJCPZNjlJ7sUHpKjLq1jlZoMFNkcRxK86Uv/iBtmmVcDxwjnTNRsvJzBABNEbvW+hG73S67nYVqAQAAAkGFy62t+4u01hvY5Wnd7nzll9Zc006S2rWMULekaJ3axqH0ZIdObeNQVGhwI1eNJic0WrrmQ+n7J6Uf/iEtflHat0664m0pLNbs6gAAJiHIAwAAQLN1oNCpjXsLtGFvgTbuLdD6vfnasLdAZRXuGn2DbRZ1SoxSt9bR6p4Ure5tHOraOlqRdv5KjZPEapWG/U1K7C59ebe0dZ705jDp2g+l+M5mVwcAMAF/6wAAAECTV1Lm0uasQ4FdVXiXXeistX9EiE3dkqLVPclR+RqtUxKiFBLEmnYwQY/LpLiO0kfXSzlbjTDvirelTsPNrgwA0MgI8uqhsLBQW7Zs8V5v27ZNK1asUIsWLZSammpiZQAAAM1bhcutzIMl2lg5sq4qsMs4UCR3HStDp7YIV+dWUerSKkqdW0Wpe5JDbVuEy2q1NG7xwJG0Tpdu/176ZJSUsUj68BrpvCel3/2fsTAjAKBZYLOLepg/f76GDh1ao33UqFF65513jvr+Y13AEAAAALUrLXdpW3aRtmQV+hzbsotU5qo5LVaSWkSEqHNilE9o1ykxShFMjUUgcZVLM/8k/fqOcd1ntHTBs5KNdRkBIJAda1ZEkGcCgjwAAIBjU+is8IZ0m7MKtLXyfEdOcZ0j7EKDrTolwTew69wqSvGRdlkYuYSmwOORfnxFmv1XSR6p3VnSVe+yCQYABDB2rQUAAEBAcLk92p1bom3ZRd5j634jsNuTV1rn+6JDg9QxIVIdEyJ1SkKU97xNTBjTYtG0WSzSgLulFu2lz26Vti2Q3jpXuu5jKa6D2dUBAE4iRuSZgBF5AACgufF4PMoqcHqDuu3ZRfqt8nzHgeI6p8NKUnyUXR3jI3VKohHUdYw3XuOjGGEHaO9qaeo1Uv5OY0Te1R9IaYPMrgoAcJyYWuvHCPIAAEBT5PF4lFtcrm0HirRtf5G2HzDCuu2VR1GZq873htisahsXrrSWEWrfMkLt4yPUMSFKHeMj5Qhn7S/giAr2Sh9eK+1eJlmDpYtekHpfb3ZVAIDjwNRaAAAANLiyCrd255ZoR06xduQUK7PyteooKK2o871Wi5TSIlxpcRFqVxnWVZ0nxYTJxnRYoH6iWkmjZ0rT7pTWTZe+vEs6sFk6e7xktZpdHQCgARHkAQAAwKtqVF31cC4zp1gZB4zzPXkldW4yUaW1I9QI6OIj1K4yqGsXH6GU2HCFBBEqACdFcJh0xRRp/inSwmelRc9JB7ZIl74uhUSYXR0AoIEQ5AEAADQjHo9HB4rKtOtgiXbllmh3bol2Vp7vOliizJxiFTjrHlUnGbvCprYIV2qLcKVUvla/Dg22NdK3AeDDapXOfkSKO0X66h5p/X+l3Ezp2o+k6NZmVwcAaAAEeQAAAE1Ihcutvfml3qDO+5p7KLgrLa97Y4kqidF2bzDXtkWEUuPCvNfxkWwyAfi1nldLsW2lj66T9qyQ3jzb2NG2dbrZlQEAThCbXZiAzS4AAEB9uN3GaLq9eaXak1eiffml2pNXqt3ekK5Ue/NL5TrK3FeLRUqIsqtNTJjaxIYrKSZUyTFhahNrhHXJsYyqA5qEnG3S1Kuk7E1ScIR0xb+lzuebXRUAoBbsWuvHCPIAAMDhyl1uZRU4tTevRHvznNqTV6K9eUYwZwR3pcoqKFW56+h/dQu2WZQUE2YEdTFhxnlsmDesa+UIlT2IoA5oFkpypU9ukrYtkCxWafhTUv87jUQfAOA32LUWAADAD1SNossqKFVWgVP7853e8+pB3f5Cp47lf69aLFJ8pF2tHaFKjA5Va0eoWjmMgK5NTJiSY8MUH2mXlR1gAUhSWIx0w+fSjAelZf+RZo2VDmyVzn9asvHrIAAEGv7LDQAAUA9lFW7tL3QqK98I5YyQrjKsq7zOKihVdmHZUae6Vgm2WZQYHapW0aFq5QitFtYZo+haOUKVEGVXsI2dXwEcB1uwdNG/pLiO0pxHpaVvSge3GbvchjJDCAACCUEeAABApdJyl3KKynSgsEzZRU4dKCzTgUKnDhSVKbvAWRncGQHdweLyY36uxSLFRYQoPsoI4uKj7EqIsntH01UFd3ERIYykA3ByWCzSoPuk2HbSF7dLW+ZK/x5ubIIRk2p2dQCAY0SQBwAAmiy326PcknIdKHQqu7BMB6qFc9lFZYfaC432AmfFcT0/2GZRfKRd8dFGQGccoUqItis+0q6EaOM6LjKEUXQA/EO3iyVHsvThNVLWOunNYdJ1H0lt+phdGQDgGLDZhQnY7AIAgOPn8XhU6KzQwaJyHSwuU05xmXKLy5RTVF75WqaDxWXe+weKjLZjndZaJdhmUVyEXXGRIYqLtKtlRIj3vHo4lxBlV0x4sCwsGA8gEOXtlKZeLe1bIwWFSZe9LnX7vdlVAUCzxa61fowgDwDQ3LncHhWUliu3uLyOQK5cB6uCueJD1xXHGcpVcYQFKy4yRC0rA7qWkYcHdXbv/eiwIMI5AM2Ds0D6dLS0ZY5xfc4EadD97GgLACZg11oAAHBSVYVxeSV1H/klRlh3eHtB6fFNYa0uNNiqFuEhigkPUYuIEMWEB1e+hqhFeLBiK89bVgZ2seEhCgliWisA1GCPkq79SJo9Tvr5DWnuBGNH25GTpaAQs6sDANSCIA8AgGbK5faosLRC+aVGsFZQ+VroNM7zK+/l1xbSFZerwFmhEx3XHx5iU+xhgVxseOUREVzreViIrWH+AAAAki1IuuBZY0fbWWOl5e9JuRnSVf+RwmLNrg4AcBiCPAAAAlBZhdsbvBWUVqjAWe38sGCuwFl7e3GZq0FqCQu2yREW7D2iw4IVEx7s01bbvejQYEbKAYC/6H+HFJsmfXaLtG2h9Na50vWfSC3am10ZAKAa1sgzAWvkAUDz4vF4VOZyq8jpUpGzQkVlFSpyVqjQ6VKx0xgBZ7RX3q92Xug0Arfq54XOCpVVuBusvpAgq6JDgxQVGqyo0CDjsAcrsvI8JixEjrAgOcJrhnKOsGDZgxghBwBNxt7VxiYY+buksBbSNVOltgPMrgoAmjw2u/BjBHkA4J88Ho+cFW4Vl7lUXFah0nJX5blLJeUulficV3jPi501g7aiw87ru0nD0YSH2CrDt+BDr/agQ4FctfZIe1CNwC4yNIggDgDgq2CvEebtWSHZQqTfvyKlX2l2VQDQpLHZBQCgSXG7PSqtcKm03K3Sclfl4VZphUvOyte6graSGmFchUrK3d4+VYFdSbnrhNd8O5rQYKsi7UGKsAcpPCRIkXabIuxBiggJUoTdVtlm3I+w27ztEVVtlddR9mBF2G0KsjE1FQDQwKJaSaNnSl/cLm34WvriNilnq3TWw+xoCwAmI8gDABwXj8ejCrdHZRVulVW45ayoDNZqCdmc1UI2b/BWLYArLTfuO6u/t8K3n7PcJWeFW2WuhptKeizsQVaFhdgUHmxTWIit8jzIeA2xKayqPdimcPvhgVz1EM4I5sIrr21WfgECAASAkAjpqvekuY9Ki/8lzZ8k7d8gXfyisdstAMAUBHkAEADcbmONNWdleFbmMgKuMpfbJ1Dzvrqqzl3e+973Hda/tmcZbdWf41ZZxaFAzexFGYJtFoUG2WQPtik02KrQytfw4CCFVoZv4SG2Os59+xwe0lWFcwRuAIBmz2qVzntciusgzfijtHaatG+tsaNtQlezqwOAZokgD0Cz4vF45HIbI8oq3B5VuNwqd3lU7nJXHnWdH3Zd4VG5263yisp2d2VbLX3LXG5V1PHcMldVDUZ7WYVbFe7KPhVu47kuo2Z/FWS1eIM0e5BN9mCrQoOqB2yV55XBmz3oUPAWGmxTaJBvP+8zgm21PsceRMgGAECj6nOzFN9F+nS0lL1JevNsafiTUp/RTLUFgEbGZhcmYLML+AO32yNXZajlrpwq6XYb167q99xShdstt8cjl1s17rsqwzAjGDMCK5fbo3K3R65qIVRVH5fbU9l26F652y2Xy+N9xqE+h8I239eqe4euq85d1a9dvu+vel5TEBJklb3yCLFZFRJkrWyzGec+bdVebYf182nzfQ2xGYFa9WeF2KyyB1tltx16P6EaAADNRFG29Plt0m/fG9fth0q/f0lyJJtbFwA0Aexa2whefvllPfvss9q7d6969uypF198UaeffvpR30eQd4jH45HbI7k9Rpjkdtd+7vJ45PH2M0KoqnOX2+PzHONa1d53qJ+72nN8+rmNPt6+3vcZ4ZW78rr6+eHPdHmqnVfV5w28JJfb7X1/RdX5YYGYq/I93lCt+r3DAzePEVhVr7/C7Za7Kmyr9t6qZ7qq1cS/+b6CbRYF26zVDsthr4fOQ4KsCrJWtleGW0FWi/c82GZRUOV7QirfE1Tt3Li2VPY1nhFc+f7aPjOk6v3Vnm/h/34DAAAzuN3ST69J8yZKFaVSSKQ0+AGp/52SPdLs6gAgYBHknWQff/yxbrrpJr322mvq37+/nn/+eX366afauHGjEhISjvjephjkXfX6EmXmFNcatPmce3zP+enzTxaLZLNYZLVaFGS1eM9tVYfFeLVapWCrMSIrqDLMCrJVvqcy6LJZLQqyGvdsNouCrRbZrEYY5dvHeK/NaoRatsrnBFmtlc+0VutTvf3QZxvPM55xqBZrjXpq+2yCMQAAgOOQvVn68m4p8yfjOixW6nW91O0SKamXZAtuuM8qyTV2zc3ZJhXnSM48yVlgHBVlkscluSskd7VXT7VNsiwWSZZq5zrKPcuR7x21X23nx9u/Pud1fadjfa/lGM91nP3re16f2o7nn021fj5thzlq3zrqPSl9q7XX2VfH0fd4ntuIfX1Oj9K31amS1aamgCDvJOvfv7/69eunl156SZLkdruVkpKiMWPGaOzYsT59nU6nnE6n9zo/P18pKSlNKsgb+o/52pZddNKe7w2WLBZZLJK1Mkiqfm61SBaL8WqzGMGM1er7PqOf5VA/q8XnPcfyfFvlcy2V/W2VfSwWi2xW1Xi+1XIo2LJWC8Gqjqr7xj1Vtlu9z6ret3q4VvUs7/nhn1Xre6Ugq9X753J4HdU/AwAAADgit1ta85mxo23Ob4fabXYpOsmYchsWI9lCKo9gyVLHL9y1hSiucmnHEunAlpNSPoAmYNyuJjMa+FiDPDa7qIeysjL9+uuvGjdunLfNarXqnHPO0ZIlS2r0nzRpkiZOnNiYJTa6V284TeUVHlkrwydrZahVFXZZK8Muq/WwoO2wMK1GgFYZrDFaCgAAAPAzVquUfpXU43Jp4zfS6k+k3xZIpbnSwW3G0VAiE6UWHaTIeMkeLYU6jGm9QXbJGmSMyKl6tdgki9UIBz0eSZVjV7xjWKpfH35PR7jnOYZnHM95Qz3nSOd1fZ8j9ffU41wn8N7jOT/GOo/1e9Z45pHaj7Xv8Tz3eGuo7ef1aH11HH1PVg3H0dfn9Bj6NsOsgCCvHrKzs+VyuZSYmOjTnpiYqA0bNtToP27cOD344IPe66oReU1Jl1ZNY2QhAAAAgONktUldLzQOt1vK2yHl7ZLyd0nOfGNknavMOGoNZLwNNZ8d39nYVCMs5mR+AwAIGAR5jcBut8tut5tdBgAAAACcXFarFJtmHACABmc1u4BA1LJlS9lsNu3bt8+nfd++fWrVqpVJVQEAAAAAAKApI8irh5CQEPXp00fz5s3ztrndbs2bN08DBgwwsTIAAAAAAAA0VUytracHH3xQo0aNUt++fXX66afr+eefV1FRkUaPHm12aQAAAAAAAGiCCPLq6eqrr9b+/fs1fvx47d27V7169dKsWbNqbIABAAAAAAAANASLx1Pbfso4mfLz8+VwOJSXl6foaHZ7BQAAAAAAaM6ONStijTwAAAAAAAAgADC11gRVgyDz8/NNrgQAAAAAAABmq8qIjjZxliDPBAUFBZKklJQUkysBAAAAAACAvygoKJDD4ajzPmvkmcDtdmv37t2KioqSxWIxu5wGkZ+fr5SUFGVmZrLuH/h5gA9+HlAdPw84HD8TqI6fB1THzwOq4+cB1TXFnwePx6OCggIlJSXJaq17JTxG5JnAarUqOTnZ7DJOiujo6CbzLxFOHD8PqI6fB1THzwMOx88EquPnAdXx84Dq+HlAdU3t5+FII/GqsNkFAAAAAAAAEAAI8gAAAAAAAIAAQJCHBmG32/Xoo4/KbrebXQr8AD8PqI6fB1THzwMOx88EquPnAdXx84Dq+HlAdc3554HNLgAAAAAAAIAAwIg8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMhDg3j55ZeVlpam0NBQ9e/fXz///LPZJcEECxcu1EUXXaSkpCRZLBZNnz7d7JJgokmTJqlfv36KiopSQkKCLrnkEm3cuNHssmCSV199Venp6YqOjlZ0dLQGDBigb775xuyy4CeefvppWSwW3X///WaXAhNMmDBBFovF5+jSpYvZZcFEu3bt0g033KC4uDiFhYXp1FNP1S+//GJ2WTBJWlpajf9GWCwW3X333WaXBhO4XC797W9/U7t27RQWFqYOHTro8ccfV3Pax5UgDyfs448/1oMPPqhHH31Uy5YtU8+ePTV8+HBlZWWZXRoaWVFRkXr27KmXX37Z7FLgBxYsWKC7775bP/74o+bMmaPy8nKdd955KioqMrs0mCA5OVlPP/20fv31V/3yyy86++yz9fvf/15r1641uzSYbOnSpXr99deVnp5udikwUffu3bVnzx7vsWjRIrNLgkkOHjyoQYMGKTg4WN98843WrVunf/7zn4qNjTW7NJhk6dKlPv99mDNnjiTpyiuvNLkymOGZZ57Rq6++qpdeeknr16/XM888o7///e968cUXzS6t0Vg8zSm2xEnRv39/9evXTy+99JIkye12KyUlRWPGjNHYsWNNrg5msVgsmjZtmi655BKzS4Gf2L9/vxISErRgwQKdeeaZZpcDP9CiRQs9++yzuvXWW80uBSYpLCzUaaedpldeeUVPPPGEevXqpeeff97sstDIJkyYoOnTp2vFihVmlwI/MHbsWP3vf//TDz/8YHYp8FP333+/vv76a23evFkWi8XsctDILrzwQiUmJurtt9/2tl1++eUKCwvT+++/b2JljYcReTghZWVl+vXXX3XOOed426xWq8455xwtWbLExMoA+Ju8vDxJRniD5s3lcumjjz5SUVGRBgwYYHY5MNHdd9+tkSNH+vw9As3T5s2blZSUpPbt2+v666/Xjh07zC4JJvnqq6/Ut29fXXnllUpISFDv3r315ptvml0W/ERZWZnef/993XLLLYR4zdTAgQM1b948bdq0SZK0cuVKLVq0SCNGjDC5ssYTZHYBCGzZ2dlyuVxKTEz0aU9MTNSGDRtMqgqAv3G73br//vs1aNAg9ejRw+xyYJLVq1drwIABKi0tVWRkpKZNm6Zu3bqZXRZM8tFHH2nZsmVaunSp2aXAZP3799c777yjzp07a8+ePZo4caLOOOMMrVmzRlFRUWaXh0b222+/6dVXX9WDDz6ov/zlL1q6dKnuvfdehYSEaNSoUWaXB5NNnz5dubm5uvnmm80uBSYZO3as8vPz1aVLF9lsNrlcLj355JO6/vrrzS6t0RDkAQBOurvvvltr1qxhzaNmrnPnzlqxYoXy8vL02WefadSoUVqwYAFhXjOUmZmp++67T3PmzFFoaKjZ5cBk1UdRpKenq3///mrbtq0++eQTpt43Q263W3379tVTTz0lSerdu7fWrFmj1157jSAPevvttzVixAglJSWZXQpM8sknn+iDDz7Q1KlT1b17d61YsUL333+/kpKSms1/IwjycEJatmwpm82mffv2+bTv27dPrVq1MqkqAP7knnvu0ddff62FCxcqOTnZ7HJgopCQEHXs2FGS1KdPHy1dulQvvPCCXn/9dZMrQ2P79ddflZWVpdNOO83b5nK5tHDhQr300ktyOp2y2WwmVggzxcTEqFOnTtqyZYvZpcAErVu3rvE/eLp27arPP//cpIrgLzIyMjR37lx98cUXZpcCE/35z3/W2LFjdc0110iSTj31VGVkZGjSpEnNJshjjTyckJCQEPXp00fz5s3ztrndbs2bN491j4BmzuPx6J577tG0adP03XffqV27dmaXBD/jdrvldDrNLgMmGDZsmFavXq0VK1Z4j759++r666/XihUrCPGaucLCQm3dulWtW7c2uxSYYNCgQdq4caNP26ZNm9S2bVuTKoK/mDJlihISEjRy5EizS4GJiouLZbX6Rlk2m01ut9ukihofI/Jwwh588EGNGjVKffv21emnn67nn39eRUVFGj16tNmloZEVFhb6/N/zbdu2acWKFWrRooVSU1NNrAxmuPvuuzV16lR9+eWXioqK0t69eyVJDodDYWFhJleHxjZu3DiNGDFCqampKigo0NSpUzV//nzNnj3b7NJggqioqBrrZUZERCguLo51NJuhP/3pT7rooovUtm1b7d69W48++qhsNpuuvfZas0uDCR544AENHDhQTz31lK666ir9/PPPeuONN/TGG2+YXRpM5Ha7NWXKFI0aNUpBQcQYzdlFF12kJ598UqmpqerevbuWL1+uyZMn65ZbbjG7tEZj8Xg8HrOLQOB76aWX9Oyzz2rv3r3q1auX/vWvf6l///5ml4VGNn/+fA0dOrRG+6hRo/TOO+80fkEwVV07iU2ZMoUFipuhW2+9VfPmzdOePXvkcDiUnp6uhx9+WOeee67ZpcFPDBkyRL169dLzzz9vdiloZNdcc40WLlyoAwcOKD4+XoMHD9aTTz6pDh06mF0aTPL1119r3Lhx2rx5s9q1a6cHH3xQf/jDH8wuCyb69ttvNXz4cG3cuFGdOnUyuxyYqKCgQH/72980bdo0ZWVlKSkpSddee63Gjx+vkJAQs8trFAR5AAAAAAAAQABgjTwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5AEAAAAAAAABgCAPAAAAAAAACAAEeQAAAAAAAEAAIMgDAAAAAAAAAgBBHgAAAAAAABAACPIAAAAAAACAAECQBwAAAAAAAAQAgjwAAAAAAAAgABDkAQAAAAAAAAGAIA8AAAAAAAAIAAR5AAAAAAAAQAAgyAMAAAAAAAACAEEeAAAAAAAAEAAI8gAAAAAAAIAAQJAHAAAAAAAABACCPAAAAAAAACAAEOQBAAAAAAAAAYAgDwAAAAAAAAgABHkAAAAAAABAACDIAwAAAAAAAAIAQR4AAAAAAAAQAAjyAAAAAAAAgABAkAcAAAAAAAAEAII8AAAAAAAAIAAQ5El6+eWXlZaWptDQUPXv318///xznX3Ly8v12GOPqUOHDgoNDVXPnj01a9asRqwWAAAAAAAAzVGzD/I+/vhjPfjgg3r00Ue1bNky9ezZU8OHD1dWVlat/R955BG9/vrrevHFF7Vu3TrdeeeduvTSS7V8+fJGrhwAAAAAAADNicXj8XjMLsJM/fv3V79+/fTSSy9Jktxut1JSUjRmzBiNHTu2Rv+kpCT99a9/1d133+1tu/zyyxUWFqb333+/1s9wOp1yOp3ea7fbrZycHMXFxclisTTwNwIAAAAAAEAg8Xg8KigoUFJSkqzWusfdBTViTX6nrKxMv/76q8aNG+dts1qtOuecc7RkyZJa3+N0OhUaGurTFhYWpkWLFtX5OZMmTdLEiRMbpmgAAAAAAAA0SZmZmUpOTq7zfrMO8rKzs+VyuZSYmOjTnpiYqA0bNtT6nuHDh2vy5Mk688wz1aFDB82bN09ffPGFXC5XnZ8zbtw4Pfjgg97rvLw8paamKjMzU9HR0Q3zZQAAAAAAABCQ8vPzlZKSoqioqCP2a9ZBXn288MIL+sMf/qAuXbrIYrGoQ4cOGj16tP7973/X+R673S673V6jPTo6miAPAAAAAAAAknTUJdia9WYXLVu2lM1m0759+3za9+3bp1atWtX6nvj4eE2fPl1FRUXKyMjQhg0bFBkZqfbt2zdGyQAAAAAAAGimmnWQFxISoj59+mjevHneNrfbrXnz5mnAgAFHfG9oaKjatGmjiooKff755/r9739/sssFAAAAAABAM9bsp9Y++OCDGjVqlPr27avTTz9dzz//vIqKijR69GhJ0k033aQ2bdpo0qRJkqSffvpJu3btUq9evbRr1y5NmDBBbrdbDz30kJlfAwAAAAAAAE1csw/yrr76au3fv1/jx4/X3r171atXL82aNcu7AcaOHTt8tv0tLS3VI488ot9++02RkZG64IIL9N577ykmJsakbwAAAAAAAIDmwOLxeDxmF9Hc5Ofny+FwKC8vj80uAAAAAAAAmrljzYqa/Yi8QFBRUaGysjKzywAaRXBwsIKCgo66Uw8AAAAAAM0NQZ4f83g82rFjh7Kzs80uBWhUQUFBatOmjeLi4gj0AAAAAACoRJDnx6pCvDZt2igyMtJnrT6gKfJ4PCovL1dOTo4yMjJUWFiotLQ0s8sCAAAAAMAvEOT5qYqKCm+I16pVK7PLARpVTEyM9uzZo127dikvL0/p6emMzAMAAAAANHsM8fJTVWviRUZGmlwJYI7o6GhZLBYtWbJEq1atMrscAAAAAABMR5Dn55hOi+aqagSexWLR6tWr5Xa7Ta4IAAAAAABzkRIB8Gvh4eE6ePCgiouLzS4FAAAAAABTEeQB8GsWi0Vut5sReQAAAACAZo8gD83eO++8I4vFou3bt5tdio/t27fLYrHonXfeOWrfm2+++Zh2d7VYLN7jH//4x4kXeZxiYmK8n3/PPfc0+ucDAAAAABDICPLQbDz11FOaPn262WWY7tJLL9V7772nkSNHntBz/vvf/8pqtWrv3r3e0PFo4eAbb7yh995774Q+FwAAAACA5oogD81GXUHejTfeqJKSErVt27bxizqCtm3bqqSkRDfeeGODPjc9PV033HCDunbtekLPmTFjhvr06aNWrVod83uuuuoq3XDDDSf0uQAAAAAANFcEeWj2bDabQkNDvbuk+guLxaLQ0FDZbDazS6nVzJkzT3hUHwAAAAAAOHYEeWh0GRkZuuuuu9S5c2eFhYUpLi5OV155Za1r1OXm5uqBBx5QWlqa7Ha7kpOTddNNNyk7O9vbx+l06tFHH1XHjh1lt9uVkpKihx56SE6n09vHYrGoqKhI7777rneNtptvvllS3WvkffPNNzrrrLMUFRWl6Oho9evXT1OnTm2071bXGnnTp09Xjx49FBoaqh49emjatGlHrOlYrVq1SmeddZbCwsKUnJysJ554QlOmTKn1z2b16tXKzMwkyAMAAAAAoBEFmV0Amp+lS5dq8eLFuuaaa5ScnKzt27fr1Vdf1ZAhQ7Ru3TqFh4dLkgoLC3XGGWdo/fr1uuWWW3TaaacpOztbX331lXbu3KmWLVvK7Xbr4osv1qJFi3T77bera9euWr16tZ577jlt2rTJO5X2vffe02233abTTz9dt99+uySpQ4cOddb4zjvv6JZbblH37t01btw4xcTEaPny5Zo1a5auu+66Rvlutfn22291+eWXq1u3bpo0aZIOHDig0aNHKzk5uT7/KLx27dqloUOHymKxaNy4cYqIiNBbb70lu91ea/+ZM2cqISFBffv2PaHPBQAAAAAAx44gL4B4PB6VlLvMLsNHWLDtuKekjhw5UldccYVP20UXXaQBAwbo888/964J9+yzz2rNmjX64osvdOmll3r7PvLII/J4PJKkqVOnau7cuVqwYIEGDx7s7dOjRw/deeedWrx4sQYOHKgbbrhBd955p9q3b3/UNdry8vJ077336vTTT9f8+fMVGhrqvVf1uY3x3Wrz8MMPKzExUYsWLZLD4ZAknXXWWTrvvPNOaI2/Z555RgcPHtSyZcvUq1cvSdLo0aN1yimn1Np/xowZGjFihN9NRwYAAAAAoCkjyAsgJeUudRs/2+wyfKx7bLjCQ47vxygsLMx7Xl5ervz8fHXs2FExMTFatmyZN+z6/PPP1bNnT5+gq0pVgPTpp5+qa9eu6tKli89027PPPluS9P3332vgwIHHVd+cOXNUUFCgsWPH+oR41T+3Mb7b4fbs2aMVK1Zo7Nix3hBPks4991x169ZNRUVFx/wdDzdr1iwNGDDAG+JJUosWLXT99dfrxRdf9Ombm5urJUuWaMyYMfX+PAAAAAAAcPxYIw+NrqSkROPHj1dKSorsdrtatmyp+Ph45ebmKi8vz9tv69at6tGjxxGftXnzZq1du1bx8fE+R6dOnSRJWVlZx13f1q1bJemon12bhvxuh8vIyJCkWkfJde7c+bhrPfzZHTt2rNFeW9vs2UaYfN55553QZwIAAAAAgOPDiLwAEhZs07rHhptdho+w4OPfUXXMmDGaMmWK7r//fg0YMEAOh0MWi0XXXHON3G73cT3L7Xbr1FNP1eTJk2u9n5KSctz1nYiG/G7+aubMmRo0aJDPqEAAAAAAAHDyEeQFEIvFctzTWP3RZ599plGjRumf//ynt620tFS5ubk+/Tp06KA1a9Yc8VkdOnTQypUrNWzYsKNOez3W9dyqNsFYs2ZNrSPSjqQhv9vhqtbA27x5c417GzduPK5n1fbsLVu21Gg/vM3j8WjWrFn605/+dEKfBwAAAAAAjh9Ta9HobDZbjQ0dXnzxRblcvht5XH755Vq5cqWmTZtW4xlV77/qqqu0a9cuvfnmmzX6lJSU+KwbFxERUSNQq815552nqKgoTZo0SaWlpbV+bl0a8rsdrnXr1urVq5feffddn2m6c+bM0bp1645Y19EMHz5cS5Ys0YoVK7xtOTk5+uCDD3z6LV26VFlZWRo5cuQJfR4AAAAAADh+gT+8CwHnwgsv1HvvvSeHw6Fu3bppyZIlmjt3ruLi4nz6/fnPf9Znn32mK6+8Urfccov69OmjnJwcffXVV3rttdfUs2dP3Xjjjfrkk09055136vvvv9egQYPkcrm0YcMGffLJJ5o9e7b69u0rSerTp4/mzp2ryZMnKykpSe3atVP//v1r1BcdHa3nnntOt912m/r166frrrtOsbGxWrlypYqLi/Xuu+82ynerzaRJkzRy5EgNHjxYt9xyi3JycvTiiy+qe/fuKiwsPN5/FF4PPfSQ3n//fZ177rkaM2aMIiIi9NZbbyk1NVU5OTne0YwzZsxQWlqaunXrVutz5s2bVyP8lKRLLrmkXmsOAgAAAACAQwjy0OheeOEF2Ww2ffDBByotLdWgQYM0d+5cDR/uu/5fZGSkfvjhBz366KOaNm2a3n33XSUkJGjYsGFKTk6WJFmtVk2fPl3PPfec/vOf/2jatGkKDw9X+/btdd9993k3vZCkyZMn6/bbb9cjjzyikpISjRo1qtYgT5JuvfVWJSQk6Omnn9bjjz+u4OBgdenSRQ888ECjfbfanH/++fr000/1yCOPaNy4cerQoYOmTJmiL7/8UvPnzz9ibUeSkpKi77//Xvfee6+eeuopxcfH6+6771ZERITuvfde7+69M2fO1AUXXFDnc2bNmqVZs2bVaE9LSyPIAwAAAADgBFk8R5sriAaXn58vh8OhvLw8RUdH19qnuLhY69evV9euXRUeHt7IFaKpslgs+vOf/6yHHnpIERERCgsLO2L/+++/X6+//roKCwuVnZ2t1q1b6+uvvz5imHckOTk5crvd3qDwpZdeqrNv1b8D69ev14EDBzR69Og6/30BAAAAACCQHUtWJLFGHtDsPPvss4qPj9fLL7/s015SUuJzfeDAAb333nsaPHiwbDab8vLyNH78eA0dOrTen92+fXvFx8fX+/0AAAAAADRnTK0FmpE5c+Z4z6tPO5akAQMGaMiQIeratav27dunt99+W/n5+frb3/7m7T9hwoQT+vwvv/xS5eXlkozpvAAAAAAA4NgR5AHNyDnnnFPnvQsuuECfffaZ3njjDVksFp122ml6++23deaZZzbY55911lkN9iwAAAAAAJobptZKevnll5WWlqbQ0FD1799fP//88xH7P//88+rcubPCwsKUkpKiBx54oNadOoFA8tRTT2nTpk3/z96dx0dV3f8ff8+SmeyThOwhEHZQBBQEEfdGqbW2fFstWhdEq21dKk1tBStYtErVamnVivp1q0u19WfVL1q3KFqVioIo+04ISzaSzCSTZPbfH5NMMllYQyaTvJ6Px33cmXPPvfczGCF559xz1NDQIKfTqf/85z8HDP4AAAAAAEDP6vdB3ssvv6yioiLdcccdWrVqlcaPH6/p06eroqKi0/4vvvii5s6dqzvuuEMbNmzQk08+qZdfflm33XZbD1cOAAAAAACA/qTfB3kPPvigrr32Ws2ePVvHHXeclixZovj4eD311FOd9v/ss880bdo0/fjHP1ZBQYHOO+88XXrppQccxedyueRwOMI2AAAAAAAA4HD06yDP7XZr5cqVYY8PGo1GFRYWavny5Z2ec+qpp2rlypWh4G779u1666239J3vfKfL+yxatEg2my20Hc4k/36//5D7An1JIBCIdAkAAAAAAPQq/TrIq6qqks/nU1ZWVlh7VlaWysrKOj3nxz/+se68806ddtppiomJ0bBhw3TWWWcd8NHaefPmyW63h7bS0tKD1maxWCRJ9fX1h/GJgL7D4XAoEAjI7XZHuhQAAAAAAHoFVq09TMuWLdM999yjv/71r5oyZYq2bt2qm2++WXfddZfmz5/f6TlWq1VWq/Ww7mM2m5Wenq49e/ZIkhITE2U09uvcFf1AIBCQx+NRdXW1ampqZLfb5fV6ZTAYIl0aAAAAAAAR16+DvPT0dJlMJpWXl4e1l5eXKzs7u9Nz5s+fryuuuEI/+clPJEknnHCCnE6nrrvuOv32t7/t1rBt0KBBcrvdoTAP6C98Pp8qKytlt9vl8XhksVgOOwwHAAAAAKCv6ddBnsVi0cSJE1VcXKwZM2ZICs5JV1xcrBtvvLHTcxoaGjqEdSaTSVL3z+llMBg0fPhwvfbaa9q9e7eysrJC9wL6Kq/XK5/PJ0nyeDyqra3VpEmTCPIAAAAAAP1evw7yJKmoqEizZs3SpEmTNHnyZC1evFhOp1OzZ8+WJF155ZXKy8vTokWLJEkXXnihHnzwQZ144omhR2vnz5+vCy+88JiEbAaDQaeffrrefPNN7dixgwUA0G8EAgEZjUYVFBRoypQpkS4HAAAAAICI6/dB3syZM1VZWakFCxaorKxMEyZM0Ntvvx1aAGPXrl1hI/Buv/12GQwG3X777dqzZ48yMjJ04YUX6u677z5mNaanp+tHP/qRdu/erdraWsI89AtGo1GpqakaOHAgo/EAAAAAAJBkCJAK9TiHwyGbzSa73a7k5ORIlwMAAAAAAIAIOtSsiGVQAQAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkNfskUceUUFBgWJjYzVlyhStWLGiy75nnXWWDAZDh+2CCy7owYoBAAAAAADQnxDkSXr55ZdVVFSkO+64Q6tWrdL48eM1ffp0VVRUdNr/1Vdf1b59+0Lb2rVrZTKZdPHFF/dw5QAAAAAAAOgvCPIkPfjgg7r22ms1e/ZsHXfccVqyZIni4+P11FNPddo/LS1N2dnZoe29995TfHw8QR4AAAAAAACOmX4f5Lndbq1cuVKFhYWhNqPRqMLCQi1fvvyQrvHkk0/qkksuUUJCQqfHXS6XHA5H2AYAAAAAAAAcjn4f5FVVVcnn8ykrKyusPSsrS2VlZQc9f8WKFVq7dq1+8pOfdNln0aJFstlsoS0/P/+o6wYAAAAAAED/0u+DvKP15JNP6oQTTtDkyZO77DNv3jzZ7fbQVlpa2oMVAgAAAAAAoC8wR7qASEtPT5fJZFJ5eXlYe3l5ubKzsw94rtPp1EsvvaQ777zzgP2sVqusVutR1woAAAAAAID+q9+PyLNYLJo4caKKi4tDbX6/X8XFxZo6deoBz/3nP/8pl8ulyy+//FiXCQAAAAAAgH6u34/Ik6SioiLNmjVLkyZN0uTJk7V48WI5nU7Nnj1bknTllVcqLy9PixYtCjvvySef1IwZMzRgwIBIlA0AAAAAAIB+hCBP0syZM1VZWakFCxaorKxMEyZM0Ntvvx1aAGPXrl0yGsMHL27atEmffPKJ3n333UiUDAAAAAAAgH7GEAgEApEuor9xOByy2Wyy2+1KTk6OdDkAAAAAAACIoEPNivr9HHkAAAAAAABANCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQZ6kRx55RAUFBYqNjdWUKVO0YsWKA/avra3VDTfcoJycHFmtVo0cOVJvvfVWD1ULAAAAAACA/sgc6QIi7eWXX1ZRUZGWLFmiKVOmaPHixZo+fbo2bdqkzMzMDv3dbrfOPfdcZWZm6pVXXlFeXp5KSkqUkpLS88UDAAAAAACg3zAEAoFApIuIpClTpujkk0/Www8/LEny+/3Kz8/XTTfdpLlz53bov2TJEt1///3auHGjYmJijuieDodDNptNdrtdycnJR1U/AAAAAAAAotuhZkX9+tFat9utlStXqrCwMNRmNBpVWFio5cuXd3rOG2+8oalTp+qGG25QVlaWxo4dq3vuuUc+n6/L+7hcLjkcjrANAAAAAAAAOBz9OsirqqqSz+dTVlZWWHtWVpbKyso6PWf79u165ZVX5PP59NZbb2n+/Pl64IEH9Pvf/77L+yxatEg2my205efnd+vnAAAAAAAAQN/Xr4O8I+H3+5WZmanHH39cEydO1MyZM/Xb3/5WS5Ys6fKcefPmyW63h7bS0tIerBgAAAAAAAB9Qb9e7CI9PV0mk0nl5eVh7eXl5crOzu70nJycHMXExMhkMoXaxowZo7KyMrndblkslg7nWK1WWa3W7i0eAAAAAAAA/Uq/HpFnsVg0ceJEFRcXh9r8fr+Ki4s1derUTs+ZNm2atm7dKr/fH2rbvHmzcnJyOg3xAAAAAAAAgO7Qr4M8SSoqKtITTzyhZ599Vhs2bNDPf/5zOZ1OzZ49W5J05ZVXat68eaH+P//5z1VdXa2bb75Zmzdv1ptvvql77rlHN9xwQ6Q+AgAAAAAAAPqBfv1orSTNnDlTlZWVWrBggcrKyjRhwgS9/fbboQUwdu3aJaOxNe/Mz8/XO++8o1/+8pcaN26c8vLydPPNN+vWW2+N1EcAAAAAAABAP2AIBAKBSBfR3zgcDtlsNtntdiUnJ0e6HAAAAAAAAETQoWZF/f7RWgAAAAAAACAaEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgr9kjjzyigoICxcbGasqUKVqxYkWXfZ955hkZDIawLTY2tgerBQAAAAAAQH9DkCfp5ZdfVlFRke644w6tWrVK48eP1/Tp01VRUdHlOcnJydq3b19oKykp6cGKAQAAAAAA0N8Q5El68MEHde2112r27Nk67rjjtGTJEsXHx+upp57q8hyDwaDs7OzQlpWV1YMVAwAAAAAAoL/p90Ge2+3WypUrVVhYGGozGo0qLCzU8uXLuzyvvr5egwcPVn5+vr7//e9r3bp1XfZ1uVxyOBxhGwAAAAAAAHA4+n2QV1VVJZ/P12FEXVZWlsrKyjo9Z9SoUXrqqaf0+uuv6/nnn5ff79epp56q3bt3d9p/0aJFstlsoS0/P7/bPwcAAAAAAAD6tn4f5B2JqVOn6sorr9SECRN05pln6tVXX1VGRoYee+yxTvvPmzdPdrs9tJWWlvZwxQAAAAAAAIh25kgXEGnp6ekymUwqLy8Pay8vL1d2dvYhXSMmJkYnnniitm7d2ulxq9Uqq9V61LUCAAAAAACg/+r3I/IsFosmTpyo4uLiUJvf71dxcbGmTp16SNfw+Xxas2aNcnJyjlWZAAAAAAAA6Of6/Yg8SSoqKtKsWbM0adIkTZ48WYsXL5bT6dTs2bMlSVdeeaXy8vK0aNEiSdKdd96pU045RcOHD1dtba3uv/9+lZSU6Cc/+UkkPwYAAAAAAAD6MII8STNnzlRlZaUWLFigsrIyTZgwQW+//XZoAYxdu3bJaGwdvFhTU6Nrr71WZWVlSk1N1cSJE/XZZ5/puOOOi9RHAAAAAAAAQB9nCAQCgUgX0d84HA7ZbDbZ7XYlJydHuhwAAAAAAABE0KFmRf1+jjwAAAAAAAAgGhDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIK/ZI488ooKCAsXGxmrKlClasWLFIZ330ksvyWAwaMaMGce2QAAAAAAAAPRrBHmSXn75ZRUVFemOO+7QqlWrNH78eE2fPl0VFRUHPG/nzp265ZZbdPrpp/dQpQAAAAAAAOivCPIkPfjgg7r22ms1e/ZsHXfccVqyZIni4+P11FNPdXmOz+fTZZddpoULF2ro0KEHvL7L5ZLD4QjbAAAAAAAAgMPR74M8t9utlStXqrCwMNRmNBpVWFio5cuXd3nenXfeqczMTF1zzTUHvceiRYtks9lCW35+frfUDgAAAAAAgP6j3wd5VVVV8vl8ysrKCmvPyspSWVlZp+d88sknevLJJ/XEE08c0j3mzZsnu90e2kpLS4+6bgAAAAAAAPQv5kgXEG3q6up0xRVX6IknnlB6evohnWO1WmW1Wo9xZQAAAAAAAOjL+n2Ql56eLpPJpPLy8rD28vJyZWdnd+i/bds27dy5UxdeeGGoze/3S5LMZrM2bdqkYcOGHduiAQAAAAAA0O/0+0drLRaLJk6cqOLi4lCb3+9XcXGxpk6d2qH/6NGjtWbNGq1evTq0fe9739PZZ5+t1atXM/8dAAAAAAAAjol+PyJPkoqKijRr1ixNmjRJkydP1uLFi+V0OjV79mxJ0pVXXqm8vDwtWrRIsbGxGjt2bNj5KSkpktShHQAAAAAAAOguBHmSZs6cqcrKSi1YsEBlZWWaMGGC3n777dACGLt27ZLR2O8HLwIAAAAAACCCDIFAIBDpIvobh8Mhm80mu92u5OTkSJcDAAAAAACACDrUrIhhZgAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMhr9sgjj6igoECxsbGaMmWKVqxY0WXfV199VZMmTVJKSooSEhI0YcIEPffccz1YLQAAAAAAAPobgjxJL7/8soqKinTHHXdo1apVGj9+vKZPn66KiopO+6elpem3v/2tli9frm+++UazZ8/W7Nmz9c477/Rw5QAAAAAAAOgvDIFAIBDpIiJtypQpOvnkk/Xwww9Lkvx+v/Lz83XTTTdp7ty5h3SNk046SRdccIHuuuuug/Z1OByy2Wyy2+1KTk4+qtoBAAAAAAAQ3Q41K+r3I/LcbrdWrlypwsLCUJvRaFRhYaGWL19+0PMDgYCKi4u1adMmnXHGGZ32cblccjgcYRsAAAAAAABwOPp9kFdVVSWfz6esrKyw9qysLJWVlXV5nt1uV2JioiwWiy644AI99NBDOvfcczvtu2jRItlsttCWn5/frZ8BAAAAAAAAfV+/D/KOVFJSklavXq0vvvhCd999t4qKirRs2bJO+86bN092uz20lZaW9myxAAAAAAAAiHrmSBcQaenp6TKZTCovLw9rLy8vV3Z2dpfnGY1GDR8+XJI0YcIEbdiwQYsWLdJZZ53Voa/VapXVau3WugEAAAAAANC/9PsReRaLRRMnTlRxcXGoze/3q7i4WFOnTj3k6/j9frlcrmNRIgAAAAAAAMCIPEkqKirSrFmzNGnSJE2ePFmLFy+W0+nU7NmzJUlXXnml8vLytGjRIknBOe8mTZqkYcOGyeVy6a233tJzzz2nRx99NJIfAwAAAAAAAH0YQZ6kmTNnqrKyUgsWLFBZWZkmTJigt99+O7QAxq5du2Q0tg5edDqduv7667V7927FxcVp9OjRev755zVz5sxIfQQAAAAAAAD0cYZAIBCIdBH9jcPhkM1mk91uV3JycqTLAQAAAAAAQAQdalbU7+fIAwAAAAAAAKIBQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjymj3yyCMqKChQbGyspkyZohUrVnTZ94knntDpp5+u1NRUpaamqrCw8ID9AQAAAAAAgKNljnQBvcHLL7+soqIiLVmyRFOmTNHixYs1ffp0bdq0SZmZmR36L1u2TJdeeqlOPfVUxcbG6t5779V5552ndevWKS8vLwKfAAAAAAC6T12TR9/stmvDPoe2VTq1o6pe1U637I0eNbh9iosxKS81TuPybPr22BydMjRNBoMh0mUDQJ9nCAQCgUgXEWlTpkzRySefrIcffliS5Pf7lZ+fr5tuuklz58496Pk+n0+pqal6+OGHdeWVVx60v8PhkM1mk91uV3Jy8lHXDwAAAABHY29toz7dWqUvd9ZodWmtNlfU6XB+Upw8JE33/M9YDc9MOnZFAkAfdqhZUb8fked2u7Vy5UrNmzcv1GY0GlVYWKjly5cf0jUaGhrk8XiUlpbW6XGXyyWXyxV673A4jq5oAAAAADgK9gaPlm+v0qdb9+vTrVXaXuXs0CcvJU4n5Nk0IitRQzMSlJkUq+TYGMVbTWpw+bRzv1P/2VKp11fv1Yod1bpoyXL97erJGjcwpec/EAD0E/0+yKuqqpLP51NWVlZYe1ZWljZu3HhI17j11luVm5urwsLCTo8vWrRICxcuPOpaAQAAAOBIBAIBba2oV/HGCn2woUIrd9XI528dcmc0SOMGpmjqsAE6aVCqJuSnKCPJesBrnjDQpgvH5+rmwpG68cVV+mpXra54coXe/eUZykqOPdYfCQD6pX4f5B2tP/zhD3rppZe0bNkyxcZ2/o/VvHnzVFRUFHrvcDiUn5/fUyUCAAAA6IeaPD59vqNaH2woV/HGCu2uaQw7PiwjQacNT9e04emaMnSAbHExR3SfvJQ4PXfNFF3y+HKt3ePQgtfX6rErJnXHRwAAtNPvg7z09HSZTCaVl5eHtZeXlys7O/uA5/7xj3/UH/7wB73//vsaN25cl/2sVqus1gP/NgsAAAAAjla5o0kfbqxQ8cYKfbq1Sg1uX+iYxWzUqcMG6JzRmTp7VKby0+K77b6JVrPuv2i8LnzoE72zrlwfba7UmSMzuu36AICgfh/kWSwWTZw4UcXFxZoxY4ak4GIXxcXFuvHGG7s877777tPdd9+td955R5Mm8dsmAAAAAD0vEAhow746vb+hXO9vKNc3u+1hx7OSrTpndJbOGZ2pacMHKN5y7H4EHJOTrCumDtbTn+7Us5/tJMgDgGOg3wd5klRUVKRZs2Zp0qRJmjx5shYvXiyn06nZs2dLkq688krl5eVp0aJFkqR7771XCxYs0IsvvqiCggKVlZVJkhITE5WYmBixzwEAAACg73N7/Vqxo1rvbyjXe+vLtae29ZFZg0EaPzBF3xqdqbNHZ+r43GQZDIYeq+3KqQV6+tOd+nBThUqrG7p11B8AgCBPkjRz5kxVVlZqwYIFKisr04QJE/T222+HFsDYtWuXjEZjqP+jjz4qt9utiy66KOw6d9xxh373u9/1ZOkAAAAA+gF7o0fLNlXo/Q0VWrapQnVN3tCx2BijTh+RoXPHZOns0ZkHXaTiWBqSnqDTR6TrP1uq9PcVu/Sbb4+OWC0A0BcZAoFA4ODd0J0cDodsNpvsdruSk5MjXQ4AAACAXqi0uiE06m7Fjmp526wym55oVeGYTBWOydK04emKs5giWGm4//t6r276+1canpmo94vOjHQ5ABAVDjUrYkQeAAAAAPQCfn9Aa/bY9d764Hx3G8vqwo6PyEzUucdlqfC4LE0YmCKjsecemT0cZ4zIkNEgba2o197aRuWmxEW6JADoMwjyAAAAACBCmjw+fbatSu+tr1DxhnJV1LlCx0xGg04uSFXhmCwVjslSQXpCBCs9dLb4GE3IT9GqXbX6eHOlLpk8KNIlAUCfQZAHAAAAAD1of71LH2ys0PsbyvXx5io1enyhYwkWk84alanC4zJ11shMpSZYIljpkTtjZEYwyNtCkAcA3YkgDwAAAACOoUAgoHV7HfpwY4U+2FSh1aW1ajtTeY4tNjjq7rgsnTI0TVZz75nv7kidOTJDi9/fok+2VMnvD/Tax4ABINoQ5AEAAABAN3O6vPpka5U+3FihDzdVqNzhCjt+XE6yzj0uS+cel6Xjc5NlMPStoOuEPJviYkxyNHm1vcqp4ZmJkS4JAPoEgjwAAAAA6AYl+536YGOFPthYoc+3V8vt84eOxcWYNG14us4ZnamzR2cox9a3F4Awm4w6PjdZX5bU6JvdtQR5ANBNCPIAAAAA4Ai4vX59ubM6GN5tqtD2SmfY8UFp8c3BXaamDElTbEz0PzJ7OMYNTGkO8uz6wUkDI10OAPQJBHkAAAAAcIhKqxv08ZZKfby5Up9t3a86lzd0zGw06OSCtFB4Nywjoc89Mns4xufbJElf766NbCEA0IcQ5AEAAABAFxrcXv13+359vLlKH2+u1Paq8FF36YkWnTUqU+eMztRpI9KVHBsToUp7n3EDUyRJ6/c65PH5FWMyRrYgAOgDCPIAAAAAoFkgENCGfXWhUXdf7qwJm+vOZDToxPwUnTEyQ2eMzNC4PBsrsnahYEC8kmPNcjR5tamsTmPzbJEuCQCiHkEeAAAAgH5tf71Ln2yt0kebK/WfLVWqrAtfYTYvJU5njMzQmSPTdepwRt0dKoPBoLF5Nn22bb/W73MQ5AFANyDIAwAAANCvNLp9+mJntT7dVqXPtu7X2r12BQKtx+NiTDplaFpo1N3Q9P49193RGJWdpM+27dfmsrpIlwIAfQJBHgAAAIA+zePz6+vSWn26db8+21alr3bVhj0uK0mjs5N0ZnNwN6kgVVZz/1ph9lgZlZUkSdpUTpAHAN2BIA8AAABAn+L3B7ShzKHPtu7Xp9uqtGJHtRrcvrA+ubZYnTo8XdOGD9C0YenKTI6NULV924jmIG8zQR4AdAuCPAAAAABRLRAIaOf+Bn26tUqfbavS8m37VdPgCeuTGh+jU4el69Tm4G7wgHgel+0BI7MSJUnlDpdqG9xKibdEuCIAiG4EeQAAAACiSiAQ0LbKen2+o1qfb6/Wih3VKnM0hfVJsJg0eUiapg1P16nD0jU6O4nVZSMgKTZGeSlx2lPbqM3l9Zo8JC3SJQFAVCPIAwAAANCr+f0BbSyr04od+/X5jmBwt9/pDutjMRl14qCU5uBugMbnpyjGZIxQxWhrZFai9tQ2alN5HUEeABwlgjwAAAAAvYrX59e6vQ6t2FGtz3fs14od1XI0ecP6WM1GnTQoVZOHpGnK0DSdmJ+qOAsLVPRGI7OT9OGmSlauBYBuQJAHAAAAIKIa3T59vbtWK0tq9PmOaq3cWS1nu8UpEiwmTSxI05Qhwe2EgTZWlo0SIzKDC15sq6yPcCUAEP0I8gAAAAD0qDJ7k1aW1OjLkmqtKqnRur0Oef2BsD7JsWZNHpIWHHE3ZICOz02WmUdlo9KwjARJBHkA0B0I8gAAAAAcM16fXxvL6rSypCa07alt7NAvK9mqiYNTdXJBMLgblZ0kE4tT9AlDM1pXrq1r8igpNibCFQFA9CLIAwAAANBt7A0efVVao1UlNfqypEarS2vV0O4xWaNBGpOTrEmDU3XS4FRNHJyqvJQ4GQwEd32RLS5GGUlWVda5tL3SqfH5KZEuCQCiFkEeAAAAgCPi8vq0YV+dVu+q0de77fq6tFbbq5wd+iXFmnXSoFRNag7txuenKMHKjyL9ybCMBFXWubStsp4gDwCOAv96AgAAADgovz+gnfudWl1aq69La7V6t10b9jrk9vk79C0YEK+Jg9M0cXCqJhWkanhGoow8JtuvDctI1H+3VzNPHgAcJYI8AAAAAB1U1rn0dWmtvt5dGwrvHE3eDv3SEiyakJ+i8QNTND7fpvEDU5SaYIlAxejNhjXPk7etouOITQDAoSPIAwAAAPqxQCCgijqX1uy2a+1eu9busWvtHofKHE0d+lrNRp2QZ9P4/BRNaN4GpjK3HQ5uWGZzkMeIPAA4KgR5kh555BHdf//9Kisr0/jx4/XQQw9p8uTJnfZdt26dFixYoJUrV6qkpER/+tOfNGfOnJ4tGAAAADgCgUBAe+1NzWFdcFuzx6GqeleHvgaDNCIzUeMHpmjCoOCIu1HZSYoxGSNQOaLdsIwESdLO/U55fX6Z+ToCgCPS74O8l19+WUVFRVqyZImmTJmixYsXa/r06dq0aZMyMzM79G9oaNDQoUN18cUX65e//GUEKgYAAAAOLhAIqLS6UWv32rWmObRbt9ehaqe7Q1+jQRqRmaTj85J1Qp5NY/NsOi4nmQUp0G1ybXGKjTGqyeNXaU2jhqQnRLokAIhK/f5f5gcffFDXXnutZs+eLUlasmSJ3nzzTT311FOaO3duh/4nn3yyTj75ZEnq9DgAAADQ0xrdPm0ur9OGfQ5tLKvT+n0Obdzn6HROO7PRoJFZSRqbl6yxzaHdmOxkxVlMEagc/YXRaNDQ9ESt3+fQtop6gjwAOEL9Oshzu91auXKl5s2bF2ozGo0qLCzU8uXLu+0+LpdLLlfr4woOh6Pbrg0AAID+IxAIaJ+9KSyw27DPoZ1VTvkDHftbTEaNyk5qDuyCo+1GZiUpNobQDj1vWGZzkFdZr0JlRbocAIhK/TrIq6qqks/nU1ZW+D8iWVlZ2rhxY7fdZ9GiRVq4cGG3XQ8AAAB9X5MnOMpu477WwG5jWZ3sjZ5O+w9IsGhMTrLG5CRpdHayRuckaURmkixm5iJD79AyTx4LXgDAkevXQV5PmTdvnoqKikLvHQ6H8vPzI1gRAAAAeguX16ftlU5tLq9r3uq1pbxOu6obOh1lZzYaNCwjMRjY5SSHwruMRCurx6JXG5bRsnKtM8KVAED06tdBXnp6ukwmk8rLy8Pay8vLlZ2d3W33sVqtslqt3XY9AAAARB+3168dVcHAbktzYLe5ok4l+xvk6yyxk5SWYNGYnCSNyU5uDu2SNDwzUVYzj8Yi+rQEeVsr6hUIBAieAeAI9Osgz2KxaOLEiSouLtaMGTMkSX6/X8XFxbrxxhsjWxwAAACiUpPHp537ndpW4dSWijptKa/X5vI67ahyyttFYJcca9bIrCSNyErSyKxEjcxK0sisJKUnWgg70GcMSU+QwSDZGz2qdro1IJHBDgBwuPp1kCdJRUVFmjVrliZNmqTJkydr8eLFcjqdoVVsr7zySuXl5WnRokWSggtkrF+/PvR6z549Wr16tRITEzV8+PCIfQ4AAAD0nEAgoKp6t7ZV1ge3Cqe2VwVf765pVKDzvE6JVrNGZCVqZGZScJ+VpFHZScpM4rFY9H1xFpPyUuK0u6ZR2yqdBHkAcAT6fZA3c+ZMVVZWasGCBSorK9OECRP09ttvhxbA2LVrl4zG1gmC9+7dqxNPPDH0/o9//KP++Mc/6swzz9SyZct6unwAAAAcQ26vX7uqndraEtRVOEPhXV2Tt8vzkmPNGpaZqGEZiRqZlagRWUkalZWkHFssgR36tWEZic1BXr0mD0mLdDkAEHX6fZAnSTfeeGOXj9K2D+cKCgoU6OpXrAAAAIg6Pn9Ae2sbtXO/UzurnNq5v0E7q5zaUeVUSXXX89cZDFJ+aryGZSRoaEYwtGt5zSOxQOeGZSTqo82V2lbByrUAcCQI8gAAANDneX1+7a1t0o79TpXsbw7p9jdo536nSqsb5PF1/YvaBIspNLpuaHpC6PXgAfGKjWHRCeBwDMtMkCRtqyTIA4AjQZAHAACAPsHj82tPTfjIupL9wX1pdUOXC01IksVs1OC0eA0ekKAh6S37BA3PTGT+OqAbtaxcu63SGeFKACA6EeQBAAAgKvj9AVXUuVRaEwzmSqsbQ6931zRqn71RB8jqZDUbNXhAvAoGJKggPSG4HxCvwekJykmOldFIWAccay1BXmlNg5o8Pka1AsBhIsgDAABArxAIBGRv9IQFdMF98P3umka5vf4DXiM2xqiCAQnBwK45rBs8IF5D0hOUlURYB0RaeqJFybFmOZq82rnfqdHZyZEuCQCiCkEeAAAAeoTfH1CV06W9tU3aW9uoPTWN2lPbqL21jdpd06jS6gbVubpeCVaSTEaDcmyxyk+N16C0eOWnxSk/LV4DU4OvMxJ5DBbozQwGg4ZlJuqrXbXaVkGQBwCHiyAPAAAA3aLR7dNeezCY21vbqD21TdpT0/ze3qh9tU1y+w48ok6S0hOtwYCuOZxrDe3ilW2LVYzJ2AOfBsCxMiyjOchjwQsAOGwEeQAAADgot9eviromlTuatM/epDJ7U2g0XXDfpGqn+6DXMRqkrORY5abENW+xykuJU15Ky8i6OMVb+BYV6MtaF7wgyAOAw8V3SQAAAP1cXZNHZfYmlTmCAV1LWFfuaG2rqj94SCdJCRaT8lLjQkFdXnNYl2sLvmdEHYBhGQmSCPIA4EgQ5AEAAPRRXp9f+53uYCDXJqhruy+3N8np9h3S9SwmozKTrcqxxSorOVZ5qc1Bna01tEuOMzNHHYADGpbZPCKvwim/P8AiNABwGAjyAAAAoozT5VVFnUuVdS5V1DU1711h+8q6Ju13uhUIHNo1k2LNoYAuOzk2+NoWfJ3V/D4twUJIB+CoDUqLl9loUKPHpzJHk3JT4iJdEgBEDYI8AACAXsDnD6ja6e4QzFV2Etg1HOIIOik4J11GkjUskGsJ6LLb7JmXDkBPiTEZNXhAvLZVOrWtsp4gDwAOA9+xAQAAHAOBQED1Lq/217u13+lq3ru1v96lqjavW45XO93yH+LoOSk4F11GklWZSbHKSLKGbZmhfXAUnYnH1gD0MsMyEoNBXkW9Th+REelyACBqEOQBAAAcoiaPT9VOt/bXu1XVEs7Vu5pDuTaBXb1LVU633F7/YV3fYJAGJLQP46xhgV3L+wQr38YBiF7DMhOl9eXaVumMdCkAEFX4DhAAAPRLTR6fahs8qna6VdvgVnWDWzUNHtU43appcDfvPcHXDW7VOD2qd3kP+z7xFpMGJFo0IMGq9Ob9gESLBiQG36cltB5LS7DIzIquAPqBYRnNC16wci0AHBaCPAAAENUCgYAaPb6wEC4YzrUN6TzBfXN7TYP7sOaZa8tsNISCuQGJFqUnWjUgIRjMBd8Hj6UlWDQg0cLccwDQiWEZCZII8gDgcPGdJQAA6BWaPD7ZGz2yN3pU2+AJvQ5tDe6Obc2bx3cYk8u1YTIalBofo9R4S3BLaH6dYGnXHnw/IMGq5DgzK7cCwFEa2jwir9zhUl2TR0mxMRGuCACiA0EeAADoFn5/QPVur+qavKpr8qiuyStHm7CtJZwLa2vz+nDnk2vPYjIqJT5GaQmWNnuL0uJb36fGhx9LjiWUA4BIsMXFKCPJqso6l7ZXOjU+PyXSJQFAVCDIAwAA8vsDcoZCuDZBXJNHjjbvW/fhYV1dk1f1bq8CRzYwLsRoCP5w17Ilx8UoJd4iW5w5rN0WZ2l9HR/cJ1hMhHIAEEWGZSSoss6lbZX1BHkAcIgI8gAAiGJen19Ol0/1bq+cLq/qXcG90xUM25wur5xun+pdXtW3C+IcbcK6etfRh3AtYkwGJcXGKCnWrOTYmA6BW9stpTmsazmeaDHLaCSMA4D+YFhGov67vZp58gDgMBDkAQDQgwKBgFxefyhYCwVvbq/qXb5gGHew9jahXZPn6B5Hbc9sNCg5LhjCJcWalWRted0SzLV5HRd+rCW4s5qNjIwDABxUaOXaCmeEKwGA6EGQBwBAJ3z+gBrcXjW6fXK6fWGvG91eNbR73dDcp8HV/NrjU4MreKzREwziGpvbff5uGvrWRozJoESrWQlWc2gffG0Ka0+O7Ri+JcXGhAK62BhCOABAzxiW2RzkMSIPAA4ZQR4AIOoEAgF5fAE1eX1qag7Kmjx+NXp8anT7wtpbjjU1h2kNbl9zINccrLUEcO1eu45y4YVDEW8JhmytwVt46NY+kGvf3vY8q9l0zOsFAKA7DctIkCTt3O+U1+eX2WSMcEUA0PsR5AEAuo3PH5DL2xqctQRrLq9PjW5/c6jmC+2bPOHtbc9p8vrbhHRtzwn2Pxaj2jpjNEjxFrPiLCYlWEyKs5gVbzG12Vrfx1nMSmj3Os4SDODiYlr7J1hNSmAuOABAP5dri1NsjFFNHr92VTdoaPOjtgCArhHkAUAf0jJSrSVMc3mDI8tcbV43eZrbvH652r5ue46ntS2sX9trtr1W897bQ+FaW0aDFBdjUmzzFmcxKTbGGN4WE2xrCd3CgjWrWfFtX7cL6JjvDQCAY8NoNGhUVpK+3m3X6tJagjwAOAQEeQBwFAKBgNw+v9ze4ObxBYKvfcFgq32buzkAC7V5fa3nh9qCfT3e1mu7vH65fX55mvdtw7bWYC64766VR4+WxWQMBmqWtmFaa8gWZzEp1mxSrKU1aItrG8aZg/u4GJOs7c5puWZsjFEWE0EbAADR6tTh6fp6t12fbKnSD04aGOlyAKDXI8gD0Cv5/AF5fP7mLSCvLxhgeX2BUFvb4x6fX16/X25vQF5/eLuneaRY1+f7Q6GbuyUwaxPOuTppa+3XS1KzLljNxuDWHHpZzabWNnMwILOajYqNMbW2mY3N7e3OCTu/zbEYY9i5sTEmWcxGmXhsFAAAHMTpw9P16LJt+mRrlQKBAL+cA4CDIMhr9sgjj+j+++9XWVmZxo8fr4ceekiTJ0/usv8///lPzZ8/Xzt37tSIESN077336jvf+U4PVgyECwQC8voDoQAsuA9/7/UHQy6vr6Wvv0Oflvet/YIhWPtzWo51FY55fS3BWbt2f6B5lFrwtcfrl6f5/m3PicATmt3CbDTIYjYGN5NRMaZgyNW+zdKmzdpJm8XUbm9u06d5pFtnIZo1pjWUY6QaAADo7SYWpCo2xqiKOpc2l9drVHZSt127Ze5el8evpua9PxBQQMHvnQMByR+QAmp5HdwbDJJBBhmNktFgkNEgGQwGGdTy3iCDIfhocGtbsE9n+1D/Nntj8/UMzf0A4FAR5El6+eWXVVRUpCVLlmjKlClavHixpk+frk2bNikzM7ND/88++0yXXnqpFi1apO9+97t68cUXNWPGDK1atUpjx46NwCdAIBCQPxD8x9rnD8gXCMjnC+69fr/8foXv24RenW7Nx/3+dvtAMMDyBbo+z+cPtAvAwoMwb0tg1kWQ1j48C/Ztd6zNtbz+1s/Sl5mMhmBIZjLKbDIopjn8ijEZZG4JwkKvW4+bjQbFmI2KMTa3tXnd0tfSLkQLhW9dhGjW9m0tfU1GFi8AAAA4DFazSZOHDNDHmyv1r6/2aO75o7vs6/b6tc/eqNLqRu2uadDumkbtd7pU2+BRTYM7tHe6ggtt9fYnJ1oEg8M2AaAMzQGfQoGfsblTWCjYfE7L+W2PSZLR2BxIGg7Sz9DxfoZ292m9f2vI2VpnS5/Wz6DQfdte39Dh/s1dW68V9mfSWlfLkdY/q+Dx9n9+Le+DZxjC+kutNbS9Z8vVDZ3UobaBa2c1tAlhOzvf0P4+LTV2Ubeh3T27/BzBD9D636rt/drds+3n7upztP3zba2vtdawY21raNOhtV8X57X78w4/t+P9w67Vob31AhPyU/rdk0CGQKC3zKYUOVOmTNHJJ5+shx9+WJLk9/uVn5+vm266SXPnzu3Qf+bMmXI6nVq6dGmo7ZRTTtGECRO0ZMmSDv1dLpdcLlfovcPhUH5+vux2u5KTk4/BJ+p5DxVvUVW9Kyzg6iwA6zJAO0Aw1va89sFa2/PQObPRILPJILPR2LwPvjYZDYoxGZr3wffm5uCr5RyTMRh6hfdpOX7gcKxt0BYK1Uztg7iO/ULnG4PXNbe5NwAAAPqe/7dyt371z68lSYVjMpWWYFFcjEmStN/p1j57k/bWNqrM0XTEcwG3/PLWaDR0EoaFBx1S80i9QMuAgeCgAX8gIDXv/W1G8AUU/h5Az1m3cLoSrH1jjJrD4ZDNZjtoVtQ3Pu1RcLvdWrlypebNmxdqMxqNKiws1PLlyzs9Z/ny5SoqKgprmz59ul577bVO+y9atEgLFy7stpp7o/+3ard27m+IdBmdMhiCYZbREAygjM1BlallMxhkMjXvQ+1GmYwK7g2S2WiU0diyN4Rdz9R+M4SHXR1CseaQqjVIaw3Y2gZmMe2CtLbXCgvl2oZvze2mNp+RofoAAADozX5wUp5Kqhv0l+Iten9DxQH7xsYYNTA1XgNT4zQwNU4ZibFKTYhRSrxFKXExSo23KDHWrNgYo2JD05CYeuyXwoFQuNcS+IU/ttsSAgbah4GhR34VevzX3zxYIewa6vhYsN/f+nhw22Cx5R4Kve94v/bXVuAQ7hdo+zlb7t+uLaAurtG6b/vZWj57cxWhQLTlvObSQn1azmnp3Nn5YW1h1wg/v+01W+7Z2f3atqnNn3fzu7B7trQp0OaeYfcLb1Pbz9XF51CHtkC7+7WpvX1dnXwOddbWSa1tj6nNn037+4S97+SaOtg57fq2/bM50PH++ONuvw/yqqqq5PP5lJWVFdaelZWljRs3dnpOWVlZp/3Lyso67T9v3ryw4K9lRF5fcvkpg2Vv9HQdlrUNzdq1hUIxU0s41hqatYRpHft0ce32gZzBwKOOAAAAQC9mMBhUdO5ITRmSps3ldWpw+9Tk8SkQkFLiY5Rji1NOSqzyU+OVnmjp1b+obnkkVZJM6r11Aohe/T7I6wlWq1VWqzXSZRxTPzl9aKRLAAAAABDFpg1P17Th6ZEuAwB6tX4f5KWnp8tkMqm8vDysvby8XNnZ2Z2ek52dfVj922sZCupwOI6gYgAAAAAAAPQlLRnRwZay6PdBnsVi0cSJE1VcXKwZM2ZICi52UVxcrBtvvLHTc6ZOnari4mLNmTMn1Pbee+9p6tSph3TPuro6Sepzj9cCAAAAAADgyNXV1clms3V5vN8HeZJUVFSkWbNmadKkSZo8ebIWL14sp9Op2bNnS5KuvPJK5eXladGiRZKkm2++WWeeeaYeeOABXXDBBXrppZf05Zdf6vHHHz+k++Xm5qq0tFRJSUm9en6Hw9Ey719paWmfWYkXR46vB7TF1wPa4usB7fE1gbb4ekBbfD2gLb4e0FZf/HoIBAKqq6tTbm7uAfsR5EmaOXOmKisrtWDBApWVlWnChAl6++23Qwta7Nq1S0ajMdT/1FNP1Ysvvqjbb79dt912m0aMGKHXXntNY8eOPaT7GY1GDRw48Jh8lkhLTk7uM/8T4ejx9YC2+HpAW3w9oD2+JtAWXw9oi68HtMXXA9rqa18PBxqJ14Igr9mNN97Y5aO0y5Yt69B28cUX6+KLLz7GVQEAAAAAAABBxoN3AQAAAAAAABBpBHnoFlarVXfccYesVmukS0EvwNcD2uLrAW3x9YD2+JpAW3w9oC2+HtAWXw9oqz9/PRgCB1vXFgAAAAAAAEDEMSIPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQh27xyCOPqKCgQLGxsZoyZYpWrFgR6ZIQAR9//LEuvPBC5ebmymAw6LXXXot0SYigRYsW6eSTT1ZSUpIyMzM1Y8YMbdq0KdJlIUIeffRRjRs3TsnJyUpOTtbUqVP173//O9JloZf4wx/+IIPBoDlz5kS6FETA7373OxkMhrBt9OjRkS4LEbRnzx5dfvnlGjBggOLi4nTCCSfoyy+/jHRZiJCCgoIOf0cYDAbdcMMNkS4NEeDz+TR//nwNGTJEcXFxGjZsmO666y4FAoFIl9ZjCPJw1F5++WUVFRXpjjvu0KpVqzR+/HhNnz5dFRUVkS4NPczpdGr8+PF65JFHIl0KeoGPPvpIN9xwg/773//qvffek8fj0XnnnSen0xnp0hABAwcO1B/+8AetXLlSX375pc455xx9//vf17p16yJdGiLsiy++0GOPPaZx48ZFuhRE0PHHH699+/aFtk8++STSJSFCampqNG3aNMXExOjf//631q9frwceeECpqamRLg0R8sUXX4T9/fDee+9Jki6++OIIV4ZIuPfee/Xoo4/q4Ycf1oYNG3Tvvffqvvvu00MPPRTp0nqMIdCfYkscE1OmTNHJJ5+shx9+WJLk9/uVn5+vm266SXPnzo1wdYgUg8Ggf/3rX5oxY0akS0EvUVlZqczMTH300Uc644wzIl0OeoG0tDTdf//9uuaaayJdCiKkvr5eJ510kv7617/q97//vSZMmKDFixdHuiz0sN/97nd67bXXtHr16kiXgl5g7ty5+vTTT/Wf//wn0qWgl5ozZ46WLl2qLVu2yGAwRLoc9LDvfve7ysrK0pNPPhlq++EPf6i4uDg9//zzEays5zAiD0fF7XZr5cqVKiwsDLUZjUYVFhZq+fLlEawMQG9jt9slBcMb9G8+n08vvfSSnE6npk6dGulyEEE33HCDLrjggrDvI9A/bdmyRbm5uRo6dKguu+wy7dq1K9IlIULeeOMNTZo0SRdffLEyMzN14okn6oknnoh0Wegl3G63nn/+eV199dWEeP3UqaeequLiYm3evFmS9PXXX+uTTz7R+eefH+HKeo450gUgulVVVcnn8ykrKyusPSsrSxs3boxQVQB6G7/frzlz5mjatGkaO3ZspMtBhKxZs0ZTp05VU1OTEhMT9a9//UvHHXdcpMtChLz00ktatWqVvvjii0iXggibMmWKnnnmGY0aNUr79u3TwoULdfrpp2vt2rVKSkqKdHnoYdu3b9ejjz6qoqIi3Xbbbfriiy/0i1/8QhaLRbNmzYp0eYiw1157TbW1tbrqqqsiXQoiZO7cuXI4HBo9erRMJpN8Pp/uvvtuXXbZZZEurccQ5AEAjrkbbrhBa9euZc6jfm7UqFFavXq17Ha7XnnlFc2aNUsfffQRYV4/VFpaqptvvlnvvfeeYmNjI10OIqztKIpx48ZpypQpGjx4sP7xj3/w6H0/5Pf7NWnSJN1zzz2SpBNPPFFr167VkiVLCPKgJ598Uueff75yc3MjXQoi5B//+IdeeOEFvfjiizr++OO1evVqzZkzR7m5uf3m7wiCPByV9PR0mUwmlZeXh7WXl5crOzs7QlUB6E1uvPFGLV26VB9//LEGDhwY6XIQQRaLRcOHD5ckTZw4UV988YX+/Oc/67HHHotwZehpK1euVEVFhU466aRQm8/n08cff6yHH35YLpdLJpMpghUiklJSUjRy5Eht3bo10qUgAnJycjr8gmfMmDH6f//v/0WoIvQWJSUlev/99/Xqq69GuhRE0K9//WvNnTtXl1xyiSTphBNOUElJiRYtWtRvgjzmyMNRsVgsmjhxooqLi0Ntfr9fxcXFzHsE9HOBQEA33nij/vWvf+mDDz7QkCFDIl0Sehm/3y+XyxXpMhAB3/rWt7RmzRqtXr06tE2aNEmXXXaZVq9eTYjXz9XX12vbtm3KycmJdCmIgGnTpmnTpk1hbZs3b9bgwYMjVBF6i6efflqZmZm64IILIl0KIqihoUFGY3iUZTKZ5Pf7I1RRz2NEHo5aUVGRZs2apUmTJmny5MlavHixnE6nZs+eHenS0MPq6+vDfnu+Y8cOrV69WmlpaRo0aFAEK0Mk3HDDDXrxxRf1+uuvKykpSWVlZZIkm82muLi4CFeHnjZv3jydf/75GjRokOrq6vTiiy9q2bJleueddyJdGiIgKSmpw3yZCQkJGjBgAPNo9kO33HKLLrzwQg0ePFh79+7VHXfcIZPJpEsvvTTSpSECfvnLX+rUU0/VPffcox/96EdasWKFHn/8cT3++OORLg0R5Pf79fTTT2vWrFkym4kx+rMLL7xQd999twYNGqTjjz9eX331lR588EFdffXVkS6txxgCgUAg0kUg+j388MO6//77VVZWpgkTJugvf/mLpkyZEumy0MOWLVums88+u0P7rFmz9Mwzz/R8QYiorlYSe/rpp5mguB+65pprVFxcrH379slms2ncuHG69dZbde6550a6NPQSZ511liZMmKDFixdHuhT0sEsuuUQff/yx9u/fr4yMDJ122mm6++67NWzYsEiXhghZunSp5s2bpy1btmjIkCEqKirStddeG+myEEHvvvuupk+frk2bNmnkyJGRLgcRVFdXp/nz5+tf//qXKioqlJubq0svvVQLFiyQxWKJdHk9giAPAAAAAAAAiALMkQcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUYAgDwAAAAAAAIgCBHkAAAAAAABAFCDIAwAAAAAAAKIAQR4AAAAAAAAQBQjyAAAAAAAAgChAkAcAAAAAAABEAYI8AAAAAAAAIAoQ5AEAAAAAAABRgCAPAAAAAAAAiAIEeQAAAAAAAEAUIMgDAAAAAAAAogBBHgAAAAAAABAFCPIAAAAAAACAKECQBwAAAAAAAEQBgjwAAAAAAAAgChDkAQAAAAAAAFGAIA8AAAAAAACIAgR5AAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAGCPAAAAAAAACAKEOQBAAAAAAAAUcAc6QL6I7/fr7179yopKUkGgyHS5QAAAAAAACCCAoGA6urqlJubK6Ox63F3BHkRsHfvXuXn50e6DAAAAAAAAPQipaWlGjhwYJfHCfIiICkpSVLwP05ycnKEqwEAAAAAAEAkORwO5efnhzKjrhDkRUDL47TJyckEeQAAAAAAAJCkg07BxmIXAAAAAAAAQBQgyAMAAAAAAACiAEEeAAAAAAAAEAUI8gAAAAAAAIAoQJAHAAAAAAAARAFWrY0CXq9Xbrc70mUAx1RMTIzMZvNBV+gBAAAAAKC/IsjrRF1dnebPn69//etfqqio0Iknnqg///nPOvnkkyVJgUBAd9xxh5544gnV1tZq2rRpevTRRzVixIhurSMQCGjXrl2qqqrq1usCvZXZbFZeXp4GDBhAoAcAAAAAQDsEeZ34yU9+orVr1+q5555Tbm6unn/+eRUWFmr9+vXKy8vTfffdp7/85S969tlnNWTIEM2fP1/Tp0/X+vXrFRsb2211tIR4eXl5SkxMlNHIk9DomwKBgDwej6qrq1VSUqLa2loNHz480mUBAAAAANCrGAKBQCDSRfQmjY2NSkpK0uuvv64LLrgg1D5x4kSdf/75uuuuu5Sbm6tf/epXuuWWWyRJdrtdWVlZeuaZZ3TJJZcc9B4Oh0M2m012u13Jycmd9vF6vfr666+Vl5en7Ozs7vlwQBTYt2+f9uzZI6fTqdNOO00mkynSJQEAAAAAcEwdSlYksdhFB16vVz6fr8PIuri4OH3yySfasWOHysrKVFhYGDpms9k0ZcoULV++vNNrulwuORyOsO1gWubES0xMPIpPA0Sf5ORkGQwGrV27Vt98802kywEAAAAAoNcgyGsnKSlJU6dO1V133aW9e/fK5/Pp+eef1/Lly7Vv3z6VlZVJkrKyssLOy8rKCh1rb9GiRbLZbKEtPz//kOvhcVr0Ny1z45lMJm3evDnC1QAAAAAA0HuQEnXiueeeUyAQUF5enqxWq/7yl7/o0ksvPeJQbd68ebLb7aGttLS0mysG+h6r1aqamhr5fL5IlwIAAAAAQK/AYhedGDZsmD766CM5nU45HA7l5ORo5syZGjp0aGi+uvLycuXk5ITOKS8v14QJEzq9ntVqldVq7YnSgT7jP1uqVF7t0P899InMZpPMJqPMRoNiTEaZTQaZjUbFmAwym4yKMRpkMja/DjtmkMVkUozZIIvJqBiTURZzcB9jMsgaet16zGIyKsYcvI+lTf/g3qAYo1FGIyvqAgAAAAB6HkHeASQkJCghIUE1NTV65513dN9992nIkCHKzs5WcXFxKLhzOBz6/PPP9fOf/zyyBaPbLFu2TGeffXbo/RdffKFJkyZ1y7VTUlJkt9slSTfccIMefvjhbrluX+N0eVXT4NHefQ7J0LsGD5uNhjaBoLE5EDQcMBCMaW7rLCi0mo2ymk2tr2OC7w/c3nKuSTEmQ+iRZAAAAABA30WQ14l33nlHgUBAo0aN0tatW/XrX/9ao0eP1uzZs2UwGDRnzhz9/ve/14gRIzRkyBDNnz9fubm5mjFjRqRLjwrPPPOMZs+eHXpvtVqVlpamE044QRdccIFmz56tpKSkTs/99NNP9cc//lGfffaZamtrlZOTo+nTp+u3v/2tBg0aJEnauXOnhgwZcki17NixQwUFBV0ev+222zRmzBgNHTo01LZ+/Xr99Kc/1erVqzVq1Cg99NBDmjp1ath5Dz74oJ588kl9/fXXMpvD/zd7/PHH5Xa7dcUVVxxSjf3VKUMHaFRGrM763iT5ZZTXH5DX75fXF5DH5w++9/nl8QXbPb6AfC1tbY55fH55fH65vcH37tDr5nZfIPy9t2N/nz98cW+vPyCv2yepdzz2azCoY+jX/D4Y/hllaRMAtrRbTB3DQWuMSXExJsXGGJv3LVvr+5a91czoRAAAAADoSQR5nbDb7Zo3b552796ttLQ0/fCHP9Tdd9+tmJgYSdJvfvMbOZ1OXXfddaqtrdVpp52mt99+u8NKtziwO++8U0OGDJHH41FZWZmWLVumOXPm6MEHH9Qbb7yhcePGhfV/6KGHdPPNN2vo0KG66aablJOTow0bNuh///d/9fLLL+utt97SqaeeqoyMDD333HNh5z7wwAPavXu3/vSnP4W1Z2RkHLDGc889V2eddVbovc/n0w9+8AOlpaXp/vvv1xtvvKHvf//72rp1a2h56IqKCt155536xz/+0SHEk6Qf/ehHkkSQdxCpCRbFGn06c1SmTCZTRGvx+TsGgh6fX642AWDr+4A8Xr/c7QNEry8UDLYPDN0+v1ye4Pkury+49/jl8vnl8vjk9rY51tzu9vpD9QUCUpPHryaP/wCf4tiwmo2Ks5gUazYpzmLq8D42xhgKAzsPCMPbrTEmxVtaNrPiLcHjBIYAAAAAQJDXqR/96EehsKUzBoNBd955p+68884erKrvOf/888MeV503b54++OADffe739X3vvc9bdiwQXFxcZKCI/HmzJkTCk3j4+ND5/385z/XtGnTdNFFF2ndunVKTU3V5ZdfHnavl156STU1NR3aD9eWLVu0adMmlZSUaNCgQbryyiuVnp6u5cuXa/r06ZKCo/jOOOMMnXfeeUd1L/QeJqNBJmMwdOot/P5gKNgS8IXCPk+bMNDrb273dQgKu2p3efxq9PjU1LwFX4e3eXytIxRb7iN5junnjWsJ+KwmxceYg3uLSXExZiVYw4O/UABoMSkh1BZsj7OYgv2brxFj6l2PbQMA0N8FAgGV7G9QmaNJfn9A4/NTlGDlx1YAaMHfiOhVzjnnHM2fP1+33Xabnn/+eV177bWSpLvuuksGg0HPPvtsWIgnBRcnue+++zRr1iw99thjmjt37jGrr7GxUZKUmpoqSYqPj1dcXJwaGhokSatWrdILL7ygNWvWHLMaAEkyGg2KDYWLMT16b6/PryavPxj0uX1yeX1qdPvV5A2+bwkA24aCLYFgeEDoU2Obtpb2RrdfDW6vGtytjy43Nh/b7+zezxJjMrQJAE1KtJqVGGtWgsXc+tra/Lp5S7CalRRqNynRGqMEazA0ZOQgAABHLhAI6LrnVuq99eWhttNHpOu5a6ZEsCoA6F0I8qJIIBBQo6d3zMnVIi7G1O2T7F9xxRW67bbb9O677+raa69VQ0ODiouLdfrpp3c5993MmTN13XXXaenSpcc0yBs5cqRsNpt+97vf6Re/+IX+8Y9/yOFw6KSTTpIk/eIXv9CNN96o4cOHH7MagEgzm4xKNBmVeIx/O+73B9Tk9anBHQwInc3hXoPLpwa3V40en5zNrxvcLf28cjb3b2jz2un2NrcF21tGFXp8AdkbPbI3ds+IwgSLqUP4l2A1K6l5nxgbHgomx8UoKdas5NgYJceZlRQboyQrgSAAoH964+u9em99uUxGQ2iO4k1ldRGuCgB6F4K8KNLo8em4Be9Euoww6++crnhL934ZDRw4UDabTdu2bZMUfJzV6/Vq/PjxXZ5jtVo1atQobdiwoVtraS8hIUGPPvqorrnmGj344IMymUy69957NXjwYL344ovaunWr3nrrrWNaA9BfGI0to+W6/58qt9cfDPY8reGg0+2V0+VVfcvW1PLep3qXR06XT3Wu5ramNv1c3tAPG063T063T5LriGszGKRES8eQLzm2+X1czAFeB8NAi5lHhgEA0aXJ49Mf/r1RklR07kh9f0KuTrv3Q9U2eBQIBLp98AAARCuCPPRKiYmJqqsL/vatZd/VSrYtkpKS5HA4jnltl156qb797W9r06ZNGjJkiLKystTQ0KBbb71Vd999txITE7Vw4UI9++yzodf/8z//c8zrAnDoLGajLGajbN3wWHIgEJDL6w+Ffy3hXmehYF2b9romrxxNXtU1eeRo9MrR5JHb61cgINU19z1SsTHG5gAwRilxMUqJj5EtzqKU+Dbv4y2h1ylxFtniGQ0IAIicdXvt2mdvUlqCRdecNiT0SzK3z68Gt4958gCgGX8bRpG4GJPW3zk90mWEiTtGk//X19crMzNTUmuA1xLodaWuru6gYV93SU1N1SmnnBJ6v2jRImVmZmr27Nl66qmntGTJEr3wwgvauXOnZs6cqfXr1/O4LdBHGQyG0Aq86YnWo7pWk8fXHPB5gvtGzwFeh4eAdc0hYvA6fjV5XKqoO7yRgUaDZIuLUUq8pXkfo9Q2r1NajjW/To23KDXBouRYMyMlAABHpcIR/DerYEC8YmNMCgQCspiMcvv8qmlwE+QBQDP+NowiBoPhmDxi1tvs3r1bdrs9FHwNHz5cZrNZ33zzTZfnuFwubdq0KWwV3J6yc+dOPfDAA3r33XdlNBr197//XT/96U91zjnnSJKeffZZvfTSS7r99tt7vDYA0aUlEMxIOrJA0Ovzh0b72Rs9cjTP/1fb6FFtg0e1jW7ZG1pf1zY0H2/wqNHjkz8g1TR4VNNweHMGmo0GpSZYNCDBotR4i9ISLUqLtygtofMtNd7C478AgDBV9cEgr+XfQIPBoJT4GFXUuVTb4NHA1EhWBwC9R99PhRB1nnvuOUnS9OnB0YcJCQk6++yz9cEHH6ikpESDBw/ucM4//vEPuVwuffe73+3RWiXplltu0fe+9z2ddtppkqS9e/cqNzc3dDw3N1d79uzp8boA9D9mk1Ep8RalxFuUf5jnNnl8crQN/Rrcqm30BIO/5tCv7fsaZzAErHd55fUHVFnnUuVhjABMspqVlhgM9QYkWFqDwOawLyPRqvREqzKSrBqQaFGMieAPAPqyln9D2o5uT423qKLOpZoGd6TKAoBehyAPvcoHH3ygu+66S0OGDNFll10War/99ttVXFysq666Sm+99Zbi4uJCx3bs2KHf/OY3ysnJ0U9/+tMerffDDz/UW2+9pY0bN4basrKywt5v2LCBOfIA9HotowEzk2MP67wmj0+1DR7td7pU7XSHthqnW/udbtU0uLW/PrhvOeZvMw9gyf6GQ7pPSnxMKNxLT7IqPdGijKTmsI/QDwCiXmV9MKxrOyo9JT44l+3hjhQHgL6MIA8R8+9//1sbN26U1+tVeXm5PvjgA7333nsaPHiw3njjDcXGtv4wecYZZ+iPf/yjioqKNG7cOF111VXKycnRxo0b9cQTT8jv9+utt95SamrPjbn3+XyaM2eOfv3rX2vQoEGh9osuuki/+c1vlJGRoZKSEq1Zs0YvvPBCj9UFAD0pNsakbJtJ2bZDCwD9/oAcTZ5gyNcS9rXZVze/rqp3NW9u+fyB5lGCHm2pqD/oPVLiY1oDvjahX2ZSrLKTY5WVbFVmcixz+wFAL9LyaG37EXmSVMuIPAAIIchDxCxYsECSZLFYlJaWphNOOEGLFy/W7NmzO1204pe//KUmTZqkBx54QIsXL5bdbldOTo4uvvhi/fa3v+30kdtj6bHHHlN1dbVuvfXWsPaf/exn2rFjhx588EElJCTo6aef1vHHH9+jtQFAb2U0GkKP/yrj4P39/oBqGz2qqg8+utu6d4fet7Ttd4aHflsPEvrFxhiVlRyrrKRYZSZbm0O+4Ous5tdZydZ+MT8tAERap4/WJjSPyHMyIg8AWvCdKXrcVVddpauuuuqIzj399NN1+umnH/Z5S5cuPaL72e12VVVVKSUlRWZz+P8u119/va6//voO55jNZj3wwAN64IEHOr1mdXW1/H7/EdUDAP2N0WgILZIxMuvAK5N3FfpVtuzrXCp3NKnc4ZK90aMmj18l+xsO+nhvktUcCveyk2OV2Rzw5djilJsSqxxbnAYkWGQ0MroPAI5U+8UuJAV/6SMxRx4AtEGQBxzAjBkzJElffPFFt62IO3ToUNnt9m65FgCg1eGEfk0enyocLpXXNanc0aQye5MqQkFfkyocLpU5mtTg9gXn86v0aluls8vrWUxGZdtilWOLVW5Ka8AX2tvilBzHo7wA0JlAIBAakZcR9mhtcEQej9YCQCuCPKAT48eP13vvvRd6P2rUqG679uuvvy6PJ/h4QH7+4a4rCQDoDrExJg0aEK9BA+IP2K/e5e0Q7rW831vbpH32RlXUueT2+bWrukG7qrse3RdvMYWCvlDgZ4tTXmqcBqbGKccWJ4uZhToA9D/1Lq9c3uATK+lJllB764g8Hq0FgBYEeUAnUlNTVVhYeEyufeaZZx6T6wIAul+i1azEjEQNy0jsso/H51eZvUn77MFgryXg21vbpL21jdpnb1RNg0cNbp+2VTq7HNlnMEjZybHKT43XwOZwb2BqvAamxSk/NV7ZtlhW5AXQJ1U1r1ibYDGFzUvKYhcA0BFBHgAAwFGIMRmVnxav/LSuR/c1un3aZ2/UPnsw3AuFffYm7alp0O6aRrm8/uYwsEkrdna8htEg5djaBHzNYV/LvXOSY5mnD0BUCj1W22Z+PKn10VpG5AFAK4I8AACAYyzOYtLQjEQN7WJkXyAQUGW9S7trGpu3YLhXWt2gPTWN2l3bKLfXrz21jdpT26jPd1R3uIbFZFR+WpwGD0jQ4AHxGpwWr8HpCRqcFq+BqfE8tgug12pZ6KLtirUSi10AQGcI8gAAACLMYDAoMylWmUmxOmlQaofjfn9AVfUulTYHfB3CvtpGuX3+Lh/dNRqk3JQ4FQxI0KAB8SoYEK9BaQkqSI/XoLT4sEfZAKCntYzIax/ktYzIq2vyyuvzy8z0AgBAkAcAANDbGY0GZSbHKjM5VhMHdzzu8we0t7ZRJfsbVFLtDO73t+wb1OjxhQJAbe14fmaSVQUDEjQkPUFDMxI0NCNRwzISlJ8Wz7x8AI65lhF57R+ttcXFhF7XNno6BH0A0B8R5AEAAEQ5k9EQmivvNKWHHQsEAqqsc6mkukE7q5zaVd2gnfsbtGu/Uzv3N8je6FFFnUsVdS6t2Bn+yK7ZaNCgAfEamh4M9lpCvqHpCUpLsMhgYE4+AEevqxF5ZpNRtrgY2Rs92l/vJsgDABHkAQAA9GkGQ+tovpML0jocr21wq2R/g3buDz6Wu72yXtsrndpR5VSjx6ftlU5tr3Tq/Q3h59niYoLBXnqihmYkaFhGokZkJWpwWjyPvwE4LF2NyJOC0wLYGz3aU9ugUdlJPV0aAPQ6BHkAAAD9WEq8RSnxFo3PTwlr9/sDKnM0BYO8qmC4t6055Ntrb5S90aOvdtXqq121YedZTEYNzUjQiKwkjcwMhnsjspII+AB0qbI+uJhFeqKlw7H81Dht2OdQaXVjT5cFAL0SQR4AAAA6MBoNyk2JU25KnE4bEf64bpPHp537nc2j9YLh3tbKem0pr1ejx6eNZXXaWFYXdk7bgG9EZqJGEvABaFbV8mhtJyPyBqXFS5J2VTf0aE0A0FsR5AEAAOCwxMaYNDo7WaOzk8Pa/f6A9tQ2anN5nbZU1Af35fXaWnHwgG9kVpJG5yRpTE6yxmQnKyvZyhx8QD8QCARU2fJobSdz4OU3B3mlBHkAIIkgD1HomWee0ezZs7Vjxw4VFBQcsO+yZct09tln68MPP9RZZ50V0Vp6u5bP0qKyslLp6ekHOOPQ1NbWKjU1NfT+/vvv1y233HLU1wUA9D7GNotufGtMVqj9UAO+N75uvVZqfEwwLGwT7o3ISlRsjCkCnwzAseJo8srt9UvqfI68lhF5pTU8WgsAEkEe+oi//vWvio+P11VXXRXpUjr1u9/9TgsXLgy9j4uLU3p6usaPH68f/OAH+vGPfyyrtfNVuJYuXaqHH35YX3zxhZxOpwYNGqTvfe97mjdvngYMGCCpNbA8FIFA4IDH//SnPyk9PV1JSa2TCX/66ae66aabtGXLFk2cOFFLlizR6NGjw877xS9+oU2bNumdd94Ja09ISNBzzz2nqqoq/fKXvzykGgEAfcuhBHwtYd6GfQ5tr6xXTYNHy7fv1/Lt+0P9TUaDhqQnaHR2c7jXHPJlJ8cyeg+IUi0LXSRZzZ0G9flpcZKCI/ICgQD/rwPo9wjy2vH5fPrd736n559/XmVlZcrNzdVVV12l22+/PfSPRiAQ0B133KEnnnhCtbW1mjZtmh599FGNGDEiwtX3D1dccYUuueSSsODrr3/9q9LT0zsEeWeccYYaGxtlsXScODcSHn30USUmJsrlcmnPnj165513dPXVV2vx4sVaunSp8vPzw/rfcssteuCBBzR+/HjdeuutSktL06pVq/Twww/rpZdeUnFxsUaNGqUxY8boueeeCzt33rx5SkxM1G9/+9vDqnHGjBlhowvtdru+//3v65RTTtF1112nZ555Rj/84Q/1zTffyGQKfrO1bt06PfHEE1q5cmWH68XExOjyyy/Xzp07CfIAAGG6CviaPD5tKa/XhjKHNu4LhnsbyhyqbfBoa0VwJN/Sb/aF+g9IsOj4PJvG5iZrbJ5NJ+TZNDA1jh/4gShwoPnxJGlganBEXr3Lq9oGj1ITesf39QAQKQR57dx777169NFH9eyzz+r444/Xl19+qdmzZ8tms+kXv/iFJOm+++7TX/7yFz377LMaMmSI5s+fr+nTp2v9+vWKjY2N8Cfou5xOpxISEmQymUIB0sEYjcZe9d/koosuCntcdcGCBXrhhRd05ZVX6uKLL9Z///vf0LG///3veuCBBzRz5ky98MILYZ/5qquu0tlnn62LL75Yq1atUlZWli6//PKwe/3hD39Qenp6h/bDtXz5cjU2NuqVV15RbGysvv3tb2vIkCHaunWrRo0aJUmaM2eOrr32Wh133HFHdS8AAKTgHHwnDLTphIG2UFsgEFBFnUvr9wXDvY1lDm3Y59C2Sqf2O936eHOlPt5cGeqfHGsOhXotIV/BgAQZjYR7QG/SMj9eZyvWSsG/DzKTrKqoc6m0poEgD0C/xxJh7Xz22Wf6/ve/rwsuuEAFBQW66KKLdN5552nFihWSgt9ELl68WLfffru+//3va9y4cfrb3/6mvXv36rXXXots8VFkz549uuaaa5Sbmyur1aohQ4bo5z//udzu4NLzzzzzjAwGgz766CNdf/31yszM1MCBA8OO7dy5U5JUUFCgdevW6aOPPpLBYJDBYAjNh7ds2TIZDAYtW7Ys7P6ff/65vvOd7yg1NVUJCQkaN26c/vznP4eOf/PNN7rqqqs0dOhQxcbGKjs7W1dffbX279+v7nbZZZfpJz/5iT7//HO99957ofaFCxcqNTVVjz/+eIfgcvLkybr11lu1Zs0avfLKK91eU1uNjY2KjY0NBaJpaWmSpIaG4ITDr732mr766quwR4cBAOhuBoNBWcmxOntUpn5+1jD9+ZIT9e4vz9S6hdP1+g3T9PsZY3Xp5HydkGeTxWSUo8mrz7bt12Mfb9cv/v6VznngI41b+K5+9Nhy3fl/6/Wvr3Zra0Wd/P4DTzkB4NhqGZHX2fx4LfJZuRYAQhiR186pp56qxx9/XJs3b9bIkSP19ddf65NPPtGDDz4oSdqxY4fKyspUWFgYOsdms2nKlClavny5Lrnkkg7XdLlccrlcofcOh+PIigsEJE8v+8crJl46zMdW9u7dq8mTJ6u2tlbXXXedRo8erT179uiVV15RQ0ND2GOw119/vTIyMrRgwQI5nc5Or7d48WLddNNNYY+RZmVlddpXkt577z1997vfVU5Ojm6++WZlZ2drw4YNWrp0qW6++eZQn+3bt2v27NnKzs7WunXr9Pjjj2vdunX673//2+2P6lxxxRV6/PHH9e677+rcc8/Vli1btGnTJl111VVKTk7u9Jwrr7xSd9xxh5YuXdrp1113OfHEE2W32/XAAw/ooosu0uLFi2Wz2TRq1Ci5XC796le/CoWOAAD0tNgYk8bnp2h8fkqoze31a3N5ndbttWvNHrvW7gmO3qt3ebViR7VW7KgO9U2ymjUu36YJ+SkaPzBFEwalKDOp94zmB/q61hF5XQd5g9LitbKkRjurOv95AAD6E4K8dubOnSuHw6HRo0fLZDLJ5/Pp7rvv1mWXXSZJKisrk9QxKMrKygoda2/RokXdM1rJ0yDdk3v01+lOt+2VLAmHdcq8efNUVlamzz//XJMmTQq133nnnR0WYkhLS1NxcfEBH6WdMWOGbr/99kN6jNTn8+mnP/2pcnJytHr1aqWkpISOtb339ddfr1/96ldh555yyim69NJL9cknn+j0008/lI96yMaOHStJ2rZtmyRp/fr1kqTx48d3eU5BQYGSk5O1YcOGbq2ls/v84Q9/0K233qpbbrlFcXFxevLJJxUfH6977rlH8fHx+tnPfnZMawAA4HBYzEaNzbNpbJ5NM08Otnl9fm2trNfaPQ6t3RMM+NbttavO5dWnW/fr062to+7zUuI0vk24d8JAm+ItfNsMHKqNZQ5d//wqzTw5Xz89c9gB+1bVBZ/IyThAkHd8brL+9dUefbWrtjvLBICoxHck7fzjH//QCy+8oBdffFHHH3+8Vq9erTlz5ig3N1ezZs06omvOmzdPRUVFofcOh6PDogb9hd/v12uvvaYLL7wwLMRr0X6k27XXXnvI8+Ediq+++ko7duzQn/70p7AQr/294+LiQq+bmppUX1+vU045RZK0atWqbg/yEhMTJUl1dXVh+7Yrx3YmKSnpyEd4HoZbbrlFV1xxhXbs2KFRo0YpNTVVe/fu1aJFi/Taa6/J6/Vqzpw5ev3115Wdna0//elPmjZt2jGvCwCAQ2U2GTU6O1mjs5N10cTgdB0eX3Dk3urSWn1dWqvVpbXaUlGvPbWN2lPbqLfWBH9JazIaNDIrSRNawr38FI3ITJKJ+faATj26bJu2Vzm16N8b5QsEdP1Zw7vsGxqRd4BHa08uCE7t8mVJjfz+AHNdAujXCPLa+fWvf625c+eGHlU84YQTVFJSokWLFmnWrFnKzs6WJJWXlysnJyd0Xnl5uSZMmNDpNa1Wa9gKq0csJj44Aq43iYk/rO6VlZVyOByhEWgHM2TIkCOpqkstI94Odv/q6motXLhQL730kioqKsKO2e32bq1Jkurr6yW1Bnct+5ZAryt1dXXKzMzs9no6k5WVFTYS9dZbb9W3vvUtfetb39Ltt9+u4uJivfzyy/rwww91wQUXaOfOnR3CUgAAepMYk1HH59p0fK5Nl00ZLCm4MuY3u2vDwr1yhyu4cu4+h/6+olRS8JHcEwenalLzNmFQCqP2AEmOJo/eXtv6pNIf39mkiyfmdzkHXlVzkHewEXnxFpPsjR5trqjT6OzOp54BgP6A7zbaaWhokNEYvgaIyWSS3++XFAyWsrOzVVxcHAruHA6HPv/8c/385z8/tsUZDIf9GGu0azsyrif96Ec/0meffaZf//rXmjBhghITE+X3+/Xtb3879LXQndauXStJGj48+NvKMWPGSAouutGVkpISORyOiKwU+9///levvPJKqO6///3vmj9/vqZOnaqpU6fqscce09KlS496xVwAAHpaotWsU4el69RhravMl9mbtLq0RqtL7VpdWqNvdgcfyW27Uq7JaNBxOcmaODhVkwpSNWlwmrJtzLWH/mfp1/vk8vo1IjNRCVazVpfW6s1v9uqqaR1/Qe/3B7Sjed673JSuv+83m4w6aVCqPtlapS92VBPkAejXCPLaufDCC3X33Xdr0KBBOv744/XVV1/pwQcf1NVXXy0p+PjlnDlz9Pvf/14jRozQkCFDNH/+fOXm5mrGjBmRLT4KZGRkKDk5ORQAdZdDXXxi2LDgHB1r164NW7CkrZqaGhUXF2vhwoVasGBBqH3Lli1HX2gXnnvuOUnS9OnTJUkjR47UyJEj9dprr+nPf/5zp4/Y/u1vf5Mkffe73z1mdXUmEAjoF7/4hW6++ebQn+fevXuVm9s6f2Nubq727NnTo3UBAHCsZNti9W1bjr49Nvg0htfn18ayOn25s1ord9Vq5c5q7bU3aU3z3HvPfLZTUnCuvWCol6qJg9M0KpvHcdH3/XvtPknSxZMGKsZk1OrSWr22uvMgb8d+p+qavIqNMWpEVuIBr3tyQZo+2VqlFTtrdMXUgmNROgBEBYK8dh566CHNnz9f119/vSoqKpSbm6uf/vSnYYHOb37zGzmdTl133XWqra3VaaedprfffluxsfzW9WCMRqNmzJih559/Xl9++WWHefICgcARrQibkJCg2trag/Y76aSTNGTIEC1evFhXXXVVh8UuDAZDaE6+9gtvLF68+LDrOhQvvvii/vd//1dTp07Vt771rVD7ggULdPnll+tnP/uZ/va3v4XNFbhy5Urde++9Gjt2rH74wx8ek7q68swzz6i0tDS0QrAUfOx248aNOu+88+TxeLR169bQY+gAAPQ1ZlPrYhpXNU8Ju7e2UV+W1Gjlzmp9WVKjDfscwbn2Vjfq9dXBqVGSYs2aXJCmU4YO0JShaTouJ1lmk/EAdwKiz8ay4NQwU4YMUE5KrO5aul6rS2tVst+pwQPCny76urRWkjQ216aYg/y/MHXYAP3pfWnZpgo1eXyKjem+ebQBIJoQ5LWTlJSkxYsXHzC0MRgMuvPOO3XnnXf2XGF9yD333KN3331XZ555pq677jqNGTNG+/bt0z//+U998sknRzSv2sSJE/Xoo4/q97//vYYPH67MzEydc845HfoZjUY9+uijuvDCCzVhwgTNnj1bOTk52rhxo9atW6d33nlHycnJOuOMM3TffffJ4/EoLy9P7777rnbs2HHUn/2VV15RYmKi3G639uzZo3feeUeffvqpxo8fr3/+859hfS+77DJ98cUX+vOf/6z169frsssuU2pqqlatWqWnnnpKAwYM0CuvvKKYmJijrutQ1dXV6bbbbtM999wTNkrwoosu0p133im/369PP/1UTU1N+s53vtNjdQEAEGm5KXH6Xkqcvjc+OEK93uXV6l21WllSoy9LqvXVrlrVNXlVvLFCxRuD8+8mWs2aVJAaDPaGpGls3sHDDKA3q21wq7IuOOfd8OZHa6cNT9d/tlTpjdV7ddO3RoT1bwnyxuenHPTakwanKi8lTntqG/XOujJ9f0Jed5cPAFGBIA89Li8vT59//rnmz5+vF154QQ6HQ3l5eTr//PMVH394i2e0WLBggUpKSnTfffeprq5OZ555ZqdBnhR8fPXDDz/UwoUL9cADD8jv92vYsGG69tprQ31efPFF3XTTTXrkkUcUCAR03nnn6d///nfY46NHomUexdjYWKWnp2vChAl66qmn9OMf/7jTBVEWL16ss88+W4888ojuueceNTQ0KD8/XzfccIPmzp2r9PT0DuccS3fddZcGDhyoq666Kqx94cKFqqys1MKFC5Wdna1XXnlFGRkZPVobAAC9SaLVrNNGpOu0EcF/q70+v9bvc+jz7dX6fMd+fb6jWnVNXi3bVKllm4Lz7MVbTJpUkKYpQ9J0ytA0nZCXIouZYA/RY3N5cAG3vJQ4JViDP2p+f0Ke/rOlSq+t3qMbzxke9vTN6t3BReQOJcgzGg26aOJA/bl4i/755W6CPAD9liHQ/vlBHHMOh0M2m012u13JyZ1P1NrQ0KANGzZozJgxRxxuAYfjmWee0ezZs7Vq1Srl5+drwIABR/SYc3uBQED79+9XaWmpTjrpJN1///265ZZbuuzf8rW/Zs0aNTY26rrrrgt7rBgAgL7A5w9owz6HPt9Rrf9u368VO6plb/SE9YmLMWlSQapOG56uacPTdVxOsozMsYde7Pn/luj219bq7FEZenr2ZElSXZNHk37/vlxev5bedJrG5tkkSW6vX2PveEdun18f/fqsDo/ddqa0ukGn3/ehDAbpnTlnaGRWx3mkASBaHUpWJDEiD0A7J510kiSpsrKyW0b82e12RucBANCOyWgIzbN3zWlD5PcHtLGsLjhar3nUXk2DR//ZUqX/bKmSJKXGx+jU4ek6rXnLT+OXvehdtlYER+SNaBOwJcXGqHBMlt5cs08vf1EaCvLeWVcmt8+vtASLBh3i13J+WrymH5+ld9aV6+43N+jZqyd3/4cAgF6OIA+ApOAjx++9917ovc1m65brJiYmhl135MiR3XJdAAD6EqPRoONyk3VcbrJmTwsGe5sr6vTZ1v36dGuV/rs9GOy9+c0+vflNcFXQQWnxmjY8XaePSNfUoQOUmmCJ8KdAf7e5PLjQxYjM8BVofzxlkN5cs08vrtilSybna2RWkh58b7MkadbUgsN6CmTe+WP0wcYKfbS5Um+vLdO3x7LAGoD+hSAPgCQpJydHOTk53X5ds9mswsLCbr8uAAB9mdFo0OjsZI3OTtbVpw2Rx+fX16W1+mRrlT7dWqWvdtVqV3WDdq3Ypb+v2CWDIbjyZ0uwN6kgVVYzU1OgZ7XMkdf+kddpw9N1wQk5enPNPl3/wioNy0jUjiqnBiRYdM3pQw7rHgXpCbr6tCF67KPtuuWfX2t4ZqKGtwsOAaAvI8gDAAAAerkYk1GTCtI0qSBNcwpHqt7l1Yod+/XJluCIvU3ldVqzx641e+xa8tE2xVtMOnXYAJ05KlNnjczgMVwcc/YGj6rqgyvWDuskWFtw4XH6fEe1SvY3qGR/g4wG6bbvjFGi9fB/JP3VuaP0VUmtVuys1uX/+7meufpkjc7uej4pAOhLCPIAAACAKJNoNeuc0Vk6Z3SWJKnC0aTPtu1vnlOvUhV1Lr2/oULvb6iQJA3NSNBZIzN11qgMTR6SptgYRuuhe5VUOyVJGUnWTsO5rORYvV90hp5bXqIdVU5dd+bQIw7fLGaj/nr5Sbr08f9qS0W9fvDXzzTv/NH68ZTBMrEgDIA+jiCvl/P7/ZEuAehRLKQNAMDhy0yO1YwT8zTjxDwFAgGt3+fQsk2V+mhzpVaW1Gh7pVPbK3foqU93KC7GpKnDBujMkRk6a1TGIa0WChxMyf4GSdLgA4z+TIm36KZvjeiW+6UnWvXKz07Vz55fqeXb92v+6+v09Gc7dcUpg3X+2Bxl22K75T4A0NsQ5PVSFktwsuL6+nolJjLnA/oPh8OhQCAgl8sV6VIAAIhKBoNBx+fadHyuTTecPVyOJo8+3VIVCvbKHE36YGOFPtjYPFovPUGFx2XpW6MzNXFwqswmY4Q/AaLRrupgkDdoQM89xm2Lj9ELP5mivy3fqT+9v0XbK51a+H/rtfD/1uvEQSk6aVCqxuYla0RmkrJtsUqLt8jIiD0AUY4gr5cym81KT0/Xnj17JAVX/jQa+aYKfVMgEJDH41F1dbVqampkt9vl9Xr5mgcAoBskx8bo/BNydP4JOQoEAtpUXqdlmyq1bFOFvtxZo+1VTj3+8XY9/vF2pcTH6OxRmSock6UzRqYrKTYm0uUjSpTsDz5aOzitZ0d4Go0GXTVtiH44caD++eVuvblmn1aW1OirXbX6aldtWF+Lyagsm1VpCVYlWk1KsJiVGGtWotWsOItJFpNRMaHNEPbaYjbKbDTKZJSMBoPMJoOMBoNMRoNMBoOMxubXze9NxjbHW84xGmU0Kvwcg0EmU8dzjAYd1mq+APoPgrxebNCgQXK73aEwD+jrfD6fKisrZbfb5fF4lJKSQpgHAEA3MhhaV8P92ZnDVNfk0X+2VOn9DeX6cGOFaho8+tdXe/Svr/YoxmTQKUMH6FujM/WtMVksmIEDCj1a24Mj8tpKio3R1acN0dWnDdE+e6M+2VKldXsdWrvHrpLqBlXVu+T2+VVa3ajS6saI1Hi4jAa1hn9tw0JDa2hoDHvd0j8YHpqMRpkMCvVrGz6a24aGze+7ChfD79Vy3Tavm4PK0HWNnZ8bdqxdeNlVbW3vFwpBu7h+y7kEoOjrDAEmpOpxDodDNptNdrtdyckHnuA1EAjo1Vdf1d69e5WTk8NfSuizvF6vfD6fJMnj8Wj37t0688wzddppp0W4MgAA+gevz69Vu2pVvKFc720o1/ZKZ9jx0dlJKhyTpXOPy9K4gTa+L0WYqYuKtc/epFevP1UnDUqNdDkduL1+VdQ1qczepNoGj+pdXtW7vHI27xvcPnl9frl9AXl8/jZbm/fegHyBgHz+1s3f8j4QkL957/O19FPouN8fkLddP34SPzYMBoUHfYbWsLLzkLF7AtADhZiRDkDbBsIEoL3XoWZFBHkRcDhBniTt27dPb731lioqKnqgOiDyDAaDCgoKdMEFFygpKSnS5QAA0C9tr6xX8YYKvbehXF/urJa/zU8NubZYTR+brW8fn61JBWmsFNrPNXl8GrPgbQUC0srbCzUg0RrpkqJCoE0IGAoG/Qq99weC4Z/f30lY2CFMVKfneNuEjf5AQF5f63XaHvO1v4df8vn9oUDS5/eHBZOhewQ6ntvpsfa1hV03IH9AHepo/TMJvm851+snwjgWemMA2vZY6/XC7/Wjk/NlNfeNldgJ8nqxww3yWs7ZtWuX7HY7q3qiTzMajUpPT9egQYMUG8tqYwAA9AY1TreWba7Q++sr9OGmCjW4faFj6YkWnXtctr49NltThw6Qxcy0GP3N1oo6FT74sRKtZq353XmM7MEx1zYo7CzwbBuMev3+sLCzfZ+wkZWdhZKdhJehEZZhQWow7AxeOzz4DLtvmzDV1672ls/SNnhtHfXZJlDt5DN0PTK09VhfjBLWLpyuRGvfmDXuULOivvFp+4Hk5GSNHTs20mUAAACgH0pNsOh/Thyo/zlxoJo8Pv1nS5XeXlum9zeUq6rerb+v2KW/r9il5FizCsdk6dtjs3XGyAzFxvSNURI4sJb58QalxRPioUcYjQYZZRB/xRyeQNtQMvTYdzDsDIaAzcFnm5Gh7UdUHjT4PNhozPahZJuRou3b2oeonY0ijTH1v79zCPIAAAAAHLLYGJPOPS44V57H59d/t+/Xv9eW6d11Zaqqd+vVr/bo1a/2KN5i0tmjMnX+Cdn61ugsxVn4ibuvagnyCtJZEAXozQzNj6j2kSdR+y2CPAAAAABHJMZk1OkjMnT6iAzd9f2xWllSo7fXlumddWXaU9uoN9fs05tr9ineYtK3xmTpwnE5OnNURp+ZzwhBJfuDC6MMSkuIcCUA0PcR5AEAAAA4aiajQZOHpGnykDTN/+4Yrdlj11tryvTmmr0qrW7U/329V//39V4lWc067/hsfXd8jk4bnq4YE3PqRbuS6uCIvMEDGJEHAMcaQR4AAACAbmUwGDRuYIrGDUzRrd8epa9327X0671a+s0+lTma9P9W7db/W7VbqfEx+vbYHF04LkdThg5g9dsotav50drBaQR5AHCsEeQBAAAAOGYMBoMm5KdoQn6KbvvOGH1ZUqOl3+zVW2v2hS2UkZFk1XfGZut7E/J00qAUFk2IEj5/QKU1zYtdMCIPAI45QyDQFxcg7t0OdUlhAAAAoK/y+vz6fEe1/u/rvfr32jLZGz2hYwUD4jXjxDz9z4l5GjyAedd6s901DTrt3g8VYzJo413nM6oSAI7QoWZFBHkRQJAHAAAAtHJ7/fp0a5VeX71H76wrV6PHFzo2cXCq/ufEPH13XI5S4i0RrBKd+WxrlX78v59raHqCPrjlrEiXAwBR61CzIh6tBQAAABBRFrNRZ4/O1NmjM+V0efXu+jK9umqPPt1apZUlNVpZUqOF/7dOZ4/K1A9OytPZozNZ+baXaFnogsdqAaBnEOQBAAAA6DUSrGb9z4kD9T8nDlS5o0lvrN6rV7/aow37HHp3fbneXV8uW1yMLhiXox+cmKeJg1OZTy+CSljoAgB6FEEeAAAAgF4pKzlW154xVNeeMVQbyxz611d79PpXe1XmaNKLn+/Si5/v0pD0BF00caB+eNJAZdtiI11yv7Or2ilJGsRchgDQI4yRLqC3KSgokMFg6LDdcMMNkqSmpibdcMMNGjBggBITE/XDH/5Q5eXlEa4aAAAA6NtGZydr3vlj9Oncc/TCT6bohycNVILFpB1VTt3/ziad+odizX56hf69Zp/cXn+ky+03tpTXS5KGZhDkAUBPYLGLdiorK+XztU6uu3btWp177rn68MMPddZZZ+nnP/+53nzzTT3zzDOy2Wy68cYbZTQa9emnnx7yPVjsAgAAADh6TpdXb63Zp39+uVsrdlaH2tMSLJoxIU8/OnmgRmfz/fax4vb6ddyCt+X1B/Tp3HOUlxIX6ZIAIGqxam03mTNnjpYuXaotW7bI4XAoIyNDL774oi666CJJ0saNGzVmzBgtX75cp5xySqfXcLlccrlcofcOh0P5+fkEeQAAAEA32VHl1D+/LNX/W7Vb5Y7W773HDbTp4kn5+t74XNniYiJYYd+zubxO5/3pYyVazVrzu/OYqxAAjsKhBnk8WnsAbrdbzz//vK6++moZDAatXLlSHo9HhYWFoT6jR4/WoEGDtHz58i6vs2jRItlsttCWn5/fE+UDAAAA/caQ9AT95tuj9emt5+jpq07W+WOzFWMy6Jvdds1/ba0m3/2+fvH3r/TZtioxlqF7bCqrkySNyEokxAOAHsJiFwfw2muvqba2VldddZUkqaysTBaLRSkpKWH9srKyVFZW1uV15s2bp6KiotD7lhF5AAAAALqX2WTU2aMzdfboTO2vd+m11Xv1jy9Ktam8Tm98vVdvfL1XQ9MTdOnkQfrhxIFKS7BEuuSotaU8GOSNzEyKcCUA0H8Q5B3Ak08+qfPPP1+5ublHdR2r1Sqr1dpNVQEAAAA4FAMSrbrmtCG6elqB1uyx6+8rSvXG6j3aXuXU3W9t0P3vbNL5J2Trx5MHafKQNEaVHabNzQtdjMwmyAOAnkKQ14WSkhK9//77evXVV0Nt2dnZcrvdqq2tDRuVV15eruzs7AhUCQAAAOBgDAaDxg1M0biBKfrtBWP0xuq9enFFidbucej11Xv1+uq9Gp6ZGByld1KeUuIZpXcoNreMyMtKjHAlANB/MEdeF55++mllZmbqggsuCLVNnDhRMTExKi4uDrVt2rRJu3bt0tSpUyNRJgAAAIDDkGg168dTBmnpTafrjRun6ZKT8xVvMWlrRb3uWrpek+8pVtHLq/XFzmrm0juARrdPO/c7JUkjsxiRBwA9hRF5nfD7/Xr66ac1a9Ysmc2tf0Q2m03XXHONioqKlJaWpuTkZN10002aOnVqlyvWAgAAAOid2o7Se331Xr34+S6t3+fQq1/t0atf7dHIrERdfspg/eCkgUq08qNTW2v22OUPSJlJVmUmMY0QAPQU/jXqxPvvv69du3bp6quv7nDsT3/6k4xGo374wx/K5XJp+vTp+utf/xqBKgEAAAB0h6TYGF1+ymBdNmWQvt5t14ufl+j/vt6nzeX1WvD6Ot339ib94KQ8XTl1sIazsIMkaXVpjSTpxEEpzC0IAD3IEGC8eI9zOByy2Wyy2+1KTk6OdDkAAAD4/+zdeXhU5eH28Xuyb8ywZ4GBRAGDbIEQQoAW1GiwVEhBCohlEaVSoIaoFPxp0FZFoRZKQRYXgtqI0rIoUixEwVoiSyAqKKtgUJIAwcyQQBYy8/7hy9SRsAQhJ5N8P9d1rpjnPOeZe4bBq949C/Aj9tIKrdr5rZZlHdFXJ0pc471ubKJRCZFKbN9cPt71905FE97I1r9252vandF6sO+NRscBAI93pV0RZ+QBAAAAwI+YA3w1ulekRiW01pZDhVq25Yg2flmgLYcKteVQoSIsAbonvpWG92ilpiH179LSXblFkqSu1oaG5gCA+oYiDwAAAAAuwmQyqXebpurdpqm+LTqrjK1fa/m2ozpmK9Wf/71f8zIP6hedwvSbhEh1qyeXmebZzirfXipvL5M6tbQYHQcA6hWKPAAAAAC4Ai0aBurRpGj9/ra2Wvd5nl7L+lq7cou0OueYVuccU8cWZo3qGamBMREK8PU2Ou51s+PI9/fHuym0gYL8+E9KAKhJ9femDgAAAABwFfx9vPWrri216ne99e6kPhoa21L+Pl7a/a1dU//5meKfzdSz675UbuEZo6NeF5v3n5Ak9W7TxOAkAFD/8LALA/CwCwAAAKBu+a6kXG/vOKo3tn6to6fOSpJMJunWm5prVK9I/axNU3l5ef5ltw6HUz2ezdTJ4jJl3B+vXm2aGh0JAOoEHnYBAAAAADWkUbCfftv3Rt3/sxu0ad9xvZb1tTbvP6HMvceVufe4opoG6zc9W+vu7i1lDvA1Ou5V23PMrpPFZQr281b3yMZGxwGAeociDwAAAACuEW8vk25rH6rb2ofqqxPFeuOTXK3YcVSHT5boj2u/0J//vU+/6tpCoxIidVNYA6PjVtuH+45Lkvq0bSo/H+7UBAA1jUtrDcCltQAAAED9UVJ2TqtzvtWyLUe0v6DYNd7zhsYanRCp228OlY937S/FnE6nbp/zkQ4eL9bzQzppWFwroyMBQJ3BpbUAAAAAUAsE+/toZHxr3dOjlT756pReyzqif39RoE++OqVPvjqlcEuARsa30vAerdQ0xN/ouBe1M7dIB48XK9DXW7/oFG50HAColyjyAAAAAKAGmEwmJdzYRAk3NtGxorPK2Jqr5dtzlWcr1Z//vV/zMg9qQOdwjUporRhrQ5lMtevhGG9tz5Uk/aJTuBp48H3+AMCTcWmtAbi0FgAAAIAklZ2r1LrP87Rsy9fKOVrkGu/c0qJRCZH6ZedwBfh6Gxfw/ztZXKafPf+hzlZU6u3fJqhHFA+6AIBr6Uq7Ioo8A1DkAQAAAPixT48W6bWsr/XuZ8dUfs4hSWoU5KvhPVppZHwrtWwUZFi2P777hV7972F1bmnRmom9a93ZggDg6SjyajGKPAAAAAAXU1hcprd2HNUbWV/rmK1UkuRlkm6NDtWwOKv63dRMvjX4cIxvvjujW1/YrPJzDr12Xw/9vF2zGnttAKgvKPJqMYo8AAAAAJdzrtKhzL3H9VrWEf33YKFrvFkDfw3u1kJDY61q0zzkumaodDh1z0ufaOvhU+p5Q2O9+UBPzsYDgOuAIq8Wo8gDAAAAUB0Hj5/WW9uPauXOb1VYUu4aj23dSL/u3lJ3dgqX+To8gOIvG/ZrXuYBBfl5a93vf6bIpsHX/DUAABR5tRpFHgAAAICrUVHp0Ad7j2vFjqP6cN8JVTq+/885Px8v9W3XTL/sHK7E9qEK9vf5Sa/jdDq15KOvNPNfeyVJs+7urF93t/7k/ACAqlHk1WIUeQAAAAB+qgJ7qVbu/Fb/yD6qQydKXOMBvl7qdWNT9W3XTH3bNav2WXQnTpfpT2u/0DufHpMkpd7eTr+/re01zQ4AcEeRV4tR5AEAAAC4VpxOp/bmn9Z7n+Vp7WfHdKTwjNv+1k2C1L11Y8VYLbo5wqJWjYPUNMTP7V53xWXn9NnRIv1rd75W7vxGJeWV8vYyaVr/aN3/syjuiwcA1xlFXi1GkQcAAADgejhf6m3ad0Kb9x/XjiPf6Zzjwv/kC/D1Usj/v/y2otIp29kKt/2dW1o0464Oim3dqEZyA0B9R5FXi1HkAQAAAKgJxWXntO1woXKO2vTp0SLtLzitfHupqvqvwAhLgHre2ETJMS3Up01TeXlxFh4A1JQr7Yp+2h1QAQAAAAC1Voi/j26NDtWt0aGusfJzDuXbSnW2olJOOeVlMinUHCBL4LV/6i0A4NqiyAMAAACAesTPx0utmgQZHQMAcBW8jA4AAAAAAAAA4PIo8gAAAAAAAAAPQJFXhW+//Vb33nuvmjRposDAQHXq1Ek7duxw7Xc6nUpLS1N4eLgCAwOVmJioAwcOGJgYAAAAAAAAdR1F3o9899136t27t3x9ffWvf/1LX3zxhV544QU1avS/x67PmjVL8+bN06JFi7R161YFBwcrKSlJpaWlBiYHAAAAAABAXWZyOqt68Hj9NW3aNP33v//Vf/7znyr3O51ORURE6OGHH9YjjzwiSbLZbAoNDVV6erqGDx9+2de40kcKAwAAAAAAoO670q6IM/J+5J133lH37t01dOhQNW/eXF27dtVLL73k2n/48GHl5+crMTHRNWaxWBQfH6+srKwq1ywrK5PdbnfbAAAAAAAAgOqgyPuRr776SgsXLlTbtm31/vvva8KECfr973+vZcuWSZLy8/MlSaGhoW7HhYaGuvb92MyZM2WxWFyb1Wq9vm8CAAAAAAAAdQ5F3o84HA5169ZNzz77rLp27arx48frgQce0KJFi656zenTp8tms7m2o0ePXsPEAAAAAAAAqA8o8n4kPDxcN998s9tY+/btlZubK0kKCwuTJBUUFLjNKSgocO37MX9/f5nNZrcNAAAAAAAAqA6KvB/p3bu39u3b5za2f/9+tW7dWpIUFRWlsLAwZWZmuvbb7XZt3bpVCQkJNZoVAAAAAAAA9YeP0QFqmylTpqhXr1569tln9etf/1rbtm3TkiVLtGTJEkmSyWRSSkqKnn76abVt21ZRUVF64oknFBERoeTkZGPDAwAAAAAAoM6iyPuRuLg4rVq1StOnT9cf//hHRUVFae7cuRo5cqRrztSpU1VSUqLx48erqKhIffr00fr16xUQEGBgcgAAAAAAANRlJqfT6TQ6RH1jt9tlsVhks9m4Xx4AAAAAAEA9d6VdEffIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8vBpVFQAAiPdJREFUAAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARd6PPPnkkzKZTG5bdHS0a39paakmTpyoJk2aKCQkREOGDFFBQYGBiQEAAAAAAFAfUORVoUOHDsrLy3NtH3/8sWvflClT9O6772rFihXavHmzjh07psGDBxuYFgAAAAAAAPWBj9EBaiMfHx+FhYVdMG6z2fTKK68oIyNDt956qyRp6dKlat++vT755BP17NmzpqMCAAAAAACgnuCMvCocOHBAERERuuGGGzRy5Ejl5uZKkrKzs1VRUaHExETX3OjoaLVq1UpZWVkXXa+srEx2u91tAwAAAAAAAKqDIu9H4uPjlZ6ervXr12vhwoU6fPiwfvazn+n06dPKz8+Xn5+fGjZs6HZMaGio8vPzL7rmzJkzZbFYXJvVar3O7wIAAAAAAAB1DZfW/sidd97p+ufOnTsrPj5erVu31ttvv63AwMCrWnP69OlKTU11/W632ynzAAAAAAAAUC2ckXcZDRs2VLt27XTw4EGFhYWpvLxcRUVFbnMKCgqqvKfeef7+/jKbzW4bAAAAAAAAUB0UeZdRXFysQ4cOKTw8XLGxsfL19VVmZqZr/759+5Sbm6uEhAQDUwIAAAAAAKCu49LaH3nkkUd01113qXXr1jp27JhmzJghb29vjRgxQhaLRePGjVNqaqoaN24ss9msyZMnKyEhgSfWAgAAAAAA4LqiyPuRb775RiNGjFBhYaGaNWumPn366JNPPlGzZs0kSXPmzJGXl5eGDBmisrIyJSUl6cUXXzQ4NQAAAAAAAOo6k9PpdBodor6x2+2yWCyy2WzcLw8AAAAAAKCeu9KuiHvkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIu8ynnvuOZlMJqWkpLjGSktLNXHiRDVp0kQhISEaMmSICgoKjAsJAAAAAACAOo8i7xK2b9+uxYsXq3Pnzm7jU6ZM0bvvvqsVK1Zo8+bNOnbsmAYPHmxQSgAAAAAAANQHFHkXUVxcrJEjR+qll15So0aNXOM2m02vvPKK/vKXv+jWW29VbGysli5dqi1btuiTTz4xMDEAAAAAAADqMoq8i5g4caIGDBigxMREt/Hs7GxVVFS4jUdHR6tVq1bKysqqcq2ysjLZ7Xa3DQAAAAAAAKgOH6MD1EbLly/Xzp07tX379gv25efny8/PTw0bNnQbDw0NVX5+fpXrzZw5U0899dT1iAoAAAAAAIB6gjPyfuTo0aN66KGH9Pe//10BAQHXZM3p06fLZrO5tqNHj16TdQEAAAAAAFB/UOT9SHZ2to4fP65u3brJx8dHPj4+2rx5s+bNmycfHx+FhoaqvLxcRUVFbscVFBQoLCysyjX9/f1lNpvdNgAAAAAAAKA6uLT2R2677TZ9/vnnbmNjx45VdHS0/vCHP8hqtcrX11eZmZkaMmSIJGnfvn3Kzc1VQkKCEZEBAAAAAABQD1Dk/UiDBg3UsWNHt7Hg4GA1adLENT5u3DilpqaqcePGMpvNmjx5shISEtSzZ08jIgMAAAAAAKAeoMi7CnPmzJGXl5eGDBmisrIyJSUl6cUXXzQ6FgAAAAAAAOowk9PpdBodor6x2+2yWCyy2WzcLw8AAAAAAKCeu9KuiIddAAAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIu9HFi5cqM6dO8tsNstsNishIUH/+te/XPtLS0s1ceJENWnSRCEhIRoyZIgKCgoMTAwAAAAAAID6gCLvR1q2bKnnnntO2dnZ2rFjh2699VYNGjRIe/bskSRNmTJF7777rlasWKHNmzfr2LFjGjx4sMGpAQAAAAAAUNeZnE6n0+gQtV3jxo01e/Zs3X333WrWrJkyMjJ09913S5L27t2r9u3bKysrSz179ryi9ex2uywWi2w2m8xm8/WMDgAAAAAAgFruSrsizsi7hMrKSi1fvlwlJSVKSEhQdna2KioqlJiY6JoTHR2tVq1aKSsr66LrlJWVyW63u20AAAAAAABAdVDkVeHzzz9XSEiI/P399eCDD2rVqlW6+eablZ+fLz8/PzVs2NBtfmhoqPLz8y+63syZM2WxWFyb1Wq9zu8AAAAAAAAAdQ1FXhVuuukm5eTkaOvWrZowYYJGjx6tL7744qrXmz59umw2m2s7evToNUwLAAAAAACA+sDH6AC1kZ+fn9q0aSNJio2N1fbt2/XXv/5Vw4YNU3l5uYqKitzOyisoKFBYWNhF1/P395e/v//1jg0AAAAAAIA6jDPyroDD4VBZWZliY2Pl6+urzMxM1759+/YpNzdXCQkJBiYEAAAAAABAXccZeT8yffp03XnnnWrVqpVOnz6tjIwMbdq0Se+//74sFovGjRun1NRUNW7cWGazWZMnT1ZCQsIVP7EWAAAAAAAAuBoUeT9y/PhxjRo1Snl5ebJYLOrcubPef/993X777ZKkOXPmyMvLS0OGDFFZWZmSkpL04osvGpwaAAAAAAAAdZ3J6XQ6jQ5R39jtdlksFtlsNpnNZqPjAAAAAAAAwEBX2hVxjzwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1Dk/cjMmTMVFxenBg0aqHnz5kpOTta+ffvc5pSWlmrixIlq0qSJQkJCNGTIEBUUFBiUGAAAAAAAAPWBj9EBapvNmzdr4sSJiouL07lz5/TYY4/pjjvu0BdffKHg4GBJ0pQpU/Tee+9pxYoVslgsmjRpkgYPHqz//ve/Bqc3iNMpVZwxOgUAAAAAAKhPfIMkk8noFDXK5HQ6nUaHqM1OnDih5s2ba/Pmzfr5z38um82mZs2aKSMjQ3fffbckae/evWrfvr2ysrLUs2fPC9YoKytTWVmZ63e73S6r1SqbzSaz2Vxj7+W6KS+Rno0wOgUAAAAAAKhPHjsm+QUbneKasNvtslgsl+2KuLT2Mmw2mySpcePGkqTs7GxVVFQoMTHRNSc6OlqtWrVSVlZWlWvMnDlTFovFtVmt1usfHAAAAAAAAHUKl9ZegsPhUEpKinr37q2OHTtKkvLz8+Xn56eGDRu6zQ0NDVV+fn6V60yfPl2pqamu38+fkVdn+AZ934IDAAAAAADUFN8goxPUOIq8S5g4caJ2796tjz/++Cet4+/vL39//2uUqhYymerMqawAAAAAAAC1FZfWXsSkSZO0du1affjhh2rZsqVrPCwsTOXl5SoqKnKbX1BQoLCwsBpOCQAAAAAAgPqCIu9HnE6nJk2apFWrVumDDz5QVFSU2/7Y2Fj5+voqMzPTNbZv3z7l5uYqISGhpuMCAAAAAACgnuDS2h+ZOHGiMjIytGbNGjVo0MB13zuLxaLAwEBZLBaNGzdOqampaty4scxmsyZPnqyEhIQqn1gLAAAAAAAAXAsmp9PpNDpEbWIymaocX7p0qcaMGSNJKi0t1cMPP6w333xTZWVlSkpK0osvvnjFl9Ze6SOFAQAAAAAAUPddaVdEkWcAijwAAAAAAACcd6VdEffIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIq8JHH32ku+66SxERETKZTFq9erXbfqfTqbS0NIWHhyswMFCJiYk6cOCAMWEBAAAAAABQL1DkVaGkpERdunTRggULqtw/a9YszZs3T4sWLdLWrVsVHByspKQklZaW1nBSAAAAAAAA1Bc+Rgeoje68807deeedVe5zOp2aO3euHn/8cQ0aNEiS9Nprryk0NFSrV6/W8OHDazIqAAAAAAAA6gnOyKumw4cPKz8/X4mJia4xi8Wi+Ph4ZWVlVXlMWVmZ7Ha72wYAAAAAAABUB0VeNeXn50uSQkND3cZDQ0Nd+35s5syZslgsrs1qtV73nAAAAAAAAKhbKPJqwPTp02Wz2Vzb0aNHjY4EAAAAAAAAD0ORV01hYWGSpIKCArfxgoIC174f