-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataset_generator.py
executable file
·312 lines (282 loc) · 14.2 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import math
import time
import cv2
import numpy as np
import random
import ctypes
import multiprocessing as mp
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
from scipy.ndimage import measurements
def vector_included_angle(v1, v2):
a1 = math.atan2(v1[1], v1[0])
a2 = math.atan2(v2[1], v2[0])
a = a1 - a2
if a > math.pi:
a = a - math.pi * 2
if a < -math.pi:
a = a + math.pi * 2
return a
class DatasetGenerator:
def __init__(self, bg_list, fg_list, output_size_range_h=(512, 1024), output_size_range_w=(512, 1024),
characters_range=(0, 3), seed=1, load_all=False):
self.bg_list = bg_list
self.fg_list = fg_list
self.output_size_range_h = output_size_range_h
self.output_size_range_w = output_size_range_w
self.load_all = load_all
self.bgs = []
self.fgs = []
characters_idx = []
characters_total = 0
self.random = random.Random(seed)
while True:
if characters_total >= len(fg_list):
break
num = self.random.randint(characters_range[0], characters_range[1])
characters_idx.append([characters_total + x for x in range(0, num) if characters_total + x < len(fg_list)])
characters_total += num
self.characters_idx = characters_idx
self.texts = [chr(x) for x in range(0x3040, 0x30ff + 1)]
self.fonts = []
if load_all:
print("loading bgs")
for bg_path in tqdm(bg_list):
bg = cv2.cvtColor(cv2.imread(bg_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
self.bgs.append(bg)
print("loading fgs")
for fg_path in tqdm(fg_list):
fg = cv2.cvtColor(cv2.imread(fg_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA)
assert fg.shape[2] == 4
self.fgs.append(fg)
self.bgs_offset = mp.Array(ctypes.c_long, self.__len__())
def random_corp(self, img, out_size=None):
h, w = img.shape[:2]
if out_size is None:
min_s = min(h, w)
out_size = (min_s, min_s)
top = self.random.randint(0, h - out_size[0])
left = self.random.randint(0, w - out_size[1])
img = img[top:top + out_size[0], left:left + out_size[1]]
return img
def process_fg(self, fg, output_size, scale):
assert fg.shape[2] == 4
h, w = fg.shape[:2]
r = min(output_size[0] / h, output_size[1] / w)
new_h, new_w = int(h * r), int(w * r)
fg = cv2.resize(fg, (new_w, new_h))
# fg random move
h, w = output_size
cy, cx = measurements.center_of_mass(fg[:, :, 3])
dx = w / 2 - cx
dy = h / 2 - cy
fg = cv2.warpAffine(fg, np.array([[1, 0, dx], [0, 1, dy]], dtype=np.float32),
tuple(output_size[::-1]), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT)
dx = self.random.randint(-w // 3, w // 3)
dy = self.random.randint(-h // 3, h // 3)
angle = self.random.randint(-90, 90)
trans_mat = cv2.getRotationMatrix2D((w // 2, h // 2), angle, scale)
trans_mat[0][2] += dx
trans_mat[1][2] += dy
fg = cv2.warpAffine(fg, trans_mat, tuple(output_size[::-1]), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT)
return fg
def simulate_light(self, image, strength=0.2):
img_size = image.shape[:2]
a = int(np.linalg.norm(img_size) / 2)
r = self.random.randint(a * 11 // 10, a * 2)
b = self.random.uniform(0, math.pi * 2)
cx = int(img_size[1] // 2 + r * math.cos(b))
cy = int(img_size[0] // 2 + r * math.sin(b))
c_v = [img_size[1] // 2 - cx, img_size[0] // 2 - cy]
rs = [vector_included_angle([-cx, -cy], c_v),
vector_included_angle([img_size[1] - cx, -cy], c_v),
vector_included_angle([-cx, img_size[0] - cy], c_v),
vector_included_angle([img_size[1] - cx, img_size[0] - cy], c_v)]
ds = [np.linalg.norm([-cx, -cy]),
np.linalg.norm([img_size[1] - cx, -cy]),
np.linalg.norm([-cx, img_size[0] - cy]),
np.linalg.norm([img_size[1] - cx, img_size[0] - cy])]
r2 = max(ds)
cr = math.atan2(c_v[1], c_v[0])
if cr < 0:
cr = math.pi * 2 + cr
sr = min(rs) + cr
er = max(rs) + cr
