-
Notifications
You must be signed in to change notification settings - Fork 1
/
autoblinds.ino
700 lines (580 loc) · 19.1 KB
/
autoblinds.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*
Copyright (C) 2022, Alexey Panteleev.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <EEPROM.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
// Include the header that defines system-specific constants: WiFi network parameters and MQTT settings.
// The file is not included in git, so use 'constants.example.h' as a template.
#include "constants.h"
// Status - sends "online" or "offline" as last-will
#define MQTT_TOPIC_STATUS (MQTT_TOPIC_ROOT "status")
// Command - receives "open", "close"
#define MQTT_TOPIC_COMMAND (MQTT_TOPIC_ROOT "command")
// Status - sends "open", "closed", "opening", "closing", "stopped"
#define MQTT_TOPIC_STATE (MQTT_TOPIC_ROOT "state")
// Position - sends position percentage, 0..100
#define MQTT_TOPIC_POSITION (MQTT_TOPIC_ROOT "position")
// Set position - receives position percentage to set, 0..100
#define MQTT_TOPIC_SET_POSITION (MQTT_TOPIC_ROOT "setposition")
#define PIN_BUTTON_UP D5
#define PIN_BUTTON_DOWN D6
#define PIN_MOTOR_DIR D3
#define PIN_MOTOR_STEP D2
#define PIN_MOTOR_NEN D1
#define PIN_LED LED_BUILTIN
#define LED_INTERVAL 100 // milliseconds
// LED blinking patterns.
// Each bit represents an interval of LED_INTERVAL milliseconds, displayed right to left.
#define LED_START_STOP 0b1
#define LED_LIMIT 0b101
#define LED_SAVE 0b1110011
#define LED_STARTUP 0b1111
class LedPulser {
private:
unsigned long lastUpdateTime = 0;
unsigned int pattern = 0;
void advance() {
lastUpdateTime = millis();
digitalWrite(PIN_LED, !(pattern & 1));
pattern = pattern >> 1;
}
public:
void setup() {
pinMode(PIN_LED, OUTPUT);
advance();
}
void loop() {
if (millis() >= lastUpdateTime + LED_INTERVAL) {
advance();
}
}
void show(unsigned int _pattern) {
pattern = _pattern;
advance();
}
};
LedPulser led;
#define BUTTON_PRESSED 1
#define BUTTON_RELEASED -1
#define BUTTON_DEBOUNCE_DELAY 5 // milliseconds
#define BUTTON_HOLD_DURATION 500
class ButtonWithDebounce {
// Based on the code from https://docs.arduino.cc/built-in-examples/digital/Debounce
private:
int buttonPin;
bool pullup;
int buttonState = LOW;
int lastButtonState = LOW;
int change = 0;
unsigned long lastDebounceTime = 0;
public:
ButtonWithDebounce(int pin, bool pullup)
: buttonPin(pin)
, pullup(pullup)
{}
void setup() {
if (pullup)
pinMode(buttonPin, INPUT_PULLUP);
else
pinMode(buttonPin, INPUT);
}
void read() {
int reading = digitalRead(buttonPin);
if (pullup) {
reading = !reading;
}
unsigned long currentTime = millis();
if (reading != lastButtonState) {
lastDebounceTime = currentTime;
}
if (reading != buttonState && (currentTime - lastDebounceTime) > BUTTON_DEBOUNCE_DELAY) {
change = reading - buttonState;
buttonState = reading;
}
else {
change = 0;
}
lastButtonState = reading;
}
int getState() { return buttonState; } // returns LOW or HIGH, after pullup correction
int getChange() { return change; } // returns BUTTON_PRESSED or BUTTON_RELEASED
bool pressed() { return change == BUTTON_PRESSED; }
bool released() { return change == BUTTON_RELEASED; }
};
ButtonWithDebounce buttonUp(PIN_BUTTON_UP, true);
ButtonWithDebounce buttonDown(PIN_BUTTON_DOWN, true);
#define EEPROM_MAGIC 0x5A0D3C67 // a random number
// A struct that is directly mapped to the simulated "EEPROM".
