-
Notifications
You must be signed in to change notification settings - Fork 0
/
genetic.py
1021 lines (873 loc) · 62.4 KB
/
genetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
#GeneticAlgorithmPython
import numpy
import random
import matplotlib.pyplot
import pickle
import time
class GA:
def __init__(self,
num_generations,
num_parents_mating,
fitness_func,
initial_population=None,
sol_per_pop=None,
num_genes=None,
init_range_low=-4,
init_range_high=4,
gene_type=float,
parent_selection_type="sss",
keep_parents=-1,
K_tournament=3,
crossover_type="single_point",
crossover_probability=None,
mutation_type="random",
mutation_probability=None,
mutation_by_replacement=False,
mutation_percent_genes=10,
mutation_num_genes=None,
random_mutation_min_val=0.0,
random_mutation_max_val=1.0,
gene_space=None,
on_start=None,
on_fitness=None,
on_parents=None,
on_crossover=None,
on_mutation=None,
callback_generation=None,
on_generation=None,
on_stop=None,
delay_after_gen=0.0):
"""
on_start: Accepts a function to be called only once before the genetic algorithm starts its evolution. This function must accept a single parameter representing the instance of the genetic algorithm.
on_fitness: Accepts a function to be called after calculating the fitness values of all solutions in the population. This function must accept 2 parameters: the first one represents the instance of the genetic algorithm and the second one is a list of all solutions' fitness values.
on_parents: Accepts a function to be called after selecting the parents that mates. This function must accept 2 parameters: the first one represents the instance of the genetic algorithm and the second one represents the selected parents. Added in PyGAD 2.6.0.
on_crossover: Accepts a function to be called each time the crossover operation is applied. This function must accept 2 parameters: the first one represents the instance of the genetic algorithm and the second one represents the offspring generated using crossover.
on_mutation: Accepts a function to be called each time the mutation operation is applied. This function must accept 2 parameters: the first one represents the instance of the genetic algorithm and the second one represents the offspring after applying the mutation.
callback_generation: Accepts a function to be called after each generation. This function must accept a single parameter representing the instance of the genetic algorithm. If the function returned "stop", then the run() method stops without completing the other generations. Starting from PyGAD 2.6.0, the callback_generation parameter is deprecated and should be replaced by the on_generation parameter.
on_generation: Accepts a function to be called after each generation. This function must accept a single parameter representing the instance of the genetic algorithm. If the function returned "stop", then the run() method stops without completing the other generations.
on_stop: Accepts a function to be called only once exactly before the genetic algorithm stops or when it completes all the generations. This function must accept 2 parameters: the first one represents the instance of the genetic algorithm and the second one is a list of fitness values of the last population's solutions.
"""
self.gene_space_nested = False
if type(gene_space) is type(None):
pass
elif type(gene_space) in [list, tuple, range]:
if len(gene_space) == 0:
self.valid_parameters = False
raise TypeError("'gene_space' cannot be empty (i.e. its length must be >= 0).")
else:
for index, el in enumerate(gene_space):
if type(el) in [list, tuple, range]:
if len(el) == 0:
self.valid_parameters = False
raise TypeError("The element indexed {index} of 'gene_space' with type {el_type} cannot be empty (i.e. its length must be >= 0).".format(index=index, el_type=type(el)))
else:
for val in el:
if not (type(val) in [int, float]):
raise TypeError("All values in the sublists inside the 'gene_space' attribute must be numeric of type int/float but the value ({val}) of type {typ} found.".format(val=val, typ=type(val)))
self.gene_space_nested = True
elif type(el) == type(None):
self.gene_space_nested = True
elif not (type(el) in [int, float]):
self.valid_parameters = False
raise TypeError("Unexpected type {el_type} for the element indexed {index} of 'gene_space'. The accepted types are list/tuple/range of numbers, a single number (int/float), or None.".format(index=index, el_type=type(el)))
else:
self.valid_parameters = False
raise TypeError("The expected type of 'gene_space' is list, tuple, or range but {gene_space_type} found.".format(gene_space_type=type(gene_space)))
if self.gene_space_nested:
if len(gene_space) != num_genes:
self.valid_parameters = False
raise TypeError("When the parameter 'gene_space' is nested, then its length must be equal to the value passed to the 'num_genes' parameter. Instead, length of gene_space ({len_gene_space}) != num_genes ({len_num_genes})".format(len_gene_space=len(gene_space), len_num_genes=num_genes))
self.gene_space = gene_space
self.init_range_low = init_range_low
self.init_range_high = init_range_high
if gene_type in [int, float]:
self.gene_type = gene_type
else:
self.valid_parameters = False
raise ValueError("The value passed to the 'gene_type' parameter must be either int or float but the value {gene_type} found.".format(gene_type=gene_type))
if initial_population is None:
if (sol_per_pop is None) or (num_genes is None):
self.valid_parameters = False
raise ValueError("Error creating the initail population\n\nWhen the parameter initial_population is None, then neither of the 2 parameters sol_per_pop and num_genes can be None at the same time.\nThere are 2 options to prepare the initial population:\n1) Create an initial population and assign it to the initial_population parameter. In this case, the values of the 2 parameters sol_per_pop and num_genes will be deduced.\n2) Allow the genetic algorithm to create the initial population automatically by passing valid integer values to the sol_per_pop and num_genes parameters.")
elif (type(sol_per_pop) is int) and (type(num_genes) is int):
# Validating the number of solutions in the population (sol_per_pop)
if sol_per_pop <= 0:
self.valid_parameters = False
raise ValueError("The number of solutions in the population (sol_per_pop) must be > 0 but {sol_per_pop} found. \nThe following parameters must be > 0: \n1) Population size (i.e. number of solutions per population) (sol_per_pop).\n2) Number of selected parents in the mating pool (num_parents_mating).\n".format(sol_per_pop=sol_per_pop))
# Validating the number of gene.
if (num_genes <= 0):
self.valid_parameters = False
raise ValueError("Number of genes cannot be <= 0 but {num_genes} found.\n".format(num_genes=num_genes))
# When initial_population=None and the 2 parameters sol_per_pop and num_genes have valid integer values, then the initial population is created.
