-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
188 lines (155 loc) · 7.53 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
##This is taken verbatim from the chong data, going to check today to see if there's any abnormalities due to perhaps
##the response code being different. The relevant functions here are err_plots and its depenencies.
def quantile_list(data,nquantiles):
"""Function that finds the value of n quantiles in an array. \n
data: 1-D array \n
nquantiles: number of quantiles to return"""
quantiles_list = []
for i in range(nquantiles):
q = i/nquantiles
if len(data) == 0:
data = [0,0]
quantiles_list.append(np.quantile(data,q))
return np.array(quantiles_list)
def quantile_data(data,nquantiles):
"""Function that returns a list of the data split into quantiles. \n
data: 1-D array \n
nquantiles: number of quantiles to split the data into"""
data_list = []
l = np.linspace(0,1,nquantiles+1)
l = np.quantile(data.rxtime,l)
for i in range(nquantiles):
#print((data.rt>=l[i])*(data.rt<l[i+1]))
data_list.append(data[(data.rxtime>=l[i])*(data.rxtime<l[i+1])])
return data_list
def rate_by_quantile(data,response,nquants):
"""Returns the rate of occurence for a certain response within each n quantile(s) \n
data: dataframe of hddm-ready data \n
response: The specifc response to provide the rate of occurence for \n
nquants: number of quantiles to return rate for"""
subs = np.unique(data.subj)
out = np.zeros((len(subs),nquants))
for i in range(len(subs)):
d = data[data.subj==subs[i]]
qd = quantile_data(d,nquants)
for j in range(nquants):
out[i,j] = np.mean(qd[j].response==response)
print(np.mean(out,axis = 0))
return np.mean(out,axis=0)
def load_posterior_predictive(model, task = 0, coherence = 0, group = 0):
"""Loads the posterior predictive of a model with the specified paramters"""
files = os.listdir("data/posterior_predictives/{}".format(model))
isempty = True
for file in files:
if (model in file) and ("task_{}".format(task) in file) and ("coh_{}".format(coherence) in file) and ("group_{}".format(group) in file):
data = pd.read_pickle("data/posterior_predictives/{}/{}".format(model,file))
isempty = False
if isempty:
print("model with these arguments does not exist")
else:
return data
### Plotting functions ###
def err_plot(data,nquants):
"""Plots the rate of high and low dimension errors in each quantile"""
plt.plot(rate_by_quantile(data,1,nquants) + rate_by_quantile(data,0,nquants),'-o')
plt.plot(rate_by_quantile(data,2,nquants) + rate_by_quantile(data,0,nquants),'-o')
plt.ylim((0,0.3))
def single_qpp(data_table, nquants, coh_level='highDim'):
"""Plots a single quantile probability plot. If coherence level is 'highDim',
then errors in the high dimension are used for the error rates. Otherwise, low dimension
errors are used."""
if coh_level == 'highDim':
for i in [-1,1]:
data = data_table[data_table.highDimCoh == i]
rate = np.mean(data.response==1)
print(rate)
plt.plot(np.repeat(rate,nquants),quantile_list(data.rxtime[data.response==1],nquants),'-o')
rate = sum(data.response==3)/len(data.rxtime)
plt.plot(np.repeat(rate,nquants),quantile_list(data.rxtime[data.response==3],nquants),'-o')
else:
for i in [-1,1]:
data = data_table[data_table.lowDimCoh == i]
rate = sum(data.response==2)
plt.plot(np.repeat(rate,nquants),quantile_list(data.rxtime[data.response==2],nquants),'-o')
rate = sum(data.response==3)/len(data.rxtime)
plt.plot(np.repeat(rate,nquants),quantile_list(data.rxtime[data.response==3],nquants),'-o')
def single_coh_hist(data,nquants):
"""Plots a histogram of the data and idenifies n quantiles in the plot."""
plt.hist(data.rxtime,bins=50,density=True,range=(0,8))
q_list = quantile_list(data.rxtime,nquants)
plt.vlines(q_list,0,1,linestyles='--',colors='r')
lines = q_list
lines = np.append(lines,5)
#locs = []
for i in range(nquants):
#locs.append()
plt.text(np.mean([lines[i],lines[i+1]])-0.1,0.95,'{}'.format(i+1))
def descriptive_plts(chong_data):
"""Function plotting plots that only require the data!"""