// On ESP8266, the EEPROM is just a block of flash memory that is read into a RAM segment and written at once.
struct Settings {
unsigned long magic;
long position;
long positionTop;
long positionBottom;
static Settings* load() {
// Read the existing data from flash
EEPROM.begin(sizeof(Settings));
// Cast that data to our structure
Settings* data = (Settings*)EEPROM.getDataPtr();
// If the data is not valid, initialize with some values and write
if (data->magic != EEPROM_MAGIC) {
data->magic = EEPROM_MAGIC;
data->position = 0;
data->positionTop = 0;
data->positionBottom = 0;
EEPROM.commit();
}
return data;
}
void save() {
EEPROM.getDataPtr(); // mark the data as dirty
EEPROM.commit();
}
// Tells if the current position is above the top limit (minus margin) or under the bottom limit (plus margin)
// Also supports a targetPosition parameter that can be received via a MQTT command
bool isOffLimits(bool up, long margin, long targetPosition) {
if (up && positionTop != 0 && position + margin >= positionTop)
return true;
if (!up && positionBottom != 0 && position - margin <= positionBottom)
return true;
if (targetPosition != 0) {
if (up && position + margin >= targetPosition)
return true;
if (!up && position - margin <= targetPosition)
return true;
}
return false;
}
// Saves the current position as either the top or the bottom one
void saveLimit(bool up) {
if (up)
positionTop = (position == 0) ? 1L : position;
else
positionBottom = (position == 0) ? -1L : position;
save();
}
};
// Motor controller FSM states
#define MSTATE_IDLE 0
#define MSTATE_ACCELERATE 1
#define MSTATE_RUN 2
#define MSTATE_DECELERATE 3
#define MSTATE_BACKSPIN 4
#define MOTOR_MIN_SPEED 200 // steps per second
#define MOTOR_MAX_SPEED 3000 // steps per second
#define MOTOR_ACCELERATION 4000 // steps per sedond per second
// Number of steps to take in the opposite direction after decelerating and before disconnecting the motor, to release tension
#define MOTOR_BACKSPIN_STEPS 800
#define MOTOR_BACKSPIN_SPEED 800
// Solution for the distance of an accelerated object traveling between two speed values
#define MOTOR_ACCELERATION_STEPS ((MOTOR_MAX_SPEED * MOTOR_MAX_SPEED - MOTOR_MIN_SPEED * MOTOR_MIN_SPEED) / (2 * MOTOR_ACCELERATION))
#define MICROSECONDS_IN_SECOND 1000000L
// DIR pin values that correspond to up or down directions
#define MOTOR_DIRECTION_UP HIGH
#define MOTOR_DIRECTION_DOWN LOW
// ESP8266 hardware timer settings
#define TIMER_DIVIDER TIM_DIV16
#define TIMER_TICKS_PER_SECOND 5000000
// Forward declarations for global functions that are used in MotorDriver but also use the driver object itself
void onTimerInterrupt();
void sendMqttState();
class MotorDriver {
private:
int state = MSTATE_IDLE;
long speed = 0; // in steps per second
unsigned long accelerateStartMicros = 0;
int direction = 0;
int backspinStepsLeft = 0;
bool ignoreLimits = false;
long targetPosition = 0;
Settings* settings = NULL;
// Performs a full stop - for internal MotorDriver use only, use softStop() from user side instead
void stop() {
speed = 0;
state = MSTATE_IDLE;
targetPosition = 0;
digitalWrite(PIN_MOTOR_NEN, HIGH);
digitalWrite(PIN_MOTOR_STEP, LOW);
timer1_disable();
// Save the position in non-volatile memory in case there is a power loss
settings->save();
sendMqttState();
}
// Sets the timer to wake up when it's time to do the next step.