# Inside the initialize_population() method, the initial_population attribute is assigned to keep the initial population accessible.
self.num_genes = num_genes # Number of genes in the solution.
self.sol_per_pop = sol_per_pop # Number of solutions in the population.
self.initialize_population(self.init_range_low, self.init_range_high)
else:
raise TypeError("The expected type of both the sol_per_pop and num_genes parameters is int but {sol_per_pop_type} and {num_genes_type} found.".format(sol_per_pop_type=type(sol_per_pop), num_genes_type=type(num_genes)))
elif numpy.array(initial_population).ndim != 2:
raise ValueError("A 2D list is expected to the initail_population parameter but a {initial_population_ndim}-D list found.".format(initial_population_ndim=numpy.array(initial_population).ndim))
else:
self.initial_population = numpy.array(initial_population)
self.population = self.initial_population.copy() # A NumPy array holding the initial population.
self.num_genes = self.initial_population.shape[1] # Number of genes in the solution.
self.sol_per_pop = self.initial_population.shape[0] # Number of solutions in the population.
self.pop_size = (self.sol_per_pop,self.num_genes) # The population size.
# Validating the number of parents to be selected for mating (num_parents_mating)
if num_parents_mating <= 0:
self.valid_parameters = False
raise ValueError("The number of parents mating (num_parents_mating) parameter must be > 0 but {num_parents_mating} found. \nThe following parameters must be > 0: \n1) Population size (i.e. number of solutions per population) (sol_per_pop).\n2) Number of selected parents in the mating pool (num_parents_mating).\n".format(num_parents_mating=num_parents_mating))
# Validating the number of parents to be selected for mating: num_parents_mating
if (num_parents_mating > self.sol_per_pop):
self.valid_parameters = False
raise ValueError("The number of parents to select for mating ({num_parents_mating}) cannot be greater than the number of solutions in the population ({sol_per_pop}) (i.e., num_parents_mating must always be <= sol_per_pop).\n".format(num_parents_mating=num_parents_mating, sol_per_pop=self.sol_per_pop))
self.num_parents_mating = num_parents_mating
# crossover: Refers to the method that applies the crossover operator based on the selected type of crossover in the crossover_type property.
# Validating the crossover type: crossover_type
if (crossover_type == "single_point"):
self.crossover = self.single_point_crossover
elif (crossover_type == "two_points"):
self.crossover = self.two_points_crossover
elif (crossover_type == "uniform"):
self.crossover = self.uniform_crossover
elif (crossover_type is None):
self.crossover = None
else:
self.valid_parameters = False
raise ValueError("Undefined crossover type. \nThe assigned value to the crossover_type ({crossover_type}) argument does not refer to one of the supported crossover types which are: \n-single_point (for single point crossover)\n-two_points (for two points crossover)\n-uniform (for uniform crossover).\n".format(crossover_type=crossover_type))
self.crossover_type = crossover_type
if crossover_probability == None:
self.crossover_probability = None
elif type(crossover_probability) in [int, float]:
if crossover_probability >= 0 and crossover_probability <= 1:
self.crossover_probability = crossover_probability
else:
self.valid_parameters = False
raise ValueError("The value assigned to the 'crossover_probability' parameter must be between 0 and 1 inclusive but {crossover_probability_value} found.".format(crossover_probability_value=crossover_probability))
else:
self.valid_parameters = False
raise ValueError("Unexpected type for the 'crossover_probability' parameter. Float is expected by {crossover_probability_type} found.".format(crossover_probability_type=type(crossover_probability)))
# mutation: Refers to the method that applies the mutation operator based on the selected type of mutation in the mutation_type property.
# Validating the mutation type: mutation_type
if (mutation_type == "random"):
self.mutation = self.random_mutation
elif (mutation_type == "swap"):
self.mutation = self.swap_mutation
elif (mutation_type == "scramble"):
self.mutation = self.scramble_mutation
elif (mutation_type == "inversion"):
self.mutation = self.inversion_mutation
elif (mutation_type is None):
self.mutation = None
else:
self.valid_parameters = False
raise ValueError("Undefined mutation type. \nThe assigned value to the mutation_type argument ({mutation_type}) does not refer to one of the supported mutation types which are: \n-random (for random mutation)\n-swap (for swap mutation)\n-inversion (for inversion mutation)\n-scramble (for scramble mutation).\n".format(mutation_type=mutation_type))
self.mutation_type = mutation_type
if mutation_probability == None:
self.mutation_probability = None
elif type(mutation_probability) in [int, float]:
if mutation_probability >= 0 and mutation_probability <= 1:
self.mutation_probability = mutation_probability
else:
self.valid_parameters = False
raise ValueError("The value assigned to the 'mutation_probability' parameter must be between 0 and 1 inclusive but {mutation_probability_value} found.".format(mutation_probability_value=crossover_probability))
else:
self.valid_parameters = False
raise ValueError("Unexpected type for the 'mutation_probability' parameter. Float is expected by {mutation_probability_type} found.".format(mutation_probability_type=type(mutation_probability)))
if not (self.mutation_type is None):
if (mutation_num_genes == None):
if (mutation_percent_genes < 0 or mutation_percent_genes > 100):
self.valid_parameters = False
raise ValueError("The percentage of selected genes for mutation (mutation_percent_genes) must be >= 0 and <= 100 inclusive but {mutation_percent_genes=mutation_percent_genes} found.\n".format(mutation_percent_genes=mutation_percent_genes))
else:
# Based on the mutation percentage in the 'mutation_percent_genes' parameter, the number of genes to mutate is calculated.