def all_plots(chong_data):
"""Function that plots all plots relevant to chong data study"""
plt.subplot(2,5,1)
single_coh_hist(chong_data[(chong_data['highDimCoh']==-1) & (chong_data['lowDimCoh']==-1)], 5)
plt.title('Reaction Time Quantiles \n by Coherence: LL',fontsize=18)
plt.xlabel('Reaction Time (seconds)',fontsize=14)
plt.ylabel('Density',fontsize=14)
plt.subplot(2,5,2)
plt.title('Reaction Time Quantiles \n by Coherence: LH',fontsize=18)
plt.xlabel('Reaction Time (seconds)',fontsize=14)
plt.ylabel('Density',fontsize=14)
single_coh_hist(chong_data[(chong_data['highDimCoh']==-1) & (chong_data['lowDimCoh']==1)],5)
plt.subplot(2,5,3)
plt.title('Reaction Time Quantiles \n by Coherence: HL',fontsize=18)
plt.xlabel('Reaction Time (seconds)',fontsize=14)
plt.ylabel('Density',fontsize=14)
single_coh_hist(chong_data[(chong_data['highDimCoh']==1) & (chong_data['lowDimCoh']==-1)],5)
plt.subplot(2,5,4)
plt.title('Reaction Time Quantiles \n by Coherence: HH',fontsize=18)
plt.xlabel('Reaction Time (seconds)',fontsize=14)
plt.ylabel('Density',fontsize=14)
single_coh_hist(chong_data[(chong_data['highDimCoh']==1) & (chong_data['lowDimCoh']==1)],5)
plt.subplot(2,5,6)
err_plot(chong_data[(chong_data['highDimCoh']==-1) & (chong_data['lowDimCoh']==-1)],5)
plt.title('Error Rate in RT Quantiles \n by Coherence: LL',fontsize=18)
plt.xlabel('Reaction Time Quantile',fontsize=14)
plt.ylabel('Error Rate',fontsize=14)
plt.xticks([0,1,2,3,4],[1,2,3,4,5])
plt.legend(['High Dimension Error','Low Dimension Error'])
plt.subplot(2,5,7)
err_plot(chong_data[(chong_data['highDimCoh']==-1) & (chong_data['lowDimCoh']==1)],5)
plt.title('Error Rate in RT Quantiles \n by Coherence: LH',fontsize=18)
plt.xlabel('Reaction Time Quantile',fontsize=14)
plt.ylabel('Error Rate',fontsize=14)
plt.xticks([0,1,2,3,4],[1,2,3,4,5])
plt.legend(['High Dimension Error','Low Dimension Error'])
plt.subplot(2,5,8)
err_plot(chong_data[(chong_data['highDimCoh']==1) & (chong_data['lowDimCoh']==-1)],5)
plt.title('Error Rate in RT Quantiles \n by Coherence: HL',fontsize=18)
plt.xlabel('Reaction Time Quantile',fontsize=14)
plt.ylabel('Error Rate',fontsize=14)
plt.xticks([0,1,2,3,4],[1,2,3,4,5])
plt.legend(['High Dimension Error','Low Dimension Error'])
plt.subplot(2,5,9)
err_plot(chong_data[(chong_data['highDimCoh']==1) & (chong_data['lowDimCoh']==1)],5)
plt.title('Error Rate in RT Quantiles \n by Coherence: HH',fontsize=18)
plt.xlabel('Reaction Time Quantile',fontsize=14)
plt.ylabel('Error Rate',fontsize=14)
plt.xticks([0,1,2,3,4],[1,2,3,4,5])
plt.legend(['High Dimension Error','Low Dimension Error'])
plt.subplot(2,5,5)
plt.title('High Dimension Quantile\nProbability Plot', fontsize = 18)
single_qpp(chong_data,5)
plt.legend(['Low coherence,\n incorrect','Low coherence,\n correct','High coherence,\n incorrect','High coherence,\n correct'])
plt.xlabel('Response Probability',fontsize=14)
plt.ylabel('Reaction Time (seconds)',fontsize=14)
plt.subplot(2,5,10)
plt.title('Low Dimension Quantile\nProbability Plot', fontsize = 18)
plt.ylabel('Reaction Time (seconds)')
single_qpp(chong_data,5,'lowDim')
plt.legend(['Low coherence,\n incorrect','Low coherence,\n correct','High coherence,\n incorrect','High coherence,\n correct'])
plt.xlabel('Response Probability',fontsize=14)
plt.ylabel('Reaction Time (seconds)',fontsize=14)