// The interval is adjusted by elapsedMicroseconds to account for the time spent in processTimer before calling this function.
void scheduleStep(uint32_t elapsedMicroseconds = 0) {
if (speed == 0)
return;
uint32_t stepInterval = TIMER_TICKS_PER_SECOND / speed;
uint32_t elapsedTicks = elapsedMicroseconds * (TIMER_TICKS_PER_SECOND / MICROSECONDS_IN_SECOND);
if (stepInterval > elapsedTicks)
stepInterval -= elapsedTicks;
else
stepInterval = 1;
// Wake up once after 'stepInterval' timer ticks
timer1_enable(TIMER_DIVIDER, TIM_EDGE, TIM_SINGLE);
timer1_write(stepInterval);
}
public:
void setup(Settings* _settings) {
settings = _settings;
pinMode(PIN_MOTOR_DIR, OUTPUT);
pinMode(PIN_MOTOR_STEP, OUTPUT);
pinMode(PIN_MOTOR_NEN, OUTPUT);
digitalWrite(PIN_MOTOR_DIR, LOW);
digitalWrite(PIN_MOTOR_STEP, LOW);
digitalWrite(PIN_MOTOR_NEN, HIGH);
timer1_attachInterrupt(onTimerInterrupt);
}
void processTimer() {
if (state == MSTATE_IDLE)
return;
unsigned long entranceMicros = micros();
// Pulse the step pin
digitalWrite(PIN_MOTOR_STEP, HIGH);
delayMicroseconds(20);
digitalWrite(PIN_MOTOR_STEP, LOW);
// Update the position
if (direction == MOTOR_DIRECTION_UP)
++settings->position;
else
--settings->position;
// Adjust the speed if we're accelerating or decelerating
switch(state) {
case MSTATE_ACCELERATE:
speed = MOTOR_MIN_SPEED + ((entranceMicros - accelerateStartMicros) * MOTOR_ACCELERATION) / MICROSECONDS_IN_SECOND;
if (speed >= MOTOR_MAX_SPEED) {
speed = MOTOR_MAX_SPEED;
state = MSTATE_RUN;
}
break;
case MSTATE_DECELERATE:
speed = MOTOR_MAX_SPEED - ((entranceMicros - accelerateStartMicros) * MOTOR_ACCELERATION) / MICROSECONDS_IN_SECOND;
if (speed <= MOTOR_MIN_SPEED) {
backspinStepsLeft = MOTOR_BACKSPIN_STEPS;
state = MSTATE_BACKSPIN;
direction = !direction;
digitalWrite(PIN_MOTOR_DIR, direction);
}
break;
case MSTATE_BACKSPIN:
speed = MOTOR_BACKSPIN_SPEED;
if (--backspinStepsLeft <= 0)
stop();
break;
}
if (!ignoreLimits && state != MSTATE_BACKSPIN) {
// Stop at the limits, if they are set
if (settings->isOffLimits(direction == MOTOR_DIRECTION_UP, MOTOR_ACCELERATION_STEPS, targetPosition))
softStop();
}
// Set the timer for the next step pulse
unsigned long exitMicros = micros();
scheduleStep(exitMicros - entranceMicros);
}
void start(int _direction, bool _ignoreLimits) {
if (state != MSTATE_IDLE)
return;
direction = _direction;
ignoreLimits = _ignoreLimits;
if (!ignoreLimits) {
// Don't start if we're off limits
if (settings->isOffLimits(direction == MOTOR_DIRECTION_UP, MOTOR_ACCELERATION_STEPS, targetPosition)) {
led.show(LED_LIMIT);
return;
}
}
// Start up the driver
digitalWrite(PIN_MOTOR_NEN, LOW);
digitalWrite(PIN_MOTOR_DIR, direction);
digitalWrite(PIN_MOTOR_STEP, LOW);
// Make sure that the enable and direction pins are held in the right state for at least 1us
// before giving any step commands
delayMicroseconds(1);
state = MSTATE_ACCELERATE;
speed = MOTOR_MIN_SPEED;
// Initialize the accelerator
accelerateStartMicros = micros();
// Start the timer
scheduleStep();
led.show(LED_START_STOP);
sendMqttState();
}
void softStop() {
if (state == MSTATE_ACCELERATE || state == MSTATE_RUN) {
state = MSTATE_DECELERATE;
accelerateStartMicros = micros();
led.show(LED_START_STOP);
}
}
