forked from SR-Sunny-Raj/Hacktoberfest2021-DSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix_chain_Multiplication.cpp
60 lines (53 loc) · 1.54 KB
/
Matrix_chain_Multiplication.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*
find the most efficient way to multiply these matrices together.
The efficient way is the one that involves the least number of multiplications.
The dimensions of the matrices are given in an array arr[] of size N (such that N = number of matrices + 1)
where the ith matrix has the dimensions (arr[i-1] x arr[i]).
///////////////////////////////
Input: p[] = {40, 20, 30, 10, 30}
Output: 26000
explanation :There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
//////////////////////
Time Complexity:O(n^3)
Space Complexity: O(n^2)
*/
// C++ program using memoization
#include <bits/stdc++.h>
using namespace std;
int dp[100][100];
// Function for matrix chain multiplication
int matrixChainMemoised(int *p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = INT_MAX;
for (int k = i; k < j; k++)
{
dp[i][j] = min(
dp[i][j], matrixChainMemoised(p, i, k) + matrixChainMemoised(p, k + 1, j) + p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
int MatrixChainOrder(int *p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver Code
int main()
{
int arr[] = {40, 20, 30, 10, 30};
int n = sizeof(arr) / sizeof(arr[0]);
memset(dp, -1, sizeof dp);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, n);
}