diff --git a/docs/02_notebooks/L3_slicing.ipynb b/docs/02_notebooks/L3_slicing.ipynb index f4dce7d..2b6e5b3 100644 --- a/docs/02_notebooks/L3_slicing.ipynb +++ b/docs/02_notebooks/L3_slicing.ipynb @@ -210,7 +210,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The output of the resampler is a 3D image, which we can convert to a numpy array and visualize. We can check that the value range corresponds to that of the labelmap. We can also save the image has a .nii file for further visualization on a volume renderer." + "The output of the resampler is a 3D image, which we can convert to a numpy array and visualize. We can check that the value range corresponds to that of the labelmap." ] }, { @@ -226,12 +226,22 @@ "sliced_img_size = sliced_img.shape\n", "\n", "print(f\"Slice value range: {np.min(sliced_img)} - {np.max(sliced_img)}\")\n", - "print(f\" {sliced_volume_size=},\\n {volume_size=},\\n {sliced_img_size=},\\n {img_size=}\")\n", - "\n", - "output_path = os.path.join(\"../..\", \"data\", \"outputs\", \"sliced_volume.nii.gz\")\n", - "sitk.WriteImage(sliced_volume, output_path)" + "print(f\" {sliced_volume_size=},\\n {volume_size=},\\n {sliced_img_size=},\\n {img_size=}\")" ] }, + { + "cell_type": "markdown", + "source": [ + "It is also possible to save the image has a .nii file for further visualization on a volume renderer. you can do this locally as follows:\n", + "```python\n", + "output_path = os.path.join(\"../..\", \"data\", \"outputs\", \"sliced_volume.nii.gz\")\n", + "sitk.WriteImage(sliced_volume, output_path)\n", + "```" + ], + "metadata": { + "collapsed": false + } + }, { "cell_type": "markdown", "metadata": {},