-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1184 from zlheui/add-resnet-in-autograd
Add the implementations of resnet model in the autograd
- Loading branch information
Showing
1 changed file
with
291 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
# the code is modified from | ||
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py | ||
|
||
from singa import layer | ||
from singa import model | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1): | ||
"""3x3 convolution with padding""" | ||
return layer.Conv2d( | ||
in_planes, | ||
out_planes, | ||
3, | ||
stride=stride, | ||
padding=1, | ||
bias=False, | ||
) | ||
|
||
|
||
class BasicBlock(layer.Layer): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = conv3x3(inplanes, planes, stride) | ||
self.bn1 = layer.BatchNorm2d(planes) | ||
self.conv2 = conv3x3(planes, planes) | ||
self.bn2 = layer.BatchNorm2d(planes) | ||
self.relu1 = layer.ReLU() | ||
self.add = layer.Add() | ||
self.relu2 = layer.ReLU() | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu1(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out = self.add(out, residual) | ||
out = self.relu2(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(layer.Layer): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = layer.Conv2d(inplanes, planes, 1, bias=False) | ||
self.bn1 = layer.BatchNorm2d(planes) | ||
self.relu1 = layer.ReLU() | ||
self.conv2 = layer.Conv2d(planes, | ||
planes, | ||
3, | ||
stride=stride, | ||
padding=1, | ||
bias=False) | ||
self.bn2 = layer.BatchNorm2d(planes) | ||
self.relu2 = layer.ReLU() | ||
self.conv3 = layer.Conv2d(planes, | ||
planes * self.expansion, | ||
1, | ||
bias=False) | ||
self.bn3 = layer.BatchNorm2d(planes * self.expansion) | ||
|
||
self.add = layer.Add() | ||
self.relu3 = layer.ReLU() | ||
|
||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu1(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu2(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out = self.add(out, residual) | ||
out = self.relu3(out) | ||
|
||
return out | ||
|
||
|
||
__all__ = [ | ||
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152' | ||
] | ||
|
||
|
||
class ResNet(model.Model): | ||
|
||
def __init__(self, block, layers, num_classes=10, num_channels=3): | ||
self.inplanes = 64 | ||
super(ResNet, self).__init__() | ||
self.num_classes = num_classes | ||
self.input_size = 224 | ||
self.dimension = 4 | ||
self.conv1 = layer.Conv2d(num_channels, | ||
64, | ||
7, | ||
stride=2, | ||
padding=3, | ||
bias=False) | ||
self.bn1 = layer.BatchNorm2d(64) | ||
self.relu = layer.ReLU() | ||
self.maxpool = layer.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1, layers1 = self._make_layer(block, 64, layers[0]) | ||
self.layer2, layers2 = self._make_layer(block, 128, layers[1], stride=2) | ||
self.layer3, layers3 = self._make_layer(block, 256, layers[2], stride=2) | ||
self.layer4, layers4 = self._make_layer(block, 512, layers[3], stride=2) | ||
self.avgpool = layer.AvgPool2d(7, stride=1) | ||
self.flatten = layer.Flatten() | ||
self.fc = layer.Linear(num_classes) | ||
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() | ||
|
||
self.register_layers(*layers1, *layers2, *layers3, *layers4) | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
conv = layer.Conv2d( | ||
self.inplanes, | ||
planes * block.expansion, | ||
1, | ||
stride=stride, | ||
bias=False, | ||
) | ||
bn = layer.BatchNorm2d(planes * block.expansion) | ||
|
||
def _downsample(x): | ||
return bn(conv(x)) | ||
|
||
downsample = _downsample | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample)) | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes)) | ||
|
||
def forward(x): | ||
for layer in layers: | ||
x = layer(x) | ||
return x | ||
|
||
return forward, layers | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
x = self.layer2(x) | ||
x = self.layer3(x) | ||
x = self.layer4(x) | ||
|
||
x = self.avgpool(x) | ||
x = self.flatten(x) | ||
x = self.fc(x) | ||
|
||
return x | ||
|
||
def train_one_batch(self, x, y, dist_option, spars): | ||
out = self.forward(x) | ||
loss = self.softmax_cross_entropy(out, y) | ||
|
||
if dist_option == 'plain': | ||
self.optimizer(loss) | ||
elif dist_option == 'half': | ||
self.optimizer.backward_and_update_half(loss) | ||
elif dist_option == 'partialUpdate': | ||
self.optimizer.backward_and_partial_update(loss) | ||
elif dist_option == 'sparseTopK': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=True, | ||
spars=spars) | ||
elif dist_option == 'sparseThreshold': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=False, | ||
spars=spars) | ||
return out, loss | ||
|
||
def set_optimizer(self, optimizer): | ||
self.optimizer = optimizer | ||
|
||
|
||
def resnet18(pretrained=False, **kwargs): | ||
"""Constructs a ResNet-18 model. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. | ||
Returns: | ||
The created ResNet-18 model. | ||
""" | ||
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) | ||
|
||
return model | ||
|
||
|
||
def resnet34(pretrained=False, **kwargs): | ||
"""Constructs a ResNet-34 model. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. | ||
Returns: | ||
The created ResNet-34 model. | ||
""" | ||
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) | ||
|
||
return model | ||
|
||
|
||
def resnet50(pretrained=False, **kwargs): | ||
"""Constructs a ResNet-50 model. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. | ||
Returns: | ||
The created ResNet-50 model. | ||
""" | ||
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | ||
|
||
return model | ||
|
||
|
||
def resnet101(pretrained=False, **kwargs): | ||
"""Constructs a ResNet-101 model. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. | ||
Returns: | ||
The created ResNet-101 model. | ||
""" | ||
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) | ||
|
||
return model | ||
|
||
|
||
def resnet152(pretrained=False, **kwargs): | ||
"""Constructs a ResNet-152 model. | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. | ||
Returns: | ||
The created ResNet-152 model. | ||
""" | ||
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) | ||
|
||
return model | ||
|
||
|
||
__all__ = [ | ||
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152' | ||
] |