n = int(50 * (er - sr) * 2 / math.pi)
color = (self.random.uniform(1 - strength, 1),
self.random.uniform(1 - strength, 1),
self.random.uniform(1 - strength, 1))
if self.random.randint(0, 1) == 0:
light_mask = np.full([*img_size, 3], (1 + strength, 1 + strength, 1 + strength), dtype=np.float32)
else:
light_mask = np.full([*img_size, 3], color, dtype=np.float32)
color = (1 + strength, 1 + strength, 1 + strength)
for a in np.linspace(sr, er, num=n):
x2 = int(cx + r2 * math.cos(a))
y2 = int(cy + r2 * math.sin(a))
light_mask = cv2.line(light_mask, (cx, cy), (x2, y2), color, 10)
return (image * light_mask).clip(0, 1)
def __len__(self):
return len(self.characters_idx)
def __getitem__(self, idx):
# to traverse backgrounds
bg_idx = (idx + self.bgs_offset[idx]) % len(self.bg_list)
self.bgs_offset[idx] += 1
output_size = [self.random.randint(self.output_size_range_h[0], self.output_size_range_h[1]),
self.random.randint(self.output_size_range_w[0], self.output_size_range_w[1])]
if self.load_all:
fgs = [self.fgs[x].astype(np.float32) / 255 for x in self.characters_idx[idx]]
bg = self.bgs[bg_idx].astype(np.float32) / 255
else:
fgs = [cv2.cvtColor(cv2.imread(self.fg_list[x], cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA).astype(
np.float32) / 255 for x in self.characters_idx[idx]]
bg = cv2.cvtColor(cv2.imread(self.bg_list[bg_idx], cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB).astype(
np.float32) / 255
# resize to output_size
h, w = bg.shape[:2]
r = min(h / output_size[0], w / output_size[1])
corp_size = (int(output_size[0] * r), int(output_size[1] * r))
bg = self.random_corp(bg, corp_size)
bg = cv2.resize(bg, tuple(output_size[::-1]))
aug = True
if aug and self.random.randint(0, 1) == 0:
# generate sharp background
d = 50
counts = []
ms = max(output_size)
for i in range(0, d):
r = self.random.randint(ms * 2 // 10, ms * 6 // 10)
x = output_size[1] // 2 + r * math.cos(math.radians(i / d * 360))
y = output_size[0] // 2 + r * math.sin(math.radians(i / d * 360))
counts.append([x, y])
counts = [np.array(counts, dtype=np.int)]
bg_mask = cv2.drawContours(np.zeros([*output_size, 1], dtype=np.float32), counts, 0, (1.0,), cv2.FILLED)
bg = bg * bg_mask + 1 - bg_mask
if self.random.randint(0, 1) == 0:
edge_color = (self.random.uniform(0, 1), self.random.uniform(0, 1), self.random.uniform(0, 1))
bg = cv2.drawContours(bg, counts, 0, edge_color, self.random.randint(ms // 600, ms // 400))
# mix fgs and bg
image = bg
label = np.zeros([*output_size, 1], dtype=np.float32)
small = False
for fg in fgs:
if len(fgs) == 1 and self.random.randint(0, 1) == 0:
fg = fgs[0]
h, w = fg.shape[:2]
s = (int(output_size[0] * 1.25), int(output_size[1] * 1.25))
r = min(s[0] / h, s[1] / w)
new_h, new_w = int(h * r), int(w * r)
ph = s[0] - new_h
pw = s[1] - new_w
fg0 = cv2.resize(fg, (new_w, new_h))
fg = np.zeros([*s, 4], dtype=np.float32)
fg[ph // 2:ph // 2 + new_h, pw // 2:pw // 2 + new_w] = fg0
fg = self.random_corp(fg, output_size)
else:
scale = self.random.uniform(0.2, 0.8)
fg = self.process_fg(fg, output_size, scale)
small = scale < 0.6
image_i, label_i = fg[:, :, 0:3], fg[:, :, 3:]
mask = label_i * cv2.blur(label_i, (5, 5))[:, :, np.newaxis]
image = mask * image_i + (1 - mask) * image
label = np.fmax(label_i, label)
label = (label > 0.5).astype(np.float32)
is_sketch = False
if aug and self.random.randint(0, 1) == 0 and len(fgs) == 1 and not small:
# convert to sketch
is_sketch = True
t = self.random.randint(0, 2)
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image_gray = cv2.GaussianBlur(image_gray, (3, 3), sigmaX=0, sigmaY=0)[:, :, np.newaxis]
image_edge = cv2.adaptiveThreshold((image_gray * 255).astype(np.uint8),
255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
blockSize=5,
C=5).astype(np.float32) / 255
