From 7a278dd399b8583262b1f4869c6a43b3c3341696 Mon Sep 17 00:00:00 2001 From: Abhishek Singh Date: Sun, 17 Jun 2018 15:04:35 -0700 Subject: [PATCH] Documentation --- README.md | 5 +- README.md~ | 175 ----------------------------------------------------- 2 files changed, 3 insertions(+), 177 deletions(-) delete mode 100644 README.md~ diff --git a/README.md b/README.md index 5f6ae7c..eb68531 100644 --- a/README.md +++ b/README.md @@ -111,8 +111,9 @@ print(trie.search_with_prefix('ab')) 3. Wildcard search using `?` and `*` - a.`?` = 0 or 1 occurance of any character - b.`*` = 0 or more occurance of any character +`?` = 0 or 1 occurance of any character + +`*` = 0 or more occurance of any character ```python print(trie.search('a*o*')) diff --git a/README.md~ b/README.md~ deleted file mode 100644 index 9371a50..0000000 --- a/README.md~ +++ /dev/null @@ -1,175 +0,0 @@ -![Logo](https://github.com/aosingh/lexpy/blob/master/images/lexpylogo.png) - -[![PyPI version](https://badge.fury.io/py/lexpy.svg)](https://pypi.python.org/pypi/lexpy) -[![Travis](https://travis-ci.org/aosingh/lexpy.svg?branch=master)](https://travis-ci.org/aosingh/lexpy) -[![Build status](https://ci.appveyor.com/api/projects/status/hib5wm4qo2oop3ui?svg=true)](https://ci.appveyor.com/project/aosingh/lexpy) -[![Coverage Status](https://coveralls.io/repos/github/aosingh/lexpy/badge.svg?branch=master)](https://coveralls.io/github/aosingh/lexpy?branch=master) -[![Maintainability](https://api.codeclimate.com/v1/badges/60626f81c0db0c5d8dcd/maintainability)](https://codeclimate.com/github/aosingh/lexpy/maintainability) - -[![Python 2.7](https://img.shields.io/badge/python-2.7-blue.svg)](https://www.python.org/downloads/release/python-270/) -[![Python 3.3](https://img.shields.io/badge/python-3.3-blue.svg)](https://www.python.org/downloads/release/python-330/) -[![Python 3.4](https://img.shields.io/badge/python-3.4-blue.svg)](https://www.python.org/downloads/release/python-340/) -[![Python 3.5](https://img.shields.io/badge/python-3.5-blue.svg)](https://www.python.org/downloads/release/python-350/) -[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/) - - ->A lexicon is a data-structure which stores a set of words. The difference between -a dictionary and a lexicon is that in a lexicon there are no values associated with the words. A lexicon is similar to a list of words or a set, but the internal representation is different and optimized -for faster searches(of words, prefixes and wildcard patterns). Precisely the search time is O(W) where W is the length of the word. - -2 important Lexicon data-structures are: -1. Trie. -3. Directed Acyclic Word Graph(DAWG). - -Both Trie and DAWG are Finite State Automaton(FSA) - -# Install -```commandline -pip install lexpy -``` -For versions older than 0.9.3, there is a problem in the package distribution -which has been resolved now in 0.9.3. I apologize, if that frustrated anyone. -Lexpy version `0.9.3` is recommended and it supports both Python 2 and Python 3. - -# Interface - -| **Interface Description** | **Trie** method | **DAWG** method | -|------------------------------------------------------------------------------------------------------------------------------- |------------------------------------------- |------------------------------------------- | -| Add a single word | `add('apple')` | `add('apple')` | -| Add multiple words | `add_all(['advantage', 'courage'])` | `add_all(['advantage', 'courage'])` | -| Check if exists? | `in` operator | `in` operator | -| Search using wildcard expression | `search('a?b*')` | `search('a?b*)` | -| Search for prefix matches | `search_with_prefix('bar')` | `search_with_prefix('bar')` | -| Search for similar words within given edit distance. Here, the notion of edit distance is same as Levenshtein distance (LD) | `search_within_distance('apble', dist=1)` | `search_within_distance('apble', dist=1)` | - - -# Examples - -Although, the examples below are shown only for trie, they can be used for a DAWG in the same way. -Both Trie and DAWG support the same set of operations as shown in the above table. - -However, do read the section on "DAWG". - -## Ways to build a Trie or a DAWG. - -1. From an input list, set, or tuple of words. - -```python -from lexpy.trie import Trie -trie = Trie() -input_words = [ - 'ampyx', 'abuzz', 'athie', 'amato', 'aneto', 'aruba', 'arrow', 'agony', 'altai', 'alisa', - 'acorn', 'abhor', 'aurum', 'albay', 'arbil', 'albin', 'almug', 'artha', 'algin', 'auric', - 'sore', 'quilt', 'psychotic', 'eyes', 'cap', 'suit', 'tank', 'common', 'lonely', 'likeable' - 'language', 'shock', 'look', 'pet', 'dime', 'small' 'dusty', 'accept', 'nasty', 'thrill', - 'foot', 'steel' -] - -trie.add_all(input_words) # You can pass any sequence types of a file like object here - -print trie.get_word_count() -40 -``` - -2. Use the `build_trie_from_file()` method - -```python -from lexpy.utils import build_trie_from_file -trie = build_trie_from_file('/path/to/file') - -``` - -3. From a file-like object. -```python - -from lexpy.trie import Trie - -# Either -trie.add_all('/path/to/file.txt') - -# Or -with open('/path/to/file.txt', 'r') as infile: - trie.add_all(infile) - -``` - -## Search - -1. Check if exists using the `in` operator - -```python -print 'ampyx' in trie -True -``` - -2. Prefix search - -```python -print(trie.search_with_prefix('ab')) -['abhor', 'abuzz'] -``` - -3. Wildcard search using `?` and `*` - -`?` = 0 or 1 occurance of any character -`*` = 0 or more occurance of any character - -```python -print(trie.search('a*o*')) -[u'acorn', u'abhor', u'agony', u'amato', u'aneto', u'arrow'] - -print(trie.search('su?t')) -[u'suit'] - -4. Search for similar words using the notion of Levenstien Distance(LD) - -print(trie.search_within_distance('arie', dist=2)) -['arbil', 'auric', 'athie'] - -``` - -# Directed Acyclic Word Graph (DAWG) - ->DAWG supports the same set of operations as a Trie. The difference is the number of nodes in a DAWG is always -less than or equal to the number of nodes in Trie. They both are Deterministic Finite State Automata. -However, DAWG is a minimized version of the Trie DFA. -In a Trie, prefix redundancy is removed. -In a DAWG, both prefix and suffix redundancies are removed. - -In the current implementation of DAWG, the insertion order of the words should be **alphabetical**. - - -```python -from lexpy.trie import Trie -from lexpy.dawg import DAWG - -trie = Trie() -trie.add_all(['advantageous', 'courageous']) - -dawg = DAWG() -dawg.add_all(['advantageous', 'courageous']) - -len(trie) # Number of Nodes in Trie -23 - -dawg.reduce() # Perform DFA minimization. Call this every time a chunk of words are uploaded in DAWG. - -len(dawg) # Number of nodes in DAWG -13 - -``` - - - -*Fun Facts* : -1. The 45-letter word pneumonoultramicroscopicsilicovolcanoconiosis is the longest English word that appears in a major dictionary. -So for all english words, the search time is bounded by O(45). -2. The longest technical word(not in dictionary) is the name of a protein called as [titin](https://en.wikipedia.org/wiki/Titin). It has 189,819 -letters and it is disputed whether it is a word. - - - - - - -