8/f3l9lsdtsAAAAAAACA6qDIq6aoqCiFhYUpMzPTNWa327V161YlJCQYmAwAAAAAAAB1GU+trUJxcbEOHjzo+v3w4cPKyclR48aN1apVK6WkpOjpp59W27ZtFRUVpSeeeEIRERFKTk42LjQAAAAAAADqNIq8KuzYsUO33HKL6/fU1FRJ0ujRo5Wenq6pU6eqpKRE48ePV1FRkfr06aP169crICDAqMgAAAAAAACo40xOp9NpdIj6xm63y2KxyGazcb88AAAAAACAeu5KuyLukQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIq8n2DBggWKjIxUQECA4uPjtW3bNqMjAQAAAAAAoI6iyLtKb731llJTUzVjxgzt3LlTXbp0UVJSko4fP250NAAAAAAAANRBFHlX6S9/+YseeOABjR07VjfffLMWLVqkoKAgvfrqq0ZHAwAAAAAAQB3kY3QAT1ReXq7s7GxNnz7dNebl5aXExERlZWVdML+srExlZWWu3202myTJbrdf/7AAAAAAAACo1c53RE6n85LzKPKuwsmTJ1VZWanQ0FC38dDQUO3du/eC+TNnztRTTz11wbjVar1uGQEAAAAAAOBZTp8+LYvFctH9FHk1YPr06UpNTXX97nA4dOrUKTVp0kQmk8nAZNeO3W6X1WrV0aNHZTabjY4Dg/F9wA/xfcAP8X3Aj/GdwA/xfcAP8X3AD/F9wA/Vxe+D0+nU6dOnFRERccl5FHlXoWnTpvL29lZBQYHbeEFBgcLCwi6Y7+/vL39/f7exhg0bXs+IhjGbzXXmLxF+Or4P+CG+D/ghvg/4Mb4T+CG+D/ghvg/4Ib4P+KG69n241Jl45/Gwi6vg5+en2NhYZWZmusYcDocyMzOVkJBgYDIAAAAAAADUVZyRd5VSU1M1evRode/eXT169NDcuXNVUlKisWPHGh0NAAAAAAAAdRBF3lUaNmyYTpw4obS0NOXn5ysmJkbr16+/4AEY9YW/v79mzJhxwSXEqJ/4PuCH+D7gh/g+4Mf4TuCH+D7gh/g+4If4PuCH6vP3weS83HNtAQAAAAAAABiOe+QBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR6uiQULFigyMlIBAQGKj4/Xtm3bjI4EA3z00Ue66667FBERIZPJpNWrVxsdCQaaOXOm4uLi1KBBAzVv3lzJycnat2+f0bFgkIULF6pz584ym80ym81KSEjQv/71L6NjoZZ47rnnZDKZlJKSYnQUGODJJ5+UyWRy26Kjo42OBQN9++23uvfee9WkSRMFBgaqU6dO2rFjh9GxYJDIyMgL/h1hMpk0ceJEo6PBAJWVlXriiScUFRWlwMBA3XjjjfrTn/6k+vQcV4o8/GRvvfWWUlNTNWPGDO3cuVNdunRRUlKSjh8/bnQ01LCSkhJ16dJFCxYsMDoKaoHNmzdr4sSJ+uSTT7RhwwZVVFTojjvuUElJidHRYICWLVvqueeeU3Z2tnbs2KFbb71VgwYN0p49e4yOBoNt375dixcvVufOnY2OAgN16NBBeXl5ru3jjz82OhIM8t1336l3797y9fXVv/71L33xxRd64YUX1KhRI6OjwSDbt293+/fDhg0bJElDhw41OBmM8Pzzz2vhwoWaP3++vvzySz3//POaNWuW/va3vxkdrcaYnPWptsR1ER8fr7i4OM2fP1+S5HA4ZLVaNXnyZE2bNs3gdDCKyWTSqlWrlJycbHQU1BInTpxQ8+bNtXnzZv385z83Og5qgcaNG2v27NkaN26c0VFgkOLiYnXr1k0vvviinn76acXExGju3LlGx0INe/LJJ7V69Wrl5OQYHQW1wLRp0/Tf//5X//nPf4yOgloqJSVFa9eu1YEDB2QymYyOgxr2y1/+UqGhoXrllVdcY0OGDFFgYKDeeOMNA5PVHM7Iw09SXl6u7OxsJSYmusa8vLyUmJiorKwsA5MBqG1sNpuk78sb1G+VlZVavny5SkpKlJCQYHQcGGjixIkaMGCA2/+OQP104MABRURE6IYbbtDIkSOVm5trdCQY5J133lH37t01dOhQNW/eXF27dtVLL71kdCzUEuXl5XrjjTd03333UeLVU7169VJmZqb2798vSfr000/18ccf68477zQ4Wc3xMToAPNvJkydVWVmp0NBQt/HQ0FDt3bvXoFQAahuHw6GUlBT17t1bHTt2NDoODPL5558rISFBpaWlCgkJ0apVq3TzzTcbHQsGWb58uXbu3Knt27cbHQUGi4+PV3p6um666Sbl5eXpqaee0s9+9jPt3r1bDRo0MDoeathXX32lhQsXKjU1VY899pi2b9+u3//+9/Lz89Po0aONjgeDrV69WkVFRRozZozRUWCQadOmyW63Kzo6Wt7e3qqsrNQzzzyjkSNHGh2txlDkAQCuu4kTJ2r37t3c86ieu+mmm5STkyObzaZ//OMfGj16tDZv3kyZVw8dPXpUDz30kDZs2KCAgACj48BgPzyLonPnzoqPj1fr1q319ttvc+l9PeRwONS9e3c9++yzkqSuXbtq9+7dWrRoEUUe9Morr+jOO+9URESE0VFgkLffflt///vflZGRoQ4dOignJ0cpKSmKiIioN/+OoMjDT9K0aVN5e3uroKDAbbygoEBhYWEGpQJQm0yaNElr167VRx99pJYtWxodBwby8/NTmzZtJEmxsbHavn27/vrXv2rx4sUGJ0NNy87O1vHjx9WtWzfXWGVlpT766CPNnz9fZWVl8vb2NjAhjNSwYUO1a9dOBw8eNDoKDBAeHn7B/8HTvn17/fOf/zQoEWqLr7/+Whs3btTKlSuNjgIDPfroo5o2bZqGDx8uSerUqZO+/vprzZw5s94UedwjDz+Jn5+fYmNjlZmZ6RpzOBzKzMzkvkdAPed0OjVp0iStWrVKH3zwgaKiooyOhFrG4XCorKzM6BgwwG233abPP/9cOTk5rq179+4aOXKkcnJyKPHqueLiYh06dEjh4eFGR4EBevfurX379rmN7d+/X61btzYoEWqLpUuXqnnz5howYIDRUWCgM2fOyMvLvcry9vaWw+EwKFHN44w8/GSpqakaPXq0unfvrh49emju3LkqKSnR2LFjjY6GGlZcXOz2/54fPnxYOTk5aty4sVq1amVgMhhh4sSJysjI0Jo1a9SgQQPl5+dLkiwWiwIDAw1Oh5o2ffp03XnnnWrVqpVOnz6tjIwMbdq0Se+//77R0WCABg0aXHC/zODgYDVp0oT7aNZDjzzyiO666y61bt1ax44d04wZM+Tt7a0RI0YYHQ0GmDJlinr16qVnn31Wv/71r7Vt2zYtWbJES5YsMToaDORwOLR06VKNHj1aPj7UGPXZXXfdpWeeeUatWrVShw4dtGvXLv3lL3/RfffdZ3S0GmNyOp1Oo0PA882fP1+zZ89Wfn6+YmJiNG/ePMXHxxsdCzVs06ZNuuWWWy4YHz16tNLT02s+EAx1sSeJLV26lBsU10Pjxo1TZmam8vLyZLFY1LlzZ/3hD3/Q7bffbnQ01BL9+vVTTEyM5s6da3QU1LDhw4fro48+UmFhoZo1a6Y+ffromWee0Y033mh0NBhk7dq1mj59ug4cOKCoqCilpqbqgQceMDoWDPTvf/9bSUlJ2rdvn9q1a2d0HBjo9OnTeuKJJ7Rq1SodP35cERERGjFihNLS0uTn52d0vBpBkQcAAAAAAAB4AO6RBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AAUeQAAAAAAAIAHoMgDAAAAAAAAPABFHgAAAAAAAOABKPIAAAAAAAAAD0CRBwAAAAAAAHgAijwAAAAAAADAA1DkAQAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AEUeAAAAAAAA4AEo8gAAAAAAAAAPQJEHAAAAAAAAeACKPAAAAAAAAMADUOQBAAAAAAAAHoAiDwAAAAAAAPAAFHkAAAAAAACAB6DIAwAAAAAAADwARR4AAAAAAADgASjyAAAAAAAAAA9AkQcAAAAAAAB4AIo8AAAAAAAAwANQ5AEAAAAAAAAegCIPAAAAAAAA8AA+RgeojxwOh44dO6YGDRrIZDIZHQcAAAAAAAAGcjqdOn36tCIiIuTldfHz7ijyDHDs2DFZrVajYwAAAAAAAKAWOXr0qFq2bHnR/RR5BmjQoIGk7/9wzGazwWkAAAAAAABgJLvdLqvV6uqMLoYizwDnL6c1m80UeQAAAAAAAJCky96CjYddAAAAAAAAAB6AIg8AAAAAAADwABR5AAAAAAAAgAegyAMAAAAAAAA8AA+78ADnzp1TeXm50THqHR8fH/n5+RkdAwAAAAAAQBJFXq3mdDqVm5urwsJCOZ1Oo+PUS4GBgQoLC1Pjxo2NjgIAAAAAAOo5irxarLCwUCdPnlRERITMZvNlH0GMa8fpdKq8vFwnT57U4cOHJYkyDwAAAAAAGIoir5ZyOp369ttv1bhxY4WHhxsdp14KDg5Ww4YNdfDgQeXm5io4OFj+/v5GxwIAAAAAAPXUVT3sYsGCBYqMjFRAQIDi4+O1bdu2S85fsWKFoqOjFRAQoE6dOmndunVu+51Op9LS0hQeHq7AwEAlJibqwIEDbnOeeeYZ9erVS0FBQWrYsOEFr1FYWKj+/fsrIiJC/v7+slqtmjRpkux2u2vOypUrdfvtt6tZs2Yym81KSEjQ+++/X+33V1paqokTJ6pJkyYKCQnRkCFDVFBQcLmPrVrOnTunc+fOqVGjRtd0XVSPyWRS06ZNVVlZqffee0/FxcVGRwIAAAAAAPVUtYu8t956S6mpqZoxY4Z27typLl26KCkpScePH69y/pYtWzRixAiNGzdOu3btUnJyspKTk7V7927XnFmzZmnevHlatGiRtm7dquDgYCUlJam0tNQ1p7y8XEOHDtWECROqfiNeXho0aJDeeecd7d+/X+np6dq4caMefPBB15yPPvpIt99+u9atW6fs7Gzdcsstuuuuu7Rr165qvb8pU6bo3Xff1YoVK7R582YdO3ZMgwcPru5HeUkVFRWSJF9f32u6Lqrv/AMvvvnmG3366acGpwEAAAAAAPWVyVnNpyjEx8crLi5O8+fPlyQ5HA5ZrVZNnjxZ06ZNu2D+sGHDVFJSorVr17rGevbsqZiYGC1atEhOp1MRERF6+OGH9cgjj0iSbDabQkNDlZ6eruHDh7utl56erpSUFBUVFV0267x58zR79mwdPXr0onM6dOigYcOGKS0t7Yren81mU7NmzZSRkaG7775bkrR37161b99eWVlZ6tmz52Vz2e12WSwW2Ww2mc3mKuecOXNGX375pdq3b6+goKDLronr5/yfxc6dO+Xr66sxY8YYHQkAAAAAgHqr6Ey5Any9FeDrbXSUa+ZKuiKpmmfklZeXKzs7W4mJif9bwMtLiYmJysrKqvKYrKwst/mSlJSU5Jp/+PBh5efnu82xWCyKj4+/6JpX4tixY1q5cqX69u170TkOh0OnT592PcTgSt5fdna2Kioq3OZER0erVatWF81bVlYmu93utsHz+Pj46OzZs6qsrDQ6CgAAAAAA9VJpRaXuS9+ue1/equ9Kyo2OU+OqVeSdPHlSlZWVCg0NdRsPDQ1Vfn5+lcfk5+dfcv75n9VZ81JGjBihoKAgtWjRQmazWS+//PJF5/75z39WcXGxfv3rX0u6sveXn58vPz+/C+7Td6m8M2fOlMVicW1Wq7Xa7wvG46nBAAAAAAAYx+FwKvXtHO3MLdL+gtMqpMjzfHPmzNHOnTu1Zs0aHTp0SKmpqVXOy8jI0FNPPaW3335bzZs3v66Zpk+fLpvN5toudakvrozJZHJtf/7zn6t1bFFR0U86HgAAAAAA1Lzn1u/Vus/z5ett0pJR3dWmeYjRkWpctYq8pk2bytvb+4IntBYUFCgsLKzKY8LCwi45//zP6qx5KWFhYYqOjtbAgQO1ePFiLVy4UHl5eW5zli9frvvvv19vv/222yWyV/L+wsLCVF5efsE9+i6V19/fX2az2W2rrwYOHKigoCCdPn36onNGjhwpPz8/FRYWXnKtX/3qV3r99dc1YMAA19imTZtkMpn0j3/846LHBQcH6/XXX9ecOXOq/wYAAAAAAECNez3riJZ89JUkafbdXdTzhiYGJzJGtYo8Pz8/xcbGKjMz0zXmcDiUmZmphISEKo9JSEhwmy9JGzZscM2PiopSWFiY2xy73a6tW7dedM0r5XA4JH1/j7rz3nzzTY0dO1ZvvvmmWwF0pe8vNjZWvr6+bnP27dun3Nzcn5y3Phg5cqTOnj2rVatWVbn/zJkzWrNmjfr3768mTS79l7Jz586699571b59+2pl8PX11b333qvk5ORqHQcAAAAAAGreB3sLNOOdPZKkh29vp+SuLQxOZByf6h6Qmpqq0aNHq3v37urRo4fmzp2rkpISjR07VpI0atQotWjRQjNnzpQkPfTQQ+rbt69eeOEFDRgwQMuXL9eOHTu0ZMkSSd9fIpmSkqKnn35abdu2VVRUlJ544glFRES4FS25ubk6deqUcnNzVVlZqZycHElSmzZtFBISonXr1qmgoEBxcXEKCQnRnj179Oijj6p3796KjIyU9P3ltKNHj9Zf//pXxcfHu+5pFxgYKIvFckXvz2KxaNy4cUpNTVXjxo1lNps1efJkJSQkXNETa+u7gQMHqkGDBsrIyNCoUaMu2L9mzRqVlJRo5MiRBqQDAAAAAAC1ye5vbZqUsUsOp/Tr7i016dY2RkcyVLWLvGHDhunEiRNKS0tTfn6+YmJitH79etcDInJzc+Xl9b8T/Xr16qWMjAw9/vjjeuyxx9S2bVutXr1aHTt2dM2ZOnWqSkpKNH78eBUVFalPnz5av369AgICXHPS0tK0bNky1+9du3aVJH344Yfq16+fAgMD9dJLL2nKlCkqKyuT1WrV4MGDNW3aNNcxS5Ys0blz5zRx4kRNnDjRNT569Gilp6df0fuTvr8Pn5eXl4YMGaKysjIlJSXpxRdfrO5HWS8FBgZq8ODB+vvf/67jx49fcH/CjIwMNWjQQAMHDjQoIQAAAAAAqA2+LTqrsenbdaa8Un3aNNUzv+pU7x9EaXI6nU6jQ9Q3drtdFotFNpvtovfLO3PmjL788ku1b99eQUFBkiSn06mzFZU1GfWyAn29q/2XaMOGDbrjjjv0t7/9TZMmTXKNnzp1SmFhYRoxYoRbaVsVk8mkGTNm6Mknn3Qb37Rpk2655RatWLFCd9999yXXOHLkiKKiojR79mw98sgjF513/s/i888/19mzZzV+/Hh5e3tf/o0CAAAAAICrYi+t0N0Lt2h/QbFuCm2gFRMSZA7wNTrWdXMlXZF0FWfkwThnKyp1c9r7Rsdw88UfkxTkV72v0a233qrw8HBlZGS4FXkrVqxQRUUFl9UCAAAAAFCPlZ9zaMIb2dpfUKzmDfz16ti4Ol3iVUe1HnYBXAve3t4aPny4srKydOTIEdd4RkaGQkNDddtttxkXDgAAAAAAGMbpdOr/Vn2u/x4sVJCft14dE6cWDQONjlVrcEaeBwn09dYXf0wyOoabQN+ru8R05MiRmjNnjjIyMvTYY4/pm2++0X/+8x/9/ve/57JVAAAAAADqqfkfHNSK7G/kZZIW3NNNHVtYjI5Uq1DkeRCTyVTty1hrq9jYWEVHR+vNN9/UY489pjfffFNOp5PLagEAAAAAqKdW7fpGL2zYL0n646COuiW6+WWOqH+4tBaGGTlypHbv3q3PPvtMGRkZatu2reLi4oyOBQAAAAAAaljWoUJN/cdnkqTf/vwG3duztcGJaieKPBjm/Nl3aWlpysnJ4Ww8AAAAAADqoYPHT+u3r+9QRaVTv+gUpj/0jzY6Uq1VN67ThEeKiopSr169tGbNGkm6pkXeP//5T+3du/eC8dGjR8tqtV6z1wEAAAAAAFfvxOkyjVm6XfbSc+rWqqH+8usYeXmZjI5Va1HkwVAjR47Uli1b1KNHD7Vp0+aarbt8+fIqx/v160eRBwAAAABALXCm/JzuX7Zd33x3VpFNgvTy6DgFXOVDNesLijwY6ne/+51+97vfXdWxZ86c0cmTJxUcHKzAwO8fRd2vXz85nc5LHud0OlVYWKjvvvvuql4XAAAAAAD8NJUOpx5anqNPv7GpUZCvlo7tocbBfkbHqvW4Rx481uzZs9WsWTMtWLCgWsfZbDY1a9ZM3bp1u07JAAAAAADApTz93hfa8EWB/Hy89NKo7opqGmx0JI/AGXnwSBs2bHD9c7t27ap1bEhIyE86HgAAAAAAXL1XPz6spf89Ikl6YWgXdY9sbGwgD0KRB4+UmJh41cf6+Pj8pOMBAAAAAMDVeX9Pvv703heSpGl3RuuuLhEGJ/IsXFoLAAAAAACA6y7naJEeWr5LTqd0T3wr/fbnNxgdyeNQ5AEAAAAAAOC6OnrqjO5ftl2lFQ71bddMfxzYQSaTyehYHocir5a73BNYcf3xZwAAAAAAwNWznanQmKXbdLK4XDeHm7VgZDf5eFNJXQ0+tVrK19dXklRRUWFwEpSXl0vizwIAAAAAgOoqO1ep376xQ4dOlCjcEqBXx8QpxJ9HNlwtirxaysfHRz4+Pjp16pTRUeo1p9OpkydPqry8nCIPAAAAAIBqcDqdmvbPz/XJV6cU4u+jV8fEKcwSYHQsj0YFWkuZTCa1aNFCX3/9tfLy8mQ2m7l2vAY5nU6Vl5fr5MmTstlsOnnypBwOh3x9feXlRf8NAAAAAMDlzNmwX6t2fStvL5NeHNlN7cPNRkfyeBR5tViTJk10+vRpffvttzp27JjRceql82We3W5XcXGxOnbsSKEKAAAAAMBlvL3jqOZ9cFCS9ExyR/28XTODE9UNFHm1mMlkUlRUlAoLC7V161Z5eXkpMDCQIqkGOJ1OnTt3ThUVFaqsrNTp06cVFBSkDh06GB0NAAAAAIBa7eMDJ/XYys8lSRNvuVHDe7QyOFHdQZHnAbp16yZfX199+eWXOnXqFE9RrWFeXl6Kjo5Wp06dFBUVZXQcAAAAAABqrb35dk14I1vnHE4NionQI3fcZHSkOoUizwN4eXmpS5cu6ty5syoqKijyapiXl5frKcIAAAAAAKBqBfZS3bd0u06XnVOPyMaadXdnriq8xijyPIjJZJKfn5/RMQAAAAAAANyUlJ3TfenbdcxWqhuaBWvJqFj5+3gbHavO4fGbAAAAAAAAuGrnKh2a/OYu7TlmV5NgP6WP6aGGQZyIdD1Q5AEAAAAAAOCqOJ1OPfnuHn2w97j8fbz08ujuatUkyOhYdRZFHgAAAAAAAK7KS//5Sm98kiuTSfrr8Bh1bdXI6Eh1GkUeAAAAAAAAqu29z/L07Lq9kqT/+0V79e8YbnCiuu+qirwFCxYoMjJSAQEBio+P17Zt2y45f8WKFYqOjlZAQIA6deqkdevWue13Op1KS0tTeHi4AgMDlZiYqAMHDrjNeeaZZ9SrVy8FBQWpYcOGF7xGYWGh+vfvr4iICPn7+8tqtWrSpEmy2+2uOXl5ebrnnnvUrl07eXl5KSUl5YJ1+vXrJ5PJdME2YMAA15wxY8ZcsL9///5X8MkBAAAAAAB4vuyvT2nK2zmSpNEJrTWuT5SxgeqJahd5b731llJTUzVjxgzt3LlTXbp0UVJSko4fP17l/C1btmjEiBEaN26cdu3apeTkZCUnJ2v37t2uObNmzdK8efO0aNEibd26VcHBwUpKSlJpaalrTnl5uYYOHaoJEyZU/Ua8vDRo0CC988472r9/v9LT07Vx40Y9+OCDrjllZWVq1qyZHn/8cXXp0qXKdVauXKm8vDzXtnv3bnl7e2vo0KFu8/r37+82780337zizxAAAAAAAMBTHTlZogdey1b5OYcS2zdX2l0dZDKZjI5VL5icTqezOgfEx8crLi5O8+fPlyQ5HA5ZrVZNnjxZ06ZNu2D+sGHDVFJSorVr17rGevbsqZiYGC1atEhOp1MRERF6+OGH9cgjj0iSbDabQkNDlZ6eruHDh7utl56erpSUFBUVFV0267x58zR79mwdPXr0gn39+vVTTEyM5s6de8k15s6dq7S0NOXl5Sk4OFjS92fkFRUVafXq1ZfNUBW73S6LxSKbzSaz2XxVawAAAAAAANS0UyXlGrJwiw6fLFGnFha99dueCvLzMTqWx7vSrqhaZ+SVl5crOztbiYmJ/1vAy0uJiYnKysqq8pisrCy3+ZKUlJTkmn/48GHl5+e7zbFYLIqPj7/omlfi2LFjWrlypfr27XvVa0jSK6+8ouHDh7tKvPM2bdqk5s2b66abbtKECRNUWFh40TXKyspkt9vdNgAAAAAAAE9SWlGp8a/t0OGTJWrRMFCvjOlOiVfDqlXknTx5UpWVlQoNDXUbDw0NVX5+fpXH5OfnX3L++Z/VWfNSRowYoaCgILVo0UJms1kvv/xytdc4b9u2bdq9e7fuv/9+t/H+/fvrtddeU2Zmpp5//nlt3rxZd955pyorK6tcZ+bMmbJYLK7NarVedSYAAAAAAICa5nA49ciKT7Xj6+/UIMBHS8fGqXmDAKNj1Tt17qm1c+bM0c6dO7VmzRodOnRIqampV73WK6+8ok6dOqlHjx5u48OHD9fAgQPVqVMnJScna+3atdq+fbs2bdpU5TrTp0+XzWZzbVVd6gsAAAAAAFBbzf73Pq39LE++3iYtvjdW7UIbGB2pXqpWkde0aVN5e3uroKDAbbygoEBhYWFVHhMWFnbJ+ed/VmfNSwkLC1N0dLQGDhyoxYsXa+HChcrLy6v2OiUlJVq+fLnGjRt32bk33HCDmjZtqoMHD1a539/fX2az2W0DAAAAAADwBBlbc7Vw0yFJ0nODO6tXm6YGJ6q/qlXk+fn5KTY2VpmZma4xh8OhzMxMJSQkVHlMQkKC23xJ2rBhg2t+VFSUwsLC3ObY7XZt3br1omteKYfDIen7e9RV14oVK1RWVqZ77733snO/+eYbFRYWKjw8vNqvAwAAAAAAUFt9uO+4nlizW5KUkthWQ2JbGpyofqv2HQlTU1M1evRode/eXT169NDcuXNVUlKisWPHSpJGjRqlFi1aaObMmZKkhx56SH379tULL7ygAQMGaPny5dqxY4eWLFkiSTKZTEpJSdHTTz+ttm3bKioqSk888YQiIiKUnJzset3c3FydOnVKubm5qqysVE5OjiSpTZs2CgkJ0bp161RQUKC4uDiFhIRoz549evTRR9W7d29FRka61jl/XHFxsU6cOKGcnBz5+fnp5ptvdnufr7zyipKTk9WkSRO38eLiYj311FMaMmSIwsLCdOjQIU2dOlVt2rRRUlJSdT9OAAAAAACAWmnPMZsm/X2nKh1ODe7WQg/d1tboSPVetYu8YcOG6cSJE0pLS1N+fr5iYmK0fv1618MqcnNz5eX1vxP9evXqpYyMDD3++ON67LHH1LZtW61evVodO3Z0zZk6dapKSko0fvx4FRUVqU+fPlq/fr0CAv5308S0tDQtW7bM9XvXrl0lSR9++KH69eunwMBAvfTSS5oyZYrKyspktVo1ePBgTZs2zS3/+eMkKTs7WxkZGWrdurWOHDniGt+3b58+/vhj/fvf/77g/Xt7e+uzzz7TsmXLVFRUpIiICN1xxx3605/+JH9//+p+nAAAAAAAALVOnu2s7kvfrpLySvW6sYmeG9xZJpPJ6Fj1nsnpdDqNDlHf2O12WSwW2Ww27pcHAAAAAABqldOlFRq6KEt780+rbfMQ/WNCL1kCfY2OVaddaVdU555aCwAAAAAAgKtTUenQ7/6+U3vzT6tZA38tHRtHiVeLUOQBAAAAAABATqdTT6zerf8cOKlAX2+9Mrq7WjYKMjoWfoAiDwAAAAAAAHpx0yEt335UXibpbyO6qnPLhkZHwo9Q5AEAAAAAANRza3K+1ez390mSnhzYQYk3hxqcCFWhyAMAAAAAAKjHtn5VqEdXfCZJur9PlEYlRBobCBdFkQcAAAAAAFBPHTpRrPGvZ6u80qH+HcL02C/aGx0Jl0CRBwAAAAAAUA+dLC7T2KXbZTtboRhrQ80ZFiMvL5PRsXAJFHkAAAAAAAD1TGlFpe5ftkO5p86oVeMgvTy6uwL9vI2OhcugyAMAAAAAAKhHKh1OpSzPUc7RIlkCfbV0bJyahvgbHQtXgCIPAAAAAACgHpm57kut35MvP28vLflNrG5sFmJ0JFwhijwAAAAAAIB6YtmWI3r548OSpNlDOyv+hiYGJ0J1UOQBAAAAAADUAxu/KNBT7+6RJD2adJMGxbQwOBGqiyIPAAAAAACgjvvsmyJNfnOXHE5peJxVv+t3o9GRcBUo8gAAAAAAAOqwb747o/vSd+hsRaV+1rap/pTcUSaTyehYuAoUeQAAAAAAAHWU7WyFxi7drpPFZYoOa6AXR3aTrzd1kKfiTw4AAAAAAKAOKj/n0IQ3snXgeLFCzf5aOjZODQJ8jY6Fn4AiDwAAAAAAoI5xOp2atvIzbTlUqGA/b706Jk7hlkCjY+EnosgDAAAAAACoY/6aeUArd34rby+T5o/spg4RFqMj4RqgyAMAAAAAAKhD/pH9jeZuPCBJ+tOgjrrlpuYGJ8K1QpEHAAAAAABQR2w5eFLT/vmZJOnBvjfqnvhWBifCtUSRBwAAAAAAUAccKDit376RrXMOp37ZOVxTk24yOhKuMYo8AAAAAAAAD3f8dKnGLN2u06Xn1L11I/15aBd5eZmMjoVrjCIPAAAAAADAg50pP6dx6Tv0bdFZRTUN1pJR3RXg6210LFwHFHkAAAAAAAAeqtLh1O/f3KXPv7WpcbCflo6JU+NgP6Nj4TqhyAMAAAAAAPBATqdTf3x3jzZ+eVx+Pl56aVR3RTYNNjoWriOKPAAAAAAAAA/0yseHtSzra0nS3GExim3dyOBEuN4o8gAAAAAAADzM+t15embdl5Kkx34RrV90Cjc4EWoCRR4AAAAAAIAH2ZX7nR5aniOnU7q3Zys98LMbjI6EGnJVRd6CBQsUGRmpgIAAxcfHa9u2bZecv2LFCkVHRysgIECdOnXSunXr3PY7nU6lpaUpPDxcgYGBSkxM1IEDB9zmPPPMM+rVq5eCgoLUsGHDC16jsLBQ/fv3V0REhPz9/WW1WjVp0iTZ7XbXnLy8PN1zzz1q166dvLy8lJKScsE66enpMplMbltAQEC18wIAAAAAAFxruYVndP+yHSo759Ct0c315F0dZDKZjI6FGlLtIu+tt95SamqqZsyYoZ07d6pLly5KSkrS8ePHq5y/ZcsWjRgxQuPGjdOuXbuUnJys5ORk7d692zVn1qxZmjdvnhYtWqStW7cqODhYSUlJKi0tdc0pLy/X0KFDNWHChKrfiJeXBg0apHfeeUf79+9Xenq6Nm7cqAcffNA1p6ysTM2aNdPjjz+uLl26XPQ9ms1m5eXlubavv/7abf+V5AUAAAAAALiWis6Ua0z6NhWWlKtDhFl/G9FVPt5cbFmfmJxOp7M6B8THxysuLk7z58+XJDkcDlmtVk2ePFnTpk27YP6wYcNUUlKitWvXusZ69uypmJgYLVq0SE6nUxEREXr44Yf1yCOPSJJsNptCQ0OVnp6u4cOHu62Xnp6ulJQUFRUVXTbrvHnzNHv2bB09evSCff369VNMTIzmzp1brfWrm1f6vkAsKytz/W6322W1WmWz2WQ2my/7PgAAAAAAQP1Wdq5Sv3l5m7YdOaUIS4BWTeytUHPA5Q+ER7Db7bJYLJftiqpV25aXlys7O1uJiYn/W8DLS4mJicrKyqrymKysLLf5kpSUlOSaf/jwYeXn57vNsVgsio+Pv+iaV+LYsWNauXKl+vbtW+1ji4uL1bp1a1mtVg0aNEh79uxx7buavDNnzpTFYnFtVqu1+m8IAAAAAADUSw6HU4+u+EzbjpxSA38fvTo2jhKvnqpWkXfy5ElVVlYqNDTUbTw0NFT5+flVHpOfn3/J+ed/VmfNSxkxYoSCgoLUokULmc1mvfzyy9U6/qabbtKrr76qNWvW6I033pDD4VCvXr30zTffXHXe6dOny2azubaqzhAEAAAAAACoyl827Nc7nx6Tj5dJC++NVXQYV/fVV3XuQuo5c+Zo586dWrNmjQ4dOqTU1NRqHZ+QkKBRo0YpJiZGffv21cqVK9WsWTMtXrz4qjP5+/vLbDa7bQAAAAAAAJfz1vZczf/woCTp2cGd1KdtU4MTwUjVKvKaNm0qb29vFRQUuI0XFBQoLCysymPCwsIuOf/8z+qseSlhYWGKjo7WwIEDtXjxYi1cuFB5eXnVXuc8X19fde3aVQcPHrwueQEAAAAAAKry0f4TemzV9w8L/f2tbfTr7tyqq76rVpHn5+en2NhYZWZmusYcDocyMzOVkJBQ5TEJCQlu8yVpw4YNrvlRUVEKCwtzm2O327V169aLrnmlHA6HJLk9aKK6Kisr9fnnnys8PPy65wUAAAAAAJCkL/Ps+t3fd6rS4dSvurbQlNvbGR0JtYBPdQ9ITU3V6NGj1b17d/Xo0UNz585VSUmJxo4dK0kaNWqUWrRooZkzZ0qSHnroIfXt21cvvPCCBgwYoOXLl2vHjh1asmSJJMlkMiklJUVPP/202rZtq6ioKD3xxBOKiIhQcnKy63Vzc3N16tQp5ebmqrKyUjk5OZKkNm3aKCQkROvWrVNBQYHi4uIUEhKiPXv26NFHH1Xv3r0VGRnpWuf8ccXFxTpx4oRycnLk5+enm2++WZL0xz/+UT179lSbNm1UVFSk2bNn6+uvv9b9999frbwAAAAAAABXI99WqvvSt6u47Jx63tBYzw3pJJPJZHQs1ALVLvKGDRumEydOKC0tTfn5+YqJidH69etdD3/Izc2Vl9f/TvTr1auXMjIy9Pjjj+uxxx5T27ZttXr1anXs2NE1Z+rUqSopKdH48eNVVFSkPn36aP369QoI+N8TWNLS0rRs2TLX7127dpUkffjhh+rXr58CAwP10ksvacqUKSorK5PVatXgwYM1bdo0t/znj5Ok7OxsZWRkqHXr1jpy5Igk6bvvvtMDDzyg/Px8NWrUSLGxsdqyZYur6LvSvAAAAAAAANVVXHZO96VvV56tVDc2C9bie7vL38fb6FioJUxOp9NpdIj6xm63y2KxyGaz8eALAAAAAAAgSTpX6dC4ZTu0ef8JNQ3x06rf9Za1cZDRsVADrrQrqnNPrQUAAAAAAPA0TqdTT6zZo837TyjA10svj46jxMMFKPIAAAAAAAAMtvijr/TmtlyZTNK84V0VY21odCTUQhR5AAAAAAAABlr72TE996+9kqS0X96sOzqEGZwItRVFHgAAAAAAgEF2HDml1Lc/lSSN7R2psb2jDE6E2owiDwAAAAAAwACHT5bo/td2qPycQ7ffHKrHB9xsdCTUchR5AAAAAAAANaywuExjlm5T0ZkKdWlp0V+Hx8jby2R0LNRyFHkAAAAAAAA1qLSiUg+8tkNfF55Ry0aBenl0nIL8fIyOBQ9AkQcAAAAAAFBDHA6nHn77U+3MLZI5wEfpY+PUrIG/0bHgISjyAAAAAAAAasjz6/fqvc/z5Ott0uLfdFeb5g2MjgQPQpEHAAAAAABQA17/5Gst/ugrSdKsuzsr4cYmBieCp6HIAwAAAAAAuM4+3HtcM9bsliSl3t5Ov+ra0uBE8EQUeQAAAAAAANfR7m9tmpixUw6nNDS2pSbf2sboSPBQFHkAAAAAAADXybdFZ3Vf+nadKa9UnzZN9ezgTjKZTEbHgoeiyAMAAAAAALgO7KUVum/pdh0/XaZ2oSF68d5u8vWmisHV49sDAAAAAABwjVVUOvS7N3ZqX8FpNW/gr6Vje8gc4Gt0LHg4ijwAAAAAAIBryOl06v9Wfa6PD55UkJ+3Xh0TpxYNA42OhTqAIg8AAAAAAOAamv/BQb294xt5maT593RVxxYWoyOhjqDIAwAAAAAAuEZW7fpGL2zYL0l6amAH3RodanAi1CUUeQAAAAAAANfAJ18Vauo/PpMkjf/5DfpNQqSxgVDnUOQBAAAAAAD8RAePn9b413aootKpX3QK07T+0UZHQh1EkQcAAAAAAPATnDhdpjFLt8teek7dWjXUX34dIy8vk9GxUAdR5AEAAAAAAFyls+WVuv+1Hfrmu7Nq3SRIL43qrgBfb6NjoY6iyAMAAAAAALgKlQ6nHlq+S58eLVLDIF8tHROnJiH+RsdCHUaRBwAAAAAAcBWeee9L/fuLAvn5eOmlUd11Q7MQoyOhjqPIAwAAAAAAqKal/z2sV/97WJL0wtAuiotsbHAi1AcUeQAAAAAAANXw7z35+uPaLyRJf+gfrbu6RBicCPUFRR4AAAAAAMAV+vRokX6/fJecTmlEj1Z6sO8NRkdCPXJVRd6CBQsUGRmpgIAAxcfHa9u2bZecv2LFCkVHRysgIECdOnXSunXr3PY7nU6lpaUpPDxcgYGBSkxM1IEDB9zmPPPMM+rVq5eCgoLUsGHDC16jsLBQ/fv3V0REhPz9/WW1WjVp0iTZ7XbXnLy8PN1zzz1q166dvLy8lJKScsE6L730kn72s5+pUaNGatSokRITEy94f2PGjJHJZHLb+vfvf5lPDQAAAAAAeLKjp85o3LLtKq1wqG+7ZvrToA4ymUxGx0I9Uu0i76233lJqaqpmzJihnTt3qkuXLkpKStLx48ernL9lyxaNGDFC48aN065du5ScnKzk5GTt3r3bNWfWrFmaN2+eFi1apK1btyo4OFhJSUkqLS11zSkvL9fQoUM1YcKEqt+Il5cGDRqkd955R/v371d6ero2btyoBx980DWnrKxMzZo10+OPP64uXbpUuc6mTZs0YsQIffjhh8rKypLVatUdd9yhb7/91m1e//79lZeX59refPPNK/4MAQAAAACAZ7GdqdDY9O06WVyu9uFmLRjZTT7eXOiImmVyOp3O6hwQHx+vuLg4zZ8/X5LkcDhktVo1efJkTZs27YL5w4YNU0lJidauXesa69mzp2JiYrRo0SI5nU5FRETo4Ycf1iOPPCJJstlsCg0NVXp6uoYPH+62Xnp6ulJSUlRUVHTZrPPmzdPs2bN19OjRC/b169dPMTExmjt37iXXqKysVKNGjTR//nyNGjVK0vdn5BUVFWn16tWXzSB9XyCWlZW5frfb7bJarbLZbDKbzVe0BgAAAAAAMEbZuUqNfnWbPvnqlMLMAVo9sbfCLAFGx0IdYrfbZbFYLtsVVas6Li8vV3Z2thITE/+3gJeXEhMTlZWVVeUxWVlZbvMlKSkpyTX/8OHDys/Pd5tjsVgUHx9/0TWvxLFjx7Ry5Ur17dv3qteQpDNnzqiiokKNG7s/fWbTpk1q3ry5brrpJk2YMEGFhYUXXWPmzJmyWCyuzWq1/qRMAAAAAACgZjidTk375+f65KtTCvH30dKxcZR4MEy1iryTJ0+qsrJSoaGhbuOhoaHKz8+v8pj8/PxLzj//szprXsqIESMUFBSkFi1ayGw26+WXX672Gj/0hz/8QREREW5FY//+/fXaa68pMzNTzz//vDZv3qw777xTlZWVVa4xffp02Ww211bVGYIAAAAAAKD2mbPxgFbt+lbeXiYtGNlN7cO5sg7GqXMXc8+ZM0c7d+7UmjVrdOjQIaWmpl71Ws8995yWL1+uVatWKSDgf2378OHDNXDgQHXq1EnJyclau3attm/frk2bNlW5jr+/v8xms9sGAAAAAABqtxU7jmpe5vcP43wmuaP6tmtmcCLUd9Uq8po2bSpvb28VFBS4jRcUFCgsLKzKY8LCwi45//zP6qx5KWFhYYqOjtbAgQO1ePFiLVy4UHl5edVe589//rOee+45/fvf/1bnzp0vOfeGG25Q06ZNdfDgwWq/DgAAAAAAqH3+e/Ckpq/8XJI08ZYbNbxHK4MTAdUs8vz8/BQbG6vMzEzXmMPhUGZmphISEqo8JiEhwW2+JG3YsME1PyoqSmFhYW5z7Ha7tm7detE1r5TD4ZAktwdNXIlZs2bpT3/6k9avX6/u3btfdv4333yjwsJChYeHX1VOAAAAAABQe+zLP60HX8/WOYdTA7tE6OHbbzI6EiBJ8qnuAampqRo9erS6d++uHj16aO7cuSopKdHYsWMlSaNGjVKLFi00c+ZMSdJDDz2kvn376oUXXtCAAQO0fPly7dixQ0uWLJEkmUwmpaSk6Omnn1bbtm0VFRWlJ554QhEREUpOTna9bm5urk6dOqXc3FxVVlYqJydHktSmTRuFhIRo3bp1KigoUFxcnEJCQrRnzx49+uij6t27tyIjI13rnD+uuLhYJ06cUE5Ojvz8/HTzzTdLkp5//nmlpaUpIyNDkZGRrvv0hYSEKCQkRMXFxXrqqac0ZMgQhYWF6dChQ5o6daratGmjpKSk6n6cAAAAAACgFimwl2rs0m06XXZOPSIba/bQzvLyMhkdC5AkmZxOp7O6B82fP1+zZ89Wfn6+YmJiNG/ePMXHx0uS+vXrp8jISKWnp7vmr1ixQo8//riOHDmitm3batasWfrFL37h2u90OjVjxgwtWbJERUVF6tOnj1588UW1a9fONWfMmDFatmzZBVk+/PBD9evXTx9++KH+7//+T1988YXKyspktVo1ePBgTZs2TQ0bNvzfGzZd+JevdevWOnLkiCQpMjJSX3/99QVzZsyYoSeffFJnz55VcnKydu3apaKiIkVEROiOO+7Qn/70pwse2HExV/pIYQAAAAAAUHNKys5p2JIs7f7WrhuaBuufE3qpUbCf0bFQD1xpV3RVRR5+Goo8AAAAAABql3OVDo1/PVsf7D2uJsF+WvW73mrVJMjoWKgnrrQrqnNPrQUAAAAAAKgOp9Opp979Qh/sPS5/Hy+9NLo7JR5qJYo8AAAAAABQr738n8N6/ZOvZTJJc4fFqFurRkZHAqpEkQcAAAAAAOqtdZ/n6Zl1X0qS/u8X7XVnp3CDEwEXR5EHAAAAAADqpeyvv9OUt3IkSaMTWmtcnyhjAwGXQZEHAAAAAADqnSMnS/TAaztUds6hxPbNlXZXB5lMJqNjAZdEkQcAAAAAAOqV70rKNTZ9u06VlKtTC4vmjegqby9KPNR+FHkAAAAAAKDeKK2o1PjXd+jwyRK1aBioV0Z3V5Cfj9GxgCtCkQcAAAAAAOoFh8OpR//xmbYf+U4NAny0dGycmpsDjI4FXDGKPAAAAAAAUC/8+d/79O6nx+TjZdLie2PVLrSB0ZGAaqHIAwAAAAAAdV7G1ly9uOmQJOm5IZ3Vq01TgxMB1UeRBwAAAAAA6rRN+47riTW7JUkP3dZWd8e2NDgRcHUo8gAAAAAAQJ31xTG7Jv59pyodTg3u1kIpiW2NjgRcNYo8AAAAAABQJ+XZzuq+9O0qKa9Uwg1N9NzgzjKZTEbHAq4aRR4AAAAAAKhzTpdWaOzS7cq3l6pt8xAt+k2s/HyoQeDZ+AYDAAAAAIA6paLSoYkZu7Q3/7Sahvjr1TFxsgT6Gh0L+Mko8gAAAAAAQJ3hdDr1xOrd+mj/CQX6euvVMd1lbRxkdCzgmqDIAwAAAAAAdcbCzYe0fPtReZmkv43oqs4tGxodCbhmKPIAAAAAAECdsCbnW81av0+SNOOuDkq8OdTgRMC1RZEHAAAAAAA83rbDp/Tois8kSeP6RGl0r0hjAwHXAUUeAAAAAADwaIdOFGv86ztUXulQUodQPfaL9kZHAq4LijwAAAAAAOCxCovLNHbpdhWdqVCMtaHmDusqby+T0bGA64IiDwAAAAAAeKTSikrd/9oO5Z46I2vjQL08ursC/byNjgVcNxR5AAAAAADA4zgcTk15K0e7cotkCfTV0jE91DTE3+hYwHVFkQcAAAAAADzOzH99qX/tzpeft5eW/CZWbZqHGB0JuO4o8gAAAAAAgEd5LeuIXvrPYUnS7KGdFX9DE4MTATWDIg8AAAAAAHiMzC8L9OQ7eyRJjybdpEExLQxOBNQcijwAAAAAAOARPv/GpkkZu+RwSsO6W/W7fjcaHQmoUVdV5C1YsECRkZEKCAhQfHy8tm3bdsn5K1asUHR0tAICAtSpUyetW7fObb/T6VRaWprCw8MVGBioxMREHThwwG3OM888o169eikoKEgNGza84DUKCwvVv39/RUREyN/fX1arVZMmTZLdbnfNycvL0z333KN27drJy8tLKSkp1y0vAAAAAAC4dr757ozuW7ZdZysq9bO2TfX0rzrKZDIZHQuoUdUu8t566y2lpqZqxowZ2rlzp7p06aKkpCQdP368yvlbtmzRiBEjNG7cOO3atUvJyclKTk7W7t27XXNmzZqlefPmadGiRdq6dauCg4OVlJSk0tJS15zy8nINHTpUEyZMqPqNeHlp0KBBeuedd7R//36lp6dr48aNevDBB11zysrK1KxZMz3++OPq0qXLdc0LAAAAAACuDdvZCt2Xvl0nTpcpOqyBXhzZTb7eXGSI+sfkdDqd1TkgPj5ecXFxmj9/viTJ4XDIarVq8uTJmjZt2gXzhw0bppKSEq1du9Y11rNnT8XExGjRokVyOp2KiIjQww8/rEceeUSSZLPZFBoaqvT0dA0fPtxtvfT0dKWkpKioqOiyWefNm6fZs2fr6NGjF+zr16+fYmJiNHfu3OuaV/q+QCwrK3P9brfbZbVaZbPZZDabL/s+AAAAAACor8rPOTRm6TZtOVSoULO/Vv2utyIaBhodC7im7Ha7LBbLZbuiatXX5eXlys7OVmJi4v8W8PJSYmKisrKyqjwmKyvLbb4kJSUlueYfPnxY+fn5bnMsFovi4+MvuuaVOHbsmFauXKm+fftW67jrkXfmzJmyWCyuzWq1VvPdAAAAAABQ/zidTk1f+bm2HCpUsJ+3Xh0TR4mHeq1aRd7JkydVWVmp0NBQt/HQ0FDl5+dXeUx+fv4l55//WZ01L2XEiBEKCgpSixYtZDab9fLLL1fr+OuRd/r06bLZbK6tqjMEAQAAAACAu3mZB/XPnd/I28uk+SO7qUOExehIgKHq3AXlc+bM0c6dO7VmzRodOnRIqampRkeSv7+/zGaz2wYAAAAAAC7un9nfaM7G/ZKkPw7qoFtuam5wIsB41SrymjZtKm9vbxUUFLiNFxQUKCwsrMpjwsLCLjn//M/qrHkpYWFhio6O1sCBA7V48WItXLhQeXl51Tq+JvMCAAAAAAB3Ww6d1LSVn0mSHux7o0bGtzY4EVA7VKvI8/PzU2xsrDIzM11jDodDmZmZSkhIqPKYhIQEt/mStGHDBtf8qKgohYWFuc2x2+3aunXrRde8Ug6HQ5LcHjRxOUbmBQAAAACgvjtQcFq/fT1bFZVODegcrqlJNxkdCag1fKp7QGpqqkaPHq3u3burR48emjt3rkpKSjR27FhJ0qhRo9SiRQvNnDlTkvTQQw+pb9++euGFFzRgwAAtX75cO3bs0JIlSyRJJpNJKSkpevrpp9W2bVtFRUXpiSeeUEREhJKTk12vm5ubq1OnTik3N1eVlZXKycmRJLVp00YhISFat26dCgoKFBcXp5CQEO3Zs0ePPvqoevfurcjISNc6548rLi7WiRMnlJOTIz8/P918883XNC8AAAAAAKie46dLNWbpdp0uPafY1o30wtAu8vIyGR0LqDWqXeQNGzZMJ06cUFpamvLz8xUTE6P169e7Hv6Qm5srL6//nejXq1cvZWRk6PHHH9djjz2mtm3bavXq1erYsaNrztSpU1VSUqLx48erqKhIffr00fr16xUQEOCak5aWpmXLlrl+79q1qyTpww8/VL9+/RQYGKiXXnpJU6ZMUVlZmaxWqwYPHqxp06a55T9/nCRlZ2crIyNDrVu31pEjR65pXgAAAAAAcOXOlJ/T/ct26Nuis4pqGqyXRnVXgK+30bGAWsXkdDqdRoeob+x2uywWi2w2Gw++AAAAAADUe5UOp377erY2flmgRkG+WvW73opsGmx0LKDGXGlXVOeeWgsAAAAAADzLn9Z+oY1fFsjPx0svj+5OiQdcBEUeAAAAAAAwzCsfH1b6liOSpDm/jlFs68bGBgJqMYo8AAAAAABgiPW78/X0e19IkqbfGa0BncMNTgTUbhR5AAAAAACgxu3K/U4pb+2S0ynd27OVxv/8BqMjAbUeRR4AAAAAAKhRuYVndP+yHSqtcOiWm5rpybs6yGQyGR0LqPUo8gAAAAAAQI0pOlOuMenbVFhSrg4RZs2/p5t8vKkngCvB3xQAAAAAAFAjys5Vavzr2frqRInCLQF6dUycgv19jI4FeAyKPAAAAAAAcN05nU5N/cdn2nb4lBr4+2jp2DiFmgOMjgV4FIo8AAAAAABw3f1lw36tyTkmHy+TFt4bq+gws9GRAI9DkQcAAAAAAK6rt7cf1d8+OChJevZXndSnbVODEwGeiSIPAAAAAABcN/85cEKPrfpckjT51jb6dZzV4ESA56LIAwAAAAAA18XefLsmvLFT5xxOJcdEKPX2dkZHAjwaRR4AAAAAALjmCuylGrt0u4rLzik+qrGev7uzTCaT0bEAj0aRBwAAAAAArqnisnMau3S78mylurFZsJb8prv8fbyNjgV4PIo8AAAAAABwzZyrdGhyxk59kWdX0xA/pY/tIUuQr9GxgDqBIg8AAAAAAFwTTqdTM97Zow/3nVCAr5deHh0na+Mgo2MBdQZFHgAAAAAAuCaWfPSV/r41VyaT9NfhXRVjbWh0JKBOocgDAAAAAAA/2Xuf5Wnmv/ZKkp4YcLOSOoQZnAioeyjyAAAAAADAT7LjyClNeTtHkjSmV6Tu6xNlbCCgjqLIAwAAAAAAV+3wyRI98NoOlZ9z6PabQ/XEL282OhJQZ1HkAQAAAACAq3KqpFxjl27Td2cq1KWlRX8dHiNvL5PRsYA6iyIPAAAAAABUW2lFpR54bYeOFJ5Ry0aBenl0nIL8fIyOBdRpFHkAAAAAAKBaHA6nHl7xqbK//k7mAB+lj41Tswb+RscC6jyKPAAAAAAAUC3Pv79X732WJ19vkxb9JlZtmjcwOhJQL1DkAQAAAACAK/bGJ19r8eavJEnPD+msXjc2NTgRUH9Q5AEAAAAAgCvy4d7jSluzW5KUens7De7W0uBEQP1CkQcAAAAAAC5r97c2TczYKYdTuju2pSbf2sboSEC9c1VF3oIFCxQZGamAgADFx8dr27Ztl5y/YsUKRUdHKyAgQJ06ddK6devc9judTqWlpSk8PFyBgYFKTEzUgQMH3OY888wz6tWrl4KCgtSwYcMLXqOwsFD9+/dXRESE/P39ZbVaNWnSJNntdrd5mzZtUrdu3eTv7682bdooPT3dbX9kZKRMJtMF28SJE11z+vXrd8H+Bx988Ao+OQAAAAAAPM+xorMat2y7zpRXqnebJnr2V51kMpmMjgXUO9Uu8t566y2lpqZqxowZ2rlzp7p06aKkpCQdP368yvlbtmzRiBEjNG7cOO3atUvJyclKTk7W7t27XXNmzZqlefPmadGiRdq6dauCg4OVlJSk0tJS15zy8nINHTpUEyZMqPqNeHlp0KBBeuedd7R//36lp6dr48aNbgXb4cOHNWDAAN1yyy3KyclRSkqK7r//fr3//vuuOdu3b1deXp5r27BhgyRp6NChbq/3wAMPuM2bNWtWdT9KAAAAAABqPXtphcYu3a4Ce5nahYboxZGx8vPhAj/ACCan0+mszgHx8fGKi4vT/PnzJUkOh0NWq1WTJ0/WtGnTLpg/bNgwlZSUaO3ata6xnj17KiYmRosWLZLT6VRERIQefvhhPfLII5Ikm82m0NBQpaena/jw4W7rpaenKyUlRUVFRZfNOm/ePM2ePVtHjx6VJP3hD3/Qe++951YiDh8+XEVFRVq/fn2Va6SkpGjt2rU6cOCA6/9t6Nevn2JiYjR37tzLZpCksrIylZWVuX632+2yWq2y2Wwym81XtAYAAAAAADWtotKh+9K36z8HTqpZA3+tnthbLRoGGh0LqHPsdrssFstlu6JqVejl5eXKzs5WYmLi/xbw8lJiYqKysrKqPCYrK8ttviQlJSW55h8+fFj5+flucywWi+Lj4y+65pU4duyYVq5cqb59+15xlh8rLy/XG2+8ofvuu++CU4b//ve/q2nTpurYsaOmT5+uM2fOXDTLzJkzZbFYXJvVar3q9wUAAAAAQE1wOp16fNVu/efASQX5eWvpmDhKPMBg1SryTp48qcrKSoWGhrqNh4aGKj8/v8pj8vPzLzn//M/qrHkpI0aMUFBQkFq0aCGz2ayXX375slnsdrvOnj17wVqrV69WUVGRxowZ4zZ+zz336I033tCHH36o6dOn6/XXX9e999570UzTp0+XzWZzbefPEAQAAAAAoLZa8OFBvbXjqLxM0t9GdFXHFhajIwH1no/RAa61OXPmaMaMGdq/f7+mT5+u1NRUvfjii1e11iuvvKI777xTERERbuPjx493/XOnTp0UHh6u2267TYcOHdKNN954wTr+/v7y9/e/qgwAAAAAANS01bu+1Z//vV+S9NTADrqtfehljgBQE6p1Rl7Tpk3l7e2tgoICt/GCggKFhYVVeUxYWNgl55//WZ01LyUsLEzR0dEaOHCgFi9erIULFyovL++SWcxmswID3U8P/vrrr7Vx40bdf//9l33N+Ph4SdLBgwernRcAAAAAgNrkk68KNfUfn0mSxv/8Bv0mIdLYQABcqlXk+fn5KTY2VpmZma4xh8OhzMxMJSQkVHlMQkKC23xJ2rBhg2t+VFSUwsLC3ObY7XZt3br1omteKYfDIUmuB01cLssPLV26VM2bN9eAAQMu+zo5OTmSpPDw8J+UFwAAAAAAIx08Xqzfvp6t8kqH7uwYpmn9o42OBOAHqn1pbWpqqkaPHq3u3burR48emjt3rkpKSjR27FhJ0qhRo9SiRQvNnDlTkvTQQw+pb9++euGFFzRgwAAtX75cO3bs0JIlSyRJJpNJKSkpevrpp9W2bVtFRUXpiSeeUEREhJKTk12vm5ubq1OnTik3N1eVlZWu8qxNmzYKCQnRunXrVFBQoLi4OIWEhGjPnj169NFH1bt3b0VGRkqSHnzwQc2fP19Tp07Vfffdpw8++EBvv/223nvvPbf36HA4tHTpUo0ePVo+Pu4f0aFDh5SRkaFf/OIXatKkiT777DNNmTJFP//5z9W5c+fqfpwAAAAAANQKJ4vLNDZ9m2xnK9S1VUPNGRYjLy/T5Q8EUGOqXeQNGzZMJ06cUFpamvLz8xUTE6P169e7HiKRm5srL6//nejXq1cvZWRk6PHHH9djjz2mtm3bavXq1erYsaNrztSpU1VSUqLx48erqKhIffr00fr16xUQEOCak5aWpmXLlrl+79q1qyTpww8/VL9+/RQYGKiXXnpJU6ZMUVlZmaxWqwYPHqxp06a5jomKitJ7772nKVOm6K9//atatmypl19+WUlJSW7vcePGjcrNzdV99913wfv38/PTxo0bXQWm1WrVkCFD9Pjjj1f3owQAAAAAoFY4W16pcct26Oips2rdJEgvj+quAF9vo2MB+BGT0+l0Gh2ivrHb7bJYLLLZbDKbzUbHAQAAAADUY5UOp37392y9v6dADYN8tXJCL93QLMToWEC9cqVdUbXukQcAAAAAAOqWZ9d9qff3FMjP20svjepOiQfUYhR5AAAAAADUU+n/PaxXPj4sSfrzr7soLrKxwYkAXApFHgAAAAAA9dCGLwr0x7VfSJKm9r9JA7tEGJwIwOVQ5AEAAAAAUM98erRIk9/cKYdTGtHDqgl9bzQ6EoArQJEHAAAAAEA9cvTUGY1btkOlFQ71bddMfxrUUSaTyehYAK4ARR4AAAAAAPWE7WyFxqZv18niMrUPN2vByG7y8aYaADwFf1sBAAAAAKgHys859ODr2Tp4vFhh5gC9Oqa7Qvx9jI4FoBoo8gAAAAAAqOOcTqem/fMzZX1VqBB/H706Jk7hlkCjYwGoJoo8AAAAAADquLkbD2jlrm/l7WXSgpHddHOE2ehIAK4CRR4AAAAAAHXYP7K/0V8zD0iSnk7uqL7tmhmcCMDVosgDAAAAAKCO+u/Bk5r2z88kSb/rd6NG9GhlcCIAPwVFHgAAAAAAddD+gtN68I1snXM4dVeXCD1yx01GRwLwE1HkAQAAAABQxxy3l2rs0u06XXpOPSIb689DO8vLy2R0LAA/EUUeAAAAAAB1SEnZOd23bLu+LTqrG5oGa/FvYuXv4210LADXAEUeAAAAAAB1RKXDqd+/uUu7v7WrcbCflo6NU6NgP6NjAbhGKPIAAAAAAKgDnE6nnnp3jzL3Hpe/j5deHt1drZsEGx0LwDVEkQcAAAAAQB3wyseH9VrW1zKZpLnDYtStVSOjIwG4xijyAAAAAADwcP/6PE/PrPtSkvR/v2ivOzuFG5wIwPVAkQcAAAAAgAfbmfudUt7KkdMpjUporXF9ooyOBOA6ocgDAAAAAMBDfV1YovuX7VDZOYdui26utF/eLJPJZHQsANcJRR4AAAAAAB7ou5JyjV26XadKytWxhVnzRnSVjzf/mQ/UZfwNBwAAAADAw5RWVGr86zv01ckStWgYqFdHxynY38foWACuM4o8AAAAAAA8iMPh1KP/+Ezbj3ynBv4+Wjo2Ts3NAUbHAlADKPIAAAAAAPAgL2zYp3c/PSYfL5MW/SZW7UIbGB0JQA2hyAMAAAAAwEO8uS1XCz48JEl6bkhn9W7T1OBEAGoSRR4AAAAAAB5g8/4Tenz1bknSQ7e11d2xLQ1OBKCmUeQBAAAAAFDLfXHMrol/36lKh1ODu7ZQSmJboyMBMMBVFXkLFixQZGSkAgICFB8fr23btl1y/ooVKxQdHa2AgAB16tRJ69atc9vvdDqVlpam8PBwBQYGKjExUQcOHHCb88wzz6hXr14KCgpSw4YNL3iNwsJC9e/fXxEREfL395fVatWkSZNkt9vd5m3atEndunWTv7+/2rRpo/T0dLf9Tz75pEwmk9sWHR3tNqe0tFQTJ05UkyZNFBISoiFDhqigoOAynxoAAAAAANWXbyvVfenbVVx2Tgk3NNFzQzrLZDIZHQuAAapd5L311ltKTU3VjBkztHPnTnXp0kVJSUk6fvx4lfO3bNmiESNGaNy4cdq1a5eSk5OVnJys3bt3u+bMmjVL8+bN06JFi7R161YFBwcrKSlJpaWlrjnl5eUaOnSoJkyYUPUb8fLSoEGD9M4772j//v1KT0/Xxo0b9eCDD7rmHD58WAMGDNAtt9yinJwcpaSk6P7779f777/vtlaHDh2Ul5fn2j7++GO3/VOmTNG7776rFStWaPPmzTp27JgGDx5c3Y8SAAAAAIBLOl1aobHp25VvL1Wb5iFadG+s/Hy4uA6or0xOp9NZnQPi4+MVFxen+fPnS5IcDoesVqsmT56sadOmXTB/2LBhKikp0dq1a11jPXv2VExMjBYtWiSn06mIiAg9/PDDeuSRRyRJNptNoaGhSk9P1/Dhw93WS09PV0pKioqKii6bdd68eZo9e7aOHj0qSfrDH/6g9957z61EHD58uIqKirR+/XpJ35+Rt3r1auXk5FS5ps1mU7NmzZSRkaG7775bkrR37161b99eWVlZ6tmz5wXHlJWVqayszPW73W6X1WqVzWaT2Wy+7PsAAAAAANQ/FZUOjVu2Qx/tP6GmIf5a9btesjYOMjoWgOvAbrfLYrFctiuqVo1fXl6u7OxsJSYm/m8BLy8lJiYqKyurymOysrLc5ktSUlKSa/7hw4eVn5/vNsdisSg+Pv6ia16JY8eOaeXKlerbt+8VZznvwIEDioiI0A033KCRI0cqNzfXtS87O1sVFRVu60RHR6tVq1YXzTtz5kxZLBbXZrVar/p9AQAAAADqPqfTqbQ1u/XR/hMK9PXWq2O6U+IBqF6Rd/LkSVVWVio0NNRtPDQ0VPn5+VUek5+ff8n5539WZ81LGTFihIKCgtSiRQuZzWa9/PLLl81it9t19uxZSd+fcZienq7169dr4cKFOnz4sH72s5/p9OnTrjX8/PwuuE/fpfJOnz5dNpvNtZ0/QxAAAAAAgKos2vyV3tx2VCaTNG9EV3Vu2dDoSABqgTp3Yf2cOXO0c+dOrVmzRocOHVJqamq1jr/zzjs1dOhQde7cWUlJSVq3bp2Kior09ttvX3Umf39/mc1mtw0AAAAAgKq88+kxPb9+ryRpxi9v1u03h17mCAD1RbWKvKZNm8rb2/uCJ7QWFBQoLCysymPCwsIuOf/8z+qseSlhYWGKjo7WwIEDtXjxYi1cuFB5eXmXzGI2mxUYGFjleg0bNlS7du108OBB1xrl5eUX3KPvavMCAAAAAHDe9iOn9Mjbn0qS7usdpTG9owxOBKA2qVaR5+fnp9jYWGVmZrrGHA6HMjMzlZCQUOUxCQkJbvMlacOGDa75UVFRCgsLc5tjt9u1devWi655pRwOhyS5HjRxuSxVKS4u1qFDhxQeHi5Jio2Nla+vr9s6+/btU25u7k/OCwAAAACov746UawHXtuh8kqHkjqE6v8GtDc6EoBaxqe6B6Smpmr06NHq3r27evTooblz56qkpERjx46VJI0aNUotWrTQzJkzJUkPPfSQ+vbtqxdeeEEDBgzQ8uXLtWPHDi1ZskSSZDKZlJKSoqefflpt27ZVVFSUnnjiCUVERCg5Odn1urm5uTp16pRyc3NVWVnpeqpsmzZtFBISonXr1qmgoEBxcXEKCQnRnj179Oijj6p3796KjIyUJD344IOaP3++pk6dqvvuu08ffPCB3n77bb333nuu13nkkUd01113qXXr1jp27JhmzJghb29vjRgxQtL3D+IYN26cUlNT1bhxY5nNZk2ePFkJCQlVPrEWAAAAAIDLKSwu09j07So6U6Eu1oaaO6yrvL1MRscCUMtUu8gbNmyYTpw4obS0NOXn5ysmJkbr1693PUQiNzf3/7V352FVlon/xz8HlEVZzI1FMMiNckMFSbTUiYkax5HRTM3GtfzaoAVkBl4u00xG6a9JHVxSC/xW/MwatUZMv+5OkymifF0al8zCUnALDqKCcs7vj/l1RsaVVG4OvF/XdS47N/fznM9zujtXfHzO88jF5d8n+kVHRyszM1OTJ0/WpEmT1KpVK61cuVLt2rVzzJk4caJKSko0ZswYFRYWqkePHlqzZo08PDwcc6ZOnaolS5Y4nnfq1EmStGnTJvXq1Uuenp5atGiREhMTVVpaquDgYPXv31/JycmObUJDQ5WVlaXExETNnj1bQUFBWrx4sWJjYx1zvv/+ew0ZMkRnzpxRkyZN1KNHD3355Zdq0qSJY85bb70lFxcXDRgwQKWlpYqNjdW8efMq+1YCAAAAAKCLl8r17H/v1Hdnziu4oacWD4uQp5ur6VgAqiGL3W63mw5R21itVvn6+qqoqIgbXwAAAABALWaz2RWfuUuf7cuXr2dd/fW5aLVs6mU6FoAqdqtdUY27ay0AAAAAAM7i9TUH9Nm+fLm5umjh77pQ4gG4IYo8AAAAAAAMeG/bt1q49RtJ0syBHRR1XyPDiQBUdxR5AAAAAABUsY0HCjTt0/2SpAmPtla/8GaGEwFwBhR5AAAAAABUob3fF2lc5m7Z7NKgiGDF925pOhIAJ0GRBwAAAABAFfmh8IJGLcnW+bJyPdSqsV79bTtZLBbTsQA4CYo8AAAAAACqgPXiJY1M36FTxaUK8/fW3KGdVdeVX8sB3Do+MQAAAAAAuMvKLtv03Ps5OlRwTk293fXuiEj5eNQ1HQuAk6HIAwAAAADgLrLb7Zq0Yq/+8fUZ1Xdz1bsjIhXYwNN0LABOiCIPAAAAAIC76C8bv9bHOd/L1cWitKGd1a6Zr+lIAJwURR4AAAAAAHfJit3f68/rDkmS/tivrXq3aWo4EQBnRpEHAAAAAMBdsO3IGU38eI8k6b963qehUfcaTgTA2VHkAQAAAABwh319slj/9d5OXSq3q0/7AL0cG2Y6EoAagCIPAAAAAIA76FRxqUakZ8t68bK63HuP3nyyo1xcLKZjAagBKPIAAAAAALhDzpdd1ugl2fr+xwsKaVRPi4ZFyKOuq+lYAGoIijwAAAAAAO6AcptdLyzN1Z7vi3RPvbpKH9lVDeu7mY4FoAahyAMAAAAA4A54NesrrfuqQG51XLRoWIRCG9c3HQlADUORBwAAAADAbXr386NK/8e3kqS3ngxXREhDs4EA1EgUeQAAAAAA3Ia1+/P1p6yvJEkpj4epT4cAw4kA1FQUeQAAAAAA/Ey5xwr1wtLdstuloVHNNebh+0xHAlCDUeQBAAAAAPAzHDt7Xs8sydbFSzb1atNEr/ymrSwWi+lYAGowijwAAAAAACqp6PwljUjfodPnytQ20EdpT3VWHVd+xQZwd/EpAwAAAABAJZReLteY93bqyKkSBfh66N0RkfJyr2M6FoBagCIPAAAAAIBbZLfb9fLHe7T96Fl5uddR+shI+fl4mI4FoJagyAMAAAAA4Ba9te6QVuYeVx0Xi+Y/3Vlh/j6mIwGoRSjyAAAAAAC4Bct2HtOcjV9Lkl77bXs91