- Set up WSL https://docs.microsoft.com/en-us/windows/wsl/install. Need to select Ubuntu last version
- Enable NVIDIA CUDA on WSL https://docs.microsoft.com/en-us/windows/ai/directml/gpu-cuda-in-wsl. https://developer.nvidia.com/cuda-downloads
- Set up nvidia docker https://github.com/NVIDIA/nvidia-docker
- Download dataset, create dir shared on Ubuntu home user directore
- Start docker service
sudo service docker start
- Run tensorflow container
sudo docker run -it --rm -p 8888:8888 angpysha/mytfgpu:1.0.6 -v ~/shared:/tmp/shared
7. Setup Pycharm or other internpreter to notebook server localhost:8888
- Find container id using
sudo docker container list
- Run command
sudo docker exec -it {containerId} /bin/bash
- Find current running container ID using command
sudo docker container list
- Create new version of image
sudo docker commit {id} angpysha/mytfgpu:{version}
- Push chnages to docker repository
sudo docker push angpysha/mytfgpu:{version}