forked from dazinovic/neural-rgbd-surface-reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_mesh.py
99 lines (70 loc) · 3.33 KB
/
extract_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import load_network_model
import os
import scene_bounds
import tensorflow as tf
import numpy as np
import marching_cubes as mcubes
import trimesh
def get_batch_query_fn(query_fn, feature_array, network_fn):
fn = lambda f, i0, i1: query_fn(f[i0:i1, None, :], viewdirs=tf.zeros_like(f[i0:i1]),
feature_array=feature_array,
pose_array=None,
frame_ids=tf.zeros_like(f[i0:i1, 0], dtype=tf.int32),
deformation_field=None,
c2w_array=None,
network_fn=network_fn)
return fn
def extract_mesh(query_fn, feature_array, network_fn, args, voxel_size=0.01, isolevel=0.0, scene_name='', mesh_savepath=''):
# Query network on dense 3d grid of points
voxel_size *= args.sc_factor # in "network space"
tx, ty, tz = scene_bounds.get_scene_bounds(scene_name, voxel_size, True)
query_pts = np.stack(np.meshgrid(tx, ty, tz, indexing='ij'), -1).astype(np.float32)
print(query_pts.shape)
sh = query_pts.shape
flat = query_pts.reshape([-1, 3])
fn = get_batch_query_fn(query_fn, feature_array, network_fn)
chunk = 1024 * 64
raw = np.concatenate([fn(flat, i, i + chunk)[0].numpy() for i in range(0, flat.shape[0], chunk)], 0)
raw = np.reshape(raw, list(sh[:-1]) + [-1])
sigma = raw[..., -1]
print('Running Marching Cubes')
vertices, triangles = mcubes.marching_cubes(sigma, isolevel, truncation=3.0)
print('done', vertices.shape, triangles.shape)
# normalize vertex positions
vertices[:, :3] /= np.array([[tx.shape[0] - 1, ty.shape[0] - 1, tz.shape[0] - 1]])
# Rescale and translate
scale = np.array([tx[-1] - tx[0], ty[-1] - ty[0], tz[-1] - tz[0]])
offset = np.array([tx[0], ty[0], tz[0]])
vertices[:, :3] = scale[np.newaxis, :] * vertices[:, :3] + offset
# Transform to metric units
vertices[:, :3] = vertices[:, :3] / args.sc_factor - args.translation
# Create mesh
mesh = trimesh.Trimesh(vertices, triangles, process=False)
# Transform the mesh to Scannet's coordinate system
gl_to_scannet = np.array([[1, 0, 0, 0],
[0, 0, -1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]]).astype(np.float32).reshape([4, 4])
mesh.apply_transform(gl_to_scannet)
if mesh_savepath == '':
mesh_savepath = os.path.join(args.basedir, args.expname, f"mesh_vs{voxel_size / args.sc_factor.ply}")
mesh.export(mesh_savepath)
print('Mesh saved')
if __name__ == '__main__':
# Checkpoint path information
experiments = [
{
'basedir': './logs',
'expname': 'whiteroom'
},
]
iter = 400000
for e in experiments:
basedir, expname = e.values()
print(basedir, expname)
# Create nerf model
args, render_kwargs_test, query_fn, feature_array, network_fn = load_network_model.load_network_model_from_disk(expname, iter, basedir)
args.basedir = basedir
args.expname = expname
mesh_savepath = os.path.join(basedir, expname, f"mesh_color_vs0.01_{iter:06}.ply")
extract_mesh(query_fn, feature_array, network_fn, args, voxel_size=0.01, scene_name='whiteroom', mesh_savepath=mesh_savepath)