KqJ4UQAahuKPAAAAAAAbuLzw6c1afleSdL4X7TUk5HBhhMBqI0o8gAAAAAAuIED+VY9936OLtvs6hceqKRftjYdCUAt9bOKvLlz5yokJEQeHh6KiorSjh07bjj/o48+UlhYmDw8PNS+fXutXr26ws/tdrumTp2qgIAAeXp6KiYmRocPH64wZ/r06YqOjla9evXUoEGDq17jzJkzeuyxxxQYGCh3d3cFBwdr3LhxslqtFeZt3rxZnTt3lru7u1q2bKmMjIwKP09NTVVkZKS8vb3VtGlTxcXF6eDBgxXm9OrVSxaLpcJj7NixN3nXAAAAAADOpsB6UaPSs1VcelldQxtqxhMdZLFYTMcCUEtVusj78MMPlZSUpGnTpmnXrl3q2LGjYmNjdfLkyWvO/+KLLzRkyBCNHj1au3fvVlxcnOLi4rRv3z7HnBkzZmjOnDlasGCBtm/frvr16ys2NlYXL150zCkrK9PAgQP13HPPXftAXFzUr18/ffrppzp06JAyMjK0fv36CgXb0aNH1adPH/Xu3Vu5ublKSEjQM888o7Vr1zrmbNmyRfHx8fryyy+1bt06Xbp0SY8++qhKSkoqvN6zzz6rEydOOB4zZsyo7FsJAAAAAKjGSkova1RGto4XXdR9Tepr4e+6yL2Oq+lYAGoxi91ut1dmg6ioKEVGRiotLU2SZLPZFBwcrPHjxys5Ofmq+YMGDVJJSYlWrVrlGHvwwQcVHh6uBQsWyG63KzAwUC+++KImTJggSSoqKpKfn58yMjI0ePDgCvvLyMhQQkKCCgsLb5p1zpw5mjlzpo4dOyZJevnll5WVlVWhRBw8eLAKCwu1Zs2aa+7j1KlTatq0qbZs2aKHH35Y0r/OyAsPD9esWbNumkGSSktLVVpa6nhutVoVHBysoqIi+fhwhyMAAAAAqG4ul9v07H/v1KaDp9SovptW/L67mjeqZzoWgBrKarXK19f3pl1Rpc7IKysrU05OjmJiYv69AxcXxcTEaNu2bdfcZtu2bRXmS1JsbKxj/tGjR5Wfn19hjq+vr6Kioq67z1tx/PhxLV++XD179rzlLNdSVFQkSWrYsGGF8Q8++ECNGzdWu3btlJKSovPnz193H6mpqfL19XU8goO5KCoAAAAAVFd2u13TPt2vTQdPyaOui94ZEUmJB6BaqFSRd/r0aZWXl8vPz6/CuJ+fn/Lz86+5TX5+/g3n//RnZfZ5I0OGDFG9evXUrFkz+fj4aPHixTfNYrVadeHChav2ZbPZlJCQoO7du6tdu3aO8aeeekrvv/++Nm3apJSUFL333nt6+umnr5spJSVFRUVFjsdPZwgCAAAAAKqfRX//Rh9sz5PFIs0a1EnhwQ1MRwIASVId0wHutLfeekvTpk3ToUOHlJKSoqSkJM2bN+9n7Ss+Pl779u3T559/XmF8zJgxjn9u3769AgIC9Mgjj+jIkSNq0aLFVftxd3eXu7v7z8oAAAAAAKg6WXtO6LXVByRJk/s8oMfa+RtOBAD/Vqkz8ho3bixXV1cVFBRUGC8oKJC//7U/3Pz9/W84/6c/K7PPG/H391dYWJh+85vf6O2339b8+fN14sSJG2bx8fGRp6dnhfFx48Zp1apV2rRpk4KCgm74mlFRUZKkr7/+utJ5AQAAAADVQ853Z5W4LFeSNCI6RKO6hxjNAwD/qVJFnpubm7p06aINGzY4xmw2mzZs2KBu3bpdc5tu3bpVmC9J69atc8wPDQ2Vv79/hTlWq1Xbt2+/7j5vlc1mkyTHjSZulkX617UQxo0bpxUrVmjjxo0KDQ296evk5uZKkgICAm4rLwAAAADAjG9Pl+iZJTtVdtmmmPv9NOXXD8hisZiOBQAVVPqrtUlJSRo+fLgiIiLUtWtXzZo1SyUlJRo5cqQkadiwYWrWrJlSU1MlSS+88IJ69uypN998U3369NHSpUu1c+dOLVy4UJJksViUkJCgV199Va1atVJoaKimTJmiwMBAxcXFOV43Ly9PZ8+eVV5ensrLyx3lWcuWLeXl5aXVq1eroKBAkZGR8vLy0v79+/XSSy+pe/fuCgkJkSSNHTtWaWlpmjhxokaNGqWNGzdq2bJlysrKcrxOfHy8MjMz9cknn8jb29txnT5fX195enrqyJEjyszM1K9+9Ss1atRIe/bsUWJioh5++GF16NCh0v8CAAAAAABmnS0p04j0Hfrx/CV1CPLVnCHhcnWhxANQ/VS6yBs0aJBOnTqlqVOnKj8/X+Hh4VqzZo3jJhJ5eXlycfn3iX7R0dHKzMzU5MmTNWnSJLVq1UorV66scPOIiRMnqqSkRGPGjFFhYaF69OihNWvWyMPDwzFn6tSpWrJkieN5p06dJEmbNm1Sr1695OnpqUWLFikxMVGlpaUKDg5W//79lZyc7NgmNDRUWVlZSkxM1OzZsxUUFKTFixcrNjbWMWf+/PmSpF69elU47vT0dI0YMUJubm5av369o8AMDg7WgAEDNHny5Mq+lQAAAAAAwy5eKteY/96pb8+cV7MGnlo8PEL13Grc5eQB1BAWu91uNx2itrFarfL19VVRUZF8fHxMxwEAAACAWslms+v5pbu1as8JeXvU0fLnotXKz9t0LAC10K12RZW6Rh4AAAAAADXFjLUHtWrPCdV1tejt33WhxANQ7VHkAQAAAABqnQ+2f6cFW45Ikt4Y0EHRLRobTgQAN0eRBwAAAACoVTYdPKmpn+yXJCXGtFb/zkGGEwHAraHIAwAAAADUGvuPF2ncB7tUbrPriS5Bev6RlqYjAcAto8gDAAAAANQKxwsvaFRGtkrKytW9ZSO99tv2slgspmMBwC2jyAMAAAAA1HjFFy9pVEa2Cqylau3npXlDu8itDr8SA3AufGoBAAAAAGq0S+U2/f6DXTqQX6wm3u56d0SkfD3rmo4FAJVGkQcAAAAAqLHsdrumrNynvx8+Lc+6rnp3eKSC7qlnOhYA/CwUeQAAAACAGmve5iNamn1MLhYp7alOah/kazoSAPxsFHkAAAAAgBrpk9wfNHPtQUnSK79pq0fu9zOcCABuD0UeAAAAAKDG2f7NGb300R5J0rMPhep33ULMBgKAO4AiDwAAAABQoxw5dU5j3stRWblNj7fzV8rj95uOBAB3BEUeAAAAAKDGOH2uVCPTs1V04ZI6NW+gtwaFy8XFYjoWANwRFHkAAAAAgBrhQlm5nlmyU3lnz6t5w3paPCxCHnVdTccCgDuGIg8AAAAA4PTKbXYlfLhbuccK1aBeXWWMjFQjL3fTsQDgjqLIAwAAAAA4vdTV/9Ta/QVyc3XRwt9F6L4mXqYjAcAdR5EHAAAAAHBqS774Vos/PypJ+j9PdlTX0IaGEwHA3UGRBwAAAABwWuu/KtArf9svSZr4WBv9pmOg4UQAcPdQ5AEAAAAAnNKe7ws1/v/uls0uDekarOd6tjAdCQDuKoo8AAAAAIDT+f7H8xqVsVMXLpXr4dZN9Md+7WSxWEzHAoC7iiIPAAAAAOBUii5c0sj0bJ0+V6owf2/NfaqT6rry6y2Amo9POgAAAACA0yi7bNPY93J0+OQ5+ft4KH1kpLw96pqOBQBVgiIPAAAAAOAU7Ha7kpfv0bZvzqi+m6veHRGpAF9P07EAoMpQ5AEAAAAAnMLsDYe1fNcPcnWxaO7Qznog0Md0JACoUhR5AAAAAIBq7+Oc7zVr/WFJ0p/6tVOvNk0NJwKAqkeRBwAAAACo1r74+rSS/7pHkvRcrxZ6Kqq54UQAYAZFHgAAAACg2jpUUKz/ej9Hl2129e0YqJcebWM6EgAY87OKvLlz5yokJEQeHh6KiorSjh07bjj/o48+UlhYmDw8PNS+fXutXr26ws/tdrumTp2qgIAAeXp6KiYmRocPH64wZ/r06YqOjla9evXUoEGDq17jzJkzeuyxxxQYGCh3d3cFBwdr3LhxslqtFeZt3rxZnTt3lru7u1q2bKmMjIxKH9/FixcVHx+vRo0aycvLSwMGDFBBQcEN3wMAAAAAQOWcLL6okenZKr54WZEh92jmEx3k4mIxHQsAjKl0kffhhx8qKSlJ06ZN065du9SxY0fFxsbq5MmT15z/xRdfaMiQIRo9erR2796tuLg4xcXFad++fY45M2bM0Jw5c7RgwQJt375d9evXV2xsrC5evOiYU1ZWpoEDB+q555679oG4uKhfv3769NNPdejQIWVkZGj9+vUaO3asY87Ro0fVp08f9e7dW7m5uUpISNAzzzyjtWvXVur4EhMT9be//U0fffSRtmzZouPHj6t///6VfSsBAAAAANdxvuyyRmfs1A+FFxTauL4W/i5CHnVdTccCAKMsdrvdXpkNoqKiFBkZqbS0NEmSzWZTcHCwxo8fr+Tk5KvmDxo0SCUlJVq1apVj7MEHH1R4eLgWLFggu92uwMBAvfjii5owYYIkqaioSH5+fsrIyNDgwYMr7C8jI0MJCQkqLCy8adY5c+Zo5syZOnbsmCTp5ZdfVlZWVoUScfDgwSosLNSaNWtu6fiKiorUpEkTZWZm6oknnpAkHThwQPfff7+2bdumBx988Ka5rFarfH19VVRUJB+fmnGXpQVbjujH82WmYwAAAACoIXZ/V6gd355Vw/puWvH7aN3bqL7pSABw19xqV1SnMjstKytTTk6OUlJSHGMuLi6KiYnRtm3brrnNtm3blJSUVGEsNjZWK1eulPSvs+Ty8/MVExPj+Lmvr6+ioqK0bdu2q4q8W3X8+HEtX75cPXv2rJDlytf5KUtCQsItH19OTo4uXbpUYT9hYWFq3rz5dYu80tJSlZaWOp7/59d9a4KlO/L07ZnzpmMAAAAAqEHc67ho0bAISjwA+P8qVeSdPn1a5eXl8vPzqzDu5+enAwcOXHOb/Pz8a87Pz893/PynsevNqYwhQ4bok08+0YULF9S3b18tXrz4plmsVqsuXLigH3/88abHl5+fLzc3t6uu03ejvKmpqXrllVcqfSzO5MnIYP1Ywhl5AAAAAO4MF4tFv2ofoI7BDUxHAYBqo1JFnjN46623NG3aNB06dEgpKSlKSkrSvHnzjGb6KcdPrFargoODDSa6837fq6XpCAAAAAAAADVapYq8xo0by9XV9ao7tBYUFMjf3/+a2/j7+99w/k9/FhQUKCAgoMKc8PDwysRz7M/f319hYWFq2LChHnroIU2ZMkUBAQHXzeLj4yNPT0+5urre9Pj8/f1VVlamwsLCCmfl3eg9cHd3l7u7e6WPBQAAAAAAAPhJpe5a6+bmpi5dumjDhg2OMZvNpg0bNqhbt27X3KZbt24V5kvSunXrHPNDQ0Pl7+9fYY7VatX27duvu89bZbPZJMlxfbqbZbmV4+vSpYvq1q1bYc7BgweVl5d323kBAAAAAACA66n0V2uTkpI0fPhwRUREqGvXrpo1a5ZKSko0cuRISdKwYcPUrFkzpaamSpJeeOEF9ezZU2+++ab69OmjpUuXaufOnVq4cKEkyWKxKCEhQa+++qpatWql0NBQTZkyRYGBgYqLi3O8bl5ens6ePau8vDyVl5crNzdXktSyZUt5eXlp9erVKigoUGRkpLy8vLR//3699NJL6t69u0JCQiRJY8eOVVpamiZOnKhRo0Zp48aNWrZsmbKysm75+Hx9fTV69GglJSWpYcOG8vHx0fjx49WtW7dbumMtAAAAAAAA8HNUusgbNGiQTp06palTpyo/P1/h4eFas2aN4wYReXl5cnH594l+0dHRyszM1OTJkzVp0iS1atVKK1euVLt27RxzJk6cqJKSEo0ZM0aFhYXq0aOH1qxZIw8PD8ecqVOnasmSJY7nnTp1kiRt2rRJvXr1kqenpxYtWqTExESVlpYqODhY/fv3V3JysmOb0NBQZWVlKTExUbNnz1ZQUJAWL16s2NjYWz4+6V/X4XNxcdGAAQNUWlqq2NhY49fhAwAAAAAAQM1msdvtdtMhahur1SpfX18VFRXJx8fHdBwAAAAAAAAYdKtdUaWukQcAAAAAAADADIo8AAAAAAAAwAlQ5AEAAAAAAABOgCIPAAAAAAAAcAIUeQAAAAAAAIAToMgDAAAAAAAAnABFHgAAAAAAAOAE6pgOUBvZ7XZJktVqNZwEAAAAAAAApv3UEf3UGV0PRZ4BxcXFkqTg4GDDSQAAAAAAAFBdFBcXy9fX97o/t9hvVvXhjrPZbDp+/Li8vb1lsVhMx7kjrFargoODdezYMfn4+JiOA8NYD7gS6wFXYj3gP7EmcCXWA67EesCVWA+4Uk1cD3a7XcXFxQoMDJSLy/WvhMcZeQa4uLgoKCjIdIy7wsfHp8b8R4Tbx3rAlVgPuBLrAf+JNYErsR5wJdYDrsR6wJVq2nq40Zl4P+FmFwAAAAAAAIAToMgDAAAAAAAAnABFHu4Id3d3TZs2Te7u7qajoBpgPeBKrAdcifWA/8SawJVYD7gS6wFXYj3gSrV5PXCzCwAAAAAAAMAJcEYeAAAAAAAA4AQo8gAAAAAAAAAnQJEHAAAAAAAAOAGKPAAAAAAAAMAJUOThjpg7d65CQkLk4eGhqKgo7dixw3QkGLB161b17dtXgYGBslgsWrlypelIMCg1NVWRkZHy9vZW06ZNFRcXp4MHD5qOBUPmz5+vDh06yMfHRz4+PurWrZs+++wz07FQTbz++uuyWCxKSEgwHQUG/OEPf5DFYqnwCAsLMx0LBv3www96+umn1ahRI3l6eqp9+/bauXOn6VgwJCQk5KrPCIvFovj4eNPRYEB5ebmmTJmi0NBQeXp6qkWLFvrTn/6k2nQfV4o83LYPP/xQSUlJmjZtmnbt2qWOHTsqNjZWJ0+eNB0NVaykpEQdO3bU3LlzTUdBNbBlyxbFx8fryy+/1Lp163Tp0iU9+uijKikpMR0NBgQFBen1119XTk6Odu7cqV/84hfq16+f9u/fbzoaDMvOztbbb7+tDh06mI4Cg9q2basTJ044Hp9//rnpSDDkxx9/VPfu3VW3bl199tln+uqrr/Tmm2/qnnvuMR0NhmRnZ1f4fFi3bp0kaeDAgYaTwYQ33nhD8+fPV1pamv75z3/qjTfe0IwZM/SXv/zFdLQqY7HXptoSd0VUVJQiIyOVlpYmSbLZbAoODtb48eOVnJxsOB1MsVgsWrFiheLi4kxHQTVx6tQpNW3aVFu2bNHDDz9sOg6qgYYNG2rmzJkaPXq06Sgw5Ny5c+rcubPmzZunV199VeHh4Zo1a5bpWKhif/jDH7Ry5Url5uaajoJqIDk5Wf/4xz/097//3XQUVFMJCQlatWqVDh8+LIvFYjoOqtivf/1r+fn56Z133nGMDRgwQJ6ennr//fcNJqs6nJGH21JWVqacnBzFxMQ4xlxcXBQTE6Nt27YZTAaguikqKpL0r/IGtVt5ebmWLl2qkpISdevWzXQcGBQfH68+ffpU+P8I1E6HDx9WYGCg7rvvPg0dOlR5eXmmI8GQTz/9VBERERo4cKCaNm2qTp06adGiRaZjoZooKyvT+++/r1GjRlHi1VLR0dHasGGDDh06JEn63//9X33++ed6/PHHDSerOnVMB4BzO336tMrLy+Xn51dh3M/PTwcOHDCUCkB1Y7PZlJCQoO7du6tdu3am48CQvXv3qlu3brp48aK8vLy0YsUKPfDAA6ZjwZClS5dq165dys7ONh0FhkVFRSkjI0Nt2rTRiRMn9Morr+ihhx7Svn375O3tbToeqtg333yj+fPnKykpSZMmTVJ2draef/55ubm5afjw4abjwbCVK1eqsLBQI0aMMB0FhiQnJ8tqtSosLEyurq4qLy/X9OnTNXToUNPRqgxFHgDgrouPj9e+ffu45lEt16ZNG+Xm5qqoqEgff/yxhg8fri1btlDm1ULHjh3TCy+8oHXr1snDw8N0HBh25VkUHTp0UFRUlO69914tW7aMr97XQjabTREREXrttdckSZ06ddK+ffu0YMECijzonXfe0eOPP67AwEDTUWDIsmXL9MEHHygzM1Nt27ZVbm6uEhISFBgYWGs+IyjycFsaN24sV1dXFRQUVBgvKCiQv7+/oVQAqpNx48Zp1apV2rp1q4KCgkzHgUFubm5q2bKlJKlLly7Kzs7W7Nmz9fbbbxtOhqqWk5OjkydPqnPnzo6x8vJybd26VWlpaSotLZWrq6vBhDCpQYMGat26tb7++mvTUWBAQEDAVX/Bc//99+uvf/2roUSoLr777jutX79ey5cvNx0FBr300ktKTk7W4MGDJUnt27fXd999p9TU1FpT5HGNPNwWNzc3denSRRs2bHCM2Ww2bdiwgeseAbWc3W7XuHHjtGLFCm3cuFGhoaGmI6GasdlsKi0tNR0DBjzyyCPau3evcnNzHY+IiAgNHTpUubm5lHi13Llz53TkyBEFBASYjgIDunfvroMHD1YYO3TokO69915DiVBdpKenq2nTpurTp4/pKDDo/PnzcnGpWGW5urrKZrMZSlT1OCMPty0pKUnDhw9XRESEunbtqlmzZqmkpEQjR440HQ1V7Ny5cxX+9vzo0aPKzc1Vw4YN1bx5c4PJYEJ8fLwyMzP1ySefyNvbW/n5+ZIkX19feXp6Gk6HqpaSkqLHH39czZs3V3FxsTIzM7V582atXbvWdDQY4O3tfdX1MuvXr69GjRpxHc1aaMKECerbt6/uvfdeHT9+XNOmTZOrq6uGDBliOhoMSExMVHR0tF577TU9+eST2rFjhxYuXKiFCxeajgaDbDab0tPTNXz4cNWpQ41Rm/Xt21fTp09X8+bN1bZtW+3evVt//vOfNWrUKNPRqozFbrfbTYeA80tLS9PMmTOVn5+v8PBwzZkzR1FRUaZjoYpt3rxZvXv3vmp8+PDhysjIqPpAMOp6dxJLT0/nAsW10OjRo7VhwwadOHFCvr6+6tChg15++WX98pe/NB0N1USvXr0UHh6uWbNmmY6CKjZ48GBt3bpVZ86cUZMmTdSjRw9Nnz5dLVq0MB0NhqxatUopKSk6fPiwQkNDlZSUpGeffdZ0LBj0P//zP4qNjdXBgwfVunVr03FgUHFxsaZMmaIVK1bo5MmTCgwM1JAhQzR16lS5ubmZjlclKPIAAAAAAAAAJ8A18gAAAAAAAAAnQJEHAAAAAAAAOAGKPAAAAAAAAMAJUOQBAAAAAAAAToAiDwAAAAAAAHACFHkAAAAAAACAE6DIAwAAAAAAAJwARR4AAAAAAADgBCjyAAAAcMdt3rxZFotFhYWFpqMAAADUGBa73W43HQIAAADOrVevXgoPD9esWbMkSWVlZTp79qz8/PxksVjMhgMAAKgh6pgOAAAAgJrHzc1N/v7+pmMAAADUKHy1FgAAALdlxIgR2rJli2bPni2LxSKLxaKMjIwKX63NyMhQgwYNtGrVKrVp00b16tXTE088ofPnz2vJkiUKCQnRPffco+eff17l5eWOfZeWlmrChAlq1qyZ6tevr6ioKG3evNnMgQIAABjGGXkAAAC4LbNnz9ahQ4fUrl07/fGPf5Qk7d+//6p558+f15w5c7R06VIVFxerf//++u1vf6sGDRpo9erV+uabbzRgwAB1795dgwYNkiSNGzdOX331lZYuXarAwECtWLFCjz32mPbu3atWrVpV6XECAACYRpEHAACA2+Lr6ys3NzfVq1fP8XXaAwcOXDXv0qVLmj9/vlq0aCFJeuKJJ/Tee++poKBAXl5eeuCBB9S7d29t2rRJgwYNUl5entLT05WXl6fAwEBJ0oQJE7RmzRqlp6frtddeq7qDBAAAqAYo8gAAAFAl6tWr5yjxJMnPz08hISHy8vKqMHby5ElJ0t69e1VeXq7WrVtX2E9paakaNWpUNaEBAACqEYo8AAAAVIm6detWeG6xWK45ZrPZJEnnzp2Tq6urcnJy5OrqWmHeleUfAABAbUGRBwAAgNvm5uZW4SYVd0KnTp1UXl6ukydP6qGHHrqj+wYAAHBG3LUWAAAAty0kJETbt2/Xt99+q9OnTzvOqrsdrVu31tChQzVs2DAtX75cR48e1Y4dO5SamqqsrKw7kBoAAMC5UOQBAADgtk2YMEGurq564IEH1KRJE+Xl5d2R/aanp2vYsGF68cUX1aZNG8XFxSk7O1vNmze/I/sHAABwJha73W43HQIAAAAAAADAjXFGHgAAAAAAAOAEKPIAAAAAAAAAJ0CRBwAAAAAAADgBijwAAAAAAADACVDkAQAAAAAAAE6AIg8AAAAAAABwAhR5AAAAAAAAgBOgyAMAAAAAAACcAEUeAAAAAAAA4AQo8gAAAAAAAAAnQJEHAAAAAAAAOIH/B0HkR0L/M2PlAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } ] }, { "cell_type": "markdown", - "source": [ - "# Tasks" - ], "metadata": { "id": "1DMfSLHfiQWO" - } + }, + "source": [ + "# Tasks" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "8AR4F2JLiVSu" + }, "source": [ "answer the following questions with simulations\n", "\n", @@ -291,10 +287,21 @@ "\n", "* which other process parameter could we change to get an even higher biomass?\n", "* which of the parameters describing the characteristics of the strain has the highest influence on the final biomass obtained at fixed cultivation time?\n" - ], - "metadata": { - "id": "8AR4F2JLiVSu" - } + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/markdown-notebooks.ipynb b/_sources/markdown-notebooks.ipynb index d0d89a5..5d703c8 100755 --- a/_sources/markdown-notebooks.ipynb +++ b/_sources/markdown-notebooks.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "da879b25", + "id": "c641bdfc", "metadata": {}, "source": [ "# Notebooks with MyST Markdown\n", @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "b00adbca", + "id": "b8479480", "metadata": {}, "outputs": [ { @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "73ac429e", + "id": "11a9b0ec", "metadata": {}, "source": [ "When your book is built, the contents of any `{code-cell}` blocks will be\n", diff --git a/genindex.html b/genindex.html index ab3ab66..c25a68b 100755 --- a/genindex.html +++ b/genindex.html @@ -217,7 +217,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    diff --git a/intro.html b/intro.html index e871b7f..69f0483 100755 --- a/intro.html +++ b/intro.html @@ -218,7 +218,7 @@
  • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/markdown-notebooks.html b/markdown-notebooks.html index d73273e..d817cc6 100755 --- a/markdown-notebooks.html +++ b/markdown-notebooks.html @@ -218,7 +218,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/mymarkdownfile.html b/mymarkdownfile.html index e4e5227..5b6524b 100755 --- a/mymarkdownfile.html +++ b/mymarkdownfile.html @@ -217,7 +217,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/notebooks.html b/notebooks.html index 4945465..dd4436c 100755 --- a/notebooks.html +++ b/notebooks.html @@ -220,7 +220,7 @@
    • Exercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/objects.inv b/objects.inv index e57e638..980e4da 100755 --- a/objects.inv +++ b/objects.inv @@ -5,6 +5,4 @@ xڵWMo6WLSɊ VH-H6E:mP>73G/ V+by3[^fwY\I ֝)9q킑WdC /)i 42cBcJ*<>O6g%͉ԲI{9<QY沎T.:AB%b(pd]Vu=-*t I A^! 6p t -^Gp"dZ>8OQ8Oz7y>Q];FEo9/݃!!rBO?cҌT/J93a:I`bTҭ K Ayl={s̺ mZ.<_;7-濴?$(:p!^1h3w*S8qb%rz ΁Q-bҌQR.y{°yRm{A(<y꿏t^i% s`TELaҽ)I1'%U`p3L6qph`#lZgOC-w5L'Fnb#*ʮbdXXkU6CE__^bg;$2҃Ʉ1 xo[_6(pU+wTÛV \+'/tX|T-I\HN\5U%rr / wwA{Mt+F+h e?xcpgaAcu -SLh4x QzT,}뤡Ror&eDq?-OWx - &b$}7;,DmE.D+ak<"pucW7.M^]q׿Ag$lFo __ӚMpv \ No newline at end of file +^Gp"dZ>8OQ8Oz7y>Q];FEo9/݃!!rBO?cҌT/J93a:I`bTҭ K Ayl={s̺ mZ.<_;7-濴?$(:p!^1h3w*S8qb%rz ΁Q-bҌQR.y{°yRm{A(<y꿏t^i% s`TELaҽ)I1'%U`p3L6qph`#lZgOC-w5L'Fnb#*ʮbdXXkU6CE__^bg;$2҃Ʉ1 xo[_6(pU+wTÛV \:;BWLhb GIUSiL'9Op!8ar٪ּW8n`"=[.3a2bo":BI!3BLpX7em?XXsrŊ+ϚWS{3/L`waKS?[치RJəTmuwpExercice 2 (solution)
  • -
  • Plotting
  • +
  • Fed batch simulation
  • Module 6
    • Mass transfer
    • diff --git a/searchindex.js b/searchindex.js index 968bd91..7086f4a 100755 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"1. Introduction to Python": [[1, null]], "1. Loading and inspecting data": [[9, "loading-and-inspecting-data"]], "1. Simple statement": [[3, "simple-statement"]], "1. Statements": [[5, "statements"]], "2. Assignment statement": [[3, "assignment-statement"]], "2. Assignments": [[5, "assignments"]], "2. Hello, World!": [[2, null]], "2. Indexing": [[9, "indexing"]], "3. Lists and generators": [[3, "lists-and-generators"], [5, "lists-and-generators"]], "3. Replacing missing values": [[9, "replacing-missing-values"]], "3. Statements and Packaging": [[3, null]], "4. Compound statement": [[3, "compound-statement"]], "4. Compound statements": [[5, "compound-statements"]], "4. Conditionality and Repetition": [[4, null]], "4. Creating DataFrames from lists and dictionaries": [[9, "creating-dataframes-from-lists-and-dictionaries"]], "5. Groupby": [[9, "groupby"]], "5. Packaging": [[3, "packaging"], [5, "packaging"]], "6. Handle duplicates": [[9, "handle-duplicates"]], "An example cell": [[35, "an-example-cell"]], "Assignment 1": [[26, "assignment-1"], [27, "assignment-1"]], "Bead mill": [[32, null]], "Chemical Reaction Engineering - Assignment 1": [[26, null], [27, null]], "Citations": [[36, "citations"]], "Code blocks and outputs": [[37, "code-blocks-and-outputs"]], "Conditionality": [[4, "conditionality"]], "Constants": [[14, "constants"]], "Content": [[33, "content"]], "Content with notebooks": [[37, null]], "Continue and Break": [[4, "continue-and-break"]], "Continuous reactor model": [[30, null]], "Create a NumPy array": [[10, "create-a-numpy-array"]], "Create a notebook with MyST Markdown": [[35, "create-a-notebook-with-myst-markdown"]], "Create an array according to a distribution": [[10, "create-an-array-according-to-a-distribution"]], "Creating a dictionary": [[8, "creating-a-dictionary"]], "Data Visualization": [[11, null]], "DataFrames, arrays and plotting": [[12, "dataframes-arrays-and-plotting"]], "Dates": [[33, "dates"]], "Diafiltration": [[31, null]], "Dictionaries": [[8, "dictionaries"]], "Dictionaries and Sets": [[8, null]], "Dictionaries and sets": [[12, "dictionaries-and-sets"]], "Dig4Bio workshops": [[33, null]], "Energy balance for a laboratory equipment batch reactor for chemical synthesis": [[22, null], [23, null]], "Equations": [[14, "equations"]], "Example 1:": [[18, "example-1"]], "Example 2:": [[18, "example-2"]], "Example 3:": [[18, "example-3"]], "Example 4:": [[18, "example-4"]], "Exercise: Binary to English translation": [[6, "exercise-binary-to-english-translation"]], "Exercise: Remove all outliers": [[6, "exercise-remove-all-outliers"]], "Exercises about dictionaries, sets, dataframes, arrays and visualizations": [[12, null]], "Exercises about statements, assignments, lists and generators, control flow and packaging": [[5, null]], "Finding the logarithm of a value in Python": [[15, null]], "Functions": [[3, "functions"]], "Goal": [[33, "goal"]], "Goal:": [[18, "goal"]], "Hard exercises and solutions": [[6, null]], "Helpful tips and tricks before starting": [[1, "helpful-tips-and-tricks-before-starting"]], "High pressure homogeniser": [[32, "high-pressure-homogeniser"]], "How to balance coefficients in Python": [[16, "how-to-balance-coefficients-in-python"], [17, "how-to-balance-coefficients-in-python"]], "Ideal batch reactor (week 1)": [[21, "ideal-batch-reactor-week-1"]], "Instructions": [[26, "instructions"], [27, "instructions"]], "Integration": [[14, "integration"]], "Introduction": [[1, "introduction"]], "Introduction to Python": [[0, null]], "Introduction to Python (WS1)": [[33, null]], "Learn more": [[36, "learn-more"]], "Learning Objectives- Master the Python\u2019s syntax, familiarize with arithmetic operations, assignment and compound statements.": [[1, "learning-objectives-master-the-python-s-syntax-familiarize-with-arithmetic-operations-assignment-and-compound-statements"]], "Linear Algebra": [[14, "linear-algebra"]], "Markdown + notebooks": [[37, "markdown-notebooks"]], "Markdown Files": [[36, null]], "Mass-mass reactions in Python": [[16, "mass-mass-reactions-in-python"], [17, "mass-mass-reactions-in-python"]], "Model-based Techniques (WS2)": [[33, null]], "Module 2": [[7, null]], "Module 3": [[13, null]], "Module 4": [[20, null], [29, null]], "Mole-mole calculations in Python": [[16, "mole-mole-calculations-in-python"], [17, "mole-mole-calculations-in-python"]], "Motivation:": [[18, "motivation"]], "MyST markdown": [[37, "myst-markdown"]], "Notebooks with MyST Markdown": [[35, null]], "Numpy arrays": [[10, null]], "Objective": [[0, "objective"], [1, "objective"]], "Operations": [[10, "operations"]], "Operations with SciPy": [[19, null]], "Pandas DataFrames": [[9, null]], "Partners": [[33, "partners"]], "Plotting": [[28, null]], "Possible solutions": [[6, "possible-solutions"]], "Pragmatics": [[2, "pragmatics"]], "Problem A:": [[21, "problem-a"]], "Problem B": [[24, null], [25, null]], "Quickly add YAML metadata for MyST Notebooks": [[35, "quickly-add-yaml-metadata-for-myst-notebooks"]], "Reactors in Python": [[21, null]], "Repetition": [[4, "repetition"]], "Residence time in a CSTR": [[21, "residence-time-in-a-cstr"]], "Sample Roles and Directives": [[36, "sample-roles-and-directives"]], "Schedule": [[1, "schedule"]], "SciPy": [[14, null]], "Semantics": [[2, "semantics"]], "Sets": [[8, "sets"]], "Sets operations": [[8, "sets-operations"]], "Simple linear regression in Python with SciPy library": [[15, "simple-linear-regression-in-python-with-scipy-library"]], "Solving Systems of Differential Equations": [[14, "solving-systems-of-differential-equations"]], "Solving the first order reaction": [[21, "solving-the-first-order-reaction"]], "Solving the second order reaction": [[21, "solving-the-second-order-reaction"]], "Statistics": [[14, "statistics"]], "Stoichiometry - Part 1": [[16, null], [17, null]], "Stoichiometry - Part 2": [[18, null]], "Syntax": [[2, "syntax"]], "Syntax, Semantics and Pragmatics of a programming language": [[2, "syntax-semantics-and-pragmatics-of-a-programming-language"]], "Tasks": [[28, "tasks"]], "Welcome to your Jupyter Book": [[34, null]], "What is MyST?": [[36, "what-is-myst"]], "Why Python?": [[1, "why-python"]], "course plan": [[0, "course-plan"]], "for loop": [[3, "for-loop"]], "if statement": [[3, "if-statement"]], "loops": [[3, "loops"]], "while loop": [[3, "while-loop"]], "\u201cA Foolish Consistency is the Hobgoblin of Little Minds\u201d": [[2, "a-foolish-consistency-is-the-hobgoblin-of-little-minds"]]}, "docnames": ["WS1/intro_to_ws1", "WS1/module_1/0_python_basics", "WS1/module_1/1_hello_world", "WS1/module_1/2_statements", "WS1/module_1/3_control_flow", "WS1/module_1/4_exercise_1", "WS1/module_1/5_exercise_2", "WS1/module_2/0_intro_module_2", "WS1/module_2/1_dictionaries_and_sets", "WS1/module_2/2_dataframes", "WS1/module_2/3_numpy_arrays", "WS1/module_2/4_data_visualizations", "WS1/module_2/5_exercise_1", "WS1/module_3/0_intro_module_3", "WS1/module_3/1_operations", "WS1/module_3/2_linear_regression", "WS1/module_3/3_stoichiometry", "WS1/module_3/4_stoichiometry_solution", "WS1/module_3/5_stoichiometry_pt2", "WS1/module_3/6_exercise_1", "WS1/module_4/0_intro_module_4", "WS1/module_4/1_reactors_in_python", "WS1/module_4/2_combining_balances", "WS1/module_4/3_combining_balances_solution", "WS1/module_4/4_exercise_1", "WS1/module_4/5_exercise_1_solution", "WS1/module_4/6_exercise_2", "WS1/module_4/7_exercise_2_solution", "WS1/module_5/0_FedBatch_Ecoli_simulation", "WS1/module_6/0_intro_module_6", "WS1/module_6/1_Mass_Transfer", "WS1/module_6/2_Diafiltration", "WS1/module_6/3_Cell_lysis", "index", "intro", "markdown-notebooks", "mymarkdownfile", "notebooks"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["WS1/intro_to_ws1.md", "WS1/module_1/0_python_basics.ipynb", "WS1/module_1/1_hello_world.ipynb", "WS1/module_1/2_statements.ipynb", "WS1/module_1/3_control_flow.ipynb", "WS1/module_1/4_exercise_1.ipynb", "WS1/module_1/5_exercise_2.ipynb", "WS1/module_2/0_intro_module_2.ipynb", "WS1/module_2/1_dictionaries_and_sets.ipynb", "WS1/module_2/2_dataframes.ipynb", "WS1/module_2/3_numpy_arrays.ipynb", "WS1/module_2/4_data_visualizations.ipynb", "WS1/module_2/5_exercise_1.ipynb", "WS1/module_3/0_intro_module_3.ipynb", "WS1/module_3/1_operations.ipynb", "WS1/module_3/2_linear_regression.ipynb", "WS1/module_3/3_stoichiometry.ipynb", "WS1/module_3/4_stoichiometry_solution.ipynb", "WS1/module_3/5_stoichiometry_pt2.ipynb", "WS1/module_3/6_exercise_1.ipynb", "WS1/module_4/0_intro_module_4.ipynb", "WS1/module_4/1_reactors_in_python.ipynb", "WS1/module_4/2_combining_balances.ipynb", "WS1/module_4/3_combining_balances_solution.ipynb", "WS1/module_4/4_exercise_1.ipynb", "WS1/module_4/5_exercise_1_solution.ipynb", "WS1/module_4/6_exercise_2.ipynb", "WS1/module_4/7_exercise_2_solution.ipynb", "WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb", "WS1/module_6/0_intro_module_6.ipynb", "WS1/module_6/1_Mass_Transfer.ipynb", "WS1/module_6/2_Diafiltration.ipynb", "WS1/module_6/3_Cell_lysis.ipynb", "index.md", "intro.md", "markdown-notebooks.md", "mymarkdownfile.md", "notebooks.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 4, 6, 8, 9, 10, 11, 14, 18, 19, 23, 24, 25, 28, 30, 32, 35, 36, 37], "0": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 37], "00": [10, 27], "000000": 9, "00001": 28, "001": [14, 21, 30], "00100111": 6, "00100160": 14, "00101100": 6, "00101110": 6, "00111111": 6, "0013": 28, "003145": 27, "003247": 27, "003300": 27, "003356": 27, "005": [22, 23], "00535805": 10, "007": 30, "007537743458458121": 14, "00855369e": 10, "01": [10, 15, 18, 27, 28, 30], "01000001": 6, "01000010": 6, "01000011": 6, "01000100": 6, "01000101": 6, "01000110": 6, "01000111": 6, "01001000": 6, "01001001": 6, "01001010": 6, "01001011": 6, "01001100": 6, "01001101": 6, "01001110": 6, "01001111": 6, "01010000": 6, "01010001": 6, "01010010": 6, "01010011": 6, "01010100": 6, "01010101": 6, "01010110": 6, "01010111": 6, "01011000": 6, "01011001": 6, "01011010": 6, "01100001": 6, "01100010": 6, "01100011": 6, "01100100": 6, "01100101": 6, "01100110": 6, "01100111": 6, "01101000": 6, "01101001": 6, "01101010": 6, "01101011": 6, "01101100": 6, "01101101": 6, "01101110": 6, "01101111": 6, "01104423": 10, "01110000": 6, "01110001": 6, "01110010": 6, "01110011": 6, "01110100": 6, "01110101": 6, "01110110": 6, "01110111": 6, "01111000": 6, "01111001": 6, "01111010": 6, "01315653": 10, "01350781": 14, "01352138": 10, "01390426": 10, "015075486916916242": 14, "01714138": 10, "01816505468086826": 14, "02": [3, 10], "02149461": 10, "023": 30, "02418612": 10, "025": [3, 30], "02701561": 14, "02764": [26, 27], "02846888": 10, "02933765": 10, "03": 10, "03007247e": 10, "03107158": 14, "031415926535897934": 23, "03317566": 10, "034183917296711934": 27, "03548": [26, 27], "03565621": 10, "0358": 28, "03586382": 10, "036": 30, "036275795675059605": 14, "03633010936173652": 14, "03758124": 10, "04": [10, 28], "04013604": 10, "04116899": 10, "04519": [26, 27], "04546566": 10, "04951286": 10, "05": [3, 18, 23, 25, 28], "0500639495865090": 14, "0505": 14, "05083825": 10, "05276279e": 10, "05403123": 14, "058930203933592655": 14, "05930116": 10, "05_ode_simpleecolimodel_x_s_dot_a_v_": 28, "06": 30, "06061781": 14, "06214316": 14, "06285837": 10, "06327177": 14, "06419087e": 10, "06877704": 10, "06955999e": 10, "07": 27, "07154937": 10, "07165": [26, 27], "072": 14, "0725911756035318": 14, "07377389": 10, "07483045": 14, "07604449355095103": 25, "07808874": 10, "07868448": 10, "079": 23, "08": 15, "08155028": 10, "08539217": 10, "0857": 30, "0858654025112094": 14, "08613362e": 10, "09": [27, 33], "09045458": 10, "09290083": 10, "09342056": 10, "096879": 27, "0f": 30, "0j": 4, "0m": 14, "0x000001fc8f363140": 3, "0x0000021e7c533060": [], "0x0000022e5fde3060": [], "0x141d4fb7e80": 27, "0x7828466453c0": 30, "0x7828467a95d0": 30, "0x79827deb2ad0": 30, "0x7982890b3f10": 30, "1": [0, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 28, 30, 31, 32, 33, 37], "10": [3, 4, 5, 6, 8, 9, 11, 14, 15, 18, 26, 27, 28, 30, 31, 32, 33, 37], "100": [3, 6, 9, 11, 23, 24, 25, 28, 30, 31, 32, 37], "1000": [6, 14, 30, 31, 32], "100000": [3, 9, 25], "101": [11, 14], "102": 11, "10200": [24, 25], "1029575": 10, "103": 11, "10308393e": 10, "104": 11, "104556": 27, "105": [9, 15], "10619298": 10, "10696827e": 10, "10th": 5, "11": [3, 4, 9, 10, 14, 15, 27], "110": [21, 30], "11040162": 10, "111000": 21, "11487653": 14, "11616722": 10, "11813726": 10, "119": 9, "12": [4, 8, 10, 11, 14, 15, 26, 27, 28, 33], "120": 18, "12013861": 14, "12027261": 10, "1225544": 10, "12428631": 14, "125": 32, "12543393": 10, "126": 30, "12627576": 10, "12654355": 14, "1271167": 10, "13": [4, 9, 11, 14, 15, 26, 27], "13010319": 10, "132": 9, "134": 9, "13843083e": 10, "13880088034662": 30, "13978561e": 10, "14": [4, 8, 9, 11, 15, 21, 23, 26, 27, 28], "140": 23, "1400": 30, "14000": 28, "14131777e": 10, "14159265": 10, "1423563681": 2, "1469208191": 27, "1475": 3, "1480893": 10, "14910129": 10, "14966091": 14, "15": [3, 4, 5, 8, 9, 14, 15, 18, 21, 23, 24, 25, 27, 28], "15197548": 10, "15395982": 10, "16": [5, 8, 11, 14, 15, 18, 26, 27, 30], "161": 9, "17": [3, 9, 10, 14, 15, 16, 17, 27], "17041386e": 10, "1710065124949596e": 14, "176985": 10, "18": [3, 8, 9, 15, 18, 25, 26, 27], "18017253": 14, "18057954": 10, "18178589": 10, "18186093e": 10, "18316886": 10, "18482914": 10, "18500": 27, "186": 9, "18620554": 10, "19": [3, 9], "1950": 27, "19534423": 10, "19579996": 10, "19680801": 37, "19731697": 10, "19762975e": 10, "1979": 1, "1atm": 30, "1e": [30, 31, 32], "1f": 30, "1n2": [16, 17], "2": [0, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 21, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37], "20": [3, 5, 8, 9, 10, 14, 15, 25, 26, 27, 28], "200": [9, 10, 11, 28, 30], "200000": 9, "20012953": 10, "2014": 36, "2015": 28, "202": 30, "20223002": 10, "2024": [28, 33], "2028829241903": 14, "20631929e": 10, "207": 9, "20887358": 10, "20925829": 14, "21": [8, 9, 15, 27], "2101290534": 27, "2150897": 10, "21578285": 10, "217": 28, "21912867": 10, "22": [9, 15, 27, 28], "22010385": 10, "22370579": 10, "224": 9, "2266": 30, "22685872e": 10, "22694704": 10, "22763038": 10, "23": 15, "23173812": 10, "2368782444": 15, "23862743e": 10, "239": 27, "23918849": 10, "23973073": 10, "24": [8, 9], "2436706066": 2, "24407647": 10, "24659625": 10, "2478": 11, "2479": 11, "2480": 11, "2482": 11, "2483": 11, "2484": 11, "2485": 11, "25": [3, 9, 14, 15, 24, 25, 26, 27], "2500": 3, "25000": 23, "250000": 9, "25228799": 14, "25308709": 14, "25c": 30, "26364188": 14, "2641720524": 3, "26461166": 10, "26563489": 10, "26620291": 10, "26680751": 10, "26705942": 10, "26920648": 10, "27": [8, 9, 14], "2707087": 10, "27105438742610": 14, "27282082": 10, "273": [24, 25, 27], "275": 9, "27504189": 10, "27511494": 10, "27898772": 10, "28": [8, 10, 16, 17, 27], "28038468": 10, "28184845": 10, "282": 9, "28318531": 10, "28534": 23, "28978974": 10, "29": [8, 9, 33], "29010873849084": 14, "29034558": 10, "291413475940725e": 14, "298": [22, 23, 27], "29932181": 14, "2a": 18, "2e": 14, "2f": [15, 27], "2h_2o": [16, 17], "2nh3": [16, 17], "2nh_3": [16, 17], "2o_2": [16, 17], "2x3": 4, "3": [0, 1, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 37], "30": [4, 8, 9, 11, 26, 27], "300": [2, 9, 11, 14, 30], "3025850929940455": 21, "303": 27, "308": 27, "308954594504387": 30, "31": [10, 33], "31198904": 10, "31203728": 10, "314": [23, 26, 27], "3144": [3, 24, 25], "318": 27, "31996809": 10, "31mdocstr": 14, "31mfile": 14, "31mstring": 14, "31mtype": 14, "32": 9, "321": 11, "321540105031345": 14, "322": 11, "32244257": 10, "323": 11, "324": 11, "32504457": 10, "33": [27, 30], "330": 18, "33328988": 14, "33392199e": 10, "335": 11, "336": 11, "338": 11, "338786": 27, "34": 9, "340": 11, "341": 11, "34104825": 10, "34427109": 10, "34749156": 10, "34873286": 10, "35": [4, 9, 26, 27], "35512872": 10, "36": [14, 15], "3600": 25, "36034507": 14, "36364993": 10, "3662": 11, "3664": 11, "3665": 11, "3667": 11, "3668": 11, "36680902": 10, "3669": 11, "36846605": 10, "36970891": 10, "37135546": 28, "37281849e": 10, "37303702": 10, "37314012": 10, "37525": 27, "376": 27, "376877": 9, "3775": 3, "380": 9, "380450": 23, "38187548": 10, "38905610e": 10, "389058": 9, "39": 9, "391": 28, "39196572": 10, "39387734e": 10, "39484033": 10, "39545877262": 27, "3967210108": 27, "39743136": 10, "398": [22, 23], "39822972": 10, "39918679e": 10, "39934756": 10, "3a": 18, "3h2": [16, 17], "3h_2": [16, 17], "4": [0, 2, 6, 8, 10, 11, 14, 15, 16, 17, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 37], "40": [4, 9], "40000": 23, "40002676": 10, "40246105e": 10, "40603792": 10, "4082665237440342": 14, "41": [26, 27], "41088856e": 10, "41371469": 10, "41421356": 10, "41614516": 10, "41655787": 10, "42": [9, 10, 16, 17], "42467822": 10, "425070858": 2, "42648957": 10, "43": 27, "43319312": 14, "43342771": 