forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
156 lines (123 loc) · 6.27 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
# !/usr/bin/env python
import tensorflow as tf
from tensorpack.graph_builder.model_desc import ModelDesc, InputDesc
from tensorpack.tfutils import (
get_current_tower_context, optimizer, gradproc)
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
import tensorpack_extension
from data_load import phns
from hparam import hparam as hp
from modules import prenet, cbhg, normalize
class Net1(ModelDesc):
def __init__(self):
pass
def _get_inputs(self):
return [InputDesc(tf.float32, (None, None, hp.default.n_mfcc), 'x_mfccs'),
InputDesc(tf.int32, (None, None,), 'y_ppgs')]
def _build_graph(self, inputs):
self.x_mfccs, self.y_ppgs = inputs
is_training = get_current_tower_context().is_training
with tf.variable_scope('net1'):
self.ppgs, self.preds, self.logits = self.network(self.x_mfccs, is_training)
self.cost = self.loss()
acc = self.acc()
# summaries
tf.summary.scalar('net1/train/loss', self.cost)
tf.summary.scalar('net1/train/acc', acc)
if not is_training:
# summaries
tf.summary.scalar('net1/eval/summ_loss', self.cost)
tf.summary.scalar('net1/eval/summ_acc', acc)
# for confusion matrix
tf.reshape(self.y_ppgs, shape=(tf.size(self.y_ppgs),), name='net1/eval/y_ppg_1d')
tf.reshape(self.preds, shape=(tf.size(self.preds),), name='net1/eval/pred_ppg_1d')
def _get_optimizer(self):
lr = tf.get_variable('learning_rate', initializer=hp.train1.lr, trainable=False)
return tf.train.AdamOptimizer(lr)
@auto_reuse_variable_scope
def network(self, x_mfcc, is_training):
# Pre-net
prenet_out = prenet(x_mfcc,
num_units=[hp.train1.hidden_units, hp.train1.hidden_units // 2],
dropout_rate=hp.train1.dropout_rate,
is_training=is_training) # (N, T, E/2)
# CBHG
out = cbhg(prenet_out, hp.train1.num_banks, hp.train1.hidden_units // 2,
hp.train1.num_highway_blocks, hp.train1.norm_type, is_training)
# Final linear projection
logits = tf.layers.dense(out, len(phns)) # (N, T, V)
ppgs = tf.nn.softmax(logits / hp.train1.t, name='ppgs') # (N, T, V)
preds = tf.to_int32(tf.argmax(logits, axis=-1)) # (N, T)
return ppgs, preds, logits
def loss(self):
istarget = tf.sign(tf.abs(tf.reduce_sum(self.x_mfccs, -1))) # indicator: (N, T)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits / hp.train1.t,
labels=self.y_ppgs)
loss *= istarget
loss = tf.reduce_mean(loss)
return loss
def acc(self):
istarget = tf.sign(tf.abs(tf.reduce_sum(self.x_mfccs, -1))) # indicator: (N, T)
num_hits = tf.reduce_sum(tf.to_float(tf.equal(self.preds, self.y_ppgs)) * istarget)
num_targets = tf.reduce_sum(istarget)
acc = num_hits / num_targets
return acc
class Net2(ModelDesc):
def _get_inputs(self):
n_timesteps = (hp.default.duration * hp.default.sr) // hp.default.hop_length + 1
return [InputDesc(tf.float32, (None, n_timesteps, hp.default.n_mfcc), 'x_mfccs'),
InputDesc(tf.float32, (None, n_timesteps, hp.default.n_fft // 2 + 1), 'y_spec'),
InputDesc(tf.float32, (None, n_timesteps, hp.default.n_mels), 'y_mel'), ]
def _build_graph(self, inputs):
self.x_mfcc, self.y_spec, self.y_mel = inputs
is_training = get_current_tower_context().is_training
# build net1
self.net1 = Net1()
with tf.variable_scope('net1'):
self.ppgs, _, _ = self.net1.network(self.x_mfcc, is_training)
self.ppgs = tf.identity(self.ppgs, name='ppgs')
# build net2
with tf.variable_scope('net2'):
self.pred_spec, self.pred_mel = self.network(self.ppgs, is_training)
self.pred_spec = tf.identity(self.pred_spec, name='pred_spec')
self.cost = self.loss()
# summaries
tf.summary.scalar('net2/train/loss', self.cost)
if not is_training:
tf.summary.scalar('net2/eval/summ_loss', self.cost)
def _get_optimizer(self):
gradprocs = [
tensorpack_extension.FilterGradientVariables('.*net2.*', verbose=False),
gradproc.MapGradient(
lambda grad: tf.clip_by_value(grad, hp.train2.clip_value_min, hp.train2.clip_value_max)),
gradproc.GlobalNormClip(hp.train2.clip_norm),
# gradproc.PrintGradient(),
# gradproc.CheckGradient(),
]
lr = tf.get_variable('learning_rate', initializer=hp.train2.lr, trainable=False)
opt = tf.train.AdamOptimizer(learning_rate=lr)
return optimizer.apply_grad_processors(opt, gradprocs)
@auto_reuse_variable_scope
def network(self, ppgs, is_training):
# Pre-net
prenet_out = prenet(ppgs,
num_units=[hp.train2.hidden_units, hp.train2.hidden_units // 2],
dropout_rate=hp.train2.dropout_rate,
is_training=is_training) # (N, T, E/2)
# CBHG1: mel-scale
pred_mel = cbhg(prenet_out, hp.train2.num_banks, hp.train2.hidden_units // 2,
hp.train2.num_highway_blocks, hp.train2.norm_type, is_training,
scope="cbhg_mel")
pred_mel = tf.layers.dense(pred_mel, self.y_mel.shape[-1], name='pred_mel') # (N, T, n_mels)
# CBHG2: linear-scale
pred_spec = tf.layers.dense(pred_mel, hp.train2.hidden_units // 2) # (N, T, n_mels)
pred_spec = cbhg(pred_spec, hp.train2.num_banks, hp.train2.hidden_units // 2,
hp.train2.num_highway_blocks, hp.train2.norm_type, is_training, scope="cbhg_linear")
pred_spec = tf.layers.dense(pred_spec, self.y_spec.shape[-1], name='pred_spec') # log magnitude: (N, T, 1+n_fft//2)
return pred_spec, pred_mel
def loss(self):
loss_spec = tf.reduce_mean(tf.squared_difference(self.pred_spec, self.y_spec))
loss_mel = tf.reduce_mean(tf.squared_difference(self.pred_mel, self.y_mel))
loss = loss_spec + loss_mel
return loss