-
Notifications
You must be signed in to change notification settings - Fork 186
/
Copy pathpong.py
156 lines (130 loc) · 5.9 KB
/
pong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
pong.py
Trains a Pong agent using policy gradients.
"""
import numpy as np
import _pickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
resume = True # resume from previous checkpoint?
render = True # render?
resume_model_filename = "model.p"
# =========================================
# Initialize model
# =========================================
D = 80 * 80 # input dimensionality: 80x80 grid
if resume:
print("Resuming model '{}'...".format(resume_model_filename))
model = pickle.load(open(resume_model_filename, 'rb'))
else:
print("Training model from scratch...")
model = {}
model['W1'] = np.random.randn(H, D) / np.sqrt(D) # "Xavier" initialization
model['W2'] = np.random.randn(H) / np.sqrt(H)
grad_buffer = {k: np.zeros_like(v) for k, v in model.items()} # update buffers that add up gradients over a batch
rmsprop_cache = {k: np.zeros_like(v) for k, v in model.items()} # rmsprop memory
# =========================================
# Define functions
# =========================================
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
def prepro(I):
""" prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """
I = I[35:195] # crop
I = I[::2, ::2, 0] # downsample by factor of 2
I[I == 144] = 0 # erase background (background type 1)
I[I == 109] = 0 # erase background (background type 2)
I[I != 0] = 1 # everything else (paddles, ball) just set to 1
return I.astype(np.float).ravel()
def discount_rewards(r):
""" take 1D float array of rewards and compute discounted reward """
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(range(0, r.size)):
if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!)
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def policy_forward(x):
h = np.dot(model['W1'], x)
h[h < 0] = 0 # ReLU nonlinearity
logp = np.dot(model['W2'], h)
p = sigmoid(logp)
return p, h # return probability of taking action 2, and hidden state
def policy_backward(eph, epdlogp):
""" backward pass. (eph is array of intermediate hidden states) """
dW2 = np.dot(eph.T, epdlogp).ravel()
dh = np.outer(epdlogp, model['W2'])
dh[eph <= 0] = 0 # backpro prelu
dW1 = np.dot(dh.T, epx)
return {'W1': dW1, 'W2': dW2}
# ============================================
# Set up environment and train agent
# =============================================
env = gym.make("Pong-v0")
observation = env.reset()
prev_x = None # used in computing the difference frame
xs, hs, dlogps, drs = [], [], [], []
running_reward = None
reward_sum = 0
episode_number = 0
while True:
if render:
env.render()
# preprocess the observation, set input to network to be difference image
cur_x = prepro(observation)
x = cur_x - prev_x if prev_x is not None else np.zeros(D)
prev_x = cur_x
# forward the policy network and sample an action from the returned probability
aprob, h = policy_forward(x)
action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused)
# step the environment and get new measurements
observation, reward, done, info = env.step(action)
reward_sum += reward
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
if done: # an episode finished
episode_number += 1
# stack together all inputs, hidden states, action gradients, and rewards for this episode
epx = np.vstack(xs)
eph = np.vstack(hs)
epdlogp = np.vstack(dlogps)
epr = np.vstack(drs)
xs, hs, dlogps, drs = [], [], [], [] # reset array memory
# compute the discounted reward backwards through time
discounted_epr = discount_rewards(epr)
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
grad = policy_backward(eph, epdlogp)
for k in model: grad_buffer[k] += grad[k] # accumulate grad over batch
# perform rmsprop parameter update every batch_size episodes
if episode_number % batch_size == 0:
for k, v in model.items():
g = grad_buffer[k] # gradient
rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g ** 2
model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
# boring book-keeping
if running_reward is None:
running_reward = reward_sum
else:
running_reward = running_reward * 0.99 + reward_sum * 0.01
print('resetting env. episode reward total was %f. running mean: %f' % (reward_sum, running_reward))
if episode_number % 100 == 0:
pickle.dump(model, open('model.p', 'wb'))
reward_sum = 0
observation = env.reset() # reset env
prev_x = None
if reward != 0: # Pong has either +1 or -1 reward exactly when game ends.
print('ep %d: game finished, reward: %f' % (episode_number, reward))