10, "434": 21, "43746752": 10, "44421562": 10, "44892884e": 10, "44913211e": 10, "45": [11, 26, 27], "4513": 27, "4514": 27, "45191136": 10, "45299155": 10, "45587033": 10, "4564327": 10, "45759633": 10, "45801434": 10, "45825768e": 10, "45863749e": 10, "45921236": 10, "46": 9, "46044652e": 10, "46398788": 10, "467293847": 14, "46799177": 10, "47": 9, "47527509": 10, "4761905": 30, "47750": 14, "47912378": 10, "48": [9, 27], "482": 9, "48370458": 10, "48411054": 10, "488": 28, "48897756": 10, "49": 14, "49858446": 10, "4a": 5, "4b": 5, "5": [0, 2, 4, 6, 8, 10, 11, 14, 15, 16, 17, 18, 23, 25, 26, 27, 28, 30, 31, 32, 37], "50": [4, 9, 10, 11, 15, 23, 27, 30, 32], "500": 30, "5000": 23, "50000": 23, "500000": 9, "50356459": 10, "50460914": 28, "50649629e": 10, "50744688": 10, "50790344e": 10, "51": [16, 17, 27], "51110228": 10, "51588326": 10, "51755996": 10, "52": 23, "5215701": 10, "52323923": 10, "53055453e": 10, "54": 27, "54193436": 10, "54254069": 10, "54269806": 10, "54448954": 10, "55": 9, "55026565": 10, "55241580e": 10, "5534414": 14, "55400976": 10, "55729293": 10, "55975109": 10, "56": [9, 27, 28], "56186902": 10, "56637061": 10, "5688": 23, "56968099": 10, "57": [9, 26, 27], "57035192": 10, "571484": 9, "57445806": 14, "575": 9, "57950291": 10, "58": 27, "58245828": 10, "5842893": 10, "585": 3, "588491": 27, "59": 30, "592": 14, "5b": 18, "5e": 30, "6": [0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 21, 26, 27, 28, 32, 33], "60": [3, 9, 14, 23], "600": [14, 28], "60000": 23, "60110022e": 10, "60175662": 10, "60439396": 10, "60734415": 10, "60848449": 10, "60922754": 10, "61": 9, "61488031": 10, "61624076": 10, "6167947": 10, "61836552": 10, "62": [15, 28, 30], "62196464": 10, "622960": 23, "62342215": 10, "62831853": 10, "62871196": 10, "63092286": 10, "63221707e": 10, "6344444": 10, "635962": 27, "63600695": 10, "63602953": 10, "63777527e": 10, "64": [10, 27], "64156013": 10, "6446573357e": 14, "64640586": 10, "64831449": 10, "65036664": 10, "65066066": 10, "65747502": 10, "66": 9, "66179605": 10, "664": 30, "66488528": 10, "67060499": 10, "67523034": 10, "67805958": 10, "67899": 14, "68": [10, 14, 26, 27], "6821327": 10, "69": 2, "69841915": 10, "7": [0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 21, 25, 27, 31], "70": [9, 30], "700": 30, "700000": 9, "71": [10, 27], "71350665": 10, "71693146": 10, "72": [14, 27], "72069014": 14, "72146117": 10, "72620685": 10, "7272592": 10, "73": [15, 27], "73205081": 10, "73235229": 10, "73272369": 10, "73277247": 14, "73556627": 10, "739075": 9, "74292118": 10, "7468241328124271": 14, "74697819": 10, "74894245e": 10, "74908024": 10, "75": [9, 18, 26, 27, 32], "750000": 9, "75467871": 10, "76": 27, "76671077": 10, "77": [9, 23, 32], "77128714": 10, "77347069": 10, "77417285": 10, "77442549": 10, "7767207": 14, "77735458": 10, "78": 9, "78279812e": 10, "785118": 10, "7883749": 14, "7896547": 10, "79": 30, "7921826": 10, "79422052": 10, "79443152": 10, "8": [1, 2, 3, 4, 6, 8, 9, 10, 11, 14, 15, 16, 17, 21, 23, 24, 25, 26, 27, 28, 30, 31], "80": [4, 9], "800": [2, 31], "800168850713945e": 25, "80083611": 10, "80475369920643": 14, "80804025e": 10, "81": [10, 14, 26, 27], "81513295": 10, "81611105": 14, "81653177": 10, "8186408": 10, "81948504": 10, "82076585": 10, "82842712": 10, "83": [15, 27], "83207483e": 10, "83482201": 10, "837518c9075b": [16, 17], "84": 27, "84045291": 10, "84374847": 10, "84938724": 10, "85": [26, 27], "85421558": 10, "85508204": 10, "85722573273506e": 14, "85929364963352": 14, "8593953": 10, "86389004": 10, "86638624": 14, "87345998": 10, "8772544542002486": 10, "87899788": 10, "87992445e": 10, "88": [26, 27, 30], "88030499": 10, "883610006827256e": 30, "88581941": 10, "88836035": 14, "89": [9, 27], "89306667e": 10, "89376198": 10, "89777107": 10, "8fc807e452e5": 28, "9": [2, 3, 4, 6, 8, 9, 10, 14, 15, 21, 27, 30, 31, 32], "90": [27, 28], "900000": 9, "90029989": 10, "90142861": 10, "91": [26, 27], "91213997": 10, "91894679": 10, "92": [15, 27], "92489459": 10, "93": [9, 14], "93126407": 10, "93916926": 10, "9398197": 10, "94356417": 10, "94442985": 10, "96665893": 10, "97130091": 10, "973287032134387e": 14, "97377387": 10, "976612": 9, "97890552": 10, "98": 11, "98095799e": 10, "98169943e": 10, "98759119": 10, "99": 11, "99035382": 10, "99449701": 10, "996148323182619": 27, "9e": 32, "A": [0, 3, 4, 5, 6, 8, 9, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28], "And": 34, "As": [3, 4, 8, 14, 16, 17, 37], "At": [24, 25], "Be": 3, "But": [2, 3, 4, 8, 37], "FOR": 5, "For": [2, 3, 4, 9, 10, 14, 21, 23, 33, 36, 37], "If": [2, 3, 4, 11, 23, 35], "In": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 36, 37], "It": [1, 2, 3, 9, 10, 14, 18, 23, 34, 36], "No": [3, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 37], "On": 3, "Or": 8, "That": 35, "The": [1, 2, 3, 4, 8, 9, 11, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 33, 35, 36], "There": [1, 3, 18, 37], "These": [4, 14, 33], "To": [3, 14, 16, 17, 26, 27], "With": 35, "_": 30, "__future__": 28, "__init__": 14, "_list_matplotlib_backends_and_gui_loop": 11, "_matplotlib_manages_backend": 11, "_show_matplotlib_backend": 11, "_stack_depth": 11, "a0": [18, 21, 23, 24, 25, 26, 27, 28], "a1": 23, "a2": 23, "a4": 5, "a_mol": [16, 17], "ab": [5, 6, 23], "abl": [2, 19], "about": [1, 2, 3, 4, 9, 18, 27, 30, 33, 35, 36, 37], "abov": [2, 3, 5, 8, 9, 12, 14, 15, 23, 30], "absolut": 14, "academia": 1, "accept": [9, 36], "accord": [3, 9], "account": 18, "accuracywarn": 14, "aceat": 28, "acet": 28, "achiev": [4, 16, 17, 21, 33], "acid": 28, "acquir": [1, 3], "across": 9, "activ": [24, 25, 26, 27, 33], "actual": [1, 3, 9], "ad": [4, 8], "adapt": [1, 16, 17], "add": [2, 3, 4, 5, 9, 11, 12, 31, 32], "add_": 37, "add_matrix": [16, 17], "add_trac": [31, 32], "addit": [26, 27], "addition": 3, "address": [21, 33], "adiabat": [22, 23], "administr": 33, "advanc": 33, "aetat": 28, "affin": 28, "after": [1, 2, 4, 18, 21, 23, 24, 25, 28], "afterward": [18, 26, 27], "ag": 5, "again": 23, "agg": [9, 11], "aggr_packed_column": 9, "aggreg": 9, "agre": 2, "aim": [1, 18, 33], "air": [8, 9, 14], "air_flow": 14, "al": 36, "albino": 32, "algebra": [16, 17, 28], "algorithm": 14, "align": 37, "all": [1, 2, 3, 4, 5, 8, 14, 18, 21, 26, 27, 32, 33, 35, 36], "all_result": 32, "allianc": 33, "allow": [3, 5, 8, 9, 10, 36], "almost": 4, "alpha": [11, 14, 30, 32], "alreadi": [1, 3], "also": [3, 4, 8, 9, 11, 14, 18, 22, 23, 26, 27, 35, 36, 37], "altern": 15, "although": [2, 9], "alwai": [9, 16, 17], "ambigu": 2, "ammonia": [16, 17], "amount": [4, 16, 17, 18, 23, 24, 25], "an": [1, 2, 3, 4, 5, 6, 8, 14, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 36], "anabol": 28, "anaconda3": 14, "analysi": [1, 9, 22, 23], "analyz": 1, "ani": [1, 3, 4, 9, 19, 23, 34, 35], "anna": 4, "annot": [15, 27], "anoth": [3, 4, 10, 14], "answer": [3, 26, 27, 28], "anyon": 3, "anyth": [4, 9], "apart": [16, 17], "api": 14, "appdata": [2, 11, 15, 27], "append": [3, 4, 6, 16, 17, 32], "applic": [14, 16, 17], "approach": [1, 3], "appropri": 30, "approxim": 28, "ar": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 33, 35, 36], "arang": [28, 32], "area": [14, 23], "arg": [11, 14, 21, 30], "argument": [3, 10, 14, 15, 27], "around": 23, "arrai": [1, 6, 8, 14, 37], "array_1d": 10, "array_2d": 10, "arrenhiu": 23, "arrheniu": [26, 27], "artist": [15, 27], "asign": 32, "ask": 1, "assig": 23, "assign": [4, 14, 16, 17], "associ": 8, "assum": [3, 18, 22, 23, 30], "assumpt": [2, 15, 18, 22, 23, 26, 27], "atol": [31, 32], "attempt": 4, "attent": [3, 33], "attribut": 2, "attributeerror": 2, "au": 3, "auditori": 36, "australia": 36, "author": 28, "auto": 28, "autocatalyt": 18, "autom": [3, 33], "automat": 28, "autosummari": 14, "avail": [1, 9, 11, 14], "averag": 9, "avoid": 3, "awai": 1, "awar": 33, "ax": [14, 15, 23, 27, 28, 37], "ax2": 23, "axessubplot": 11, "axi": [10, 11, 12], "b": [3, 4, 5, 6, 8, 14, 15, 16, 17, 18, 21, 22, 23, 26, 27], "b0": 18, "b4": 5, "b_mole": [16, 17], "ba": 5, "back": 26, "backend": [11, 15], "backend_inlin": [11, 15], "backend_registri": 11, "backup": 27, "bad": 2, "balanc": [0, 1, 20, 32], "bar": 3, "bar_to_pasc": 3, "bare": 4, "barrel": 3, "base": [1, 2, 4, 6, 14, 18, 28, 30, 35], "basic": [1, 3, 4, 9], "batch": [0, 1, 4, 12, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30], "bdf": 14, "becaus": [1, 2, 23], "becom": 23, "bed": [3, 8, 22, 23], "been": [1, 6, 18, 21], "befor": [2, 3, 9, 14, 21], "begin": [1, 3, 14, 23, 37], "beginn": 1, "behav": [22, 23], "being": [1, 11, 36], "bellow": 30, "belong": 2, "below": [3, 4, 8, 11, 12, 14, 16, 17, 18, 26, 27, 28, 33], "berlin": [31, 33], "best": [1, 3], "better": 1, "between": [3, 4, 8, 19, 21, 23, 24, 25, 26, 27, 33], "bhichem": 1, "bib": 36, "bibliographi": 36, "bibtex": 36, "big": [1, 3, 9], "bin": 10, "binari": 3, "binary_to_english": 6, "bind": [3, 5], "bio": [0, 33], "biochem": [1, 33], "biolog": 33, "biomanufactur": 33, "biomass": [28, 30], "biomolecul": 33, "biopharmaceut": 33, "bioprocess": 33, "bioreactor": 30, "biotechnologi": 33, "blank": [16, 17], "block": [2, 4, 23, 34, 35], "blog": 14, "blue": [23, 27], "bo": 14, "book": [35, 36, 37], "bool": 9, "boolean": 4, "both": [1, 12, 23, 36], "bottom": 9, "boundari": [10, 14], "box": 36, "boxplot": 11, "bracket": [3, 8], "brainstorm": 1, "brian": [1, 36], "brisban": 36, "broad": 1, "brought": 18, "bubbl": [3, 8, 14], "build": 36, "built": [3, 4, 35], "builtin_trap": 11, "bundl": 34, "bx": 14, "c": [1, 3, 4, 6, 9, 14, 15, 18, 24, 25, 26, 27, 28], "c0": [3, 24, 25], "c_": [18, 21, 24, 25, 26, 27], "c_a": [15, 18, 23, 26, 27], "c_a0": [15, 18, 27], "c_b": [18, 30], "c_c": 18, "c_d": 18, "c_j": 18, "c_p": 30, "c_ratio": [3, 21, 25], "ca": [3, 15, 21, 24, 25, 26, 27], "ca0": [3, 15, 21, 23, 25], "ca_ca0": [3, 25], "ca_ca0_1h": 21, "ca_ca0_t": 21, "caccaval": 1, "calcul": [3, 5, 9, 12, 14, 15, 21, 22, 23, 24, 25, 26, 27, 30], "calculate_c0": 25, "calculate_ca": [15, 27], "calculate_k": 27, "calculate_ln_k": 27, "calculate_tim": 21, "call": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 36, 37], "can": [1, 2, 3, 4, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 30, 33, 35, 36, 37], "cannot": [1, 2, 3, 4, 5, 8, 15, 27], "capac": [23, 33], "care": [1, 3, 4], "career": 1, "carefulli": [1, 18], "carri": [1, 2, 18], "case": [3, 4, 8, 14, 21, 23], "cast": [2, 4], "cat": 6, "catalyt": 18, "catalyz": 18, "categor": 9, "categori": 2, "cb": [24, 25, 27], "cc": [15, 26, 27, 31], "cc_0": 31, "cd": 27, "cdot": [3, 14, 15, 18, 24, 25, 26, 27], "cell": [0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 37], "cerevisia": 32, "certain": [4, 8, 9, 14], "ch_4": [16, 17], "chair": 33, "challeng": 1, "chang": [3, 4, 8, 14, 18, 23, 28, 30], "change_a": 18, "change_b": 18, "change_t": 18, "changeabl": 8, "characterist": 28, "chart": [4, 5], "check": [3, 5, 9, 11, 14, 15, 21, 28, 34, 37], "chemic": [0, 1, 14, 16, 17, 33], "chemistri": 6, "choos": [5, 18, 19, 26, 27], "christoph": 36, "chunk": 3, "circ": [26, 27], "cite": 36, "cj_a": 18, "cj_b": 18, "class": [1, 2, 14], "claus": 3, "clean": 1, "cleaner": 3, "clear": 3, "cliffsnot": [16, 17], "close": [23, 33], "cluster": 33, "cm": [30, 37], "cmap": 37, "cndition": 18, "co": 14, "co_2": [16, 17], "code": [1, 2, 3, 4, 5, 6, 9, 11, 12, 14, 16, 17, 18, 19, 21, 22, 24, 26, 27, 31, 32, 33, 34, 35, 36], "coeff": [16, 17], "coeff_a": [16, 17], "coeff_b": [16, 17], "coeffici": [14, 15, 22, 23, 28, 30], "cognit": 36, "cold": 37, "coli": [0, 28, 32, 33], "collabor": 33, "colleagu": 1, "collect": [4, 8], "color": [11, 23, 27, 37], "column": [3, 8, 9, 10, 11, 12, 14, 16, 17, 18], "com": [16, 17], "comand": 3, "combin": [0, 2, 3, 5, 6, 21], "comfort": 1, "command": [2, 4, 35], "comment": [1, 3], "common": [2, 3, 9, 11, 16, 17, 24, 25], "commonmark": 36, "commun": [1, 2, 33], "compani": [18, 26, 27], "compar": [2, 3, 12, 14, 19, 23], "comparison": 14, "compil": 14, "complet": [1, 26, 27], "complex": [3, 4, 14], "complex_od": 14, "compon": [2, 33], "composit": [26, 27], "compound": [16, 17], "comprehens": [3, 4, 5, 10, 12], "comput": [2, 3, 5, 14, 23, 24, 25], "concentr": [3, 15, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31], "concept": [7, 13, 20, 29], "conceptu": 33, "concern": 3, "concis": 3, "conclud": 12, "condens": 3, "condit": [1, 3, 4, 5, 8, 14, 18, 22, 23, 28, 30], "condition": 3, "confer": 36, "consid": [2, 3, 4, 18, 22, 23, 24, 25, 26, 27], "consist": 18, "consortium": 33, "consotrium": 33, "constant": [3, 4, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30], "constnat": 28, "constraint": 30, "construct": 3, "consum": [23, 24, 25], "consumpt": [28, 30], "contain": [3, 5, 8, 14, 18, 26, 27, 33], "content": [0, 34, 35, 36], "context": [2, 3], "continu": [1, 12, 14, 21, 23], "contribut": 2, "control": [0, 3, 33], "conveni": 14, "convent": [2, 9], "convers": [18, 22, 23, 26, 27, 28], "convert": [3, 12, 14, 16, 17, 35], "coolwarm": 37, "coordin": 33, "copi": [3, 6], "copy_list": 6, "core": 11, "correct": [2, 18], "correctli": [2, 3], "correl": [14, 15, 26, 27, 30], "correspond": 8, "cortex": 36, "cost": 33, "cote": 14, "could": [3, 4, 28], "count": [3, 9, 16, 17], "counter": 8, "coupl": [1, 30], "cours": [1, 9, 14], "cover": [1, 16, 17], "cowtgmzuai0": 2, "cp": 23, "cpliq": 23, "creat": [3, 4, 5, 11, 12, 15, 18, 26, 27, 28, 31, 32, 37], "creck": 10, "critic": 28, "cross": 14, "cruz": 28, "crystal": [3, 8], "csv": [9, 11, 12], "cultiv": 28, "cumul": 14, "cumulative_trapezoid": 14, "curli": 8, "current": [4, 15, 32], "currentmodul": 14, "custom_lin": 37, "cut_off": 6, "cutoff": 6, "cx": 28, "cycler": 37, "d": [6, 14, 15, 18, 24, 25, 26, 27, 30, 35], "d_h": 30, "dadt": 28, "dai": [1, 4], "data": [0, 1, 3, 4, 6, 8, 10, 12, 14, 15, 23, 26, 27, 37], "data_mean": 6, "data_point": 6, "datafram": [1, 7, 15, 18, 23, 26, 27], "dblquad": 14, "dc_a": [26, 27], "dcc_dt": 31, "ddotdt": 28, "de": [31, 33, 36], "debug": 1, "dec": 28, "decid": 3, "decim": [4, 5], "decod": 6, "decor": 11, "deep": 3, "def": [3, 5, 6, 11, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32], "default": 35, "defin": [2, 3, 4, 6, 8, 11, 14, 15, 23, 26, 27, 28, 30, 31, 32, 35], "definit": 30, "degc": 14, "degre": 18, "delimit": 6, "delta": 27, "deltac_p": 23, "deltahrx": 23, "demand": 3, "dens": 14, "dense_output": [14, 23], "denseoutput": 14, "densiti": [14, 21], "depend": [4, 9, 36], "deplet": 28, "deploy": 1, "deprec": 28, "depth": 34, "deriv": 18, "describ": [1, 9, 12, 18, 22, 23, 28, 30], "descript": [5, 9], "design": [0, 1, 14, 18, 20, 23, 33], "design_batch": 23, "desir": 1, "desktop": 9, "detail": [1, 2, 3, 14, 35], "determin": [2, 15, 18, 30], "develop": [14, 22, 23, 33], "deviat": 6, "df": [9, 15, 26, 27], "df_arrheniu": 27, "diafiiltr": 29, "diafiltr": 0, "diamet": 14, "dict_condit": [8, 9], "dict_item": 8, "dict_kei": 8, "dict_reactor": 12, "dict_valu": 8, "dictionari": [1, 4, 7], "did": [4, 19], "differ": [2, 3, 4, 8, 9, 10, 11, 14, 18, 19, 21, 23, 26, 27, 31, 36], "differenti": [23, 26, 27, 28, 31, 32], "difficult": [3, 23], "dig": 33, "dig4bio": [0, 11], "digit": 33, "digitalis": 33, "dimens": 10, "dimension": 10, "direct": 35, "directli": 14, "disadvantag": 3, "discard": 9, "discourag": 1, "discret": 28, "discuss": 1, "displai": [2, 11, 32, 35], "dissemin": 33, "dissolv": [28, 30], "distribut": [4, 11, 14, 15], "dive": 3, "divid": [4, 5, 16, 17], "divis": [2, 4, 16, 17, 28], "dk": [32, 33], "dna": 33, "do": [1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 18, 26, 27, 36, 37], "document": [1, 3, 9, 14, 15, 26, 27, 34, 35, 36, 37], "dodt": 30, "doe": [1, 2, 3, 4, 5, 6, 8, 14, 34], "dollar": 37, "don": [1, 3, 4, 5, 6], "done": [2, 12, 18, 21, 23], "dop853": 14, "dot": [10, 14, 28], "dot0": 28, "dotstar": 28, "doubl": 14, "down": 6, "downstream": 0, "dpdt": 30, "dr_dt": 32, "draw": 18, "drop": [9, 11, 23, 28], "drop_dupl": 9, "dropna": 9, "dsdt": [28, 30], "dt": [26, 27, 28], "dtu": [32, 33], "dtype": [9, 10], "due": 2, "duplic": 8, "dure": [14, 15, 18, 26, 27], "dvdt": [28, 30], "dxdt": [28, 30], "dy": 32, "dydt": 28, "dynam": [14, 28], "e": [0, 2, 3, 4, 6, 12, 18, 23, 28, 32, 33, 34], "e_a": [24, 25], "ea": 27, "ea_r": [24, 25], "each": [1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 18, 21, 31], "earli": 1, "earlier": 14, "easi": [1, 3, 5, 12, 14, 16, 17, 19], "easili": [9, 23], "ecoli": 28, "ecosystem": 36, "effect": [1, 14], "effici": [1, 3, 33], "effluent": 18, "either": [2, 3, 4], "elabor": 11, "elem": 4, "element": [3, 4, 5, 6, 8, 9, 12, 16, 17], "element_list": [16, 17], "element_matrix": [16, 17], "elementari": [1, 18, 22, 23], "elements_numb": [16, 17], "elev": 33, "elif": [3, 4, 21], "els": [3, 4, 11, 16, 17, 21, 23, 28], "elsewher": 1, "emb": 37, "emerson": 2, "emper": 30, "emploi": 2, "empti": [3, 4], "en": [16, 17], "enabl": [2, 3], "enable_matplotlib": 11, "encod": [9, 11], "encount": [2, 4], "end": [4, 14, 23, 28, 31, 37], "endf": 23, "energi": [0, 1, 20, 24, 25, 26, 27], "engin": [0, 1, 14, 16, 17, 22, 23, 33], "english": 2, "english_to_binari": 6, "enhanc": 33, "ensur": [1, 9, 33], "enthalpi": 23, "entir": 23, "enumer": 8, "env": 11, "environ": 3, "enzym": 5, "epsilon": 14, "equal": [3, 15, 18, 24, 25], "equalmolar": 18, "equat": [1, 16, 17, 18, 19, 21, 23, 26, 27, 28, 30, 31, 32], "equilibrium": 28, "er": 27, "err": 14, "error": [2, 3, 4, 14, 15], "escap": 37, "escherichia": 33, "estim": [14, 15, 21], "et": 36, "eta": 14, "etc": [12, 37], "eualmolar": 18, "euclidean": [16, 17], "evalu": [3, 11, 26, 27], "even": [1, 2, 28], "even_numb": 8, "evenli": 14, "event": 33, "everi": 10, "everyth": [1, 3], "everywher": 3, "evid": 36, "evolut": [28, 31, 32], "exactli": 3, "exam": 4, "exam_scor": 4, "examin": [24, 25], "exampl": [0, 2, 3, 4, 5, 9, 14, 36, 37], "excel": 9, "excess": 18, "exchang": [3, 8, 33], "exclud": 28, "execut": [1, 3, 4, 19, 33, 35], "exercic": 1, "exercis": [1, 4, 14, 16, 17, 18, 19, 21, 22, 23, 26, 27, 30], "exist": [3, 18], "exit": 4, "exp": [10, 14, 23, 25, 27, 30], "expect": [1, 2, 5, 23, 33], "experi": [1, 3, 4, 5, 8, 14, 15, 18, 26, 27], "experiment": [11, 14], "expert": 33, "explain": [21, 26, 27], "explan": 14, "explicit": [2, 14], "explicitli": 28, "explor": [3, 7, 12, 13, 15, 20, 29], "exponenti": [10, 19], "exponential_decai": 14, "expr": 14, "express": [1, 2, 3, 11, 18, 21, 23, 24, 25, 26, 27, 31, 32], "expression_list": 3, "extens": 36, "extra": [3, 30], "extract": [1, 3, 8, 31, 32], "extrct": 8, "f": [3, 4, 6, 9, 14, 16, 17, 18, 21, 24, 25, 27, 30, 31], "f0": 5, "f1": [5, 28], "f10": 5, "f_a0": [18, 23], "f_j": 18, "f_j0": [18, 23], "fact": [2, 3], "factor": [14, 28], "fail": 4, "fals": [3, 4, 8, 9, 11], "familiar": [4, 14], "far": 1, "fase": 18, "fast": [14, 23], "faster": 3, "favorit": 5, "featur": 14, "fed": [0, 28], "fedbatch": 30, "feed": [18, 26, 27, 28, 30], "feedrat": 28, "feedstart": 28, "feel": 34, "ferment": 30, "few": [14, 18, 34], "fiacac": [14, 15, 27], "fiammetta": 1, "fibonacci": 5, "field": 33, "fig": [15, 23, 27, 32, 37], "fig1": 31, "fig2": [31, 32], "fig2_hph": 32, "fig_hph": 32, "figsiz": [11, 27, 28, 37], "figur": [11, 15, 27, 28, 30, 31, 32], "figurecanvasagg": 27, "file": [9, 11, 12, 26, 33, 34, 35], "fill": [9, 23, 24, 25], "fillna": 9, "final": [16, 17, 26, 27, 28, 30], "find": [2, 4, 6, 11, 12, 14, 16, 17, 18, 19, 33], "find_el": [16, 17], "find_gui_and_backend": 11, "fine": 31, "first": [1, 2, 3, 4, 6, 9, 11, 14, 16, 17, 23, 26, 27], "first_order_reaction_batch": 21, "first_order_reaction_cstr": 21, "first_order_tim": 21, "fit": 14, "five": 8, "fix": [10, 14, 28, 37], "fixed_quad": 14, "fj0_a": 18, "fj0_b": 18, "fj0_t": 18, "fj_a": 18, "fj_b": 18, "fj_t": 18, "flask": 23, "flat": 30, "flatten": 10, "flavor": 36, "flexibl": 2, "float": [3, 21], "float64": [9, 10], "float_1": [5, 6], "float_2_5": [5, 6], "flow": [0, 1, 3, 4, 9, 11, 12, 16, 17, 18, 23, 26, 27, 30, 31], "flowrat": 14, "fluid": [3, 8], "flux": 30, "fn": [5, 11], "focu": [16, 17, 33], "focus": 33, "folder": 12, "follow": [2, 3, 4, 5, 7, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36], "fontsiz": 23, "forget": [1, 5], "form": [14, 16, 17], "format": [2, 9, 15, 27, 30, 33], "formul": 28, "formula": [15, 27], "fortran": 14, "forum": 1, "foster": 33, "found": [3, 9, 15, 16, 17, 22, 23, 27], "foundin": 23, "four": [5, 8, 11], "fout": 28, "fr": 14, "frac": [14, 15, 18, 21, 24, 25, 26, 27, 30], "fraction": 4, "frame": 23, "framealpha": 14, "framework": 33, "frequenc": 14, "from": [1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 22, 23, 27, 28, 30, 31, 32, 33, 37], "from_dict": 9, "frontier": 36, "full": [1, 9, 14], "fun": [3, 12, 19, 31, 32], "func": 14, "function": [1, 2, 4, 5, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 28, 31, 32, 36], "futur": [3, 14, 21], "g": [2, 3, 4, 6, 12, 14, 16, 17, 18, 28, 30, 33], "ga": [3, 14, 18, 24, 25, 26, 27, 30], "gain": 33, "gallon": 3, "gaussian": 14, "gc": 28, "gd": 14, "gene": 33, "gener": [1, 10, 14, 22, 23, 28, 32], "generaliz": 18, "generator_gallon": 3, "genexpr": 3, "get": [1, 3, 4, 8, 10, 14, 26, 27, 28, 35, 36], "get_ipython": 11, "get_local_scop": 11, "getattr": 11, "gglucos": 30, "github": [1, 33], "give": [1, 19, 34], "given": [2, 3, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 30], "glucos": [3, 28], "go": [1, 3, 14, 19, 31, 32, 34], "go2": 30, "goal": 4, "gold": 3, "good": [9, 14, 18], "grade": 4, "gradient": 15, "grail": 2, "gram": [2, 3, 16, 17], "grammat": 2, "graph_object": [31, 32], "gravit": 14, "great": 11, "green": [11, 27], "greet": 2, "grid": [11, 14, 15, 27], "group": [2, 9, 22, 23], "growht": 28, "growth": [23, 28, 30], "guess": [2, 3, 4], "gui": [11, 15], "gui_select": 11, "guid": [1, 14, 16, 17, 37], "guidelin": 2, "gx": 28, "h": [3, 6, 9, 11, 12, 15, 18, 21, 25, 26, 27, 28, 30], "h1": 23, "h2": [16, 17, 23], "h2o": 17, "h_2o": [16, 17], "ha": [1, 2, 3, 9, 14, 18, 28], "ha_298": 23, "half": 23, "hand": [3, 21, 26, 27], "handl": 2, "happen": [18, 23], "happi": 11, "hard": [2, 5], "harder": 4, "hash": 8, "hassfurth": 31, "have": [1, 2, 3, 4, 6, 8, 9, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 35], "ha\u00dffurth": [28, 31], "hb_298": 23, "hdhpk14": 36, "head": [9, 11], "heat": [22, 23], "heer": 36, "height": 2, "held": 33, "help": [3, 4, 9, 11, 18, 21, 22, 23, 26, 27, 36], "henri": 30, "here": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 34, 36, 37], "higher": [3, 8, 28], "highest": [4, 28], "highli": 2, "hint": [1, 5, 6, 19, 26, 27, 30], "hist": [10, 11], "hm": 18, "hold": 14, "holdgraf": 36, "holdgraf_evidence_2014": 36, "holi": 2, "hope": 18, "hopefulli": 18, "hot": 37, "hour": [3, 21, 24, 25, 28, 30], "how": [0, 1, 2, 3, 4, 8, 9, 10, 11, 14, 18, 19, 21, 22, 23, 30, 32, 33, 34, 35], "howev": 18, "hrx": 23, "html": 37, "htori": 12, "http": [4, 16, 17], "human": [2, 36], "hybrid": 33, "hydrodynam": 5, "hypothes": 15, "hypothesi": 15, "i": [1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 34, 35, 37], "i0": 23, "id": 3, "idea": [9, 14, 18], "ideal": [1, 3, 24, 25], "ignor": [4, 15, 27], "ii": [12, 33, 37], "illustr": [2, 4], "iloc": [9, 11, 15, 27], "imag": [4, 26, 37], "imagin": 3, "implement": [2, 5, 9, 14, 18, 30, 31, 32], "implicit": 14, "import": [1, 2, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32, 37], "improv": 1, "imput": 9, "inal": [16, 17], "includ": [1, 4, 30, 33, 35, 37], "incompat": 2, "incorpor": 33, "increas": 33, "indent": [1, 2], "indentationerror": 2, "index": [3, 8, 10, 12, 16, 17, 23], "indic": 2, "individu": [2, 14], "industri": 1, "infer": 2, "infinit": 4, "inflow": 3, "influenc": 28, "info": [3, 14], "inform": [2, 8, 9, 10, 12, 14, 33, 34, 35, 37], "ini": 30, "init": 35, "initi": [3, 4, 14, 15, 18, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33], "inlin": [10, 11, 12, 28, 36], "inner": 10, "input": [3, 16, 17, 18, 28, 36], "insert": [23, 36], "insid": [3, 30], "instal": 1, "instead": [1, 3, 9, 12, 14], "instruct": [2, 3, 35], "int": [2, 3, 16, 17, 21, 28], "int64": 9, "integ": [2, 5, 16, 17], "integer_1": [5, 6], "integer_2": [5, 6], "integr": [23, 26, 27, 28, 30, 31, 32], "integrationwarn": 14, "interact": [27, 37], "interactiveshel": 11, "intercept": 15, "interfac": 14, "interfaci": 30, "intern": [14, 36], "internet": 1, "interpol": 14, "interpret": 2, "interrupt": 4, "intersect": [8, 12], "interv": 23, "intracellular": 28, "introduc": [3, 4], "invalid": 24, "investig": [4, 10, 11, 12, 16, 17, 22, 23], "involv": 3, "ion": [3, 8, 37], "ipykernel_15964": 15, "ipykernel_18948": 2, "ipykernel_26808": 27, "ipynb": [5, 36], "ipython": [2, 11, 28], "isdigit": [16, 17], "isotherm": [1, 15, 18, 21, 26, 27], "issu": 14, "issubset": 8, "ist": 33, "ital": 33, "item": [3, 4, 6, 8], "iter": [3, 4, 8, 32], "its": [1, 2, 11], "j": [6, 24, 25, 26, 27], "j_v": 30, "join": 6, "joint": 33, "jpg": 28, "json": 9, "judici": 1, "jupyt": [26, 27, 35, 36, 37], "jupyterbook": 36, "jupytext": 35, "just": [1, 3, 8, 9, 18, 36], "k": [3, 6, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32], "k0": 23, "k_": [3, 25], "k_1": 18, "k_100": [24, 25], "k_1c_ac_bc_c": 18, "k_298": 23, "k_ca0": 21, "k_first_ord": 21, "k_h": [3, 25], "k_hph": 32, "k_m": 30, "k_second_ord": 21, "kap": 28, "kaq": 28, "kc_": 21, "kc_a": 23, "keep": [3, 4, 9, 37], "kei": [8, 9, 12, 33], "kernel": [16, 17, 35], "kernel_": [16, 17], "kernighan": 1, "kevin": 28, "keyword": 4, "kg": [9, 11, 12, 14, 30], "kind": [4, 5, 36], "kinet": [1, 18, 26, 27, 30], "kla": [28, 30], "kmol": 18, "knight": 36, "know": [3, 4, 15], "knowledg": 33, "known": 8, "ko": [28, 30], "kpa": [24, 25], "ksq": 28, "kt": 32, "kutta": 14, "kwarg": 11, "l": [6, 28, 30], "la_": 37, "lab": 33, "label": [11, 12, 14, 15, 27, 28, 30], "laboratori": [15, 18, 26, 27], "lambda": [14, 31, 32], "laminar": 30, "languag": [1, 3, 8, 36], "larg": [14, 23], "last": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "later": [1, 14, 28], "latest": 33, "laugh": 2, "law": 30, "layout": 31, "lcm": [16, 17], "lead": [2, 8, 9], "learn": [0, 2, 11], "least": [14, 15, 16, 17, 19], "leav": 4, "lectur": [16, 17, 22, 23], "left": [3, 28], "legend": [11, 12, 14, 15, 27, 28, 30, 37], "legend_titl": 32, "len": [3, 6, 16, 17, 23], "length": 14, "less": [4, 23], "lesson": [14, 18], "let": [2, 3, 4, 8, 9, 10, 11, 14, 19, 35], "letter": [2, 6], "level": [5, 6, 12, 14, 16, 17, 19, 21], "lib": [11, 14], "librari": [1, 4, 9, 10, 11, 14, 19, 32], "licens": 1, "like": [2, 3, 8, 9, 12, 18, 35, 36], "limit": [4, 14, 18, 30], "linalg": 14, "line": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37], "line2d": 37, "linear": [13, 16, 17, 26], "linear_algebra": [16, 17], "liner": 8, "link": 33, "linkedin": 33, "linregress": [15, 27], "linspac": [14, 15, 23, 28, 31, 37], "liquid": [3, 8, 14, 18, 22, 23, 30], "list": [1, 2, 4, 8, 12, 14, 16, 17, 32], "list_a": 5, "list_b": 5, "list_combin": 6, "list_data": 6, "list_el": 6, "list_gallon": 3, "list_lett": 6, "list_lit": 3, "list_numb": [6, 8], "list_reactor": 12, "list_str": 6, "liter": 3, "literatur": [22, 23], "ll": [11, 36], "ln": [15, 27], "load": [1, 12], "loc": 28, "local": [2, 11, 14, 15, 27], "local_n": 11, "log": [15, 21, 27], "logic": [3, 9], "logspac": 37, "long": [3, 4, 19, 30], "longer": [3, 21], "look": [1, 3, 8, 9, 12, 14, 15, 18], "loop": [1, 4, 5, 6, 8, 12, 21, 31], "lot": [18, 36, 37], "lotka": 14, "lotkavolterra": 14, "low": 14, "lower": [3, 8, 10, 14], "lowercas": 3, "lsoda": [14, 31, 32], "lstsq": 14, "lw": 37, "lysi": [0, 29], "m": [3, 4, 6, 14, 15, 18, 24, 25, 26, 27, 30], "made": [23, 26, 27], "magic": 11, "magic_nam": 11, "magic_output_can_be_silenc": 11, "mai": [1, 2, 3, 4, 26, 27], "main": [1, 2], "maintain": 3, "maintanc": 28, "mainten": 28, "major": 34, "make": [1, 3, 4, 6, 11, 12, 18, 21, 37], "make_subplot": 32, "manag": [1, 18, 33], "mani": [1, 3, 8, 9, 11, 16, 17, 18, 35, 36], "manual": [3, 5, 8, 14, 18], "manufactur": 33, "map": [8, 16, 17], "mari": 4, "marial": 32, "mariana": 32, "mark": [26, 27], "markdown": [3, 12, 33], "markdownfil": 35, "markedli": 36, "marker": [11, 27, 32], "markup": 36, "mass": [0, 1, 14, 20, 29, 30, 32], "mass_a": [16, 17], "mass_b": [16, 17], "mass_mass_calcul": [16, 17], "materi": [1, 26, 27, 33], "math": [10, 14, 23, 24, 25, 37], "mathemat": [1, 2, 10, 14], "matlab": 1, "matplotlib": [1, 10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "matplotlib_inlin": [11, 15], "matplotlibdeprecationwarn": 28, "matric": 10, "matrix": [4, 9, 10, 14, 16, 17], "matrix_1": 10, "matrix_2": 10, "matter": [5, 8], "max": [9, 28, 30], "maxim": 28, "maximum": 30, "mayb": 3, "mbox": 37, "mc": 34, "md": [35, 36], "mean": [1, 2, 3, 4, 6, 8, 9, 12, 30, 37], "meant": 2, "measur": [1, 15, 21, 24, 25, 26, 27], "median": 12, "medium": [5, 6, 12, 14, 16, 17, 21, 37], "member": 2, "membran": 30, "memori": 3, "messag": 6, "met": [3, 4], "methan": [16, 17], "method": [2, 26, 27, 30, 31, 32], "metr": 2, "metric": 9, "microorgan": 30, "might": [1, 4, 9, 14, 18, 21], "mimi": 31, "min": [9, 18, 22, 23, 28], "mind": 3, "miniconda3": 11, "minim": 30, "minor": 28, "minu": 5, "miss": 14, "mixtur": [21, 22, 23, 24, 25], "ml": 27, "mm": 30, "mod": 14, "mode": [31, 32], "model": [0, 1, 28], "modifi": [3, 30], "modul": [0, 2, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 33, 37], "modulenotfounderror": [4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 37], "modulo": 4, "mol": [3, 15, 16, 17, 18, 23, 24, 25, 26, 27], "molar": [16, 17], "molar_mass_a": [16, 17], "molar_mass_b": [16, 17], "mole": [18, 24, 25], "mole_mole_calcul": [16, 17], "molecul": [16, 17], "moles_a": [16, 17], "moles_b": [16, 17], "monod": 30, "more": [1, 2, 3, 4, 6, 9, 10, 11, 14, 15, 18, 33, 34, 35, 37], "moreov": [9, 36], "most": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 36, 37], "mostli": 14, "motiv": 1, "move": 4, "mpl": 11, "mrna": 33, "mu": 30, "mu_max": 30, "much": [2, 3, 18, 21, 32], "multi": 14, "multipl": [3, 4, 9, 10, 16, 17], "multiple_5": 5, "multiples_thre": 8, "multipli": [2, 5, 6, 16, 17], "multitud": 4, "must": [21, 36], "mwa": 23, "my": [16, 17, 28], "my_dictonari": 8, "my_funct": 2, "my_us": 9, "myst": 33, "n": [3, 5, 6, 14, 21, 23, 25, 26, 27, 32, 36, 37], "n2": [16, 17], "n_": 23, "n_2": [16, 17], "n_a": 23, "n_span": 32, "na0": 23, "name": [1, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "nameerror": [3, 26, 27], "namespac": 3, "nan": [9, 27], "natur": 2, "nd": 31, "nd_end": 31, "nd_span": 31, "ndim": 10, "necessari": [21, 33], "necessarili": 2, "need": [2, 3, 6, 9, 14, 16, 17, 21, 23, 26, 27, 28, 35], "neglig": 23, "neq": 3, "nest": 4, "net": 4, "neurosci": 36, "nevertheless": 23, "new": [4, 8, 9, 14, 