bool isRunning() {
return state != MSTATE_IDLE;
}
void saveLimitPosition(int direction) {
if (isRunning())
return;
led.show(LED_SAVE);
settings->saveLimit(direction == MOTOR_DIRECTION_UP);
}
int getDirection() { return direction; }
bool getPositionPercentage(int& percent) {
long positionDiff = settings->positionTop - settings->positionBottom - MOTOR_BACKSPIN_STEPS * 2;
if (settings->positionTop == 0 || settings->positionBottom == 0 || positionDiff <= 0)
return false;
percent = ((settings->position - settings->positionBottom - MOTOR_BACKSPIN_STEPS) * 100 + (positionDiff >> 1)) / positionDiff;
percent = max(0, min(100, percent));
return true;
}
void startTo(int percent) {
if (isRunning())
return;
if (settings->positionTop == 0 || settings->positionBottom == 0 || settings->positionTop == settings->positionBottom)
return;
if (percent < 0 || percent > 100)
return;
targetPosition = settings->positionBottom + ((settings->positionTop - settings->positionBottom) * percent) / 100;
if (targetPosition < settings->position) {
if (targetPosition == 0) targetPosition = -1;
start(MOTOR_DIRECTION_DOWN, false);
}
else if (targetPosition > settings->position) {
if (targetPosition == 0) targetPosition = 1;
start(MOTOR_DIRECTION_UP, false);
}
}
};
MotorDriver motor;
void onTimerInterrupt() {
motor.processTimer();
}
#define INPUT_IDLE 0
#define INPUT_UP 1
#define INPUT_UP_FORCED 2
#define INPUT_DOWN 3
#define INPUT_DOWN_FORCED 4
class InputHandler {
private:
int inputState = INPUT_IDLE;
unsigned long pressTime = 0;
public:
void setup() {
buttonUp.setup();
buttonDown.setup();
}
void loop() {
buttonUp.read();
buttonDown.read();
// Process the button states and decide what to do:
// - Up or down button pressed briefly: start moving up or down when the button is released, or stop if already moving
// - Up or down button held for more than 0.5 seconds: move up or down while the button is held, ignore the top and bottom limits
// - Up button held, down button pressed: save the current position as the top limit
// - Down button held, up button pressed: save the current position as the bottom limit
switch(inputState) {
case INPUT_IDLE:
if (buttonUp.pressed()) {
inputState = INPUT_UP;
pressTime = millis();
} else if (buttonDown.pressed()) {
inputState = INPUT_DOWN;
pressTime = millis();
}
break;
case INPUT_UP:
if (buttonUp.released()) {
if (motor.isRunning())
motor.softStop();
else
motor.start(MOTOR_DIRECTION_UP, false);
inputState = INPUT_IDLE;
}
else if (buttonDown.pressed()) {
motor.saveLimitPosition(MOTOR_DIRECTION_UP);
inputState = INPUT_IDLE;
}
else if (!motor.isRunning() && millis() >= pressTime + BUTTON_HOLD_DURATION) {
motor.start(MOTOR_DIRECTION_UP, true);
inputState = INPUT_UP_FORCED;
}
break;
case INPUT_UP_FORCED:
if (buttonUp.released()) {
motor.softStop();
inputState = INPUT_IDLE;
}
break;
case INPUT_DOWN:
if (buttonDown.released()) {
if (motor.isRunning())
motor.softStop();
else
motor.start(MOTOR_DIRECTION_DOWN, false);
inputState = INPUT_IDLE;
}
else if (buttonUp.pressed()) {
motor.saveLimitPosition(MOTOR_DIRECTION_DOWN);
inputState = INPUT_IDLE;
}
else if (!motor.isRunning() && millis() >= pressTime + BUTTON_HOLD_DURATION) {
motor.start(MOTOR_DIRECTION_DOWN, true);
inputState = INPUT_DOWN_FORCED;