if mutation_num_genes == None:
mutation_num_genes = numpy.uint32((mutation_percent_genes*self.num_genes)/100)
# Based on the mutation percentage of genes, if the number of selected genes for mutation is less than the least possible value which is 1, then the number will be set to 1.
if mutation_num_genes == 0:
mutation_num_genes = 1
elif (mutation_num_genes <= 0):
self.valid_parameters = False
raise ValueError("The number of selected genes for mutation (mutation_num_genes) cannot be <= 0 but {mutation_num_genes} found.\n".format(mutation_num_genes=mutation_num_genes))
elif (mutation_num_genes > self.num_genes):
self.valid_parameters = False
raise ValueError("The number of selected genes for mutation (mutation_num_genes) ({mutation_num_genes}) cannot be greater than the number of genes ({num_genes}).\n".format(mutation_num_genes=mutation_num_genes, num_genes=self.num_genes))
elif (type(mutation_num_genes) is not int):
self.valid_parameters = False
raise ValueError("The number of selected genes for mutation (mutation_num_genes) must be a positive integer >= 1 but {mutation_num_genes} found.\n".format(mutation_num_genes=mutation_num_genes))
else:
pass
if not (type(mutation_by_replacement) is bool):
self.valid_parameters = False
raise TypeError("The expected type of the 'mutation_by_replacement' parameter is bool but {mutation_by_replacement_type} found.".format(mutation_by_replacement_type=type(mutation_by_replacement)))
self.mutation_by_replacement = mutation_by_replacement
if self.mutation_type != "random" and self.mutation_by_replacement:
print("Warning: The mutation_by_replacement parameter is set to True while the mutation_type parameter is not set to random but {mut_type}. Note that the mutation_by_replacement parameter has an effect only when mutation_type='random'.".format(mut_type=mutation_type))
if (self.mutation_type is None) and (self.crossover_type is None):
print("Warning: the 2 parameters mutation_type and crossover_type are None. This disables any type of evolution the genetic algorithm can make. As a result, the genetic algorithm cannot find a better solution that the best solution in the initial population.")
# select_parents: Refers to a method that selects the parents based on the parent selection type specified in the parent_selection_type attribute.
# Validating the selected type of parent selection: parent_selection_type
if (parent_selection_type == "sss"):
self.select_parents = self.steady_state_selection
elif (parent_selection_type == "rws"):
self.select_parents = self.roulette_wheel_selection
elif (parent_selection_type == "sus"):
self.select_parents = self.stochastic_universal_selection
elif (parent_selection_type == "random"):
self.select_parents = self.random_selection
elif (parent_selection_type == "tournament"):
self.select_parents = self.tournament_selection
elif (parent_selection_type == "rank"):
self.select_parents = self.rank_selection
else:
self.valid_parameters = False
raise ValueError("Undefined parent selection type: {parent_selection_type}. \nThe assigned value to the parent_selection_type argument does not refer to one of the supported parent selection techniques which are: \n-sss (for steady state selection)\n-rws (for roulette wheel selection)\n-sus (for stochastic universal selection)\n-rank (for rank selection)\n-random (for random selection)\n-tournament (for tournament selection).\n".format(parent_selection_type))
if(parent_selection_type == "tournament"):
if (K_tournament > self.sol_per_pop):
K_tournament = self.sol_per_pop
print("Warining: K of the tournament selection ({K_tournament}) should not be greater than the number of solutions within the population ({sol_per_pop}).\nK will be clipped to be equal to the number of solutions in the population (sol_per_pop).\n".format(K_tournament=K_tournament, sol_per_pop=self.sol_per_pop))
elif (K_tournament <= 0):
self.valid_parameters = False
raise ValueError("K of the tournament selection cannot be <=0 but {K_tournament} found.\n".format(K_tournament=K_tournament))
self.K_tournament = K_tournament
# Validating the number of parents to keep in the next population: keep_parents
if (keep_parents > self.sol_per_pop or keep_parents > self.num_parents_mating or keep_parents < -1):
self.valid_parameters = False
raise ValueError("Incorrect value to the keep_parents parameter: {keep_parents}. \nThe assigned value to the keep_parent parameter must satisfy the following conditions: \n1) Less than or equal to sol_per_pop\n2) Less than or equal to num_parents_mating\n3) Greater than or equal to -1.".format(keep_parents=keep_parents))
self.keep_parents = keep_parents
if (self.keep_parents == -1): # Keep all parents in the next population.
self.num_offspring = self.sol_per_pop - self.num_parents_mating
elif (self.keep_parents == 0): # Keep no parents in the next population.
self.num_offspring = self.sol_per_pop
elif (self.keep_parents > 0): # Keep the specified number of parents in the next population.