18, 33], "new_reactor": 4, "newaxi": 14, "newton": 14, "newton_cot": 14, "next": [3, 4, 6], "nh3": [16, 17], "nh_3": [16, 17], "nice": [11, 16, 17], "nicola": 28, "no_outli": 6, "no_react": 23, "non": [1, 2, 15, 27], "none": [4, 9, 11, 18, 23, 27], "normal": [1, 3, 10, 15], "note": [3, 4, 6, 8, 9, 11, 14, 15, 26, 27, 34, 36], "notebook": [3, 5, 15, 26, 27, 33, 36], "notic": [3, 19], "notion": [2, 3], "now": [1, 3, 4, 8, 9, 10, 11, 12, 19, 23, 30], "np": [4, 6, 10, 14, 15, 21, 23, 27, 28, 30, 31, 32, 37], "nquad": 14, "ntot0": 23, "null": 15, "nullspac": [16, 17], "number": [2, 3, 5, 10, 14, 18, 30, 31], "numer": [4, 14, 28], "numpi": [4, 6, 7, 12, 14, 15, 19, 21, 23, 27, 28, 30, 31, 32, 37], "o": [3, 6, 11, 14, 27, 30], "o0": 30, "o2": [17, 30], "o_2": [16, 17], "object": [2, 3, 4, 8, 9, 14], "observ": [9, 21, 23], "observations_df": 9, "obtain": [1, 21, 26, 27, 28], "occas": 11, "occur": 23, "occurr": 9, "od": [0, 1, 14, 23, 28, 30, 31, 32], "ode_fcn": [31, 32], "ode_fcn_hph": 32, "odeint": [14, 28], "odepack": 14, "odesolut": 14, "odesolv": 14, "off": [34, 35, 36], "offer": 10, "offici": 9, "often": [1, 2, 9, 18], "old": 14, "older": 14, "onc": [3, 4, 6, 16, 17, 18], "one": [1, 2, 3, 4, 8, 10, 11, 12, 16, 17, 18, 19, 24, 25, 36], "one_bar_in_pasc": 3, "ones": 1, "onli": [1, 2, 3, 5, 18, 26, 27], "open": [1, 32], "oper": [0, 2, 3, 4, 9, 13, 14, 15, 18, 22, 23, 30], "operand": 2, "opinion": 2, "opportun": 1, "optim": [14, 18, 28, 30], "optimis": 30, "option": [4, 27], "orang": 27, "order": [2, 3, 5, 8, 14, 22, 23], "ordinari": [14, 28], "org": [16, 17, 36], "organ": 3, "orient": 9, "origin": 3, "orthogon": 14, "osat": 30, "other": [1, 2, 3, 6, 8, 9, 14, 22, 23, 26, 27, 28, 35], "otherwis": [4, 21], "our": [3, 4, 8, 9, 11, 18, 23], "out": [1, 2, 3, 4, 6, 14, 18, 34, 37], "outcom": [4, 33], "outflow": 3, "outlier": 11, "output": [1, 6, 10, 11, 14, 16, 17, 18, 35], "output_can_be_silenc": 11, "outsid": 3, "over": [3, 10, 11, 31], "overal": 23, "overflow": 28, "overlap": 28, "overview": [33, 36], "overwhelm": 1, "overwritten": [3, 8], "own": [1, 2, 14, 18], "oxygen": [28, 30], "p": [6, 14, 15, 25, 27, 30, 32], "p0": 30, "p_valu": [15, 27], "pa": [3, 24, 25, 28, 30], "pace": 1, "pack": [5, 11, 12], "packag": [1, 9, 11, 14, 28, 30, 31, 33], "packed_column": [9, 11, 12], "packed_column_2": 12, "page": [2, 14, 33, 34, 35, 36], "pai": 3, "pair": [5, 8], "pamax": 28, "panda": [1, 11, 12, 15, 18, 23, 26, 27], "paper": [1, 26, 27], "par": 30, "paract": 0, "paramet": [11, 14, 18, 28, 30, 31, 32], "parenthesi": [2, 3, 5], "part": [0, 4, 23, 26, 27], "partial": [26, 27], "particl": 14, "particular": 34, "particularli": [4, 14], "paslei": 36, "pass": [3, 4, 6, 14], "past": 3, "path": [9, 35], "pd": [9, 11, 12, 15, 18, 23, 26, 27], "pdf": [26, 27, 28], "pearson": 15, "peer": 19, "peopl": [1, 2], "pep": 2, "per": 28, "perform": [3, 9, 10, 22, 23], "permeat": 31, "permeatt": 31, "ph": [8, 9], "phase": [18, 22, 23, 24, 25, 26, 27], "physic": 8, "physical_const": 14, "physicochem": 28, "pi": [10, 14, 23], "piec": 2, "pillar": [16, 17], "pioneer": 33, "place": [1, 3, 18, 21, 22, 23], "plai": 11, "plain": [1, 3], "plan": 1, "plant": 18, "plasmid": 33, "pleas": [14, 18, 22, 23, 26, 27], "plot": [1, 11, 14, 15, 18, 22, 23, 26, 27, 30, 31, 32, 33, 37], "plotli": [31, 32], "plt": [10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "plu": 5, "plug": [1, 4, 12], "pm": 30, "point": [5, 11, 22, 23, 26, 27, 28], "polar": 30, "polarz": 30, "poly1d": 27, "polyfit": 27, "polynomi": 14, "pop": [3, 8], "popul": 18, "popular": [1, 9, 10], "posit": [16, 17, 23], "possibl": [1, 2, 5, 9, 12, 14, 18, 21], "post": [1, 14, 37], "potenti": 2, "power": [10, 36], "practic": [1, 14], "pre": 9, "preced": 3, "predict": 36, "prefer": [2, 9, 14], "preprocess": 1, "presenc": 35, "present": [3, 9, 18, 23], "pressur": [8, 9, 11, 24, 25, 26, 27], "pretti": 12, "prevent": 11, "previou": 4, "previous": 21, "principl": [1, 9], "print": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 19, 21, 23, 24, 25, 27, 28, 30, 35], "printf": 1, "probabl": [1, 2, 3, 14, 23], "problem": [1, 3, 9, 14, 18], "process": [0, 1, 3, 4, 9, 14, 18, 28, 30, 31, 32, 33], "produc": [16, 17], "product": [10, 16, 17, 18, 21, 28, 30, 33], "profession": 1, "profil": 33, "program": [0, 1, 3, 4, 8, 22, 23], "programm": [1, 2], "project": 33, "promot": 33, "prop": 28, "prop_cycl": 37, "properli": [4, 36], "properti": 12, "proport": 11, "propos": 28, "prosi": 33, "provid": [0, 1, 3, 6, 9, 11, 16, 17, 18, 21, 33], "pt": [11, 33], "purpos": [9, 14, 36], "put": [15, 21, 27], "px": [31, 32], "py": [2, 11, 14, 15, 27], "pylab": 11, "pylab_gui_select": 11, "pylabmag": 11, "pylabtool": 11, "pyplot": [10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "python": [2, 3, 4, 8, 9, 11, 14, 18, 19, 26, 27, 28], "pythontutori": 4, "q": [6, 14, 16, 17, 23, 28], "qa": 28, "qamax": 28, "qm": 28, "qo": 28, "qp": 31, "qsa": 28, "qsan": 28, "qsmax": 28, "qsof": 28, "qsox": 28, "qt": 28, "qt4agg": 11, "quad": [14, 18], "quad_explain": 14, "quad_vec": 14, "quadrat": 14, "quadratur": 14, "qualiti": [14, 33], "quantiti": 3, "question": [1, 18, 28, 30, 33], "quick": 11, "quickli": 4, "quit": [3, 4], "r": [3, 6, 15, 21, 23, 24, 25, 26, 27, 30, 31, 32, 33], "r_": [21, 24, 25], "r_0": 32, "r_0_hph": 32, "r_a": [18, 23], "r_hph": 32, "r_m": 32, "r_m_hph": 32, "r_sphere": 23, "r_valu": [15, 27], "radau": [14, 30], "rais": [2, 4], "ralph": 2, "ramsai": 36, "rand": 4, "randn": 37, "random": [4, 10, 37], "rang": [4, 9, 11, 16, 17, 23, 32, 37], "rank": 14, "rapidli": [24, 25], "rate": [1, 3, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31], "rate_const": [3, 25], "rate_constant_100c": [24, 25], "ratio": [3, 10, 16, 17, 21, 25, 28], "raw": 33, "rcparam": 37, "re": [1, 14, 16, 17, 18, 30], "reach": [3, 4, 21], "react": [16, 17], "reactant": [16, 17, 18], "reaction": [1, 14, 15, 18, 22, 23, 24, 25], "reaction_batch": 21, "reactor": [0, 1, 4, 12, 15, 16, 17, 18, 20, 24, 25, 26, 27], "reactors1": 12, "reactors2": 12, "read": [1, 3, 4, 9, 10, 14, 16, 17], "read_csv": [9, 11], "readabl": [1, 4, 9], "real": [14, 16, 17], "realli": 2, "reason": 2, "reassign": 4, "receiv": 4, "recent": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "recommend": [11, 14], "red": [23, 27], "reduc": 33, "refer": [1, 3, 4, 36], "referenc": 3, "reflect": 19, "regard": 2, "region": 14, "registri": 11, "regress": [13, 26], "regular": 36, "rel": 11, "relat": [26, 27], "relationship": [24, 25], "releas": 28, "relev": [18, 33], "relianc": 2, "remaind": 4, "rememb": [1, 3, 4, 5, 8, 9, 12, 14, 18], "remov": [3, 8, 9, 28, 31], "render": 36, "repeat": [3, 22, 23], "repeatedli": 3, "replac": [16, 17], "repositori": 1, "repres": 14, "reproduc": 37, "request": 1, "requir": 1, "research": 33, "reserv": 3, "reset": 9, "reset_index": 9, "residu": [14, 15], "resolut": 31, "resourc": 3, "respect": 18, "respiratori": 28, "rest": 35, "result": [3, 5, 6, 8, 11, 12, 14, 15, 18, 23, 30, 31, 32], "retent": 30, "return": [2, 3, 4, 5, 6, 9, 11, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32], "reus": [1, 3, 18], "revers": 6, "rewrit": 1, "reynold": 30, "rho": [14, 30], "richard": 2, "right": 1, "rk23": 14, "rk45": [14, 30], "rm": 32, "rnk": 14, "robert": 36, "robust": 3, "romb": 14, "romberg": 14, "root": [10, 14], "rosa": [28, 31], "round": [3, 14, 15, 17, 21, 23, 24, 25, 27], "routin": 14, "row": [4, 9, 10, 12], "rowsxcolumn": 4, "rtol": [31, 32], "rule": [2, 3, 14], "run": [2, 3, 4, 6, 30, 32, 35], "run_line_mag": 11, "rung": 14, "rvalu": 15, "s0": [28, 30], "sai": [2, 6], "said": 23, "same": [2, 3, 9, 10, 12, 19, 23, 24, 25, 36], "sampl": [4, 14, 34, 37], "sat": 30, "satisfi": 3, "satur": 30, "save": [3, 9, 14, 28], "savefig": 28, "saw": 9, "sc": 30, "scan": [26, 27], "scatter": [11, 15, 27, 31, 32], "scatterplot": 11, "schmidt": 30, "school": 33, "scienc": 1, "scientif": [14, 33], "scipi": [23, 27, 28, 30, 31, 32], "score": 4, "script": 28, "scroll": 6, "search": 19, "second": [2, 3, 4, 14, 23], "second_order_reaction_batch": 21, "second_order_reaction_cstr": 21, "second_order_tim": 21, "section": 14, "see": [3, 4, 6, 8, 9, 10, 14, 15, 16, 17, 18, 21, 23, 34, 35, 36, 37], "seealso": 14, "seed": [10, 37], "seem": [1, 23], "seen": [8, 16, 17, 23, 33], "segment": [16, 17], "select": [2, 9, 11], "self": [2, 11], "sensit": 30, "sentenc": [2, 6], "sep": [9, 11], "separ": 9, "sept": 28, "sequenc": [3, 4, 5], "seri": [0, 1, 2], "serv": 36, "set": [1, 2, 3, 4, 7, 10, 11, 15, 18, 26, 27, 31, 32], "set_experi": 8, "set_xlabel": 23, "set_ylabel": 23, "settl": 23, "setup": [22, 23], "sf": 30, "sh": 30, "shadow": [14, 28], "shape": [4, 10], "share": 2, "sheet": [23, 30], "shell": 11, "sherwood": 30, "short": [0, 3, 23, 33], "shorter": 3, "should": [5, 9, 12, 21, 26, 27, 32, 35], "show": [10, 11, 14, 15, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36], "showlegend": 32, "shown": [18, 27, 30], "si": [23, 28], "side": [16, 17], "sigma": 14, "sigma_a": 31, "sigma_a_valu": 31, "sign": 37, "signal": [14, 28], "silicon": 2, "similar": [11, 19, 23, 26, 27, 36], "simpl": [4, 14, 16, 17, 30, 36], "simpli": 1, "simplic": 9, "simplifi": [16, 17], "simpson": 14, "simul": [15, 28, 30, 32], "simultan": 4, "sin": 14, "sinc": [1, 2, 3, 16, 17, 18, 23, 24, 25, 28], "singl": [1, 2], "singular": 14, "sit": 1, "site": [11, 14], "size": [10, 11, 22, 23, 28], "skill": [1, 33], "skip": 4, "slight": 36, "slope": 15, "small": [9, 23, 34, 36], "smallest": [1, 16, 17], "smallsmallsmallsmallsmallbigbigbigbigbig": 9, "so": [1, 2, 3, 4, 6, 9, 10, 14, 15, 16, 17, 18, 23, 24, 25, 26, 27, 35], "sof": 23, "sol": [14, 23, 30, 31, 32], "solid": [3, 8], "solut": [1, 5, 14, 16, 17, 18, 23, 28, 30, 31, 32], "solv": [0, 1, 3, 18, 19, 23, 26, 27, 28, 30, 31, 32], "solve_and_plot_system": 23, "solve_bvp": 14, "solve_ivp": [14, 23, 30, 31, 32], "solver": [1, 14, 28, 31, 32], "solver_hph": 32, "some": [1, 2, 3, 4, 9, 11, 12, 14, 15, 16, 17, 19, 27, 34, 36, 37], "someth": [1, 3, 4, 18, 21], "sometim": [2, 4], "sourc": [1, 33], "space": [2, 6, 14, 16, 17], "span": [32, 36], "spatial": 14, "speci": [18, 23], "special": [14, 36], "specif": [9, 18, 28, 36], "specifi": [3, 4, 9, 11], "speed": 3, "spend": 4, "spent": 1, "sphinx": 36, "split": [6, 16, 17], "spoiler": 30, "sqrt": [10, 14], "squar": [5, 10, 14, 15], "stack_depth": 11, "stackexchang": 1, "stackoverflow": 1, "stakehold": 33, "stand": 36, "standard": [6, 11, 15], "start": [2, 3, 9, 11, 15, 18, 21, 22, 23, 27, 28, 30, 35, 36], "starter": 36, "startswith": 4, "stat": [14, 15, 27], "state": [3, 37], "statement": [0, 2, 4, 30], "statist": [9, 15], "statu": 3, "std": [6, 9], "std_err": [15, 27], "steadi": 3, "stegemann": 28, "step": [1, 2, 9, 14, 33], "stick": 9, "still": [1, 18], "stir": [1, 4, 12, 24, 25], "stochiometri": 15, "stoichiomatr": 18, "stoichiometr": [16, 17, 18, 23, 26, 27], "stoichiometri": [0, 1, 13, 24, 25], "stoichiometry_equalmolar_react": 18, "stoichiometry_t": 18, "stoiciometr": 23, "stoictabl": 23, "store": [3, 4, 11, 14, 32, 36], "str": [2, 3, 15, 16, 17, 27], "strain": 28, "strateg": 33, "strategi": 9, "stream": [18, 26, 27], "strengthen": 33, "string": [1, 2, 5, 11, 18, 21], "string_4": [5, 6], "string_a": [5, 6], "string_b": [5, 6], "strong": 2, "structur": [0, 1, 2, 3, 4, 8, 14, 34, 36], "struggl": 18, "student": [1, 4, 18], "studi": [16, 17, 18], "style": 2, "subject": 2, "submit": [26, 27], "subplot": [15, 23, 27, 28, 32, 37], "subscript": 8, "subset": [8, 9], "substitut": 3, "substrat": [28, 30], "subtract": 5, "success": [2, 33], "suffici": 1, "suggest": [16, 17], "suit": 3, "suitabl": 9, "sum": [5, 9, 10, 12, 26, 27], "summari": 3, "superficialveloc": 14, "support": [33, 35], "sure": [1, 6, 37], "surfac": 14, "swlh": [16, 17], "symbol": 14, "sympi": [14, 16, 17], "synergi": 33, "syntact": 2, "syntax": [0, 3, 24, 36], "syntaxerror": 24, "system": [1, 2, 16, 17, 18, 23, 28, 30], "t": [1, 3, 4, 5, 6, 9, 10, 14, 15, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32, 36, 37], "t0": [23, 28], "t1": [21, 25], "t1_kelvin": [24, 25], "t2": [21, 24, 25], "t2_kelvin": [24, 25], "t_c": 27, "t_end": 32, "t_eval": [31, 32], "t_k": 27, "t_span": 32, "t_start": 32, "t_step": 32, "tab": [1, 2], "tabl": [6, 8, 9, 16, 17, 18, 23, 26, 27], "tail": 9, "tailor": 33, "take": [12, 14, 16, 17, 18, 19, 21, 22, 23], "taken": 1, "tank": [1, 4, 12], "target": 1, "target_list": 3, "task": [9, 19, 22, 23, 33], "tau": 21, "tba": 33, "team": 4, "teammat": 1, "technic": 1, "techniqu": 3, "tell": 3, "temp": [2, 6, 15, 27], "temperatur": [3, 8, 9, 11, 18, 22, 23, 24, 25, 26, 27], "tension": [14, 28], "term": [4, 23, 33], "termin": 4, "terranc": 28, "test": [1, 4, 14, 15, 18, 32], "tex": 37, "text": [1, 12, 30, 35, 36], "than": [3, 6, 23], "thank": 1, "thei": [2, 3, 8, 9, 14, 16, 17, 19, 36], "them": [2, 3, 4, 8, 10, 12, 14, 18], "theme": 1, "themselv": [2, 14], "theoret": [1, 14], "theori": [9, 12], "therapi": 33, "therefor": [1, 4], "theta_j": 23, "thi": [0, 1, 2, 3, 4, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37], "thing": 35, "think": [1, 9, 18], "third": 4, "thoma": 4, "those": 36, "though": 2, "thought": 1, "three": [1, 2, 3, 6, 8, 23], "through": [1, 3, 4, 8, 14, 23, 26, 27, 33], "thu": [27, 28], "ti": 33, "time": [1, 3, 4, 10, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33], "time_end": 32, "titl": [11, 12, 14, 15, 23, 27, 28, 31, 32], "toctre": 14, "todai": 1, "togeth": [3, 21], "token": 11, "toler": 14, "tolist": [16, 17, 27, 32], "too": 3, "tool": [1, 18, 33, 36], "top": [9, 12, 26, 27, 35], "topic": [1, 16, 17, 34], "total": [3, 4, 5, 26, 27, 28, 30], "tower": 5, "tplquad": 14, "trace": [1, 31], "traceback": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "tradit": 3, "tradition": 2, "train": 33, "transfer": [23, 29, 30], "transform": 3, "translat": 5, "transmembran": 30, "transpar": [4, 11], "transpos": [9, 10, 16, 17], "trapezoid": 14, "treat": 35, "tripl": 14, "true": [3, 4, 8, 9, 14, 23, 28, 32], "truth": 4, "try": [1, 3, 5, 8, 10, 12, 14, 16, 17, 18, 19, 26, 27], "tspan": [23, 30], "tu": [31, 33], "tube": 14, "tubular": 30, "tupl": [4, 8], "turbul": 30, "turn": 30, "tutori": [1, 3, 9, 30], "tv": 2, "twinx": 23, "two": [3, 4, 5, 8, 12, 14, 15, 16, 17, 19, 21, 23, 27, 28, 30, 32, 35, 36], "txt": 9, "type": [1, 2, 3, 4, 9, 10, 11, 18, 21, 30, 34], "typeerror": [2, 8], "u": [6, 23, 30], "u03f4_": 23, "u1": 23, "u2": 23, "unabl": 2, "uncom": [4, 14], "unction": 15, "undefin": 2, "under": [1, 15, 18, 22, 23], "underscor": [15, 27], "understand": [1, 2, 3, 4, 16, 17, 35], "uniform": [4, 10], "union": [8, 12], "uniqu": 8, "unit": [2, 5, 23], "unix": 1, "unlik": 1, "unord": 8, "unreasonal": 23, "unsupport": 2, "unsur": 27, "until": [3, 4, 11, 23], "up": [1, 8, 14, 18, 26, 27, 33], "updat": [3, 8, 9, 28, 31, 33], "update_layout": [31, 32], "upload": 26, "upon": 2, "upper": [10, 14, 28], "upstream": 0, "uptak": 28, "us": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 21, 22, 23, 26, 27, 30, 35, 36], "usag": [1, 14], "user": [2, 9, 10, 14, 15, 27], "userwarn": [15, 27], "usual": 9, "utf": [9, 11], "v": [2, 3, 6, 21, 23, 27, 28, 30, 32], "v0": [28, 30, 31], "v_": 21, "v_0": 18, "v_g": 14, "v_reactor": 23, "vaccin": 33, "val": [16, 17], "valid": 4, "vallei": 2, "valu": [3, 4, 6, 8, 10, 12, 14, 28, 31, 32], "variabl": [2, 3, 5, 14, 28, 32], "variat": 36, "variou": [1, 11, 12], "vector": [10, 14, 16, 17], "veloc": [22, 23], "verb": 2, "veri": [1, 2, 3, 4, 9, 10, 14, 23], "verifi": [2, 16, 17], "versu": [26, 27], "vertic": [16, 17], "vg": 14, "video": 2, "view": [22, 23], "viscos": 14, "visit": 33, "visual": [0, 1, 7], "vivo": 33, "vode": 14, "volterra": 14, "volum": [14, 15, 18, 23, 24, 25, 26, 27, 28, 30, 31], "w": 6, "wa": [0, 3, 4, 8], "wai": [1, 3, 4, 8, 9, 19], "wald": 15, "waldo": 2, "want": [0, 1, 3, 4, 6, 9, 12, 14, 16, 17, 37], "warn": [6, 14], "water": [3, 9, 11, 12, 14], "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30], "weakli": 2, "week": [2, 3, 4], "week02": [9, 12], "weight": 14, "welcom": [26, 27, 33], "well": [2, 3, 4, 9, 14, 34, 37], "wendi": 36, "were": [19, 23], "what": [1, 2, 3, 4, 6, 9, 10, 12, 14, 16, 17, 21, 23, 24, 25, 30], "when": [1, 3, 4, 11, 14, 15, 18, 24, 25, 26, 27, 28, 35, 36], "where": [1, 3, 4, 5, 9, 12, 14, 16, 17, 18, 21, 23], "wherea": 36, "whether": [9, 21, 36], "which": [1, 2, 3, 4, 5, 9, 10, 14, 15, 23, 26, 27, 28, 35], "while": [1, 2, 4, 6, 14, 16, 17], "who": 3, "whole": [3, 9], "whose": [15, 27], "why": [3, 4, 5, 10], "wide": [3, 9, 10], "width": [2, 31, 32], "wiki": [16, 17], "wikipedia": [2, 16, 17], "wilm": 28, "within": 4, "without": [3, 22, 23, 28], "won": 3, "wonder": 3, "word": [6, 8, 21, 22, 23, 26, 27], "work": [1, 2, 4, 5, 9, 10, 12, 14, 18, 30, 33, 37], "workshop": 0, "worri": [1, 4], "worth": 14, "would": [3, 4, 21, 22, 23], "wp": 33, "wp1": 33, "wp2": 33, "wp3": 33, "wp4": 33, "wp5": 33, "wp6": 33, "wrap": [3, 14], "write": [1, 2, 3, 4, 5, 12, 14, 16, 17, 18, 19, 21, 26, 27, 35, 36], "written": [8, 18, 26, 27, 35, 36], "wrong": 2, "www": [4, 16, 17], "wxagg": 11, "x": [2, 6, 11, 14, 15, 16, 17, 18, 23, 26, 27, 28, 30, 31, 32], "x0": [3, 28, 30], "x1": 3, "x2": 3, "xaxis_titl": [31, 32], "xlabel": [11, 14, 15, 27, 28, 30], "xlim": [11, 30], "xtick": 28, "xx": 14, "xy": [15, 27], "y": [2, 6, 14, 28, 30, 31, 32], "y0": [28, 31, 32], "y_hph": 32, "yam": 28, "yaof": 28, "yaresp": 28, "yaxis_titl": [31, 32], "yem": 28, "yet": [22, 23], "yield": [28, 30, 31, 32], "ylabel": [11, 14, 15, 27, 30], "ylim": [27, 30], "yofm": 28, "yosresp": 28, "you": [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 28, 34, 35, 36, 37], "your": [1, 3, 4, 5, 6, 9, 12, 14, 16, 18, 19, 21, 22, 24, 26, 27, 30, 35, 36, 37], "your_birth_dai": 5, "your_birth_month": 5, "your_birth_year": 5, "your_current_ag": 5, "yourself": [1, 18, 19], "youtubevideo": 2, "yso": 30, "ytick": 28, "yx": 30, "yy": 14, "z": [6, 14, 16, 17, 23, 27], "z1": 14, "zero": [2, 4, 8, 15, 23], "zerodivisionerror": 2, "zip": [4, 27], "zvode": 14, "\u025b": 14}, "titles": ["Introduction to Python", "1. Introduction to Python", "2. Hello, World!", "3. Statements and Packaging", "4. Conditionality and Repetition", "Exercises about statements, assignments, lists and generators, control flow and packaging", "Hard exercises and solutions", "Module 2", "Dictionaries and Sets", "Pandas DataFrames", "Numpy arrays", "Data Visualization", "Exercises about dictionaries, sets, dataframes, arrays and visualizations", "Module 3", "SciPy", "Finding the logarithm of a value in Python", "Stoichiometry - Part 1", "Stoichiometry - Part 1", "Stoichiometry - Part 2", "Operations with SciPy", "Module 4", "Reactors in Python", "Energy balance for a laboratory equipment batch reactor for chemical synthesis", "Energy balance for a laboratory equipment batch reactor for chemical synthesis", "Problem B", "Problem B", "Chemical Reaction Engineering - Assignment 1", "Chemical Reaction Engineering - Assignment 1", "Plotting", "Module 4", "Continuous reactor model", "Diafiltration", "Bead mill", "Dig4Bio workshops", "Welcome to your Jupyter Book", "Notebooks with MyST Markdown", "Markdown Files", "Content with notebooks"], "titleterms": {"": 1, "1": [1, 3, 5, 9, 16, 17, 18, 21, 26, 27], "2": [2, 3, 5, 7, 9, 18], "3": [3, 5, 9, 13, 18], "4": [3, 4, 5, 9, 18, 20, 29], "5": [3, 5, 9], "6": 9, "A": [2, 21], "about": [5, 12], "accord": 10, "add": 35, "algebra": 14, "all": 6, "an": [10, 35], "arithmet": 1, "arrai": [10, 12], "assign": [1, 3, 5, 26, 27], "b": [24, 25], "balanc": [16, 17, 22, 23], "base": 33, "batch": [21, 22, 23], "bead": 32, "befor": 1, "binari": 6, "block": 37, "book": 34, "break": 4, "calcul": [16, 17], "cell": 35, "chemic": [22, 23, 26, 27], "citat": 36, "code": 37, "coeffici": [16, 17], "compound": [1, 3, 5], "condition": 4, "consist": 2, "constant": 14, "content": [33, 37], "continu": [4, 30], "control": 5, "cours": 0, "creat": [8, 9, 10, 35], "cstr": 21, "data": [9, 11], "datafram": [9, 12], "date": 33, "diafiltr": 31, "dictionari": [8, 9, 12], "differenti": 14, "dig4bio": 33, "direct": 36, "distribut": 10, "duplic": 9, "energi": [22, 23], "engin": [26, 27], "english": 6, "equat": 14, "equip": [22, 23], "exampl": [18, 35], "exercis": [5, 6, 12], "familiar": 1, "file": 36, "find": 15, "first": 21, "flow": 5, "foolish": 2, "from": 9, "function": 3, "gener": [3, 5], "goal": [18, 33], "groupbi": 9, "handl": 9, "hard": 6, "hello": 2, "help": 1, "high": 32, "hobgoblin": 2, "homogenis": 32, "how": [16, 17], "i": [2, 36], "ideal": 21, "index": 9, "inspect": 9, "instruct": [26, 27], "integr": 14, "introduct": [0, 1, 33], "jupyt": 34, "laboratori": [22, 23], "languag": 2, "learn": [1, 36], "librari": 15, "linear": [14, 15], "list": [3, 5, 9], "littl": 2, "load": 9, "logarithm": 15, "loop": 3, "markdown": [35, 36, 37], "mass": [16, 17], "master": 1, "metadata": 35, "mill": 32, "mind": 2, "miss": 9, "model": [30, 33], "modul": [7, 13, 20, 29], "mole": [16, 17], "more": 36, "motiv": 18, "myst": [35, 36, 37], "notebook": [35, 37], "numpi": 10, "object": [0, 1], "oper": [1, 8, 10, 19], "order": 21, "outlier": 6, "output": 37, "packag": [3, 5], "panda": 9, "part": [16, 17, 18], "partner": 33, "plan": 0, "plot": [12, 28], "possibl": 6, "pragmat": 2, "pressur": 32, "problem": [21, 24, 25], "program": 2, "python": [0, 1, 15, 16, 17, 21, 33], "quickli": 35, "reaction": [16, 17, 21, 26, 27], "reactor": [21, 22, 23, 30], "regress": 15, "remov": 6, "repetit": 4, "replac": 9, "resid": 21, "role": 36, "sampl": 36, "schedul": 1, "scipi": [14, 15, 19], "second": 21, "semant": 2, "set": [8, 12], "simpl": [3, 15], "solut": 6, "solv": [14, 21], "start": 1, "statement": [1, 3, 5], "statist": 14, "stoichiometri": [16, 17, 18], "syntax": [1, 2], "synthesi": [22, 23], "system": 14, "task": 28, "techniqu": 33, "time": 21, "tip": 1, "translat": 6, "trick": 1, "valu": [9, 15], "visual": [11, 12], "week": 21, "welcom": 34, "what": 36, "while": 3, "why": 1, "workshop": 33, "world": 2, "ws1": 33, "ws2": 33, "yaml": 35, "your": 34}}) \ No newline at end of file +Search.setIndex({"alltitles": {"1. Introduction to Python": [[1, null]], "1. Loading and inspecting data": [[9, "loading-and-inspecting-data"]], "1. Simple statement": [[3, "simple-statement"]], "1. Statements": [[5, "statements"]], "2. Assignment statement": [[3, "assignment-statement"]], "2. Assignments": [[5, "assignments"]], "2. Hello, World!": [[2, null]], "2. Indexing": [[9, "indexing"]], "3. Lists and generators": [[3, "lists-and-generators"], [5, "lists-and-generators"]], "3. Replacing missing values": [[9, "replacing-missing-values"]], "3. Statements and Packaging": [[3, null]], "4. Compound statement": [[3, "compound-statement"]], "4. Compound statements": [[5, "compound-statements"]], "4. Conditionality and Repetition": [[4, null]], "4. Creating DataFrames from lists and dictionaries": [[9, "creating-dataframes-from-lists-and-dictionaries"]], "5. Groupby": [[9, "groupby"]], "5. Packaging": [[3, "packaging"], [5, "packaging"]], "6. Handle duplicates": [[9, "handle-duplicates"]], "An example cell": [[35, "an-example-cell"]], "Assignment 1": [[26, "assignment-1"], [27, "assignment-1"]], "Bead mill": [[32, null]], "Chemical Reaction Engineering - Assignment 1": [[26, null], [27, null]], "Citations": [[36, "citations"]], "Code blocks and outputs": [[37, "code-blocks-and-outputs"]], "Conditionality": [[4, "conditionality"]], "Constants": [[14, "constants"]], "Content": [[33, "content"]], "Content with notebooks": [[37, null]], "Continue and Break": [[4, "continue-and-break"]], "Continuous reactor model": [[30, null]], "Create a NumPy array": [[10, "create-a-numpy-array"]], "Create a notebook with MyST Markdown": [[35, "create-a-notebook-with-myst-markdown"]], "Create an array according to a distribution": [[10, "create-an-array-according-to-a-distribution"]], "Creating a dictionary": [[8, "creating-a-dictionary"]], "Data Visualization": [[11, null]], "DataFrames, arrays and plotting": [[12, "dataframes-arrays-and-plotting"]], "Dates": [[33, "dates"]], "Diafiltration": [[31, null]], "Dictionaries": [[8, "dictionaries"]], "Dictionaries and Sets": [[8, null]], "Dictionaries and sets": [[12, "dictionaries-and-sets"]], "Dig4Bio workshops": [[33, null]], "Energy balance for a laboratory equipment batch reactor for chemical synthesis": [[22, null], [23, null]], "Equations": [[14, "equations"]], "Example 1:": [[18, "example-1"]], "Example 2:": [[18, "example-2"]], "Example 3:": [[18, "example-3"]], "Example 4:": [[18, "example-4"]], "Exercise: Binary to English translation": [[6, "exercise-binary-to-english-translation"]], "Exercise: Remove all outliers": [[6, "exercise-remove-all-outliers"]], "Exercises about dictionaries, sets, dataframes, arrays and visualizations": [[12, null]], "Exercises about statements, assignments, lists and generators, control flow and packaging": [[5, null]], "Fed batch simulation": [[28, null]], "Finding the logarithm of a value in Python": [[15, null]], "Functions": [[3, "functions"]], "Goal": [[33, "goal"]], "Goal:": [[18, "goal"]], "Hard exercises and solutions": [[6, null]], "Helpful tips and tricks before starting": [[1, "helpful-tips-and-tricks-before-starting"]], "High pressure homogeniser": [[32, "high-pressure-homogeniser"]], "How to balance coefficients in Python": [[16, "how-to-balance-coefficients-in-python"], [17, "how-to-balance-coefficients-in-python"]], "Ideal batch reactor (week 1)": [[21, "ideal-batch-reactor-week-1"]], "Instructions": [[26, "instructions"], [27, "instructions"]], "Integration": [[14, "integration"]], "Introduction": [[1, "introduction"]], "Introduction to Python": [[0, null]], "Introduction to Python (WS1)": [[33, null]], "Learn more": [[36, "learn-more"]], "Learning Objectives- Master the Python\u2019s syntax, familiarize with arithmetic operations, assignment and compound statements.": [[1, "learning-objectives-master-the-python-s-syntax-familiarize-with-arithmetic-operations-assignment-and-compound-statements"]], "Linear Algebra": [[14, "linear-algebra"]], "Markdown + notebooks": [[37, "markdown-notebooks"]], "Markdown Files": [[36, null]], "Mass-mass reactions in Python": [[16, "mass-mass-reactions-in-python"], [17, "mass-mass-reactions-in-python"]], "Model-based Techniques (WS2)": [[33, null]], "Module 2": [[7, null]], "Module 3": [[13, null]], "Module 4": [[20, null], [29, null]], "Mole-mole calculations in Python": [[16, "mole-mole-calculations-in-python"], [17, "mole-mole-calculations-in-python"]], "Motivation:": [[18, "motivation"]], "MyST markdown": [[37, "myst-markdown"]], "Notebooks with MyST Markdown": [[35, null]], "Numpy arrays": [[10, null]], "Objective": [[0, "objective"], [1, "objective"]], "Operations": [[10, "operations"]], "Operations with SciPy": [[19, null]], "Pandas DataFrames": [[9, null]], "Partners": [[33, "partners"]], "Plotting": [[28, "plotting"]], "Possible solutions": [[6, "possible-solutions"]], "Pragmatics": [[2, "pragmatics"]], "Problem A:": [[21, "problem-a"]], "Problem B": [[24, null], [25, null]], "Quickly add YAML metadata for MyST Notebooks": [[35, "quickly-add-yaml-metadata-for-myst-notebooks"]], "Reactors in Python": [[21, null]], "Repetition": [[4, "repetition"]], "Residence time in a CSTR": [[21, "residence-time-in-a-cstr"]], "Sample Roles and Directives": [[36, "sample-roles-and-directives"]], "Schedule": [[1, "schedule"]], "SciPy": [[14, null]], "Semantics": [[2, "semantics"]], "Sets": [[8, "sets"]], "Sets operations": [[8, "sets-operations"]], "Simple linear regression in Python with SciPy library": [[15, "simple-linear-regression-in-python-with-scipy-library"]], "Solving Systems of Differential Equations": [[14, "solving-systems-of-differential-equations"]], "Solving the first order reaction": [[21, "solving-the-first-order-reaction"]], "Solving the second order reaction": [[21, "solving-the-second-order-reaction"]], "Statistics": [[14, "statistics"]], "Stoichiometry - Part 1": [[16, null], [17, null]], "Stoichiometry - Part 2": [[18, null]], "Syntax": [[2, "syntax"]], "Syntax, Semantics and Pragmatics of a programming language": [[2, "syntax-semantics-and-pragmatics-of-a-programming-language"]], "Tasks": [[28, "tasks"]], "Welcome to your Jupyter Book": [[34, null]], "What is MyST?": [[36, "what-is-myst"]], "Why Python?": [[1, "why-python"]], "course plan": [[0, "course-plan"]], "for loop": [[3, "for-loop"]], "if statement": [[3, "if-statement"]], "loops": [[3, "loops"]], "while loop": [[3, "while-loop"]], "\u201cA Foolish Consistency is the Hobgoblin of Little Minds\u201d": [[2, "a-foolish-consistency-is-the-hobgoblin-of-little-minds"]]}, "docnames": ["WS1/intro_to_ws1", "WS1/module_1/0_python_basics", "WS1/module_1/1_hello_world", "WS1/module_1/2_statements", "WS1/module_1/3_control_flow", "WS1/module_1/4_exercise_1", "WS1/module_1/5_exercise_2", "WS1/module_2/0_intro_module_2", "WS1/module_2/1_dictionaries_and_sets", "WS1/module_2/2_dataframes", "WS1/module_2/3_numpy_arrays", "WS1/module_2/4_data_visualizations", "WS1/module_2/5_exercise_1", "WS1/module_3/0_intro_module_3", "WS1/module_3/1_operations", "WS1/module_3/2_linear_regression", "WS1/module_3/3_stoichiometry", "WS1/module_3/4_stoichiometry_solution", "WS1/module_3/5_stoichiometry_pt2", "WS1/module_3/6_exercise_1", "WS1/module_4/0_intro_module_4", "WS1/module_4/1_reactors_in_python", "WS1/module_4/2_combining_balances", "WS1/module_4/3_combining_balances_solution", "WS1/module_4/4_exercise_1", "WS1/module_4/5_exercise_1_solution", "WS1/module_4/6_exercise_2", "WS1/module_4/7_exercise_2_solution", "WS1/module_5/0_FedBatch_Ecoli_simulation", "WS1/module_6/0_intro_module_6", "WS1/module_6/1_Mass_Transfer", "WS1/module_6/2_Diafiltration", "WS1/module_6/3_Cell_lysis", "index", "intro", "markdown-notebooks", "mymarkdownfile", "notebooks"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["WS1/intro_to_ws1.md", "WS1/module_1/0_python_basics.ipynb", "WS1/module_1/1_hello_world.ipynb", "WS1/module_1/2_statements.ipynb", "WS1/module_1/3_control_flow.ipynb", "WS1/module_1/4_exercise_1.ipynb", "WS1/module_1/5_exercise_2.ipynb", "WS1/module_2/0_intro_module_2.ipynb", "WS1/module_2/1_dictionaries_and_sets.ipynb", "WS1/module_2/2_dataframes.ipynb", "WS1/module_2/3_numpy_arrays.ipynb", "WS1/module_2/4_data_visualizations.ipynb", "WS1/module_2/5_exercise_1.ipynb", "WS1/module_3/0_intro_module_3.ipynb", "WS1/module_3/1_operations.ipynb", "WS1/module_3/2_linear_regression.ipynb", "WS1/module_3/3_stoichiometry.ipynb", "WS1/module_3/4_stoichiometry_solution.ipynb", "WS1/module_3/5_stoichiometry_pt2.ipynb", "WS1/module_3/6_exercise_1.ipynb", "WS1/module_4/0_intro_module_4.ipynb", "WS1/module_4/1_reactors_in_python.ipynb", "WS1/module_4/2_combining_balances.ipynb", "WS1/module_4/3_combining_balances_solution.ipynb", "WS1/module_4/4_exercise_1.ipynb", "WS1/module_4/5_exercise_1_solution.ipynb", "WS1/module_4/6_exercise_2.ipynb", "WS1/module_4/7_exercise_2_solution.ipynb", "WS1/module_5/0_FedBatch_Ecoli_simulation.ipynb", "WS1/module_6/0_intro_module_6.ipynb", "WS1/module_6/1_Mass_Transfer.ipynb", "WS1/module_6/2_Diafiltration.ipynb", "WS1/module_6/3_Cell_lysis.ipynb", "index.md", "intro.md", "markdown-notebooks.md", "mymarkdownfile.md", "notebooks.