}
break;
case INPUT_DOWN_FORCED:
if (buttonDown.released()) {
motor.softStop();
inputState = INPUT_IDLE;
}
break;
}
}
};
InputHandler input;
WiFiClient espClient;
PubSubClient mqttClient(espClient);
void mqttCallback(char* topic, byte* payload, unsigned int length) {
String topicStr = topic;
String value = "";
for (int i = 0; i < length; i++) {
value += (char)payload[i];
}
Serial.println("MQTT Received: ");
Serial.println(topicStr);
Serial.println(value);
Serial.flush();
if (topicStr == MQTT_TOPIC_COMMAND) {
if (value == "open" && !motor.isRunning()) {
motor.start(MOTOR_DIRECTION_UP, false);
}
else if (value == "close" && !motor.isRunning()) {
motor.start(MOTOR_DIRECTION_DOWN, false);
}
else if (value == "stop" && motor.isRunning()) {
motor.softStop();
}
}
else if (topicStr == MQTT_TOPIC_SET_POSITION) {
int position = value.toInt();
motor.startTo(position);
}
}
#define NSTATE_DISCONNECTED 0
#define NSTATE_WIFI_CONNECTING 1
#define NSTATE_MQTT_CONNECTING 2
#define NSTATE_MQTT_CONNECTED 3
class NetworkDriver {
private:
int state = NSTATE_DISCONNECTED;
unsigned long lastConnectTime = 0;
public:
void loop() {
switch(state) {
case NSTATE_DISCONNECTED:
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
state = NSTATE_WIFI_CONNECTING;
break;
case NSTATE_WIFI_CONNECTING:
if (WiFi.status() == WL_CONNECTED) {
mqttClient.setServer(MQTT_BROKER, 1883);
mqttClient.setCallback(mqttCallback);
state = NSTATE_MQTT_CONNECTING;
WiFi.printDiag(Serial);
Serial.flush();
}
break;
case NSTATE_MQTT_CONNECTING:
if (WiFi.status() != WL_CONNECTED) {
state = NSTATE_WIFI_CONNECTING;
} else {
unsigned long currentTime = millis();
if (lastConnectTime == 0 || currentTime - lastConnectTime >= 10000) {
if (mqttClient.connect(MQTT_CLIENT_ID, MQTT_USER, MQTT_PASSWORD, MQTT_TOPIC_STATUS, 0, true, "offline")) {
lastConnectTime = 0;
state = NSTATE_MQTT_CONNECTED;
mqttClient.publish(MQTT_TOPIC_STATUS, "online", true);
sendMqttState();
mqttClient.subscribe(MQTT_TOPIC_COMMAND);
mqttClient.subscribe(MQTT_TOPIC_SET_POSITION);
Serial.println("Connected to MQTT.");
Serial.flush();
}
else {
lastConnectTime = currentTime;
}
}
}
break;
case NSTATE_MQTT_CONNECTED:
if (WiFi.status() != WL_CONNECTED) {
state = NSTATE_WIFI_CONNECTING;
} else {
mqttClient.loop();
if (!mqttClient.connected()) {
state = NSTATE_MQTT_CONNECTING;
}
}
}
}
bool connected() {
return state = NSTATE_MQTT_CONNECTED;
}
};
NetworkDriver network;
void sendMqttState() {
if (!network.connected())
return;
String state;
if (motor.isRunning()) {
if (motor.getDirection() == MOTOR_DIRECTION_UP)
state = "opening";
else
state = "closing";
}
else {
int percentage;
if (motor.getPositionPercentage(percentage)) {
if (percentage == 0)
state = "closed";
else if (percentage == 100)
state = "open";
else
state = "stopped";
mqttClient.publish(MQTT_TOPIC_POSITION, String(percentage).c_str());
}
else
state = "stopped";
}
mqttClient.publish(MQTT_TOPIC_STATE, state.c_str());
}
void setup() {
Serial.begin(115200);
Serial.println();
Serial.println("Starting up...");
Serial.flush();
Settings* settings = Settings::load();
led.setup();
input.setup();
motor.setup(settings);
led.show(LED_STARTUP);
}
void loop() {
input.loop();
network.loop();
led.loop();
yield();
}