-
Notifications
You must be signed in to change notification settings - Fork 4
/
forestPlot.m
172 lines (143 loc) · 5.33 KB
/
forestPlot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
function forestPlot(alldat)
% Code to fit the history-dependent drift diffusion models as described in
% Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife, in press.
%
% MIT License
% Copyright (c) Anne Urai, 2019
ds = length(alldat):-1:1;
close all;
global colors;
axiscolors = colors;
% MAKE AN OVERVIEW PLOT
if numel(alldat) == 3,
subplot(431);
else
subplot(331);
end
hold on;
% make a vertical line at zero
plot([0 0], [0.5 length(ds)+0.5], 'color', [0 0 0], 'linewidth', 0.5);
for d = 1:length(ds),
% determine color and marker
try
col = alldat(ds(d)).scattercolor;
mrk = alldat(ds(d)).marker;
meancol = alldat(ds(d)).meancolor;
catch
disp('cannot find colors');
assert(1==0)
markercolors = cbrewer('qual', 'Paired', 10);
transitioncolors = [[0.5 0.5 0.5]; markercolors([7 9 5], :)];
meancolors = [0 0 0; markercolors([8 10 6], :)];
markers = {'o', 'v', '^', 's'}; %also indicate with different markers
col = transitioncolors(1, :);
mrk = markers{1};
meancol = meancolors(1, :);
end
% start at the top
h = ploterr(alldat(ds(d)).corrz, ...
length(ds)-d+1, ...
{alldat(ds(d)).corrz_ci(1) alldat(ds(d)).corrz_ci(2)}, [], 'o', 'abshhxy', 0.2);
set(h(1), 'marker', mrk, 'color', col, 'markerfacecolor', meancol, 'markeredgecolor', 'w', ...
'markersize', 5 , 'linewidth', 0.5);
set(h(2), 'color', col, 'linewidth', 1);
end
names = {alldat(ds).datasetnames};
for n = 1:length(names),
if numel(names{n}) > 1,
names{n} = cat(2, names{n}{1}, ' ', names{n}{2});
else
names{n} = names{n}{1};
end
end
names = fliplr(names);
set(gca, 'ytick', 1:length(ds), 'yticklabel', names);
xlabel('History shift in z');
xlim([-1 1]); offsetAxes;
set(gca, 'xcolor', axiscolors(1, :), 'ycolor', 'k');
plot(nanmean([alldat(ds).corrz]), 0.1, 'd', 'color', 'k', 'markersize', 4);
[h, pval, ci, stats] = ttest([alldat(ds).corrz]);
disp('z bayes factor');
bf = prod([alldat(ds).bfz])
if bf < 1/100,
t = title(sprintf('BF_{10} < 1/100'), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf > 100,
t = title(sprintf('BF_{10} > 100'), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf < 1,
t = title(sprintf('BF_{10} = 1/%.2f', 1/bf), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf > 1,
t = title(sprintf('BF_{10} = %.2f', bf), 'fontweight', 'normal', 'fontangle', 'italic');
end
t.Position(2) = t.Position(2) - 1.2;
%% NOW FOR DRIFT CRITERION
% MAKE AN OVERVIEW PLOT
if numel(alldat) == 3,
sp2 = subplot(432); hold on;
else
sp2 = subplot(332); hold on;
end
% make a vertical line at zero
plot([0 0], [0.5 length(ds)+0.5], 'color', [0 0 0], 'linewidth', 0.5);
for d = 1:length(ds),
% determine color and marker
try
col = alldat(ds(d)).scattercolor;
mrk = alldat(ds(d)).marker;
meancol = alldat(ds(d)).meancolor;
catch
markercolors = cbrewer('qual', 'Paired', 10);
transitioncolors = [[0.5 0.5 0.5]; markercolors([7 9 5], :)];
meancolors = [0 0 0; markercolors([8 10 6], :)];
markers = {'o', 'v', '^', 's'}; %also indicate with different markers
col = transitioncolors(1, :);
mrk = markers{1};
meancol = meancolors(1, :);
end
% start at the top
h = ploterr(alldat(ds(d)).corrv, ...
length(ds)-d+1, ...
{alldat(ds(d)).corrv_ci(1) alldat(ds(d)).corrv_ci(2)} , [], 'o', 'abshhxy', 0.2);
set(h(1), 'marker', mrk, 'color', col, 'markerfacecolor', meancol, 'markeredgecolor', 'w', ...
'markersize', 5, 'linewidth', 0.5);
set(h(2), 'color', col, 'linewidth', 1);
end
set(gca, 'ytick', 1:length(ds), 'yticklabel', [], 'YAxisLocation', 'right');
xlabel('History shift in v_{bias}');
set(gca, 'xcolor', axiscolors(2, :), 'ycolor', 'k');
xlim([-1 1]); offsetAxes;
% ADD THE AVERAGE??
plot(nanmean([alldat(ds).corrv]), 0.1, 'd', 'color', 'k', 'markersize', 4);
[h, pval, ci, stats] = ttest(fisherz([alldat(ds).corrv]));
disp('v bayes factor');
bf = prod([alldat(ds).bfv])
if bf < 1/100,
t = title(sprintf('BF_{10} < 1/100'), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf > 100,
t = title(sprintf('BF_{10} > 100'), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf < 1,
t = title(sprintf('BF_{10} = 1/%.2f', 1/bf), 'fontweight', 'normal', 'fontangle', 'italic');
elseif bf > 1,
t = title(sprintf('BF_{10} = %.2f', bf), 'fontweight', 'normal', 'fontangle', 'italic');
end
t.Position(2) = t.Position(2) - 1.2;
% move closer together
sp2.Position(1) = sp2.Position(1) - 0.07;
%% ADD TEXT
for d = 1:length(ds),
if alldat(ds(d)).pdiff < 0.0001,
txt = sprintf('\\Delta\\rho = %.3f, p < 0.0001', alldat(ds(d)).corrdiff);
else
txt = sprintf('\\Delta\\rho = %.3f, p = %.4f', alldat(ds(d)).corrdiff, alldat(ds(d)).pdiff);
end
text(-1.35, length(ds)-d+1, txt, ...
'fontsize', 6);
end
% DO STATS ACROSS DATASETS!
% [h, pval, ci, stats] = ttest(fisherz([alldat(ds).corrv]), fisherz([alldat(ds).corrz]));
%[ss, h] = suplabel('Correlation with P(repeat)', 'x');
%ss.Position(2) = ss.Position(2) + 0.015;
% set(h, 'color', 'k');
tightfig;
% print(gcf, '-dpdf', sprintf('~/Data/serialHDDM/forestplot.pdf'));
end