image_edge = image_edge[:, :, np.newaxis]
image_edge = image_edge * (1 - (label - cv2.erode(label, np.ones([3, 3]))[:, :, np.newaxis]))
if t == 0:
if self.random.randint(0, 1) == 0:
image_gray = image_gray * label
image_gray = image_gray + 1 - label
image = (image_gray * image_edge).repeat(3, 2)
elif t == 1:
image_gray = image_gray * label
threshold = image_gray.sum() / label.sum()
image_gray[image_gray > threshold] = 1
image_gray = np.floor(image_gray * 3) / 3
image_gray = image_gray + 1 - label
image = (image_gray * image_edge).repeat(3, 2)
elif t == 2:
image = image_edge.repeat(3, 2)
if aug and self.random.randint(0, 1) == 0 and not is_sketch:
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis].repeat(3, 2)
if aug and self.random.randint(0, 1) == 0:
# random color blocks
temp_img = np.zeros([*output_size, 4], dtype=np.float32)
for _ in range(0, self.random.randint(1, 10)):
if self.random.randint(0, 1) == 0:
w = self.random.randint(output_size[1] // 20, output_size[1] // 3)
h = self.random.randint(output_size[0] // 20, output_size[0] // 3)
x = self.random.randint(0, output_size[1] - w)
y = self.random.randint(0, output_size[0] - h)
color = (self.random.uniform(0, 1), self.random.uniform(0, 1),
self.random.uniform(0, 1), self.random.uniform(0.2, 0.3))
temp_img = cv2.rectangle(temp_img, (x, y), (x + w, y + h), color, cv2.FILLED)
else:
r = self.random.randint((output_size[0] + output_size[0]) // 40,
(output_size[0] + output_size[0]) // 8)
x = self.random.randint(r, output_size[1] - r)
y = self.random.randint(r, output_size[0] - r)
color = (self.random.uniform(0, 1), self.random.uniform(0, 1),
self.random.uniform(0, 1), self.random.uniform(0.2, 0.3))
temp_img = cv2.circle(temp_img, (x, y), r, color, cv2.FILLED)
angle = self.random.randint(-90, 90)
trans_mat = cv2.getRotationMatrix2D((output_size[1] // 2, output_size[0] // 2), angle, 1)
temp_img = cv2.warpAffine(temp_img, trans_mat, tuple(output_size[::-1]), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT)
temp_img, mask = temp_img[:, :, 0:3], temp_img[:, :, 3:]
image = mask * temp_img + (1 - mask) * image
if aug and self.random.randint(0, 1) == 0:
# random texts
image = Image.fromarray((image * 255).astype(np.uint8))
draw = ImageDraw.Draw(image)
for _ in range(0, self.random.randint(1, 10)):
if len(self.fonts) == 0:
self.fonts = [ImageFont.truetype("font.otf", x, encoding="utf-8") for x in range(10, 60, 2)]
font = self.random.choice(self.fonts)
s = font.size
text = "".join([self.random.choice(self.texts) for _ in range(0, 10)])
x = self.random.randint(0, output_size[1] - s * len(text))
y = self.random.randint(0, output_size[0] - s)
if self.random.randint(0, 1) == 0:
color = (255, 255, 255)
else:
color = (0, 0, 0)
draw.text((x, y), text, color, font=font)
image = np.asarray(image).astype(np.float32) / 255
if aug and self.random.randint(0, 1) == 0:
image = self.simulate_light(image)
if aug:
h, w = output_size
rot = cv2.getRotationMatrix2D((w // 2, h // 2), self.random.uniform(-180, 180), 1)
image = cv2.warpAffine(image, rot, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
label = cv2.warpAffine(label, rot, (w, h),
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)[:, :, np.newaxis]
# random quality
if aug and self.random.randint(0, 1) == 0:
h, w = output_size
image = cv2.resize(image, (w // 2, h // 2))
image = cv2.resize(image, (w, h), interpolation=self.random.choice([cv2.INTER_LINEAR, cv2.INTER_NEAREST]))
if aug and self.random.randint(0, 1) == 0:
image = Image.fromarray((image * 255).astype(np.uint8))
image_stream = BytesIO()
image.save(image_stream, "JPEG", quality=self.random.randrange(20, 70), optimice=True)
image_stream.seek(0)
image = np.asarray(Image.open(image_stream), dtype=np.float32) / 255
return image, label
if __name__ == "__main__":
pass