self.num_offspring = self.sol_per_pop - self.keep_parents
# Check if the fitness_func is a function.
if callable(fitness_func):
# Check if the fitness function accepts 2 paramaters.
if (fitness_func.__code__.co_argcount == 2):
self.fitness_func = fitness_func
else:
self.valid_parameters = False
raise ValueError("The fitness function must accept 2 parameters representing the solution to which the fitness value is calculated and the solution index within the population.\nThe passed fitness function named '{funcname}' accepts {argcount} argument(s).".format(funcname=fitness_func.__code__.co_name, argcount=fitness_func.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the fitness_func parameter is expected to be of type function but {fitness_func_type} found.".format(fitness_func_type=type(fitness_func)))
# Check if the on_start exists.
if not (on_start is None):
# Check if the on_start is a function.
if callable(on_start):
# Check if the on_start function accepts only a single paramater.
if (on_start.__code__.co_argcount == 1):
self.on_start = on_start
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_start parameter must accept only 1 parameter representing the instance of the genetic algorithm.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_start.__code__.co_name, argcount=on_start.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_start parameter is expected to be of type function but {on_start_type} found.".format(on_start_type=type(on_start)))
else:
self.on_start = None
# Check if the on_fitness exists.
if not (on_fitness is None):
# Check if the on_fitness is a function.
if callable(on_fitness):
# Check if the on_fitness function accepts 2 paramaters.
if (on_fitness.__code__.co_argcount == 2):
self.on_fitness = on_fitness
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_fitness parameter must accept 2 parameters representing the instance of the genetic algorithm and the fitness values of all solutions.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_fitness.__code__.co_name, argcount=on_fitness.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_fitness parameter is expected to be of type function but {on_fitness_type} found.".format(on_fitness_type=type(on_fitness)))
else:
self.on_fitness = None
# Check if the on_parents exists.
if not (on_parents is None):
# Check if the on_parents is a function.
if callable(on_parents):
# Check if the on_parents function accepts 2 paramaters.
if (on_parents.__code__.co_argcount == 2):
self.on_parents = on_parents
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_parents parameter must accept 2 parameters representing the instance of the genetic algorithm and the fitness values of all solutions.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_parents.__code__.co_name, argcount=on_parents.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_parents parameter is expected to be of type function but {on_parents_type} found.".format(on_parents_type=type(on_parents)))
else:
self.on_parents = None
# Check if the on_crossover exists.
if not (on_crossover is None):
# Check if the on_crossover is a function.
if callable(on_crossover):
# Check if the on_crossover function accepts 2 paramaters.
if (on_crossover.__code__.co_argcount == 2):
self.on_crossover = on_crossover
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_crossover parameter must accept 2 parameters representing the instance of the genetic algorithm and the offspring generated using crossover.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_crossover.__code__.co_name, argcount=on_crossover.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_crossover parameter is expected to be of type function but {on_crossover_type} found.".format(on_crossover_type=type(on_crossover)))
else:
self.on_crossover = None
# Check if the on_mutation exists.
if not (on_mutation is None):
# Check if the on_mutation is a function.
if callable(on_mutation):
# Check if the on_mutation function accepts 2 paramaters.
if (on_mutation.__code__.co_argcount == 2):
self.on_mutation = on_mutation
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_mutation parameter must accept 2 parameters representing the instance of the genetic algorithm and the offspring after applying the mutation operation.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_mutation.__code__.co_name, argcount=on_mutation.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_mutation parameter is expected to be of type function but {on_mutation_type} found.".format(on_mutation_type=type(on_mutation)))
else:
self.on_mutation = None
# Check if the callback_generation exists.
if not (callback_generation is None):
# Check if the callback_generation is a function.
if callable(callback_generation):
# Check if the callback_generation function accepts only a single paramater.
if (callback_generation.__code__.co_argcount == 1):
self.callback_generation = callback_generation
on_generation = callback_generation
print("")
else:
self.valid_parameters = False
raise ValueError("The function assigned to the callback_generation parameter must accept only 1 parameter representing the instance of the genetic algorithm.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=callback_generation.__code__.co_name, argcount=callback_generation.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the callback_generation parameter is expected to be of type function but {callback_generation_type} found.".format(callback_generation_type=type(callback_generation)))
else:
self.callback_generation = None
# Check if the on_generation exists.
if not (on_generation is None):
# Check if the on_generation is a function.
if callable(on_generation):
# Check if the on_generation function accepts only a single paramater.
if (on_generation.__code__.co_argcount == 1):
self.on_generation = on_generation
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_generation parameter must accept only 1 parameter representing the instance of the genetic algorithm.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_generation.__code__.co_name, argcount=on_generation.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_generation parameter is expected to be of type function but {on_generation_type} found.".format(on_generation_type=type(on_generation)))
else:
self.on_generation = None
# Check if the on_stop exists.
if not (on_stop is None):
# Check if the on_stop is a function.
if callable(on_stop):
# Check if the on_stop function accepts 2 paramaters.
if (on_stop.__code__.co_argcount == 2):
self.on_stop = on_stop
else:
self.valid_parameters = False
raise ValueError("The function assigned to the on_stop parameter must accept 2 parameters representing the instance of the genetic algorithm and a list of the fitness values of the solutions in the last population.\nThe passed function named '{funcname}' accepts {argcount} argument(s).".format(funcname=on_stop.__code__.co_name, argcount=on_stop.__code__.co_argcount))
else:
self.valid_parameters = False
raise ValueError("The value assigned to the on_stop parameter is expected to be of type function but {on_stop_type} found.".format(on_stop_type=type(on_stop)))
else:
self.on_stop = None
if delay_after_gen >= 0.0:
self.delay_after_gen = delay_after_gen
else:
self.valid_parameters = False
raise ValueError("The value passed to the 'delay_after_gen' parameter must be a non-negative number. The value passed is {delay_after_gen} of type {delay_after_gen_type}.".format(delay_after_gen=delay_after_gen, delay_after_gen_type=type(delay_after_gen)))
# The number of completed generations.
self.generations_completed = 0
# At this point, all necessary parameters validation is done successfully and we are sure that the parameters are valid.
self.valid_parameters = True # Set to True when all the parameters passed in the GA class constructor are valid.
