forked from dazinovic/neural-rgbd-surface-reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser_util.py
110 lines (103 loc) · 6.83 KB
/
parser_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import configargparse
def get_parser():
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str, help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str,
default='./data/scannet/scene0050_00', help='input data directory')
# training options
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int,
default=8, help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--N_rand", type=int, default=32 * 32 * 4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--N_iters", type=int, default=1000000,
help='number of iterations for which to train the network')
parser.add_argument("--lrate", type=float,
default=5e-4, help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000s)')
parser.add_argument("--chunk", type=int, default=1024 * 32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024 * 64,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--rgb_weight", type=float,
default=1.0, help='weight of the img loss')
parser.add_argument("--depth_weight", type=float,
default=1.0, help='weight of the depth loss')
parser.add_argument("--fs_weight", type=float,
default=1.0, help='weight of the free-space loss')
parser.add_argument("--trunc_weight", type=float,
default=1.0, help='weight of the truncation loss')
parser.add_argument("--share_coarse_fine", action='store_true',
help='use the same network for both coarse and fine samples')
parser.add_argument("--rgb_loss_type", type=str, default='l2',
help='which RGB loss to use - l1/l2 are currently supported')
parser.add_argument("--sdf_loss_type", type=str, default='l2',
help='which SDF loss to use - l1/l2 are currently supported')
parser.add_argument("--frame_features", type=int, default=0,
help='number of channels of the learnable per-frame features')
parser.add_argument("--optimize_poses", action='store_true',
help='optimize a pose refinement for the initial poses')
parser.add_argument("--use_deformation_field", action='store_true',
help='use a deformation field to account for inaccuracies in intrinsic parameters')
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--mode", type=str, default='density',
help='whether the network predicts density or SDF values')
parser.add_argument("--trunc", type=float, default=0.05,
help='length of the truncation region in meters')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# dataset options
parser.add_argument("--dataset_type", type=str, default='scannet',
help='options: llff / blender / deepvoxels / synthetic / scannet')
parser.add_argument("--trainskip", type=int, default=1,
help='will load 1/N images from the training set, useful for large datasets like deepvoxels')
parser.add_argument("--factor", type=int, default=1,
help='downsample factor for depth images')
parser.add_argument("--sc_factor", type=float, default=1.0,
help='factor by which to scale the camera translation and the depth maps')
parser.add_argument("--translation", action="append", default=None, required=False, type=float,
help='translation vector for the camera poses')
parser.add_argument("--crop", type=int, default=0,
help='number of pixels by which to crop the image edges (e.g. due to undistortion artifacts')
parser.add_argument("--near", type=float, default=0.0, help='distance to the near plane')
parser.add_argument("--far", type=float, default=1.0, help='distance to the far plane')
# logging/saving options
parser.add_argument("--i_print", type=int, default=100,
help='frequency of console printout and metric logging')
parser.add_argument("--i_img", type=int, default=500,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_mesh", type=int, default=200000,
help='frequency of mesh extraction')
return parser