forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Recursive_postorder.js
105 lines (95 loc) · 2.34 KB
/
Recursive_postorder.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*
In postorder traversal , the root node is visited in the end,that is , first visit
the left sub-tree , then the right sub-tree , and lastly the root .
Postorder traversal is Defined as
* Traverse the left sub-tree of the root R in postorder
* Traverse the right sub-tree of the root R in postorder
* Visit the root node R
*/
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree {
constructor() {
this.root = null;
}
//insert function inserts a new node into the binary search tree
insert(value) {
var New = new Node(value);
if (this.root === null) {
this.root = New;
return this;
}
let curr = this.root;
let prev = null;
while (curr) {
if (value < curr.data) {
prev = curr;
curr = curr.left;
}
else if (value > curr.data) {
prev = curr;
curr = curr.right;
}
}
if (prev.data > value) {
prev.left = New;
return this;
}
else {
prev.right = New;
return this;
}
}
recursive_postorder(node) {
if (node !== null) {
this.recursive_postorder(node.left);
this.recursive_postorder(node.right);
console.log(node.data);
}
}
}
/*
install readline-sync module to get user input
To install use the command : npm install readline-sync
*/
const readline = require("readline-sync");
console.log("Enter the number of nodes to insert");
let n = Number(readline.question());
let b = new BinarySearchTree();
console.log("Enter the values of nodes to insert\n")
for (let i = 0; i < n; i++) {
console.log("Enter the value for node " + (i + 1));
b.insert(Number(readline.question()));
}
let root = b.root;
console.log("The postorder traversal for the binary search tree ")
b.recursive_postorder(root);
/*
Sample I/O :
Enter the number of nodes to insert
5
Enter the values of nodes to insert
Enter the value for node 1
4
Enter the value for node 2
2
Enter the value for node 3
5
Enter the value for node 4
3
Enter the value for node 5
1
The postorder traversal for the binary search tree
1
3
2
5
4
Time complexity : O(n)
Space complexity : O(n)
*/