# Parameters of the genetic algorithm.
self.num_generations = abs(num_generations)
self.parent_selection_type = parent_selection_type
# Parameters of the mutation operation.
self.mutation_percent_genes = mutation_percent_genes
self.mutation_num_genes = mutation_num_genes
self.random_mutation_min_val = random_mutation_min_val
self.random_mutation_max_val = random_mutation_max_val
self.best_solutions_fitness = [] # A list holding the fitness value of the best solution for each generation.
self.best_solution_generation = -1 # The generation number at which the best fitness value is reached. It is only assigned the generation number after the `run()` method completes. Otherwise, its value is -1.
def initialize_population(self, low, high):
"""
Creates an initial population randomly as a NumPy array. The array is saved in the instance attribute named 'population'.
low: The lower value of the random range from which the gene values in the initial population are selected. It defaults to -4.
high: The upper value of the random range from which the gene values in the initial population are selected. It defaults to -4.
This method assigns the values of the following 3 instance attributes:
1. pop_size: Size of the population.
2. population: Initially, holds the initial population and later updated after each generation.
3. init_population: Keeping the initial population.
"""
# Population size = (number of chromosomes, number of genes per chromosome)
self.pop_size = (self.sol_per_pop,self.num_genes) # The population will have sol_per_pop chromosome where each chromosome has num_genes genes.
if self.gene_space == None:
# Creating the initial population randomly.
#for _ in range(self.pop_size):
# x = numpy.random.random(self.num_genes)
# a = x/numpy.sum(x)
# self.population.append(a)
self.population = numpy.asarray(numpy.random.uniform(low=low,
high=high,
size=self.pop_size), dtype=self.gene_type) # A NumPy array holding the initial population.
elif self.gene_space_nested:
self.population = numpy.zeros(shape=self.pop_size)
for sol_idx in range(self.sol_per_pop):
for gene_idx in range(self.num_genes):
curr_gene_space = self.gene_space[gene_idx]
if type(curr_gene_space) in [list, tuple, range]:
self.population[sol_idx, gene_idx] = random.choice(curr_gene_space)
elif type(curr_gene_space) == type(None):
self.population[sol_idx, gene_idx] = self.gene_type(numpy.random.uniform(low=low,
high=high,
size=1))
elif type(curr_gene_space) in [int, float]:
self.population[sol_idx, gene_idx] = curr_gene_space
else:
# Creating the initial population by randomly selecting the genes' values from the values inside the 'gene_space' parameter.
self.population = numpy.random.choice(self.gene_space,
size=self.pop_size) # A NumPy array holding the initial population.
# Keeping the initial population in the initial_population attribute.
self.initial_population = self.population.copy()
def cal_pop_fitness(self):
"""
Calculating the fitness values of all solutions in the current population.
It returns:
-fitness: An array of the calculated fitness values.
"""
if self.valid_parameters == False:
raise ValueError("ERROR calling the cal_pop_fitness() method: \nPlease check the parameters passed while creating an instance of the GA class.\n")
pop_fitness = []
# Calculating the fitness value of each solution in the current population.
for sol_idx, sol in enumerate(self.population):
fitness = self.fitness_func(sol, sol_idx)
pop_fitness.append(fitness)
pop_fitness = numpy.array(pop_fitness)
return pop_fitness
def run(self):
"""
Runs the genetic algorithm. This is the main method in which the genetic algorithm is evolved through a number of generations.
"""
if self.valid_parameters == False:
raise ValueError("ERROR calling the run() method: \nThe run() method cannot be executed with invalid parameters. Please check the parameters passed while creating an instance of the GA class.\n")
if not (self.on_start is None):
self.on_start(self)
for generation in range(self.num_generations):
# Measuring the fitness of each chromosome in the population.
fitness = self.cal_pop_fitness()
if not (self.on_fitness is None):
self.on_fitness(self, fitness)
# Appending the fitness value of the best solution in the current generation to the best_solutions_fitness attribute.
self.best_solutions_fitness.append(numpy.max(fitness))
# Selecting the best parents in the population for mating.
parents = self.select_parents(fitness, num_parents=self.num_parents_mating)
if not (self.on_parents is None):
self.on_parents(self, parents)
# If self.crossover_type=None, then no crossover is applied and thus no offspring will be created in the next generations. The next generation will use the solutions in the current population.
if self.crossover_type is None:
if self.num_offspring <= self.keep_parents:
offspring_crossover = parents[0:self.num_offspring]
else:
offspring_crossover = numpy.concatenate((parents, self.population[0:(self.num_offspring - parents.shape[0])]))
else:
# Generating offspring using crossover.
offspring_crossover = self.crossover(parents,
offspring_size=(self.num_offspring, self.num_genes))
if not (self.on_crossover is None):
self.on_crossover(self, offspring_crossover)
# If self.mutation_type=None, then no mutation is applied and thus no changes are applied to the offspring created using the crossover operation. The offspring will be used unchanged in the next generation.
if self.mutation_type is None:
offspring_mutation = offspring_crossover
else:
# Adding some variations to the offspring using mutation.
offspring_mutation = self.mutation(offspring_crossover)
if not (self.on_mutation is None):
self.on_mutation(self, offspring_mutation)
if (self.keep_parents == 0):
self.population = offspring_mutation
elif (self.keep_parents == -1):
# Creating the new population based on the parents and offspring.
self.population[0:parents.shape[0], :] = parents
self.population[parents.shape[0]:, :] = offspring_mutation
elif (self.keep_parents > 0):
parents_to_keep = self.steady_state_selection(fitness, num_parents=self.keep_parents)
self.population[0:parents_to_keep.shape[0], :] = parents_to_keep
self.population[parents_to_keep.shape[0]:, :] = offspring_mutation
self.generations_completed = generation + 1 # The generations_completed attribute holds the number of the last completed generation.
