diff --git a/README.md b/README.md index c1b67e4..9371a50 100644 --- a/README.md +++ b/README.md @@ -45,6 +45,11 @@ Lexpy version `0.9.3` is recommended and it supports both Python 2 and Python 3. # Examples +Although, the examples below are shown only for trie, they can be used for a DAWG in the same way. +Both Trie and DAWG support the same set of operations as shown in the above table. + +However, do read the section on "DAWG". + ## Ways to build a Trie or a DAWG. 1. From an input list, set, or tuple of words. @@ -53,62 +58,24 @@ Lexpy version `0.9.3` is recommended and it supports both Python 2 and Python 3. from lexpy.trie import Trie trie = Trie() input_words = [ - 'ampyx', - 'abuzz', - 'athie', - 'amato', - 'aneto', - 'aruba', - 'arrow', - 'agony', - 'altai', - 'alisa', - 'acorn', - 'abhor', - 'aurum', - 'albay', - 'arbil', - 'albin', - 'almug', - 'artha', - 'algin', - 'auric', - 'sore', - 'quilt', - 'psychotic', - 'eyes' - 'cap' - 'suit' - 'tank' - 'common' - 'lonely' - 'likeable' - 'language', - 'shock', - 'look', - 'pet', - 'dime', - 'small' - 'dusty', - 'accept', - 'nasty', - 'thrill', - 'foot', - 'steel' + 'ampyx', 'abuzz', 'athie', 'amato', 'aneto', 'aruba', 'arrow', 'agony', 'altai', 'alisa', + 'acorn', 'abhor', 'aurum', 'albay', 'arbil', 'albin', 'almug', 'artha', 'algin', 'auric', + 'sore', 'quilt', 'psychotic', 'eyes', 'cap', 'suit', 'tank', 'common', 'lonely', 'likeable' + 'language', 'shock', 'look', 'pet', 'dime', 'small' 'dusty', 'accept', 'nasty', 'thrill', + 'foot', 'steel' ] trie.add_all(input_words) # You can pass any sequence types of a file like object here print trie.get_word_count() -34 - +40 ``` 2. Use the `build_trie_from_file()` method ```python from lexpy.utils import build_trie_from_file -trie = build_trie_from_file('path/to/file') +trie = build_trie_from_file('/path/to/file') ``` @@ -121,14 +88,47 @@ from lexpy.trie import Trie trie.add_all('/path/to/file.txt') # Or -with open('path/to/file.txt', 'r') as infile: +with open('/path/to/file.txt', 'r') as infile: trie.add_all(infile) ``` +## Search + +1. Check if exists using the `in` operator + +```python +print 'ampyx' in trie +True +``` + +2. Prefix search +```python +print(trie.search_with_prefix('ab')) +['abhor', 'abuzz'] +``` + +3. Wildcard search using `?` and `*` + +`?` = 0 or 1 occurance of any character +`*` = 0 or more occurance of any character + +```python +print(trie.search('a*o*')) +[u'acorn', u'abhor', u'agony', u'amato', u'aneto', u'arrow'] + +print(trie.search('su?t')) +[u'suit'] + +4. Search for similar words using the notion of Levenstien Distance(LD) + +print(trie.search_within_distance('arie', dist=2)) +['arbil', 'auric', 'athie'] + +``` -## Directed Acyclic Word Graph (DAWG) +# Directed Acyclic Word Graph (DAWG) >DAWG supports the same set of operations as a Trie. The difference is the number of nodes in a DAWG is always less than or equal to the number of nodes in Trie. They both are Deterministic Finite State Automata.