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [2, 3, 4, 6, 8, 9, 10, 11, 14, 18, 19, 23, 24, 25, 28, 30, 32, 35, 36, 37], "0": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 37], "00": [10, 27], "000000": 9, "00001": 28, "001": [14, 21, 30], "00100111": 6, "00100160": 14, "00101100": 6, "00101110": 6, "00111111": 6, "0013": 28, "003145": 27, "003247": 27, "003300": 27, "003356": 27, "005": [22, 23], "00535805": 10, "007": 30, "007537743458458121": 14, "00855369e": 10, "01": [10, 15, 18, 27, 28, 30], "01000001": 6, "01000010": 6, "01000011": 6, "01000100": 6, "01000101": 6, "01000110": 6, "01000111": 6, "01001000": 6, "01001001": 6, "01001010": 6, "01001011": 6, "01001100": 6, "01001101": 6, "01001110": 6, "01001111": 6, "01010000": 6, "01010001": 6, "01010010": 6, "01010011": 6, "01010100": 6, "01010101": 6, "01010110": 6, "01010111": 6, "01011000": 6, "01011001": 6, "01011010": 6, "01100001": 6, "01100010": 6, "01100011": 6, "01100100": 6, "01100101": 6, "01100110": 6, "01100111": 6, "01101000": 6, "01101001": 6, "01101010": 6, "01101011": 6, "01101100": 6, "01101101": 6, "01101110": 6, "01101111": 6, "01104423": 10, "01110000": 6, "01110001": 6, "01110010": 6, "01110011": 6, "01110100": 6, "01110101": 6, "01110110": 6, "01110111": 6, "01111000": 6, "01111001": 6, "01111010": 6, "01315653": 10, "01350781": 14, "01352138": 10, "01390426": 10, "015075486916916242": 14, "01714138": 10, "01816505468086826": 14, "02": [3, 10], "02149461": 10, "023": 30, "02418612": 10, "025": [3, 30], "02701561": 14, "02764": [26, 27], "02846888": 10, "02933765": 10, "03": 10, "03007247e": 10, "03107158": 14, "031415926535897934": 23, "03317566": 10, "034183917296711934": 27, "03548": [26, 27], "03565621": 10, "0358": 28, "03586382": 10, "036": 30, "036275795675059605": 14, "03633010936173652": 14, "03758124": 10, "04": [10, 28], "04013604": 10, "04116899": 10, "04519": [26, 27], "04546566": 10, "04951286": 10, "05": [3, 18, 23, 25, 28], "0500639495865090": 14, "0505": 14, "05083825": 10, "05276279e": 10, "05403123": 14, "058930203933592655": 14, "05930116": 10, "05_ode_simpleecolimodel_x_s_dot_a_v_": 28, "06": 30, "06061781": 14, "06214316": 14, "06285837": 10, "06327177": 14, "06419087e": 10, "06877704": 10, "06955999e": 10, "07": 27, "07154937": 10, "07165": [26, 27], "072": 14, "0725911756035318": 14, "07377389": 10, "07483045": 14, "07604449355095103": 25, "07808874": 10, "07868448": 10, "079": 23, "08": 15, "08155028": 10, "08539217": 10, "0857": 30, "0858654025112094": 14, "08613362e": 10, "09": [27, 33], "09045458": 10, "09290083": 10, "09342056": 10, "096879": 27, "0f": 30, "0j": 4, "0m": 14, "0x000001fc8f363140": [], "0x0000021e7c533060": [], "0x0000022e5fde3060": [], "0x00000248f86f3140": 3, "0x141d4fb7e80": 27, "0x7828466453c0": 30, "0x7828467a95d0": 30, "0x79827deb2ad0": 30, "0x7982890b3f10": 30, "1": [0, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 28, 30, 31, 32, 33, 37], "10": [3, 4, 5, 6, 8, 9, 11, 14, 15, 18, 26, 27, 28, 30, 31, 32, 33, 37], "100": [3, 6, 9, 11, 23, 24, 25, 28, 30, 31, 32, 37], "1000": [6, 14, 30, 31, 32], "100000": [3, 9, 25], "101": [11, 14], "102": 11, "10200": [24, 25], "1029575": 10, "103": 11, "10308393e": 10, "104": 11, "104556": 27, "105": [9, 15], "10619298": 10, "10696827e": 10, "10th": 5, "11": [3, 4, 9, 10, 14, 15, 27], "110": [21, 30], "11040162": 10, "111000": 21, "11487653": 14, "11616722": 10, "11813726": 10, "119": 9, "12": [4, 8, 10, 11, 14, 15, 26, 27, 28, 33], "120": 18, "12013861": 14, "12027261": 10, "1225544": 10, "12428631": 14, "125": 32, "12543393": 10, "126": 30, "12627576": 10, "12654355": 14, "1271167": 10, "13": [4, 9, 11, 14, 15, 26, 27], "13010319": 10, "132": 9, "134": 9, "13843083e": 10, "13880088034662": 30, "13978561e": 10, "14": [4, 8, 9, 11, 15, 21, 23, 26, 27, 28], "140": 23, "1400": 30, "14000": 28, "14131777e": 10, "14159265": 10, "1423563681": 2, "1469208191": 27, "1475": 3, "1480893": 10, "14910129": 10, "14966091": 14, "15": [3, 4, 5, 8, 9, 14, 15, 18, 21, 23, 24, 25, 27, 28], "15197548": 10, "15395982": 10, "16": [5, 8, 11, 14, 15, 18, 26, 27, 30], "161": 9, "17": [3, 9, 10, 14, 15, 16, 17, 27], "17041386e": 10, "1710065124949596e": 14, "176985": 10, "18": [3, 8, 9, 15, 18, 25, 26, 27], "18017253": 14, "18057954": 10, "18178589": 10, "18186093e": 10, "18316886": 10, "18482914": 10, "18500": 27, "186": 9, "18620554": 10, "19": [3, 9], "1950": 27, "19534423": 10, "19579996": 10, "19680801": 37, "19731697": 10, "19762975e": 10, "1979": 1, "1atm": 30, "1e": [30, 31, 32], "1f": 30, "1n2": [16, 17], "2": [0, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 21, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37], "20": [3, 5, 8, 9, 10, 14, 15, 25, 26, 27, 28], "200": [9, 10, 11, 28, 30], "200000": 9, "20012953": 10, "2014": 36, "2015": 28, "202": 30, "20223002": 10, "2024": [28, 33], "2028829241903": 14, "20631929e": 10, "207": 9, "20887358": 10, "20925829": 14, "21": [8, 9, 15, 27], "2101290534": 27, "2150897": 10, "21578285": 10, "217": 28, "21912867": 10, "22": [9, 15, 27, 28], "22010385": 10, "22370579": 10, "224": 9, "2266": 30, "22685872e": 10, "22694704": 10, "22763038": 10, "23": 15, "23173812": 10, "2368782444": 15, "23862743e": 10, "239": 27, "23918849": 10, "23973073": 10, "24": [8, 9], "2436706066": 2, "24407647": 10, "24659625": 10, "2478": 11, "2479": 11, "2480": 11, "2482": 11, "2483": 11, "2484": 11, "2485": 11, "25": [3, 9, 14, 15, 24, 25, 26, 27], "2500": 3, "25000": 23, "250000": 9, "25228799": 14, "25308709": 14, "25c": 30, "26364188": 14, "2641720524": 3, "26461166": 10, "26563489": 10, "26620291": 10, "26680751": 10, "26705942": 10, "26920648": 10, "27": [8, 9, 14], "2707087": 10, "27105438742610": 14, "27282082": 10, "273": [24, 25, 27], "275": 9, "27504189": 10, "27511494": 10, "27898772": 10, "28": [8, 10, 16, 17, 27], "28038468": 10, "28184845": 10, "282": 9, "28318531": 10, "28534": 23, "28978974": 10, "29": [8, 9, 33], "29010873849084": 14, "29034558": 10, "291413475940725e": 14, "298": [22, 23, 27], "29932181": 14, "2a": 18, "2e": 14, "2f": [15, 27], "2h_2o": [16, 17], "2nh3": [16, 17], "2nh_3": [16, 17], "2o_2": [16, 17], "2x3": 4, "3": [0, 1, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 37], "30": [4, 8, 9, 11, 26, 27], "300": [2, 9, 11, 14, 30], "3025850929940455": 21, "303": 27, "308": 27, "308954594504387": 30, "31": [10, 33], "31198904": 10, "31203728": 10, "314": [23, 26, 27], "3144": [3, 24, 25], "318": 27, "31996809": 10, "31mdocstr": 14, "31mfile": 14, "31mstring": 14, "31mtype": 14, "32": 9, "321": 11, "321540105031345": 14, "322": 11, "32244257": 10, "323": 11, "324": 11, "32504457": 10, "33": [27, 30], "330": 18, "33328988": 14, "33392199e": 10, "335": 11, "336": 11, "338": 11, "338786": 27, "34": 9, "340": 11, "341": 11, "34104825": 10, "34427109": 10, "34749156": 10, "34873286": 10, "35": [4, 9, 26, 27], "35512872": 10, "36": [14, 15], "3600": 25, "36034507": 14, "36364993": 10, "3662": 11, "3664": 11, "3665": 11, "3667": 11, "3668": 11, "36680902": 10, "3669": 11, "36846605": 10, "36970891": 10, "37135546": 28, "37281849e": 10, "37303702": 10, "37314012": 10, "37525": 27, "376": 27, "376877": 9, "3775": 3, "380": 9, "380450": 23, "38187548": 10, "38905610e": 10, "389058": 9, "39": 9, "391": 28, "39196572": 10, "39387734e": 10, "39484033": 10, "39545877262": 27, "3967210108": 27, "39743136": 10, "398": [22, 23], "39822972": 10, "39918679e": 10, "39934756": 10, "3a": 18, "3h2": [16, 17], "3h_2": [16, 17], "4": [0, 2, 6, 8, 10, 11, 14, 15, 16, 17, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 37], "40": [4, 9], "40000": 23, "40002676": 10, "40246105e": 10, "40603792": 10, "4082665237440342": 14, "41": [26, 27], "41088856e": 10, "41371469": 10, "41421356": 10, "41614516": 10, "41655787": 10, "42": [9, 10, 16, 17], "42467822": 10, "425070858": 2, "42648957": 10, "43": 27, "43319312": 14, "43342771": 10, "434": 21, "43746752": 10, "44421562": 10, "44892884e": 10, "44913211e": 10, "45": [11, 26, 27], "4513": 27, "4514": 27, "45191136": 10, "45299155": 10, "45587033": 10, "4564327": 10, "45759633": 10, "45801434": 10, "45825768e": 10, "45863749e": 10, "45921236": 10, "46": 9, "46044652e": 10, "46398788": 10, "467293847": 14, "46799177": 10, "47": 9, "47527509": 10, "4761905": 30, "47750": 14, "47912378": 10, "48": [9, 27], "482": 9, "48370458": 10, "48411054": 10, "488": 28, "48897756": 10, "49": 14, "49858446": 10, "4a": 5, "4b": 5, "5": [0, 2, 4, 6, 8, 10, 11, 14, 15, 16, 17, 18, 23, 25, 26, 27, 28, 30, 31, 32, 37], "50": [4, 9, 10, 11, 15, 23, 27, 30, 32], "500": 30, "5000": 23, "50000": 23, "500000": 9, "50356459": 10, "50460914": 28, "50649629e": 10, "50744688": 10, "50790344e": 10, "51": [16, 17, 27], "51110228": 10, "51588326": 10, "51755996": 10, "52": 23, "5215701": 10, "52323923": 10, "53055453e": 10, "54": 27, "54193436": 10, "54254069": 10, "54269806": 10, "54448954": 10, "55": 9, "55026565": 10, "55241580e": 10, "5534414": 14, "55400976": 10, "55729293": 10, "55975109": 10, "56": [9, 27, 28], "56186902": 10, "56637061": 10, "5688": 23, "56968099": 10, "57": [9, 26, 27], "57035192": 10, "571484": 9, "57445806": 14, "575": 9, "57950291": 10, "58": 27, "58245828": 10, "5842893": 10, "585": 3, "588491": 27, "59": 30, "592": 14, "5b": 18, "5e": 30, "6": [0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 21, 26, 27, 28, 32, 33], "60": [3, 9, 14, 23], "600": [14, 28], "60000": 23, "60110022e": 10, "60175662": 10, "60439396": 10, "60734415": 10, "60848449": 10, "60922754": 10, "61": 9, "61488031": 10, "61624076": 10, "6167947": 10, "61836552": 10, "62": [15, 28, 30], "62196464": 10, "622960": 23, "62342215": 10, "62831853": 10, "62871196": 10, "63092286": 10, "63221707e": 10, "6344444": 10, "635962": 27, "63600695": 10, "63602953": 10, "63777527e": 10, "64": [10, 27], "64156013": 10, "6446573357e": 14, "64640586": 10, "64831449": 10, "65036664": 10, "65066066": 10, "65747502": 10, "66": 9, "66179605": 10, "664": 30, "66488528": 10, "67060499": 10, "67523034": 10, "67805958": 10, "67899": 14, "68": [10, 14, 26, 27], "6821327": 10, "69": 2, "69841915": 10, "7": [0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 21, 25, 27, 31], "70": [9, 30], "700": 30, "700000": 9, "71": [10, 27], "71350665": 10, "71693146": 10, "72": [14, 27], "72069014": 14, "72146117": 10, "72620685": 10, "7272592": 10, "73": [15, 27], "73205081": 10, "73235229": 10, "73272369": 10, "73277247": 14, "73556627": 10, "739075": 9, "74292118": 10, "7468241328124271": 14, "74697819": 10, "74894245e": 10, "74908024": 10, "75": [9, 18, 26, 27, 32], "750000": 9, "75467871": 10, "76": 27, "76671077": 10, "77": [9, 23, 32], "77128714": 10, "77347069": 10, "77417285": 10, "77442549": 10, "7767207": 14, "77735458": 10, "78": 9, "78279812e": 10, "785118": 10, "7883749": 14, "7896547": 10, "79": 30, "7921826": 10, "79422052": 10, "79443152": 10, "8": [1, 2, 3, 4, 6, 8, 9, 10, 11, 14, 15, 16, 17, 21, 23, 24, 25, 26, 27, 28, 30, 31], "80": [4, 9], "800": [2, 31], "800168850713945e": 25, "80083611": 10, "80475369920643": 14, "80804025e": 10, "81": [10, 14, 26, 27], "81513295": 10, "81611105": 14, "81653177": 10, "8186408": 10, "81948504": 10, "82076585": 10, "82842712": 10, "83": [15, 27], "83207483e": 10, "83482201": 10, "837518c9075b": [16, 17], "84": 27, "84045291": 10, "84374847": 10, "84938724": 10, "85": [26, 27], "85421558": 10, "85508204": 10, "85722573273506e": 14, "85929364963352": 14, "8593953": 10, "86389004": 10, "86638624": 14, "87345998": 10, "8772544542002486": 10, "87899788": 10, "87992445e": 10, "88": [26, 27, 30], "88030499": 10, "883610006827256e": 30, "88581941": 10, "88836035": 14, "89": [9, 27], "89306667e": 10, "89376198": 10, "89777107": 10, "8fc807e452e5": 28, "9": [2, 3, 4, 6, 8, 9, 10, 14, 15, 21, 27, 30, 31, 32], "90": [27, 28], "900000": 9, "90029989": 10, "90142861": 10, "91": [26, 27], "91213997": 10, "91894679": 10, "92": [15, 27], "92489459": 10, "93": [9, 14], "93126407": 10, "93916926": 10, "9398197": 10, "94356417": 10, "94442985": 10, "96665893": 10, "97130091": 10, "973287032134387e": 14, "97377387": 10, "976612": 9, "97890552": 10, "98": 11, "98095799e": 10, "98169943e": 10, "98759119": 10, "99": 11, "99035382": 10, "99449701": 10, "996148323182619": 27, "9e": 32, "A": [0, 3, 4, 5, 6, 8, 9, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28], "And": 34, "As": [3, 4, 8, 14, 16, 17, 37], "At": [24, 25], "Be": 3, "But": [2, 3, 4, 8, 37], "FOR": 5, "For": [2, 3, 4, 9, 10, 14, 21, 23, 33, 36, 37], "If": [2, 3, 4, 11, 23, 35], "In": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 36, 37], "It": [1, 2, 3, 9, 10, 14, 18, 23, 34, 36], "No": [3, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 37], "On": 3, "Or": 8, "That": 35, "The": [1, 2, 3, 4, 8, 9, 11, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 33, 35, 36], "There": [1, 3, 18, 37], "These": [4, 14, 33], "To": [3, 14, 16, 17, 26, 27], "With": 35, "_": 30, "__future__": 28, "__init__": 14, "_list_matplotlib_backends_and_gui_loop": 11, "_matplotlib_manages_backend": 11, "_show_matplotlib_backend": 11, "_stack_depth": 11, "a0": [18, 21, 23, 24, 25, 26, 27, 28], "a1": 23, "a2": 23, "a4": 5, "a_mol": [16, 17], "ab": [5, 6, 23], "abl": [2, 19], "about": [1, 2, 3, 4, 9, 18, 27, 30, 33, 35, 36, 37], "abov": [2, 3, 5, 8, 9, 12, 14, 15, 23, 30], "absolut": 14, "academia": 1, "accept": [9, 36], "accord": [3, 9], "account": 18, "accuracywarn": 14, "aceat": 28, "acet": 28, "achiev": [4, 16, 17, 21, 33], "acid": 28, "acquir": [1, 3], "across": 9, "activ": [24, 25, 26, 27, 33], "actual": [1, 3, 9], "ad": [4, 8], "adapt": [1, 16, 17], "add": [2, 3, 4, 5, 9, 11, 12, 31, 32], "add_": 37, "add_matrix": [16, 17], "add_trac": [31, 32], "addit": [26, 27], "addition": 3, "address": [21, 33], "adiabat": [22, 23], "administr": 33, "advanc": 33, "aetat": 28, "affin": 28, "after": [1, 2, 4, 18, 21, 23, 24, 25, 28], "afterward": [18, 26, 27], "ag": 5, "again": 23, "agg": [9, 11], "aggr_packed_column": 9, "aggreg": 9, "agre": 2, "aim": [1, 18, 33], "air": [8, 9, 14], "air_flow": 14, "al": 36, "albino": 32, "algebra": [16, 17, 28], "algorithm": 14, "align": 37, "all": [1, 2, 3, 4, 5, 8, 14, 18, 21, 26, 27, 32, 33, 35, 36], "all_result": 32, "allianc": 33, "allow": [3, 5, 8, 9, 10, 36], "almost": 4, "alpha": [11, 14, 30, 32], "alreadi": [1, 3], "also": [3, 4, 8, 9, 11, 14, 18, 22, 23, 26, 27, 35, 36, 37], "altern": 15, "although": [2, 9], "alwai": [9, 16, 17], "ambigu": 2, "ammonia": [16, 17], "amount": [4, 16, 17, 18, 23, 24, 25], "an": [1, 2, 3, 4, 5, 6, 8, 14, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 36], "anabol": 28, "anaconda3": 14, "analysi": [1, 9, 22, 23], "analyz": 1, "ani": [1, 3, 4, 9, 19, 23, 34, 35], "anna": 4, "annot": [15, 27], "anoth": [3, 4, 10, 14], "answer": [3, 26, 27, 28], "anyon": 3, "anyth": [4, 9], "apart": [16, 17], "api": 14, "appdata": [2, 11, 15, 27], "append": [3, 4, 6, 16, 17, 32], "applic": [14, 16, 17], "approach": [1, 3], "appropri": 30, "approxim": 28, "ar": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 33, 35, 36], "arang": [28, 32], "area": [14, 23], "arg": [11, 14, 21, 30], "argument": [3, 10, 14, 15, 27], "around": 23, "arrai": [1, 6, 8, 14, 37], "array_1d": 10, "array_2d": 10, "arrenhiu": 23, "arrheniu": [26, 27], "artist": [15, 27], "asign": 32, "ask": 1, "assig": 23, "assign": [4, 14, 16, 17], "associ": 8, "assum": [3, 18, 22, 23, 30], "assumpt": [2, 15, 18, 22, 23, 26, 27], "atol": [31, 32], "attempt": 4, "attent": [3, 33], "attribut": 2, "attributeerror": 2, "au": 3, "auditori": 36, "australia": 36, "author": 28, "auto": 28, "autocatalyt": 18, "autom": [3, 33], "automat": 28, "autosummari": 14, "avail": [1, 9, 11, 14], "averag": 9, "avoid": 3, "awai": 1, "awar": 33, "ax": [14, 15, 23, 27, 28, 37], "ax2": 23, "axessubplot": 11, "axi": [10, 11, 12], "b": [3, 4, 5, 6, 8, 14, 15, 16, 17, 18, 21, 22, 23, 26, 27], "b0": 18, "b4": 5, "b_mole": [16, 17], "ba": 5, "back": 26, "backend": [11, 15], "backend_inlin": [11, 15], "backend_registri": 11, "backup": 27, "bad": 2, "balanc": [0, 1, 20, 32], "bar": 3, "bar_to_pasc": 3, "bare": 4, "barrel": 3, "base": [1, 2, 4, 6, 14, 18, 28, 30, 35], "basic": [1, 3, 4, 9], "batch": [0, 1, 4, 12, 15, 16, 17, 18, 24, 25, 26, 27, 30, 33], "bdf": 14, "becaus": [1, 2, 23], "becom": 23, "bed": [3, 8, 22, 23], "been": [1, 6, 18, 21], "befor": [2, 3, 9, 14, 21], "begin": [1, 3, 14, 23, 37], "beginn": 1, "behav": [22, 23], "being": [1, 11, 36], "bellow": 30, "belong": 2, "below": [3, 4, 8, 11, 12, 14, 16, 17, 18, 26, 27, 28, 33], "berlin": [31, 33], "best": [1, 3], "better": 1, "between": [3, 4, 8, 19, 21, 23, 24, 25, 26, 27, 33], "bhichem": 1, "bib": 36, "bibliographi": 36, "bibtex": 36, "big": [1, 3, 9], "bin": 10, "binari": 3, "binary_to_english": 6, "bind": [3, 5], "bio": [0, 33], "biochem": [1, 33], "biolog": 33, "biomanufactur": 33, "biomass": [28, 30], "biomolecul": 33, "biopharmaceut": 33, "bioprocess": 33, "bioreactor": 30, "biotechnologi": 33, "blank": [16, 17], "block": [2, 4, 23, 34, 35], "blog": 14, "blue": [23, 27], "bo": 14, "book": [35, 36, 37], "bool": 9, "boolean": 4, "both": [1, 12, 23, 36], "bottom": 9, "boundari": [10, 14], "box": 36, "boxplot": 11, "bracket": [3, 8], "brainstorm": 1, "brian": [1, 36], "brisban": 36, "broad": 1, "brought": 18, "bubbl": [3, 8, 14], "build": 36, "built": [3, 4, 35], "builtin_trap": 11, "bundl": 34, "bx": 14, "c": [1, 3, 4, 6, 9, 14, 15, 18, 24, 25, 26, 27, 28], "c0": [3, 24, 25], "c_": [18, 21, 24, 25, 26, 27], "c_a": [15, 18, 23, 26, 27], "c_a0": [15, 18, 27], "c_b": [18, 30], "c_c": 18, "c_d": 18, "c_j": 18, "c_p": 30, "c_ratio": [3, 21, 25], "ca": [3, 15, 21, 24, 25, 26, 27], "ca0": [3, 15, 21, 23, 25], "ca_ca0": [3, 25], "ca_ca0_1h": 21, "ca_ca0_t": 21, "caccaval": 1, "calcul": [3, 5, 9, 12, 14, 15, 21, 22, 23, 24, 25, 26, 27, 30], "calculate_c0": 25, "calculate_ca": [15, 27], "calculate_k": 27, "calculate_ln_k": 27, "calculate_tim": 21, "call": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 36, 37], "can": [1, 2, 3, 4, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 30, 33, 35, 36, 37], "cannot": [1, 2, 3, 4, 5, 8, 15, 27], "capac": [23, 33], "care": [1, 3, 4], "career": 1, "carefulli": [1, 18], "carri": [1, 2, 18], "case": [3, 4, 8, 14, 21, 23], "cast": [2, 4], "cat": 6, "catalyt": 18, "catalyz": 18, "categor": 9, "categori": 2, "cb": [24, 25, 27], "cc": [15, 26, 27, 31], "cc_0": 31, "cd": 27, "cdot": [3, 14, 15, 18, 24, 25, 26, 27], "cell": [0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 37], "cerevisia": 32, "certain": [4, 8, 9, 14], "ch_4": [16, 17], "chair": 33, "challeng": 1, "chang": [3, 4, 8, 14, 18, 23, 28, 30], "change_a": 18, "change_b": 18, "change_t": 18, "changeabl": 8, "characterist": 28, "chart": [4, 5], "check": [3, 5, 9, 11, 14, 15, 21, 28, 34, 37], "chemic": [0, 1, 14, 16, 17, 33], "chemistri": 6, "choos": [5, 18, 19, 26, 27], "christoph": 36, "chunk": 3, "circ": [26, 27], "cite": 36, "cj_a": 18, "cj_b": 18, "class": [1, 2, 14], "claus": 3, "clean": 1, "cleaner": 3, "clear": 3, "cliffsnot": [16, 17], "close": [23, 33], "cluster": 33, "cm": [30, 37], "cmap": 37, "cndition": 18, "co": 14, "co_2": [16, 17], "code": [1, 2, 3, 4, 5, 6, 9, 11, 12, 14, 16, 17, 18, 19, 21, 22, 24, 26, 27, 31, 32, 33, 34, 35, 36], "coeff": [16, 17], "coeff_a": [16, 17], "coeff_b": [16, 17], "coeffici": [14, 15, 22, 23, 28, 30], "cognit": 36, "cold": 37, "coli": [0, 28, 32, 33], "collabor": 33, "colleagu": 1, "collect": [4, 8], "color": [11, 23, 27, 37], "column": [3, 8, 9, 10, 11, 12, 14, 16, 17, 18], "com": [16, 17], "comand": 3, "combin": [0, 2, 3, 5, 6, 21], "comfort": 1, "command": [2, 4, 35], "comment": [1, 3], "common": [2, 3, 9, 11, 16, 17, 24, 25], "commonmark": 36, "commun": [1, 2, 33], "compani": [18, 26, 27], "compar": [2, 3, 12, 14, 19, 23], "comparison": 14, "compil": 14, "complet": [1, 26, 27], "complex": [3, 4, 14], "complex_od": 14, "compon": [2, 33], "composit": [26, 27], "compound": [16, 17], "comprehens": [3, 4, 5, 10, 12], "comput": [2, 3, 5, 14, 23, 24, 25], "concentr": [3, 15, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31], "concept": [7, 13, 20, 29], "conceptu": 33, "concern": 3, "concis": 3, "conclud": 12, "condens": 3, "condit": [1, 3, 4, 5, 8, 14, 18, 22, 23, 28, 30], "condition": 3, "confer": 36, "consid": [2, 3, 4, 18, 22, 23, 24, 25, 26, 27], "consist": 18, "consortium": 33, "consotrium": 33, "constant": [3, 4, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30], "constnat": 28, "constraint": 30, "construct": 3, "consum": [23, 24, 25], "consumpt": [28, 30], "contain": [3, 5, 8, 14, 18, 26, 27, 33], "content": [0, 34, 35, 36], "context": [2, 3], "continu": [1, 12, 14, 21, 23], "contribut": 2, "control": [0, 3, 33], "conveni": 14, "convent": [2, 9], "convers": [18, 22, 23, 26, 27, 28], "convert": [3, 12, 14, 16, 17, 35], "coolwarm": 37, "coordin": 33, "copi": [3, 6], "copy_list": 6, "core": 11, "correct": [2, 18], "correctli": [2, 3], "correl": [14, 15, 26, 27, 30], "correspond": 8, "cortex": 36, "cost": 33, "cote": 14, "could": [3, 4, 28], "count": [3, 9, 16, 17], "counter": 8, "coupl": [1, 30], "cours": [1, 9, 14], "cover": [1, 16, 17], "cowtgmzuai0": 2, "cp": 23, "cpliq": 23, "creat": [3, 4, 5, 11, 12, 15, 18, 26, 27, 28, 31, 32, 37], "creck": 10, "critic": 28, "cross": 14, "cruz": 28, "crystal": [3, 8], "csv": [9, 11, 12], "cultiv": 28, "cumul": 14, "cumulative_trapezoid": 14, "curli": 8, "current": [4, 15, 32], "currentmodul": 14, "custom_lin": 37, "cut_off": 6, "cutoff": 6, "cx": 28, "cycler": 37, "d": [6, 14, 15, 18, 24, 25, 26, 27, 30, 35], "d_h": 30, "dadt": 28, "dai": [1, 4], "data": [0, 1, 3, 4, 6, 8, 10, 12, 14, 15, 23, 26, 27, 37], "data_mean": 6, "data_point": 6, "datafram": [1, 7, 15, 18, 23, 26, 27], "dblquad": 14, "dc_a": [26, 27], "dcc_dt": 31, "ddotdt": 28, "de": [31, 33, 36], "debug": 1, "dec": 28, "decid": 3, "decim": [4, 5], "decod": 6, "decor": 11, "deep": 3, "def": [3, 5, 6, 11, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32], "default": 35, "defin": [2, 3, 4, 6, 8, 11, 14, 15, 23, 26, 27, 28, 30, 31, 32, 35], "definit": 30, "degc": 14, "degre": 18, "delimit": 6, "delta": 27, "deltac_p": 23, "deltahrx": 23, "demand": 3, "dens": 14, "dense_output": [14, 23], "denseoutput": 14, "densiti": [14, 21], "depend": [4, 9, 36], "deplet": 28, "deploy": 1, "deprec": 28, "depth": 34, "deriv": 18, "describ": [1, 9, 12, 18, 22, 23, 28, 30], "descript": [5, 9], "design": [0, 1, 14, 18, 20, 23, 33], "design_batch": 23, "desir": 1, "desktop": 9, "detail": [1, 2, 3, 14, 35], "determin": [2, 15, 18, 30], "develop": [14, 22, 23, 33], "deviat": 6, "df": [9, 15, 26, 27], "df_arrheniu": 27, "diafiiltr": 29, "diafiltr": 0, "diamet": 14, "dict_condit": [8, 9], "dict_item": 8, "dict_kei": 8, "dict_reactor": 12, "dict_valu": 8, "dictionari": [1, 4, 7], "did": [4, 19], "differ": [2, 3, 4, 8, 9, 10, 11, 14, 18, 19, 21, 23, 26, 27, 31, 36], "differenti": [23, 26, 27, 28, 31, 32], "difficult": [3, 23], "dig": 33, "dig4bio": [0, 11], "digit": 33, "digitalis": 33, "dimens": 10, "dimension": 10, "direct": 35, "directli": 14, "disadvantag": 3, "discard": 9, "discourag": 1, "discret": 28, "discuss": 1, "displai": [2, 11, 32, 35], "dissemin": 33, "dissolv": [28, 30], "distribut": [4, 11, 14, 15], "dive": 3, "divid": [4, 5, 16, 17], "divis": [2, 4, 16, 17, 28], "dk": [32, 33], "dna": 33, "do": [1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 18, 26, 27, 36, 37], "document": [1, 3, 9, 14, 15, 26, 27, 34, 35, 36, 37], "dodt": 30, "doe": [1, 2, 3, 4, 5, 6, 8, 14, 34], "dollar": 37, "don": [1, 3, 4, 5, 6], "done": [2, 12, 18, 21, 23], "dop853": 14, "dot": [10, 14, 28], "dot0": 28, "dotstar": 28, "doubl": 14, "down": 6, "downstream": 0, "dpdt": 30, "dr_dt": 32, "draw": 18, "drop": [9, 11, 23, 28], "drop_dupl": 9, "dropna": 9, "dsdt": [28, 30], "dt": [26, 27, 28], "dtu": [32, 33], "dtype": [9, 10], "due": 2, "duplic": 8, "dure": [14, 15, 18, 26, 27], "dvdt": [28, 30], "dxdt": [28, 30], "dy": 32, "dydt": 28, "dynam": [14, 28], "e": [0, 2, 3, 4, 6, 12, 18, 23, 28, 32, 33, 34], "e_a": [24, 25], "ea": 27, "ea_r": [24, 25], "each": [1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 18, 21, 31], "earli": 1, "earlier": 14, "easi": [1, 3, 5, 12, 14, 16, 17, 19], "easili": [9, 23], "ecoli": 28, "ecosystem": 36, "effect": [1, 14], "effici": [1, 3, 33], "effluent": 18, "either": [2, 3, 4], "elabor": 11, "elem": 4, "element": [3, 4, 5, 6, 8, 9, 12, 16, 17], "element_list": [16, 17], "element_matrix": [16, 17], "elementari": [1, 18, 22, 23], "elements_numb": [16, 17], "elev": 33, "elif": [3, 4, 21], "els": [3, 4, 11, 16, 17, 21, 23, 28], "elsewher": 1, "emb": 37, "emerson": 2, "emper": 30, "emploi": 2, "empti": [3, 4], "en": [16, 17], "enabl": [2, 3], "enable_matplotlib": 11, "encod": [9, 11], "encount": [2, 4], "end": [4, 14, 23, 28, 31, 37], "endf": 23, "energi": [0, 1, 20, 24, 25, 26, 27], "engin": [0, 1, 14, 16, 17, 22, 23, 33], "english": 2, "english_to_binari": 6, "enhanc": 33, "ensur": [1, 9, 33], "enthalpi": 23, "entir": 23, "enumer": 8, "env": 11, "environ": 3, "enzym": 5, "epsilon": 14, "equal": [3, 15, 18, 24, 25], "equalmolar": 18, "equat": [1, 16, 17, 18, 19, 21, 23, 26, 27, 28, 30, 31, 32], "equilibrium": 28, "er": 27, "err": 14, "error": [2, 3, 4, 14, 15], "escap": 37, "escherichia": 33, "estim": [14, 15, 21], "et": 36, "eta": 14, "etc": [12, 37], "eualmolar": 18, "euclidean": [16, 17], "evalu": [3, 11, 26, 27], "even": [1, 2, 28], "even_numb": 8, "evenli": 14, "event": 33, "everi": 10, "everyth": [1, 3], "everywher": 3, "evid": 36, "evolut": [28, 31, 32], "exactli": 3, "exam": 4, "exam_scor": 4, "examin": [24, 25], "exampl": [0, 2, 3, 4, 5, 9, 14, 36, 37], "excel": 9, "excess": 18, "exchang": [3, 8, 33], "exclud": 28, "execut": [1, 3, 4, 19, 33, 35], "exercic": 1, "exercis": [1, 4, 14, 16, 17, 18, 19, 21, 22, 23, 26, 27, 30], "exist": [3, 18], "exit": 4, "exp": [10, 14, 23, 25, 27, 30], "expect": [1, 2, 5, 23, 33], "experi": [1, 3, 4, 5, 8, 14, 15, 18, 26, 27], "experiment": [11, 14], "expert": 33, "explain": [21, 26, 27], "explan": 14, "explicit": [2, 14], "explicitli": 28, "explor": [3, 7, 12, 13, 15, 20, 29], "exponenti": [10, 19], "exponential_decai": 14, "expr": 14, "express": [1, 2, 3, 11, 18, 21, 23, 24, 25, 26, 27, 31, 32], "expression_list": 3, "extens": 36, "extra": [3, 30], "extract": [1, 3, 8, 31, 32], "extrct": 8, "f": [3, 4, 6, 9, 14, 16, 17, 18, 21, 24, 25, 27, 30, 31], "f0": 5, "f1": [5, 28], "f10": 5, "f_a0": [18, 23], "f_j": 18, "f_j0": [18, 23], "fact": [2, 3], "factor": [14, 28], "fail": 4, "fals": [3, 4, 8, 9, 11], "familiar": [4, 14], "far": 1, "fase": 18, "fast": [14, 23], "faster": 3, "favorit": 5, "featur": 14, "fed": [0, 33], "fedbatch": 30, "feed": [18, 26, 27, 28, 30], "feedrat": 28, "feedstart": 28, "feel": 34, "ferment": 30, "few": [14, 18, 34], "fiacac": [14, 15, 27], "fiammetta": 1, "fibonacci": 5, "field": 33, "fig": [15, 23, 27, 32, 37], "fig1": 31, "fig2": [31, 32], "fig2_hph": 32, "fig_hph": 32, "figsiz": [11, 27, 28, 37], "figur": [11, 15, 27, 28, 30, 31, 32], "figurecanvasagg": 27, "file": [9, 11, 12, 26, 33, 34, 35], "fill": [9, 23, 24, 25], "fillna": 9, "final": [16, 17, 26, 27, 28, 30], "find": [2, 4, 6, 11, 12, 14, 16, 17, 18, 19, 33], "find_el": [16, 17], "find_gui_and_backend": 11, "fine": 31, "first": [1, 2, 3, 4, 6, 9, 11, 14, 16, 17, 23, 26, 27], "first_order_reaction_batch": 21, "first_order_reaction_cstr": 21, "first_order_tim": 21, "fit": 14, "five": 8, "fix": [10, 14, 28, 37], "fixed_quad": 14, "fj0_a": 18, "fj0_b": 18, "fj0_t": 18, "fj_a": 18, "fj_b": 18, "fj_t": 18, "flask": 23, "flat": 30, "flatten": 10, "flavor": 36, "flexibl": 2, "float": [3, 21], "float64": [9, 10], "float_1": [5, 6], "float_2_5": [5, 6], "flow": [0, 1, 3, 4, 9, 11, 12, 16, 17, 18, 23, 26, 27, 30, 31], "flowrat": 14, "fluid": [3, 8], "flux": 30, "fn": [5, 11], "focu": [16, 17, 33], "focus": 33, "folder": 12, "follow": [2, 3, 4, 5, 7, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36], "fontsiz": 23, "forget": [1, 5], "form": [14, 16, 17], "format": [2, 9, 15, 27, 30, 33], "formul": 28, "formula": [15, 27], "fortran": 14, "forum": 1, "foster": 33, "found": [3, 9, 15, 16, 17, 22, 23, 27], "foundin": 23, "four": [5, 8, 11], "fout": 28, "fr": 14, "frac": [14, 15, 18, 21, 24, 25, 26, 27, 30], "fraction": 4, "frame": 23, "framealpha": 14, "framework": 33, "frequenc": 14, "from": [1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 22, 23, 27, 28, 30, 31, 32, 33, 37], "from_dict": 9, "frontier": 36, "full": [1, 9, 14], "fun": [3, 12, 19, 31, 32], "func": 14, "function": [1, 2, 4, 5, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 28, 31, 32, 36], "futur": [3, 14, 21], "g": [2, 3, 4, 6, 12, 14, 16, 17, 18, 28, 30, 33], "ga": [3, 14, 18, 24, 25, 26, 27, 30], "gain": 33, "gallon": 3, "gaussian": 14, "gc": 28, "gd": 14, "gene": 33, "gener": [1, 10, 14, 22, 23, 28, 32], "generaliz": 18, "generator_gallon": 3, "genexpr": 3, "get": [1, 3, 4, 8, 10, 14, 26, 27, 28, 35, 36], "get_ipython": 11, "get_local_scop": 11, "getattr": 11, "gglucos": 30, "github": [1, 33], "give": [1, 19, 34], "given": [2, 3, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 30], "glucos": [3, 28], "go": [1, 3, 14, 19, 31, 32, 34], "go2": 30, "goal": 4, "gold": 3, "good": [9, 14, 18], "grade": 4, "gradient": 15, "grail": 2, "gram": [2, 3, 16, 17], "grammat": 2, "graph_object": [31, 32], "gravit": 14, "great": 11, "green": [11, 27], "greet": 2, "grid": [11, 14, 15, 27], "group": [2, 9, 22, 23], "growht": 28, "growth": [23, 28, 30], "guess": [2, 3, 4], "gui": [11, 15], "gui_select": 11, "guid": [1, 14, 16, 17, 37], "guidelin": 2, "gx": 28, "h": [3, 6, 9, 11, 12, 15, 18, 21, 25, 26, 27, 28, 30], "h1": 23, "h2": [16, 17, 23], "h2o": 17, "h_2o": [16, 17], "ha": [1, 2, 3, 9, 14, 18, 28], "ha_298": 23, "half": 23, "hand": [3, 21, 26, 27], "handl": 2, "happen": [18, 23], "happi": 11, "hard": [2, 5], "harder": 4, "hash": 8, "hassfurth": 31, "have": [1, 2, 3, 4, 6, 8, 9, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 