# If the callback_generation attribute is not None, then cal the callback function after the generation.
if not (self.on_generation is None):
r = self.on_generation(self)
if type(r) is str and r.lower() == "stop":
break
time.sleep(self.delay_after_gen)
self.best_solution_generation = numpy.where(numpy.array(self.best_solutions_fitness) == numpy.max(numpy.array(self.best_solutions_fitness)))[0][0]
# After the run() method completes, the run_completed flag is changed from False to True.
self.run_completed = True # Set to True only after the run() method completes gracefully.
if not (self.on_stop is None):
self.on_stop(self, self.cal_pop_fitness())
def steady_state_selection(self, fitness, num_parents):
"""
Selects the parents using the steady-state selection technique. Later, these parents will mate to produce the offspring.
It accepts 2 parameters:
-fitness: The fitness values of the solutions in the current population.
-num_parents: The number of parents to be selected.
It returns an array of the selected parents.
"""
fitness_sorted = sorted(range(len(fitness)), key=lambda k: fitness[k])
fitness_sorted.reverse()
# Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
parents = numpy.empty((num_parents, self.population.shape[1]))
for parent_num in range(num_parents):
parents[parent_num, :] = self.population[fitness_sorted[parent_num], :]
return parents
def random_selection(self, fitness, num_parents):
"""
Selects the parents randomly. Later, these parents will mate to produce the offspring.
It accepts 2 parameters:
-fitness: The fitness values of the solutions in the current population.
-num_parents: The number of parents to be selected.
It returns an array of the selected parents.
"""
parents = numpy.empty((num_parents, self.population.shape[1]))
rand_indices = numpy.random.randint(low=0.0, high=fitness.shape[0], size=num_parents)
for parent_num in range(num_parents):
parents[parent_num, :] = self.population[rand_indices[parent_num], :]
return parents
def tournament_selection(self, fitness, num_parents):
"""
Selects the parents using the tournament selection technique. Later, these parents will mate to produce the offspring.
It accepts 2 parameters:
-fitness: The fitness values of the solutions in the current population.
-num_parents: The number of parents to be selected.
It returns an array of the selected parents.
"""
parents = numpy.empty((num_parents, self.population.shape[1]))
for parent_num in range(num_parents):
rand_indices = numpy.random.randint(low=0.0, high=len(fitness), size=self.K_tournament)
K_fitnesses = fitness[rand_indices]
selected_parent_idx = numpy.where(K_fitnesses == numpy.max(K_fitnesses))[0][0]
parents[parent_num, :] = self.population[rand_indices[selected_parent_idx], :]
return parents
def roulette_wheel_selection(self, fitness, num_parents):
"""
Selects the parents using the roulette wheel selection technique. Later, these parents will mate to produce the offspring.
It accepts 2 parameters:
-fitness: The fitness values of the solutions in the current population.
-num_parents: The number of parents to be selected.
It returns an array of the selected parents.
"""
fitness_sum = numpy.sum(fitness)
probs = fitness / fitness_sum
probs_start = numpy.zeros(probs.shape, dtype=numpy.float) # An array holding the start values of the ranges of probabilities.
probs_end = numpy.zeros(probs.shape, dtype=numpy.float) # An array holding the end values of the ranges of probabilities.
curr = 0.0
# Calculating the probabilities of the solutions to form a roulette wheel.
for _ in range(probs.shape[0]):
min_probs_idx = numpy.where(probs == numpy.min(probs))[0][0]
probs_start[min_probs_idx] = curr
curr = curr + probs[min_probs_idx]
probs_end[min_probs_idx] = curr
probs[min_probs_idx] = 99999999999
# Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
parents = numpy.empty((num_parents, self.population.shape[1]))
for parent_num in range(num_parents):
rand_prob = numpy.random.rand()
for idx in range(probs.shape[0]):
if (rand_prob >= probs_start[idx] and rand_prob < probs_end[idx]):
parents[parent_num, :] = self.population[idx, :]
break
return parents
def single_point_crossover(self, parents, offspring_size):
"""
Applies the single-point crossover. It selects a point randomly at which crossover takes place between the pairs of parents.
It accepts 2 parameters:
-parents: The parents to mate for producing the offspring.
-offspring_size: The size of the offspring to produce.
It returns an array the produced offspring.
"""
offspring = numpy.empty(offspring_size)
for k in range(offspring_size[0]):
# The point at which crossover takes place between two parents. Usually, it is at the center.
crossover_point = numpy.random.randint(low=0, high=parents.shape[1], size=1)[0]
if self.crossover_probability != None:
probs = numpy.random.random(size=parents.shape[0])
indices = numpy.where(probs <= self.crossover_probability)[0]
# If no parent satisfied the probability, no crossover is applied and a parent is selected.
if len(indices) == 0:
offspring[k, :] = parents[k % parents.shape[0], :]
continue
elif len(indices) == 1:
parent1_idx = indices[0]
parent2_idx = parent1_idx
else:
indices = random.sample(set(indices), 2)
parent1_idx = indices[0]
parent2_idx = indices[1]
else:
# Index of the first parent to mate.
parent1_idx = k % parents.shape[0]
# Index of the second parent to mate.
parent2_idx = (k+1) % parents.shape[0]
# The new offspring has its first half of its genes from the first parent.
offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
# The new offspring has its second half of its genes from the second parent.
offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]
return offspring
def two_points_crossover(self, parents, offspring_size):
"""
Applies the 2 points crossover. It selects the 2 points randomly at which crossover takes place between the pairs of parents.
