-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_ds.py
178 lines (158 loc) · 5.74 KB
/
preprocess_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import pickle
from functools import partial
from shutil import rmtree
import pandas as pd
from tqdm import tqdm
from tqdm.contrib import concurrent
from timebase.data import preprocessing
from timebase.data import spreadsheet
from timebase.data import utils
from timebase.data.static import *
from timebase.utils import h5
from timebase.utils.utils import set_random_seed
def get_session_label(clinical_info: pd.DataFrame, session_id: str):
session = clinical_info[clinical_info.Session_Code == session_id]
if session.empty:
return None
else:
values = session.values[0]
values[LABEL_COLS.index("Session_Code")] = float(
os.path.basename(values[LABEL_COLS.index("Session_Code")])
)
return values.astype(np.float32)
def preprocess_session(args, clinical_info: pd.DataFrame, session_id: str):
recording_dir = utils.unzip_session(
args.path2data, session_id=os.path.basename(session_id)
)
session_label = get_session_label(clinical_info, session_id=session_id)
if session_label is None:
raise ValueError(f"Cannot find session {session_id} in spreadsheet.")
session_data, session_info, short_section = preprocessing.preprocess_dir(
args,
recording_dir=recording_dir,
)
if short_section:
return None
else:
session_data["labels"] = session_label
session_output_dir = os.path.join(args.output_dir, session_id)
if not os.path.isdir(session_output_dir):
os.makedirs(session_output_dir)
filename = os.path.join(session_output_dir, "channels.h5")
h5.write(filename=filename, content=session_data, overwrite=True)
return session_info
def preprocess_wrapper(args, clinical_info, session_id):
results = preprocess_session(
args,
clinical_info,
session_id,
)
return results
def main(args):
if not os.path.isdir(args.path2data):
raise FileNotFoundError(f"Data not found at {args.path2data}.")
if os.path.isdir(args.output_dir):
if args.overwrite:
rmtree(args.output_dir)
else:
raise FileExistsError(
f"output_dir {args.output_dir} already exists. Add --overwrite "
f" flag to overwrite the existing preprocessed data."
)
os.makedirs(args.output_dir)
set_random_seed(args.seed)
clinical_info = spreadsheet.read(args)
args.session_codes = list(clinical_info["Session_Code"])
clinical_info.replace({"status": DICT_STATE}, inplace=True)
clinical_info.replace({"time": DICT_TIME}, inplace=True)
clinical_info.replace({"time_new": DICT_TIME_NEW}, inplace=True)
results = concurrent.process_map(
partial(preprocess_wrapper, args, clinical_info),
args.session_codes,
max_workers=args.num_workers,
chunksize=args.chunksize,
desc="Preprocessing",
)
sessions_info, invalid_sessions = {}, []
for i, session_id in tqdm(
enumerate(args.session_codes),
desc="Preprocessing...",
disable=args.verbose == 0,
):
# session_info = preprocess_session(
# args,
# session_id=session_id,
# clinical_info=clinical_info,
# )
session_info = results[i]
if session_info is None:
invalid_sessions.append(session_id)
continue
sessions_info[session_id] = session_info
numeric_columns = clinical_info.select_dtypes(include=[np.number]).columns
clinical_info[numeric_columns] = clinical_info[numeric_columns].astype(np.float32)
with open(os.path.join(args.output_dir, "metadata.pkl"), "wb") as file:
pickle.dump(
{
"clinical_info": clinical_info,
"invalid_sessions": invalid_sessions,
"sessions_info": sessions_info,
"sleep_algorithm": args.sleep_algorithm,
},
file,
)
print(f"Saved processed data to {args.output_dir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path2data",
type=str,
default="data/raw_data",
help="path to directory with raw data in zip files collected and "
"annotated in Barcelona, Hospital Clínic",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="path to directory to store dataset",
)
parser.add_argument(
"--overwrite",
action="store_true",
help="overwrite existing preprocessed directory",
)
parser.add_argument(
"--overwrite_spreadsheet",
action="store_true",
help="read from timebase/data/TIMEBASE_database.xlsx",
)
parser.add_argument("--verbose", type=int, default=1, choices=[0, 1, 2])
parser.add_argument("--seed", type=int, default=1234)
# preprocessing configuration
parser.add_argument(
"--sleep_algorithm",
type=str,
default="van_hees",
choices=["van_hees", "scripps_clinic"],
help="algorithm used for sleep-wake detection",
)
parser.add_argument(
"--wear_minimum_minutes",
type=int,
default=5,
help="minimum duration (in minutes) recording periods within a session"
"marked as on-body have to meet in order to be included in further "
"analyses",
)
parser.add_argument(
"--minimum_recorded_time",
type=int,
default=15,
help="minimum duration (in minutes) a recording session has to meet in"
" order to be considered for further analysis",
)
parser.add_argument("--num_workers", type=int, default=6)
parser.add_argument("--chunksize", type=int, default=1)
main(parser.parse_args())