35], "ha\u00dffurth": [28, 31], "hb_298": 23, "hdhpk14": 36, "head": [9, 11], "heat": [22, 23], "heer": 36, "height": 2, "held": 33, "help": [3, 4, 9, 11, 18, 21, 22, 23, 26, 27, 36], "henri": 30, "here": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 34, 36, 37], "higher": [3, 8, 28], "highest": [4, 28], "highli": 2, "hint": [1, 5, 6, 19, 26, 27, 30], "hist": [10, 11], "hm": 18, "hold": 14, "holdgraf": 36, "holdgraf_evidence_2014": 36, "holi": 2, "hope": 18, "hopefulli": 18, "hot": 37, "hour": [3, 21, 24, 25, 28, 30], "how": [0, 1, 2, 3, 4, 8, 9, 10, 11, 14, 18, 19, 21, 22, 23, 30, 32, 33, 34, 35], "howev": 18, "hrx": 23, "html": 37, "htori": 12, "http": [4, 16, 17], "human": [2, 36], "hybrid": 33, "hydrodynam": 5, "hypothes": 15, "hypothesi": 15, "i": [1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 34, 35, 37], "i0": 23, "id": 3, "idea": [9, 14, 18], "ideal": [1, 3, 24, 25], "ignor": [4, 15, 27], "ii": [12, 33, 37], "illustr": [2, 4], "iloc": [9, 11, 15, 27], "imag": [4, 26, 37], "imagin": 3, "implement": [2, 5, 9, 14, 18, 30, 31, 32], "implicit": 14, "import": [1, 2, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32, 37], "improv": 1, "imput": 9, "inal": [16, 17], "includ": [1, 4, 30, 33, 35, 37], "incompat": 2, "incorpor": 33, "increas": 33, "indent": [1, 2], "indentationerror": 2, "index": [3, 8, 10, 12, 16, 17, 23], "indic": 2, "individu": [2, 14], "industri": 1, "infer": 2, "infinit": 4, "inflow": 3, "influenc": 28, "info": [3, 14], "inform": [2, 8, 9, 10, 12, 14, 33, 34, 35, 37], "ini": 30, "init": 35, "initi": [3, 4, 14, 15, 18, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33], "inlin": [10, 11, 12, 28, 36], "inner": 10, "input": [3, 16, 17, 18, 28, 36], "insert": [23, 36], "insid": [3, 30], "instal": 1, "instead": [1, 3, 9, 12, 14], "instruct": [2, 3, 35], "int": [2, 3, 16, 17, 21, 28], "int64": 9, "integ": [2, 5, 16, 17], "integer_1": [5, 6], "integer_2": [5, 6], "integr": [23, 26, 27, 28, 30, 31, 32], "integrationwarn": 14, "interact": [27, 37], "interactiveshel": 11, "intercept": 15, "interfac": 14, "interfaci": 30, "intern": [14, 36], "internet": 1, "interpol": 14, "interpret": 2, "interrupt": 4, "intersect": [8, 12], "interv": 23, "intracellular": 28, "introduc": [3, 4], "invalid": 24, "investig": [4, 10, 11, 12, 16, 17, 22, 23], "involv": 3, "ion": [3, 8, 37], "ipykernel_15964": 15, "ipykernel_18948": 2, "ipykernel_26808": 27, "ipynb": [5, 36], "ipython": [2, 11, 28], "isdigit": [16, 17], "isotherm": [1, 15, 18, 21, 26, 27], "issu": 14, "issubset": 8, "ist": 33, "ital": 33, "item": [3, 4, 6, 8], "iter": [3, 4, 8, 32], "its": [1, 2, 11], "j": [6, 24, 25, 26, 27], "j_v": 30, "join": 6, "joint": 33, "jpg": 28, "json": 9, "judici": 1, "jupyt": [26, 27, 35, 36, 37], "jupyterbook": 36, "jupytext": 35, "just": [1, 3, 8, 9, 18, 36], "k": [3, 6, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32], "k0": 23, "k_": [3, 25], "k_1": 18, "k_100": [24, 25], "k_1c_ac_bc_c": 18, "k_298": 23, "k_ca0": 21, "k_first_ord": 21, "k_h": [3, 25], "k_hph": 32, "k_m": 30, "k_second_ord": 21, "kap": 28, "kaq": 28, "kc_": 21, "kc_a": 23, "keep": [3, 4, 9, 37], "kei": [8, 9, 12, 33], "kernel": [16, 17, 35], "kernel_": [16, 17], "kernighan": 1, "kevin": 28, "keyword": 4, "kg": [9, 11, 12, 14, 30], "kind": [4, 5, 36], "kinet": [1, 18, 26, 27, 30], "kla": [28, 30], "kmol": 18, "knight": 36, "know": [3, 4, 15], "knowledg": 33, "known": 8, "ko": [28, 30], "kpa": [24, 25], "ksq": 28, "kt": 32, "kutta": 14, "kwarg": 11, "l": [6, 28, 30], "la_": 37, "lab": 33, "label": [11, 12, 14, 15, 27, 28, 30], "laboratori": [15, 18, 26, 27], "lambda": [14, 31, 32], "laminar": 30, "languag": [1, 3, 8, 36], "larg": [14, 23], "last": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "later": [1, 14, 28], "latest": 33, "laugh": 2, "law": 30, "layout": 31, "lcm": [16, 17], "lead": [2, 8, 9], "learn": [0, 2, 11], "least": [14, 15, 16, 17, 19], "leav": 4, "lectur": [16, 17, 22, 23], "left": [3, 28], "legend": [11, 12, 14, 15, 27, 28, 30, 37], "legend_titl": 32, "len": [3, 6, 16, 17, 23], "length": 14, "less": [4, 23], "lesson": [14, 18], "let": [2, 3, 4, 8, 9, 10, 11, 14, 19, 35], "letter": [2, 6], "level": [5, 6, 12, 14, 16, 17, 19, 21], "lib": [11, 14], "librari": [1, 4, 9, 10, 11, 14, 19, 32], "licens": 1, "like": [2, 3, 8, 9, 12, 18, 35, 36], "limit": [4, 14, 18, 30], "linalg": 14, "line": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37], "line2d": 37, "linear": [13, 16, 17, 26], "linear_algebra": [16, 17], "liner": 8, "link": 33, "linkedin": 33, "linregress": [15, 27], "linspac": [14, 15, 23, 28, 31, 37], "liquid": [3, 8, 14, 18, 22, 23, 30], "list": [1, 2, 4, 8, 12, 14, 16, 17, 32], "list_a": 5, "list_b": 5, "list_combin": 6, "list_data": 6, "list_el": 6, "list_gallon": 3, "list_lett": 6, "list_lit": 3, "list_numb": [6, 8], "list_reactor": 12, "list_str": 6, "liter": 3, "literatur": [22, 23], "ll": [11, 36], "ln": [15, 27], "load": [1, 12], "loc": 28, "local": [2, 11, 14, 15, 27], "local_n": 11, "log": [15, 21, 27], "logic": [3, 9], "logspac": 37, "long": [3, 4, 19, 30], "longer": [3, 21], "look": [1, 3, 8, 9, 12, 14, 15, 18], "loop": [1, 4, 5, 6, 8, 12, 21, 31], "lot": [18, 36, 37], "lotka": 14, "lotkavolterra": 14, "low": 14, "lower": [3, 8, 10, 14], "lowercas": 3, "lsoda": [14, 31, 32], "lstsq": 14, "lw": 37, "lysi": [0, 29], "m": [3, 4, 6, 14, 15, 18, 24, 25, 26, 27, 30], "made": [23, 26, 27], "magic": 11, "magic_nam": 11, "magic_output_can_be_silenc": 11, "mai": [1, 2, 3, 4, 26, 27], "main": [1, 2], "maintain": 3, "maintanc": 28, "mainten": 28, "major": 34, "make": [1, 3, 4, 6, 11, 12, 18, 21, 37], "make_subplot": 32, "manag": [1, 18, 33], "mani": [1, 3, 8, 9, 11, 16, 17, 18, 35, 36], "manual": [3, 5, 8, 14, 18], "manufactur": 33, "map": [8, 16, 17], "mari": 4, "marial": 32, "mariana": 32, "mark": [26, 27], "markdown": [3, 12, 33], "markdownfil": 35, "markedli": 36, "marker": [11, 27, 32], "markup": 36, "mass": [0, 1, 14, 20, 29, 30, 32], "mass_a": [16, 17], "mass_b": [16, 17], "mass_mass_calcul": [16, 17], "materi": [1, 26, 27, 33], "math": [10, 14, 23, 24, 25, 37], "mathemat": [1, 2, 10, 14], "matlab": 1, "matplotlib": [1, 10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "matplotlib_inlin": [11, 15], "matplotlibdeprecationwarn": 28, "matric": 10, "matrix": [4, 9, 10, 14, 16, 17], "matrix_1": 10, "matrix_2": 10, "matter": [5, 8], "max": [9, 28, 30], "maxim": 28, "maximum": 30, "mayb": 3, "mbox": 37, "mc": 34, "md": [35, 36], "mean": [1, 2, 3, 4, 6, 8, 9, 12, 30, 37], "meant": 2, "measur": [1, 15, 21, 24, 25, 26, 27], "median": 12, "medium": [5, 6, 12, 14, 16, 17, 21, 37], "member": 2, "membran": 30, "memori": 3, "messag": 6, "met": [3, 4], "methan": [16, 17], "method": [2, 26, 27, 30, 31, 32], "metr": 2, "metric": 9, "microorgan": 30, "might": [1, 4, 9, 14, 18, 21], "mimi": 31, "min": [9, 18, 22, 23, 28], "mind": 3, "miniconda3": 11, "minim": 30, "minor": 28, "minu": 5, "miss": 14, "mixtur": [21, 22, 23, 24, 25], "ml": 27, "mm": 30, "mod": 14, "mode": [31, 32], "model": [0, 1, 28], "modifi": [3, 30], "modul": [0, 2, 4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 33, 37], "modulenotfounderror": [4, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 27, 28, 30, 31, 32, 37], "modulo": 4, "mol": [3, 15, 16, 17, 18, 23, 24, 25, 26, 27], "molar": [16, 17], "molar_mass_a": [16, 17], "molar_mass_b": [16, 17], "mole": [18, 24, 25], "mole_mole_calcul": [16, 17], "molecul": [16, 17], "moles_a": [16, 17], "moles_b": [16, 17], "monod": 30, "more": [1, 2, 3, 4, 6, 9, 10, 11, 14, 15, 18, 33, 34, 35, 37], "moreov": [9, 36], "most": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 36, 37], "mostli": 14, "motiv": 1, "move": 4, "mpl": 11, "mrna": 33, "mu": 30, "mu_max": 30, "much": [2, 3, 18, 21, 32], "multi": 14, "multipl": [3, 4, 9, 10, 16, 17], "multiple_5": 5, "multiples_thre": 8, "multipli": [2, 5, 6, 16, 17], "multitud": 4, "must": [21, 36], "mwa": 23, "my": [16, 17, 28], "my_dictonari": 8, "my_funct": 2, "my_us": 9, "myst": 33, "n": [3, 5, 6, 14, 21, 23, 25, 26, 27, 32, 36, 37], "n2": [16, 17], "n_": 23, "n_2": [16, 17], "n_a": 23, "n_span": 32, "na0": 23, "name": [1, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "nameerror": [3, 26, 27], "namespac": 3, "nan": [9, 27], "natur": 2, "nd": 31, "nd_end": 31, "nd_span": 31, "ndim": 10, "necessari": [21, 33], "necessarili": 2, "need": [2, 3, 6, 9, 14, 16, 17, 21, 23, 26, 27, 28, 35], "neglig": 23, "neq": 3, "nest": 4, "net": 4, "neurosci": 36, "nevertheless": 23, "new": [4, 8, 9, 14, 18, 33], "new_reactor": 4, "newaxi": 14, "newton": 14, "newton_cot": 14, "next": [3, 4, 6], "nh3": [16, 17], "nh_3": [16, 17], "nice": [11, 16, 17], "nicola": 28, "no_outli": 6, "no_react": 23, "non": [1, 2, 15, 27], "none": [4, 9, 11, 18, 23, 27], "normal": [1, 3, 10, 15], "note": [3, 4, 6, 8, 9, 11, 14, 15, 26, 27, 34, 36], "notebook": [3, 5, 15, 26, 27, 33, 36], "notic": [3, 19], "notion": [2, 3], "now": [1, 3, 4, 8, 9, 10, 11, 12, 19, 23, 30], "np": [4, 6, 10, 14, 15, 21, 23, 27, 28, 30, 31, 32, 37], "nquad": 14, "ntot0": 23, "null": 15, "nullspac": [16, 17], "number": [2, 3, 5, 10, 14, 18, 30, 31], "numer": [4, 14, 28], "numpi": [4, 6, 7, 12, 14, 15, 19, 21, 23, 27, 28, 30, 31, 32, 37], "o": [3, 6, 11, 14, 27, 30], "o0": 30, "o2": [17, 30], "o_2": [16, 17], "object": [2, 3, 4, 8, 9, 14], "observ": [9, 21, 23], "observations_df": 9, "obtain": [1, 21, 26, 27, 28], "occas": 11, "occur": 23, "occurr": 9, "od": [0, 1, 14, 23, 28, 30, 31, 32], "ode_fcn": [31, 32], "ode_fcn_hph": 32, "odeint": [14, 28], "odepack": 14, "odesolut": 14, "odesolv": 14, "off": [34, 35, 36], "offer": 10, "offici": 9, "often": [1, 2, 9, 18], "old": 14, "older": 14, "onc": [3, 4, 6, 16, 17, 18], "one": [1, 2, 3, 4, 8, 10, 11, 12, 16, 17, 18, 19, 24, 25, 36], "one_bar_in_pasc": 3, "ones": 1, "onli": [1, 2, 3, 5, 18, 26, 27], "open": [1, 32], "oper": [0, 2, 3, 4, 9, 13, 14, 15, 18, 22, 23, 30], "operand": 2, "opinion": 2, "opportun": 1, "optim": [14, 18, 28, 30], "optimis": 30, "option": [4, 27], "orang": 27, "order": [2, 3, 5, 8, 14, 22, 23], "ordinari": [14, 28], "org": [16, 17, 36], "organ": 3, "orient": 9, "origin": 3, "orthogon": 14, "osat": 30, "other": [1, 2, 3, 6, 8, 9, 14, 22, 23, 26, 27, 28, 35], "otherwis": [4, 21], "our": [3, 4, 8, 9, 11, 18, 23], "out": [1, 2, 3, 4, 6, 14, 18, 34, 37], "outcom": [4, 33], "outflow": 3, "outlier": 11, "output": [1, 6, 10, 11, 14, 16, 17, 18, 35], "output_can_be_silenc": 11, "outsid": 3, "over": [3, 10, 11, 31], "overal": 23, "overflow": 28, "overlap": 28, "overview": [33, 36], "overwhelm": 1, "overwritten": [3, 8], "own": [1, 2, 14, 18], "oxygen": [28, 30], "p": [6, 14, 15, 25, 27, 30, 32], "p0": 30, "p_valu": [15, 27], "pa": [3, 24, 25, 28, 30], "pace": 1, "pack": [5, 11, 12], "packag": [1, 9, 11, 14, 28, 30, 31, 33], "packed_column": [9, 11, 12], "packed_column_2": 12, "page": [2, 14, 33, 34, 35, 36], "pai": 3, "pair": [5, 8], "pamax": 28, "panda": [1, 11, 12, 15, 18, 23, 26, 27], "paper": [1, 26, 27], "par": 30, "paract": 0, "paramet": [11, 14, 18, 28, 30, 31, 32], "parenthesi": [2, 3, 5], "part": [0, 4, 23, 26, 27], "partial": [26, 27], "particl": 14, "particular": 34, "particularli": [4, 14], "paslei": 36, "pass": [3, 4, 6, 14], "past": 3, "path": [9, 35], "pd": [9, 11, 12, 15, 18, 23, 26, 27], "pdf": [26, 27, 28], "pearson": 15, "peer": 19, "peopl": [1, 2], "pep": 2, "per": 28, "perform": [3, 9, 10, 22, 23], "permeat": 31, "permeatt": 31, "ph": [8, 9], "phase": [18, 22, 23, 24, 25, 26, 27], "physic": 8, "physical_const": 14, "physicochem": 28, "pi": [10, 14, 23], "piec": 2, "pillar": [16, 17], "pioneer": 33, "place": [1, 3, 18, 21, 22, 23], "plai": 11, "plain": [1, 3], "plan": 1, "plant": 18, "plasmid": 33, "pleas": [14, 18, 22, 23, 26, 27], "plot": [1, 11, 14, 15, 18, 22, 23, 26, 27, 30, 31, 32, 37], "plotli": [31, 32], "plt": [10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "plu": 5, "plug": [1, 4, 12], "pm": 30, "point": [5, 11, 22, 23, 26, 27, 28], "polar": 30, "polarz": 30, "poly1d": 27, "polyfit": 27, "polynomi": 14, "pop": [3, 8], "popul": 18, "popular": [1, 9, 10], "posit": [16, 17, 23], "possibl": [1, 2, 5, 9, 12, 14, 18, 21], "post": [1, 14, 37], "potenti": 2, "power": [10, 36], "practic": [1, 14], "pre": 9, "preced": 3, "predict": 36, "prefer": [2, 9, 14], "preprocess": 1, "presenc": 35, "present": [3, 9, 18, 23], "pressur": [8, 9, 11, 24, 25, 26, 27], "pretti": 12, "prevent": 11, "previou": 4, "previous": 21, "principl": [1, 9], "print": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 19, 21, 23, 24, 25, 27, 28, 30, 35], "printf": 1, "probabl": [1, 2, 3, 14, 23], "problem": [1, 3, 9, 14, 18], "process": [0, 1, 3, 4, 9, 14, 18, 28, 30, 31, 32, 33], "produc": [16, 17], "product": [10, 16, 17, 18, 21, 28, 30, 33], "profession": 1, "profil": 33, "program": [0, 1, 3, 4, 8, 22, 23], "programm": [1, 2], "project": 33, "promot": 33, "prop": 28, "prop_cycl": 37, "properli": [4, 36], "properti": 12, "proport": 11, "propos": 28, "prosi": 33, "provid": [0, 1, 3, 6, 9, 11, 16, 17, 18, 21, 33], "pt": [11, 33], "purpos": [9, 14, 36], "put": [15, 21, 27], "px": [31, 32], "py": [2, 11, 14, 15, 27], "pylab": 11, "pylab_gui_select": 11, "pylabmag": 11, "pylabtool": 11, "pyplot": [10, 11, 12, 14, 15, 23, 27, 28, 30, 37], "python": [2, 3, 4, 8, 9, 11, 14, 18, 19, 26, 27, 28], "pythontutori": 4, "q": [6, 14, 16, 17, 23, 28], "qa": 28, "qamax": 28, "qm": 28, "qo": 28, "qp": 31, "qsa": 28, "qsan": 28, "qsmax": 28, "qsof": 28, "qsox": 28, "qt": 28, "qt4agg": 11, "quad": [14, 18], "quad_explain": 14, "quad_vec": 14, "quadrat": 14, "quadratur": 14, "qualiti": [14, 33], "quantiti": 3, "question": [1, 18, 28, 30, 33], "quick": 11, "quickli": 4, "quit": [3, 4], "r": [3, 6, 15, 21, 23, 24, 25, 26, 27, 30, 31, 32, 33], "r_": [21, 24, 25], "r_0": 32, "r_0_hph": 32, "r_a": [18, 23], "r_hph": 32, "r_m": 32, "r_m_hph": 32, "r_sphere": 23, "r_valu": [15, 27], "radau": [14, 30], "rais": [2, 4], "ralph": 2, "ramsai": 36, "rand": 4, "randn": 37, "random": [4, 10, 37], "rang": [4, 9, 11, 16, 17, 23, 32, 37], "rank": 14, "rapidli": [24, 25], "rate": [1, 3, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31], "rate_const": [3, 25], "rate_constant_100c": [24, 25], "ratio": [3, 10, 16, 17, 21, 25, 28], "raw": 33, "rcparam": 37, "re": [1, 14, 16, 17, 18, 30], "reach": [3, 4, 21], "react": [16, 17], "reactant": [16, 17, 18], "reaction": [1, 14, 15, 18, 22, 23, 24, 25], "reaction_batch": 21, "reactor": [0, 1, 4, 12, 15, 16, 17, 18, 20, 24, 25, 26, 27], "reactors1": 12, "reactors2": 12, "read": [1, 3, 4, 9, 10, 14, 16, 17], "read_csv": [9, 11], "readabl": [1, 4, 9], "real": [14, 16, 17], "realli": 2, "reason": 2, "reassign": 4, "receiv": 4, "recent": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "recommend": [11, 14], "red": [23, 27], "reduc": 33, "refer": [1, 3, 4, 36], "referenc": 3, "reflect": 19, "regard": 2, "region": 14, "registri": 11, "regress": [13, 26], "regular": 36, "rel": 11, "relat": [26, 27], "relationship": [24, 25], "releas": 28, "relev": [18, 33], "relianc": 2, "remaind": 4, "rememb": [1, 3, 4, 5, 8, 9, 12, 14, 18], "remov": [3, 8, 9, 28, 31], "render": 36, "repeat": [3, 22, 23], "repeatedli": 3, "replac": [16, 17], "repositori": 1, "repres": 14, "reproduc": 37, "request": 1, "requir": 1, "research": 33, "reserv": 3, "reset": 9, "reset_index": 9, "residu": [14, 15], "resolut": 31, "resourc": 3, "respect": 18, "respiratori": 28, "rest": 35, "result": [3, 5, 6, 8, 11, 12, 14, 15, 18, 23, 30, 31, 32], "retent": 30, "return": [2, 3, 4, 5, 6, 9, 11, 14, 15, 16, 17, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32], "reus": [1, 3, 18], "revers": 6, "rewrit": 1, "reynold": 30, "rho": [14, 30], "richard": 2, "right": 1, "rk23": 14, "rk45": [14, 30], "rm": 32, "rnk": 14, "robert": 36, "robust": 3, "romb": 14, "romberg": 14, "root": [10, 14], "rosa": [28, 31], "round": [3, 14, 15, 17, 21, 23, 24, 25, 27], "routin": 14, "row": [4, 9, 10, 12], "rowsxcolumn": 4, "rtol": [31, 32], "rule": [2, 3, 14], "run": [2, 3, 4, 6, 30, 32, 35], "run_line_mag": 11, "rung": 14, "rvalu": 15, "s0": [28, 30], "sai": [2, 6], "said": 23, "same": [2, 3, 9, 10, 12, 19, 23, 24, 25, 36], "sampl": [4, 14, 34, 37], "sat": 30, "satisfi": 3, "satur": 30, "save": [3, 9, 14, 28], "savefig": 28, "saw": 9, "sc": 30, "scan": [26, 27], "scatter": [11, 15, 27, 31, 32], "scatterplot": 11, "schmidt": 30, "school": 33, "scienc": 1, "scientif": [14, 33], "scipi": [23, 27, 28, 30, 31, 32], "score": 4, "script": 28, "scroll": 6, "search": 19, "second": [2, 3, 4, 14, 23], "second_order_reaction_batch": 21, "second_order_reaction_cstr": 21, "second_order_tim": 21, "section": 14, "see": [3, 4, 6, 8, 9, 10, 14, 15, 16, 17, 18, 21, 23, 34, 35, 36, 37], "seealso": 14, "seed": [10, 37], "seem": [1, 23], "seen": [8, 16, 17, 23, 33], "segment": [16, 17], "select": [2, 9, 11], "self": [2, 11], "sensit": 30, "sentenc": [2, 6], "sep": [9, 11], "separ": 9, "sept": 28, "sequenc": [3, 4, 5], "seri": [0, 1, 2], "serv": 36, "set": [1, 2, 3, 4, 7, 10, 11, 15, 18, 26, 27, 31, 32], "set_experi": 8, "set_xlabel": 23, "set_ylabel": 23, "settl": 23, "setup": [22, 23], "sf": 30, "sh": 30, "shadow": [14, 28], "shape": [4, 10], "share": 2, "sheet": [23, 30], "shell": 11, "sherwood": 30, "short": [0, 3, 23, 33], "shorter": 3, "should": [5, 9, 12, 21, 26, 27, 32, 35], "show": [10, 11, 14, 15, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36], "showlegend": 32, "shown": [18, 27, 30], "si": [23, 28], "side": [16, 17], "sigma": 14, "sigma_a": 31, "sigma_a_valu": 31, "sign": 37, "signal": [14, 28], "silicon": 2, "similar": [11, 19, 23, 26, 27, 36], "simpl": [4, 14, 16, 17, 30, 36], "simpli": 1, "simplic": 9, "simplifi": [16, 17], "simpson": 14, "simul": [15, 30, 32, 33], "simultan": 4, "sin": 14, "sinc": [1, 2, 3, 16, 17, 18, 23, 24, 25, 28], "singl": [1, 2], "singular": 14, "sit": 1, "site": [11, 14], "size": [10, 11, 22, 23, 28], "skill": [1, 33], "skip": 4, "slight": 36, "slope": 15, "small": [9, 23, 34, 36], "smallest": [1, 16, 17], "smallsmallsmallsmallsmallbigbigbigbigbig": 9, "so": [1, 2, 3, 4, 6, 9, 10, 14, 15, 16, 17, 18, 23, 24, 25, 26, 27, 35], "sof": 23, "sol": [14, 23, 30, 31, 32], "solid": [3, 8], "solut": [1, 5, 14, 16, 17, 18, 23, 28, 30, 31, 32], "solv": [0, 1, 3, 18, 19, 23, 26, 27, 28, 30, 31, 32], "solve_and_plot_system": 23, "solve_bvp": 14, "solve_ivp": [14, 23, 30, 31, 32], "solver": [1, 14, 28, 31, 32], "solver_hph": 32, "some": [1, 2, 3, 4, 9, 11, 12, 14, 15, 16, 17, 19, 27, 34, 36, 37], "someth": [1, 3, 4, 18, 21], "sometim": [2, 4], "sourc": [1, 33], "space": [2, 6, 14, 16, 17], "span": [32, 36], "spatial": 14, "speci": [18, 23], "special": [14, 36], "specif": [9, 18, 28, 36], "specifi": [3, 4, 9, 11], "speed": 3, "spend": 4, "spent": 1, "sphinx": 36, "split": [6, 16, 17], "spoiler": 30, "sqrt": [10, 14], "squar": [5, 10, 14, 15], "stack_depth": 11, "stackexchang": 1, "stackoverflow": 1, "stakehold": 33, "stand": 36, "standard": [6, 11, 15], "start": [2, 3, 9, 11, 15, 18, 21, 22, 23, 27, 28, 30, 35, 36], "starter": 36, "startswith": 4, "stat": [14, 15, 27], "state": [3, 37], "statement": [0, 2, 4, 30], "statist": [9, 15], "statu": 3, "std": [6, 9], "std_err": [15, 27], "steadi": 3, "stegemann": 28, "step": [1, 2, 9, 14, 33], "stick": 9, "still": [1, 18], "stir": [1, 4, 12, 24, 25], "stochiometri": 15, "stoichiomatr": 18, "stoichiometr": [16, 17, 18, 23, 26, 27], "stoichiometri": [0, 1, 13, 24, 25], "stoichiometry_equalmolar_react": 18, "stoichiometry_t": 18, "stoiciometr": 23, "stoictabl": 23, "store": [3, 4, 11, 14, 32, 36], "str": [2, 3, 15, 16, 17, 27], "strain": 28, "strateg": 33, "strategi": 9, "stream": [18, 26, 27], "strengthen": 33, "string": [1, 2, 5, 11, 18, 21], "string_4": [5, 6], "string_a": [5, 6], "string_b": [5, 6], "strong": 2, "structur": [0, 1, 2, 3, 4, 8, 14, 34, 36], "struggl": 18, "student": [1, 4, 18], "studi": [16, 17, 18], "style": 2, "subject": 2, "submit": [26, 27], "subplot": [15, 23, 27, 28, 32, 37], "subscript": 8, "subset": [8, 9], "substitut": 3, "substrat": [28, 30], "subtract": 5, "success": [2, 33], "suffici": 1, "suggest": [16, 17], "suit": 3, "suitabl": 9, "sum": [5, 9, 10, 12, 26, 27], "summari": 3, "superficialveloc": 14, "support": [33, 35], "sure": [1, 6, 37], "surfac": 14, "swlh": [16, 17], "symbol": 14, "sympi": [14, 16, 17], "synergi": 33, "syntact": 2, "syntax": [0, 3, 24, 36], "syntaxerror": 24, "system": [1, 2, 16, 17, 18, 23, 28, 30], "t": [1, 3, 4, 5, 6, 9, 10, 14, 15, 18, 21, 23, 24, 25, 27, 28, 30, 31, 32, 36, 37], "t0": [23, 28], "t1": [21, 25], "t1_kelvin": [24, 25], "t2": [21, 24, 25], "t2_kelvin": [24, 25], "t_c": 27, "t_end": 32, "t_eval": [31, 32], "t_k": 27, "t_span": 32, "t_start": 32, "t_step": 32, "tab": [1, 2], "tabl": [6, 8, 9, 16, 17, 18, 23, 26, 27], "tail": 9, "tailor": 33, "take": [12, 14, 16, 17, 18, 19, 21, 22, 23], "taken": 1, "tank": [1, 4, 12], "target": 1, "target_list": 3, "task": [9, 19, 22, 23, 33], "tau": 21, "tba": 33, "team": 4, "teammat": 1, "technic": 1, "techniqu": 3, "tell": 3, "temp": [2, 6, 15, 27], "temperatur": [3, 8, 9, 11, 18, 22, 23, 24, 25, 26, 27], "tension": [14, 28], "term": [4, 23, 33], "termin": 4, "terranc": 28, "test": [1, 4, 14, 15, 18, 32], "tex": 37, "text": [1, 12, 30, 35, 36], "than": [3, 6, 23], "thank": 1, "thei": [2, 3, 8, 9, 14, 16, 17, 19, 36], "them": [2, 3, 4, 8, 10, 12, 14, 18], "theme": 1, "themselv": [2, 14], "theoret": [1, 14], "theori": [9, 12], "therapi": 33, "therefor": [1, 4], "theta_j": 23, "thi": [0, 1, 2, 3, 4, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37], "thing": 35, "think": [1, 9, 18], "third": 4, "thoma": 4, "those": 36, "though": 2, "thought": 1, "three": [1, 2, 3, 6, 8, 23], "through": [1, 3, 4, 8, 14, 23, 26, 27, 33], "thu": [27, 28], "ti": 33, "time": [1, 3, 4, 10, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33], "time_end": 32, "titl": [11, 12, 14, 15, 23, 27, 28, 31, 32], "toctre": 14, "todai": 1, "togeth": [3, 21], "token": 11, "toler": 14, "tolist": [16, 17, 27, 32], "too": 3, "tool": [1, 18, 33, 36], "top": [9, 12, 26, 27, 35], "topic": [1, 16, 17, 34], "total": [3, 4, 5, 26, 27, 28, 30], "tower": 5, "tplquad": 14, "trace": [1, 31], "traceback": [2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28, 30, 31, 32, 37], "tradit": 3, "tradition": 2, "train": 33, "transfer": [23, 29, 30], "transform": 3, "translat": 5, "transmembran": 30, "transpar": [4, 11], "transpos": [9, 10, 16, 17], "trapezoid": 14, "treat": 35, "tripl": 14, "true": [3, 4, 8, 9, 14, 23, 28, 32], "truth": 4, "try": [1, 3, 5, 8, 10, 12, 14, 16, 17, 18, 19, 26, 27], "tspan": [23, 30], "tu": [31, 33], "tube": 14, "tubular": 30, "tupl": [4, 8], "turbul": 30, "turn": 30, "tutori": [1, 3, 9, 30], "tv": 2, "twinx": 23, "two": [3, 4, 5, 8, 12, 14, 15, 16, 17, 19, 21, 23, 27, 28, 30, 32, 35, 36], "txt": 9, "type": [1, 2, 3, 4, 9, 10, 11, 18, 21, 30, 34], "typeerror": [2, 8], "u": [6, 23, 30], "u03f4_": 23, "u1": 23, "u2": 23, "unabl": 2, "uncom": [4, 14], "unction": 15, "undefin": 2, "under": [1, 15, 18, 22, 23], "underscor": [15, 27], "understand": [1, 2, 3, 4, 16, 17, 35], "uniform": [4, 10], "union": [8, 12], "uniqu": 8, "unit": [2, 5, 23], "unix": 1, "unlik": 1, "unord": 8, "unreasonal": 23, "unsupport": 2, "unsur": 27, "until": [3, 4, 11, 23], "up": [1, 8, 14, 18, 26, 27, 33], "updat": [3, 8, 9, 28, 31, 33], "update_layout": [31, 32], "upload": 26, "upon": 2, "upper": [10, 14, 28], "upstream": 0, "uptak": 28, "us": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 21, 22, 23, 26, 27, 30, 35, 36], "usag": [1, 14], "user": [2, 9, 10, 14, 15, 27], "userwarn": [15, 27], "usual": 9, "utf": [9, 11], "v": [2, 3, 6, 21, 23, 27, 28, 30, 32], "v0": [28, 30, 31], "v_": 21, "v_0": 18, "v_g": 14, "v_reactor": 23, "vaccin": 33, "val": [16, 17], "valid": 4, "vallei": 2, "valu": [3, 4, 6, 8, 10, 12, 14, 28, 31, 32], "variabl": [2, 3, 5, 14, 28, 32], "variat": 36, "variou": [1, 11, 12], "vector": [10, 14, 16, 17], "veloc": [22, 23], "verb": 2, "veri": [1, 2, 3, 4, 9, 10, 14, 23], "verifi": [2, 16, 17], "versu": [26, 27], "vertic": [16, 17], "vg": 14, "video": 2, "view": [22, 23], "viscos": 14, "visit": 33, "visual": [0, 1, 7], "vivo": 33, "vode": 14, "volterra": 14, "volum": [14, 15, 18, 23, 24, 25, 26, 27, 28, 30, 31], "w": 6, "wa": [0, 3, 4, 8], "wai": [1, 3, 4, 8, 9, 19], "wald": 15, "waldo": 2, "want": [0, 1, 3, 4, 6, 9, 12, 14, 16, 17, 37], "warn": [6, 14], "water": [3, 9, 11, 12, 14], "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30], "weakli": 2, "week": [2, 3, 4], "week02": [9, 12], "weight": 14, "welcom": [26, 27, 33], "well": [2, 3, 4, 9, 14, 34, 37], "wendi": 36, "were": [19, 23], "what": [1, 2, 3, 4, 6, 9, 10, 12, 14, 16, 17, 21, 23, 24, 25, 30], "when": [1, 3, 4, 11, 14, 15, 18, 24, 25, 26, 27, 28, 35, 36], "where": [1, 3, 4, 5, 9, 12, 14, 16, 17, 18, 21, 23], "wherea": 36, "whether": [9, 21, 36], "which": [1, 2, 3, 4, 5, 9, 10, 14, 15, 23, 26, 27, 28, 35], "while": [1, 2, 4, 6, 14, 16, 17], "who": 3, "whole": [3, 9], "whose": [15, 27], "why": [3, 4, 5, 10], "wide": [3, 9, 10], "width": [2, 31, 32], "wiki": [16, 17], "wikipedia": [2, 16, 17], "wilm": 28, "within": 4, "without": [3, 22, 23, 28], "won": 3, "wonder": 3, "word": [6, 8, 21, 22, 23, 26, 27], "work": [1, 2, 4, 5, 9, 10, 12, 14, 18, 30, 33, 37], "workshop": 0, "worri": [1, 4], "worth": 14, "would": [3, 4, 21, 22, 23], "wp": 33, "wp1": 33, "wp2": 33, "wp3": 33, "wp4": 33, "wp5": 33, "wp6": 33, "wrap": [3, 14], "write": [1, 2, 3, 4, 5, 12, 14, 16, 17, 18, 19, 21, 26, 27, 35, 36], "written": [8, 18, 26, 27, 35, 36], "wrong": 2, "www": [4, 16, 17], "wxagg": 11, "x": [2, 6, 11, 14, 15, 16, 17, 18, 23, 26, 27, 28, 30, 31, 32], "x0": [3, 28, 30], "x1": 3, "x2": 3, "xaxis_titl": [31, 32], "xlabel": [11, 14, 15, 27, 28, 30], "xlim": [11, 30], "xtick": 28, "xx": 14, "xy": [15, 27], "y": [2, 6, 14, 28, 30, 31, 32], "y0": [28, 31, 32], "y_hph": 32, "yam": 28, "yaof": 28, "yaresp": 28, "yaxis_titl": [31, 32], "yem": 28, "yet": [22, 23], "yield": [28, 30, 31, 32], "ylabel": [11, 14, 15, 27, 30], "ylim": [27, 30], "yofm": 28, "yosresp": 28, "you": [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 28, 34, 35, 36, 37], "your": [1, 3, 4, 5, 6, 9, 12, 14, 16, 18, 19, 21, 22, 24, 26, 27, 30, 35, 36, 37], "your_birth_dai": 5, "your_birth_month": 5, "your_birth_year": 5, "your_current_ag": 5, "yourself": [1, 18, 19], "youtubevideo": 2, "yso": 30, "ytick": 28, "yx": 30, "yy": 14, "z": [6, 14, 16, 17, 23, 27], "z1": 14, "zero": [2, 4, 8, 15, 23], "zerodivisionerror": 2, "zip": [4, 27], "zvode": 14, "\u025b": 14}, "titles": ["Introduction to Python", "1. Introduction to Python", "2. Hello, World!", "3. Statements and Packaging", "4. Conditionality and Repetition", "Exercises about statements, assignments, lists and generators, control flow and packaging", "Hard exercises and solutions", "Module 2", "Dictionaries and Sets", "Pandas DataFrames", "Numpy arrays", "Data Visualization", "Exercises about dictionaries, sets, dataframes, arrays and visualizations", "Module 3", "SciPy", "Finding the logarithm of a value in Python", "Stoichiometry - Part 1", "Stoichiometry - Part 1", "Stoichiometry - Part 2", "Operations with SciPy", "Module 4", "Reactors in Python", "Energy balance for a laboratory equipment batch reactor for chemical synthesis", "Energy balance for a laboratory equipment batch reactor for chemical synthesis", "Problem B", "Problem B", "Chemical Reaction Engineering - Assignment 1", "Chemical Reaction Engineering - Assignment 1", "Fed batch simulation", "Module 4", "Continuous reactor model", "Diafiltration", "Bead mill", "Dig4Bio workshops", "Welcome to your Jupyter Book", "Notebooks with MyST Markdown", "Markdown Files", "Content with notebooks"], "titleterms": {"": 1, "1": [1, 3, 5, 9, 16, 17, 18, 21, 26, 27], "2": [2, 3, 5, 7, 9, 18], "3": [3, 5, 9, 13, 18], "4": [3, 4, 5, 9, 18, 20, 29], "5": [3, 5, 9], "6": 9, "A": [2, 21], "about": [5, 12], "accord": 10, "add": 35, "algebra": 14, "all": 6, "an": [10, 35], "arithmet": 1, "arrai": [10, 12], "assign": [1, 3, 5, 26, 27], "b": [24, 25], "balanc": [16, 17, 22, 23], "base": 33, "batch": [21, 22, 23, 28], "bead": 32, "befor": 1, "binari": 6, "block": 37, "book": 34, "break": 4, "calcul": [16, 17], "cell": 35, "chemic": [22, 23, 26, 27], "citat": 36, "code": 37, "coeffici": [16, 17], "compound": [1, 3, 5], "condition": 4, "consist": 2, "constant": 14, "content": [33, 37], "continu": [4, 30], "control": 5, "cours": 0, "creat": [8, 9, 10, 35], "cstr": 21, "data": [9, 11], "datafram": [9, 12], "date": 33, "diafiltr": 31, "dictionari": [8, 9, 12], "differenti": 14, "dig4bio": 33, "direct": 36, "distribut": 10, "duplic": 9, "energi": [22, 23], "engin": [26, 27], "english": 6, "equat": 14, "equip": [22, 23], "exampl": [18, 35], "exercis": [5, 6, 12], "familiar": 1, "fed": 28, "file": 36, "find": 15, "first": 21, "flow": 5, "foolish": 2, "from": 9, "function": 3, "gener": [3, 5], "goal": [18, 33], "groupbi": 9, "handl": 9, "hard": 6, "hello": 2, "help": 1, "high": 32, "hobgoblin": 2, "homogenis": 32, "how": [16, 17], "i": [2, 36], "ideal": 21, "index": 9, "inspect": 9, "instruct": [26, 27], "integr": 14, "introduct": [0, 1, 33], "jupyt": 34, "laboratori": [22, 23], "languag": 2, "learn": [1, 36], "librari": 15, "linear": [14, 15], "list": [3, 5, 9], "littl": 2, "load": 9, "logarithm": 15, "loop": 3, "markdown": [35, 36, 37], "mass": [16, 17], "master": 1, "metadata": 35, "mill": 32, "mind": 2, "miss": 9, "model": [30, 33], "modul": [7, 13, 20, 29], "mole": [16, 17], "more": 36, "motiv": 18, "myst": [35, 36, 37], "notebook": [35, 37], "numpi": 10, "object": [0, 1], "oper": [1, 8, 10, 19], "order": 21, "outlier": 6, "output": 37, "packag": [3, 5], "panda": 9, "part": [16, 17, 18], "partner": 33, "plan": 0, "plot": [12, 28], "possibl": 6, "pragmat": 2, "pressur": 32, "problem": [21, 24, 25], "program": 2, "python": [0, 1, 15, 16, 17, 21, 33], "quickli": 35, "reaction": [16, 17, 21, 26, 27], "reactor": [21, 22, 23, 30], "regress": 15, "remov": 6, "repetit": 4, "replac": 9, "resid": 21, "role": 36, "sampl": 36, "schedul": 1, "scipi": [14, 15, 19], "second": 21, "semant": 2, "set": [8, 12], "simpl": [3, 15], "simul": 28, "solut": 6, "solv": [14, 21], "start": 1, "statement": [1, 3, 5], "statist": 14, "stoichiometri": [16, 17, 18], "syntax": [1, 2], "synthesi": [22, 23], "system": 14, "task": 28, "techniqu": 33, "time": 21, "tip": 1, "translat": 6, "trick": 1, "valu": [9, 15], "visual": [11, 12], "week": 21, "welcom": 34, "what": 36, "while": 3, "why": 1, "workshop": 33, "world": 2, "ws1": 33, "ws2": 33, "yaml": 35, "your": 34}}) \ No newline at end of file