It accepts 2 parameters:
-parents: The parents to mate for producing the offspring.
-offspring_size: The size of the offspring to produce.
It returns an array the produced offspring.
"""
offspring = numpy.empty(offspring_size)
for k in range(offspring_size[0]):
if (parents.shape[1] == 1): # If the chromosome has only a single gene. In this case, this gene is copied from the second parent.
crossover_point1 = 0
else:
crossover_point1 = numpy.random.randint(low=0, high=numpy.ceil(parents.shape[1]/2 + 1), size=1)[0]
crossover_point2 = crossover_point1 + int(parents.shape[1]/2) # The second point must always be greater than the first point.
if self.crossover_probability != None:
probs = numpy.random.random(size=parents.shape[0])
indices = numpy.where(probs <= self.crossover_probability)[0]
# If no parent satisfied the probability, no crossover is applied and a parent is selected.
if len(indices) == 0:
offspring[k, :] = parents[k % parents.shape[0], :]
continue
elif len(indices) == 1:
parent1_idx = indices[0]
parent2_idx = parent1_idx
else:
indices = random.sample(set(indices), 2)
parent1_idx = indices[0]
parent2_idx = indices[1]
else:
# Index of the first parent to mate.
parent1_idx = k % parents.shape[0]
# Index of the second parent to mate.
parent2_idx = (k+1) % parents.shape[0]
# The genes from the beginning of the chromosome up to the first point are copied from the first parent.
offspring[k, 0:crossover_point1] = parents[parent1_idx, 0:crossover_point1]
# The genes from the second point up to the end of the chromosome are copied from the first parent.
offspring[k, crossover_point2:] = parents[parent1_idx, crossover_point2:]
# The genes between the 2 points are copied from the second parent.
offspring[k, crossover_point1:crossover_point2] = parents[parent2_idx, crossover_point1:crossover_point2]
return offspring
def uniform_crossover(self, parents, offspring_size):
"""
Applies the uniform crossover. For each gene, a parent out of the 2 mating parents is selected randomly and the gene is copied from it.
It accepts 2 parameters:
-parents: The parents to mate for producing the offspring.
-offspring_size: The size of the offspring to produce.
It returns an array the produced offspring.
"""
offspring = numpy.empty(offspring_size)
for k in range(offspring_size[0]):
if self.crossover_probability != None:
probs = numpy.random.random(size=parents.shape[0])
indices = numpy.where(probs <= self.crossover_probability)[0]
# If no parent satisfied the probability, no crossover is applied and a parent is selected.
if len(indices) == 0:
offspring[k, :] = parents[k % parents.shape[0], :]
continue
elif len(indices) == 1:
parent1_idx = indices[0]
parent2_idx = parent1_idx
else:
indices = random.sample(set(indices), 2)
parent1_idx = indices[0]
parent2_idx = indices[1]
else:
# Index of the first parent to mate.
parent1_idx = k % parents.shape[0]
# Index of the second parent to mate.
parent2_idx = (k+1) % parents.shape[0]
genes_source = numpy.random.randint(low=0, high=2, size=offspring_size[1])
for gene_idx in range(offspring_size[1]):
if (genes_source[gene_idx] == 0):
# The gene will be copied from the first parent if the current gene index is 0.
offspring[k, gene_idx] = parents[parent1_idx, gene_idx]
elif (genes_source[gene_idx] == 1):
# The gene will be copied from the second parent if the current gene index is 1.
offspring[k, gene_idx] = parents[parent2_idx, gene_idx]
return offspring
def random_mutation(self, offspring):
"""
Applies the random mutation which changes the values of a number of genes randomly by selecting a random value between random_mutation_min_val and random_mutation_max_val to be added to the selected genes.
It accepts a single parameter:
-offspring: The offspring to mutate.
It returns an array of the mutated offspring.
"""
# If the mutation values are selected from the mutation space, the attribute 'gene_space' is True. Otherwise, it is set to False.
# When the attribute 'gene_space' is False, the mutation values are selected randomly from the mutation space.
if self.mutation_probability == None:
if self.gene_space != None:
offspring = self.mutation_by_space(offspring)
# When the attribute 'gene_space' is False, the mutation values are selected randomly based on the continuous range specified by the 2 attributes 'random_mutation_min_val' and 'random_mutation_max_val'.
else:
offspring = self.mutation_randomly(offspring)
else:
if self.gene_space != None:
offspring = self.mutation_probs_by_space(offspring)
# When the attribute 'gene_space' is False, the mutation values are selected randomly based on the continuous range specified by the 2 attributes 'random_mutation_min_val' and 'random_mutation_max_val'.
else:
offspring = self.mutation_probs_randomly(offspring)
return offspring
def mutation_by_space(self, offspring):
"""
Applies the random mutation using the mutation values' space.
It accepts a single parameter:
-offspring: The offspring to mutate.
It returns an array of the mutated offspring using the mutation space.
"""
# For each offspring, a value from the gene space is selected randomly and assigned to the selected mutated gene.
for offspring_idx in range(offspring.shape[0]):
mutation_indices = numpy.array(random.sample(range(0, self.num_genes), self.mutation_num_genes))
for gene_idx in mutation_indices:
if self.gene_space_nested:
# Returning the current gene space from the 'gene_space' attribute.
curr_gene_space = self.gene_space[gene_idx]
# If the gene space has only a single value, use it as the new gene value.
if type(curr_gene_space) in [int, float]:
value_from_space = curr_gene_space
# Keep the gene unchanged if the gene space is None.
elif curr_gene_space == None:
rand_val = self.gene_type(numpy.random.uniform(low=self.random_mutation_min_val,
high=self.random_mutation_max_val,
size=1))
if self.mutation_by_replacement:
value_from_space = rand_val
else:
value_from_space = offspring[offspring_idx, gene_idx] + rand_val
else:
# Selecting a value randomly from the current gene's space in the 'gene_space' attribute.
value_from_space = random.choice(curr_gene_space)
else:
# Selecting a value randomly from the global gene space in the 'gene_space' attribute.
value_from_space = random.choice(self.gene_space)
# Assinging the selected value from the space to the gene.
offspring[offspring_idx, gene_idx] = value_from_space
return offspring
def mutation_probs_by_space(self, offspring):
"""
Applies the random mutation using the mutation values' space and the mutation probability. For each gene, if its probability is <= that mutation probability, then it will be mutated based on the mutation space.
It accepts a single parameter:
-offspring: The offspring to mutate.
It returns an array of the mutated offspring using the mutation space.
"""
# For each offspring, a value from the gene space is selected randomly and assigned to the selected mutated gene.
for offspring_idx in range(offspring.shape[0]):
probs = numpy.random.random(size=offspring.shape[1])
for gene_idx in range(offspring.shape[1]):
if probs[gene_idx] <= self.mutation_probability:
if self.gene_space_nested:
# Returning the current gene space from the 'gene_space' attribute.
curr_gene_space = self.gene_space[gene_idx]
# If the gene space has only a single value, use it as the new gene value.
if type(curr_gene_space) in [int, float]:
value_from_space = curr_gene_space
# Keep the gene unchanged if the gene space is None.
elif curr_gene_space == None:
rand_val = self.gene_type(numpy.random.uniform(low=self.random_mutation_min_val,
high=self.random_mutation_max_val,
size=1))
if self.mutation_by_replacement:
value_from_space = rand_val
else:
value_from_space = offspring[offspring_idx, gene_idx] + rand_val
else:
# Selecting a value randomly from the current gene's space in the 'gene_space' attribute.
value_from_space = random.choice(curr_gene_space)
else:
# Selecting a value randomly from the global gene space in the 'gene_space' attribute.
value_from_space = random.choice(self.gene_space)
# Assinging the selected value from the space to the gene.
offspring[offspring_idx, gene_idx] = value_from_space
return offspring
def mutation_randomly(self, offspring):
"""
Applies the random mutation the mutation probability. For each gene, if its probability is <= that mutation probability, then it will be mutated randomly.
It accepts a single parameter:
-offspring: The offspring to mutate.
It returns an array of the mutated offspring.
"""
# Random mutation changes a single gene in each offspring randomly.
for offspring_idx in range(offspring.shape[0]):
mutation_indices = numpy.array(random.sample(range(0, self.num_genes), self.mutation_num_genes))
for gene_idx in mutation_indices:
# Generating a random value.
random_value = self.gene_type(numpy.random.uniform(low=self.random_mutation_min_val,
high=self.random_mutation_max_val,
size=1))
# If the mutation_by_replacement attribute is True, then the random value replaces the current gene value.
if self.mutation_by_replacement:
offspring[offspring_idx, gene_idx] = random_value
# If the mutation_by_replacement attribute is False, then the random value is added to the gene value.
else:
offspring[offspring_idx, gene_idx] = offspring[offspring_idx, gene_idx] + random_value
return offspring
def mutation_probs_randomly(self, offspring):
"""
Applies the random mutation using the mutation probability. For each gene, if its probability is <= that mutation probability, then it will be mutated randomly.
It accepts a single parameter:
-offspring: The offspring to mutate.
It returns an array of the mutated offspring.
"""
# Random mutation changes a single gene in each offspring randomly.
for offspring_idx in range(offspring.shape[0]):
probs = numpy.random.random(size=offspring.shape[1])
for gene_idx in range(offspring.shape[1]):
if probs[gene_idx] <= self.mutation_probability:
# Generating a random value.
random_value = self.gene_type(numpy.random.uniform(low=self.random_mutation_min_val,
high=self.random_mutation_max_val,
size=1))
# If the mutation_by_replacement attribute is True, then the random value replaces the current gene value.
if self.mutation_by_replacement:
offspring[offspring_idx, gene_idx] = random_value
# If the mutation_by_replacement attribute is False, then the random value is added to the gene value.
else:
offspring[offspring_idx, gene_idx] = offspring[offspring_idx, gene_idx] + random_value
return offspring
def best_solution(self):
"""
Returns information about the best solution found by the genetic algorithm. Can only be called after completing at least 1 generation.
If no generation is completed (at least 1), an exception is raised. Otherwise, the following is returned:
-best_solution: Best solution in the current population.
-best_solution_fitness: Fitness value of the best solution.
-best_match_idx: Index of the best solution in the current population.
"""
if self.generations_completed < 1:
raise RuntimeError("The best_solution() method can only be called after completing at least 1 generation but {generations_completed} is completed.".format(generations_completed=self.generations_completed))
# if self.run_completed == False:
# raise ValueError("Warning calling the best_solution() method: \nThe run() method is not yet called and thus the GA did not evolve the solutions. Thus, the best solution is retireved from the initial random population without being evolved.\n")
# Getting the best solution after finishing all generations.
# At first, the fitness is calculated for each solution in the final generation.
fitness = self.cal_pop_fitness()
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = numpy.where(fitness == numpy.max(fitness))[0][0]
best_solution = self.population[best_match_idx, :]
best_solution_fitness = fitness[best_match_idx]